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19.21. Bevis-Gibson Flash Light Torsion Dynamometer

Fig. 19.36. Bevis-Gibson flash light torsion dynamometer.

It depends upon the fact that the light travels in a straight line through air of uniform density

and the velocity of light is infinite. It consists of two discs A and B fixed on a shaft at a convenient

distance apart, as shown in Fig. 19.36 (a). Each disc has a small radial slot and these two slots are in

the same line when no power is transmitted and there is no torque on the shaft. A bright electric lamp

L, behind the disc A , is fixed on the bearing of the shaft. This lamp is masked having a slot directly

opposite to the slot of disc A . At every revolution of the shaft, a flash of light is projected through the

slot in the disc A towards the disc B in a direction parallel to the shaft. An eye piece E is fitted behind

the disc B on the shaft bearing and is capable of slight circumferential adjustment.

When the shaft does not transmit any torque (i.e. at rest), a flash of light may be seen after

every revolution of the shaft, as the positions of the slit do not change relative to one another as shown

in Fig. 19.36 (b). Now when the torque is transmitted, the shaft twists and the slot in the disc B

changes its position, though the slots in L, A and E are still in line. Due to this, the light does not reach

to the eye piece as shown in Fig. 19.36 (c). If the eye piece is now moved round by an amount equal

to the lag of disc B, then the slot in the eye piece will be opposite to the slot in disc B as shown in Fig.

19.36 (d) and hence the eye piece receives flash of light. The eye piece is moved by operating a

micrometer spindle and by means of scale and vernier, the angle of twist may be measured upto

1/100th of a degree.

The torsion meter discussed above gives the angle of twist of

the shaft, when the uniform torque is transmitted during each revolution

as in case of turbine shaft. But when the torque varies during each revo-

lution as in reciprocating engines, it is necessary to measure the angle of

twist at several different angular positions. For this, the discs A and B

are perforated with slots arranged in the form of spiral as shown in Fig.

19.37. The lamp and the eye piece must be moved radially so as to bring

them into line with each corresponding pair of slots in the discs.

EXERCISES
1. A single block brake, as shown in Fig. 19.38, has the drum diameter 250 mm. The angle of contact is

90° and the coefficient of friction between the drum and the lining is 0.35. If the operating force of

650 N is applied at the end of the lever, determine the torque that may be transmitted by the block

brake. [Ans. 65.6 N-m]

Fig. 19.37.  Perforated

disc.
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21.1.21.1.21.1.21.1.21.1. IntroductionIntroductionIntroductionIntroductionIntroduction
The high speed of engines and other machines is a

common phenomenon now-a-days. It is, therefore, very

essential that all the rotating and reciprocating parts should

be completely balanced as far as possible. If these parts are

not properly balanced, the dynamic forces are set up. These

forces not only increase the loads on bearings and stresses

in the various members, but also produce unpleasant and

even dangerous vibrations. In this chapter we shall discuss

the balancing of unbalanced forces caused by rotating masses,

in order to minimise pressure on the main bearings when an

engine is running.

21.2.21.2.21.2.21.2.21.2. Balancing of Rotating MassesBalancing of Rotating MassesBalancing of Rotating MassesBalancing of Rotating MassesBalancing of Rotating Masses
We have already discussed, that whenever a certain

mass is attached to a rotating shaft, it exerts some centrifu-

gal force, whose effect is to bend the shaft and to produce

vibrations in it. In order to prevent the effect of centrifugal

force, another mass is attached to the opposite side of the

shaft, at such a position so as to balance the effect of the

centrifugal force of the first mass. This is done in such a
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834      l               Theory of Machines

way that the centrifugal force of both the masses are made to be equal and opposite. The process of

providing the second mass in order to counteract the effect of the centrifugal force of the first mass,

is called balancing of rotating masses.

The following cases are important from the subject point of view:

1. Balancing of a single rotating mass by a single mass rotating in the same plane.

2. Balancing of a single rotating mass by two masses rotating in different planes.

3. Balancing of different masses rotating in the same plane.

4. Balancing of different masses rotating in different planes.

We shall now discuss these cases, in detail, in the following pages.

21.3.21.3.21.3.21.3.21.3. Balancing of a Single Rotating Mass By a Single Mass Rotating inBalancing of a Single Rotating Mass By a Single Mass Rotating inBalancing of a Single Rotating Mass By a Single Mass Rotating inBalancing of a Single Rotating Mass By a Single Mass Rotating inBalancing of a Single Rotating Mass By a Single Mass Rotating in
the Same Planethe Same Planethe Same Planethe Same Planethe Same Plane
Consider a disturbing mass m1 attached to a shaft rotating at ω  rad/s as shown in Fig. 21.1.

Let r1 be the radius of rotation of the mass m1 (i.e. distance between the axis of rotation of the shaft

and the centre of gravity of the mass m1).

We know that the centrifugal force exerted by the mass m1 on the shaft,

= ⋅ω ⋅2
Cl 1 1F m r . . . (i)

This centrifugal force acts radially outwards and thus produces bending moment on the

shaft. In order to counteract the effect of this force, a balancing mass (m2) may be attached in the

same plane of rotation as that of disturbing mass (m1) such that the centrifugal forces due to the

two masses are equal and opposite.

Fig. 21.1. Balancing of a single rotating mass by a single mass rotating in the same plane.

Let          r2 = Radius of rotation of the balancing mass m2 (i.e. distance between the

 axis of rotation of the shaft and the centre of gravity of mass m2 ).

∴   Centrifugal force due to mass m2,

     = ⋅ω ⋅2
C2 2 2F m r . . . (ii)

Equating equations (i) and (ii),

         2 2
1 1 2 2.m r m rω ⋅ = ⋅ω ⋅    or   1 1 2 2m r m r⋅ = ⋅

Notes : 1. The product m
2
.r

2
 may be split up in any convenient way. But the radius of rotation of the

balancing mass (m
2
) is generally made large in order to reduce the balancing mass m

2
.

