LESSON PLAN

Name of the Faculty	:	Mr.ManikGoyal
Discipline	:	B.Tech in Civil Engineering
Semester	:	VII (4 TH Year)
Subject	:	CE – 401E, Design of Concrete Structures - II
Lesson Plan Duration	:	15 Weeks (from Aug, 2018 to Dec, 2018)
Work Load (Lecture / Practical) per week (in hrs.)	:	Lectures – 04

Lesson Plan			
Week	Lecture	Theory	
WICK	Day	Topic(Including Assignment Test)	Date
		Continuous Beams: Basic assumptions, Moment of inertia, settlements, Modification of moments,	
		maximum moments and shear, beams curved in plan-analysis for torsion,	
1 st	3	redistribution of moments for single and multi-span beams, design examples.	
		Design Examples	
		Prestressed Concrete: Basic principles, classification of prestressed members	
2 nd		various prestressing systems, losses in prestress, initial and final stress conditions,	
2		analysis and design of sections for flexure and shear, load balancing concept, I:S:Specifications	
		Examples	
		End blocks-Analysis of stresses, Magnel's method, Guyon's method,	
3 rd		Design Examples	
5		Bursting and spalling stresses, design examples.	
		Design Examples	
		Flat slabs and staircases: Advantages of flat slabs, general design considerations,	
4 th		approximate direct design method, design of flat slabs,	
-	15	openings in flat slab	
		Design Examples	
		Design Examples	
5 th		Design of various types of staircases, design examples.	
5		Design Examples	
		Foundations:Combined footings, raft foundation,	
	21	Design Examples	
6 th		Design of pile cap and piles, under-reamed piles, design examples.	
Ũ		Design Examples	
	24 25	Design Examples	
th			
7 th	26	MINOR TESTI	
	27		
	28		
8 th	1 / 4	Water Tanks, Silos and Bunkers: Estimation of Wind and earthquake forces, design requirements,	
		rectangular and cylindrical underground and overhead tanks,	
		Design Examples	
		Design Examples	
		Intze tanks, design considerations, design examples. Design Examples	
		Design Examples	
		Silos and Bunkers-Various theories, Bunkers with sloping bottoms and with high side walls, battery	
9 th	1 3	of bunkers, design examples	
		Silos and Bunkers-Various theories, Bunkers with sloping bottoms and with high side walls, battery	
	1 36		
		of bunkers, design examples	
	1 1/	Silos and Bunkers-Various theories, Bunkers with sloping bottoms and with high side walls, battery	
of bunkers, design examples			
10 th		Design Examples	
		<u> </u>	
4 4 4h	40 Building Frames: Introduction, Member stiffnesses, Loads,		
11 th		Analysis for vertical and lateral loads, Torsion in buildings,	
	42	Ductility of beams, design and detailing for ductility, design examples.	

	43	Design Examples	
	44	Design Examples	
	45	Yield Line Theory: Basic assumptions, Methods of analysis, yield line patterns and failure	
		mechanisms,	
12 th	46	Numerical Problems	
	47	Numerical Problems	
	48	analysis of one way and two way rectangular and non-rectangular slabs,	
	49	analysis of one way and two way rectangular and non-rectangular slabs,	
13 th	50	analysis of one way and two way rectangular and non-rectangular slabs,	
15	51	Numerical Problems	
	52	Numerical Problems	
	53		
14^{th}	54		
14	55	MINOR TESTII	
	56		
	57	Effect of top corner steel in square slabs, design examples.	
15^{th}	58	Numerical Problems	
15	59	Numerical Problems	
	60	Numerical Problems	

Name of the Faculty	:	Mr.Kamaldeep Singh
Discipline	:	B.Tech in Civil Engineering
Semester	:	VII (4 TH Year)
Subject	:	CE – 403E, Irrigation Engg II
Lesson Plan Duration	:	15 Weeks (from Aug, 2018 to Dec, 2018)
Work Load (Lecture / Practical) per week (in hrs.)	:	Lectures – 04

