
1.1 Introduction: In computer graphics, we often need to draw different types of objects onto 

the screen. Objects are not flat all the time and we need to draw curves many times to draw 

an object. ”Computers can not draw curves.” A curve consists of small line segments. The 

more points/line segments that are used, the smoother the curve. 

 
“What is the use of curves”  

• Representation of “irregular surfaces” , Example: Auto industry (car body design)  

• Artist’s representation, Clay / wood models  

• Digitizing  

• Surface modeling (“body in white”)  

• Scaling and smoothening  

• Tool and die Manufacturing  

 

1.2 Types of Curves 

A curve is an infinitely large set of points. Each point has two neighbors except endpoints. 

Curves can be broadly classified into three categories – Explicit, Implicit, and Parametric 

curves. 

a) Implicit Curves: Implicit curve representations define the set of points on a curve by 

employing a procedure that can test to see if a point in on the curve. Usually, an implicit 

curve is defined by an implicit function of the form f (x,y) = 0. It can represent 

multivalued curves for multiple y values for an x value. A common example is the circle, 

whose implicit representation is x
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b) Explicit Curves: A mathematical function y = f(x) can be plotted as a curve. Such a 

function is the explicit representation of the curve. The explicit representation is not 

general, since it cannot represent vertical lines and is also single-valued. For each value of 

x, only a single value of y is normally computed by the function. A common example is 

the circle, whose explicit representation is y
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c) Parametric Curves: Curves having parametric form are called parametric curves. The 

explicit and implicit curve representations can be used only when the function is known. 

In practice the parametric curves are used. A two-dimensional parametric curve has the 

following form − P(t) = f(x(t), y(t)), The functions x(t) and y(t) become the x, y 

coordinates of any point on the curve, and the points are obtained when the parameter ‘t’ 

is varied over a certain interval [a, b], normally [0, 1]. Parametric curves are mostly used 

in CAD/CAM and classified as: Analytical & Synthetically. 

Analytical curves Analytical curves are defined as those that can be described by 

analytical equations such as lines, circles and conics. Analytical curves provide very 

compact forms to represent shapes and simplify the computation of related properties 

such as areas and volumes. Analytical curves are not attractive to deal with interactively 

Analytical curves are points, lines, arcs and circles, fillets and chambers and also conics 

like parabola, hyperbola, ellipse, etc.  

Synthetic curves A synthetic curve is defined as that can be described by a set of data 

points( control points) such as splines and bazier curves. Synthetic curves provide 



designers with greater flexibility and control of curve shapes by changing the positions of 

control points. Global and local control of a curve is possible. Synthetic curves are 

attractive to deal with interactively Synthetic curves include various types of splines 

mainly: Hermit cube or parametric cube curve or cubic spline, Bezier curve, B- spline and 

NURBS (Non- Uniform Rotation B- Spline) 

 

1.3 “Why Synthetic curve?” 

 

a) “Problem: How to represent a curve easily and efficiently”  

•storing a curve as many small straight line segments  

•doesn’t work well when scaled  

•inconvenient to have to specify so many points  

•need lots of points to make the curve look smooth  

•working out the equation that represents the curve  

•equations are difficult to derive for complex curves  

•moving an individual point requires re-calculation of the entire curve  

 

b) Solution is “Interpolation” 

•Define a small number of points  

•Use a technique called “interpolation” to invent the extra points for us.  

•Join the points with a series of (short) straight lines  

 
 

c) “The need for Smoothness”          

•So far, mostly polygons can approximate any geometry, but Only 

approximate  

•Need lots of polygons to hide discontinuities Storage problems  

•Math problems  

•Not very convenient as modeling tool  

•Gets even worse in animation  

 

d) “Requirements” 

•Want mathematical smoothness  

•Some number of continuous derivatives of P  

•Local control  

•Local data changes have local effect  

•Continuous with respect to the data  

•No wiggling if data changes slightly  

•Low computational effort  

 

e) “A Solution” 

• Use SEVERAL polynomials  



• Complete curve consists of several pieces  

• All pieces are of low order  

• Third order is the most common  

• Pieces join smoothly  

• This is the idea of spline curves  

• or just “splines”  

 

f) “Continuity” 

Parametric continuity C
x
:  

• Only P is continuous: C
0
 : Positional continuity  

• P and first derivative dP/du are continuous: C
1
 : Tangential continuity  

• P + first + second: C
2
 , Curvature continuity  

Geometric continuity G
x
: Only directions have to match  

 

g) “Order of continuity” 

 
 

h) “Curve Fittings” 

Often designers will have to deal with information for a given object in the form of 

coordinate data rather than any geometric equation. In such cases it becomes necessary 

for the designers to use mathematical techniques of curve fitting to generate the necessary 

smooth curve that satisfies the requirements. Airfoil Section Curve fitted with Data Points 

 
 

1.4 “Synthetic curves” 

Easy to enter the data and easy to control the continuity of the curves to be designed. 

Requires much less computer storage for the data representing the curve. Having no 

computational problems and faster in computing time.  

a) •Bezier curves  

b) •Hermite cubic spline  

c) •B-spline curves  

d) •Rational B-splines (including Non-uniform rational B-splines – NURBS)  

 



 

 
 

a) Bezier curve 

 

• Bezier curve is discovered by the French engineer Pierre Bézier. A Bezier curve is a 

mathematically defined curve used in two-dimensional graphic applications.  

