Name of Faculty : Mohan Sharma, Assistant Professor

Discipline: Mechanical Engg.

Semester : 5th

Subject : ME- 309 L, INDUSTRIAL ENGINEERING Lesson Plan Duration: 14 weeks (from AUG, 2018 to DEC, 2018)

Work Load (Lectutre/Practical) per week (in hours): Lectures 03 hours,

week	Lecture Day	Topic (Including Assignment/Test)			
	1	Introduction to plant layout			
1 st	2	Objectives of good plant layout, importance of plant layout			
	3	Types of plant layout			
	4	Advantages and limitations of different types of layout			
2 nd	5	Function of material handling,			
	6	Principles of material handling			
- 1	7	Material handling devices ,			
3 rd	8	Relation between plant layout and material handling			
	9	Work Study Definition and scope of work study			
1	10	Need and advantage of work study			
4 th	11	Techniques of work study			
	12	Work study and mesurement			
d	13	Work study and productivity			
5 th	14	Objectives and procedure for Method analysis			
	15	Process chart symbols			
6 th	16	Flow diagram, string diagram			
	17	Therblig and multiactivity charts			
	18	Assignments-I			
7^{th}		1 st Minor Test			
Oth	19	Work Measurement Objectives;			
8 th	20	Basic procedure for time study,			
	21	Difference between time study and motion study			
Q th	22	Various time estimates and production standard			
9	23	Level of performances and allowances			
	24	Various time recording techniques in time study,			
1 Oth	25	Types of value concept of value engineering			
10 th	26	Phases of value engineering studies			
	27	Application of value egineering			
	28	Concept of ergonomics			
11 th	29	Objectives of ergonomics			
1 Oth	30	Man machine system interface			
12 th	31	Anthropometry			
	32	Ergonomics and safety			
	33	Ergonomics and fatigue			
13 th	34	Intellectual property rights Patents,			
1.5	35	Trade marks, copy rights law of contract			
	36	Assignments-II			
14 th		2 nd Minor Test			

Name of Faculty Mr. Jagjeet Singh

Mechanical Engineering Discipline

5th Semester

ICGT(ME- 307) Subject

Lesson Plan Duration: 15 weeks (from August, 2018 to November, 2018) Work Load (Lecture/Practical) per week (in hours): Lectures 04 hours.

Week			Practical				
	Lecture Day	Topic (Including Assignment/Test)	Week	Topics			
1 st	1	Internal and external combustion engines		To study the constructional details & working principles of two-stroke/			
	2	Classification of I.C. Engines		four stroke petrol engine			
	3	Cycles of operation in four stroke					
		and two stroke I.C. Engines, Wankel Engines	1				
	4	Assumptions made in air standard cycle; Otto cycle; diesel cycle, dual combustion cycle					
2 nd	5	Comparison of Otto, diesel and dual combustion cycles		To study the constructional detail & working of two-stroke/ four stroke			
	6	Sterling and Ericsson cycles; air standard efficiency, specific work output,	2	diesel engine.			
	7	Specific weight; work ratio; mean effective pressure; deviation of actual engine					
	8	Problems and Solutions					
3 rd	9	Mixture requirements for various operating conditions in S.I. Engines		Analysis of exhaust gases from single cylinder/multi cylinder			
	10	Elementary carburetor, Requirements of a diesel injection system	3	diesel/petrol engine by Orsat			
	11	Types of inject systems; petrol injection					
	12	Requirements of ignition system					
4 th	13	Types of ignition systems ignition timing; spark plugs.		. To prepare heat balance sheet on multi-cylinder diesel engine/petrol			
	14	S.I. engines; Ignition limits; stages of combustion in S.I. Engines		engine.			
	15	Ignition lag; velocity of flame propagation; detonation;	4				
	16	Effects of engine variables on detonation; theories of detonation					
	17	Octane rating of fuels; preignition;					
5th	18	S.I. engine combustion chambers Stages of combustion in C.I.	5	.To find the indicated horse power			
	10	Stages of Combustion in C.I.		(IHP) on multi-cylinder petrol			