		Lesson Plan
Week	Lecture	Theory

	Day	Topic(Including Assignment Test)	
	1	Regulation works: Canal falls-necessity and location, development of falls,	
	2	Design of cistern element, roughening devices,	
1 st	3	Design Example	
_	4	Design of Sarda type fall,	
	5	Design Example	
nd	6	Design Example	
2 nd	7	Design of straight Glacis fall.	
	8	Design Example	
	9	Off-take alignment, cross-regulator and distributary, head regulators,	
h	10	Devices to control silt entry into the off-taking channel and silt ejector,	
3 rd	11	Canal escapes, types of escapes.	
	12	Cross drainage works: Classification and their selection,	
	13	Hydraulic design aspects of aqueducts,	
4.	14	Hydraulic design aspects of syphon aqueducts,	
4 th	15	super passage, canal syphon and level crossing,	
	16	Numerical Problems	
	17	Numerical Problems	
41.	18	Design of transitions	
5 th	19	Numerical Problems	
	20	Diversion canal Headwork: Various components and their functions, layout plan,	<u> </u>
	21	selection of site for diversion headworks, Bligh's creep theory,	
4	22	Khosla's method of independent variables, use of Khosla's curves,	
6 th	23	Khosla's method of independent variables, use of Khosla's curves,	
	24	Various corrections, silt excluders	
	25		
7th	26		
/***		MINOR TESTI	
	27		
Oth	28		
8 th	29	Numerical Problems	
	30	Numerical Problems	
	31	Storage Headworks: Types of dams, selection of a site,	
	32	gravity dam-two dimensional design, forces acting, stability criterion,	
	33	gravity dam-two dimensional design, forces acting, stability criterion,	
	34	gravity dam-two dimensional design, forces acting, stability criterion,	
9 th	35	Elementary profile of a dam, cutoffs and drainage galleries, arch dams-constant angle and constant	
		radius arch dam,	
	36	Elementary profile of a dam, cutoffs and drainage galleries, arch dams-constant angle and constant	
		radius arch dam,	
	37	simple design and sketches, most economical angle,	
	38	most economical angle, Examples	
10 th	39	Earth dam, design principles, seepage through earth dams, seepage line, control of seepage, design	
10		of filters.	
	40	Earth dam, design principles, seepage through earth dams, seepage line, control of seepage, design	
	40	of filters.	
	41	Earth dam, design principles, seepage through earth dams, seepage line, control of seepage	
11 th	42	Design of filters.	
11	43	Design of filters, Design Examples	
	44	Spillways and Energy Dissipaters: Essential requirements of spillway and spillway's capacity,	
	45	types of spillways and their suitability,	
1 Oth	46	Ogee spillways,	
12 th	47	Examples design and analysis	
	48	Chute Spillways,	
	49	Examples design and analysis	
1.04	50	side channel, shaft and syphon spillways	
13 th	51	Energy dissipation below spillways,	
	52	Energy dissipation below spillways,	
14 th	53		
1 * '			

	54 55	MINOR TEST II	
	56 57	Stilling basins	
15 th	58	USBR	
15	59	I.S. Stilling Basins.	
	60	I.S. Stilling Basins.	

Name of the Faculty Discipline	:	Mr.HinoniGoyal B.Tech in Civil Engineering
Semester Subject	:	VII (4 th Year) CE – 405E Transportation Engineering – II
Lesson Plan Duration Work Load (Lecture / Practical) per week (in hrs.)	:	15 Weeks (from Aug, 2018 to Dec, 2018) Lectures – 04

