Lesson Plan/ Course Break – up

CE402E BRIDGE ENGINEERING

Name of the Faculty	:	Mr. Manik Goyal
Discipline	:	B.Tech in Civil Engineering
Semester	:	VIII (4 th Year)
Subject	:	CE402E BRIDGE ENGINEERING
Lesson Plan Duration	:	15 Weeks (from January, 2019 to April, 2019)

Work Load (Lecture / Tutorial) per week (in hrs.) : Lectures – 03, Tutorial-01

Week	Theory			
	Lecture	Topic (Including assignment / Test)		
	Day			
	1	Definition, components of bridge, classification of bridges.		
1^{st}	2	Selection of site, economical span.		
	3	Aesthetics consideration, necessary investigations. Essential design data.		
	4	Standard Specifications for Roads and Railways Bridges:		
2^{nd}		General, Indian Road Congress Bridge Code, width of carriage way, clearance,		
	5	Various loads to be considered for the design of roads bridges, detailed explanation of IRC		
		standard live loads.		
	6	Various loads to be considered for the design of railway bridges, detailed explanation of		
		IRC standard live loads.		
rd	7	Design Consideration for R. C. C. Bridges:		
3^{rd}		Various types of R.C.C. bridges(brief description of each type)		
	8	Design of R.C.C. culvert bridges.		
	9	Design of R.C.C. culvert bridges.		
th	10	Design of R.C.C. culvert bridges.		
4^{th}	11	Design of R.C.C. T-beam bridges.		
	12	Design of R.C.C. T-beam bridges.		
13 Design Consideration for Steel Bridges:		0		
5^{th}		Various types of steel bridges (brief description of each)		
	14	Various types of steel bridges (brief description of each)		
	15	Design of truss bridges.		
cth	16	Design of truss bridges.		
6^{th}	17	Design of truss bridges.		
_th	18	Design of truss bridges.		
7 th	10	1 st Minor Test		
8^{th}	19	Design of plate girder bridges.		
	20	Design of plate girder bridges.		
	21	Design of plate girder bridges.		
oth	22	Design of plate girder bridges.		
9^{th}	23	Design of plate girder bridges.		
	24	Design of plate girder bridges.		
10 th	25	Design of plate girder bridges.		
10	26	Design of plate girder bridges.		
	27	Hydraulic & Structural Design: Piers		
11 th	28	Hydraulic & Structural Design: Piers		
11	29	Hydraulic & Structural Design: Piers		
	30	Hydraulic & Structural Design: Abutments		

	31	Hydraulic & Structural Design: Abutments
12^{th}	32	Hydraulic & Structural Design: Abutments
	33	Hydraulic & Structural Design: wing-wall and approaches
	34	Hydraulic & Structural Design: wing-wall and approaches
13 th	35	Hydraulic & Structural Design: wing-wall and approaches
	36	Brief Description:
		Bearings, joints, articulation and other details.
14 th		2 nd Minor test
15^{th}	37	Bridge Foundation:
		Various types, Necessary investigations
	38	Design criteria of well foundation
	39	Design criteria of well foundation

Lesson Plan

CE – 404E Railway and Airport Engineering

Name of the Faculty	:	Mr. Kamaldeep Singh
Discipline	:	B.Tech in Civil Engineering
Semester	:	VIII (4 th Year)
Subject	:	CE-404E Railway and Airport Engineering
Lesson Plan Duration	:	15 Weeks (from January, 2019 to April, 2019)
Work Load (Lecture / Tut	corial) per week (in hrs.) :	Lectures – 02, Tutorial-01