  2. The centrifugal forces are proportional to the product of the mass and radius of rotation of

respective masses, because 
2ω  is same for each mass.
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21.4.21.4.21.4.21.4.21.4. Balancing of a Single Rotating Mass By Two Masses Rotating inBalancing of a Single Rotating Mass By Two Masses Rotating inBalancing of a Single Rotating Mass By Two Masses Rotating inBalancing of a Single Rotating Mass By Two Masses Rotating inBalancing of a Single Rotating Mass By Two Masses Rotating in

Different PlanesDifferent PlanesDifferent PlanesDifferent PlanesDifferent Planes
We have discussed in the previous article that by introducing a single balancing mass in the

same plane of rotation as that of disturbing mass, the centrifugal forces are balanced. In other

words, the two forces are equal in magnitude and opposite in direction. But this type of arrange-

ment for balancing gives rise to a couple which tends to rock the shaft in its bearings. Therefore in

order to put the system in complete balance, two balancing masses are placed in two different

planes, parallel to the plane of rotation of the disturbing mass, in such a way that they satisfy the

following two conditions of equilibrium.

1. The net dynamic force acting on the shaft is equal to zero. This requires that the line of

action of three centrifugal forces must be the same. In other words, the centre of the

masses of the system must lie on the axis of rotation. This is the condition for static

balancing.

2. The net couple due to the dynamic forces acting on the shaft is equal to zero. In other

words, the algebraic sum of the moments about any point in the plane must be zero.

The conditions (1) and (2) together give dynamic balancing. The following two possibili-

ties may arise while attaching the two balancing masses :

1. The plane of the disturbing mass may be in between the planes of the two balancing

masses, and

2. The plane of the disturbing mass may lie on the left or right of the two planes containing

the balancing masses.

 We shall now discuss both the above cases one by one.

1.  When the plane of the disturbing mass lies in between the planes of the two balancing

   masses

Consider a disturbing mass m lying in a plane A to be balanced by two rotating masses m
1

and m
2
 lying in two different planes L and M as shown in Fig. 21.2. Let r, r

1
 and r

2
 be the radii of

rotation of the masses in planes A, L and M respectively.

The picture shows a diesel engine. All diesel, petrol and steam engines have reciprocating and

rotating masses inside them which need to be balanced.
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836      l               Theory of Machines

Let       l
1
 = Distance between the planes A and L,

                  l
2
 = Distance between the planes A and M, and

                   l = Distance between the planes L and M.

Fig. 21.2. Balancing of a single rotating mass by two rotating masses in different planes when the

     plane of single rotating mass lies in between the planes of two balancing masses.

We know that the centrifugal force exerted by the mass m in the plane A,

    = ⋅ω ⋅2
CF m r

Similarly, the centrifugal force exerted by the mass m1 in the plane L,

  = ⋅ω ⋅2
C1 1 1F m r

and, the centrifugal force exerted by the mass m2 in the plane M,

  = ⋅ω ⋅2
C2 2 2F m r

Since the net force acting on the shaft must be equal to zero, therefore the centrifugal force

on the disturbing mass must be equal to the sum of the centrifugal forces on the balancing masses,

therefore

    C C1 C2F F F= +          or      ⋅ω ⋅ = ω ⋅ + ⋅ω ⋅2 2 2
1 1 2 2.m r m r m r

∴              1 1 2 2m r m r m r⋅ = ⋅ + ⋅  . . . (i)

Now in order to find the magnitude of balancing force in the plane L (or the dynamic force

at the bearing Q of a shaft), take moments about P which is the point of intersection of the plane M

and the axis of rotation. Therefore

           C1 C 2F l F l× = ×      or    2 2
1 1 2m r l m r l⋅ω ⋅ × = ⋅ ω ⋅ ×

∴          1 1 2m r l m r l⋅ ⋅ = ⋅ ⋅      or    2
1 1

l
m r m r

l
⋅ = ⋅ ×  . . . (ii)

Similarly, in order to find the balancing force in plane M (or the dynamic force at the

bearing P of a shaft), take moments about Q which is the point of intersection of the plane L and

the axis of rotation. Therefore

          C2 C 1F l F l× = ×    or   2 2
2 2 1m r l m r l⋅ω ⋅ × = ⋅ ω ⋅ ×

∴          2 2 1m r l m r l⋅ ⋅ = ⋅ ⋅    or   
1

2 2

l
m r m r

l
⋅ = ⋅ ×  . . . (iii)
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It may be noted that equation (i) represents the condition for static balance, but in order to

achieve dynamic balance, equations (ii) or (iii) must also be satisfied.

2.  When the plane of the disturbing mass lies on one end of the planes of the balancing

    masses

Fig. 21.3. Balancing of a single rotating mass by two rotating masses in different planes, when the

plane of single rotating mass lies at one end of the planes of balancing masses.

In this case, the mass m lies in the plane A and the balancing masses lie in the planes L and

M, as shown in Fig. 21.3. As discussed above, the following conditions must be satisfied in order

to balance the system, i.e.

      C2 C1CF F F+ = or     2 2 2
2 2 1 1m r m r m r⋅ω ⋅ + ⋅ω ⋅ = ⋅ ω ⋅

∴    2 2 1 1.m r m r m r⋅ + ⋅ =  . . . (iv)

Now, to find the balancing force in the plane L (or the dynamic force at the bearing Q of a

shaft), take moments about P which is the point of intersection of the plane M and the axis of

rotation. Therefore

         C1 C 2F l F l× = ×   or   2 2
1 1 2m r l m r l⋅ω ⋅ × = ⋅ ω ⋅ ×

∴                    1 1 2m r l m r l⋅ ⋅ = ⋅ ⋅   or   2
1 1

l
m r m r

l
⋅ = ⋅ ×  . . . (v)

. . . [Same as equation (ii)]

