1.1 Introduction: In computer graphics, we often need to draw different types of objects onto

the screen. Objects are not flat all the time and we need to draw curves many times to draw
an object. ”Computers can not draw curves.” A curve consists of small line segments. The
more points/line segments that are used, the smoother the curve.

“What is the use of curves”

e Representation of “irregular surfaces” , Example: Auto industry (car body design)
e Artist’s representation, Clay / wood models

e Digitizing

e Surface modeling (“body in white”)

® Scaling and smoothening

e Tool and die Manufacturing

1.2 Types of Curves

A curve is an infinitely large set of points. Each point has two neighbors except endpoints.
Curves can be broadly classified into three categories — Explicit, Implicit, and Parametric
curves.

a)

b)

Implicit Curves: Implicit curve representations define the set of points on a curve by
employing a procedure that can test to see if a point in on the curve. Usually, an implicit
curve is defined by an implicit function of the form f (x,y)= 0. It can represent
multivalued curves for multiple y values for an x value. A common example is the circle,
whose implicit representation is x>+ y2 -R*=0

Explicit Curves: A mathematical function y = f(x) can be plotted as a curve. Such a
function is the explicit representation of the curve. The explicit representation is not
general, since it cannot represent vertical lines and is also single-valued. For each value of
X, only a single value of y is normally computed by the function. A common example is
the circle, whose explicit representation is y> = R - x, Thus, y has two values either y =
+(R2-xD)ory =- (R?- X))

Parametric Curves: Curves having parametric form are called parametric curves. The
explicit and implicit curve representations can be used only when the function is known.
In practice the parametric curves are used. A two-dimensional parametric curve has the
following form — P(t) = f(x(t), y(t)), The functions x(t) and y(t) become the X, y
coordinates of any point on the curve, and the points are obtained when the parameter ‘t’
is varied over a certain interval [a, b], normally [0, 1]. Parametric curves are mostly used
in CAD/CAM and classified as: Analytical & Synthetically.

Analytical curves Analytical curves are defined as those that can be described by

analytical equations such as lines, circles and conics. Analytical curves provide very
compact forms to represent shapes and simplify the computation of related properties
such as areas and volumes. Analytical curves are not attractive to deal with interactively
Analytical curves are points, lines, arcs and circles, fillets and chambers and also conics
like parabola, hyperbola, ellipse, etc.

Synthetic curves A synthetic curve is defined as that can be described by a set of data
points( control points) such as splines and bazier curves. Synthetic curves provide



designers with greater flexibility and control of curve shapes by changing the positions of
control points. Global and local control of a curve is possible. Synthetic curves are
attractive to deal with interactively Synthetic curves include various types of splines
mainly: Hermit cube or parametric cube curve or cubic spline, Bezier curve, B- spline and
NURBS (Non- Uniform Rotation B- Spline)

1.3 “Why Synthetic curve?”’

a) “Problem: How to represent a curve easily and efficiently”
estoring a curve as many small straight line segments
edoesn’t work well when scaled
*inconvenient to have to specify so many points
*need lots of points to make the curve look smooth
sworking out the equation that represents the curve
sequations are difficult to derive for complex curves
*moving an individual point requires re-calculation of the entire curve

b) Solution is “Interpolation”
*Define a small number of points
*Use a technique called “interpolation” to invent the extra points for us.
*Join the points with a series of (short) straight lines

Xtra Points

~a., eal Points

¢) “The need for Smoothness”
*So far, mostly polygons can approximate any geometry, but Only
approximate
*Need lots of polygons to hide discontinuities Storage problems
*Math problems
*Not very convenient as modeling tool
*Gets even worse in animation

d) “Requirements”
*Want mathematical smoothness
*Some number of continuous derivatives of P
*Local control
[ ocal data changes have local effect
*Continuous with respect to the data
*No wiggling if data changes slightly
*L.ow computational effort

e) “A Solution”
e Use SEVERAL polynomials



e Complete curve consists of several pieces
e All pieces are of low order

¢ Third order is the most common

¢ Pieces join smoothly

e This is the idea of spline curves

® orjust “splines”

f) “Continuity”
Parametric continuity C*:

e Only P is continuous: C° : Positional continuity
e P and first derivative dP/du are continuous: C' : Tangential continuity
e P + first + second: C* , Curvature continuity