	Theory				
Week Lecture day Topic (Including Assignment Test)		Topic (Including Assignment Test)			
. et	1	Introduction, Permanent Way and Rails, Rail transportation and its importance in India.			
1 st	2	Permanent way: requirements and components, Gauges in India and abroad. Selection of gauge. Coning of wheels. Adzing of sleepers			
	3	Rails: functions, composition of rail steel, types of rail sections, requirements of an ideal rail section, length of rails.			
2 nd	4	Defects in rails. Creep of rails. Long welded rails and continuously welded rails. Sleepers: functions, requirements of an ideal sleeper. Types of sleepers: wooden, cast iron, steel and concrete sleepers, advantages, disadvantages and suitability of each type.			
3 rd	5	Sleeper density. Fastenings for various types of sleepers: fish plates, spikes, bolts, bearing plates, keys, chairs, jaws, tie bars.			
C	6	Elastic fastenings. Ballast: functions, requirements, types of ballast and their suitability			
. th	7	Points and Crossings: Necessity. Turnout: various components, working principle.			
4 th	8	Switch: components, types. Crossing: components and types. Design elements of a turnout, design of a simple turnout.			
	9	Layout plan of track junctions: crossovers, diamond crossing, single-double slips, throw switch, turn table, triangle.			
5 th	10	Signaling, Interlocking and Train Control: Signals: objects, types and classification. Semaphore signal: components, working principle. Requirements / principles of a good interlocking system.			
	11	Brief introduction to devices used in interlocking. Methods of control of train movements: absolute block system, automatic block system,			
6 th	12	Centralized train control and automatic train control systems. Geometric Design of the Track: Gradients, grade compensation. Super elevation, cant deficiency, negative super elevation.			
7 th	13				
/	14	MINOR TEST I			
8 th	15	Maximum permissible speed on curves. Tractive resistances, types. Hauling capacity of a locomotive.			
0	16	Stations, Yards and Track Maintenance: Stations: functions and classification. Junction, non-junction and terminal stations.			

oth	17	Yards: functions, types. Marshalling yard: functions, types.			
9 th	18	Maintenance of railway track: necessity, types of maintenance. Brief introduction to mechanized maintenance, M.S.P and D.T.M.			
10 th	19	Introduction and Airport Planning: Air transportation, its importance and characteristics, status in India			
10	20	Layout plan of an airport and its basic elements: terminal area, apron, taxiway, runway, hanger, Aircraft characteristics, their effect on elements of an airport.			
1.1 th	21	Site selection of an airport			
11 th	22	Classification of airports, Runway Layout and Pavement Design: Runway orientation			
12 th	23	Wind Rose diagram			
12	24	Basic runway length. Corrections to basic runway length, Numerical Problem			
13 th	25	Runway patterns			
15	26	Difference between highway and runway pavement, Types of runway pavements			
1 4th	27				
14 th	28	MINOR TEST II			
15 th	29	Design factors for runway pavement.			
	30	Brief introduction to design of thickness of a runway pavement, Illustrative example for runway pavement thickness			

Lesson Plan/ Course Break - up

CE 406-E INDUSTRIAL WASTE WATER TREATMENT

Name of the Faculty	:	Mr. Kuldeep Singh
Discipline	:	B.Tech in Civil Engineering
Semester	:	VIII (4 th Year)
Subject	:	CE 406-E, IWWT
Lesson Plan Duration	:	15 Weeks (from January, 2019 to April, 2019)
Work Load (Lecture / Tutorial) per week (in hrs.) :		Lectures – 03, Tutorial-01

Theory Week Lecture day **Topic (Including Assignment Test)** 1 Industrial Waste Water - introduction 1 st 2 Current Issues in Water and Wastewater Treatment Operations Wastewater Regulations, Parameters, and Characteristics, Wastewater Sources and 3 Types Wastewater Treatment: Basic Overview 4 Collection Systems 2^{nd} 5 Preliminary Treatment, Primary Sedimentation 6 **Biological Treatment** 7 Secondary Sedimentation 3rd 8 Advanced Treatment, Wastewater Disinfection 9 Discharge Effluent 10 4^{th} 11 Methods for IWWT - Introduction Effects of industrial wastes on stream, Sewerage systems - Introduction 12 13 Types of Sewerage systems, Design of economical diameter of sewerage pipe 5^{th} 14 Wastewater treatment plant - introduction Minimizing the effects of industrial effluents on waste water treatment plants and 15 receiving streams-conservation of water 16 Pretreatment of Industrial Wastes - Introduction 6^{th} 17 Pretreatment of Industrial Wastes – Unit Operations, Unit Processes 18 Reuse of waste water, volume reduction

