Rl

it Theory of

Computer
. Science

Automata Languages and Computatlon

]
|
|
1
1
|

o

w&“ o

Th1 rd Ed1 t1 on

K.L.P. Mishra
I\ Chandraseka_uj n

— |

THEORY OF COMPUTER SCIENCE

Automata, Languages and Computation

THIRD EDITION

K.L.P. MISHRA
Formerly Professor
Department of Flectrical and Electronics Engineering
and Principal, Regional Engineering College
Tiruchirapalli

N. CHANDRASEKARAN
Professor
Department of Mathematics
St. Joseph’s College
Tiruchirapalli

Prentice-Hall of India Crivelie Winfiec

New Delhi - 110 001
2008

http://engineeringbooks.net '

Contents

Preface ix
Notations Xi
1. PROPOSITIONS AND PREDICATES 1-35
1.1 Propositions (or Statements) 1
1.1.1 Connectives (Propositional Connectives
or Logical Connectives) 2

1.1.2 Well-formed Formulas 6
1.1.3 Truth Table for a Well-formed Formula 7
1.1.4 Equivalence of Well-formed Formulas 9
1.1.5 Logical Identities 9
1.2 Normal Forms of Well-formed Formulas 11
1.2.1 Construction to Obtain a Disjunctive Normal
Form of a Given Formula 1]
1.2.2 Construction to Obtain the Principal
Disjunctive Normal Form of a Given Formula 12
1.3 Rules of Inference for Propositional Calculus
(Statement Calculus) 15
1.4 Predicate Calculus 19
1.4.1 Predicates 19
1.4.2 Well-formed Formulas of Predicate Calculus 21
1.5 Rules of Inference for Predicate Calculus 23
1.6 Supplementary Examples 26
Self-Test 31
Exercises 32

http://engineeringbooks.net

iv B Contents

2. MATHEMATICAL PRELIMINARIES 36-70

2.1 Sets, Relations and Functions 36
2.1.1 Sets and Subsets 36
2.1.2 Sets with One Binary Operation 37
2.1.3 Sets with Two Binary Operations 39
2.1.4 Relations 40
2.1.5 Closure of Relations 43
2.1.6 Functions 45
2.2 Graphs and Trees 47
2.2.1 Graphs 47
2.2.2 Trees 49
2.3 Strings and Their Properties 54
2.3.1 Operations on Strings 54
2.3.2 Terminal and Nonterminal Symbols 56
2.4 Principle of Induction 57
2.4.1 Method of Proof by Induction 57
2.4.2 Modified Method of Induction 58
2.4.3 Simultaneous Induction 60
2.5 Proof by Contradiction 61
2.6 Supplementary Examples 62
Self-Test 66
Exercises 67

3. THE THEORY OF AUTOMATA 71-106

3.1 Definition of an Automaton 71
3.2 Description of a Finite Automaton 73
3.3 Transition Systems 74
3.4 Properties of Transition Functions 75
3.5 Acceptability of a String by a Finite Automaton 77
3.6 Nondeterministic Finite State Machines 78
3.7 The Equivalence of DFA and NDFA 80
3.8 Mealy and Moore Models 84
3.8.1 Finite Automata with Outputs 84
3.8.2 Procedure for Transforming a Mealy Machine
into a Moore Machine 85
3.8.3 Procedure for Transforming a Moore Machine
imto a Mealy Machine 87
3.9 Minimization of Finite Automata 91
3.9.1 Construction of Minimum Automaton 92
3.10 Supplementary Examples 97
Self-Test 103
Exercises 104

http://engineeringbooks.net

Contents & v

4. FORMAL LANGUAGES . 107-135
4.1 Basic Definitions and Examples 107
4.1.1 Definition of a Grammar 109
4.1.2 Derivations and the Language Generated by a
Grammar 110

4.2 Chomsky Classification of Languages 120

4.3 Languages and Their Relation 123

4.4 Recursive and Recursively Enumerable Sets 124
4.5 Operations on Languages 126

4.6 Languages and Automata 128

4.7 Supplementary Examples 129

Self-Test 132

Exercises 134
5. REGULAR SETS AND REGULAR GRAMMARS 136-179
5.1 Regular Expressions 136
5.1.1 Identities for Regular Expressions 138
5.2 Finite Automata and Regular Expressions 140
5.2.1 Transition System Containing A-moves 140

5.2.2 NDFAs with A-moves and Regular Expressions 142

5.2.3 Conversion of Nondeterministic Systems to
Deterministic Systems 146

5.2.4 Algebraic Method Using Arden’s Theorem 148

5.2.5 Construction of Finite Automata Equivalent

to a Regular Expression 153
5.2.6 Equivalence of Two Finite Automata 157
5.2.7 Equivalence of Two Regular Expressions 160

5.3 Pumping Lemma for Regular Sets 162
5.4 Application of Pumping Lemma 163
5.5 Closure Properties of Regular Sets 165
5.6 Regular Sets and Regular Grammars 167
5.6.1 Construction of a Regular Grammar Generating
T(M) for a Given DFA M 168
5.6.2 Construction of a Transition System M Accepting
L(G) for a Given Regular Grammar G 169
5.7 Supplementary Examples 170
Self-Test 175
Exercises 176

6. CONTEXT-FREE LANGUAGES 186-226
6.1 Context-free Languages and Derivation Trees 180
6.1.1 Derivation Trees 181
6.2 Ambiguity in Context-free Grammars 188

http://engineeringbooks.net

vi B Contents

6.3 Simplification of Context-free Grammars 189
6.3.1 Construction of Reduced Grammars 190
6.3.2 Elimination of Null Productions 196
0.3.3 Elmination of Unit Productions 199

6.4 Normal Forms for Context-free Grammars 201

6.4.1 Chomsky Normal Form 201

6.4.2 Greibach Normal Form 206
6.5 Pumping Lemma for Context-free Languages 213
6.6 Decision Algorithms for Context-free Languages 217
6.7 Supplementary Examples 218
Self-Test 223

Exercises 224
7. PUSHDOWN AUTOMATA 227-266
7.1 Basic Definitions 227
7.2 Acceptance by pda 233
7.3 Pushdown Automata and Context-free Languages 240
7.4 Parsing and Pushdown Automata 251
7.4.1 Top-down Parsing 252

7.4.2 Top-down Parsing Using Deterministic pda’s 256
7.4.3 Bottom-up Parsing 258

7.5 Supplementary Examples 260

Self-Test 264

Exercises 265

8. LR(k) GRAMMARS 267-276
8.1 LR(k) Grammars 267
8.2 Properties of LR(k) Grammars 270
8.3 Closure Properties of Languages 272
8.4 Supplementary Examples 272
Self-Test 273
Exercises 274

9. TURING MACHINES AND LINEAR BOUNDED

AUTOMATA 277-308
9.1 Turing Machine Model 278
9.2 Representation of Turing Machines 279

9.2.1 Representation by Instantaneous Descriptions 279

9.2.2 Representation by Transition Table 280

9.2.3 Representation by Transition Diagram 281

9.3 Language Acceptability by Turing Machines 283
9.4 Design of Turing Machines 284
9.5 Description of Turing Machines 289

http://engineeringbooks.net

Contents B vii

10.

11.

9.6 Techniques for TM Construction 289
9.6.1 Turing Machine with Stationary Head 289
9.6.2 Storage in the State 290
9.6.3 Multiple Track Turing Machine 290
9.6.4 Subroutines 290
9.7 Variants of Turing Machines 292
9.7.1 Multitape Turing Machines 292
9.7.2 Nondeterministic Turing Machines 295
9.8 The Model of Linear Bounded Automaton 297
9.8.1 Relation Between LBA and Context-sensitive
Languages 209
9.9 Turing Machines and Type 0 Grammars 299
9.9.1 Construction of a Grammar Corresponding to TM 299
9. 10 Linear Bounded Automata and Languages 301
9.11 Supplementary Examples 303
Self-Test 307
Exercises 308

DECIDABILITY AND RECURSIVELY ENUMERABLE
LANGUAGES 309-321
10.1 The Definition of an Algorithm 309

10.2 Decidability 310

10.3 Decidable Languages 311

10.4 Undecidable Languages 313

10.5 Halting Problem of Turing Machine 314

10.6 The Post Correspondence Problem 315

10.7 Supplementary Examples 317

Self-Test 319

Exercises 319
COMPUTABILITY 322-345
11.1 Introduction and Basic Concepts 322 .
11.2 Primitive Recursive Functions 323
11.2.1 Initial Functions 323
11.2.2 Primitive Recursive Functions Over N 325
11.2.3 Primitive Recursive Functions Over {a. b} 327
11.3 Recursive Functions 329
11.4 Partial Recursive Functions and Turing Machines 332

11.4.1 Computability 332

11.4.2 A Turing Model for Computation 333

11.4.3 Turing-computable Functions 333

11.4.4 Construction of the Turing Machine That
Can Compute the Zero Function Z 334

11.4.5 Construction of the Turing Machine for Computing—
The Successor Function 335

http://engineeringbooks.net

viii B Contents

11.4.6 Construction of the Turing Machine for Computing
the Projection U 336
11.4.7 Construction of the Turing Machine That Can
Perform Composition 338
11.4.8 Construction of the Turing Machine That Can
Perform Recursion 339
11.4.9 Construction of the Turing Machine That Can Perform
Minimization 340
11.5 Supplementary Examples 340
Self-Test 342
Exercises 343

12. COMPLEXITY 346-371

12.1 Growth Rate of Functions 346
12.2 The Classes P and NP 349
12.3 Polynomial Time Reduction and NP-completeness 351
12.4 Importance of NP-complete Problems 352
12.5 SAT is NP-complete 353
12.5.1 Boolean Expressions 353
12.5.2 Coding a Boolean Expression 353
12.5.3 Cook’s Theorem 354
12.6 Other NP-complete Problems 359
12.7 Use of NP-completeness 360
12.8 Quantum Computation 360
12.8.1 Quantum Computers 361
12.8.2 Church-Turing Thesis 362
12.8.3 Power of Quantum Computation 363
12.8.4 Conclusion 364 ’
12.9 Supplementary Examples 365
Self-Test 369
Exercises 370

Answers to Self-Tests 373-374
Solutions (or Hints) to Chapter-end Exercises 375-415
Further Reading 417-418
Index 419-422

http://engineeringbooks.net

Preface

The enlarged third edition of Theorv of Computer Science is the result of the
enthusiastic reception given to earlier editions of this book and the feedback
received from the students and teachers who used the second edition for
several years.

The new edition deals with all aspects of theoretical computer science,
namely automata, formal languages, computability and complexity. Very
few books combine all these theories and give adequate examples. This book
provides numerous examples that illustrate the basic concepts. It is profusely
illustrated with diagrams. While dealing with theorems and algorithms, the
emphasis is on constructions. Each construction is immediately followed by an
example and only then the formal proof is given so that the student can master
the technique involved in the construction before taking up the formal proof.

The key feature of the book that sets it apart from other books is the
provision of detailed solutions (at the end of the book) to chapter-end
exercises. '

The chapter on Propositions and Predicates (Chapter 10 of the second
edition) is now the first chapter in the new edition. The changes in other
chapters have been made without affecting the structure of the second edition.
The chapter on Turing machines (Chapter 7 of the second edition) has
undergone major changes.

A novel feature of the third edition is the addition of objective type
questions in each chapter under the heading Self-Test. This provides an
opportunity to the student to test whether he has fully grasped the fundamental
concepts. Besides, a total number of 83 additional solved examples have been
added as Supplementary Examples which enhance the variety of problems
dealt with in the book.

http://engineeringbooks.net

X B Preface

The sections on pigeonhole principle and the principle of induction (both
in Chapter 2) have been expanded. In Chapter 5, a rigorous proof of Kleene’s
theorem has been included. The chapter on LR(k) grammars remains the same
Chapter 8 as in the second edition.

Chapter 9 focuses on the treatment of Turing machines (TMs). A new
section on high-level description of TM has been added and this is used in later
examples and proofs. Some techniques for the construction of TMs have been
added in Section 9.6. The multitape Turing machine and the nondeterministic
Turing machine are discussed in Section 9.7.

A new chapter (Chapter 10) on decidability and recursively enumerable
languages is included in this third edition. In the previous edition only a
sketchy introduction to these concepts was given. Some examples of
recursively enumerable languages are given in Section 10.3 and undecidable
languages are discussed in Section 10.4. The halting problem of TM is
discussed in Section 10.5. Chapter 11 on computability is Chapter 9 of the
previous edition without changes.

Chapter 12 is a new chapter on complexity theory and NP-complete
problems. Cook’s theorem is proved in detail. A section on Quantum
Computation is added as the last section in this chapter. Although this topic
does not fall under the purview of theoretical computer science, this section
is added with a view to indicating how the success of Quantum Computers will
lead to dramatic changes in complexity theory in the future.

The book fulfils the curriculum needs of undergraduate and postgraduate
students of computer science and engineering as well as those of MCA courses.
Though designed for a one-year course, the book can be used as a one-
semester text by a judicious choice of the topics presented.

Special thanks go to all the teachers and students who patronized this book
over the years and offered helpful suggestions that have led to this new
edition. In particular, the critical comments of Prof. M. Umaparvathi,
Professor of Mathematics, Seethalakshmi College, Tiruchirapalli are gratefully
acknowledged.

Finally. the receipt of suggestions, comments and error reports for further
improvement of the book would be welcomed and duly acknowledged.

K.L.P. Mishra
N. Chandrasekran

http://engineeringbooks.net

Notations

Svmbol Meaning Section in which the
svmbol appears first
e and is explained
T Truth value 11
False value .1
— The logical connective NOT 1.1
A The logical connective AND 1.1
v The logical connective OR 1.1
= The logical connective IF ... THEN ... 1.1
= The logical connective If and Only If 1.1
T Any tautology 1.1
F Any contradiction 1.1
v For every 1.4
3 There exists 14
= Equivalence of predicate formulas 14
ae A The element a belongs to the set A 2.1.1
ACB The set A is a subset of set B 211
9 The null set 211
AUB The union of the sets A and B 211
AUB The intersection of the sets A and B 211
S -B The complement of B in A 2.1.1
A° The complement of A 211
2? The power set of A 2.1.1
A X B The cartesian product of A and B 2.11

Xi

http://engineeringbooks.net

xii & Notations

Symbol Meaning Section in which the

symbol appears first
and is explained

iL:JIAi The union of the sets A;, Ay, .. ., 4, 2.12

*, 0 Binary operations 2.1.2,2.13

xRy x is related to y under the relation 2.14

xR’y x is not related to y under the relation R 214

i =j modulo n i is congruent to j modulo n 2.14

C, The equivalence class containing a 2.14

R The transitive closure of R 2.1.5

R* The reflexive-transitive closure of R 215

RioR; The composite of the relations R, and R, 2.1.5

ffX->Y Map/function from a set X to a set ¥ 2.1.6

J® The image of x under f 2.1.6

[x] The smallest integer 2 x 222

I* The set of all strings over the alphabet set X 2.3

A The empty string 2.3

z* The set of all nonempty strings over X 2.3

Ix] The len’g’fffbf the string x 2.3

Q. L. 6 g0 F) A finite automaton 3.2

¢ Left endmarker in input tape 32

$ Right endmarker in input tape 32

(Q. %, 6 Op F) A transition system 33

(Q. %, A, 6 A qp) A Mealy/Moore machine 38

4 Partition corresponding to equivalence of states 39

o8 Partition corresponding to k-equivalence of states 39

(Vy, Z, P,) A grammar 4.1.1

fo :G> B o directly derives f§ in grammar G 412

a —7; B o derives 8 in grammar G 4.12

o % o derives 3 in n steps in grammar G 412

L(G) The language generated by G 412

£, The family of type O languages 43

Zg The family of context-sensitive languages 43

Lo The family of context-free languages 4.3

£ The family of regular languages 43

R+ R, The union of regular expressions R, and R, 5.1

RiR, The concatenation of regular expressions R; and R, 5.1

R* The iteration (closﬁre) of R 51

http://engineeringbooks.net

Notations xiii

Symbol Meaning Section in which the
symbol appears first
and is explained

a The regular expression corresponding to {a} 5
[V The number of elements in Vy 6.3
QLT 3§
g0 Zo, F) A pushdown automaton 7.1
ID An instantaneous description of a pda 7.1
'jT A move relation in a pda A 7.1
(Q. LT, 8qyb. F) A Turing machine 9.1
- The move relation in a TM 9.2.2
T(n) Maximum of the running time of M 9.7.1
Apra Sets 103
Acr Sets 10.3
Acsg Sets 10.3
Anv Sets 104
HALTpy Sets 10.5
Z(x) The image of x under zero function 11.2
S(x) The image of x under successor function 11.2
uy The projection function 11.2
nil (x) The image of x under nil function 112
cons a{x) The concatenation of a and x 11.2
cons b(x) The concatenation of b an[i? 11.2
pix) The image of x under predecessor function 11.2
- The proper subtraction function Example 11.8
Jx The absolute value of x 11.2
id Identity function 112
U, The minimization function 11.3
X4 . The characteristic function of the set A Exercise 11.8
O(g(n)) The order of g(n) 12.1
On®) The order of #* 12.1
P and NP Classes 122
| > quantum bit (qubit) 12.8.1
PSPACE Classes 12.8.3
EXP Classes 12.83
RrPP Classes 12.8.3
BQP Classes 12.83

" NPI Classes 12.8.3

http://engineeringbooks.net.