	Theory		
Week Lecture day Topic (Including Assignment Test)		Topic (Including Assignment Test)	Date
	1	Design of Flexible Pavements: Types of pavements	
	2	Flexible and rigid pavements	
1 st	3	Components of a pavement and their functions.	
	4	Factors affecting design of pavements. Design of thickness of a flexible pavement by Group Index method	
2 nd	5	Design of thickness of a flexible pavement by CBR method (including latest IRC	

		guidelines),				
ŀ		Design of thickness of a flexible pavement by CBR method (including latest IRC				
	6	guidelines),				
F	7	Triaxial method and Burmister's method.				
-	8	Design Of Rigid Pavements: Westergaard's theory				
	9	Critical locations of loading, load and temperature stresses				
-		Critical combination of stresses. IRC guidelines for determination of thickness of a				
3 rd	10	rigid pavement.				
	11	IRC guidelines for determination of thickness of a rigid pavement.				
-	12	Joints: requirements, types, patterns.				
	12	Spacing of expansion and contraction joints. Functions of dowel and tie bars.				
-		Highway Construction: Non-Bituminous Pavements: Brief introduction to earthwork				
4 th	14	machinery: shovel, hoe, clamshell, dragline, bulldozers.				
-	15	Principles of field compaction of subgrade. Compacting equipment's.				
ŀ	15					
	10	Granular roads. Construction steps of WBM. WMM				
-	1/	Construction of cement concrete pavements. Slip-form pavers.				
	18	Basic concepts of the following: soil stabilized roads, use of geo-synthetics,				
⊂ th		reinforced cement concrete pavements,				
5 th	19	prestressed concrete pavements, roller compacted concrete pavements and fibre				
ŀ		reinforced concrete pavements				
	20	Construction of Bituminous Pavements: Various types of bituminous constructions.				
		Prime coat, tack coat, seal coat and surface dressing.				
Ļ	21	Construction of BUSG, Premix carpet,				
-	22	Construction of BM, DBM and AC				
6 th		Brief coverage of machinery for construction of bituminous roads: bitumen boiler,				
Ŭ	23	sprayer, pressure distributer, hot-mix plant, cold-mix plant, tipper trucks, mechanical				
		paver or finisher, rollers. Mastic asphalt.				
	24	Introduction to various IRC and MOST specifications				
	25					
7 th	26	MINOR TEST 1				
′	27					
Γ	28					
	29	Highway Maintenance: Pavement failures. Maintenance operations.				
oth	30	Maintenance of WBM, bituminous surfaces and cement concrete pavements				
8 th	31	Pavement evaluation. Benkleman beam.				
ľ	32	Introduction to various types of overlays.				
	33	Highway Drainage and Hill Roads: Surface drainage: types, brief design.				
	34	Types of sub-surface drainage.				
9 th	35	Special characteristics of hill roads: geometrics, hair pin bends,				
ŀ	36	construction of hill roads				
	37	drainage of hill roads, maintenance problems of hill roads				
ŀ	38	Highway Economics and Finance: Need of economic evaluation.				
10 th	39	Highway user benefits and costs.				
ŀ	40	Methods of economic evaluation: benefit cost ratio method				
	40					
+		Methods of economic evaluation : net present value method,				
11 th	42	Methods of economic evaluation: internal rate of return method				
ŀ	43	Methods of economic evaluation: comparison. Highway finance.				
	44	Methods of economic evaluation: comparison. Highway finance.				
Ļ	45	Tunnels Sections of tunnels: advantages, limitations and suitability of each section.				
12 th	46	Tunnels Sections of tunnels: advantages suitability of each section.				
-	47	Tunnels Sections of tunnels: advantages suitability of each section.				
	48	Shaft. Pilot tunnel.				
	49	Driving tunnel in rocks: sequence of construction operations				
13 th	50	Driving tunnel in rocks: sequence of construction operations				
1.5	51	Full face method.				
	52	heading and bench method				
	53	drift method				
14 th	54	Driving tunnels in soft ground: sequence of construction operations,				
ľ	55	needle beam method, shield tunneling				

	57		
1.5th	58	MINOR TEST II	
15	59		
	60		

Name of the Faculty	:	Mr.Sumeet
Discipline	:	B.Tech in Civil Engineering
Semester	:	VII (4 th Year)
Subject	:	CE-407E, Sewerage & Sewage Treatment
Lesson Plan Duration	:	15 Weeks (from Aug, 2018 to Dec, 2018)
Work Load (Lecture / Practical) per week (in hrs.)	:	Lectures – 03