	19				
7^{th}	20	MINOR TEST I			
	21				
	22	Strength reduction, neutralization, equalization and proportioning, Population equivalent			
8 th	23	Industrial effluent standards for disposal into inland surface water sources and on land for irrigation			
	24	Study of the following Industries from waste generation, quality and its treatment including brief overview of manufacturing process: Textile – manufacturing process brief introduction			
	25	Textile wastes: Cotton textile wastes			
9 th	26	Raw Material, Manufacturing Process, Spinning, weaving and sizing			
	27	Desizing, Caustic Kiering, Bleaching, Souring, Synthetic Fiber Wastes, Silk and Jute Manufacturing wastes			
	28	Tannery - manufacturing process brief introduction			
10^{th}	29	Tannery - waster generation, Characteristics of waste water and its treatment			
10	30	Sugar Mill - manufacturing process brief introduction, waster generation and its treatment			
	31	Distillery - manufacturing process brief introduction			
11^{th}	32	Distillery - waster generation and its treatment			
	33	Dairy, pulp & paper - manufacturing process brief introduction, waster generation and its treatment			
	34	Metal plating, oil refinery - manufacturing process brief introduction			
12^{th}	35	Metal plating, oil refinery - waster generation and its treatment			
	36	Nitrogenous fertilizers - brief introduction, Ammonia Synthesis, Urea Synthesis			
	37	Phosphoric Acid, Ammonium Sulphate, DAP			
13 th	38	Methods of treatment			
10	39	Thermal power plants - manufacturing process brief introduction, waster generation and its treatment			
	40				
14^{th}	41	MINOR TEST II			
	42				
	43	Radio-active wastes - brief introduction			
15 th	44	Handling Radioactive Material			
	45	Waster generation, Case Studies, Treatment and Management			

Lesson Plan

CE-408E Estimation and Accounts

Name of the Faculty	:	Mr. Harish Kumar
Discipline	:	B.Tech in Civil Engineering
Semester	:	VIII (4 th Year)
Subject	:	CE-408E Estimation and Accounts
Lesson Plan Duration	:	15 Weeks (from January, 2019 to April, 2019)
		D 1 1 00

Work Load (Lecture / Practical) per week (in hrs.) : Practical - 02

	Practical				
Week	Lecture day Topic (Including Assignment Test)				
1 st	1	Estimate: Principles of estimation, units, items of work, different kinds of estimates,			
1	2	different methods of estimation, estimation of materials in single room building,			
2^{nd}	3	Illustrative example			
Z	4	two roomed building with different sections of walls, foundation, floors and roofs,			
	5	Illustrative example			
3 rd	6	R.B. and R.VC.C. works, Plastering, White-washing, Distempering and painting, doors and windows, lump sum items,			
4^{th}	7	Estimates of canals, roads etc.			
4	8	Illustrative example			
5 th	9	Specification of Works: Necessity of specifications, types of specifications, general specifications,			
5	10	Specification for bricks, cement, sand, water, lime, reinforcement;			
6^{th}	11	Detailed specifications for Earthwork, Cement, concrete, brick work, floorings, D.P.C., R.C.C.,			
Ū	12	Cement plastering, white and color washing, distempering, painting.			
$7^{\rm th}$	13				
/	14	MINOR TEST I			
oth	15	VIVA – VOCE Group - 1			
8^{th}	16	VIVA – VOCE Group - 2			
9 th	17	Rate Analysis: Purpose, importance and requirements of rate analysis, units of measurement,			
,	18	Preparation of rate analysis, procedure of rate analysis for items:- Earthwork, concrete works,			
10^{th}	19	Procedure of rate analysis for items: -R.C.C. works, reinforced brick work, plastering, painting, finishing (white-washing, distempering).			

r			
	20	Public Works Account:	
	20	Introduction, function of P.W. department, contract,	
11^{th}	21	Guidelines, types of contracts, their advantages and disadvantages,	
11	22	Tender and acceptance of tender, Earnest money, security money, retention money,	
12 th	23	Illustrative example of contract and tender	
12	24	Measurement book, cash book, preparation, examination and payment of bills,	
13 th	25	First and final bills, administrative sanction, technical sanction	
15	26	Illustrative example of Measurement book and bill preparation	
14 th	27	MINOR TEST II	
14	28	WIINON IESI II	
15 th	n 29	VIVA – VOCE Group - 1	
	30	VIVA – VOCE Group - 2	