		Engines; delay period;		engine/diesel engine by Morse Test.			
	19	Variables affecting delay period; knock in C.I. engines	6	Viva- Voice -1			
	20	Cetane rating; C.I. engine combustion chambers.	U				
6th	21	Functions of a lubricating system, Types of lubrication system		To prepare variable speed performance test of a multi-			
	22	Mist, wet sump and dry sump systems	7	cylinder/single cylinder petrol engine/diesel engine and prepare the			
	23	Properties of lubricating oil; SAE rating of lubricants		curves (i) bhp, ihp,fhp, vs speed (ii) volumetric efficiency&indicated			
	24	Engine performance and lubrication		specific fuel consumption vs speed.			
7 th		Ist Minor Test					
	25	Necessity of engine cooling;					
8th		disadvantages of overcooling					
	26	Cooling systems; aircooling, water		To find fhp of a multi-cylinder diesel			
		cooling; radiators		engine/petrol engine by Willian's			
	27	Performance parameters: BHP, IHP	8	line method & by motoring method			
	28	Mechanical efficiency, brake mean					
		effective pressure and indicative					
		mean effective pressure					
	29	Torque, volumetric efficiency	9	To perform constant speed			
9th	30	Specific fuel consumption		performance test on a single			
	31	Thermal efficiency; heat balance;		cylinder/multi-cylinder diesel engine			
		Basic engine measurements;		& draw curves of (i) bhp vs fuel rate			
	32	Problems and Solutions		air rate and A/F and (ii) bhp vs mep, mech efficiency & sfc			
	33	Fuel and air consumption, brake					
10th		power, indicated power and friction					
		power		To measure CO & Hydrocarbons in			
	34	Heat lost to coolant and exhaust	10	the exhaust of 2- stroke / 4-stroke			
		gases; performance curves		petrol engine			
	35	Pollutants from S.I. and					
		C.I.Engines,					
	36	Methods of emission control					
	37	Alternative fuels for I.C. Engines		To find intensity of smoke from a			
11 th	38	The current scenario on the		single cylinder / multi-cylinder diesel			
11	20	pollution front	11.	engine.			
	39	Root and vane blowers					
	40	Static and total head values		To describe a			
12th	41	Centrifugal compressors- Velocity		To draw the scavenging			
1241	40	diagrams Slim forter ratio of compression		characteristic curves of single			
	42	Slip factor, ratio of compression	12.	cylinder petrol engine.			
	43	Pressure coefficient, pre-whirl					
	44	Axial flow compressor- Degree of reaction					
13 th	45	Polytropic efficiency		To study the effects of secondary air			
13	43	1 styliopte efficiency		15 stady the criedto of secondary un			

	46	Surging, choking and stalling	13	flow on bhp, sfc, Mech. Efficiency &
	47	Performance characteristics,		emission of a two-stroke petrol engine
	48	Problems and Solutions		chgme
		2 nd Minor Test		
14th				
	49	Brayton cycle; Components of a gas		
15th		turbine plant		
	50	Open and Closed types of gas		
		turbine plants; Optimum pressure	15	Viva- Voice -2
		ratio		
	51	Improvements of the basic gas		
		turbine cycle; multi stage		
		compression with inter-cooling;		
		multi stage expansion with		
		reheating between stages		
	52	Exhaust gas heat exchanger,		
		Applications of gas turbines.		
		Problems		

.

Name of Faculty : Mohan Sharma, Assistant Professor

Discipline: Mechanical Engg.

Semester : 5th

Subject : ME- 301 L, Kinematics of Machines

Lesson Plan Duration: 14 weeks (from AUG, 2018 to DEC, 2018)