Similarly, to find the balancing force in the plane M (or the dynamic force at the bearing P

of a shaft), take moments about Q which is the point of intersection of the plane L and the axis of

rotation. Therefore

          C2 C 1F l F l× = ×   or   2 2
2 2 1m r l m r l⋅ω ⋅ × = ⋅ω ⋅ ×

         2 2 1m r l m r l⋅ ⋅ = ⋅ ⋅  or   
1

2 2

l
m r m r

l
⋅ = ⋅ × . . . (vi)

. . . [Same as equation (iii)]

21.5.21.5.21.5.21.5.21.5. Balancing of Several Masses Rotating in the Same PlaneBalancing of Several Masses Rotating in the Same PlaneBalancing of Several Masses Rotating in the Same PlaneBalancing of Several Masses Rotating in the Same PlaneBalancing of Several Masses Rotating in the Same Plane
Consider any number of masses (say four) of magnitude m1, m2, m3 and m4 at distances of

r
1
, r

2
, r

3
 and r

4
 from the axis of the rotating shaft. Let 1 2 3 4, , andθ θ θ θ be the angles of these

masses with the horizontal line OX, as shown in Fig. 21.4 (a). Let these masses rotate about an axis

through O and perpendicular to the plane of paper, with a constant angular velocity of ω  rad/s.
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838      l               Theory of Machines

The magnitude and position of the balancing mass may be found out analytically or

graphically as discussed below :

(a) Space diagram.         (b) Vector diagram.

Fig. 21.4. Balancing of several masses rotating in the same plane.

1. Analytical method

The magnitude and direction of the balancing mass may be obtained, analytically, as

discussed below :

1. First of all, find out the centrifugal force* (or the product of the mass and its radius of

rotation) exerted by each mass on the rotating shaft.

* Since ω2 is same for each mass, therefore the magnitude of the centrifugal force for each mass is propor-

tional to the product of the respective mass and its radius of rotation.

A car assembly line.
Note : This picture is given as additional information and is not a direct example of the current chapter.
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2. Resolve the centrifugal forces horizontally and vertically and find their sums, i.e. HΣ

and VΣ . We know that

Sum of horizontal components of the centrifugal forces,

   1 1 1 2 2 2cos cos . . . . . .H m r m rΣ = ⋅ θ + ⋅ θ +

and sum of vertical components of the centrifugal forces,

  1 1 1 2 2 2sin sin . . . . . .V m r m rΣ = ⋅ θ + ⋅ θ +

3. Magnitude of the resultant centrifugal force,

    = Σ + Σ2 2
C ( ) ( )F H V

4. If θ  is the angle, which the resultant force makes with the horizontal, then

 tan /V Hθ = Σ Σ

5. The balancing force is then equal to the resultant force, but in opposite direction.

6. Now find out the magnitude of the balancing mass, such that

    = ⋅CF m r

where       m = Balancing mass, and

       r = Its radius of rotation.

2. Graphical method

The magnitude and position of the balancing mass may also be obtained graphically as

discussed below :

1. First of all, draw the space diagram with the positions of the several masses, as shown in

Fig. 21.4 (a).

2. Find out the centrifugal force (or product of the mass and radius of rotation) exerted by

each mass on the rotating shaft.

3. Now draw the vector diagram with the obtained centrifugal forces (or the product of the

masses and their radii of rotation), such that ab represents the centrifugal force exerted by

the mass m
1
 (or m

1
.r

1
) in magnitude and direction to some suitable scale. Similarly, draw

bc, cd and de to represent centrifugal forces of other masses m
2
, m

3
 and m

4
 (or m

2
.r

2
,

m
3
.r

3
 and m

4
.r

4
).

4. Now, as per polygon law of forces, the closing side ae represents the resultant force in

magnitude and direction, as shown in Fig. 21.4 (b).

5. The balancing force is, then, equal to the resultant force, but in opposite direction.

6. Now find out the magnitude of the balancing mass (m) at a given radius of rotation (r),

such that

        
2m r⋅ω ⋅  = Resultant centrifugal force

or     m.r = Resultant of m1.r1, m2.r2, m3.r3 and m4.r4

Example 21.1. Four masses m
1
, m

2
, m

3
 and m

4
 are 200 kg, 300 kg, 240 kg and 260 kg

respectively. The corresponding radii of rotation are 0.2 m, 0.15 m, 0.25 m and 0.3 m respectively

and the angles between successive masses are 45°, 75° and 135°. Find the position and magnitude

of the balance mass required, if its radius of rotation is 0.2 m.

Solution. Given : m
1
 = 200 kg ; m

2
 = 300 kg ; m

3
 = 240 kg ; m

4
 = 260 kg ; r

1
 = 0.2 m ;

r2 = 0.15 m ; r3 = 0.25 m ; r4 = 0.3 m ; 1θ  = 0° ; 2θ  = 45° ; 3θ  = 45° + 75° = 120° ; 4θ  = 45° + 75°

+ 135° = 255° ; r = 0.2 m
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840      l               Theory of Machines

Let               m = Balancing mass, and

                 θ = The angle which the balancing mass makes with m
1
.

Since the magnitude of centrifugal forces are

proportional to the product of each mass and its radius,

therefore

            ⋅ = × =1 1 200 0.2 40 kg-mm r

           ⋅ = × =2 2 300 0.15 45kg-mm r

                        ⋅ = × =3 3 240 0.25 60 kg-mm r

           ⋅ = × =4 4 260 0.3 78 kg-mm r

The problem may, now, be solved either analytically

or graphically. But we shall solve the problem by both the

methods one by one.

1. Analytical method

The space diagram is shown in Fig. 21.5.