Lesson Plan/ Course Break – up

CE – 414E Geosynthetics Engineering

(Department Elective – III)

Name of the Faculty	:	Mr. Pardeep Kumar
Discipline	:	B.Tech in Civil Engineering
Semester	:	VIII (4 th Year)
Subject	:	CE-414E, Geosynthetics Engineering
Lesson Plan Duration	:	15 Weeks (from January, 2019 to April, 2019)
Work Load (Lecture / Tutori	al) per week (in hrs.) :	Lectures – 03, Tutorial-01

Week	Theory			
	Lecture day	Topic (Including Assignment Test)		
	1	 Introduction to Geosynthetics Background of reinforced earth Basic description, mechanism and concept Historical Development of Geosynthetics 		
1 st	2	Nomenclature related to geosyntheticsFunction of geosynthetics		
	3	 Use around the World Applications of geosynthetics Development in India 		
	4	Geosynthetics classification, functions		
2^{nd}	5	• Raw material used, different types of geosynthetics		
	6	 Raw Materials: Polyester, Polypropylene, Polyethylene, HDPE, CPE, CSPE, PA, Nylon, PVC etc. 		
	7	Their Durability and Ageing		
3 rd	8	• Different types of geosynthetics: Geotextiles,		
	9	 Geogrids, Geonets and Geo membranes Physical properties of geosynthetics 		
	10	Mechanical properties		
4 th	11	Hydraulic – Permeability properties		
	12	Endurance Properties and Nano Material		
5 th	13	Degrading Agencies, Biological Resistance		

	14	Chemical Resistance and Weathering Resistance	
	15	Abrasion resistance,Durability properties	
	16	• Melt flow index and asphalt retention	
	17	Manufacturing Methods of:	
6 th		• Fibers, Yarn, Nonwoven Geotextiles,	
	18	 D.S.F. Fabrics Geogrids – Introduction, Applications 	
	19		
$7^{\rm th}$	20	MINOR TEST 1	
	21		
	22	Tests on Geogrids: Aperture opening & Percent open area	
8 th	23	• Thickness of rib and junctions, Number of ribs per meter length test	
	24	• Mass per unit area test, Tensile strength test	
	25	• Interface frictional strength: Shear and pullout	
9 th	26	Connection strength between facing blocks and Geogrids	
	27	Sampling, Factors influencing Testing	
	28	Physical Properties	
10 th	29	Physical Properties	
	30	Mechanical Properties under Uniaxial loadingCreep Testing	
	31	• Test on Geonets - I	
11 th	32	Test on Geo membranes: thickness, density	
	33	 Tensile strength / Elongation test, Permeability test 	
	34	• Erosion Control with Geogrids: Wind Erosion, Rain Water Erosion	
1 oth	35	Erosion Control Measures, Placement of Geogrids	
12 th		Bearing Capacity Improvement with Geogrids:	
	36	Reinforced soil system,Geocells	
13 th	37	Geofoam systems	

	38	Advantages, Mechanism, Modes of Failure
	39	Friction Coefficient,Experimental Studies
	40	
14^{th}	41	MINOR TEST – II
	42	
	43	Application of Geosynthetics in Water Resource Projects: Case Study
15^{th}		Dharoidam, Hiran II Dam
15	44	Dharoidam, Hiran II Dam
	45	Meda Creek Irrigation SchemeLining of Kakarpar Canal

Lesson Plan/ Course Break – up

CE – 418E Ground Water Hydrology

(Department Elective – III)

Name of the Faculty	:	Mr. Manju Godara
Discipline	:	B.Tech in Civil Engineering
Semester	:	VIII (4 th Year)
Subject	:	CE-418E, Ground Water Hydrology
Lesson Plan Duration	:	15 Weeks (from January, 2019 to April, 2019)

