CVE-302-L Design of Steel Structures - II

Name of the Faculty	:	Mr.Kuldeep Singh
Discipline	:	B.Tech in Civil Engineering
Semester	:	VI (3 rd Year)
Subject	:	CVE-302-L, Design of Steel Structures - II
Lesson Plan Duration	:	15 Weeks (from Feb, 2019 to May, 2019)
	• • • • • • •	

Work Load (Lecture / Drawing) per week (in hrs.) : Lectures – 03, Drawing-02

Week	Theory			
Week	Lecture day	Topic (Including Assignment Test)		
	1	Elementary Plastic Analysis and Design		
1 st	1	Introduction, Scope of plastic analysis		
1	2	• Ultimate load carrying capacity of tension members		
	3	Ultimate load carrying capacity of compression members		
	4	Flexural members, shape factor, mechanisms		
2^{nd}	5	Plastic collapse and analysis		
	6	• Plastic analysis applied to steel beams and simple portal frames and design		
	7	Design of Water Tanks:		
	/	Introduction, permissible stresses		
3 rd	8	Design of circular steel tanks		
	9	• Design of Rectangular steel tanks.		
	10	• Prestressed steel tanks including staging		
	11	Design of Steel Stacks:		
4 th		• Introduction, permissible stresses, various loads to be considered for the design of steel stacks		
	12	IS specifications for steel stacks		
	13	Foundation specification for steel stacks		
5^{th}	14	Design of steel stacks including foundation		
	15	• Design of steel stacks including foundation		
	16	Design of steel stacks including foundation		
6 th	17	Guyed stacks - Introduction		
	18	Design of guyed stacks		

	19			
7^{th}	20	MINOR TEST I		
21				
	22	Design of guyed stacks		
8 th	23	Towers: introduction, types		
	24	Introduction - Transmission line towers microwave towers		
	25	Design loads, classification of towers		
9 th	26	Specifications of transmission line		
	27	Design procedure of transmission line tower		
	28	Design procedure of transmission line tower		
10^{th}	29	Design procedure of transmission line tower		
	30	Cold Formed Sections:Introduction and brief description of various types of cold formed sections		
	31	Applications of various types of cold formed sections, local buckling		
11^{th}	32	• concepts of effective width and effective sections, Elements with stiffeners		
	33	Design of compression		
	34	Design of bending elements		
12 th	35	Industrial Buildings:Loads, general arrangement and stability		
	36	design considerations for industrial buildings		
	37	Purlins – introduction and specifications		
13 th	38	Design of purlins		
	39	Design of purlins		
	40			
14^{th}	41	MINOR TEST II		
	42			
+h	43	Design of roof trusses		
15 th	44	Industrial building frames		
	45	Bracings and Stepped columns		

CVE-304-L IRRIGATION ENGINEERING-I

Name of the Faculty	:	Mr.Kuldeep Singh
Discipline	:	B.Tech in Civil Engineering
Semester	:	VI (3 rd Year)
Subject	:	CVE-304-L IRRIGATION ENGINEERING-I
Lesson Plan Duration	:	15 Weeks (from Feb, 2019 to May, 2019)