Propositions and
Predicates

Mathematical logic is the foundation on which the proofs and arguments rest.
Propositions are statements used in mathematical logic, which are either true
or false but not both and we can definitely say whether a proposition is true
or false. ‘

In this chapter we introduce propositions and logical connectives. Normal
torms for well-formed formulas are given. Predicates are introduced. Finally,
we discuss the rules of inference for propositional calculus and predicate calculus.

1.1 PROPOSITIONS (OR STATEMENTS)

A proposition {(or a statement) is classified as a declarative sentence to which
only one of the truth values, i.e. true or false, can be assigned. When a
proposition is true, we say that its truth value is 7. When it is false, we say
that its truth value is F.

Consider. for example. the following sentences in English:

1. New Delhi is the capital of India.

2. The square of 4 is 16.

3. The square of 5 is 27.

4. Every college will have a computer by 2010 a.D.
5. Mathematical logic is a difficult subject.

6. Chennai is a beautiful city.

7. Bring me coffee.

8. No. thank you.

9. This statement is false.

The sentences 1-3 are propositions. The sentences 1 and 2 have the truth value

T. The sentence 3 has the truth value F. Although we cannot know the truth

value of 4 at present. we definitely know that it is true or false, but not both.
i

http://engineeringbooks.net

2 E Theory of Computer Science

So the sentence 4 is a proposition. For the same reason, the sentences 5 and
6 are propositions. To sentences 7 and 8. we cannot assign truth values as they
are not declarative sentences. The sentence 9 looks like a proposition.
However, if we assign the truth value 7 to sentence 9, then the sentence asserts
that it is false. If we assign the truth value F to sentence 9, then the sentence
asserts that it is true. Thus the sentence 9 has either both the truth values (or
none of the two truth values). Therefore, the sentence 9 is not a proposition.

We use capital letters to denote propositions.

1.1.1 CONNECTIVES (PROPOSITIONAL CONNECTIVES
OR LocGicAL CONNECTIVES)

Just as we form new sentences from the given sentences using words like
‘and’, ‘but’, ‘if’, we can get new propositions from the given propositions
using ‘connectives’. But a new sentence obtained from the given propositions
using connectives will be a proposition only when the new sentence has a truth
value either 7 or F (but not both). The truth value of the new sentence
depends on the (logical) connectives used and the truth value of the given
propositions.

We now define the following connectives. There are five basic
connectives.

(i) Negation (NOT)

(ii) Conjunction (AND)

(iii) Disjunction (OR)

(iv) Implication (IF ... THEN .=
(v) If and Only If.

Negation (NOT)

If P is a proposition then the negation P or NOT P (read as ‘not P’) is a
proposition (denoted by — P) whose truth value is T if P has the truth value
F, and whose truth value is F if P has the truth value 7. Usually, the truth
values of a proposition defined using a connective are listed in a table called
the truth table for that connective (Table 1.1).

TABLE 1.1 Truth Table for Negation

P -P
T F
F T

Conjunction (AND)

If P and Q are two propositions, then the conjunction of P and Q (read as ‘P
and Q) is a proposition (denoted by P A Q) whose truth values are as given
in Table 1.2.

http://engineeringbooks.net

Chapter 1: Propositions and Predicates B 3

TABLE 1.2 Truth Table for Conjunction

P Q PAQ
T T T
T F F
F T F
F F F

Disjunction (OR)

If P and Q are two propositions, then the disjunction of P and Q (read as ‘P
or Q’) is a proposition {(denoted by P v Q) whose truth values are as given
in Table 1.3.

TABLE 1.3 Truth Table for Disjunction

Q PvaQ

MM~ | O
T~
o~~~

It should be noted that P v Q is true if P is true or Q is true or both are
true. This OR is known as inclusive OR, i.e. either P is true or Q is true or
both are true. Here we have defined OR in the inclusive sense. We will define
another connective called exclusive OR (either P is true or Q is true, but not
both, i.e. where OR is used in the exclusive sense) in the Exercises at the end
of this chapter.

EXAMPLE 1.1 7

If P represents “This book is good’ and Q represents ‘This book is cheap’,
write the following sentences in symbolic form:

(a) This book is good and cheap.

(b) This book is not good but cheap.

(c) This book is costly but good.

(d) This book is neither good nor cheap.

(e) This book is either good or cheap.

Solution
(@) PAQ
® =P AQ
(¢c) ~Q AP
() Pv O
Note: The truth tables for P A Q and @ A P coincide. So P A Q and

Q A~ P are equivalent (for the definition, see Section 1.1.4). But in
natural languages this need not happen. For example. the two sentences,

http://engineeringbooks.net

4 B Theory of Computer Science

namely ‘I went to the railway station and boarded the train’, and ‘I boarded
the train and went to the railway station’, have different meanings. Obviously,
we cannot write the second sentence in place of the first sentence.

Implication (IF ... THEN ...)

If P and Q are two propositions, then 'IF P THEN @’ is a proposition
(denoted by P = Q) whose truth values are given Table 1.4. We also read
P = @ as ‘P implies Q"

TABLE 1.4 Truth Table for Implication

Q P

MMl
L RUE
~~m-|l

We can note that P = (assumes the truth value F only if P has the truth
value T and Q has the truth value F. In all the other cases, P = (J assumes
the truth value 7. In the case of natural languages, we are concerned about the
truth values of the sentence ‘IF P THEN Q' only when P is true. When P
is false. we are not concerned about the truth value of ‘IF P THEN Q' But
in the case of mathematical logic, we have to definitely specify the truth value
of P = Q in all cases. So the truth value of P = Q is defined as 7 when
P has the truth value F (irrespective of the truth value of Q).

EXAMPLE 1.2

Find the truth values of the following propositions:

(a) If 2 is not an integer. then 1/2 is an integer.
(b) If 2 is an integer, then 1/2 is an integer.

Solution

Let P and Q be "2 is an integer’. *1/2 is an integer . respectively. Then the
proposition (a) is true (as P is false and Q is false) and the proposition (b)
1s false (as P is true and Q is false).

The above example illustrates the following: *“We can prove anything if
we start with a false assumption.” We use P = (whenever we want to
‘translate” any one of the following: ‘P only if Q', ‘P is a sufficient condition
for Q°, "0 is a necessary condition for P, ‘Q follows from P’, ‘Q whenever
P, °Q provided P.

.f and Only If

If P and Q are two statements, then ‘P if and only if O’ is a statement
(denoted by P & () whose truth value is T when the truth values of P and
Q are the same and whose truth value is F when the statements differ. The
truth values of P < @ are given in Table 1.5.

http://engineeringbooks.net

Chapter 1: Propositions and Predicates B 5

TABLE 1.5 Truth Table for If and Only If

Q PeQ

M~
“mmn—|0

N~ T

Table 1.6 summarizes the representation and meaning of the five logical
connectives discussed above.

TABLE 1.6 Five Basic Logical Connectives

Connective Resulting proposition Read as
Negation — - P Not P
Conjunction A PAQ P and Q
Disjunction v PvQ PorQ@
(or both)

Implication = P=Q If P then Q

(P implies Q)
if and only if = Pe Q P if and only if Q

EXAMPLE 1.3

Translate the following sentences into propositional torms:

(a) If it is not raining and I have the time. then I will go to a movie.
(b) It is raining and I will not go to a movie.

(¢) It is not raining. -

(d) T will not go to a movie.

(e) I will go to a movie only if it is not raining.

Solution

Let P be the proposition ‘It is raining’.

Let Q be the proposition ‘I have the time’.

Let R be the proposition T will go to a movie'.
Then

(a) (=P AQ) =R

(b) PA =R

(C) - P

(d) = R

&) R= =P

EXAMPLE 1.4

It P, O, R are the propositions as given in Example 1.3, write the sentences
in English corresponding to the following propositional forms:

http://engineeringbooks.net

6 & Theory of Computer Science

(@ («P A Q) =R

® @=2RAR=0Q
() =@V R

d R==PAQ

Solution

(a) T will go to a movie if and only if it is not raining and I have the
time.

(b) I will go to a movie if and only if I have the time.

(c) It is not the case that I have the time or I will go to a movie.

(d) T will go to a movie, only if it is not raining or I have the time.

1.1.2 WELL-FORMED FORMULAS

Consider the propositions P A Q and Q A P. The truth tables of these two
propositions are identical irrespective of any proposition in place of P and any
proposition in place of Q. So we can develop the concept of a propositional
variable (corresponding to propositions) and well-formed formulas
(corresponding to propositions involving connectives).

Definition 1.1 A propositional variable is a symbol representing any
proposition. We note that usually a real variable is represented by the symbol
x. This means that x is not a real number but can take a real value. Similarly,
a propositional variable is not a proposition but can be replaced by a
proposition.

o

Usually a mathematical object can be defined iﬁ?rms of the property/
condition satisfied by the mathematical object. Another way of defining a
mathematical object is by recursion. Initially some objects are declared to
follow the definition. The process by which more objects can be constructed
is specified. This way of defining a mathematical object is called a recursive
definition. This corresponds to a function calling itself in a programming
language.

The factorial n! can be defined as n(n — 1) ... 2.1. The recursive
definition of n! is as follows:

0! =1, n! = n(n — !

Definition 1.2 A well-formed formula (wff) is defined recursively as
follows:

(i) If P is a propositional variable, then it is a wif.
(ii) If o is a wff, then — o is a wif.
(iii) If o and B are well-formed formulas, then (o v f), (a A B), (&= B),
and (o0 & p) are well-formed formulas.
(iv} A string of symbols is a wif if and only if it is obtained by a finite
number of applications of (i)—(iii).

http://engineeringbodks.net

Chapter 1: Propositions and Predicates B 7

Notes: (1) A wiff is not a proposition, but if we substitute a.proposition in
place of a propositional variable. we get a proposition. For example:

i) —(Pv O A(=Q AR = (Qisa wff.

(iil)y (=P A Q) = Qis a wif.
(2) We can drop parentheses when there is no ambiguity. For example, in
propositions we can remove the outermost parentheses. We can also specify the

hierarchy of connectives and avoid parentheses.
For the sake of convenience, we can refer to a wff as a formula.

1.1.3 TRUTH TABLE FOR A WELL-FORMED FORMULA

If we replace the propositional variables in a formula ¢ by propositions, we
get a proposition involving connectives. The table giving the truth values of
such a proposition obtained by replacing the propositional variables by
arbitrary propositions is called the trath table of o

If o involves n propositional constants, then we have 2" possible
combinations of truth values of propositions replacing the variables.

EXAMPLE 1.5

Obtain the truth table for c = (P v Q) A (P = Q) A (Q = P).

Solution)
The truth values of the given wff are shown inTable 1.7.

TABLE 1.7 Truth Table of Example 1.5

PvQ P=Q Pv Q) aAP=Q Q=P

MM
MM O
N~
~~ T
MmN~
ST~
mTTm R

EXAMPLE 1.6

Construct the truth table for a = (P v Q) = (P v R) = (R v Q).

Solution

The truth values of the given formula are shown in Table 1.8.

http://engineeringbooks.net

8 & Theory of Computer Science

TABLE 1.8 Truth Table of Example 1.6

PvR RvQ PvR =FRvQ P v Q

MTUMT N~~~ 7T
TSN~~~ O
MM~~~ T~ D
U B B T T B B
M~~~
i I B B B I
e e T B B i
~H~~~4MH4~~|R

Some formulas have the truth value T for all possible assignments of truth
values to the propositional variables. For example. P v — P has the truth value
T irrespective of the truth value of P. Such formulas are called raurologies.

Definition 1.3 A tautology or a universally true formula is a well-formed
formula whose truth value is T for all possible assignments of truth values to
the propositional variables.

For example, Pv =P, (P A Q)= P. and (P = Q) A (0 = R) =
(P = R) are tautologies.

Note: When it is not clear whether a given formula is a tautology. we can
construct the truth table and verify that the truth value is 7T for all combinations
of truth values of the propositional variables appearing in the given formula.

EXAMPLE 1.7

Show that ¢ = (P = (Q = R)) = (P = Q) = (P =R)) is a tautology.

Solution
We give the truth values of o in Table 1.9.

TABLE 1.9 Truth Table of Example 1.7

O

Q=R P=Q=R F=2Q P=>R P=2Q=F=2R

2

MMM~~~
L B B B B A B |
MMM~ T~ D
~ M N~ T~

b e B B e B B B
e B T B LB e B

e B B B B I B 1 B
e B e T e B B

i B B B B B i

Definition 1.4 A contradiction (or absurdity) 1s a wif whose truth value is
F for all possible assignments of truth values to the propositional variables.
For example,

P AP and PAQO)nr—-Q
are contradictions.

Note: ¢ is a contradiction if and only if — « is a tautology.

http://engineeringbooks.net

Chapter 1: Propositions and Predicates 2 9

1.1.4 EQUIVALENCE OF WELL-FORMED FORMULAS

Definition 1.5 Two wiffs o and f in propositional variables Py, P,. ..., P

1

are equivalent (or logically equivalent) if the formula & < [is a tautology.
When o and f are equivalent, we write o = f.

Notes: (1) The wffs o and f3 are equivalent if the truth tables for « and f3 are
the same. For example.

PAQO=0QAP and PAP=P

(2) It is important to note the difference between o & f and o = S
o < [1is a formula. whereas o = 3 is not a formula but it denotes the relation
between « and f3.

EXAMPLE 1.8

Show that (P = (Q v R) =({(P = Q) v (P = R)

Solution

let o= (P = (Qv R)and f= (P = 0)v (P = R)). We construct the
truth values of ¢ and 3 for all assignments of truth values to the variables P,
O and R. The truth values of o and f3 are given in Table 1.10.

TABLE 1.10 Truth Table of Example 1.8

P Q R QvR P=QvR P=2Q P=2R FP=2QvIFP=R
T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T T T T T T
F T F T T T T T
F F T T T T T T
F F F F T T T T

As the columns corresponding to o and f coincide. o = f3.

As the truth value of a tautology is T, irrespective of the truth values of
the propositional variables, we denote any tautology by T. Similarly, we
denote any contradiction by F.

1.1.5 LOGICAL IDENTITIES

Some equivalences are useful for deducing other equivalences. We call them
identities and give a list of such identities in Table 1.11.

The identities I;—/;~ can be used to simplify formulas. If a formula f is
part of another formula ¢ and f is equivalent to 5, then we can replace f3
by B’ in o and the resulting wif is e€quivalent to o

http://engineeringbooks.net

10 B Theory of Computer Science

TABLE 1.11 Logical Identities

Iy ldempotent laws:
PvP=P PAP=P
I, Commutative laws:
PvQ=QvP PAQ=QAP
I3 Associative laws:
PviQVvR=PvQvVvR PA@RAR =(PAQAR
I, Distributive laws:
PVv QAR =(PvQAAPvR), PAQVR=PAQVvPAR
Is Absorption laws:
Pv{PAQ=Pr PAPVvQQ =P
Is DeMorgan’s laws:
—(Pv Q==PAr=Q (P AQ==Pv-aQ
I; Double negation:
P=—(=h
Iy Pv-P=T, PAn-P=F
Iy PvT=T, PAT=PR, PvF=PR PAF=F
lp P=QAP=-Q==P
I+ Contrapositive:
P=Q=-Q= P
Iy P=Q=(=Pv Q

EXAMPLE 1.9

Show that (P A Q) v (P A = Q)= P.
Solution I
LHS. =P AQ VvPA-Q
=PA(Q@vVv -0 by using the distributive law (i.e. 1)
=PAT by using g
=P by using Iy

= RH.S.

EXAMPLE 1.10

Showthat P= O)A R > =PVR =0
Solution
LHS.=(P= 0 AR = Q)
= (=P v Q) ARV Q) by using [,
= (Q v =P) A (Q v =R) by using the commutative law (i.e. I,)

=0Qv (=P AR by using the distributive law (i.e.)
=0 v (=P VR by using the DeMorgan’s law (i.e. Ig)
=(=PvVvR)vQ by using the commutative law (i.e. 1)
=PVvR=¢0 by using I,

= R.H.S.

http://engineeringbooks.net

Chapter 1: Propositions and Predicates 11

1.2 NORMAL FORMS OF WELL-FORMED FORMULAS

We have seen various well-formed formulas in terms of two propositional
variables, say, P and Q. We also know that two such formulas are equivalent
if and only if they have the same truth table. The number of distinct truth
tables for formulas in P and Q is 2* (As the possible combinations of truth
values of P and Q are TT, TF, FT, FF, the truth table of any formula in P
and Q has four rows. So the number of distinct truth tables is 2*) Thus there
are only 16 distinct (nonequivalent) formulas, and any formula in P and Q is
equivalent to one of these 16 formulas.

In this section we give a method of reducing a given formula to an
equivalent form called the ‘normal form’. We also use ‘sum’ for disjunction,
‘product’ for conjunction, and ‘literal” either for P or for — P, where P is any
propositional variable.

Definition 1.6 An elementary product is a product of literals. An elementary
sum is a sum of literals. For example, PA = Q, =P A =0, PAQ, =P A Q
are elementary products. And P v —Q, P v — R are elementary sums.