Resolving m1.r1, m2.r2, m3.r3 and m4.r4 horizontally,

   1 1 1 2 2 2 3 3 3 4 4 4cos cos cos cosH m r m r m r m rΣ = ⋅ θ + ⋅ θ + ⋅ θ + ⋅ θ

        40 cos0 45cos45 60 cos120 78cos255= ° + ° + ° + °

       40 31.8 30 20.2 21.6 kg-m= + − − =

Now resolving vertically,

   Σ = ⋅ θ + ⋅ θ + ⋅ θ + ⋅ θ1 1 1 2 2 2 3 3 3 4 4 4sin sin sin sinV m r m r m r m r

       40 sin0 45sin45 60 sin120 78sin255= ° + ° + ° + °

       0 31.8 52 75.3 8.5 kg-m= + + − =

∴Resultant,   R = 2 2 2 2( ) ( ) (21.6) (8.5) 23.2 kg-mH VΣ + Σ = + =

We know that

 23.2m r R⋅ = =    or  = = =23.2 / 23.2 / 0.2 116 kgm r  Ans.

and  tan / 8.5/ 21.6 0.3935V H′θ = Σ Σ = =    or  ′θ  = 21.48°

Since ′θ  is the angle of the resultant R from the horizontal mass of 200 kg, therefore the

angle of the balancing mass from the horizontal mass of 200 kg,

     θ  = 180° + 21.48° = 201.48° Ans.

2. Graphical method

The magnitude and the position of the balancing mass may also be found graphically as

discussed below :

1. First of all, draw the space diagram showing the positions of all the given masses as

shown in Fig 21.6 (a).

2. Since the centrifugal force of each mass is proportional to the product of the mass and

radius, therefore

  m
1
.r

1
 = 200 × 0.2 =  40 kg-m

 m2.r2 = 300 × 0.15 = 45 kg-m

Fig. 21.5
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             m

3
.r

3
 = 240 × 0.25 = 60 kg-m

   m
4
.r

4
 = 260 × 0.3 =  78 kg-m

3. Now draw the vector diagram with the above values, to some suitable scale, as shown in

Fig. 21.6 (b). The closing side of the polygon ae represents the resultant force. By mea-

surement, we find that ae = 23 kg-m.

(a) Space diagram. (b) Vector diagram

Fig. 21.6

4. The balancing force is equal to the resultant force, but opposite in direction as shown in

Fig. 21.6 (a). Since the balancing force is proportional to m.r, therefore

          m × 0.2 = vector ea = 23 kg-m   or   m = 23/0.2 = 115 kg Ans.

By measurement we also find that the angle of inclination of the balancing mass (m) from

the horizontal mass of 200 kg,

    θ  = 201° Ans.

21.6.21.6.21.6.21.6.21.6. Balancing of Several Masses Rotating in Different PlanesBalancing of Several Masses Rotating in Different PlanesBalancing of Several Masses Rotating in Different PlanesBalancing of Several Masses Rotating in Different PlanesBalancing of Several Masses Rotating in Different Planes
When several masses revolve in different planes, they

may be transferred to a reference plane (briefly written as

R.P.), which may be defined as the plane passing through a

point on the axis of rotation and perpendicular to it. The

effect of transferring a revolving mass (in one plane) to a

reference plane is to cause a force of magnitude equal to the

centrifugal force of the revolving mass to act in the reference

plane, together with a couple of magnitude equal to the

product of the force and the distance between the plane of

rotation and the reference plane. In order to have a complete

balance of the several revolving masses in different planes,

the following two conditions must be satisfied :

1. The forces in the reference plane must balance, i.e.

the resultant force must be zero.

2. The couples about the reference plane must balance,

i.e. the resultant couple must be zero.

Let us now consider four masses m1, m2, m3 and m4

revolving in planes 1, 2, 3 and 4 respectively as shown in
Diesel engine.
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842      l               Theory of Machines

Fig. 21.7 (a). The relative angular positions of these masses are shown in the end view [Fig. 21.7

(b)]. The magnitude of the balancing masses m
L
 and m

M
 in planes L and M may be obtained as

discussed below :

1. Take one of the planes, say L as the reference plane (R.P.). The distances of all the other

planes to the left of the reference plane may be regarded as negative, and those to the

right as positive.

2. Tabulate the data as shown in Table 21.1. The planes are tabulated in the same order in

which they occur, reading from left to right.

Table 21.1Table 21.1Table 21.1Table 21.1Table 21.1
Plane Mass (m) Radius(r) Cent.force 2÷ ω Distance from Couple 2÷ ω

(m.r) Plane L (l) (m.r.l)

(1) (2) (3) (4) (5) (6)

1 m
1

r
1

m
1
.r

1
–l

1
– m

1
.r

1
.l

1

L(R.P.) m
L

r
L

m
L
.r

L
0 0

2 m
2

r
2

m
2
.r

2
l
2

m
2
.r

2
.l

2

3 m
3

r
3

m
3
.r

3
l
3

m
3
.r

3
.l

3

M m
M

r
M

m
M

.r
M

l
M

m
M

.r
M

.l
M

4 m
4

r
4

m
4
.r

4
l
4

m
4
.r

4
.l

4

(a) Position of planes of the masses.   (b) Angular position of the masses.

(c) Couple vector.      (d) Couple vectors turned  (e) Couple polygon.   ( f ) Force polygon.

     counter clockwise through

a right angle.

Fig. 21.7. Balancing of several masses rotating in different planes.

3. A couple may be represented by a vector drawn perpendicular to the plane of the couple.

The couple C1 introduced by transferring m1 to the reference plane through O is propor-
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tional to m1.r1.l1 and acts in a plane through Om1 and perpendicular to the paper. The

vector representing this couple is drawn in the plane of the paper and perpendicular to

Om1 as shown by OC1 in Fig. 21.7 (c). Similarly, the vectors OC2, OC3 and OC4 are

drawn perpendicular to Om2, Om3 and Om4 respectively and in the plane of the paper.

4. The couple vectors as discussed above, are turned counter clockwise through a right angle

for convenience of drawing as shown in Fig. 21.7 (d). We see that their relative positions

remains unaffected. Now the vectors OC2, OC3 and OC4 are parallel and in the same

direction as Om2, Om3 and Om4, while the vector OC1 is parallel to Om1 but in *opposite

direction. Hence the couple vectors are drawn radially outwards for the masses on one

side of the reference plane and radially inward for the masses on the other side of the

reference plane.