Work Load (Lecture / Tutorial) per week (in hrs.) : Lectures – 03, Tutorial-01

Week	Theory			
	Lecture	Topic (Including assignment / Test)		
	Day			
	· · · · ·	Unit-I		
		Introduction: Irrigation-necessity, advantages, disadvantages		
1^{st}	2	Impact of irrigation on human environment		
	3	Need and development of irrigation in India, Crops and crop seasons, ideal cropping		
		pattern and high yielding varieties of crops		
	4	Soil-water relationship and irrigation methods: Soil-water relationship		
2^{nd}	5	Root zone soil water, infiltration,		
	6	Consumptive use, field capacity, Wilting point, available moisture in soil, GCA, CCA,		
,	7	Intensity of irrigation, delta, base period, Kor depth, core period		
3^{rd}	8	Frequency of irrigation, duty of water, relation between delta, duty and base period,		
		irrigation requirement, Flooding methods, border strip method, check basin and furrow		
		method,		
	9	Assessment of irrigation water, sprinkler irrigation, favorable conditions, Sprinkler		
		systems, hydraulics of sprinkler irrigation, planning, design and maintenance of sprinkler		
		systems, drip irrigation-components parts, advantages and limitations, suitability of drip		
		irrigation.		
	10	Unit-II		
4^{th}	10	Canal irrigation,		
4	11	Component of canal distribution system,		
	12	Alignment of channels, Losses in irrigation channels		
5^{th}	13	Design discharge,		
5	14	Silt theories and design of alluvial channels		
	15	Comparison of Kennedy's and Lacey's theories,		
6 th	16	Canal section and design procedure,		
0	17	Canal section and design procedure,		
7 th	18 Garrets and Lacey's diagrams			
Γ		<u> </u>		
8^{th}	19	Water logging and land reclamation		
0	20	Water logging-effects		
	20	Causes and measures of prevention, Lining of irrigation channels,		
	21	Types of lining,		
9 th	22	Design of lined channel land drainage,		
,	23	Open drains, design considerations, Advantages of tile drains		
	24	Depth of tile drains, Layout of closed drains		
	23	Depui or the drams, Layout or crosed drams		

10 th	26	Discharge and spacing of closed drains, diameter of tile drain	
	27	Outlets for tile drains, maintenance of tile drains, purpose of land reclamation and methods	
		of land reclamation.	
		Unit-IV	
	28	River Training	
11 th	29	Classification of rivers	
	30	River training and its objectives, Classification of river training works	
	31	Methods of river training	
12^{th}	32	Marginal embankments	
	33	Guidebanks, spurs	
	34	Cutoffs	
13 th	35	Bank pitching and launching apron	
	36	Canal outlets, Classification	
14 th		2 nd Minor test	
15 th	37	Requirements of a good outlet,	
	38	8 Design of pipe, APM and open flume outlet,	
	39	Flexibility proportionality, setting and sensitivity of outlet.	

CVE-308-L GEOTECHNOLOGY-II

Name of the Faculty	:	Mr.Pardeep Kumar
Discipline	:	B.Tech in Civil Engineering
Semester	:	VI (3 rd Year)
Subject	:	CVE-308-L GEOTECHNOLOGY-II
Lesson Plan Duration	:	15 Weeks (from Feb, 2019 to May, 2019)

Work Load (Lecture / Tutorial) per week (in hrs.) : Lectures – 03, Tutorial-01

Week	Theory		
	Lecture	Topic (Including assignment / Test)	
	Day		
		Unit-I	
	1	Earth Dams: Introduction, types of sections Earth dam foundations, causes of failure and	
1^{st}		criteria for safe design,	
	2	Control of seepage through the embankment, control of seepage through the foundation	
	3	Drainage of foundations, criterion for filter design, Introduction to rock fill dams	
	4	Stability of slopes: Causes of failure, factors of safety	
2^{nd}	5	Stability analysis of slopes-total stress analysis	
	6	Effective stress analysis, Stability of infinite slopes types of failures of finite slopes	
	7	Analysis of finite slopes-mass procedure, method of slices, effect of pore pressure	
3 rd	8	Fellinius method to locate center of most critical slip circle	
	9	Friction circle method, Taylor's stability number, Slope stability of earth dam during steady	
		seepage, during sudden draw down and during and at the end of construction	
		Unit-II	
	10	Braced Cuts: Depth of unsupported vertical cut,	
4^{th}	11	Sheeting and bracing for deep excavation, Movements associated with sheeting and	
		bracing,	
	12	Modes of failure of braced cuts, pressure distribution behind sheeting.	
th	13	Cofferdams: Introduction, Types of cofferdams,	
5^{th}	14	Design and lateral stability of braced cofferdams	
	15	Design data for Cellular cofferdams,	
th	16	Design data for Cellular cofferdams,	
6^{th}	17	Stability analysis of cellular cofferdams on soil and rock	
	18	Inter-lock stresses.	
7 th		1 st Minor Test	
41-	T	Unit-III	
8^{th}	19	Cantilever Sheet Piles: Purpose of sheet piles	
	20	Cantilever sheet piles	
	21	Depth of embedment in granular soils-rigorous method,	
41-	22	Simplified procedure, cantilever sheet pile	
9^{th}	23	Penetrating clay and limiting height of wall	
	24	Anchored Bulkheads: Methods of design, Free earth support method in cohesionless and	
		ve soils, fixed	
41-	25	Free earth support method in cohesionless and cohesive soils, fixed	
10^{th}	26	Earth support method in cohesionless soils-Blum's equivalent beam method	
	27	Earth support method in cohesionless soils-Blum's equivalent beam method	

