Sr. No.	Lecturer/Lab	Name of the Experiment	%Syllabus Covered	Date of Exp.
1	Week-1	Find the moment of inertia of a fly wheel about its own axies of rotation		
2	Week-2	To study the V-I characteristics of a p-n junction diode		
3	Week-3	To find the frequency of A.C. mains by using sonometer		
4	Week-4	To derive a relationship b/w frequency and length of a given wire under constant tension and plot a graph		
5	Week-5	To determine the wavelength of He-Ne Laser with the help of a single slit.		
6	Week-6	To determine the specific rotation of a cane sugar solution with the help of Polari meter		
7	Week-7	To determine the height of an Object/Line with the help of a sextant		

Sr.	Lecturer/Lab	Name of the topic	%Syllabus	Date of topic
No.			Covered	
1	Week-1	Electric field and electrostatic potential for a charge		
	1,2,3	distribution		
2		Divergence and curl of electrostatic field; Laplace's		
		and Poisson's equations		
3	Week-2	Differential and integral form of Gauss law		
	1,2,3			
4		Energy of a charge distribution and its expression		
5	Week-3	Electrostatic field at axial and equatorial line of		
	1,2,3	an electric dipole		
6		Electric potential of a dipole		
7	Week-4	Boundary conditions of electric field and		
	1,2,3	electrostatic potential and displacement vector		
8		Bio-Savart law, Divergence and curl of static		
		magnetic field		
9	Week-5	Vector potential and calculating it for a given		
	1,2,3	magnetic field using Stokes theorem;		
10		Ampere circuital law its differential and integral		
		form		
11	Week-6	Term related to magnetic field; magnetic		
	1,2,3	susceptibility, magnetic permeability		
12		Condition on B and H, Magnetic material:		
		diamagnetic, paramagnetic and ferromagnetic		
		materials		
13	Week-7	Curie point, B-H curve.		
	1,2,3			
14		Faraday's law; equivalence of Faraday's law and		
		motional EMF		

15	Week-8	Lenz's law; Differential formof Faraday's law;	
	1,2,3		
16		Continuity equation for current densities;	
		displacement current	
17	Week-9	Magnetic field arising from time-dependent electric	
	1,2,3	field;	
18		Maxwell's equation in vacuum, Maxwell's	
		equation in non-conducting medium;	
19	Week-10	Energy stored in an electromagnetic field; Flow	
	1,2,3	of energyand Poynting vector (Qualitative only)	
20		Poynting theorem (Qualitative only)	
21	Week-11	Momentum in EM field (Qualitative	
	1,2,3	only)	
22		The wave equation; Plane E.M. waves in vacuum,	
23	Week-12	E.M. Wave transverse nature and polarization	
	1,2,3		
24		Relation between electric and magnetic fields of an	
		electromagnetic wave	
25	Week-13	Energy carried by electromagnetic waves and	
	1,2,3	examples.	
26		Momentum carried by electromagnetic waves and	
		resultant pressure	
27	Week-14	Reflection and transmission of EM waves at normal	
	1,2,3	incidence	

Sr.	Lecturer/Lab	Name of the topic	% Syllabus	Date of topic
No.			Covered	
1	Week-1	Scalar and vector field; gradient of a scalar field		
	1,2,3			
2		Divergence and curl of a vector field		
3	Week-2	Newton's laws and their applications;Form		
	1,2,3	invariance of Newton's Second Law		
4		Problems including constraints		
5	Week-3	Laplace and Poisson equation, Potential energy		
	1,2,3	function; F = - Grad V		
6		Equi-Potential surfaces and meaning of gradient.		
7	Week-4	Conservative and non-conservative forces, curl of a		
	1,2,3	force field		
8		Central forces; Conservation of Angular Momentum		
9	Week-5	Kepler law, Simple harmonic Motion (SHM)		
	1,2,3			
10		Mechanical and electrical simple harmonic		
		oscillators		
11	Week-6	Harmonic oscillator; Damped harmonic motion -		
	1,2,3	over-damped, critically damped and lightly- damped		
		oscillators		
12		Forced oscillations and resonance.		

13	Week-7	Definition and motion of a rigid body in the plane	
	1,2,3		
14		Rotation in the plane; Angular velocity& momentum	
15	Week-8	Moment of inertia, Parallel and perpendicular axis	
	1,2,3	theorem	
16		Hooke law, Stress strain diagram	
17	Week-9	Angular momentum about a point of a rigid body in	
	1,2,3	planar motion	
18		Inertial and non inertial frame of	
		reference	
19	Week-10	Poisson Ratio, Relation between four elastic	
	1,2,3	constants	
20		Galilean transformation (velocity, acceleration)	
		and its inadequacy,	
21	Week-11	Michelson Morley experiment and its outcome	
22	1,2,3	Postulates of Special theory of relativity	
23		Lorentz transformation	
24	Week-12	Length contraction, Time dilation	
	1,2,3		
25	Week-13	Mass energy equivalence	
	1,2,3		
26		Variation of mass with velocity	