5. Now draw the couple polygon as shown in Fig. 21.7 (e). The vector d o′ ′  represents the

balanced couple. Since the balanced couple C
M

 is proportional to m
M

.r
M

.l
M

, therefore

   M M M M vector C m r l d o′ ′= ⋅ ⋅ =     or    M

M M

vector d o
m

r l

′ ′
=

⋅

From this expression, the value of the balancing mass m
M

 in the plane M may be obtained,

and the angle of inclination φ  of this mass may be measured from Fig. 21.7 (b).

6. Now draw the force polygon as shown in Fig. 21.7 ( f ). The vector eo (in the direction

from e to o ) represents the balanced force. Since the balanced force is proportional to

mL.rL, therefore,

           L L vectorm r eo⋅ =      or     L

L

vector eo
m

r
=

From this expression, the value of the balancing mass mL in the plane L may be obtained

and the angle of inclination α of this mass with the horizontal may be measured from Fig. 21.7 (b).

Example 21.2. A shaft carries four masses A, B, C and D of magnitude 200 kg, 300 kg,

400 kg and 200 kg respectively and revolving at radii 80 mm, 70 mm, 60 mm and 80 mm in planes

measured from A at 300 mm, 400 mm and 700 mm. The angles between the cranks measured

anticlockwise are A to B 45°, B to C 70° and C to D 120°. The balancing masses are to be placed

in planes X and Y. The distance between the planes A and X is 100 mm, between X and Y is 400

mm and between Y and D is 200 mm. If the balancing masses revolve at a radius of 100 mm, find

their magnitudes and angular positions.

Solution. Given : mA = 200 kg ; mB = 300 kg ; mC = 400 kg ; mD = 200 kg ; rA = 80 mm

= 0.08m ; r
B
 = 70 mm = 0.07 m ; r

C
 = 60 mm = 0.06 m ; r

D
 = 80 mm = 0.08 m ; r

X
 = r

Y
 = 100 mm

= 0.1 m

Let     m
X

 = Balancing mass placed in plane X, and

    mY = Balancing mass placed in plane Y.

The position of planes and angular position of the masses (assuming the mass A as

horizontal) are shown in Fig. 21.8 (a) and (b) respectively.

Assume the plane X as the reference plane (R.P.). The distances of the planes to the right of

plane X are taken as + ve while the distances of the planes to the left of plane X are taken as – ve.

The data may be tabulated as shown in Table 21.2.

*  From Table 21.1 (column 6) we see that the couple is – m
1
,r

1
.l

1
.
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Table 21.2Table 21.2Table 21.2Table 21.2Table 21.2
Plane Mass (m) Radius (r) Cent.force ÷ ω2 Distance from Couple ÷ ω2

kg  m (m.r) kg-m Plane x(l) m (m.r.l) kg-m2

(1) (2) (3) (4) (5) (6)

A 200 0.08 16 – 0.1 – 1.6

X(R.P.) m
X

0.1 0.1 m
X

0 0

B 300 0.07 21 0.2 4.2

C 400 0.06 24 0.3 7.2

Y m
Y

0.1 0.1 m
Y

0.4 0.04 m
Y

D 200 0.08 16 0.6 9.6

The balancing masses m
X

 and m
Y

 and their angular positions may be determined graphi-

cally as discussed below :

1. First of all, draw the couple polygon from the data given in Table 21.2 (column 6) as

shown in Fig. 21.8 (c) to some suitable scale. The vector  d o′ ′  represents the balanced

couple. Since the balanced couple is proportional to 0.04 m
Y

, therefore by measurement,

Y. vector . kg-mm d o′ ′= = 20 04 7 3      or    m
Y

 = 182.5 kg Ans.

All dimensions in mm.

(a) Position of planes. (b) Angular position of masses.

          (c) Couple polygon. (d) Force polygon.

Fig. 21.8
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The angular position of the mass m

Y
 is obtained by drawing Om

Y
 in Fig. 21.8 (b), parallel

to vector d o′ ′  . By measurement, the angular position of mY is Y 12θ = °  in the clockwise

direction from mass m
A

 (i.e. 200 kg ). Ans.

2. Now draw the force polygon from the data given in Table 21.2 (column 4) as shown in

Fig. 21.8 (d). The vector eo represents the balanced force. Since the balanced force is

proportional to 0.1 m
X

, therefore by measurement,

X0.1 vector 35.5 kg-mm eo= =     or    mX = 355 kg Ans.

The angular position of the mass m
X

 is obtained by drawing Om
X

 in Fig. 21.8 (b), parallel

to vector eo. By measurement, the angular position of mX is X 145θ = ° in the clockwise

direction from mass m
A

 (i.e. 200 kg ). Ans.

Example 21.3. Four masses A, B, C and D as shown below are to be completely balanced.

A B C D

Mass (kg) — 30 50 40

Radius (mm) 180 240 120 150

The planes containing masses B and C are 300 mm apart. The angle between planes

containing B and C is 90°. B and C make angles of 210° and 120° respectively with D in the same

sense. Find :

1. The magnitude and the angular position of mass A ; and

2. The position of planes A and D.

Solution. Given : rA = 180 mm = 0.18 m ; mB = 30 kg ; rB = 240 mm = 0.24 m ;

mC = 50 kg ; rC = 120 mm = 0.12 m ; mD = 40 kg ; rD = 150 mm = 0.15 m ;  ∠ BOC = 90° ;

∠ BOD = 210° ;  ∠ COD = 120°

1. The magnitude and the angular position of mass A

Let            m
A

 = Magnitude of Mass A,

  x = Distance between the planes B and D, and

              y = Distance between the planes A and B.

The position of the planes and the angular position of the masses is shown in Fig. 21.9 (a)

and (b) respectively.