		Unit-IV	
	28 Soil Stabilization: Soil improvement		
11^{th}	29	Shallow compaction	
	30	Mechanical treatment, Use of admixtures	
	31	Lime stabilization, cement stabilization,	
12^{th}	32	Lime fly ash stabilization, dynamic compaction and consolidation,	
	33	Bituminous stabilization, chemical stabilization, Pre-compression, lime pile and column,	
		stone column, grouting, reinforced earth.	
	34	Basics of Machine Foundations: Terminology	
13 th	35	Characteristics elements of a vibratory systems	
	36	Analysis of vibratory motions of a single degree freedom system-undamped free	
		vibrations, Undamped forced vibrations	
14 th	2 nd Minor test		
15 th	37	Criteria for satisfactory action of a machine foundation	
	38	Degrees of a freedom of a block foundation	
	39	Barken's soil spring constant, Barken's method of a determining natural frequency of a	
		block foundation subjected to vertical oscillations	

Lesson Plan/ Course Break – up CVE – 310-L Transportation Engineering - I

Name of the Faculty	:	Mr. Harish Kumar
Discipline	:	B.Tech in Civil Engineering
Semester	:	VI (3 rd Year)
Subject	:	CVE-310-L, Transportation Engineering-I
Lesson Plan Duration	:	15 Weeks (from Feb, 2019 to May, 2019)
Work Load (Lecture / Tutorial) per week (in hrs.) :		Lectures – 03, Tutorial-01

Week	Theory		
WEEK	Lecture day Topic (Including Assignment Test)		
	1	Transportation and its importance. Different modes of transportation	
1^{st}	2	Brief review of history of road development in India and abroad: Roman, Tresagne, Telford and Macadam constructions.	
	3	Road patterns, Classification of roads, Objectives of highway planning	
	4	Planning surveys. Saturation system of planning	
		Highway Plans, Highway Alignment and Surveys:	
2^{nd}	5	Main features of 20 years road development plans in India	
	6	Requirements of an ideal highway alignment.	
	7	Factors affecting alignment. Surveys for highway alignment	
3 rd	8	Cross section elements: friction, carriageway, formation width, land width, camber, IRC recommended values.	
	9	Types of terrain Design speed. Sight distance, stopping sight distance	
	10	overtaking sight distance, overtaking zones, intermediate sight distance	
4 th	11	sight distance at intersections, head light sight distance	
	12	Set back distance. Critical locations for sight distance	
		Design of Horizontal and Vertical Alignment:	
5^{th}	13	Effects of centrifugal force	
F	14	Design of super elevation. Providing super elevation in the field	