Geometric continuity G*: Only directions have to match

g) “Order of continuity”
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h) “Curve Fittings”
Often designers will have to deal with information for a given object in the form of

coordinate data rather than any geometric equation. In such cases it becomes necessary
for the designers to use mathematical techniques of curve fitting to generate the necessary
smooth curve that satisfies the requirements. Airfoil Section Curve fitted with Data Points

1.4 “Synthetic curves”
Easy to enter the data and easy to control the continuity of the curves to be designed.
Requires much less computer storage for the data representing the curve. Having no
computational problems and faster in computing time.
a) eBezier curves
b) eHermite cubic spline
c) eB-spline curves
d) eRational B-splines (including Non-uniform rational B-splines — NURBS)




a) Bezier curve

e Bezier curve is discovered by the French engineer Pierre Bézier. A Bezier curve is a
mathematically defined curve used in two-dimensional graphic applications.

e The curve is defined by points: the initial position and the terminating position (which are
called "anchors") and middle points (which are called "handles or control points").

e The shape of a Bezier curve can be altered by moving the control points.
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Simple Bezier Curve Quadratic Bazier Curve Cubic Bazier Curve

A linear Bézier curve B(t) = (x(t t)) is a line segment joining two control points by (Xo

Yo) and b; (X, 1) and the curve can be written in

B(t)=(1-t) *by+t*b;forte[01]
That means x(t) = (1-t) xo + t x; and y(t) = (1-t) yo + t y;

Example:
The Bézier form for the linear segment passing through points by(1, 2) and b; (3, 4) is

B(t) =(1-t)*bo+t*b;forte[01]



=(1-t)(1,2)+1t(3 4)
Hence x(t) =(1-t)+ 3t = 1 + 2t and
y(it)=2(1-t)+4t=2+2t

Similarly Quardratic Bézier curve B(t) for three control points by, b; and b, is

B(t) =(1-10*bg+2(1-1) b, + £ *bs fort e [0,1]
Hence x(t) = (1 - t)2 *xg+ 2(1-t) *x; + 7 *x, and
Yt) = (1-1)° *yo+ 2(1-1) ¥y, + 1 *y,

Example

The parametric form of the quadratic Bézier curve B(¢) with control points
bg(1,2), by(4, —1), and by (8,6) is (z(t),y(t)) where

z(t) = (A—-t)2(1)+2(1—t)t(4)+1%(8) =14+ 6t+1t2, and

yt) = (1 —1t)2%(2)+2(1 —t)t(—1) +2(6) =2 — 6t + 102 .
The point B(0.5) is obtained by substituting ¢ = 0.5 into the equations to give
x(0.5) = 4.25 and y(0.5) = 1.5, that is, B(0.5) = (4.25,1.5). Alternatively, the
coordinates of the point B(0.5) can be evaluated using the vector form of the
curve

B(t) = (1-0.5)*(1,2)+2(1-0.5)(0.5)(4,—1) + (0.5)(8,6)
= 0.25(1,2) + 0.5(4,—1) + 0.25(8,6) = (4.25,1.5) .
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Quadratic Bézier curve with control points by(1,2), by (4, —1),
Suppose four control points bg, by, by, and bs are specified, then the cubic
Bézier curve is defined to be

B(t) = (1 —1)bg+3(1 —1)%tby + 3(1 — t)t’by +*b3, t€[0,1]. (6.2)

As in the quadratic case, the polygon obtained by joining the control points in
the specified order is called the control polygon.