Definition 1.7 A formula is in disjunctive normal form if it is a sum of
elementary products. For example, P v (Q A R) and P v (= Q A R) are in
disjunctive normal form. P A (Q v R) is not in disjunctive normal form.

1.2.1 CONSTRUCTION TO OBTAIN A DLSJQCTIVE NORMAL
FORM OF A GIVEN FORMULA T

Step 1 Eliminate = and < using logical identities. (We can use /i, ie.
P=0=(Pv Q)

Step 2 Use DeMorgan's laws (fg) to eliminate — before sums or products.
The resulting formula has — only before the propositional variables, i.e. it
involves sum, product and literals.

Step 3 Apply distributive laws (I;) repeatedly to eliminate the product of
sums. The resulting formula will be a sum of products of literals, i.e. sum of
elementary products.

| EXAMPLE 1.11

Obtain a disjunctive normal form of

Pv(=P=(QvVv(Q=-R)

Solution

Pv (=P = (Qv(Q= —R)
PV (=P =(QVv(=Qv~—R) (step 1 using ;)
PVvPv@QV(=0v-R) (step 1 using I, and)

http://engineeringbooks.net

12 B Theory of Computer Science

=PvPvQ@v-=0@gv-R by using I3
=Pv@v-—-0v R by using I,

Thus, P v O v = Q v — R is a disjunctive normal form of the given formula.

EXAMPLE 1.12

Obtain the disjunctive normal form of

PA=(@ARYyVEP=0

Solution
PA=(QAR)VP=0
=(PA—-(QARV=PvVvQD (step 1 using I;5)
= PA(—=QV aR)YV =PV (D (step 2 using 1)

=PA-QVPA=-RVPVO (step 3 using I4 and I5)

Therefore, (P A - Q) v (P A =R) v =P v @ is a disjunctive normal form
of the given formula.

For the same formula, we may get different disjunctive normal forms. For
example, (P A QA R) v (P A Q A —=R)and P A Q are disjunctive normal
forms of P A 0. So. we introduce one more normal form, called the principal
disjunctive normal form or the sum-of-products canonical form i the next
definition. The advantages of constructing the principal disjunctive. normal

N

form are: ~—

(i) For a given formula, its principal disjunctive normal form is unique.
(i1) Two formulas are equivalent if and only if their principal disjunctive
normal forms coincide.

Definition 1.8 A minterm in » propositional variables Py, ..., P, 18
Q1 A Qs ... A Q, where each Q; is either P; or = P;

For example. the minterms in P, and P~ are P A P5, =P A P,
Py A = Ps, =P A =P The number of minterms in »n variables is 2"

Definition 1.9 A formula « is in principal disjunctive normal form if « is
a sum of minterms.

1.2.2 CONSTRUCTION TO OBTAIN THE PRINCIPAL
DisjuNCTIVE NORMAL FORM OF A GIVEN FORMULA
Step 1 Obtain a disjunctive normal form.

Step 2 Drop the elementary products which are contradictions (such as
P A _lP) »

Step 3 If P; and — P; are missing in an elementary product ¢ replace o by
(ot APy v (e A =Py, ’

http://engineeringbooks.net

Chapter 1: Propositions and Predicates B 13

Step 4 Repeat step 3 until all the elementary products are reduced to sum
of minterms. Use the idempotent laws to avoid repetition of minterms.

EXAMPLE 1.13

Obtain the canonical sum-of-products form (i.e. the principal disjunctive
normal form) of

a:P\/('ﬁp/\—lQ/\R)
Solution

Here o is already in disjunctive normal form. There are no contradictions. So
we have to introduce the missing variables (step 3). =P A =0 A Rin o is
already a minterm. Now,

P=FPAQ)VvPAr=0)
s(PAQARVPAQA-RY)VPA-QARVEPA-QA—=R
=(PAOARVPAQA=-RY)VIPA=QARVPA-QA—R)

Therefore, the canonical sum-of-products form of o is
PAOQARVIPAQA=RVPA=0QAR
VIPA=0O AR v {(=PA—-0AR

EXAMPLE 1.14

Obtain the principal disjunctive normal form of
og=(=Pv =0 = (=PAR
Solution
g=(=Pv =0) = (=P AR
= (=P v =0Q)Vv (=P AR by using I},
=P AQ)V (=P AR by using DeMorgan’s law
s(PAQARVPAQA-R)V{(APARADV(=PARA=Q)
=(PAQARVPAQA-RVEAPAQARYV(APA-0QAR)
So, the principal disjunctive normal form of « is
PAQOARVPAQA—-RVEPAQAR Y (HPA=QAR

A minterm of the form O, A Q- A ... A Q, can be represented by
aas ... a, where a; =0 1if Q; = = P; and a; = 1 if @; = P;. So the principal
disjunctive normal form can be represented by a ‘sum’ of binary strings. For
csample, (PAQAR)V{(PAQ A=R)V (=P A—=Q A R) can be represented
by 111 v 110 v 001.

The minterms in the two variables P and O are 00, 01, 19, and 11. Each
wif is equivalent to its principal disjunctive normal form. Every principal
disjunctive normal form corresponds to the minterms in it, and hence to a

http://engineeringbooks.net

14 B Theory of Computer Science

subset of {00, 01, 10, 11}. As the number of subsets is 2% the number of
distinct formulas is 16. (Refer to the remarks made at the beginning of this
section.)

The truth table and the principal disjunctive normal form of « are closely
related. Each minterm corresponds to a particular assignment of truth values
to the variables yielding the truth value 7 to o. For example, P A @ A =R
corresponds to the assignment of 7, 7, F to P, Q and R, respectively. So, if
the truth table of « is given. then the minterms are those which correspond
to the assignments yielding the truth value 7 to c.

EXAMPLE 1.15

For a given formula ¢, the truth values are given in Table 1.12. Find the
principal disjunctive normal form.

TABLE 1.12 Truth Table of Example 1.15

P Q R o
T 7 T T
T T F F
7 F T F
T F F T
F T T T
F T F F
F F T F
F F F T

Solution

We have T in the o-column corresponding to the rows 1, 4, 5 and 8. The
minterm corresponding to the first row is P A @ A R

Similarly, the minterms corresponding to rows 4, 5 and 8 are respectively
PA=0OA=R ~-PAQARand =P A = Q A — R Therefore, the principal
disjunctive normal form of « is

PAQARVPA-QA=RY(=PAQAR V(2P A—=QA—=R

We can form the ‘dual’ of the disjunctive normal form which is termed the
conjunctive normal form.

Definition 1.10 A formula is in conjunctive normal form if it is a product
of elementary sums.

If o is in disjunctive normal form, then — ¢ is in conjunctive normal
form. (This can be seen by applying the DeMorgan’s laws.) So to obtain the
conjunctive normal form of ¢, we construct the disjunctive normal form of
— ¢ and use negation.

Definition 1.11 A maxterm in n propositional variables Py, P,, -+, P, is
Qv @ v - v @, where each Q; is either P; or = P;.

http://engineeringbooks.net

Chapter 1: Propositions and Predicates =B 15

Definition 1.12 A formula o is in principal conjunctive normal form if
is a product of maxterms. For obtaining the principal conjunctive normal form
of o, we can construct the principal disjunctive normal form of — o and apply
negation.

EXAMPLE 1.16

Find the principal conjunctive normal form of & = P v (Q = R).

Solution
—o=—-(P v (Q = R))
=-(Pv (=0 Vv R) by using ;>
=P A (= (=0 Vv R) byusing DeMorgan’s law
=P A(@ A—=R by using DeMorgan’s law and I,

—P A Q A =R is the principal disjunctive normal form of — . Hence,
the principal conjunctive normal form of « is

“‘1(—1P/\Q/\—1R)=P\/—|Q\/R

The logical identities given in Table 1.11 and the normal forms of well-formed
formulas bear a close resemblance to identities in Boolean algebras and normal
forms of Boolean functions. Actually, the propositions under v, A and — form
a Boolean algebra if the equivalent propositions are identified. T and F act as
bounds (i.e. 0 and 1 of a Boolean algebra). Also, the statement formulas form
a Boolean algebra under v, A and — if the equivalent formulas are identified.

The normal forms of well-formed formulas correspond to normal forms
of Boolean functions and we can ‘minimize’ a formula in a similar manner.

1.3 RULES OF INFERENCE FOR PROPOSITIONAL
CALCULUS (STATEMENT CALCULUS)

In logical reasoning. a certain number of propositions are assumed to be true.
and based on that assumption some other propositions are derived (deduced or
inferred). In this section we give some important rules of logical reasoning or
rules of inference. The propositions that are assumed to be true are called
hypotheses or premises. The proposition derived by using the rules of inference
is called a conclusion. The process of deriving conclusions based on the
assumption of premises is called a valid argument. So in a valid argument we -~
are concerned with the process of arriving at the conclusion rather than
obtaining the conclusion.

The rules of inference are simply tautologies in the form of implication
(i.e. P = Q). For example. P = (P v () is such a tautology, and it is-a rule

of inference. We write this in the form . Here P denotes a premise.

P
LPvQ
The proposition below the line. i.e. P v @ is the conclusion.

http://engineeringbooks.net

16 2 Theory of Computer Science

We give in Table 1.13 some of the important rules of inference. Of course,
we can derive more rules of inference and use them in valid arguments.

For valid arguments, we can use the rules of inference given in
Table 1.13. As the logical identities given in Table 1.11 are two-way
implications, we can also use them as rules of inference.

TABLE 1.13 Rules of Inference
Rule of inference Implication form
RI,. Addition
P
Fva P=(PvQ
RI,: Conjunction - - 7
=]
Q
P 0 PAQ=PAQ
R;}gz Simpiification
PAQ
P PAQ) =P
RI,: Modus ponens
P
P=Q
Q PAlP=Q)=Q
RIs. Modus tollens
1 Q
P=Q
Pls: Disjunctive syllogism B)
- P
PvQ
T Q =P APV Q) =Q
/-?E: Hypoﬁ&ical syllogism - B)
P=Q
Q=R
~P=R (P=Ar(@Q@=>R)=(FP=R

;'(’18: Constructive dilemma
P=Q »~(R=29)

PvR
Qv S

(P=AQAR=28)A(PVvVR)y=(QVvS

RIg. Destructive dilemma
P=2Q A R=98

—-Qv -8
~PvR

(P=>=QAR=8) AE=QV-8)=(=PvaR

http://engineeringbooks.net

Chapter 1: Propositions and Predicates & 17

EXAMPLE 1.17

Can we conclude S from the following premises?
® P =0
(i) P=>R
(i) —=(Q A K)
(iv) Sv P

Solution

The valid argument for deducing § from the given four premises is given as
a sequence. On the left, the well-formed formulas are given. On the right, we
indicate whether the proposition is a premise (hypothesis) or a conclusion. If
it is a conclusion, we indicate the premises and the rules of inference or logical
identities used for deriving the conclusion.

[w—y

R RN R

. P=0
. P =R

—(Q A R)
-0 v =R
—P v =P
- P
.Sv P

S

Premise (i)
Premise (ii)

(P = 0 A~ (P =R Lines 1. 2 and RI-

Premise (iii)

Line 4 and DeMorgan’s law (/y)

Lines 3. 5 and destructive dilemma (R/g)
Idempotent law I,

Premise (iv)

Lines 7. 8 and disjunctive syllogism Rl

Thus, we can conclude § from the given premises.

EXAMPLE 1.18

Derive S from the following premises using a valid argument:
iy P=0
(i) ¢ = =R
(ili) P v §
(iv) R

Solut

1.

R

ion

P =0
Q:>*‘1R
P = =R
R
—(=R)
_IP
Pv S
S

Premise (i)

Premise (ii)

Lines 1, 2 and hypothetical syllogism R,
Premise (iv)

Line 4 and double negation /-

Lines 3. 5 and modus tollens RIs
Premise (ii1)

Lines 6, 7 and disjunctive syllogism Rl

Thus, we have derived S from the given premises.

http://engineeringbooks.net

18 E Theory of Computer Science

EXAMPLE 1.19

Check the validity of the following argument:

If Ram has completed B.E. (Computer Science) or MBA, then he is
assured of a good job. If Ram is assured of a good job, he is happy. Ram is
not happy. So Ram has not completed MBA.

Solution
We can name the propositions in the following way:

P denotes ‘Ram has completed B.E. (Computer Science)’.
Q denotes ‘Ram has completed MBA'.

R denotes ‘Ram is assured of a good job’.

S denotes ‘Ram is happy’.

The given premises are:
®H PvO=R
(1) R=S§
(i) = S
The conclusion is — Q.
1. (Pv (@) =R Premise (i)

2.R=S§ Premise (ii)

3. Pv @) =S8 Lines 1, 2 and hypothetical syllogism R/,
4. = 8§ Premise (iii)

5. =P v Q) Lines 3, 4 and modus tollens Rl

6. =P A =0 DeMorgan’s law I

7. =0 Line 6 and simplification RI;

Thus the argument is valid.

EXAMPLE 1.20

Test the validity of the following argument:

If milk is black then every cow is white. If every cow is white then it has
four legs. If every cow has four legs then every buffalo is white and brisk.
The milk is black.

Therefore, the buffalo is white.

Solution

We name the propositions in the following way:
P denotes ‘The milk is black’.
Q denotes ‘Every cow is white’.
R denotes "Every cow has four legs’.
S denotes "Every buffalo is white’.
T denotes "Every buffalo is brisk’.

http://engineeringbooks.net

Chapter 1: Propositions and Predicates B 19

The given premises are:

i) P=0

(i) Q9 = R

(i) R=>S AT

(iv) P

The conclusion 1s S.

1. P Premise (iv)
2.P= 0 Premise (i)
3.0 Modus ponens Riy
4. 9 =R Premise (ii)
5. R Modus ponens Rl
6. R=5SAT Premise (iii)
1.5~ T Modus ponens Ri;
8. S Simplification Rl

Thus the argument is valid.

1.4 PREDICATE CALCULUS

Consider two propositions ‘Ram is a student’. and ‘Sam is a student’. As
propositions, there is no relation between them. but we know they have
something in common. Both Ram and Sam share the property of being a
student. We can replace the two propositions by a single statement ‘x is a
student’. By replacing x by Ram or Sam (or any other name), we get many
propositions. The common feature expressed by ‘is a student’ is called a
predicare. In predicate calculus we deal with sentences involving predicates.
Statements involving predicates occur in mathematics and programming
languages. For example. ‘2x + 3v = 47", ‘IF (D. GE. 0.0) GO TO 20’ are
statements in mathematics and FORTRAN. respectively, involving predicates.
Some logical deductions are possible only by ‘separating’ the predicates.

1.4.1 PREDICATES

A part of a declarative sentence describing the properties of an object or
relation among objects is called a predicate. For example, "is a student’ is a
predicate. B

Sentences involving prediczrtﬁ:scribing the property of objects are
denoted by P(x), where P denotes the predicate and x is a variable denoting
any object. For example, P(x) can denote ‘x is a student’. In this sentence, x
is a variable and P denotes the predicate ‘is a student’.

The sentence ‘x is the father of v’ also involves a predicate ‘is the father
of. Here the predicate describes the relation between two persons. We can
write this sentence as F(x, v), Similarly, 2x + 3y = 4z can be described by
S(x, v, 2). :

http://engineeringbooks.net

20 E Theory of Computer Science

Note: Although P(x) involving a predicate looks like a proposition, it is not
a proposition. As P(x) involves a variable x, we cannot assign a truth value
to P(x). However, if we replace x by an individual object, we get a
proposition. For example, if we replace x by Ram in P(x), we get the
proposition ‘Ram is a student’. (We can denote this proposition by P(Ram).)
If we replace x by ‘A cat’, then also we get a proposition (whose truth value is
F). Similarly, S(2, 0, 1) is the proposition 2 - 2 + 3 - 0 = 4 - 1 (whose truth
value is T). Also, S(1, 1, 1) is the proposition 2 - 1 + 3 - 1 =4 .- 1 (whose
truth value is F).

The following definition is regarding the possible ‘values’ which can be
assigned to variables.

Definition 1.13 For a declarative sentence involving a predicate, the
universe of discourse, or simply the universe, is the set of all possible values
which can be assigned to variables.

For example, the universe of discourse for P(x): ‘x is a student’, can be
taken as the set of all human names; the universe of discourse for E(n); ‘n is
an even integer’, can be taken as the set of all integers (or the set of all real
numbers).

Note: In most examples. the universe of discourse is not specified but can be
easily given.

Remark We have seen that by giving values to variables, we can get
propositions from declarative sentences involving predicates. Some sentences
involving variables can also be assigned truth values. For example, consider
‘There exists x such that x> = 5°, and ‘For all x, x> = (=)*. Both these
sentences can be assigned truth values (7 in both cases). ‘There exists’ and
‘For all’ quantify the variables.

Universal and Existential Quantifiers

The phrase ‘for all’ (denoted by V) is called the universal quantifier. Using
this symbol, we can write ‘For all x, x° = (-=x)>’ as Vx Q(x), where Q(x) is
W2 = (e

The phrase ‘there exists’ (denoted by 3) is called the existential quantifier.

The sentence ‘There exists x such that x> = 5’ can be written as Jx R(x),
where R(x) is x = 5.