	15	Radius of circular curves. Extra-widening
	16	Type and length of transition curves. Gradient, types and values
6 th	17	Summit curves and valley curves, their design criterion
	18	Grade compensation on curves
	19	
7 th	20	MINOR TEST 1
	21	
	22	Traffic Characteristics And Traffic Surveys Road user and vehicular characteristics
8 th	23	Traffic studies such as volume, speed and O & D study
	24	Parking and accident studies, Fundamental diagram of traffic flow
	25	Level of service and PCU, Capacity for non-urban roads
9 th	26	Causes and preventive measures for road accidents
	27	Traffic Control Devices:
		Traffic control devices: signs, signals, markings and islands
	28	Types of signs. Types of signals.
10 th	29	Design of an isolated fixed time signal by IRC method
Γ	30	Intersections at grade and grade separated intersections
	31	Design of a rotary. Types of grade separated intersections
11 th	32	Highway Materials: Soil and Aggregates:Subgrade soil evaluation: CBR test
	33	Plate bearing test. Desirable properties of aggregates
	34	Various tests, testing procedures
12 th	35	IRC/IS specification for suitability of aggregates
F	36	Proportioning of aggregates for road construction by trial and error and Routhfuch method
12 th	37	Bituminous Materials and Bituminous Mixes: Types of bituminous materials: bitumen, tar, cutback and emulsions
13 th —	38	Various tests, testing procedures

	39	IRC/IS specifications for suitability of bituminous materials in road construction	
	40		
14 th	41	MINOR TEST II	
	42		
	43	Bituminous mix, desirable properties	
15 th	44	Marshall's method of mix design	
	45	Basic concept of use of polymers and rubber modified bitumen in bituminous mixes.	

Lesson Plan CVE-310-P TRANSPORTATION ENGINEERING-I (P)

Name of the Faculty	:		Ms. Manju Godara
Discipline		:	B.Tech in Civil Engineering
Semester	:		VI (3 rd Year)
Subject	:		CVE-310-P Transportation Engineering-I (P)
Lesson Plan Duration	:		15 Weeks (from Feb, 2019 to May, 2019)
Work Load (Lecture / Practical) per week (in hrs.) :			Practical – 02

	Practical					
Week	Lecture day	Topic (Including Assignment Test)				
1 st	1	Tests on Road Aggregates – Introduction of – MORTH, IS: 2386 Part IV, IS: 383 – 1970 (Group 1)				
1	2	Tests on Road Aggregates – Introduction of – MORTH, IS: 2386 Part IV, IS: 383 – 1970 (Group 2)				
2^{nd}	3	Exp. 1 - Aggregate Impact Test (Group 1)				
2	4	Exp. 1 - Aggregate Impact Test (Group 2)				
3 rd	5	Exp. 2 - Los-Angeles Abrasion Test on Aggregates (Group 1)				
3	6	Exp. 2 - Los-Angeles Abrasion Test on Aggregates (Group 2)				
4 th	7	Exp. 3 - Dorry's Abrasion Test on Aggregates (Group 1)				
4	8	Exp. 3 - Dorry's Abrasion Test on Aggregates (Group 2)				
5 th	9	Exp. 4 - Deval Attrition Test on Aggregates (Group 1)				
5	10	Exp. 4 - Deval Attrition Test on Aggregates (Group 2)				
6 th	11	Tests on Bituminous Material – Introduction of – IS:73 – 2006, IS: 1202 – 1978, IS:1203 – 1978, IS: 1205 – 1978, IS: 1208 – 1978, IS: 1209 – 1978 (Group 1)				
0	12	Tests on Bituminous Material – Introduction of – IS:73 – 2006, IS: 1202 – 1978, IS:1203 – 1978, IS: 1205 – 1978, IS: 1208 – 1978, IS: 1209 – 1978 (Group 2)				
7 th	13	MINOR TEST I				
/	14					
8 th	15	VIVA – VOCE Group - 1				
0	16	VIVA – VOCE Group - 2				
9 th	17	Exp. 5 - Penetration Test on Bitumen (Group 1)				
9	18	Exp. 5 - Penetration Test on Bitumen.(Group 2)				