Work Load (Lectutre/Practical) per week (in hours): Lectures 04 hours,

week	Lecture Day	Topic (Including Assignment/Test)				
	1	Introduction mechanism and machine				
1 st	2	Kinematics link ,kinematics chain, kinematics pairs				
	3	Degree of freedom ,kinematic inversion				
	4	Inversions of four bar chain				
	5	Inversions of single slider kinematic chain				
2 nd	6	Inversions of double slider kinematic chain				
	7	problems				
	8	Pantograph, straight-line motion mechanisms (Peculiar, Hart, Scott Russell				
	9	Grasshopper, Watt, Kemp's Tchybishev				
3^{rd}	10	Indicator mechanisms (Simplex Crosby , Thomson, etc				
	11	Automobile steering gears (Davis and Ackerman), Hooks joint (universal coupling),				
		Double hooks joints				
	12	Types of cams and followers, various motions of the follower				
4 th	13	Displacement diagram				
4	14	Construction of cam profiles				
	15	problems				
	16	Analysis for velocities and accelerations of tangent and circular arc cams with roller				
		and flat –faced followers				
5 th	17	Introduction to function generation, Path generation and rigid bodied guidance				
3	18	Synthesis for four bar linkage				
	19	Design of four bar mechanisms				
	20	Design of single slider kinematic mechanisms				
6 th	21	Problems				
0	22	Problem				
	23	problems				
	24	Assignment-I				
7 th		1 st Minor Test				
Oth	25	Introduction to gear ,law of gearing				
8 th	26	Types of gears, terminology				
	27	Condition for correct gearing, cyclical and involutes profiles of gear teeth				
	28	Pressure angle, path of contact				
Q th	29	Arc of contact, Interference				
9	30	Undercutting, minimum number of teeth				
	31	Number of pairs of teeth in contact, helical, spiral, worm and worm gear, bevel				
	- 22	gear				
	32	Gear trains; simple, compound, reverted				
10 th	33	Epicyclical, Solution of gear trains, sun and planet gear				
	34	Bevel epicyclical gear, compound epicyclical gear				
	35	Differential of automobile				
	36	Torque in gear trains				
11 th	37	Velocity in mechanisms				
	38	Velocity determination; Relative velocity methods				
	39	Velocity in a slider crank mechanism instantaneous centre method				

	40	Velocity of a point on a link by instantaneous centre method				
12 th	41	Method of locating instantaneous centres in mechanisms				
	42 problems					
	43	Acceleration diagram for a link, Acceleration of a point on a link				
	44 Acceleration in single slider crank mechanism					
4	45	Instantaneous centre method Acceleration determination				
13 th	46	Cariole's component of acceleration, Klein's and other constructions				
	47	problems				
	48	Assignment-II				
14 th		2 nd Minor Test				

Mohan Sharma Assistant Prof. Mech. Engg. Department

Name of Faculty : Pawan Kumar, Assistant Professor

Discipline: Mechanical Engg.

Semester : 5th

Subject: Fluid Machines Lab

Lesson Plan Duration: 15 weeks (from August, 2018 to Dec, 2018)

Work Load (Lecture) per week (in hours): Lectures 08 hours

Week	Theory			Actual Lesson Plan Covered		
	Lecture Day	Topic (Including Assignment/Test)	Week	Торіс		
1 st	1	To study the constructional details of a Pelton turbine and draw its fluid flow circuit.	1 st			
2 nd	2	To draw the following performance characteristics of Pelton turbine-constant head, constant-speed and constant efficiency curves.	2 nd			
3 rd	3	To study the constructional details of a Francis turbine and draw its fluid flow circuit.	3 rd			
4 th	4	To draw the constant head, constant speed and constant efficiency performance characteristics of Francis turbine.	4 th	\		
5 th	5	To study the construction details of a Kaplan turbine and draw its fluid flow circuit.	5 th			
6 th	6	To draw the constant head, speed and efficiency curves for a Kaplan turbine.	6 th			
7 th		1 st Minor Test				
8 th	7	To study the constructional details of a Centrifugal Pump and draw its characteristic curves.	8 th			
9 th	8	To study the constructional details of a Reciprocating Pump and draw its characteristics curves.	9 th			
10 th	9	To study the construction details of a Gear oil pump and its performance curves.	10 th			
11 th	10	To study the constructional details of a Hydraulic Ram and determine its various efficiencies.	11 th			
12 th	11	To study the constructional details of a Centrifugal compressor.	12 th			
13 th	12	To study the model of Hydro power plant and draw its layout.	13 th			
14 th		2 nd Minor Test				
15 th	14	Viva	15 th			

Pawan Kumar Assistant Prof. Mech. Engg. Department

Name of Faculty : Pawan Kumar, Assistant Professor

Discipline: Mechanical Engg.