Week	Theory		
Lecture Day Topic (Including assignment / Test)		Topic (Including assignment / Test)	Date
	1	Collection of sewage: Importance of sanitation, systems of sanitation	
1 st	2	Types of sewage and types of sewerage systems, components of sewerage system	
1	3	Systems of sewerage – separate, combined and partially separate.	
	4	Quantity of sanitary sewage and variations, characteristics of sewage	
2^{nd}	5	Population Equivalent	
2	6	Numerical Problems	
	7 Hydraulic Design of sewers, free board, flow velocities		
2 rd	8	Numerical Problems	
3	9	Maximum and minimum velocities to be generated in sewers	

	10	Shapes of sewer – circular and egg shaped, Hydraulic characteristics of circular sewer sections	
	10	running full or partially full	
4 th	11	Numerical Problems	
	12	Design of sewers	
	13	Numerical Problems	
5 th	14	Self-cleansing velocity and slopes, Construction and testing of sewer lines.	
5	15	Sewer materials. joints and appurtenances	
	16	Quality parameters- BOD, COD, Solids, D.O., Oil & Grease.	
6 th	17	Indian Standards for disposal of effluents into inland surface sources and on land	
÷	18	Objectives, sequence and efficiencies of conventional treatment units.	
7 th		1 st Minor Test	
	19	Preliminary treatment, screening, types of screens, design and cleaning	
8 th	20	Disposal of screenings, Design examples	
	21	Grit removal units, settling of particles, grit chambers	
	22	Aerated grit channels, detritus tanks	
a th	23	Theory and design aspects of primary treatment, secondary treatment- activated sludge process & its modifications,	
9 th -	24	Theory and design aspects of primary treatment, secondary treatment- activated sludge process & its modifications,	
	25	Theory and design aspects of primary treatment, secondary treatment- activated sludge process & its modifications,	
10 th	26	Tricking filter, sludge digestion and drying beds.	
	27	Tricking filter, sludge digestion and drying beds.	
	28	Stabilization pond, aerated lagoon, UASB process, septic tank and Imhoff tank	
11 th	29	Stabilization pond, aerated lagoon, UASB process, septic tank and Imhoff tank	
11	30	Stabilization pond, aerated lagoon, UASB process, septic tank and Imhoff tank	
	31	Stabilization pond, aerated lagoon, UASB process, septic tank and Imhoff tank	
12 th	32	Disposal of sewage by dilution – self-purification of streams.	
12	33	Characteristics of sewage, self-purification system of streams	
	34	effect of sewage on streams, effect of streams on disposed sewage	
13 th	35	Standards for disposal	
_	36	Sewage disposal by irrigation (sewage treatment).	
14 th		2 nd Minor test	
	37	Definition, classification, quantity and sewage treatment	
15 th	38	Standards for reuse of disposed sewage water for irrigation, treatment processes	
	39	Effects of disposing sewage water in irrigation	

Name of the Faculty	:	Mr. Harish Kumar
Discipline	:	B.Tech in Civil Engineering
Semester	:	VII (4 TH Year)
Subject	:	CE-413E, Hydro Electric Power Development
Lesson Plan Duration	:	15 Weeks (from Aug, 2018 to Dec, 2018)
Work Load (Lecture / Practical) per week (in hrs.)	:	Lectures – 04

		Lesson Plan		
Week	Lecture	re Theory		
week	Day	Topic(Including Assignment Test)	Date	
	1	Introduction to Hydro Electric Power, Sources of power		
	2	Terminology – Hydroelectric power, need of hydroelectric power development		
1 st	3	Application and need of hydroelectric power stations, merits and demerits		
	4	Components of hydropower station – dams, spillways, headwork		
	5	Components of hydropower station – gates and valves, flumes, forebays, penstocks, tunnels		
2nd	6	Components of hydropower station – penstocks, tunnels		
2110	7	Hydropower : Indian Scenario, Multipurpose Development		
	8	Estimation of water power, necessity and importance of harnessing small hydro power,		
3rd 9 flow duration and power duration curves, load curve, load factors, capacity factors,				
	10	utilization factors, firm and secondary power, Diversity factor, prediction of load		
	11 Numerical Problems			