10 th	19	Exp. 6 - Ductility Test on Bitumen (Group 1)
	20	Exp. 6 - Ductility Test on Bitumen(Group 2)
11 th	21	Exp. 7 - Viscosity Test on Bituminous Material (Group 1)
11	22	Exp. 7 - Viscosity Test on Bituminous Material(Group 2)
12 th	23	Exp. 8 - Softening Point Test on Bitumen (Group 1)
12	24	Exp. 8 - Softening Point Test on Bitumen (Group 2)
13 th	25	Exp. 9 - Flash and Fire Point Test on Bitumen (Group 1)
15	26	Exp. 9 - Flash and Fire Point Test on Bitumen (Group 2)
14 th	27	MINOR TEST II
14	28	MINOR IEST II
15 th	29	VIVA – VOCE Group - 1
	30	VIVA – VOCE Group - 2

CVE-312-L WATER SUPPLY & TREATMENT

Name of the Faculty	:	Mr.Kamaldeep Singh
Discipline	:	B.Tech in Civil Engineering
Semester	:	VI (3 rd Year)
Subject	:	CVE-312-L Water Supply & Treatment
Lesson Plan Duration	:	15 Weeks (from Feb, 2019 to May, 2019)

Work Load (Lecture / Tutorial) per week (in hrs.) : Lectures – 03, Tutorial-01

Week	Theory			
	Lecture	Lecture Topic (Including assignment / Test)		
	Day			
		Unit-I	·	
	1	Water Quantity: Introduction		
1^{st}	2	Importance and necessity of water supply scheme		
	3	Water demands and its variations, Estimation of total quantity of water requirement		
	4	Population forecasting		
2^{nd}	5	Quality and quantity of surface and ground water sources		
	6	Quality and quantity of surface and ground water sources		
	7	Selection of a source of water supply		
$3^{\rm rd}$	8	Selection of a source of water supply		
	9	Types of intakes		
		Unit-II		
	10	Water Quality: Introduction		
4^{th}	11	Impurities in water and their sanitary significance		
	12	Impurities in water and their sanitary significance		
	13	Impurities in water and their sanitary significance		
5^{th}	14	Physical analysis of water		
	15	Physical analysis of water, Chemical analysis of water		
	16	Bacteriological analysis of water		
6^{th}	17	Bacteriological analysis of water		
	18	Water quality standards		
7 th	1 st Minor Test			
4		Unit-III		
8^{th}	19	Water Treatment: Introduction		
	20	Objectives, Treatment processes and their sequence in conventional treatment plant		
	21	Sedimentation – plain and aided with coagulation		
th	22	Types, features and design aspects		
9^{th}	23	Mixing basins and Flocculation units		
	24	Filtration – mechanism involved, Types of filters		
	25	Slow and rapid sand filtration units (features and design aspects)		
10^{th}	26	Slow and rapid sand filtration units (features and design aspects)		
	27	Disinfection principles and aeration		
		Unit-IV		
, th	28	Water Distribution: Introduction		
11^{th}	29	Distribution system		
	30	Gravity system, Pumping System		

	31	Dual system,	
12^{th}	32	Layout of Distribution System	
	33	Dead End System, Grid Iron System	
	34	Ring System	
13 th	35	Radial System, their merits and demerits	
	36	Radial System, their merits and demerits	
14 th		2 nd Minor test	
15^{th}	37	Distribution Reservoir-functions & determination of storage capacity	
	38	Distribution Reservoir-functions & determination of storage capacity	
	39	Distribution Reservoir-functions & determination of storage capacity	

CVE-312-P ENVIRONMENTAL ENGINEERING-I (P)

Name of the Faculty	:		Mr. Kamaldeep Singh
Discipline		:	B.Tech in Civil Engineering
Semester	:		VI (3 rd Year)
Subject	:		CVE-312-P Environmental Engineering-I (P)
Lesson Plan Duration	:		15 Weeks (from Feb, 2019 to May, 2019)