Assuming the plane B as the reference plane (R.P.) and the mass B (m
B
) along the horizon-

tal line as shown in Fig. 21.9 (b), the data may be tabulated as below :

Table 21.3Table 21.3Table 21.3Table 21.3Table 21.3
Plane Mass Radius Cent.force ÷ ω2 Distance from Couple ÷ ω2

(m) kg (r) m (m.r) kg-m plane B (l) m (m.r.l) kg-m2

(1) (2) (3) (4) (5) (6)

A m
A

0.18 0.08 m
A

– y – 0.18 m
A.

y

B (R.P) 30 0.24 7.2 0 0

C 50 0.12 6 0.3 1.8

D 40 0.15 6 x 6x

The magnitude and angular position of mass A may be determined by drawing the force

polygon from the data given in Table 21.3 (Column 4), as shown in Fig. 21.9 (c), to some suitable
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scale. Since the masses are to be completely balanced, therefore the force polygon must be a closed

figure. The closing side (i.e. vector do) is proportional to 0.18 m
A

. By measurement,

     0.18 m
A

 = Vector do = 3.6 kg-m   or   m
A

 = 20 kg Ans.

In order to find the angular position of mass A, draw OA in Fig. 21.9 (b) parallel to vector

do. By measurement, we find that the angular position of mass A from mass B in the anticlockwise

direction is  ∠ AOB = 236° Ans.

(c) Force polygon.                    (d) Couple polygon.

Fig. 21.9.

2. Position of planes A and D

The position of planes A and D may be obtained by drawing the couple polygon, as shown

in Fig. 21.9 (d), from the data given in Table 21.3 (column 6). The couple polygon is drawn as

discussed below :

1. Draw vector o c′ ′   parallel to OC and equal to 1.8 kg-m2, to some suitable scale.

2. From points c′  and o′ , draw lines parallel to OD and OA respectively, such that they

intersect at point d′ . By measurement, we find that

6 x = vector c d′ ′  = 2.3 kg-m2 or x = 0.383 m

We see from the couple polygon that the direction of vector  c d′ ′  is opposite to the

direction of mass D. Therefore the plane of mass D is 0.383 m or 383 mm towards left of plane B

and not towards right of plane B as already assumed. Ans.

(a) Position of planes.                 (b) Angular position of masses.

All dimensions in mm.
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Again by measurement from couple polygon,

           – 0.18 mA.y = vector ′′o d  = 3.6 kg-m2

         – 0.18 × 20 y = 3.6     or   y = – 1 m

The negative sign indicates that the plane A is not towards left of B as assumed but it is

1 m or 1000 mm towards right of plane B. Ans.

Example 21.4. A, B, C and D are four masses carried by a rotating shaft at radii 100,

125, 200 and 150 mm respectively. The planes in which the masses revolve are spaced 600 mm

apart and the mass of B, C and D are 10 kg, 5 kg, and 4 kg respectively.

Find the required mass A and the relative angular settings of the four masses so that the

shaft shall be in complete balance.

Solution. Given : rA = 100 mm = 0.1 m ; rB = 125 mm = 0.125 m ; rC = 200 mm = 0.2 m ;

rD = 150 mm = 0.15 m ; mB = 10 kg ; mC = 5 kg ; mD = 4 kg

The position of planes is shown in Fig. 21.10 (a). Assuming the plane of mass A as the

reference plane (R.P.), the data may be tabulated as below :

Table 21.4Table 21.4Table 21.4Table 21.4Table 21.4
Plane Mass (m) Radius (r) Cent. Force ÷ ω2 Distance from Couple ÷ ω2

kg m (m.r)kg-m plane A (l)m (m.r.l) kg-m2

(1) (2) (3) (4) (5) (6)

A(R.P.) m
A

0.1 0.1 m
A

0 0

B 10 0.125 1.25 0.6 0.75

C 5 0.2 1 1.2 1.2

D 4 0.15 0.6 1.8 1.08

First of all, the angular setting of masses C and D is obtained by drawing the couple
polygon from the data given in Table 21.4 (column 6). Assume the position of mass B in the
horizontal direction OB as shown in Fig. 21.10 (b). Now the couple polygon as shown in Fig.
21.10 (c) is drawn as discussed below :

1. Draw vector o′ b′  in the horizontal direction (i.e. parallel to OB) and equal to 0.75 kg-m2,
to some suitable scale.

2. From points o′ and b′, draw vectors  o′ c′ and b′ c′  equal to 1.2 kg-m2 and 1.08 kg-m2

respectively. These vectors intersect at c′.

3. Now in Fig. 21.10 (b), draw OC parallel to vector  o′ c′ and OD parallel to vector b′ c′.

By measurement, we find that the angular setting of mass C from mass B in the anticlockwise
direction, i.e.

   BOC∠  = 240° Ans.

and angular setting of mass D from mass B in the anticlockwise direction, i.e.

    BOD∠  = 100° Ans.

In order to find the required mass A (m
A

) and its angular setting, draw the force polygon to

some suitable scale, as shown in Fig. 21.10 (d), from the data given in Table 21.4 (column 4).

Since the closing side of the force polygon (vector do) is proportional to 0.1 m
A

, therefore
by measurement,

      0.1 mA = 0.7 kg-m2   or   mA = 7 kg Ans.
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Now draw OA in Fig. 21.10 (b), parallel to vector do. By measurement, we find that the
angular setting of mass A from mass B in the anticlockwise direction, i.e.

    BOA∠  = 155° Ans.

(c) Couple polygon. (d) Force polygon.

Fig. 21.10

Example 21.5. A shaft carries four masses in parallel planes A, B, C and D in this order

along its length. The masses at B and C are 18 kg and 12.5 kg respectively, and each has an

eccentricity of 60 mm. The masses at A and D have an eccentricity of 80 mm. The angle between

the masses at B and C is 100° and that between the masses at B and A is 190°, both being

measured in the same direction. The axial distance between the planes A and B is 100 mm and

that between B and C is 200 mm. If the shaft is in complete dynamic balance, determine :

1. The magnitude of the masses at A and D ; 2. the distance between planes A and D ; and

3. the angular position of the mass at D.

Solution. Given : mB = 18 kg ; mC = 12.5 kg ; rB = rC = 60 mm = 0.06 m ; rA = rD = 80 mm

= 0.08 m ;  ∠ BOC = 100° ;  ∠  BOA = 190°

1. Magnitude of the masses at A and D

Let            MA = Mass at A,

          MD = Mass at D, and

  x = Distance between planes A and D.

