Lesson Plan

Flexible AC Transmission Systems

Week	Lecture	Topic	Covered on
		Review of basics of power transmission network control of power flow in	
1 st	1	AC Transmission line	
	2	Analysis of uncompensated AC transmission line	
	3	Effect of series and shunt compensation at the mid-point of the line on	
		power transfer	
2 nd	4	Need for FACTS controller	
	5	Types of FACTS controller	
	6	Series type controller	
3 rd	7	Shunt type controller	
	8	Applications	
	9	Configuration of SVC	
4 th	10	Voltage regulation by SVC	
	11	Design of SVC to regulate the mid point voltage of a SMIB system	
	12	Transient stability enhancement and power oscillation damping of SMIB	
		system with SVC connected at the mid point of the line	
5 th	13	Transient stability enhancement and power oscillation damping of SMIB	
		system with SVC connected at the mid point of the line	
	14	Applications of SVC	
	15	Concepts of controlled series compensation	
6 th	16	Analysis of TCSC	
	17	Operation of TCSC	
	18	Analysis of GCSC	
7^{th}	19	Operation of GCSC	
	20	Modelling of TCSC for load flow studies	
8 th	21	Modelling of GCSC for load flow studies	
	22	Modelling of TCSC for stability studies	
	23	Modelling of GCSC for stability studies	
	24	Application of TCSC	
9 th	25	Application of GCSC	
	26	Static synchronous compensator STATCOM	
	27	Operation of SATCOM	
10 th	28	Modelling of STATCOM for power flow studies	
	29	Modelling of STATCOM for transient stability studies	
	30	Static synchronous series compensator (SSSC)	
11 th	31	Operation of SSSC	
	32	Modelling of SSSC for power flow studies	
	33	Modelling of SSSC transient stability studies	
12 th	34	Operation of unified power flow controller	
	35	Modelling of UPFC for load flow studies	
13 th	36	Operation of interline power flow controller	
	37	Modelling of IPFC for load flow studies	
	38	Applications of STATCOM	
	39	Applications of SSSC	
14 th	40	Applications of UPFC	
	41	Applications of IPFC	
	42	Difference between series and shunt compensator	
15 th	43	Applications of series compensator	
	44	Applications of shunt compensator	
	45	Revision	