Work Load (Lecture / Practical) per week (in hrs.) : Practical – 02

		Practical	
Week	Lecture day	Topic (Including Assignment Test)	
1 st	1	Experiment 1 –Determine the pH value of a given sample of waste water (Group 1)	
1	2	Experiment 1 –Determine the pH value of a given sample of waste water(Group 2)	
2^{nd}	3	Experiment 2 – To Determine the turbidity in given waste water sample. (Group 1)	
2	4	Experiment 2 - To Determine the turbidity in given waste water sample. (Group 2)	
3 rd	5	Experiment 3 - Determine the acidity of given sample of waste water (Group 1)	
5	6	Experiment 3 - Determine the acidity of given sample of waste water (Group 2)	
4 th	7	Experiment 4 - Determine the alkalinity of given sample of waste water (Group 1)	
4	8	Experiment 4 - Determine the alkalinity of given sample of waste water (Group 2)	
5 th	9	Experiment 5 - Determine temporary hardness in a given water sample(Group 1)	
5	10	Experiment 5 - Determine temporary hardness in a given water sample (Group 2)	
6 th	11	Experiment 5 - Determine permanent hardness in a given water sample (Group 1)	
0	12	Experiment 5 - Determine permanent hardness in a given water sample (Group 2)	
7 th	13	MINOR TEST I	
/	14		
8 th	15	VIVA – VOCE Group - 1	
0	16	VIVA – VOCE Group - 2	
9 th	17	Experiment 6 – Determine total suspended, suspended, in a sewage sample (Group 1)	
9	18	Experiment 6 - Determine total suspended, suspended, in a sewage sample (Group 2)	
10 th	19	Experiment 6 -To determine dissolved settable solids in a sewage sample (Group 1)	
10	20	Experiment 6 - To determine dissolved settable solids in a sewage sample (Group 2)	
11 th	21	Experiment 8 – To Determine chlorine dose required for given water sample (Group 1)	

	22	Experiment 8 - To Determine chlorine dose required for given water sample (Group 2)
12 th	23	Experiment 9 - Determine the chloride concentration in a given sample of waste water (G1)
12	24	Experiment 9 - Determine the chloride concentration in a given sample of waste water (G2)
13 th	25	Experiment 10 - Determine the Sulphate concentration in given water sample (Group 1)
15	26	Experiment 10 - Determine the Sulphate concentration in given water sample (Group 2)
14^{th}	27	MINOR TEST II
14	28	
15 th	29	VIVA – VOCE Group - 1
	30	VIVA – VOCE Group - 2

CVE-314-P COMPUTER APPLICATIONS

Name of the Faculty	:	Mr.Pardeep Kumar
Discipline	:	B.Tech in Civil Engineering
Semester	:	VI (3 rd Year)
Subject	:	CVE-314-P Computer Applications
Lesson Plan Duration	:	15 Weeks (from Feb, 2019 to May, 2019)

Work Load (Practical) per week (in hrs.) :

Practical-02

Week	Practical					
	Торіс					
	Computation of roots of a polynomial using.					
1^{st}	Bisection method, (b) Newton-Raphson method					
	Computation of roots of a polynomial using.					
2^{nd}	Bisection method, (b) Newton-Raphson method					
,	Solution of linear simultaneous equations using Gauss Elimination/Gauss Jordan /Triangulation					
3 rd	factorization method					
th	Solution of linear simultaneous equations using Gauss Elimination / Gauss Jordan / Triangulation					
4^{th}	factorization method.					
th	Solution of system of non-linear equation using fixed point / Newton Raphson / modified Newton-					
5^{th}	Raphson method.					
-th	Solution of system of non-linear equation using fixed point / Newton Raphson / modified Newton-					
6 th	Raphson method.					
7 th	Minor Test-1					
8 th	Analysis of multi-span Beam and frames using stiffness matrix method.					
9 th	Analysis of multi-span Beam and frames using stiffness matrix method.					
10^{th}	Analysis of Plane frame and space Frame using automated software.					
	Analysis of Plane frame and space Frame using automated software					
11^{th}						
	Analysis of a three storeyed and ten storeyed building using automated software					
12^{th}						
	Analysis of a three storeyed and ten storeyed building using automated software.					
13 th						
14 th	Minor Test-II					
15^{th}	Introduction to Auto CAD.					