PCC-CVE202-P- INTRODUCTION TO FLUID MECHANICS LAB (P)

Name of the Faculty : Mr. Kamaldeep Singh

Discipline : B.Tech in Civil Engineering

Semester: IV (2nd Year)

Subject : Introduction to Fluid Mechanics Lab (P)

Lesson Plan Duration : 15 Weeks

Work Load (Lecture / Practical) per week (in hrs): Practical – 02

Week	Practical		
	Lecture day	Topic (Including Assignment Test)	
1 st	1	Exp. 1- To determine meta-centric height of the ship model. (Group 1)	
	2	Exp. 1 - To determine meta-centric height of the ship model. (Group 2)	
2 nd	3	Exp. 2 -To verify the Bernoulli's theorem &To determine coefficient of discharge for an Orifice-meter. (Group 1)	
	4	Exp. 2 - To verify the Bernoulli's theorem &To determine coefficient of discharge for an Orifice-meter. (Group 2)	
3 rd	5	Exp.3-Velocity measurements by current meter, float, double float (demonstration only). (Group 1)	
	6	Exp.3-Velocity measurements by current meter, float, double float (demonstration only). (Group 2)	
4 th	7	Exp.4-To determine coefficient of discharge of a venture-meter. (Group 1)	
7	8	Exp.4-To determine coefficient of discharge of a venture-meter. (Group 2)	
5 th	9	Exp.5-To determine the various hydraulic coefficients of an Orifice (Cd, Cc, Cv). (Group 1)	
	10	Exp.5-To determine the various hydraulic coefficients of an Orifice (Cd, Cc, Cv). (Group 2)	
6 th	11	Exp.6-To determine coefficient of discharge for an Orifice under variable head. (Group 1)	
J	12	Exp.6-To determine coefficient of discharge for an Orifice under variable head. (Group 2)	
7 th	13	Exp.6-To determine coefficient of discharge for an Orifice under variable head. (Group 1)	
ŕ	14	Exp.6-To determine coefficient of discharge for an Orifice under variable head. (Group 2)	
8 th	15	VIVA- VOCE Group -1	
	16	VIVA – VOCE Group - 2	
9th	17	Exp.7-To calibrate a given notch & To determine coefficient of discharge for a mouth piece. (Group 1)	
	18	Exp.7-To calibrate a given notch & To determine coefficient of discharge for a mouth piece. (Group 2)	
10 th	19	Exp.8-Experiment on Vortex formation (demonstration only). (Group 1)	
	20	Exp.8-Experiment on Vortex formation (demonstration only). (Group 2)	
11 th	21	Exp.9-Drawing of a flow-net by Viscous Analogy Model and Sand Box Model. (Group 1)	

	22	Exp.9-Drawing of a flow-net by Viscous Analogy Model and Sand Box Model.(Group 2)
12 th	23	Exp.10-To study development of boundary layer over a flat plate. (Group 1)
	24	Exp.10-To study development of boundary layer over a flat plate. (Group 2)
13 th	25	Exp.11-To study velocity distribution in a rectangular open channel. (Group 1)
	26	Exp.11-To study velocity distribution in a rectangular open channel. (Group 2)
14 th	27	Exp.11-To study velocity distribution in a rectangular open channel. (Group 1)
	28	Exp.11-To study velocity distribution in a rectangular open channel. (Group 2)
15 th	29	VIVA-VOCE Group- 1
	30	VIVA – VOCE Group - 2