P(x) in Vx P(x) or in dx P(x) is called the scope of the quantifier V or 3.
Note: The symbol V can be read as ‘for every’, ‘for any’., ‘for each’,
‘for arbitrary’. The symbol 3 can be read as ‘for some’, for ‘at least one’.

When we use quantifiers, we should specify the universe of discourse. If
we change the universe of discourse, the truth value may change. For example,
consider 3x R(x), where R(x) is x° = 5. If the universe of discourse is the set
of all integers, then Jx R(x) is false. If the universe of discourse is the set of
all real numbers. then dx R(x) is true (when x = :\/5 X0 =5),

http://engineeringbooks.net

Chapter 1: Propositions and Predicates B 21

The logical connectives involving predicates can be used for declarative
sentences involving predicates. The following example illustrates the use of
connectives.

EXAMPLE 1.21

Express the following sentences involving predicates in symbolic form:

1. All students are clever.

Some students are not successful.

Every clever student is successful.

There are some successful students who are not clever.
Some students are clever and successtul.

Rl

Solution

As quantifiers are involved. we have to specify the universe of discourse. We
can take the universe of discourse as the set of all students.

Let C(x) denote ‘x is clever’.
Let S(x) denote “x is successtul’.

Then the sentence 1 can be written as Vx C(x). The sentences 2-5 can be
written as

3x (= S(x)), Va (Clx) = S(x),
3 (S() A = Cx), Fx(Cx) = S(x)

1.4.2 WELL-FORMED FORMULAS OF PREDICATE CALCULUS

A well-formed formula (wff) of predicate calculus is a string of variables such
as xp, x», X,, connectives. parentheses and quantifiers defined recursively
by the following rules:

1) P(xy, ..., x,) is a wff. where P is a predicate involving n variables
Xy Xoy ooy X

(ii) If o 1s a wff, then — ¢ is a wif.

(iii) If o and f§ are wifs, then av f o A B, o= B, o < [are also
wifs.

@av) If o is a wif and x is any v@ab’fé.’ then Vx (), dx () are wifs.

(v) A string is a wif if and only if it is obtained by a finite number of
applications of rules (1)—(iv).

Note: A proposition can be viewed as a sentence involving a predicate with 0
variables. So the propositions are wifs of predicate calculus by rule (i).

We call wifs of predicate calculus as predicate formulas for convenience.
The well-formed formulas introduced in Section 1.1 can be called proposition
formulas (or statement formulas) to distinguish them from predicate formulas.

http://engineeringbooks.net

22 B Theory of Computer Science

Definition 1.14 Let o and J be two predicate formulas in variables x;, .. .,
x,, and let U be a universe of discourse for ¢ and . Then « and f3 are
equivalent to each other over U if for every possible assignment of values to
each variable in ¢ and f the resulting statements have the same truth values.
We can write @ = f3 over U.

We say that o and f3 are equivalent to each other (o= B) if a= 8 over
U for every universe of discourse U.

Remark In predicate formulas the predicate variables may or may not be
quantified. We can classify the predicate variables in a predicate formula,
depending on whether they are quantified or not. This leads to the following
definitions.

Definition 1.15 If a formula of the form Jx P(x) or Vx P{x) occurs as part
of a predicate formula ¢, then such part is called an x-bound part of ¢, and
the occurrence of x is called a bound occurrence of x. An occurrence of x is
free if it is not a bound occurrence. A predicate variable in o is free if its
occurrence is free in any part of «.

In o = (3x; Plx;. x2)) A (Vx> Qxs, x3)), for example, the occurrence of
x; in 3x; P(x;, x») is a bound occurrence and that of x, is free. In Vx; Q(xs, x3),
the occurrence of x» is a bound occurrence. The occurrence of xz in «& is
free.

Note: The quantified parts of a predicate formula such as Vx P(x) or 3x P(x)
are propositions. We can assign values from the universe of discourse only
to the free variables in a predicate formula o.

Definition 1.16 A predicate formula is valid if for all possible assignments
of values from any universe of discourse to free variables, the resulting
propositions have the truth value 7.

Definition 1.17 A predicate formula is satisfiable if for some assignment of
values to predicate variables the resulting proposition has the trath value T.

Definition 1.18 A predicate formula is unmsatisfiable if for all possible
assignments of values from any universe of discourse to predicate variables the
resulting propositions have the truth value F.

We note that valid predicate formulas correspond to tautologies among
proposition formulas and the unsatisfiable predicate formulas correspond to
contradictions.

http://engineeringbooks.net

Chapter 1: Propositions and Predicates B 23

1.5 RULES OF INFERENCE FOR PREDICATE
CALCULUS

Before discussing the rules of inference, we note that: (i) the proposition
formulas are also the predicate formulas; (ii) the predicate formulas (where all
the variables are quantified) are the proposition formulas. Therefore, all the
rules of inference for the proposition formulas are also applicable to predicate
calculus wherever necessary.

For predicate formulas not involving connectives such as A(x), P(x, ¥). we
can get equivalences and rules of inference similar to those given in
Tables 1.11 and 1.13. For Example, corresponding to /; in Table 1.11 we get
—(P(x) v Q) = = (P(x)) A~ = (Q(x)). Corresponding to RI; in Table 1.13
P A Q = P, we get P(x) A O(x) = P(x). Thus we can replace propositional
variables by predicate variables in Tables 1.11 and 1.13.

Some necessary equivalences involving the two quantifiers and valid
implications are given in Table 1.14.

TABLE 1.14 Equivalences I[nvolving Quantifiers

Is Distributivity of 3 over v:
:1\ (x) v Q@) = v Plx) v v QW)
=P v QW) = P v G QW)
Isa Distributivity of ¥V over a:
Fx (Plx) ~ Q) = YxPly) A Vx Q)
V(P A Q) = P A (Vx Q)

Le S(GxPW) = Y- (P)
ke S(FPW) = 3 (PW)
Iy (P AQW) =P A (EXQW)
Is Vi (P v QU) = P v (¥xr QL)
Rlg Yy P(x) = dx F’ai
Rl Yy P(x) v Vx Q) = Vr(Px) v QKx)
Riys I (P) A Q) = JxPlx) A Ix Q)

Sometimes when we wish to derive some cenclusion from a given set of
premises involving quantifiers. we may have to eliminate the quantifiers
before applying the rules of inference for proposition formulas. Also, when
the conclusion involves quantifiers, we may have 1o introduce quantifiers. The
necessary rules of inference for addition and deletion of quantifiers are given
in Table 1.15.

http://engineeringbooks.net

24 58 Theory of Computer Science

TABLE 1.15 Rules of inference for Addition and
Deletion of Quantifiers

RIyy. Universal instantiation

Vx P(x)
- P(c)

c is some element of the universe. .

Rl.4 Existential instantiation

3x P(x)
- P(c)

¢ is some element for which P(c) is true.

RIys. Universal generalization

P(x)

vxP(x)

x should not be free in any of the given premises.

Rl,s. Existential generalization

P(c)
I P

¢ is some element of the universe.

EXAMPLE 1.22

Discuss the validity of the following argument:

All graduates are educated.

Ram is a graduate.

Therefore, Ram is educated.
Solution

Let G(x) denote ‘x is a graduate’.

Let E(x) denote ‘x is educated’.

Let R denote ‘Ram’.

So the premises are (1) Vx (G(x) = E(x)) and’/(xii) G(R). The conclusion is E(R).

Vx(Gx) = E(x)) Premise (i)

G(R) = E(R) Universal instantiation Rl;3
G(R) Premise (ii)

s E(R) Modus ponens Rl

Thus the conclusion is valid.

http://engineeringbooks.net

Chapter 1: Propositions and Predicates B 25

'EXAMPLE 1.23

Discuss the validity of the following argument:

All graduates can read and write.
Ram can read and write.
Therefore, Ram is a graduate.

Solution

Let G(x) denote ‘x is a graduate’.

Let L(x) denote “x can read and write’.

Let R denote ‘Ram’.

The premises are: Vx (G(x) = L(x)) and L(R).

The conclusion is G(R).

(G(R) = L(R)) A L(R)) = G(R) is not a tautology.

So we cannot derive G(R). For example, a school boy can read and write
and he is not a graduate.

EXAMPLE 1.24

Discuss the validity of the following argument:

All educated persons are well behaved.
Ram is educated.

No well-behaved person is quarrelsome.
Therefore. Ram is not quarrelsome.

Solution

Let the universe of discourse be the set of all educated persons.
Let P(x) denote "x is well-behaved’.
Let y denote ‘Ram’.
Let Q(x) denote “x is quarrelsome’. T
So the premises are:

(i) Vx P(x).
(ii) v is a particular element of the universe of discourse.

(iil) VY (P(x) = — Q(x)).

To obtain the conclusion. we have the following arguments:

1. Vx P(x) Premise (i)

2. P(v) Universal instantiation Rl{3
3. Vx(P(x) = — Q(x)) Premise (iii)

4. P(v) = =0 Universal instantiation R/},
5. P(y) Line 2

6. = 0O Modus ponens R,

— Q(y) means that ‘Ram is not guarrelsome’. Thus the argument is valid.

http://engineeringbooks.net

26 2 Theory of Computer Science

1.6 SUPPLEMENTARY EXAMPLES

EXAMPLE 1.25

Write the following sentences in symbolic form:

(a) This book is interesting but the exercises are difficult.

(b) This book is interesting but the subject is difficult.

{c) This book is not interesting. the exercises are difficult but the subject
1s not difficult.

(d) If this book is interesting and the exercises are not difficult then the
subject is not difficult.

(e) This book is interesting means that the subject is not difficult, and
conversely.

(f) The subject is not difficult but this book is interesting and the
exercises are difficult.

(g) The subject is not difficult but the exercises are difficult.

(h) Either the book is interesting or the subject is difficult.

Solution

Let P denote "This book is interesting’.

Let Q denote ‘The exercises are difficult’.

Let R denote “The subject is difficult’.
Then:

(@ PnQ

(b) PAR

{(c) =P AQA—=R

(d) (PA—-0Q)= =R

() P —R

() R AP AQ)

(@ =R AQ

(hy =P v R

EXAMPLE 1.26

Construct the truth table for ¢ = (=P & = 0) & Q0 © R

Solution

The truth table is constructed as shown in Table 1.16.

http://engineeringbooks.net

Chapter 1: Propositions and Predicates B 27

TABLE 1.16 Truth Table of Example 1.26

P Q R Qe R P -Q P& -Q «
T T T T F F T T
T T F F F F T F
T F T F F T F T
T F F T F T F F
F T T T T F F F
F T F F T F F T
F F T F T T T F
F F F T T T T T

EXAMPLE 1.27

Prove that: ¢ = (P = (Q v R)) A (—=Q)) = (P = R) 15 a tautology.

Solution

Let f=P = (QVRY)YAEOQ
The truth table is constructed as shown in Table 1.17. From the truth
table, we conclude that ¢ is a tautology.

TABLE 1.17 Truth Table of Example 1.27

Byl
N

- Q Qv R P=(QvR

™
o

MATM M A AN~ T
LIRS I IR s
MMM~
S RUBL ST
T~ T
S R B
~~4TTmmAT™
4~~~ Tm— |l
il i

EXAMPLE 1.28

State the converse, opposite and contrapositive to the following statements:
(a) If a triangle is isoceles, then two of its sides are equal.
(b) If there is no unemployment in India, then the Indians won’t go to
the USA for employment.
Solution

If P = Q is a statement, then its converse, opposite and contrapositive
statements are, @ = P, - P = — 0 and -~ Q = — P, respectively.

(a) Converse—If two of the sides of a triangle are equal, then the triangle
is isoceles.

http://engineeringbooks.net

28 & Theory of Computer Science

Opposite—If the triangle is not isoceles, then two of its sides are not
equal.
Contrapositive—It two of the sides of a triangle are not equal, then
.the triangle is not isoceles.

(b) Converse—If the Indians won’t go to the USA for employment, then
there is no unemployment in India.
Opposite—If there is unemployment in India. then the Indians will go
to the USA for employment.

(c) Contrapositive—If the Indians go to the USA for employment, then
there is unemployment in India.

'EXAMPLE 1.29

Show that:

(«PA(=QAR)V(QAR V(PAR &R
Solution

(- PAEQOARYVOQAR VIPAR
S ({(mPA—=0) AR v QAR v (P A R) by using the associative law

S (=PVv O AR VQAR YV (P AR byusing the DeMorgan's law

S (=Pv AR VIQVP AR by using the distributive law

S (=Pv O vPv O AR © by using the commutative
and distributive laws

= T AR by using Ig

< R by using Iy

CEXAMPLE '1.30
Using identities, prove that:
Qv (P A—=Q) Vv (=P A—=0Q)i1s a tautology

Solution

Q\/(P/\'ﬂQ)\/(—IP/\—VQ)
S Qv PYA(@ v =0) v (=P A =@ by using the distributive law

SOV P)ATYV(=PA=0) by using /s

S Qv Pva(PvQO by using the DeMorgan’s Jaw
and /g

S (PvO)v —(Pv@ by using the commutative
law

e T by using g

Hence the given formula is a tautology.

http://engineeringbooks.net

Chapter 1: Propositions and Predicates H 29

EXAMPLE 1.31

Test the validity of the following argument:

If T get the notes and study well, then I will get first class.
I didn’t get first class.
So either I didn’t get the notes or I didn’t study well.

Solution

Let P denote I get the notes’.

Let O denote ‘I study well’.

Let R denote I will get first class.’
Let § denote 1 didn't get first class.’

The given premises are:

i) PAQ =R
(1) = R
The conclusion is =P v = Q.
I.PAQO =R Premise (1)
2. =R Premise (i1)
3. (P A Q) "~ Lines 1, 2 and modus tollens.
4. =P v =0 DeMorgan’s law

Thus the argument is valid.

‘EXAMPLE 1.32
Explain (a) the conditional proof rule and (b) the indirect proof.

Solution

{a) If we want to prove A = B, then we take A as a premise and construct
a proof of B. This is called the conditional proof rule. It is denoted
bv CP.

(b) To prove a formula ¢, we construct a proof of —ma = F. In
particular, to prove A = B. we construct a proof of A A =8 = F.

EXAMPLE 1.33

Test the validity of the following argument:

Babies are illogical.

Nobody is despised who can manage a crocodile.
Illogical persons are despised.

Therefore babies cannot manage crocodiles.

http://engineeringbooks.net

30 B Theory of Computer Science

Solution

Let B(x) denote ‘x is a baby'.

Let /(x) denote ‘x is illogical .

Let D(x) denote ‘x is despised’.

Let C(x) denote ‘x can manage crocodiles’.
Then the premises are:

(i) Vx (Bix) = I(x))

(il) Vx (Clx) = — D))

(iil) Vx (I{(x) = D))
The conclusion is Vx (B(x) = — Cx)).

1. Vx (B(x) = I(x)) Premise (i)

2. Vx (C(x) = = D)) Premise (ii)

3. Vx (I(x) = D)) Premise (iii)

4. B(x) = I(x) 1, Universal instantiation
5. Clx) = =D 2, Universal instantiation
6. I(x) = D(x) 3, Universal instantiation
7. B(x) Premise of conclusion

8. I(x) 4,7 Modus pollens

9. D(x) 6.8 Modus pollens

10. = C(x) 5,9 Modus tollens

11. B(x) = = C{x) 7,10 Conditional proof

12. Vx (B(x) = = C(x)) 11, Universal generalization.
Hence the conclusion is valid.

EXAMPLE 1.34

Give an indirect proof of

(=0.P=0.PvS =S

Solution

We have to prove S. So we include (iv) — S as a premise.

1. Pv S Premise (iii)

2. -5 Premise (iv)

3. P 1,2, Disjunctive syllogism
4. P=0Q Premise (ii)

5.0 3,4, Modus ponens

6. - Q Premise (i)

7. O0A—0 5.6, Conjuction

8 F Ig

We get a contradiction. Hence' (= Q, P = Q. P v §) = S§.

http://engineeringbooks.net

Chapter 1: Propositions and Predicates H 31

EXAMPLE 1.35

Test the validity of the following argument:

All integers are irrational numbers.
Some integers are powers of 2.
Therefore, some irrational number is a power of 2.

Solution

Let Z(x) denote ‘x is an integer .
Let I{x) denote ‘x is an irrational number’.
Let P(x) denote ‘x is a power of 2.

The premises are:

(i) Vx(Zx) = Ix)
(i) 3x (Z(x) A P(x))
The conclusion is Jx (I(x) A P(x)).

1. 3x (Z(x) A P(x) Premise (ii)

2. Z(b) A P(b) 1, Existential instantiation
3. Z(b) 2, Simplification

4. P(b) 2. Simplification

5. Vx (Z(x) = I(x)) Premise (i)

6. Z(b) = I(b) 5. Universal instantiation

7. 1(b) 3.6, Modus ponens

8. I(b) A~ P(b) 7.4 Conjunction

9. dx (I(x) A P(x)) 8, Existential instantiation.

Hence the argument is valid.

SELF-TEST

Choose the correct answer to Questions 1-5:

1. The following sentence is not a proposition.
(a) George Bush is the President of India.
(b) -1 is a real number.

(c) Mathematics is a difficult subject.
(d) I wish you all the best.

