Lesson Plan/ Course Break – up

PCC-CVE204-T- STRUCTURAL ANALYSIS-I

Name of the Faculty : Mr. Manik Goyal

Discipline: B.Tech in Civil Engineering

Semester : IV (2nd Year)

Subject : Structural Analysis-I

Lesson Plan Duration: 15 Weeks

Work Load (Lecture / Practical) per week (in hrs.) : Lectures – 03

Week		Theory
	Lecture	Topic (Including assignment / Test)
	Day	
1 st	1	Analysis of stresses and strains:-
	2	Analysis of simple states of stresses and strains
	3	Elastic constraints, bending stresses
	4	Theory of simple bending
2^{nd}	5	Flexure formula, combined stresses in beams,
	6	Shear stresses, Mohr's circle
3 rd	7	Principle stresses and strains
	8	Torsion in shafts and closed thin walled sections,
	9	Stresses and strains in cylindrical shells
4 th	10	Spheres under internal pressure
	11	Theory of Columns: Slenderness ratio
	12	End connections, short columns
5 th	13	Euler's critical buckling loads
3	14	Eccentrically loaded short columns
	15	Cylinder columns subjected to axial and eccentric loading.
6 th	16	Cylinder columns subjected to axial and eccentric loading.
	17	Bending moment and shear force in determinate beams and frames:
	18	Definitions and sign conventions,
7 th		1 st Minor Test
8 th	19	Axial force, shear force and bending moment diagrams
	20	Axial force, shear force and bending moment diagrams
	21	Three hinged arches:
	22	Horizontal thrust
9 th	23	Shear force and bending moment diagrams.
	24	Deflections in beams: Introduction
	25	Slope and deflections in beams by differential equations
10 th	26	Moment area methodand conjugate beam method
	27	Examples
	28	Unit load method
11 th	29	Principle of virtual work
	30	Maxwell's Law of Reciprocal Deflections.
	31	Analysis of statically determinate trusses: Introduction

12 th	32	Various types ,stability,	T
	33	Analysis of plane trusses by method of joints and method of sections	1
	34	Analysis of plane trusses by method of joints and method of sections	1
13 th	35	Examples	1
	36		1
		Analysis of space trusses using tension coefficient method.	
14 th		2 nd Minor test	
15 th	37		
		Analysis of space trusses using tension coefficient method.	
	38		1
		Analysis of space trusses using tension coefficient method.	
	39	Examples	1