The parametric form of the quadratic Bézier curve B(t) with control points
bo(1,2), by(4,—1), and bo(8,6) is (2(t),y(t)) where

z(t) = (1—1)2(1)+2(1 —t)t(4)+1t2(8) =1+6t+12, and
yE) = A-—8%2)+201 —(—1) +13(6) =2 — 6t + 1042

The point B(0.5) is obtained by substituting ¢t = 0.5 into the equations to give
x(0.5) = 4.25 and y(0.5) = 1.5, that is, B(0.5) = (4.25, 1.5). Alternatively, the
coordinates of the point B(0.5) can be evaluated using the vector form of the

curve

B(f) = (1—=0.572%1,2)+2(1—=05)0.5)(4,~1) +(0.5)*(8,6)
= 0.25(1,2) + 0.5(4, —1) 4 0.25(8,6) = (4.25,1.5) .

B(t) = (1 — )by + 3(1 — t)%*tb; + 3(1 — t)t?by + t3bs, t[0,1].

= In some of the literature the nomenclature generally used is

B--->p, t--->u, and bi----> p

= Bézier chose Bernestein polynomials as the basis functions for the

curves, a
pw= > pB,mw ucl01]
=0

- Based on these basis functions, the equation for the Bézier curve is given
by :
p(u)=(1-ufPpy +3 u(1-u)* py+3u (1-u) p, + U’p,
e This can be written in matrix form as
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Bezier curves have the following properties —

They generally follow the shape of the control polygon, which consists of the
segments joining the control points.

They always pass through the first and last control points.

They are contained in the convex hull of their defining control points.

The degree of the polynomial defining the curve segment is one less that the number
of defining polygon point. Therefore, for 4 control points, the degree of the
polynomial is 3, i.e. cubic polynomial.

A Bezier curve generally follows the shape of the defining polygon.

The direction of the tangent vector at the end points is same as that of the vector
determined by first and last segments.

The convex hull property for a Bezier curve ensures that the polynomial smoothly
follows the control points.

No straight line intersects a Bezier curve more times than it intersects its control
polygon.

They are invariant under an affine transformation.

Bezier curves exhibit global control means moving a control point alters the shape of
the whole curve.

A given Bezier curve can be subdivided at a point t=t, into two Bezier segments which
join together at the point corresponding to the parameter value t=ty,

Example: A cubic Bezier curve is described by the four control points: (0,0), (2,1), (5.2), (6,1).
Find the tangent to the curve at t =0.5.

. “1 3 '-3 1 an
PO=F ¢ 4 71 3 63 4 ||%
3 30 (@ Va

1 00 @ Vi

where, Vo= (0.0)

Vi=(2.1)

V;=(5,2)

V3=(6.1)

The tangent is given by the derivative of the peneral equation abhove,

{ 2 <3 1 Vi
rPo= 3¢ 2t 1 0] [3 63 0 ||V,
3 30 0 ||lw
00 0)|V;
Att=0.5, we get,
-1 3 3 1 Vo
P’(t) = [3(.5) 2(.5 1 0] 3 63 0 Vi
3 30 0 V;
| D9 B V;

= [675 150 1]



b) Hemiot Cubic Spline

= Hermite cubic splines are the more general form of curves that can be
defined through a set of vertices (points).

= A spline is a piecewise parametric representation of the geometry of a
curve with a specified level of parametric continuity.

= Each segment of a Hermite cubic spline is approximated by a parametric
cubic polynomial to maintain the ¢’ continuity.

We want curves that fit together smoothly.
To accomplish this, we would like to specify a
curve by providing:

» The endpoints
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e The parametric equation of a Hermite cubic spline is given by

3 -
pw= > Ca' u [0, 1]

i=0
¢ |n an expanded form it can be written as
p(u)=Cy+C,ul +C,u? + C; u?

* Where uis a parameter, and C;are the polynomial coefficients.



¢ |n matrix form
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Example 5. A parametric cubic curve passes through the points (0,0), (2,4), (4,3), (5,
which are parametrized at t =0, %. %, and 1. respectively. Determine the geometric
coefficient matrix and the slope of the curve when t=0.5.