]	12	Numerical Problems	
	13	Types of Hydro Power Plants: Elements of Hydro power, classification of hydro-power plants,	
4 th	14	run-of-river plants – arrangement and sub – grouping	
	15	storage plants – storage and pondage, reservoir capacity, pondage capacity	
	16	diversion canal development plants – arrangement, layout and components	
	17	pumped storage plants – introduction, types	
41.	18	pumped storage plants – layout, advantages, efficiency of plant	
5 th	19	tidal power plants – types and layout, merits/demerits	
	20	base load and peak load plants in a power grid.	
	21	Intakes: Intake structures, functions and their types,	
th	22	Run – of – river intakes, Canal Intakes - functions	
6 th	23	Dam Intakes, Tower Intakes – functions	
	24	Shaft Intakes, Intakes of special design - functions	
	25		
7th	26		
<i>'</i>	27	MINOR TEST-I	
	28		
8 th	28	components of intakes - forebay, trash racks,	
0	30	components of intakes - gates and valves, force required to operate gates	
	31	Conveyance System: Penstocks, design criterion, types	
	32	economical diameter of Penstocks	
	33	anchor blocks, cradles and footings,	
	34	water hammer, instantaneous closure of power canal,	-
9 th	35	surge tank, surges in canals	
	36		
	37	Turbines: Introduction, Types of turbines, different classifications	
	38	specific speed and classification of turbines, synchronous speed,	
10 th	39	Turbine – Generator: Layout arrangements, Efficiency of turbines scroll casing, flumes and draft tubes, dimensions of scroll Casing and draft tubes,	
	40	Cavitation in Turbines, Abrasion in Hydraulic Machinery	
	40	Governing of Turbines – Hydraulic and Electronic	
	41	Characteristics of Turbines	
11 th	42	setting of turbines	
	43	Numerical Problems	
	44	Numerical Problems	
		Power House: General layout and arrangements of hydro-power number and size of units,	
12 th	<u>46</u> 47		
	47	Power House Structure: Sub - Structure, Intermediate Structure, Super - Structure Dimension and Size of Structure	
	49	underground power stations – Introduction, Location, types	
13 th	50	Components of underground powerhouse, Advantages of underground power stations	
	51	Types of layout of underground powerhouse	
	52	Tidal Power – Energy from oceans, basic principle of tidal power	
	53	_	
14 th	54	MINOD TEOP H	
	55	MINOR TEST-II	
	56		
	57	Historical development, prominent sites in the world and in India	
15 th	58	Modes of Generation	
	59	Structural Components of Tidal plants	
l	60	Economics and Advantages/Disadvantages of tidal plants	

Lesson Plan

Name of the Faculty Discipline Semester Subject Lesson Plan Duration Work Load (Lecture / Practical) per week (in hrs.) :

- :
- :
- :
- Ms.ManjuGodara B.Tech in Civil Engineering VII (4TH Year) CE 423E, Concrete Technology 15 Weeks (from Aug, 2018 to Dec, 2018) :
- Lectures 04