[\

The following is a well-formed formula.
(@ PAQ)= (VO

by PAQ)={FPv O AR

() P A(QAR)=(PnrQ)

(d =@ A—-PvVv =0

http://engineeringbooks.net

32 E Theoryof Computer Science

1s called:

3. PAQ
P

(a) -Addition
(b) Conjunction
(c) Simplification
(d) Modus tollens
4. Modus ponens is
(a) = ¢
P=0
So=P
(b)y =P
PvQ
)
(¢c) P
P=0Q
)

(d) none of the above

5. =P A = Q A R is a minterm of:
(a) Pv Q
’\b) P A= Q AR
{(c)y PAQARAS
(d) PAR

6. Find the truth value of P = Q if the truth values of P and Q are F and
T respectively.

7. For what truth values of P. Q and R, the truth value of (P = Q) = R
is F?
(P, O, R have the truth values F. T, For F, T, T)

8. If P. 0. R have the truth values F, 7, F, respectively, find the truth
value of (P = Q) v (P = R).

9. State universal generalization.

10. State existential instantiation.

EXERCISES

1.1 Which of the following sentences are propositions?

(a) A triangle has three sides.
(by 11111 1s a prime numbey.
{¢) Every dog is an animal.

http://engineeringbooks.net

Chapter 1: Propositions and Predicates B 33

(d) Ram ran home.

(e} An even number is a prime number.

(f) 10 is a root of the equation x~ — 1002x + 10000 = 0
(g) Go home and take rest.

1.2 Express the following sentence in symbolic form: For any two numbers
a and b, only one of the following holds: @ < b, @ = b, and a > b.

1.3 The truth table of a connective called Exclusive OR (denoted by V) is
shown in Table 1.18.

TABLE 1.18 Truth Table for Exclusive OR

=] Q P v Q
T T F
T F T
F T T
F F F

Give an example of a sentence in English (i) in which Exclusive OR
is used. (ii) in which OR is used. Show that ¥ is associative,
commutative and distributive over A.

1.4 Find two connectives, using which any other connective can be
described.

1.5 The connective NAND denoted by T (also called the Sheffer stroke) is
defined as follows: P T Q = — (P A Q). Show that every connective
can be expressed in terms of NAND.

1.6 The connective NOR denoted by | (also called the Peirce arrow) is
defined as follows: P { 0 = = (P v Q). Show that every connective
can be expressed in terms of NOR.

1.7 Construct the truth table for the following:
(@) (Pv Q)= (PVvR=(RVQ)
b)) Pv(@=R)=((PVv-R=0

1.8 Prove the following equivalences:

) P=Pv O APV =0
)y - (PeoQ)=PAr—=-0Q0 Vv i=PAQ)

1.9 Prove the logical identities given in Table 1.11 using truth tables.
1.10 Show that P = (Q = (R = (=P = (=0 = —R))) is a tautology.

111 Is (P = = P) = — P (i) a rautology. (ii) a contradiction. (ii1) neither
a tautology nor a contradiction?

http://engineeringbooks.net

34 = Theory of Computer Science

1.12 Is the implication (P A (P = — Q) vV (Q = — Q) = — Q a tautology?
1.13 Obtain the principal disjunctive normal form of the following:
(@ P=>P=0Ar(==0vVv-P)
b)) (QA-"RA-S)VRAS.
1.14 Simplify the formula whose principal disjunctive normal form is
110 v 100 v 010 v 000.

1.15 Test the validity of the following arguments:
(a) P= 0
R= -0
P =0
LP=S
(c) P
)
0= -R
SR
(d P= QAR
ovS=T

SvP
=T

1.16 Test the validity of the following argument:
If Ram is clever then Prem is well-behaved.
If Joe is good then Sam is bad and Prem is not well-behaved.
If Lal is educated then Joe is good or Ram is clever.
Hence if Lal is educated and Prem is not well-behaved then Sam is bad.

1.17 A company called for applications from candidates, and stipulated the
following conditions:
{a) The applicant should be a graduate.
(b) If he knows Java he should know C++.
(¢) If he knows Visual Basic he should know Java.
(d) The applicant should know Visual Basic.

Can you simplify the above conditions?

1.18 For what universe of discourse the proposition Vx (x 2 5) is true?

http://engineeringbooks.net

Chapter 1: Propositions and Predicates H 35

1.19 By constructing a suitable universe of discourse, show that
Ix (P(X) = 0R)) & 3xP(x) = Ix Q%)
is not valid.
1.20 Show that the following argument is valid:
All men are mortal.

Socrates 1s a man.
So Socrates is mortal.

1.21 Is the following sentence true? If philosophers are not money-minded
and some money-minded persons are not clever, then there are some
persons who are neither philosphers nor clever.

1.22 Test the validity of the following argument:

No person except the uneducated are proud of their wealth.
Some persons who are proud of their wealth do not help others.
Therefore, some uneducated persons cannot help others.

http://engineeringbooks.net

Mathematical
Preliminaries

In this chapter we introduce the concepts of set theory and graph theory. Also,
we define strings and discuss the properties of strings and operations on strings.
In the final section we deal with the principle of induction, which will be used
for proving many theorems throughout the book.

2.1 SETS, RELATIONS AND FUNCTIONS

2.1.1 SETS AND SUBSETS

A set is a well-defined collection of objects, for example, the set of all students
in a college. Similarly. the collection of all books in a college library is also a
set. The individual objects are called members or elements of the set.

We use the capital letters A, B, C, ... for denoting sets. The small letters
a, b, ¢, ... are used to denote the elements of any set. When a is an element
of the set A. we write ¢ € A. When « is not an element of A, we write o ¢ A.

Various Ways of Describing a Set

(1) By listing its elements. We write all the elements of the set (without
repetition) and enclose them within braces. We can write the elements
in any order. For example, the set of all positive integers divisible by
15 and less than 100 can be written as {15. 30, 45, 60, 75, 90}.

(ii) By describing the properties of the elements of the ser. For example, the
set {15, 30. 45. 60. 75. 90} can be described as: {n|n is a positive
integer divisible by 15 and less than 100}. (The description of the
property is called predicare. In this case the set is said to be implicitly
specified.) ‘

36

http://engineeringbooks.net

Chapter 2: Mathematical Preliminaries 2 37

(1ii) By recursion. We define the elements of the set by a computational
rule for calculating the elements. For example. the set of all natural
numbers leaving a remainder | when divided by 3 can be described as

{anl a, =1, a = a, + 3}

When the computational rule is clear from the context, we simply specify
the set by some initial elements. The previous set can be written as {1. 4. 7,
10, ...}. The four elements given suggest that the computational rule is:
ey = a, + 3.

Subsets and Operations on Sets

A set A is said to be a subset of B (written as A ¢ B) if every element of
A is also an element of B.

Two sets A and B are equal (we write A = B) it their members are the same.
In practice. to prove that A = B, we prove A C B and B C A

A set with no element is called an empty set, also called a null set or a void
set, and is denoted by 0.

We define some operations on sets.

AU B={x|xe Aorxe B} called the union of A and B.

AN B={x|x e A and x € B}, called the intersection of A and B.

A-B={x|xe A and x ¢ B}, called the complement of B in A.

A¢ denotes U — A, where U is the universal set, the set of all elements
under consideration.

The set of all subsets of a set A is called the power ser of A. It is denoted
by 24,

Let A and B be two sets. Then A X B is defined as {(a, b)|a € A and
b € B}. ((a, b) is called an ordered pair and is different from (b, «).)

Definition 2.1 Let S be a set. A collection (A4;. A~ ..., A,) of subsets of § is
called a partition if A; N A;
U A,

For example. if § = {1. 2. 3, ..., 10}, then {{1. 3, 5, 7. 9}, {2, 4, 6,
8. 10}} is a partition of §.

i

@G =7 and S= U A (e 4 UAsU ...
i=1

2.1.2 SETS WITH ONE BINARY OPERATION

A binary operation = on a set S is a rule which assigns. to every ordered pair
(a, by of elements from S. a unique element denoted by a » b.

Addition, for example, is a binary operation on the set Z of all integers.
(inroughout this book. Z denotes the set of all integers.)

Union is a binary operation on 2, where A is any nonempty set. We give
below five postulates on binary operations.

Postulate 1: Closure. If @ and b are in S, then @ = b is in S.

http://engineeringbooks.net |

38 E Theory of Computer Science

Postulate 2: Associariviry. If a, b, ¢ are in S, then (a * b) = ¢ = a = (b = ¢).

Postulate 3: Idenrty element. There exists a unigue element (called the
identity element) e in § such that for any element x in S,

: Xre=e*X=x

Postulate 4: [nverse. For every element x in S there exists a unique element x’
in $ such that x » ¥’ = ¥ = x = e. The element x" is called the
inverse of x w.r.t. = ,

Postulate 5: Commutativity. If a, b € S. then a = b = b » a.

It may be noted that a binary operation may satisfy none of the above five
postulates. For example, let § = {1, 2, 3, 4, ...}, and let the binary operation
be subtraction (i.e. a = b = a — b). The closure postulate is not satisfied since
2-3=-1¢ S Also, (2 -3)~4=#2-(3-4), and so associativity is not
satisfied. As we cannot find a positive integer such that x — e = ¢ — x = x, the’
postulates 3 and 4 are not satisfied. Obviously, a — b # b — a. Therefore,
commutativity is not satisfied.

Our interest lies in sets with a binary operation satisfying the postulates.

Definitions (i) A set § with a binary operation = is called a semigroup if the
postulates 1 and 2 are satisfied.

(ii) A set S with a binary operation = is called a mionoid if the postulates
1-3 are satisfied.

(iil) A set § with = is called a group if the postulates 1-4 are satisfied.

(iv) A semigroup (monoid or group) is called a commutative or an abelian
semigroup (monoid or group) if the postulate 5 is satisfied.

Figure 2.1 gives the relationship between semigroups, monoids, groups,
etc. where the numbers refer to the postulate number.

Set No operation

Postulates 1, 2

Semigroup
5 3

'
L Abelian semigrouLl
3 5
v i
r Abelian monoid
I 4 3

Abelian group

Fig. 2.1 Sets with one binary operation.

We interpret Fig. 2.1 as follows: A monoid satisfying postulate 4 is a group.
A group satisfying postulate 5 is an abelian group, etc.

Chapter 2: Mathematical Preliminaries B 39

We give below a few examples of sets with one binary operation:

(i) Z with addition is an abelian group.

(if) Z with multiplication is an abelian monoid. (It is not a group since it
does not satisfy the postulate 4.)

(i) {1, 2. 3, ...} with addition is a commutative semigroup but not a
monoid. (The identity element can be only 0. but 0 is not in the set.)

(iv) The power set 2 of A(A # @) with union is a commutative monoid.
(The identity element is @.)

(v) The set of all 2 x 2 matrices under multiplication is a monoid but not
an abelian monoid.

2.1.3 SeTS wiTH TwO BINARY OPERATIONS

Sometimes we come across sets with two binary operations defined on them
(for example, in the case of numbers we have addition and multiplication). Let
S be a set with two binary operations * and o. We give below 11 postulates
in the following way: '

(i) Postulates 1-5 refer to = postulates.
(i1) Postulates 6. 7. 8. 10 are simply the postulates 1. 2. 3, 5 for the binary
operation o.
(1i1) Postulate 9: If S under » satisfies the postulates 1-5 then for every x
in S. with x # e. there exists a unique element X" in S such that X’ o x =
x 0x = ¢, where ¢ is the identity element corresponding to o.
(iv) Postulate 11: Distriburiviry. For a. b, ¢. in §

ao(b=x=c)y=(aob)s(aoc

A set with one or more binary operations is called an algebraic system.
For example, groups. monoids, semigroups are algebraic systems with one
binary operation.

We now define some algebraic systems with two binary operations.

Definitions (i) A set with two binary operations = and o is called a ring if
(a) it is an abelian group w.r.t. . and (b) o satisfies the closure, associativity
and distributivity postulates (i.e. postulates 6. 7 and 11).

(i) A ring is called a commutative ring if the commutativity postulate is
satisfied for o.

(1i1) A commutative ring with unity is a commutative ring that satisfies the
identity postulate (i.e. postulate 8) for o.

(iv) A field is a set with two binary operations = and o if it satisfies the
postulates 1-11.

We now give below a few examples of sets with two binary operations:

(i) Z with addition and multiplication (in place of = and o) is a
commutative ring with identity. (The identity element w.r.t. addition is
0. and the identity element w.r.t. multiplication is 1.)

40 B Theory of Computer Science

(i1) The set of all rational numbers (i.e. fractions which are of the form
alb. where g is any integer and b is an integer different from zero)
1s a field. (The identity element w.r.t. multiplication is 1. The inverse
of a/b, alb # 0 is bla.)

(ii1) The set of all 2 X 2 matrices with matrix addition and matrix
multiplication is a ring with identity, but not a field.

(iv) The power set 24 (A # @) is also a set with two binary operations
w and M. The postulates satisfied by w and nare 1, 2, 3. 5, 6, 7. 8,
10 and 11. The power set 2* is not a group or a ring or a field. But
it is an abelian monoid w.r.t. both the operations w and M.

Figure 2.2 illustrates the relation between the various algebraic systems we
have introduced. The interpretation is as given in Fig. 2.1. The numbers refer
to postulates. For example, an abelian group satisfying the postulates 6, 7 and
11 is a ring.

Abelian group | 1-5
L

6,7, 11
1
Ring
10 8
v)
i Commutative ring I I Ring with identity
3 ; 10 T
Commutative ring
with identity
9

Field 1—11

Fig. 2.2 Sets with two binary operations.

2.1.4 RELATIONS

The concept of a relation is a basic concept in computer science as well as in
real life. This concept arises when we consider a pair of objects and compare
one with the other. For example, “being the father of* gives a relation between
two persons. We can express the relation by ordered pairs (for instance, ‘@ is
the father of 5° can be represented by the ordered pair (a, b)).

While executing a program. comparisons are made, and based on the result,
different tasks are performed. Thus in computer science the concept of relation
arises just as in the case of data structures.

Definition 2.2 A relation R in a set S is a collection of ordered pairs of
elements in § (i.e. a subset of § x §). When (x, v) is in R, we write xRy. When
{(x, v) is not in R. we write xR'y. -

Chapter 2: Mathematical Preliminaries B 41

EXAMPLE 2'.;]:'_
A relation R in Z can be defined by xRy if x > y.

Properties of Relations
(i) A relation R in S is reflexive if xRx for every x in S.
(i) A relation R in S is svmmetric if for x, v in S. vRx whenever xRy.
(iii) A relation R in S is rransitive if for x, v and 7 in S. xRz whenever xRy
and vRz.
We note that the relation given in Example 2.1 is neither reflexive nor
symimetric. but transitive.

EXAMPLE 2.2
A relation R in {1, 2. 3. 4. 5. 6} is given by
{(1,2). 2.3, 3. 4, & 4. & 5

This relation is not reflexive as 1R’1. It is not symmetric as 2R3 but 3R2. It
is also not transitive as 1R2 and 2R3 but 1R'3.

EXAMPLE 2.3

Let us define a relation R in {1. 2. 10} by aRb if a divides b. R is
reflexive and transitive but not svimmetric (3R6 but 6R'3).

EXAMPLE 2.4

If i, j, n are integers we say that i is congruent to j modulo n (written as
i=jmodulonori=jmodn)ifi—jis divisible by n. The “congruence modulo
#" 1is a relation which is reflexive and symmetric (if / — j is divisible by #, so
18710 Ifi=jmodnand j =k mod n, then we have i — j = an for some «
and j — k = bn for some b. So.

i—k=i~-j+j—k=an+bn
which means that i = £ mod n. Thus this relation is also transitive.

Definition 2.3 A relation R in a set S is called an equivalence relation if it is
reflexive. symmetric and transitive.

Example 2.5 gives an equivalence relation in Z

42 H Theory of Computer Science

EXAMPLE 2.5

We can define an equivalence relation R on any set S by defining aRb if
a = b. (Obviously, a = a for every a. So, R is reflexive. If @ = b then b = a.
So R is symmetric. Also, if « = b and b = ¢, then a = ¢. So R is transitive.)

EXAMPLE 2.6

Define a relation R on the set of all persons in New Delhi by aRb if the persons
a and b have the same date of birth. Then R is an equivalence relation.

Let us study this example more carefully. Corresponding to any day of the
year (say, 4th February), we can associate the set of all persons born on that
day. In this way the set of all persons in New Delhi can be partitioned into 366
subsets. In each of the 366 subsets, any two elements are related. This leads to
one more property of equivalence relations.

Definition 2.4 Let R be an equivalence relation on a set S. Let a € S. Then
C, is defined as

{b € S|aRb} ’
The C, is called an equivalence class containing a. In general, the/Ca’s are
called equivalence classes.

EXAMPLE 2.7

For the congruence modulo 3 relation on {1, 2, 7},
C, = {2, 5}, C, = {1, 4, 7}, C; = {3, 6}

For the equivalence relation ‘having the same birth day’ (discussed in Example
2.6), the set of persons born on 4th February is an equivalence class, and the
number of equivalence classes is 366. Also, we may note that the union of all
the 366 equivalence classes is the set of all persons in Delhi. This is true for
any equivalence relation because of the following theorem.