Semester : 5th

Subject: Fluid Machines

Lesson Plan Duration: 15 weeks (from August, 2018 to Dec, 2018)

Work Load (Lecture) per week (in hours): Lectures 04 hours

Week		Theory		Actual Lesson Plan Covered
	Lecture Day	Topic (Including Assignment/Test)	Week	Topic
		Unit-I		
1 st	1	Impact of free jets: Impulse – momentum principle, jet impingement - on a stationary flat plate		
	2	Inclined plate and a hinged plate, at the centre of a stationary vane, on a moving flat plate	1 st	
	3	Inclined plate, a moving vane and a series of vanes, Jet propulsion of ships		
	4	Problem and solutions		
2 nd	5	Impulse Turbines: Classification – impulse and reaction turbines, water wheels, component parts		
	6	Construction, operation and governing mechanism of a Pelton wheel,	2 nd	
	7	work done, effective head, available head and efficiency of a Pelton wheel	2 "	
	8	Problem and solutions		
_	9	Design aspects, speed ratio	_	
3 rd	10	Flow ratio, jet ratio, number of jets	3 rd	
	11	Number of buckets and working proportions		
	12	Problem and solutions		
	13	Performance Characteristics		\
4^{th}	14	Governing of impulse turbines	4^{th}	
	15	Problem and solutions		
	16	Assignment-I		
		Unit-II		<u> </u>
5 th	17	Francis Turbines: Component parts, construction and operation of a Francis turbine	5 th	
	18	Mechanism, work done by the turbine runner	J	
	19	Working proportions and design parameters		
	20	Problem and solutions		
	21	Slow, medium and fast runners		
6 th	22	Degree of reaction, inward/outward flow reaction turbines, Performance Characteristics	6 th	
	23	Component parts, construction and operation of a Propeller, Kaplan turbine		
41.	24	Problem and solutions		
7 th	27	1 st Minor Test		
8 th	25	Differences between the Francis and Kaplan turbines, draft tube - its function and different forms		
	26	Performance Characteristics, Governing of Kaplan turbine,	8 th	
	27	Introduction to new types of turbine, Deriaz (Diagonal), Bulb, Tubular turbines	Ü	
	28	Problem and solutions		
		Unit-III		
9 th	29	Centrifugal Pumps: Classification, velocity vector diagrams and work done, manometric efficiency, vane shape, head		
	30	Capacity relationship and pump losses, pressure rise in impeller minimum starting speed	9 th	
	31	Design considerations, multistage pumps		
	32	Problem and solutions		
	33	Similarity relations and specific speed net positive suction head		

10^{th}	34	Ctti	10 th	
10	34	Construction and operational details, discharge coefficient, volumetric	10	
		efficiency and slip	-	
	35	Work and power input, effect of acceleration and friction on indicator		
		diagram (pressure – stroke length plot),	_	
	36	Problem and solutions		
	37	Separation, air vessels and their utility, rate of flow into or from the air		
$11^{\rm th}$		vessel	$11^{\rm th}$	
	38	Maximum speed of the rotating crank, characteristic curves, centrifugal		
		vs. reciprocating pumps		
-	39	Brief introduction to screw, gear, vane and radial piston pumps,		
	40	Problem and solutions		
		Unit IV		
12^{th}	41	Dimensional homogeneity, Rayleigh's method and Buckingham's π-	12^{th}	
		theorem,		
•	42	Model studies and similitude, dimensionless numbers and their	F	
		significance.		
	43	Unit quantities, specific speed model relationships for turbines,	=	
-	44	Problem and solutions		
13 th	45	Scale effect, cavitation – its causes, harmful effects and prevention,	13 th	
		permissible installation height		
	46	Function, construction and operation of Hydraulic accumulator,	F	
	47	Problem and solutions	F	
	48	Assignment-II	ŀ	
14 th	-10	2 nd Minor Test		
17	49	Hydraulic intensifier, hydraulic crane		
15 th	50	Hydraulic lift and hydraulic press,	15 th	
13		* '	13	
-	51	Fluid coupling and torque converter, Hydraulic ram	<u> </u>	
	52	Problem and solutions		

Pawan Kumar Assistant Prof. Mech. Engg. Department