(PC/CE/14-T) DESIGN OF CONCRETE STRUCTURES-I			
Week	Lecture No.	Торіс	Remarks
1		Introduction to Concrete Technology: Overview of physical requirements of cement, aggregate,	
	1	admixture, and reinforcement	
'	2	Properties of Concrete: Strength, durability, shrinkage, and creep	
	3	Design of Concrete Mixes: Introduction and acceptability criteria	
	4	IS Specifications for Concrete and Overview of Design Philosophies	
2	5	Design Philosophies: Working Stress vs. Limit State Methods	
	6	Characteristic Strength and Loads: Normal distribution curve and partial safety factors	
3	7	Stress-Strain Relationship for Concrete and Steel	
	8	Working Stress Method: Basic Assumptions and Permissible Stresses	
	9	Design of Singly Reinforced Beams using Working Stress Method	
4	10	Design of Doubly Reinforced Beams using Working Stress Method	
	11	Limit State Method: Basic Assumptions and Minimum/Maximum Reinforcement Requirements	
	12	Analysis and Design of Singly Reinforced Beams using Limit State Method	
5	13	Analysis and Design of Doubly Reinforced Beams using Limit State Method	
	14	Shear in Concrete Sections: Diagonal Tension and Shear Reinforcement	
	15	Bond and Anchorage: Development Length and Flexural Bond	
6	16	Torsion in Concrete: Torsional Stiffness and Equivalent Shear	
	17	Design of Torsional Reinforcement: Design Examples	
	18	Columns: Effective Length and Minimum Eccentricity	
7	19		
	20	Minor Test	
	21		
	22	Design of Short Columns under Axial Compression	
8	23	Design of Columns under Uniaxial and Biaxial Bending	
	24	Slender Columns: Analysis and Design	
9	25	Footings: Design of Isolated and Wall Footings	
	26	Serviceability Limit State: Control of Deflection and Cracking	
	27	Deflection and Moment Relationships: Limiting Values of Span to Depth	
10	28	Limit State of Crack Width: Design Examples	
	29	One-Way Slabs: General Considerations and Design for Distributed Loads	
11	30 31	One-Way Slabs: Design for Concentrated Loads Two-Way Slabs: General Considerations and Design for Distributed Loads	
	32	Two-Way Slabs: General Considerations and Design for Distributed Loads Two-Way Slabs: Design for Concentrated Loads	
	33	Non-Rectangular Slabs: Design Considerations	
	34	Retaining Walls: Classification and Forces	
12	35	Retaining Walls: Stability Requirements and Proportioning	
	36	Design of Cantilever Retaining Walls	
13	37	Design of Counter-fort Retaining Walls	
	38	Concrete Reinforcement Detailing: Requirements of Good Detailing	
	39	Cover and Spacing of Reinforcement	
	40	over and opacing or Neimorcement	
14	41	Minor Test	
	42		
15	43	Reinforcement Splicing and Anchorage	
	44	Curtailment of Reinforcement in Flexure and Shear	
	45	Comprehensive Design Examples and Summary	
	· · · · ·	Completion of Society Examples and Community	