All dimensions in mm

(a) Position of planes. (b) Angular position of masses.
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The position of the planes and angular position of the masses is shown in Fig. 21.11 (a)

and (b) respectively. The position of mass B is assumed in the horizontal direction, i.e. along OB.

Taking the plane of mass A as the reference plane, the data may be tabulated as below :

Table 21.5Table 21.5Table 21.5Table 21.5Table 21.5
Plane Mass Eccentricity Cent. force ÷ ω2 Distance from Couple ÷ ω2

(m) kg (r) m (m.r) kg-m plane A(l)m (m.r.l) kg-m2

(1) (2) (3) (4) (5) (6)

A (R.P.) m
A

0.08 0.08 m
A

0 0

B 18 0.06 1.08 0.1 0.108

C 12.5 0.06 0.75 0.3 0.225

D m
D

0.08 0.08 m
D

x 0.08 m
D

 . x

(a) Position of planes. (b) Angular position of masses.

(c) Couple polygon. (d) Force polygon.

Fig. 21.11

First of all, the direction of mass D is fixed by drawing the couple polygon to some suit-

able scale, as shown in Fig. 21.11 (c), from the data given in Table 21.5 (column 6). The closing

All dimensions in mm.

www.EngineeringBooksPDF.com



850      l               Theory of Machines

side of the couple polygon (vector c o′ ′  ) is proportional to 0.08 mD.x. By measurement, we find that

0.08 m
D

.x = vector c o′ ′  = 0.235 kg-m2  . . . (i)

In Fig. 21.11 (b), draw OD parallel to vector c o′ ′  to fix the direction of mass D.

Now draw the force polygon, to some suitable scale, as shown in Fig. 21.11 (d), from the

data given in Table 21.5 (column 4), as discussed below :

1. Draw vector ob parallel to OB and equal to 1.08 kg-m.

2. From point b, draw vector bc parallel to OC and equal to 0.75 kg-m.

3. For the shaft to be in complete dynamic balance, the force polygon must be a closed

figure. Therefore from point c, draw vector cd parallel to OA and from point o draw

vector od parallel to OD. The vectors cd and od intersect at d. Since the vector cd is

proportional to 0.08 mA, therefore by measurement

   0.08 mA = vector cd = 0.77 kg-m   or   mA = 9.625 kg Ans.

and vector do is proportional to 0.08 mD, therefore by measurement,

 0.08 mD = vector do = 0.65 kg-m   or   mD = 8.125 kg Ans.

2. Distance between planes A and D

From equation (i),

0.08 mD.x = 0.235 kg-m2

   0.08 × 8.125 × x = 0.235 kg-m2   or   0.65 x = 0.235

∴         
0.235

0.3615
0.65

x = = m  = 361.5 mm Ans.

3. Angular position of mass at D

By measurement from Fig. 21.11 (b), we find that the angular position of mass at D from

mass B in the anticlockwise direction, i.e.  ∠ BOD = 251° Ans.

Example 21.6. A shaft has three eccentrics, each 75 mm diameter and 25 mm thick,

machined in one piece with the shaft. The central planes of the eccentric are 60 mm apart. The

distance of the centres from the axis of rotation are 12 mm, 18 mm and 12 mm and their angular

positions are 120° apart. The density of metal is 7000 kg/m3. Find the amount of out-of-balance

force and couple at 600 r.p.m. If the shaft is balanced by adding two masses at a radius 75 mm

and at distances of 100 mm from the central plane of the middle eccentric, find the amount of the

masses and their angular positions.

Solution. Given : D = 75 mm = 0.075 m ; t = 25 mm = 0.025 m ; r
A
 = 12 mm = 0.012 m ;

rB = 18 mm = 0.018 m ; rC = 12 mm = 0.012 mm ; ρ  = 7000 kg/m3 ; N = 600 r.p.m. or

2ω = π × 600/60 = 62.84 rad/s ; rL = rM = 75 mm = 0.075 m

We know that mass of each eccentric,

        mA = mB = mC = Volume × Density = 
2

4
D t

π
× × ×ρ

 = 
2(0.075) (0.025)7000 0.77 kg

4

π
=

Let L and M be the planes at distances of 100 mm from the central plane of middle

eccentric. The position of the planes and the angular position of the three eccentrics is shown in

Fig. 21.12 (a) and (b) respectively. Assuming L as the reference plane and mass of the eccentric A

in the vertical direction, the data may be tabulated as below :
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Table 21.6.Table 21.6.Table 21.6.Table 21.6.Table 21.6.

Plane Mass Radius Cent. force 2÷ ω Distance from Couple 2÷ ω

(m) kg (r) m (m.r) kg-m plane L.(l)m (m.r.l) kg-m2

(1) (2) (3) (4) (5) (6)

L (R.P.) m
L

0.075 75 × 10–3 m
L

0 0

A 0.77 0.012 9.24 × 10–3 0.04 0.3696 × 10–3

B 0.77 0.018 13.86 × 10–3 0.1 1.386 × 10–3

C 0.77 0.012 9.24 × 10–3 0.16 1.4784 × 10–3

M m
M

0.075 75 × 10–3 m
M

0.20 15 × 10–3 m
M

Out-of-balance force

The out-of-balance force is obtained by drawing the force polygon, as shown in Fig. 21.12

(c), from the data given in Table 21.6 (column 4). The resultant oc represents the out-of-balance

force.

(a) Position of planes. (b) Angular position of masses.

3
9.24 10oa

−= ×
3

0.3696 10o a
−′ ′ = × 3

9.24 10oa
−= ×

3
13.86 10ab

−= × 3
1.386 10a b

−′ ′ = × 3
13.86 10ab

−= ×

3
9.24 10b c

−= × 3
1.4784 10b c

−′ ′ = × 3
9.24 10b c

−= ×

3
M75 10cd m−= ×

(c) Force polygon.  (d) Couple polygon. (e) Force polygon.