Solution: The points on the curve are

(0,0) att=0
(24) att=Y%

(4.3) att=%
(5,-2) att=1

Substituting in equation (4.15), we get,

0 0 ] 0 g 1 2 -2 1 1
2 4 00156 00625 025 1| -3 3 -2 -I
4 3 — 04218 0.5625 0.75 1 0 o0 1 0
5 -2 1 1 1 1 1 0 0 0

2)

P(0)
P(1)
POy
P(1)



-

Moy (o 0

P(1) 5 -2
| P(C) 1033 22
P’(1) 499 <26 )

L

The slope at 1 = 0.5 is found by taking the first derivative of the equation (4.15), as follows,

202 1 1 L}] 0
B gy 3 3
Piy=013¢ 21 0] [0 0 1 0 1033 22
L ¢ 0 0 499 26
Therefore,

P'(0.5)=[367 -2.0],0r
Slope = AX/Ay =-2.0/3.67 =- 0.545

¢) B-Splines

= |n the case of Bezier curve, it is a single curve controlled by all the control

points.
= With an increass in the number of control points, the order of the

polynomial representing the curve increases.

* B-spline generates z single piecewise parametric polynomial curve
through any number of control points with the degree of the polynomizl

selected by the designer. \r _ Contral
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+ B-spline curves have the flexibility of choosing the degree of the curve
irrespective of the number of control points.

s With four control points, it is possible to get a cubic Bézier curve, while
with B-spline curve one can get a linear, guadratic or cubic curve.

= B-spline also uses the hasis (blending) functions and the equation is of the
form

p(”) = Z pi ‘Nr:, k {”)

i=0

* Where N,, (u) are the basis functions for B-splines.
N, (u)=1 ifu,su<u,,

=0 otherwise

where k controls the degree (k-1) of the resulting polynamial in u and
also the continuity of the curve. The u;are the knot values, which relate
the parametric variable u to the p. control points.

(i —u, ) N, (1) i (i, i =0 N5 5(0)

N, 1) =
Uppp U Ui — Uy



» The plotting of B-spline curve is done by varying the parameter u over

the range of knot values (u, ,, u

¥ Yn+dic

= Thea bmmtrmeatrmr asdade Slavilailitir +a Flaa A ame mravisdae boatktrar mameeal

- THIC NMIUL VOLLWT guudo llC)\lk.-'llIL)lI LU LI vuive arniv PIU\HUCJ MOLLTT LuliLrw
of its shape

» Partition of Unity: For any knot span, [u, u,,,],

s Positivity:

. N, ,(u)z0foralli, kand u.
Zf\."‘_'}(n):l L
i=0

* Local Support Property:

Ny (U) =0i0f U & [U, Upy,y]

This property can be deduced from the observation that NV, , (u)isa
linear combination of N, (u) and N, (ur).

i+1, k10

= Continuity:
N; ; (u) is (k-2) times continuously differentiable, being a polynomial.

The Bezier-curve produced by the Bernstein basis function has limited flexibility.

First, the number of specified polygon vertices fixes the order of the resulting
polynomial which defines the curve.
The second limiting characteristic is that the value of the blending function is nonzero

for all parameter values over the entire curve.

The B-spline basis contains the Bernstein basis as the special case. The B-spline basis is non-

global. B-spline curves have the following properties —

The sum of the B-spline basis functions for any parameter value is 1.

Each basis function is positive or zero for all parameter values.

Each basis function has precisely one maximum value, except for k=1.

The maximum order of the curve is equal to the number of vertices of defining
polygon.

The degree of B-spline polynomial is independent on the number of vertices of
defining polygon.

B-spline allows the local control over the curve surface because each vertex affects the
shape of a curve only over a range of parameter values where its associated basis
function is nonzero.

The curve exhibits the variation diminishing property.

The curve generally follows the shape of defining polygon.

Any affine transformation can be applied to the curve by applying it to the vertices of
defining polygon.