• The curve is defined by points: the initial position and the terminating position (which are 

called "anchors") and middle points (which are called "handles or control points").  

• The shape of a Bezier curve can be altered by moving the control points.  

 

 

 

 
 

 

 
 

 

 

 

A linear Bézier curve B(t) = (x(t), y(t)) is a line segment joining two control points b0 (x0, 

y0) and b1 (x1, y1) and the curve can be written in  

B(t) = (1 - t) * b0 + t * b1 for t ϵ [0,1] 

That means    x(t) = (1-t) x0 + t x1 and y(t) = (1-t) y0 + t y1 
 

Example:  

The Bézier form for the linear segment passing through points b0(1, 2) and b1 (3, 4) is  

B(t)  = (1 - t) * b0 + t * b1 for t ϵ [0,1] 



  = (1 - t) (1, 2) + t (3, 4)  

Hence x(t) =(1-t)+ 3t = 1 + 2t and  

y(t) = 2(1 - t) + 4t = 2 + 2t 

 

Similarly Quardratic Bézier curve B(t) for three control points b0, b1 and b2 is 
 

B(t)  = (1 - t)
2
 * b0 + 2(1-t) * b1 + t

2
 * b2 for t ϵ [0,1] 

Hence x(t) = (1 - t)
2
 * x0 + 2(1-t) * x1 + t

2
 * x2 and  

y(t) = (1 - t)
2
 * y0 + 2(1-t) * y1 + t

2
 * y2 

 

Example  

 
 

 

 



 

 

 
 

 

 



Bezier curves have the following properties − 

• They generally follow the shape of the control polygon, which consists of the 

segments joining the control points. 

• They always pass through the first and last control points. 

• They are contained in the convex hull of their defining control points. 

• The degree of the polynomial defining the curve segment is one less that the number 

of defining polygon point. Therefore, for 4 control points, the degree of the 

polynomial is 3, i.e. cubic polynomial. 

• A Bezier curve generally follows the shape of the defining polygon. 

• The direction of the tangent vector at the end points is same as that of the vector 

determined by first and last segments. 

• The convex hull property for a Bezier curve ensures that the polynomial smoothly 

follows the control points. 

• No straight line intersects a Bezier curve more times than it intersects its control 

polygon. 

• They are invariant under an affine transformation. 

• Bezier curves exhibit global control means moving a control point alters the shape of 

the whole curve. 

• A given Bezier curve can be subdivided at a point t=t0 into two Bezier segments which 

join together at the point corresponding to the parameter value t=t0. 

 

 



b) Hemiot Cubic Spline

 

 

 

 



 

 

 



 

c) B-Splines 

 

 



 

 

The Bezier-curve produced by the Bernstein basis function has limited flexibility. 

• First, the number of specified polygon vertices fixes the order of the resulting 

polynomial which defines the curve. 

• The second limiting characteristic is that the value of the blending function is nonzero 

for all parameter values over the entire curve. 

The B-spline basis contains the Bernstein basis as the special case. The B-spline basis is non-

global. B-spline curves have the following properties − 

• The sum of the B-spline basis functions for any parameter value is 1. 

• Each basis function is positive or zero for all parameter values. 

• Each basis function has precisely one maximum value, except for k=1. 

• The maximum order of the curve is equal to the number of vertices of defining 

polygon. 

• The degree of B-spline polynomial is independent on the number of vertices of 

defining polygon. 

• B-spline allows the local control over the curve surface because each vertex affects the 

shape of a curve only over a range of parameter values where its associated basis 

function is nonzero. 

• The curve exhibits the variation diminishing property. 

• The curve generally follows the shape of defining polygon. 

• Any affine transformation can be applied to the curve by applying it to the vertices of 

defining polygon. 

• The curve line within the convex hull of its defining polygon. 



d) NURBS: Non Uniform Rational Basis Splines 

 

 

 

 

 



 

 

 

 

 

 



Difference between Spline, B-Spline and Bezier Curves : 

Spline B-Spline Bezier 

A spline curve can be specified by 

giving a specified set of coordinate 

positions, called control points which 

indicate the general shape of the 

curve. 

The B-Spline curves are 

specified by Bernstein basis 

function that has limited 

flexibiity. 

The Bezier curves can be 

specified with boundary 

conditions, with a 

characterizing matrix or 

with blending function. 

It follows the general shape of the 

curve. 

These curves are a result of 

the use of open uniform basis 

function. 

The curve generally 

follows the shape of a 

defining polygon. 

Typical CAD application for spline 

include the design of automobile 

bodies, aircraft and spacecraft 

surfaces and ship hulls. 

These curves can be used to 

construct blending curves. 

These are found in 

painting and drawing 

packages as well as in 

CAD applications. 

It possess a high degree of 

smoothness at the places where the 

polynomial pieces connect. 

The B-Spline allows the order 

of the basis function and 

hence the degree of the 

resulting curve is independent 

of number of vertices. 

The degree of the 

polynomial defining the 

curve segment is one less 

than the number of 

defining polygon point. 

A spline curve is a mathematical 

representation for which it is easy to 

build an interface that will allow a 

user to design and control the shape 

of complex curves and surfaces. 

In B-Spline, there is local 

control over the curve surface 

and the shape of the curve is 

affected by every vertex. 

It is a parametric curve 

used in related fields. 

 

 

 

 

 

  

 


