Lesson Plan Harpreet Kaur, Assistant Professor Data Science 5th (odd) Name of Faculty Discipline Semester Subject : Graph Theory (PC/CDS/53-T) Load (Lecture/Practical) per week (in hours): Lectures-03hours. | Week | Theory | | Topic Covered Date and
Remarks | | | |------------------|----------------|---|-----------------------------------|-----|------------------------| | | Lecture
Day | Topic(Including Assignment/Test) | Date | HOD | Director-
Principal | | 1 st | 1 | Introduction to graphs, Types of graphs | | | | | | 2 | Bipartite and Isomorphic graphs examples | | | | | | 3 | Applications | | | | | 2 nd | 4 | Operations on Graphs | | | | | | 5 | Walks, Path, Circuits | | | | | | 6 | Euler Graphs, | | | | | 3 rd | 7 | Hamiltonian Path and Circuits | | | | | | 8 | Trees, Properties of Trees | | | | | | 9 | Spanning Trees | | | | | 4 th | 10 | Standard proofs | | | | | | 11 | Revision | | | | | | 12 | Cut-Sets, Properties of Cut-Set, | | | | | 5 th | 13 | All Cut-Sets in a graph | | | | | | 14 | Fundamental Circuits and Cut-Sets | | | | | | 15 | Connectivity and Separability | | | | | 6 th | 16 | Network Flows | | | | | | 17 | 1-Isomorphism | | | | | | 18 | 2- Isomorphism | | | | | 7^{m} | | 1 st MinorTest | | | | | 8 th | 19 | Planar Graphs, | | | | | | 20 | Kuratowski's Two Graphs | | | | | | 21 | Revision | | | | | 9 th | 22 | Sets with one operation, Sets with two operations | | | | | | 23 | Modular Arithmetic and Galois Fields, | | | | | | 24 | Vector and Vector Spaces, | | | | | 10^{th} | 25 | Vector Space associated with a graph, | | | | | | 26 | Basic Vectors of a graph | | | | | 11 th | 27 | Circuits and Cut-Set Subspaces, | | | | | | 28
29 | Orthogonal Vectors and Spaces, Intersection and Join of W and Ws. | | | | | | 30 | Revision | | | | | 12 th | 31 | Matrix representation of graphs | | | | | | 32 | Incidence Matrix | | | | | | 33 | Sub matrices | | | | | 13 th | 34 | Circuit Matrix | | | | | | 35 | Fundamental Circuit Matrix and Rank | | | | | | 36 | Coloring of graphs: Chromatic Number | 1 | | | | 14 th | | 2 nd MinorTest | | | | | 15 th | 37 | Vertex Coloring of graphs, | | | | | | 38 | Edge Coloring of graphs, | | | | | | 39 | Coloring of Planar Graphs, Revision | | | |