The curve line within the convex hull of its defining polygon.



d) NURBS: Non Uniform Rational Basis Splines

= A rational curve utilises the algebraic ratio of two polynomials.

* They are important in CAD because of their invariance when geometric
transformations are applied.

= Avrational curve defined by (n+1) points is given by

pw)= > p, R @ O<uc<u

i=0

* Where R;, (u) is the rational B-spline basis function and is given by

h N, ()

I,
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* Non-uniform rational basis spline (NURBS) is @ mathematical model
commonly used in computer graphics for generating and representing
curves and surfaces.

= It offers great flexibility and precision for handling both analytic

(surfaces defined by common mathematical formulae)

and modeled shapes.

* NURBS is flexible for designing a large variety of shapes by manipulating
tnhe control points and weights.

* Weights in the NURBS data structure determine the amount of surface
deflection toward or away from its control point.

= Evaluation of NURBS is reasonably fast and numerically stable.

ap— B —1"

= Uniform cubic B-splines are the curves with the parametric intervals
defined at equal lengths.

= The most common scheme used in all the CAD system is the non-unifarm
rational B-spline (commonly known as NURB), allowing a non-uniform

knot vector.

= Itincludes both the Bézier and B-spline curves.



« Rational form of the B-splines can he written as

n
1 T
Z‘ w, p; N, (u)

> w, N,y (u)

e where w, is the weighing factor for each of the vertex.

= They have all of B-spline surface abilities. In addition they overcome the
limitation of B-spline surfaces by associating each control point with a
weight.

= Uniform representation for a large variety of curves and surfaces. This
helps with the storage of geometric data.

= NURBS are invariant during geometric transformations as well as
projections.

= NURBS is flexible for designing a large variety of snapes by manipulating
the control points and weights.

= Weights in the NURBS data structure determine the amount of surface
deflection toward or away from its control paoint.

= It makes it possible to create curves that are true conic sections.

= Surfaces based on conics, arcs or spheres can be precisely represented
by a NURBS surface

= Evaluation of NURBS is reasonably fast and numerically stable.

= Number facilities available in NURBS such as knot insertion/ refinement/
removal, degree elevation, splitting, etc. makes them ideal to be used
throughout the design process.

= NURBS surfaces can be incorporated into an existing solid model by
"stitching" the NURRS surface to the solid model.

= Reverse engineering is heavily dependent on NURBS surfaces to capture
digitized points into surfaces.

Problems with NURBS
= Analytical curves and surfaces require additional storage.

= NURBS parameterization can often be affected by improper application
of the weights, which may lead to subsequent problems in surface

constructions.

* Notall geometric interrogation techniques work well with NURBS.



Difference between Spline, B-Spline and Bezier Curves :

Spline IB-Spline Bezier
A spline curve can be specified by The Bezier curves can be
giving a specified set of coordinate | The B-Spline curves are | specified with boundary

positions, called control points which
indicate the general shape of the

specified by Bernstein basis
function that has limited

conditions, with a
characterizing matrix or

curve. flexibiity. with blending function.
These curves are a result of | The curve  generally

It follows the general shape of the | the use of open uniform basis | follows the shape of a

curve. function. defining polygon.

Typical CAD application for spline These are found in

include the design of automobile painting and drawing

bodies, aircraft and
surfaces and ship hulls.

spacecraft

These curves can be used to
construct blending curves.

packages as well as in
CAD applications.

It possess a high degree of
smoothness at the places where the
polynomial pieces connect.

The B-Spline allows the order
of the basis function and
hence the degree of the
resulting curve is independent
of number of vertices.

The degree of the
polynomial defining the
curve segment is one less
than the number of
defining polygon point.

A spline curve is a mathematical
representation for which it is easy to
build an interface that will allow a
user to design and control the shape
of complex curves and surfaces.

In B-Spline, there is local
control over the curve surface
and the shape of the curve is
affected by every vertex.

It is a parametric curve
used in related fields.