Work Load (Lecture / Tutorial) per week (in hrs.) : Lectures – 03, Tutorial-01

Week	Theory		
	Lecture	Topic (Including assignment / Test)	
	Day		
		Unit-I	
	1	Properties of Aquifers	
1^{st}	2	Formation constants, compressibility of aquifers	
	3	Equation of motion for steady and unsteady ground water flow in isotropic homogeneous aquifers	
2 nd	4	Equation of motion for steady and unsteady ground water flow in isotropic homogeneous aquifers	
	5	Equation of motion for steady and unsteady ground water flow in isotropic homogeneous aquifers, Dupit's assumptions	
	6	Unconfined flow with a recharge	
	7	Tile drain problem	
3 rd	8	Ground water exploration and methods of investigations	
	9	Ground water exploration and methods of investigations	
	1	Unit-II	
	10	Effect of boundaries	
4^{th}	11	Interference of water	
	12	leaky aquifers	
	13	Thiem's equilibrium formula for unconfined and confined aquifers and determination of	
5^{th}		hydraulic properties of aquifers	
	14	Thiem's equilibrium formula for unconfined and confined aquifers and determination of	
		hydraulic properties of aquifers	
	15	Thiem's equilibrium formula for unconfined and confined aquifers and determination of	
		hydraulic properties of aquifers	
41-	16	Partial penetration of an aquifer by a well	
6 th	17	Spherical flow in a well	
	18	Non equilibrium formula for aquifer (unsteady radial flows)	
7 th	1 st Minor Test		
Unit-III			
8 th	19	Tube wells, design of tube wells in different aquifers	
	20	Optimum capacity, silting of tube well	
	21	tube well types and its parts	
th	22	Bore hole, strains, its types, well pipe, casing pipe, blind pipe	
9 th	23	Construction and working of tube wells, site selection	
	24	drilling operation, cable tool method, hydraulic method, rivers Rotary Method and drilling fluids, well screen assembly installation, verticality and alignment of tube wells, gravel	

		packing,	\square
	25	development of tube wells, sickness	
10^{th}	26	In construction and corrosion and failure of tube wells	
	27	Pumping equipment and hydraulic testing of pumps	
		Unit-IV	
	28	Artificial recharge of ground water	
11^{th}	29	Considerations and methods	
	30	Considerations and methods, Recharge techniques induced infiltration	
	31	Water spreading	
12^{th}	32	Flooding	
	33	Basins	
	34	Ditching	
13 th	35	Modification of natural channels	
	36	Modification of natural channels	
14 th	2 nd Minor test		
15 th	37	Irrigation, recharge pits	
	38	Irrigation, recharge pits	
	39	Shafts and recharge wells	

Lesson Plan

CE - 426E TRANSPORTATION ENGINEERING – II (P)

Name of the Faculty	:	Mr. Manik Goyal
Discipline	:	B.Tech in Civil Engineering
Semester	:	VIII(4 th Year)
Subject	:	CE - 426E Transportation Engineering – II (P)
Lesson Plan Duration	:	15 Weeks (from January, 2019 to April, 2019)
World Lood (Lootune / Drootie)) non wools (in hus)	Dreatical 02

Work Load (Lecture / Practical) per week (in hrs.) : Practical – 02

Week	Practical			
	Lecture day	Topic (Including Assignment Test)		
1 st	1	Experiment 1 – Flakiness and Elongation Index of aggregates (Group 1)		
1	2	Experiment 1 – Flakiness and Elongation Index of aggregates (Group 2)		
2^{nd}	3	Experiment 2 – Specific gravity and water absorption test on aggregates (Group 1)		
2	4	Experiment 2 - Specific gravity and water absorption test on aggregates (Group 2)		
3 rd	5	Experiment 3 - Specific gravity of bitumen(Group 1)		
3	6	Experiment 3 - Specific gravity of bitumen (Group 2)		
4 th	7	Experiment 4 - Proportioning of aggregates (Group 1)		
4	8	Experiment 4 - Proportioning of aggregates (Group 2)		
5 th	9	Experiment 5 - Marshall's stability test (Group 1)		
5	10	Experiment 5 - Marshall's stability test (Group 2)		
6 th	11	Experiment 6 - Stripping test on aggregates (Group 1)		
0	12	Experiment 6 - Stripping test on aggregates (Group 2)		
7 th	13	MINOR TEST I		
/	14			
8 th	15	VIVA – VOCE Group - 1		
8	16	VIVA – VOCE Group - 2		
9 th	17	Experiment 7– Determination of bitumen content (Group 1)		
7	18	Experiment 7 - Determination of bitumen content (Group 2)		
10 th	19	Experiment 8 -CBR lab test on soil (Group 1)		