Theorem 2.1 Any equivalence relation R on a set S partitions S into disjoint
equivalence classes.

Proof let |J C, denote the union of distinct equivalence classes. We have to
prove that: 4<$

(1) S = U Cas

aeS

(i) C, n C, = B if C, and C, are different, i.e. C, # C,.
Let s € S. Then s € C, (since sRs, R being reflexive). But C, ¢ U C,.
aeS
So S ¢ U C,. By definition of C,, C, < S for every ain S. So U C, < S.

aes asS
Thus we have proved (i).

Before proving (ii), we may. note the following:
c, =G, if aRb 2.1

Chapter 2: Mathematical Preliminaries B 43

As aRb, we have bRa because R is symmetric. Let d € C, By definition of
C, we have aRd. As bRa and aRd. by transitivity of R, we get bRd. This
means d € C,. Thus we have proved C, < (. In a similar way we can show
that C, < C,;. Therefore. (2.1) is proved.

Now we prove (ii) by the method of contradiction (refer to Section 2.5).
We want to prove that C, » C, = @ if C, # C,. Suppose C, N C, # @. Then
there exists some element 4 in S such that d € C,and d € C,. Asd e C,
we have aRd. Similarly. we have DRd. By symmetry of R, dRb. As aRd
and dRb, by transitivity of R, we have aRb. Now we can use (2.1) to
conclude that C, = C,. But this is a contradiction (as C, # (). Therefore,
C, N C, = 9. Thus (it) is proved. |

If we apply Theorem 2.1 to the equivalence relation congruence modulo
3on {1.2, 3,4, 5 6.7}, we get

C1=C4=C7={1.4,7}
C.=Cs = {2, 5)

Cs = Cg = {3. 6}

and therefore,
1,2, ...71=C, v Cu G

EXERCISE Let S denote the set of all students in a particular college.
Define aRb if a and b study in the same class. What are the equivalence
classes? In what way does R partition S?

2.1.5 CLOSURE OF RELATIONS

A given relation R may not be reflexive or transitive. By adding more ordered
pairs to R we can make it reflexive or transitive. For example, consider a
relation R = {(1, 2), (2, 3). (1, 1). (2. 2)} in {1, 2, 3}. R is not reflexive as 3R'3,
But by adding (3. 3) to R, we get a reflexive relation. Also, R is not transitive
as 1R2 and 2R3 but IR’3. By adding the pair (1. 3). we get a relation
T={(1.2), (2, 3). (1. 1), (2, 2), (1, 3)} which is transitive. There are many
transitive relations 7 containing R. But the smallest among them is interesting.

Definition 2.5 Let R be a relation in a set S. Then the transitive closure of R
(denoted by R™) is the smallest transitive relation containing R.

Note: We can define reflexive closure and symmetric closure in a similar way.

Definition 2.6 Let R be a relation in S. Then the reflexive-transitive
closure of R (denoted by R*) is the smallest reflexive and transitive relation
containing R.

For constructing R* and R* we define the composite of two relations.
et R) and R, be the two relations in S. Then,

(i) RioR, = {(a. ¢) € Sx S|aRb and bR-c for some b € S}

(i) Rf = R, o R,

(i) R" =R o R, foralln272

44 = Theory of Computer Science

Note: For getting the elements of R; 0 R,, we combine (a, b) in R, and
(b, ¢) iIn R, to get (a, ¢) in R, o R-.

Theorem 2.2 ILet § be a finite set and R be a relation in S. Then the
transitive closure R* of R exists and R* = R U RZ U R®

EXAMPLE 2.38.

Let R = {(1. 2). (2. 3), (2, 4)} be a relation in {1. 2, 3, 4}. Find R".
Solution

R={(1.2), 2. 3), 2. 4}

= {(1, 2), (2.3, 2. D} o {(1. 2. (2, 3), 2, b}

= {(1. 3), (1. 4}
(We combine (a, ») and (b, ¢) in R to get (¢, ¢) in R%)
R=R oR={1L23(LHo{l2,23, 24 =29

(Here no pair {(a, b) in R” can be combined with any pair in R)—__

REZR =...= ¢ o

R*=R U R = {(1, 2). (2. 3). 2. 4). (1, 3), (1, 4)}

EXAMPLE 2.9

Let R = {(a. b), (b, ¢), (¢, a)}. Find R".

Solution
= {(a. b), (b, o), (¢, @)}
R o R= {{a. b), (b, ¢), (c, &)} o {{a, b), (b, ¢), (c, a)}
= {(a. o), (b,), (¢, b)}
(This 1s obtained by combining the pairs: (a, b) and (b, ¢), (b, ¢) and (¢, a),
and (¢, @) and (a, b).)
RP=R o R = {(a ¢), (b a), (¢, b)) 0 {(a b), (b, ©), (¢, a)}
= {{a, @), (b, b), (¢ o)}
R'=R o R = {(a a), (b b), (c. O} o {(a b), b ¢) (¢ a)}
{a. B). (b, ¢, (¢, @)} =R

So.
RR=R'oR=RoR=R, R=RoR=RO0R=R
R=R°oR=R'0OR=R'=R
Then any R" is one of R, R° or R*. Hence,
RF=RUR UR
= {(a b), (b o), (¢,), (a ¢ (b a), (c. b), (a, a), (b b), (¢ o)}
Note: R* = R* U {(a, a)|a € S}.

Chapter 2: Mathematical Preliminaries B 45

EXAMPLE 2.10

It R = {(a b), (b, ¢), (¢, @} is a relation in {a, b, ¢}, find R*

Solution
From Example 2.9,
R¥=R" U {(a, a), (b, b), (c, o)}
= {(a, b), (b, 0), (¢, @), (@ o) (b, a) (¢, b), (@ a), (b b), (c)}

EXAMPLE 2.11

What is the symmetric closure of relation R in a set S?

Solution

Symmetric closure of R = R W {(b, a)|aRb}.

2.1.6 FUNCTIONS ' N
The concept of a function arises when we want to associate a unique value (or
result) with a given argument (or input).

-

Definition 2.7 A function or map f from a set X to a set Y is a rule which
associates to every element x in X a unique element in ¥, which is denoted by
f(x). The element f(x) is called the image of x under f. The function is denoted
by fr X -» Y.

Functions can be defined either (i) by giving the images of all elements
of X, or (ii) by a computational rule which computes f{x) once x is given.

EXAMPLES (a) f: {1. 2. 3. 4} — {a, b, ¢} can be defined by f(1) = g,
f2)=¢ f3)=a fid) =D

(b) f: R = R can be defined by fix) = x> + 2x + 1 for every x in R.
(R denotes the set of all real numbers.)

Definition 2.8 f: X — Y is said to be one-to-one (or injective) if different
elements in X have different images. i.e. f(x;) # f(x») when x # x-.

Note: To prove that f is one-to-one, we prove the following: Assume
f(,\‘[) = f(x:) and show that X1 = Xo.

Definition 2.9 f: X — Y is onto (surjective) if every element y in Y is the
image of some element 1 in X.

Definition 2.10 f: X — Y is said to be a one-to-one correspondence or
bijection if f is both one-to-one and onto.

46 = Theory of Computer Science

EXAMPLE 2.12

[Z — Z given by fin) = 2n is one-to-one but not onto.

Solution
Suppose fin;) = fin,). Then 2n; = 2n,. So n; = n.. Hence f is one-to-one. It
is not onto since no odd integer can be the image of any element in Z (as any
image is even).

The following theorem distinguishes a finite set from an infinite set.

Theorem 2.3 Let S be a finite set. Then f: § — § is one-to-one iff it is onto.

Note: The above result is not true for infinite sets as Example 2.12 gives a
one-to-one function f: Z — Z which is not onto.

EXAMPLE 2.13

Show that f : R — R — {1} given by fix) = (x + 1)/(x — 1) is onto.

Solution

Let v € R. Suppose v = f(x) = (x + D/(x — 1). Then y(x - 1) = x + 1, ie.
yvi—x=1+vSo.x=(1+yo-1.As (1 +y/(y—-1) e Rforall y=#1.
y is the image of (1 + v)/(y — 1) in R ~ {1}. Thus, fis onto.

The Pigeonhole Principlet

Suppose a postman distributes 51 letters in 50 mailboxes (pigeonholes). Then
it is evident that some mailbox will contain at least two letters. This is
enunciated as a mathematical principle called the pigeonhole principle.

If n objects are distributed over m places and n > m, then some place
receives at least two objects.

EXAMPLE 2.14

If we select 11 natural numbers between 1 to 380, show that there exist at least
two among these 11 numbers whose difference is at most 38.

Solution
Arrange the numbers 1. 2, 3, ..., 380 in 10 boxes, the first box containing
1. 2. 3. ..., 38. the second containing 39, 40, 76, etc. There are 11

numbers to be selected. Take these numbers from the boxes. By the pigeonhole
principle, at least one box will contain two of these eleven numbers. These two
numbers differ by 38 or less.

" The pigeonhole principle is also called the Dirichlet drawer principle, named
after the French mathematician G. Lejeune Dirichlet (1805-1859).

Chapter 2: Mathematical Preliminaries 2 47

2.2 GRAPHS AND TREES

The theory of graphs is widely applied in many areas of computer science—
formal languages, compiler writing, artificial intelligence (Al), to mention only
a few. Also. the problems in computer science can be phrased as problems in
graphs. Our interest Hes mainly in trees (special types of graphs) and their
properties.

2.2.1 GRAPHS

Definition 2,11 A graph (or undirected graph) consists of (i) a nonempty set
V called the set of vertices. (i1) a set E called the set of edges. and (ii1) a map
@ which assigns to every edge a unique unordered pair of vertices.

Representation of a Graph

Usually a graph, namely the undirected graph. is represented by a diagram
where the vertices are represented by points or small circles, and the edges by
arcs joining the vertices of the associated pair (given by the map ®).

Figure 2.3. for example. gives an undirected graph. Thus. the unordered
pair {v, v} is associated with the edge ey: the pair (vo, v») is associated with
e (eg is a self-Joop. In general. an edge is called a self-loop if the vertices in
its associated pair coincide.)

Fig. 2.3 An undirected graph.

Definition 2.12 A directed graph (or digraph) consists of (i) a nonempty set
V called the set of vertices, (i) a set E called the set of edges, and (iil) a map
@ which assigns to every edge a unique ordered pair of vertices.

Representation of a Digraph

The representation is as in the case of undirected graphs except that the edges
e represented by directed arcs.

Figure 2.4. for example. gives a directed graph. The ordered pairs (v;, v3),
(v3. vy, (v, v3) are associated with the edges es, ey, e, respectively.

48 Y Theory of Computer Science

Fig. 2.4 A directed graph.

Definitions (i) If (v, v;) is associated with an edge ¢, then v; and v; are called
the end vertices of e; v; is called a predecessor of v; which is a successor of v;

In Fig. 2.3. v and v; are the end vertices of ex In Fig. 2.4, v, is a
predecessor of vy which is a successor of vo. Also, vy is a predecessor of v, and
successor of vi.

(it) If G is a digraph, the undirected graph corresponding to G 1s the
undirected graph obtained by considering the edges and vertices of G, but
ignoring the ‘direction’ of the edges. For example, the undirected graph

corresponding to the digraph given in Fig. 2.4 is shown in Fig. 2.5.

Fig. 2.5 A graph.

Definition 2.13 The degree of a vertex in a graph (directed or undirected) is
the number of edges with v as an end vertex. (A self-loop is counted twice while
calculating the degree.) In Fig. 2.3, deg(v|) = 2. deg{vs) = 3, deg(vy) = 5. In
Fig. 2.4, deg(v~) = 3, deg(vy) = 2.

We now mention the following theorem without proof.

Theorem 2.4 The number of vertices of odd degree in any graph (directed or
undirected) is even.

Definition 2.14 A path in a graph (undirected or directed) is an alternating
sequence of vertices and edges of the form vie;y-es ... v, 1€,1V,, beginning
and ending with vertices such that ¢; has v; and v;,; as its end vertices and
no edge or vertex is repeated in the sequence. The path is said to be a path
from v; to v,

For example. vienvieavs is a path in Fig. 2.3. It is a path from v, to v>. In
Fig. 2.4. vieyvae3v5 is a path from v to vo. viepa is also a path from vy to v,

Chapter 2: Mathematical Preliminaries = 49

And viesviesvs is a path from vy to vo. We call vie v4e511 a divected path since
the edges e4 and e5 have the forward direction. (But v e-vsesva is not a directed
path as e~ is in the forward direction and e; is in the backward direction.)

Definition 2.15 A graph (directed or undirected) is connected if there is a
path between every pair of vertices.
The graphs given by Figs. 2.3 and 2.4, for example. are connected.

Definition 2.16 A circuit in a graph is an alternating sequence vie;vaen . ..
e, v, of vertices and edges starting and ending in the same vertex such that
e; has v; and vy, as the end vertices and no edge or vertex other than v, is
repeated.

In Fig. 2.3. for example. vaesvaesvaeqvs, Vieal3e vaesvoe vy are circuits. In
Fig. 2.4, viesvieavaeyy and vaesvaesyyesyo are circuits.

2.2.2 TREES

Definition 2.17 A graph (directed or undirected) is called a tree if it is
connected and has no circuits.

The graphs given in Figs. 2.6 and 2.7, for example, are trees. The graphs
given in Figs. 2.3 and 2.4 are not trees.

Note: A directed graph G is a tree iff the corresponding undirected graph
is a tree.

Fig. 2.6 A tree with four vertices.

©
O,

Fig. 2.7 A tree with seven vertices.

We now discuss some properties of trees (both directed and undirected)
used in developing transition systems and studying grammar rules.

50 & Theory of Computer Science

Property 1 A tree is a connected graph with no circuits or loops.

Property 2 In a tree there is one and only one path between every pair of
vertices.

Property 3 If in a graph there is a unique (i.e. one and only one) path
between every pair of vertices, then the graph is a tree.

Property 4 A tree with n vertices has n — 1 edges.

Property 5 1If a connected graph with n vertices has n — 1 edges, then it is
a tree.

Property 6 If a graph with no circuits has n vertices and n — 1 edges, then
it is a tree. -

A leaf in a tree can be defined as a vertex of degree one. The vertices
other than leaves are called internal vertices.

In Fig. 2.6. for example, vy, v3, v4 are leaves and v; is an internal vertex.
In Fig. 2.7. va, Vs, v vo are leaves and vy, vs, v, are internal vertices.

The following definition of ordered trees will be used for representing
derivations in context-free grammars.

Definition 2.18 An ordered directed tree is a digraph satisfying the following
conditions:

T,: There is one vertex called the root of the tree which is distinguished
from all the other vertices and the root has no predecessors.

T~ There is a directed path from the root to every other vertex.

T;5: Every vertex except the root has exactly one predecessor.

T,: The successors of each vertex are ordered ‘from the left’.

Note: The condition 7, of the definition becomes evident once we have the
diagram of the graph.

Figure 2.7 is an ordered tree with v, as the root. Figure 2.8 also gives an
ordered directed tree with v, as the root. In this figure the successors of v are
ordered as v-vi. The successors of vy are ordered as vsvg.

A

Fig. 2.8 An ordered directed tree.

Chapter 2: Mathematical Preliminaries = 51

By adopting the following convention, we can simplify Fig. 2.8. The root
is at the top. The directed edges are represented by arrows pointing downwards.
As all the arrows point downwards, the directed edges can be simply
represented by lines sloping downwards, as illustrated in Fig. 2.9.

Vi

S

Fig. 2.9 Representation of an ordered directed tree.

Note: An ordered directed tree is connected (which follows from 75). It has
no circuits (because of T3). Hence an ordered directed tree is a tree (see
Definition 2.17).

As we use only the ordered directed trees in applications to grammars, we
refer to ordered directed trees as simply trees.

Definition 2.19 A binary tree is a tree in which the degree of the root is 2 and
the remaining vertices are of degree 1 or 3.

Note: In abinary tree any vertex has at most two successors. For example, the
trees given by Figs. 2.11 and 2.12 are binary trees. The tree given by Fig. 2.9
is not a binary tree.

Theorem 2.5 The number of vertices in a binary tree is odd.

Proof Let n be the number of vertices. The root is of degree 2 and the
remaining n- 1 vertices are of odd degree (by Definition 2.19). By
Theorem 2.4, n — 1 is even and hence n is odd. |

We now introduce some more terminology regarding trees:

(i) A son of a vertex v is a successor of 1.

(ii) The father of v is the predecessor of v.

(ii1) If there is a directed path from v, to v», v; is called an ancestor of v,
and v- is called a descendant of v,. (Convention: v, is an ancestor of
itself and also a descendant of itself.)

(iv) The number of edges in a path is called the length of the path.

(v) The height of a tree is the length of a longest path from the root. For
example, for the tree given by Fig. 2.9, the height is 2. (Actually there
are three longest paths, vi — v — vy, Vi = V3 = Vs, V] — ¥y —> Vg
Each is of length 2.)

(vi) A vertex v in a tree is at level k if there 1s a path of length k& from the
root to the vertex v (the maximum possible level in a tree is the height
of the tree).

52 & Theory of Computer Science

Figure 2.10, for example. gives a tree where the levels of vertices are
indicaied.

Root

Level 0

Level 1

N
Level 2 <—© & Level 2 b

Level 3

Fig. 2.10 [lustration of levels of vertices.

