		Lesson Plan
Name of Faculty	:	Dr. Sanjay Dahiya, Assistant Professor of CSE
Discipline	:	Computer Science and Engineering
Semester	:	VI th (Even)
Subject	:	Operating Systems / PCC-CSE-305-T
Lesson Plan Duration	:	15 weeks (from January/ February-2023 to June/July-2023)
Work Load (Lecture/Pra	ectical) p	er week (in hours): (3-L) hours

Week		Theory	Topic Covered Date and Remarks			
,, een	Lecture-	Topic (Including Assignment/Test)	Date	HOD	Director- Principal	
	Day					
	1	Introductory Concepts				
1 st	2	Operating systems functions and characteristics				
	3	Operating system services and systems call				
	4	Operating system services and systems call				
	5	System programs				
2 nd	6	Operating system structure				
	7	Operating systems generation				
	8	Types of Operating systems: Batch operating system				
	9	Time-sharing OS				
3 rd	10	Realtime systems Distributed operating system				
	11	File Systems: Types of Files and their access methods				
	12	File allocation methods				
	13	Directory Systems: Structured Organizations,				
4 th	14	Directory and file protection mechanisms.				
	15	Disk scheduling and its associated algorithms.				
	16	Disk scheduling and its associated algorithms.				
	17	Processes: Process concept, Process Control Block				
5 th	18	Operations on processes, cooperating processes				
-	19	CPU scheduling: Levels of Scheduling				
	20	Scheduling criteria				
	20	Comparative study of scheduling algorithms				
6 th	21	Algorithm evaluation				
Ū	22	Multiple processor scheduling				
	23	Critical section problem Semenhores				
7th	24	1st Minor Test				
/	25	Storage Management: Storage allocation methods				
Q th	25	Storage Management. Storage anocation methods				
0	20	Non contiguous memory ellecation				
	27	Non-contiguous memory anocation				
	28	Paging and Segmentation techniques				
Oth	29	Vietnel memory and and a				
9	30	Virtual memory concepts				
	31	Demand Paging				
	32	Page replacement Algorithms				
1 Oth	33	Page replacement Algorithms				
10.	34	Thrashing				
	35	Revision and Problem Solving				
	36	Revision and Quiz				
1.1.th	37	Deadlock: System model				
11.	38	Deadlock characterization				
	39	Methods for handling deadlocks				
1.04	40	Revision and Problem Solving				
12 th	41	Deadlock prevention				
	42	Deadlock avoidance				
	43	Deadlock detection				
	44	Recovery from deadlock				
	45	Case Studies:				
13 th	46	Comparative study of WINDOW				
	47	UNIX & LINUX system				
	48	UNIX & LINUX system				
14 th		2 nd Minor Test				
	49	Revision and Problem Solving				
15 th	50	Revision and Quiz				
	51	Revision and Problem Solving				
	52	Revision and Quiz				

Operating Systems PCC-CSE305-T

General Course into mation

Course Code: PCC-CSE305-T/	Course Assessment Methods (internal: 30; external: 70)
PCC-IT206-T	Two minor examinations (20 marks), Class Performance measured through
Course Credits: 3	percentage of lectures attended (4 marks), assignments (6 marks), and the end-
Type: Professional Core	semester examination (70 marks).
Contact Hours: 3 hours/week	
Mode: Lectures (L)	For the end semester examination, nine questions are to be set by the examiner.
Examination Duration: 3 hours	A candidate is required to attempt 5 questions in all. All questions carry equal
	marks. Question number 1 will be compulsory and based on the entire syllabus.
	It will contain seven parts of 2 marks each. Question numbers 2 to 9 will be given
	by setting two questions from each of the four units of the syllabus. A candidate
	is required to attempt the remaining four questions by selecting one question from
	each of the four units.
Data and and alter and an and the in C	

Pre-requisites: programming in C and knowledge of computer fundamentals.

About the Course:

The objective of this course is to help students become familiar with the fundamental concepts of operating systems and provide them with enough understanding of operating system design.

Course Outcomes: By the end of the course students will be able to:

- CO1. List various functions and design characteristics of operating systems (LOTS: Level 1: Remember)
- CO2. Explain fundamental concepts of operating systems. (LOTS: Level 2: Understand)
- CO3. Apply operating system design concepts for solving problems regarding scheduling, memory management, disk management and deadlocks etc. (LOTS: Level 3: Apply)
- CO4. Analyze the issues related to various operating systems. (HOTS: Level 4: Analyses)
- CO5. Design solutions for the memory and process management problems. (HOTS: Level 6: Create)

Course Content

Unit I

Introductory Concepts: Operating systems functions and characteristics, operating system services and systems call, system programs, operating system structure. operating systems generation, operating system services and systems call. Types of Operating systems: Batch operating system, Time-sharing OS, Distributed operating system, Realtime systems.

File Systems: Types of Files and their access methods, File allocation methods, Directory Systems: Structured Organizations, directory and file protection mechanisms, disk scheduling and its associated algorithms.

Unit II

Processes: Process concept, Process Control Block, Operations on processes, cooperating processes. CPU scheduling: Levels of Scheduling, scheduling criteria, Comparative study of scheduling algorithms, Algorithm evaluation, multiple processor scheduling. Critical-section problem, Semaphores.

Unit III

Storage Management: Storage allocation methods: Single contiguous allocation, non-contiguous memory allocation, Paging and Segmentation techniques, segmentation with paging, Virtual memory concepts, Demand Paging, Page replacement Algorithms, Thrashing.

Unit IV

Deadlock: System model, Deadlock characterization, Methods for handling deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection, Recovery from deadlock

Case Studies: Comparative study of WINDOW, UNIX & LINUX system.

Text and Reference Books:

- 1. Silberschatz, Peter B. Galvin and Greg Gagne, *Operating System Concepts*, 8th Edition, WileyIndian Edition, 2010.
- 2. Andrew S Tanenbaum, Modern Operating Systems, Third Edition, Prentice Hall India, 2008.
- 3. Naresh Chauhan, *Principles of Operating Systems*, Oxford Press, 2014.
- 4. D.M. Dhamdhere, *Operating Systems*, 2nd edition, Tata McGraw Hill, 2010.
- 5. William Stallings, *Operating Systems– Internals and Design Principles*, 5th Edition, Prentice Hall India, 2000.