Week		Theory	
	Lecture	Topic (Including assignment / Test)	Date
	Day	Unit-I	<u> </u>
	1	Concrete as Structural Material: Introduction	
1 st	2	Preparation of concrete, grades of concrete	
	3	Advantages of concrete, concept of quality control.	
	4	Concrete Making Materials: Cement, tests on cement (physical tests)	
	5	Types of Portland cement, various types of cement-ordinary Portland cement,	
2^{nd}	6	Rapid hardening cement, low heat cement, sulphate resistant cement,	
	7	Portland-pozzolona cement, high strength Portland cement	
	8	High alumina cement, waterproof cement, white Portland cement,	
	9	Hydrophobic cement, colored Portland cement	
3 rd	10	Aggregates, classification of aggregates based on petrography, size, shape and textures	
	11	Deleterious substances in aggregates, bulking of fine aggregates, sieve analysis,	
		grading of aggregates as per IS-383-1970	
	12	Fineness modulus, Maximum size of aggregate, Quality of mixing water, curing water	
		Unit-II	
	13	Properties of Concrete: Introduction	
4 th	14	Workability, factors influencing workability, measurement of workability	
	15	Requirements of workability, properties of hardened concrete, stress and strain	
		characteristics of concrete	

	16	Young's modulus of concrete, creep and shrinkage of concrete, permeability of concrete	
	17	Durability of concrete sulphate attack, fire-resistance, thermal properties of concrete	
5 th	18	Construction joints, expansion and contraction joints.	
-	19	Production of Concrete: Introduction,	
	20	Batching of materials, mixing of concrete materials,	
	21	Transportation of concrete, compaction of concrete,	
6 th	22	Ready mixed concrete, vibrators, Internal vibrators,	
-	23	External vibrators	
-	24	Concrete curing and formwork removal	
7 th		1 st Minor Test	1
		Unit-III	
8 th	25	Non-Destructive Testing of Concrete: Significance of Non-Destructive Testing	
	26	Rebound Hammer, Ultrasonic pulse velocity techniques	
	27	Penetration techniques, pullout tests, vibration methods	
	28	Radioactive techniques, Cover meter, core-tests	
	29	Deterioration of Concrete & its Prevention	
9 th	30	Causes of concrete deterioration	
	31	Deterioration by water, surface weir, frost action	
	32	Deterioration by chemical reactions	
	33	Sulphate attack, alkali-aggregate reaction	
10 th	34	Sulphate attack, alkali-aggregate reaction	İ
	35	corrosion of embedded steel in concrete	
	36	Prevention of deterioration of concrete	
		Unit-IV	
	37	Repair Technology for Concrete Structures: Symptoms and diagnosis of distress	
11 th	38	evaluation of cracks, repair of cracks, common types of repairs	
	39	distress in fire damaged structures, underwater repairs	
	40	Special Concrete: Light weight concrete	
	41	definition and its properties, applications, high strength concrete	
12 th	42	Mass Concrete, waste material based concrete, shortcrete	
	43	Fiber reinforced concrete: Materials Fibers types and properties	
	44	Ferrrocement	
	45	Ferrrocement	
13 th	46	Polymer concrete composites	
	47	Heavy weight concrete for radiation shielding	
	48	Heavy weight concrete for radiation shielding	
14 th		2 nd Minor test	
15 th	49	Prestressed Concrete: Introduction, basic concepts	
	50	Classifications and types of prestressing	
	51	Prestressing systems, properties of materials	
	52	Pre tensioned and post tensioned concrete elements	

Name of the Faculty :	Mr.ManikGoyal
Discipline :	B.Tech in Civil Engineering
Semester :	VII (4 th Year)
Subject :	CE-409EConcrete Structures- II(Drawing)
Lesson Plan Duration :	15 Weeks (from AUG, 2018 to DEC, 2018)
Work Load (Lecture / Practical) per week (in hrs.) :	Practical - 02
Lesson Plan	

Wee	e Practical		
k	Day	Topics / Experiments	Date
1 st		Drawing sheets showing reinforcement details of flat slabs.(GP-1)	
1		Drawing sheets showing reinforcement details of flat slabs.(GP-2)	
2 nd		Drawing sheets showing reinforcement details of underground water tank.(GP-1)	
Z		Drawing sheets showing reinforcement details of underground water tank .(GP-2)	
3 rd		Drawing sheets showing reinforcement details of overhead water tank.(GP-1)	
5		Drawing sheets showing reinforcement details of overhead water tank .(GP-2)	
4 th		Drawing sheets showing reinforcement details of combined footing.(GP-1)	
4		Drawing sheets showing reinforcement details of combined footing .(GP-2)	
5 th		Drawing sheets showing reinforcement details of pile footing.(GP-1)	
5		Drawing sheets showing reinforcement details of pile footing .(GP-2)	
6 th		Drawing sheets showing reinforcement details of raft footing.(GP-1)	
0		Drawing sheets showing reinforcement details of raft footing .(GP-2)	
7^{th}		MINOR TEST I	
·			
8^{th}		VIVA-VOCE Group - 1	