EXAMPLE 2.15

For a binary tree 7 with n vertices, show that the minimum possible height
is Mogo(n + 1) — 1. where[k7 is the smallest integer 2 &, and the maximum
possible height is (n — 1)/2.

Solution

In a binary tree the root is at level 0. As every vertex can have at most two
successors. we have at most two vertices at level 1. at most 4 vertices at level

2, etc. So the maximum number of vertices in a binary tree of height k is

T+2+2 4 - + 2 As Thas n vertices. 1 +2 + 27 + -~ + 28 2 n, fe.
(@M — DI2 ~1) 2 1, so k > logs(n + 1) — 1. As k is an integer, the smallest
possible value for k is [loga(n + 1) — 17 Thus the minimum possible height
is loga(n + 1) - 1.

To get the maximum possible height. we proceed in a similar way. In
a binary tree we have the root at zero level and at least two vertices at level
1.2, When T is of height &, we have at least 1 + 2 + - - - + 2 (2 repeated
k times) vertices. So, 1 + 2k < n, ie. £ £ (n — 1)/2. But, n is odd by
Theorem 2.4. So (n — 1)/2 is an integer. Hence the maximum possible value
for kis (m = 1)/2.

'EXAMPLE 2.16

When n = 9. the trees with minimum and maximum height are shown
in Figs. 2.11 and 2.12 respectively. The height of the tree in Fig. 2.11 i3
Mog»(9 + 1) — 11 = 3. For the tree in Fig. 2.12. the height = (9 — 1)/2 = 4.

Chapter 2: Mathematical Preliminaries = 53

Fig. 2.11 Binary tree of minimum height with 9 vertices.

—

Fig. 2.12 Binary tree of maximum height with 9 vertices.

EXAMPLE 2.17

Prove that the number of leaves in a binary tree T is (n + 1)/2, where n is
the number of vertices.

Solution

Let m be the number of leaves in a tree with » vertices. The root is of degree
2 and the remaining n — m — 1 vertices are of degree 3. As T has n vertices,
it has n — 1 edges (by Property 4). As each edge is counted twice while
calculating the degrees of its end vertices. 2(n — 1) = the sum of degrees of all
vertices = 2 + m + 3(n — m — 1). Solving for m, we get m = (n + 1)/2.

EXAMPLE 2.18

For the tree shown in Fig. 2.13. answer the following questions:

(a) Which vertices are leaves and which internal vertices?

54 & Theory of Computer Science

(b) Which vertices are the sons of 5?

(c) Which vertex is the father of 5?

(d) What is the length of the path from 1 to 9?
(e) What is the left-right order of leaves?

(f) What is the height of the tree?

Fig. 2.13 The directed tree for Example 2.18.

Solutions

(a) 10, 4, 9, 8, 6 are leaves. 1, 2, 3. 5, 7 are internal vertices.
(by 7 and 8 are the sons of 5.

(c) 3 is the father of 5.

(d) Four (the pathis 1 -3 5557 - 9).

(&) 10-4-9-8-6.

(fy Four (1 - 3 - 5 — 7 — 9 is the longest path).

2.3 STRINGS AND THEIR PROPERTIES

A string over an alphabet set I is a finite sequence of symbols from Z.

NOTATION: Z* denotes the set of all strings (including A, the empty string)
over the alphabet set L. That is, % = Z* —~ {A}.

2.3.1 OPERATIONS ON STRINGS

The basic operation for strings is the binary concatenation operation. We
define this operation as follows: Let x and y be two strings in Z* Let us form
a new string 7 by placing v after x, i.e. £ = xv. The siring z is said to be
obtained by concatenation of x and v.

Chapter 2: Maihematical Preliminaries &= 55

EXAMPLE 2.19

Find xy and yx, where

(a) x = 010, y=1
(b) x = aA, v = ALGOL

Solution
(a) xy = 0101, yx = 1010.
(b) xy = an ALGOL
yx = ALGOL aA.

We give below some basic properties of concatenation.

Property 1 Concatenation on a set Z* is associative since for each x, y, z in
¥ x(y2) = ()2

Property 2 Identity element. The set £* has an identity element A wur.t.
the binary operation of concatenation as

A = Ax = x for every x in X*
Property 3 I* has left and right cancellations. For x, y, z in Z%
v = 7y implies x = y (left cancellation)
xz = vz implies x = y (right cancellation)
Property 4 For x, y in £* we have
lxy| = [x] +|¥]
where | x|, | y]. | x| denote the lengths of the strings x, v, xy, respectively.

We introduce below some more operations on strings.

Transpose Operation

We extend the concatenation operation to define the transpose operation as
follows:
For any x in £* and a in X,
(xa) = a(x)’

For example. (aaabab)’ is babaaa.

Palindrome. A palindrome is a string which is the same whether written
forward or backward, e.g. Malayalam. A palindrome of even length can be
obtained by concatenation of a string and its transpose.

Prefix and suffix of a string. A prefix of a string is a substring of leading
symbols of that string. For example, w is a prefix of y if there exists y" in Z*
such that y = wy’. Tuen we write w < y. For example, the string 123 has four
prefixes, i.e. A, 1, 12, 123.

Similarly, a suffix of a string is a substring of trailing symbols of that
string, 1.e. w is a suffix of y if there exists ¥ € X* such that y = v'w. For
example, the string 123 has four suffixes, ie. A, 3, 23, 123.

56 & Theory of Computer Science

Theorem 2.6 (Levi’s theorem) Let v, w, x and y € £* and vw = xy. Then:

(i) there exists a unique string z in X* such that v = xz and y = zw if

vl > e .
(i) v=x y=wide z=Aif |v] = |x]; AN
(iii) there exists a umique string z in X* such that x = vz, and w = zy if
vl < x|

Proof We shall give a very simple proof by representing the strings by a
diagram (see Fig. 2.14). 1

x y

Case 1: |vi»lx] v=xz y=zw

1% w
X Yy
Case2: |v|=Qh} v=x w=y
-— —_—
v w
v z Y
1%

L ¥ i j

Case 3 |vi<ix] x=vz w=zy

Fig. 2.14 Hlustration of Levi's theorem.

2.3.2 TERMINAL AND NONTERMINAL SYMBOLS

The definitions in this section will be used in subsequent chapters.

A terminal symbol is a unique indivisible object used in the generation of
strings.

A nonterminal symbol is a unique object but divisible, used in the
generation of strings. A nonterminal symbol will be constructed from the
terminal symbols; the number of terminal symbols in a nonterrninal symbol
may vary; it is also called a variable. In a natural language, e.g. English, the
letters a, b, A, B, etc. are terminals and the words boy, cat, dog, go are
nonterminal symbols. In programming languages. A, B, C, ..., Z, 1, =, begin,
and. if, then, etc. are terminal symbolis.

The tollowing will be a variable in Pascal:

< For statement > — for < control vanable > : =
< for list > do < statement >

Chapter 2: Mathematical Preliminaries & 57

2.4 PRINCIPLE OF INDUCTION

The process of reasoning from general observations to specific truths is called
induction.

The following properties apply to the set N of natural numbersﬁﬂd\the
principle of induction. N

Property 1 Zero is a natural number.

Property 2 The successor of any natural number 1s also a natural number.
Property 3 Zero is not the successor of any natural number.

Property 4 No two natural numbers have the same successor.

Property § Let a property P(n) be defined for every natural number n. If

(i} P(0) is true. and (ii) P(successor of n) is true whenever P(x) is true, then
P(n) is true for all n.

A proof by complete enumeration of all possible combinations is called
perfect induction. e.g. proof by truth rable.

The method of proof by induction ¢an be used to prove a property P(n) for
all n.

2.4.1 METHOD OF PROOF BY INDUCTION
This method consists of three basic steps:
Step 1 Prove P(m) for n = 0/1. This is called the proof for the basis.

Step 2 Assume the result/properties tor P(n). This is called the induction
hvpothesis.

Step 3 Prove P(n + 1) using the induction hypothesis.

EXAMPLE 2.20

Provethat 1 + 3+ 3+ ... +r= n:, for all n > 0, where 7 is an odd integer
and 7 is the number of terms in the sum. (Note: r = 2n — 1)
Solution

(@) Proof for the basis. Forn =1 LHS. =1 and RHS. = 1° = 1. Hence
the result is true for n = 1.
(b) By induction hypothesis. we have 1 + 3+ 5+ - + r=n". As r =211,

LHS. =1+3+5+ -+ Q2n-1=n
(¢c) Wehavetoprove that 1 + 3 + 5+ -+ 7+ r+ 2 =(n+ 1}3:
LHS. =1 +3+5+ - +7r+(r+2)

= +r+2=n+22i-1+2=0n+ 1)y =RHS.

58 E Theory of Computer Science

EXAMPLE 2.21

Prove the following theorem by induction:

1+2+3 4+ +n=nn+DR2

Solution
(ay Proof for the basis. Forn = 1, LH.S. = 1 and
RHS. =11+ Dr2=1

(b) Assume 1 + 2 + 3 + -+ + n = nn + 1)/2.

{c) We have to prove: _
1+2+3+ - +m+Ly=m+ DHn+ 2)2
1+2+3+---+n+m+ 1
nn + 12 + (n + 1) (by induction hypothesis)

(n+ Dn + 2)/2 (on simplification)

The proof by induction can be modified as explained in the following
section.

2.4.2 MODIFIED METHOD OF INDUCTION

Three steps are involved in the modified proof by induction.
Step 1 Proof for the basis (n = 0/1).
Step 2 Assume the result/properties for all positive integers < n + 1.

Step 3 Prove the result/properties using the induction hypothesis (i.e. step 2),
for n + 1.

Example 2.22 below illustrates the modified method of induction. The
method we shall apply will be clear once we mention the induction hypothesis.

EXAMPLE 2.22

Prove the following theorem by induction: A tree with # vertices has (n — 1)
edges.

Solution

Forn =1, 2, the following trees can be drawn (see Fig. 2.15). So the theorem
is true for n = 1, 2. Thus, there is basis for induction.

O

n=1 n=2
Fig. 2.15 Trees with one or two vertices.

Chapter 2: Mathematical Preliminaries B 59

Consider a tree 7 with (n + 1) vertices as shown in Fig. 2.16. Let e be
an edge connecting the vertices v; and v, There is a unique path between v;
and v; through the edge e. (Property of a tree: There is a unique path between
every pair of vertices in a tree.) Thus, the deletion of e from the graph will
divide the graph into two subtrees. Let n; and n, be the number of vertices
in the subtrees. As n; < n and n, € n, by induction hypothesis, the total
number of edges in the subtrees is n; — 1 + 1» — 1, i.e. n — 2. So. the number
of edges in Tis n — 2 + 1 =n — 1 (by including the deleted edge e). By
induction, the result is true for all trees.

Fig. 216 Tree T with (n + 1) vertices.

EXAMPLE 2.23

Two definitions of palindromes are given below. Prove by induction that the
two definitions are equivalent.

Definition 1 A palindrome is a string that reads the same forward and
backward.

Definition 2 (i) A is a palindrome.
(i) If @ is any symbol, the string ¢ is a palindrome.
(iii) If a is any symbol and x is a palindrome, then axa is a palindrome.
(iv) Nothing is a palindrome unless it follows from (i)—(iii).

Solution

Let x be a string which satisfies the Definition 1, i.e. x reads the same forward
and backward. By induction on the length of x we prove that x satisfies
the Definition 2.

If | x| < 1. then x = a or A. Since x is a palindrome by Definition 1. A
and a are also palindromes (hence (i) and (ii)), i.e. there is basis for induction.
If | x| > 1. then x = awa. where w. by Definition 1, is a palindrome: hence the
rule (iii). Thus, if x satisfies the Definition 1. then it satisfies the Definition 2.

Let x be a string which is constructed using the Definition 2. We
show by induction on | x| that it satisfies the Definition 1. There is basis
for induction by rule (ii). Assume the result for all strings with length < n.
Let x be a string of length n. As x has to be constructed using the
rule (iil). x = ava, where v is a palirdrome. As v is a palindrome by
Definition 2 and |y] < n, it satisfies the Definition 1. So, x = aya also satisfies
the Definition 1.

60 & Theory of Computer Science

EXAMPLE 2.24

Prove the pigeonhole principle.

Proof We prove the theorem by induction on m. If m = 1 and # > 1. then
all these n items must be placed in a single place. Hence the theorem is true
form= 1.

Assume the theorem for m. Consider the case of m + 1 places. We prove
the theorem for n = m + 2. (If n > m + 2. already one of the m + 1 places will
receive at least two objects from m + 2 objects. by what we are going to prove.)
Consider a particular place, say, P.

Three cases arise:

(1) P contains at least two objects.

(i) P contains one object

(iti) P contains no object.

In case (i). the theorem is proved for n = m + 2. Consider case (i}. As P
contains one object, the remaining m places should receive m + 1 objects. By
induction hypothesis, at least one place (not the same as P) contains at least two
objects. In case (i), m + 2 objects are distributed among m places. Once again,
by induction hypothesis, one place {other than P) receives at least two objects.
Hence. in all the cases, the theorem is true for (m + 1) places. By the principle
of induction. the theorem is true for all m.

2.4.3 SIMULTANEOUS INDUCTION

Sometimes we may have a pair of related identities. To prove these, we may
apply two induction proofs simultaneously. Example 2.25 illustrates this
method.

EXAMPLE 225

A sequence Fy. Fy. F>. ... called the sequence of Fibonacci numbers (named
after the Italian mathematician Leonardo Fibonacci) is defined recursively as
follows:

Foo=F,+ F,_,. Fo=0. Fp=1
Prove that:
Py: Fl+FL =h, (2.2)
O, F.ufF, + F,F,_ = F, (2.3)
Proof We prove the two identities (2.2) and (2.3} simultaneously by

-

simultaneous induction. P, and O, are Fl +F =F a*ld FFy + FiFy = F,

Chapter 2: Mathematical Preliminaries 2 61

respectively. As Fy = 0, F| = 1. F- =1, these are true. Hence there is basis
for induction. Assume P, and Q,. So

F> 1+ F = Fy (2.2)

F!H-}Fn + F}an»—l = FZU (23\)
Now,

Fz +F2 = (Fn—l + F71>: + F;I:
=F., = F +2F,_F, +F
=(F}, +F))+F,_F, +F, +F,_F,

=F,, +F +(F,_, + F))F, + F,F,

n-1

=(712—1+E72)+F;1+1E2+FF

ntn-1
= Flufl + FZn (by (23))

= Fer]
This proves P,.;.
Also,
F

lz'ZEPl +F = (FrHI + Fn)FnH + (F;7 + F;z—l)Fn

n+ltn

= 11:+1+F E, + F,F, 1+Fn2

n+1t 7 ntn-

-

= (F)z:l + Fn:) + (FzH—IFH + Fanfl)

= FZH-}—I + Fln (By P,,H.] and (23))

= Fln¢2
This proves Q..
So. by induction (2.2) and (2.3} are true for all n.
We conclude this chapter with the method of proof by contradiction.

2.5 PROOF BY CONTRADICTION

Suppose we want to prove a property P under certain conditions. The method
of proof by contradiction is as follows:

Assume that property P is not true. By logical reasoning get a conclusion
which is either absurd or contradicts the given conditions.

The following example illustrates the use of proof by contradiction and
proof by induction.

EXAMPLE 2.26

Prove that there is no string x in {a. b}* such that ax = xb. (For the definition
of strings. refer to Section 2.3.)

62 Theory of Computer Science

Proof We prove the result by induction on the length of x. When | x| = 1.
x =g or x = b. In both cases ax # xb. So there is basis for induction. Assume
the result for any string whose length is less than n. Let x be any string of length
n. We prove that ax # xb through proof by contradiction. Suppose ax = xb. As
a is the first symbol on the L.H.S., the first symbol of x is a. As b is the last
symbol on RH.S., the last symbol of x is . So. we can write x as avb with
|¥] =n - 2. This means aayb = aybb which implies ay = yb. This contradicts
the induction hypothesis. Thus, ax # xb. By induction the result is true for all
strings.

2.6 SUPPLEMENTARY EXAMPLES

EXAMPLE 2.27

In a survey of 600 people, it was found that:
250 read the Week
260 read the Reader’s Digest
260 read the Frontline
90 read both Week and Frontline
110 read both Week and Reader’s Digest
80 read both Reader’s Digest and Frontline
30 read all the three magazines.
(a) Find the number of people who read at least one of the three
magazines.
(b) Find the number of people who read none of these magazines.
(c¢) Find the number of people who read exactly one magazine.

Solution

Let W, R, F denote the set of people who read Week, Reader’s Digest
and Frontline, respectively. We use the Venn diagram to represent these sets (see
Fig. 2.17).

Fig. 217 Venn diagram for Example 2.27.