	20	Experiment 8 - CBR lab test on soil (Group 2)
11 th	21	IRC 37 – 2012 specification, CBR calculations and error corrections (Group 1)
11	22	IRC 37 – 2012 specification, CBR calculations and error corrections (Group 2)
12 th	23	Experiment 9–Traffic volume study using videography technique(Group 1)
12	24	Experiment 9 - Traffic volume study using videography technique(Group 2)
13 th	25	Experiment 10 - Traffic speed study using videography technique(G1)
15	26	Experiment 10 - Traffic speed study using videography technique(G2)
14 th	27	MINOR TEST II
14	28	
15 th	29	VIVA – VOCE Group - 1
	30	VIVA – VOCE Group - 2

Lesson Plan CE-428E ENVIRONMENTAL ENGINEERING-II (P)

Name of the Faculty	:	Ms.Manju Godara
Discipline	:	B.Tech in Civil Engineering
Semester	:	VIII (4 th Year)
Subject	:	CE-428E Environmental Engineering-II (P)
Lesson Plan Duration	:	15 Weeks (from January, 2019 to April, 2019)
Work Load (Lecture / Pra	ctical) per week (in hrs.) :	Practical – 02

Practical Week Lecture **Topic (Including Assignment Test)** day 1 Exp. 1 - Determine the acidity and alkalinity of a sewage sample (Group 1) 1^{st} 2 Exp. 1 - Determine the acidity and alkalinity of a sewage sample (Group 2) Exp. 2 - Determine total, suspended, dissolved and settable solids in a sewage sample 3 (Group 1) 2^{nd} Exp. 2 - Determine total, suspended, dissolved and settable solids in a sewage sample 4 (Group 2) 5 Exp. 3 - Determine volatile and fixed solids in a sewage sample (Group 1) 3rd 6 Exp. 3 - Determine volatile and fixed solids in a sewage sample.(Group 2) 7 Exp. 4 - To determine oil and grease in a sewage sample.(Group 1) 4^{th} 8 Exp. 4 - To determine oil and grease in a sewage sample.(Group 2) 9 Exp. 5 - To determine the chloride concentration in a sewage sample. (Group 1) 5^{th} 10 Exp. 5 - To determine the chloride concentration in a sewage sample.(Group 2) 11 Exp. 6 - To determine the Sulphate concentration in a sewage sample.(Group 1) 6th 12 Exp. 6 - To determine the Sulphate concentration in a sewage sample.(Group 2) 13 7^{th} MINOR TEST I 14 15 VIVA – VOCE Group - 1 8th 16 VIVA – VOCE Group - 2 17 Exp. 7 - To determine the B.O.D. of a given sewage sample. (Group 1) 9th 18 Exp. 7 - To determine the B.O.D. of a given sewage sample.(Group 2)

10 th	19	Exp. 8 - To determine the C.O.D. of a given sewage sample.(Group 1)
	20	Exp. 8 - To determine the C.O.D. of a given sewage sample.(Group 2)
11^{th}	21	Exp. 9 - To determine the T.O.C. of a given sewage sample.(Group 1)
11	22	Exp. 9 - To determine the T.O.C. of a given sewage sample.(Group 2)
12 th	23	Exp. 10 - To determine the fecal count of a given sewage sample.(Group 1)
12	24	Exp. 10 - To determine the fecal count of a given sewage sample.(Group 2)
13 th	25	Exp. 11 - Microscopic studies of a sewage. (Group 1)
15	26	Exp. 11 - Microscopic studies of a sewage. (Group 2)
14 th	27	MINOD TEST II
14	28	MINOR TEST II
15 th	29	VIVA – VOCE Group - 1
	30	VIVA – VOCE Group - 2