	VIVA – VOCE Group - 2	
9 th	Drawing sheets showing reinforcement details of T-beam bridge. (GP-1)	
9	Drawing sheets showing reinforcement details of T-beam bridge. (GP-2)	
10 th	Drawing sheets showing reinforcement details of T-beam bridge. (GP-1)	
10	Drawing sheets showing reinforcement details of T-beam bridge. (GP-2)	
11 th	Drawing sheets showing reinforcement details of T-beam bridge. (GP-1)	
11	Drawing sheets showing reinforcement details of T-beam bridge. (GP-2)	
12 th	Drawing sheets showing reinforcement details of Silos. (GP-1)	
12	Drawing sheets showing reinforcement details of Silos. (GP-2)	
13 th	Drawing sheets showing reinforcement details of Bunker. (GP-1)	
15	Drawing sheets showing reinforcement details of Bunker. (GP-2)	
14 th	— MINOR TEST II	
15 th	VIVA-VOCE Group - 1	
	VIVA–VOCE Group - 2	

Name of the Faculty :	Ms.ManjuGodara
Discipline :	B.Tech in Civil Engineering
Semester :	VII (4 th Year)
Subject :	CE-411E Irrigation Engg. Design & Drawing
Lesson Plan Duration :	15 Weeks (from AUG, 2018 to DEC, 2018)
Work Load (Lecture / Practical) per week (in hrs.) :	Practical - 02

Lesso	Lesson Plan				
Wee	Practical				
k	Day	Topics / Experiments	Date		
1 st		Design of weirs and barrages on permeable foundation for surface and sub surface flow conditions (Group 1) Design of weirs and barrages on permeable foundation for surface and sub surface			
		flow conditions (Group 2)			
2 nd		Design of weirs and barrages on permeable foundation for surface and sub surface flow conditions (Group 1)			
		Design of weirs and barrages on permeable foundation for surface and sub surface flow conditions (Group 2)			

3 rd	Design of Guide Banks (Group 1)	
	Design of Guide Banks (Group 2)	
4 th	Flood Routing using step by step method (Group 1)	
	Flood Routing using step by step method (Group 2)	
	Design of Syphon Aqueduct.(Group 1)	
	Design of Syphon Aqueduct.(Group 2)	
	Design of Sarda type fall & sloping glacis fall.(Group 1)	
	Design of Sarda type fall & sloping glacis fall.(Group 2)	
7 th	MINOR TEST I	
8 th	VIVA-VOCE Group - 1	
	VIVA-VOCE Group - 2	
9 th -	Design of Sarda type fall & sloping glacis fall.(Group 1)	
	Design of Sarda type fall & sloping glacis fall.(Group 2)	
10 th	Seepage line in a homogeneous earth dams on impermeable foundation with	
	horizontal drainage.(Group 1)	
	Seepage line in a homogeneous earth dams on impermeable foundation with	
	horizontal drainage.(Group 2)	
	Design of Ogee Spillway and stilling basin (Group 1)	
	Design of Ogee Spillway and stilling basin (Group 2)	
	Design of Ogee Spillway and stilling basin .(Group 1)	
	Design of Ogee Spillway and stilling basin .(Group 2)	
13 th	Design of Syphon Aqueduct (Group 1)	
	Design of Syphon Aqueduct (Group 2)	
14 th	MINOR TEST II	
15 th	VIVA-VOCE Group - 1	
	VIVA–VOCE Group - 2	