Sr. No.	Lecturer/Lab	Name of the topic	%Syllabus Covered	Date of topic
1	Week-1	Simple harmonic Motion (SHM), Energy		
	1,2,3	of a simple harmonic oscillation		
2		Simple pendulum, Mechanical and		
		electrical simple harmonic oscillators,		
3	Week-2	Damped harmonic oscillator – heavy,		
4	1,2,5	Energy decay in a damped hermonic		
4		oscillator		
5	Week-3	Forced mechanical and electrical		
	1,2,3	oscillators, steady state motion of forced		
6		damped harmonic oscillator		
0		Quality factor and resonance, electrical		
7	Week-4	Power absorbed by oscillator.		
	1,2,3			
8		Huygen's principle, superposition of waves		
9	Week-5	Interference of light by division of wavefront and		
10	1,2,3	division of amplitude		
10	Weels (Young's double slit experiment, Fresnel biprism		
11	1 2 3	Fraunhoffer diffraction		
12	1,2,5	Fraunhoffer diffraction from a single slit, double slit		
13	Week-7	N-slit and plane transmission diffraction gratings		
	1,2,3			
14		Rayleigh criterion for limit of resolution and		
15	Weels 9	resolving power of diffraction gratings		
15	weeк-8 1,2,3	Dispersive power of granting		
16		Characteristics of LASER Light: mono-		
		chromaticity, temporal and spatial		
17	Week 0	concrete concerning and brightness		
17	1,2,3	emission of light		
18		Relation between Einstein's A and B		
		coefficients		
10	Weels 10	D : nonvlotion inversion moto		
19	1 2 3	Pumping, population inversion, ineta-		
	1,2,3	amplification of light by stimulated		
		emission. Lasing action.		
20		Different types of lasers; gas lasers (He-		
		Ne)		
21	Week-11	Solid-state lasers (Ruby, Neodymium),		
	1,2,3	Applications of LASER.		
22				
22		Iransverse wave on a string, Harmonic waves waves at a boundary		
1	1	maros, maros al a boundary	1	

		Impedence matching, standing waves and their eigen frequencies	
23	Week-12 1,2,3	Longitudinal waves and its equation, acoustics waves, standing sound waves. Waves with dispersion, water waves, wave groups and group velocity.	
24		Fermat's principle of stationary time and laws of reflection and refraction,	
25	Week-13 1,2,3	Light as an electromagnetic wave	
26		Reflectance and transmittance	
27	Week-14 1,2,3	Brewster's angle	
28		Total internal reflection	

Sr. No.	Lecturer/Lab	Name of the topic	%Syllabus Covered	Date of topic
1	Week-1	Crystal Structure: Crystalline and		
	1,2,3	Amorphous solids		
2		Crystal Structure: lattice translation vector		
3	Week-2	Space lattice, basis: Unit cell and Primitive cell,		
	1,2,3	Fundamental types of lattices: two-dimensional and		
		three dimensional Bravais lattices		
4		Characteristics of Unit cells: Simple Cubic (SC),		
		Body Centred Cubic (BCC), Face Centred Cubic		
5	Weels 2	(FCC), Hexagonal Close Packed (HCP) structure;		
3	week-3	Chloride, Cubic Zinc Sulphide		
6	1,2,3	Miller Indices Bonding in Solids		
7	Week-4	Point defects in crystals: Schottky and Frenkel		
,	1,2,3	defects		
8		Need and origin of Quantum concept,		
		Black body radiation		
9	Week-5	Photoelectric effect, Wave Particle duality		
10	1,2,3			
10		Matter waves, Phase velocity and group		
11	Weels 6	Velocity		
11	1 2 3	Schrodinger's wave equation		
12	1,2,5	Time-dependent and time _independent		
13	Week-7	Physical Significance of wave function.		
10	1,2,3			
14		Particle inone dimensional box.		
15	Week-8	Intrinsic and extrinsic semiconductors, n		
	1,2,3	type and p type semiconductors		
16		Dependence of Fermi level on carrier-		
		concentration and temperature		
17	Weels 0	(equilibrium carrier statistics)		
1/	1 2 3	Carrier transport: diffusion and drift		
18	1,2,5	p-n junction Current-voltage		
10		characteristics of p-n junction		
19	Week-10	Metal- semiconductor junction (Ohmic		
	1,2,3	and Schottky).		
20		Review of Quantum Concepts		
21	Week-11	Free electron theory		
	1,2,3			
22		Density of states and energy band		
		diagrams		
23	Week-12	Periodic potential Kronig Penny model		
23	1,2,3	(Qualitative) and Energy bands in solids		

24		E-K diagram, Direct and indirect bandgaps
25	Week-13	Types of electronic materials: metals,
	1,2,3	semiconductors, and insulators
26		Occupation probability of electrons
27	Week-14	Fermi energy & Fermi level
	1,2,3	
28		Effective mass