Fig. 21.12

All dimensions in mm.
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Since the centrifugal force is proportional to the product of mass and radius (i.e. m.r),

therefore by measurement.

 Out-of-balance force = vector oc = 4.75 × 10–3 kg-m

  = 4.75 × 10–3 × 
2ω  = 4.75 × 10–3 (62.84)2 = 18.76 N Ans.

Out-of-balance couple

The out-of-balance couple is obtained by drawing the couple polygon from the data given

in Table 21.6 (column 6), as shown in Fig. 21.12 (d). The resultant o c′ ′  represents the out-of-

balance couple. Since the couple is proportional to the product of force and distance (m.r.l), there-

fore by measurement,

Out-of-balance couple = vector o c′ ′  = 1.1 × 10–3 kg-m2

  3 2 3 21.1 10 1.1 10 (62.84)− −= × ×ω = ×  = 4.34 N-m Ans.

Amount of balancing masses and their angular positions

The vector c o′ ′  (in the direction from c′  to o′ ), as shown in Fig. 21.12 (d) represents the

balancing couple and is proportional to 15 × 10–3 m
M

, i.e.

       15 × 10–3 mM = vector c o′ ′  = 1.1 × 10–3 kg-m2

or           mM = 0.073 kg Ans.

Draw OM in Fig. 21.12 (b) parallel to vector c o′ ′ . By measurement, we find that the angular

position of balancing mass (mM) is 5° from mass A in the clockwise direction. Ans.

Ship powered by a diesel engine.
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In order to find the balancing mass (m

L
), a force polygon as shown in Fig. 21.12 (e) is

drawn. The closing side of the polygon i.e. vector do (in the direction from d to o) represents the

balancing force and is proportional to 75 × 10–3 m
L
. By measurement, we find that

         75 × 10–3 mL = vector do = 5.2 ×10–3 kg-m

or           m
L
 = 0.0693 kg Ans.

Draw OL in Fig. 21.12 (b), parallel to vector do. By measurement, we find that the angular

position of mass (mL) is 124° from mass A in the clockwise direction. Ans.

Example 21.7. A shaft is supported in bearings 1.8 m apart and projects 0.45 m beyond

bearings at each end. The shaft carries three pulleys one at each end and one at the middle of its

length. The mass of end pulleys is 48 kg and 20 kg and their centre of gravity are 15 mm and 12.5

mm respectively from the shaft axis. The centre pulley has a mass of 56 kg and its centre of gravity

is 15 mm from the shaft axis. If the pulleys are arranged so as to give static balance, determine :

1. relative angular positions of the pulleys, and 2. dynamic forces produced on the bearings when

the shaft rotates at 300 r.p.m.

Solution. Given : mA = 48 kg ; mC = 20 kg ; rA = 15 mm = 0.015 m ; rC = 12.5 mm =

0.0125 m ; mB = 56 kg ; rB = 15 mm = 0.015 m ; N = 300 r.p.m. or ω = 2 π  × 300/60

= 31.42 rad/s

1. Relative angular position of the pulleys

The position of the shaft and pulleys is shown in Fig. 21.13 (a).

Let          mL and mM = Mass at the bearings L and M, and

    rL and rM = Radius of rotation of the masses at L and M respectively.

Assuming the plane of bearing L as reference plane, the data may be tabulated as below :

Table 21.7.Table 21.7.Table 21.7.Table 21.7.Table 21.7.
Plane Mass Radius Cent. force 2÷ ω Distance from Couple 2÷ ω

(m) kg (r) m (m.r) kg-m plane L(l)m (m.r.l) kg-m2

(1) (2) (3) (4) (5) (6)

A 48 0.015 0.72 – 0.45 – 0.324

L(R.P) m
L

r
L

m
L
.r

L
0 0

B 56 0.015 0.84 0.9 0.756

M m
M

r
M

m
M

.r
M

1.8 1.8 m
M

.r
M

C 20 0.0125 0.25 2.25 0.5625

First of all, draw the force polygon to some suitable scale, as shown in Fig. 21.13 (c), from

the data given in Table 21.7 (column 4). It is assumed that the mass of pulley B acts in vertical

direction. We know that for the static balance of the pulleys, the centre of gravity of the system

must lie on the axis of rotation. Therefore a force polygon must be a closed figure. Now in Fig.

21.13 (b), draw OA parallel to vector bc and OC parallel to vector co. By measurement, we find

that

Angle between pulleys B and A  = 161° Ans.

Angle between pulleys A and C  = 76° Ans.

and Angle between pulleys C and B  = 123°  Ans.

2. Dynamic forces at the two bearings

In order to find the dynamic forces (or reactions) at the two bearings L and M, let us first

calculate the values of mL.rL and mM.rM as discussed below :
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(a) Position of shaft and pulleys. (b) Angular position of pulleys.

(c) Force polygon. (d) Couple polygon. (e) Force polygon.

Fig. 21.13

1. Draw the couple polygon to some suitable scale, as shown in Fig. 21.13 (d), from the data

given in Table 21.7 (column 6). The closing side of the polygon (vector  c o′ ′  ) represents

the balanced couple and is proportional to 1.8 mM.rM. By measurement, we find that

1.8 m
M

.r
M

 = vector c o′ ′  = 0.97 kg-m2        or          m
M

.r
M

 = 0.54 kg-m

 ∴  Dynamic force at the bearing M

  = 
2 2

M M. . 0.54 (31.42)m r ω =  = 533 N Ans.

2. Now draw the force polygon, as shown in Fig. 21.13 (e), from the data given in Table

21.7 (column 4) and taking mM.rM = 0.54 kg-m. The closing side of the polygon (vector
do) represents the balanced force and is proportional to m

L
.r

L
. By measurement, we find

that

      m
L
.r

L
 = 0.54 kg-m

∴  Dynamic force at the bearing L

              = 2
L. .m r ωL = 0.54 (31.42)2 = 533 N Ans.
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