Chapter 2: Mathematical Preliminaries H 63

1t is given that:

|W| =250, |R| =260, |F| =260, |Wn F|=90,
|WA R =110, |RNF| =80, [WARAMF|=30
|W U R U F|

= |Wl+{R| +|F|-|WNF|-|WAR|-|RNF|+|WnNnRNF]|
= 250 + 260 + 260 - 90 — 110 — 80 + 30 = 520

So the solution for (a) is 520.
(b) The number of people who read none of the magazines

= 600 — 520 = 80

Using the data, we fill up the various regions of the Venn diagram.
(¢) The number of people who read only one magazine

= 80 + 100 + 120 = 300
EXAMPLE 2.28

Provethat A U B U OF =AU B niAu ()

Solution
AuBuUO)=AvAUBUC
=AVAUB UC=@AuBu@dul
Hence (A UBU)Y = (A w B N (A U O (by DeMorgan’s law)

EXAMPLE 2.29

Define aRb if b = ¢* for some positive integer k; @, b € = Show that R is
a partial ordering. (A relation is a partial ordering if it is reflexive,
antisymmetric and transitive.)

Solution

As a = a', we have aRa. To prove that R is antisymmetric, we have to prove
that gRb and bRa = a = b. As aRb, we have b = d*. As bRa, we have a = b
Hence a = b' = (d*)' = &“. This is possible only when one of the following holds
good:

1) a =1
(i) a =-1
(i) K= 1

In case (1), b = =1 S0a=h0.
In case (ii), @ = -1 and so k[is odd. This implies that both k and [are
odd. So
b=d=)=-1=a
In case (1), Kl = 1. As k and [are positive integers, k = [= 1. S0

b=d=a

64 B Theory of Compiiter Science

If aRb and bRe, then b = o* and ¢ = b for some k, I. Therefore, ¢ = a'.
Hence aRe.
EXAMPLE 2.30.

Suppose A = {1, 2. ..., 9} and ~ relation on A X A is defined by (m. n) ~
(p. q) it m + ¢ = n + p, then prove that ~ is an equivalence relation.

Solution

(m, ny ~ (m, n) since m + n = n + m. So ~ is reflexive. If (m, n) ~ (p, q).
then m + g = n + p: thus p + n = ¢ + m. Hence (p. q) ~ (m, n). So ~ is
symmetric.
It m,)y ~ (p. ¢) and (p, q) ~ (v, 5), then
m+qg=n+p and p+s=qg+r
Adding these,
m+qg+p+s=n+p+g+vr
That is,
m+s=n+r
which proves (m, n) ~ (r. s).
Hence ~ is an equivalence relation.

EXAMPLE 2.31

Iff:A— Band g : B — C are one-to-one, prove that g of is one-to-one.

Solution

Let us assume that g o f(@;) = g o f(a). Then, g(fla))) = g flan)). As g is
one-to-one. fla;) = f(as). As fis one-to-one, a, = a-. Hence g of is one-to-

one.
EXAM PLE 2.32

Show that a connected graph G with n vertices and n — 1 edges (n 2 3) has
at least one leaf

Solution

G has n vertices and n — 1 edges. Every edge is counted twice while computing
the degree of each of its end vertices. Hence
Z deg(v) = 2(n — 1)

where summation is taken over all vertices of G.

So, Zdeg(v) is the sum of n positive integers. If deg(v) = 2 for every
vertex v of G, then

2n < ¥ deg(v) = 2(n - 1)

which is not possible.

Hence deg(v) = 1 for at least one vertex v of G and this vertex v is a leaf.

Chapter 2: Mathematical Preliminaries = 65

'EXAMPLE 2.33

Prove Property 5 stated in Section 2.2.2.

Solution
We prove the result by induction on »n. Obviously, there is basis for induction.
Assume the result for connected graphs with n — 1 vertices. Let T be a
connected graph with » vertices and n — 1 edges. By Example 2.32, T has at
least one leaf v (say).

Drop the vertex v+ and the (single) edge incident with v. The resulting graph
G’ is still connected and has n — 1 vertices and » — 2 edges. By induction
hypothesis. G" is a tree. S0 G’ has no circuits and hence G also has no circuits.
(Addition of the edge incident with v does not create a circuit in .) Hence G
is a tree. By the principle of induction, the property is true for all a.

EXAMPLE 2.34°
A person climbs a staircase by climbing either (1) two steps in a single stride

or (i) only one step in a single stride. Find a formula for S(n), where S(1)
denotes the number of ways of climbing n stairs.

Solution
When there is a single stair, there is only one way of climbing up. Hence
S(1) = L. For climbing two stairs, there are two ways. viz. two steps in a single
stride or two single steps. So S(2) = 2. In reaching » steps, the person can climb
either one step or two sieps in his last stride. For these two choices, the number
of ways are S(n — 1) and S(n — 2).
50,
Sty = S(n - 1) + Sn - 2)

Thus. S(n) = F(n). the nth Fibonacci number (refer to Exercise 2.20.

at the end of this chapter).

| EXAMPLE 2.35

How many subsets does the set {1, 2, n} have that contain no two
censecutive integers?

Solution

Let S, denote the number of subsets of {1, 2, n} having the desired
property. If n = 1, Sy = {0, {1} = 2. It n =2, then S- = |{@, {1}. {2} =3
Consider a set A with n elements. If a subset having the desired property
contains 7, it cannot contain n — 1. So there are S,_» such subsets. If it does
not contain #n. there are S,_; such subsets. S0 5, =5, +S5,-. As S, =2 = F;
and §, = 3 = Fo,
S;: = Fm—l

the (n + 2)th Fibonacci number.

66 = Theory of Computer Science

EXAMPLE 2.36

If » 2 1, show that

-1+ 22+ v+ nnl=n+ H -1

Solution
We prove the result by induction on n. If n=1.then1-1'=1=(1+1)! - 1.
So there is basis for induction. '
Assume the result for #n, i.e.
I+ 22+ vl =+ D -1
Then,
1 +22V+ v +nnl+n+ D-(n+ D
=+ D —~1+m+1D-(n+ D!
=n+DIA+n+DH-1=Mnw+2DI -1
Hence the result is true for n + 1 and by the principle of induction, the
result i1s true for all n > 1.

EXAMPLE 2.37

Using induction, prove that 2" < #u! for all n 2 4.

Solution

For n = 4. 2* < 4!, So there is basis for induction. Assume 2" < nl.
Then.
2 =22 <t 2 <+ Dal =0 + 1)

By induction, the result is true for all n = 4.

SELF-TEST

Choose the correct answer to Questions 1-10:
I. A A N (B NBis
{a) A b) A B (¢) B (d) none of these

{3

. The reflexive—transitive closure of the relation {(1, 2), (2, 3)} is
(a) {(1, 25. (2. 3, (1. 3)}
(b) {1, 2). 2. 3), (1, 3). 3. D}
(¢) {1, D. (2. 2), 3, 3). (1. 3). (1, 2), (2. 3)}
(dy {(1, D. @2, 2), (3. 3), (1, 3)}

3. There exists a function

Fi {12, ... 100 — {2.3, 4.5 6.7,9.10. 11, 12}

Chapter 2: Mathematical Preliminaries B 67

which is

(a) one-to-one and onto
(b) one-to-one but not onto
{¢) onto but not one-to-one
{d) none of these

4. A tree with 10 vertices has

(a) 10 edges (b) 9 edges (¢) 8 edges (d) 7 edges.
5. The number of binary trees with 7 vertices is
(@) 7 (b) 6 (c) 2 (d) 1

6. Let N=1{1,2,3,...}. Then f: N — N defined by f(n) = n + 1 18
(a) onto but not one-to-one
(b) one-tc-one but not onto
(c) hoth one-to-one and onto
(d) neither one-to-one nor onto

7. QST is a substring of
(a) PORST
(b) ORSTU
(¢y QSPOSTUT
(d) QOSSTT

8. If x =01, v =101 and £ = 011. then xyzy is
(a) 01011011
(by 01101101011
(¢) 01011101101
(d) 01101011101

9. A binary tree with seven vertices has
(a) one leaf
(b) two leaves
(¢) three leaves
(d) four leaves

10. A binary operation o on N = {1, 2, 3. ...} is defined by a 0 b =
a + 2b. Then:
{a) o is commutative
(b) o is associative
(c) N has an identity element with respect to o
(d) none of these

EXERCISES

21 If A = {a b} and B = {b, ¢}, find:
(a) (A U B)*
(b) (A n B)*
(¢) A® U B¥

68 =

Theory of Computer Science

2.2

[
("

24

2.8

2.9
2.10

(dy A¥ n B*
(e) (A - B)*
(f) (B — A

Let S ={a b}* Forx, v € S, define x 0y = xy, i.e. x 0 y is obtained

by concatenating x and .

(a) Is § closed under o?

(b) Is o associative?

(¢) Does S have the identity element with respect to o?

(d) Is o commutative?

Let S = 2% where X is any nonempty set. For A, B < X, let

AoB=AuUB

{a) Is o commutative and associative?

(b) Does S have the identity element with respect to o7

{(¢) If Ao B=Ao(does it imply that B = C?

Test whether the following statements are true or false. Justify your

answer.

(a) The set of all odd integers is a monoid under multiplication.

(b} The set of all complex numbers is a group under multiplication.

{¢) The set of all integers under the operation o given by ¢ 0 b =
a + b — ab is a monoid.

(d) 2° under symmetric difference y defined by AVB = A - By v
(B — A) is an abelian group.

i

Show that the following relations are equivalence relations:

(a) On a set S. aRb if a = b.

(b) On the set of all lines in the plane, [|Rl, if [; is parallel to i-.

(¢} On N = {0, 1. 2, ...}. mRn if m differs from n by a multiple
of 3.

Show that the following are not equivalence relations:

(a) On aset S, aRb if a # b.-

(b) On the set of lines in the plane, /;Rl- if [is perpendicular to ;.
{cy On N = {0, 1. 2. ...}. mRn if m divides n

(d) On § = {1. 2. ..., 10}. aRb it a + b = 10.

For x, y in {a, b}* define a relation R by xRy if |x| = |v|. Show that
R 18 an equivalence relation. What are the equivalence classes?

For x, v in {a, b}*, define a relation R by xRy if x is a substring of
¥ (x is a substring of v if v = Zjxz~» for some string I, z0). Is R an
equivalence relation?

Let R = {(L. 2), (2. 3). (1. 4), (4. 2), (3. 4} Find R, R*

Find R* for the following relations:

(a) R = {(l.). (1. 2). (2, 1), (2, 3), (3, 2)}

by R = {(L.). (2. 3. 3, 4), (3. 2)}

Chapter 2: Mathematical Preliminaries H 69

211
2.12

213

(© R ={(L 1). (2, 2). 3. 3. & &}
(d) R={(1. 2), 2 3, 3, 1. & 4}

If R is an equivalence relation on S, what can you say about R*, R*?

Let f:{a, b}* — {a, b}™ be given by f(x) = ax for every x € {a, b}*.
Show that f is one-to-one but not onto.

Let ¢:{a, b}* — {a b}* be given by g(x) = x’. Show that g is
one-to-one and onto.

Give an example of (a) a tree with six vertices and (b) a binary tree
with seven vertices.

For the tree T given in Fig. 2.18, answer the following questions:
(a) Is T a binary tree?

(b) Which vertices are the leaves of T7

(¢) How many internal vertices are in 77

(d) What is the height of 77

(e) What is the left-to-right ordering of leaves?

(f) Which vertex is the father of 57

(g) Which vertices are the sons of 37

og RO
/J\ /

/ 7N

Fig. 2.18 The tree for Exercise 2.15.

In a get-together. show that the number of persons who know an odd
number of persons is even.

[Hinr: Use a graph.]

If X is a finite set. show that [25] = 217

Prove the following by the principle of induction:

7 .)
() Z = nin + 1)6(n+1
k=1

. 1 n
(b) Z kk+D (n+ D)

(¢) 107" — 1 is divisible by 11 for all n > 1.

70 B Theory of Computer Science
2.19 Prove the following by the principle of induction:
@ l+4+T+ - +GBn-2) = ___"(3”7‘1)

2.26

2.21

2.22
2.23

~

by 2" >nforalln>1 .
(¢) If £(2) = 2 and f(2%) = 2f(2*Y) + 3. then F(2X) = (5/2) - 2k - 3.

The Fibonacci numbers are defined in the following way:

F) =1, F(1) = 1. Fn+ 1) =Fn + Fn - 1)

Prove by induction that:

i

@ Fn + 1) = 2, Fk

k=0

0 FQn +2) = Y, FQk+ 1) + 1
k=1

Show that the maximum number of edges in a simple graph (i.e. a
nn—1)

graph having no self-loops or parallel edges) is

If w e {a b}* satisfies the relation abw = wab, show that |w| is even.

Suppose there are an infinite number of envelopes arranged one after
another and each envelope contains the instruction ‘open the next
envelope’. If a person opens an envelope, he has to then follow the
instruction contained therein. Show that if a person opens the first
envelope. he has to open all the envelopes.

The Theory of
Automata

In this chapter we begin with the study of automaton. We deal with transition
systems which are more general than finite automata. We define the
acceptability of strings by finite automata and prove that nondeterministic finite
automata have the same capability as the deterministic automata as far as
acceptability is concerned. Besides, we discuss the equivalence of Mealy and
Moore models. Finally. in the last section. we give an algorithm to construct a
minimum state automaton equivalent to a given finite automaton.

3.1 DEFINITION OF AN AUTOMATON

We shall give the most general definition of an automaton and later modify
it to computer applications. An automaton is defined as a system where
energy, materials and information are transformed. transmitted and used for
performing some functions without direct participation of man. Examples are
automatic machine tools, automatic packing machines. and automatic photo
printing machines.

In computer science the term ‘automaton’ means ‘discrete automaton’ and
is defined in a more abstract way as shown in Fig. 3.1.

l{ ———! Adtomaton f——— O,

44:92. -4y +——mm O

Fig. 3.1 Model of a discrete automaton.

71

72 W

Theory of Computer Science

The characteristics of automaton are now described.

(1)

{i1)

(ii1)

(1v)

(V)

Note:

Inputr. At each of the discrete instants of time 1y, #5, 1, the input

_values [i. Io. [, each of which can take a finite number of fixed

values from the input alphabet X, are applied to the iput side of the
model shown in Fig. 3.1.

Output. 0,, O, O, are the outputs of the model, each of which -
can take a finite number of fixed values from an output O. g

States. At any instant of time the automaton can be in one of the
states gy, g - - . 4

State relation. The next state of an automaton at any instant of time
is determined by the present state and the present input.

Qutput relation. The output 1s related to either state only or to both
the input and the state. It should be noted that at any instant of time
the automaton is in some staie. On ‘reading’ an input symbol. the
automaton moves to a next state which is given by the state relation.

An automaton in which the output depends only on the input is called

an automaton without a memory. An automaton in which the output depends
on the states as well. is called automaton with a finite memory. An automaton
in which the output depends only on the states of the machine is called a
Moore machine. An automaton in which the output depends on the state as
well as on the input at any instant of time is called a Mealy machine.

EXAMPLE 3.1

Consider the simple shift register shown in Fig. 3.2 as a finite-state machine
and study its operation.

—_—iD Q D Q D Q D Q
Serial Serial
input output
{—°> > —o> >
| .
| | |
| | |
|
* 'S .
Fig. 3.2 A 4-bit serial shift register using D flip-fiops.
Solution
The shift register (Fig. 3.2) can have 2% = 16 states (0000, 0001, 1111).

and one serial input and one serial output. The input alphabet is £ = {0. 1}.
and the output alphabet 1s O = {0, 1}. This 4-bit serial shift register can be

farther represented as in Fig. 3.3.

Chapter 3: The Theory of Automata = 73

G1. Gy, - .
. o¥

G15: 916

i

Fig. 3.3 A shift register as a finite-state machine.

From the operation. it is clear that the output will depend upon both the input
and the state and so it is a Mealy machine.

In general. any sequential machine behaviour can be represented by an
automaton.

3.2 DESCRIPTION OF A FINITE AUTOMATON

Definition 3.1 Analytically, a finite automaton can be represented by a
3-tuple (Q, X. 8. gy F). where

(i) Q is a finite nonempty set of states.

(ii) X is a finite nonempty set of inputs called the inpur alphabet.

{iii) dis a function which maps Q X X into Q and is usually called the direct
rransition function. This is the function which describes the change of
states during the transition. This mapping is usually represented by a
transition table or a transition diagram.

{iv) gg € Q is the initial state.

(v) F < Q is the set of final states. It is assumed here that there may be
more than one final state.

Note: The transition function which maps ¢ X X* into ¢ (i.e. maps a state
and a string of input symbols including the empty string into a state) is called
the indirect transition funcrion. We shall use the same symbol 8 to represent
both types of transition functions and the difference can be easily identified
by the nature of mapping (symbol or a string), i.e. by the argument. & is also
called the next state function. The above model can be represented graphically by
Fig. 3.4.

String being processed

ey

C i i, S Input
| | | tape

LH —— Reading head

Finite
centrol

Fig. 3.4 Block diagram of a finite automaton.

74 H

Theory of Computer Science

Figure 3.4 is the block diagram for a finite automaton. The various
components are explained as follows:

1)

(i1)

(iii)

Inpur tape. The input tape is divided into squares, each square
containing a single symbol from the input alphabet Z. The end squares
of the tape contain the endmarker ¢ at the left end and the end-
marker § at the right end. The absence of endmarkers inc/ii/ca%es%ﬁéf
the tape is of infinite length. The left-to-right sequence of symbols
between the two endmarkers is the input string to be processed.

Reading head. 'The head examines only one square at a time and can
move one square either to the left or to the right. For further analysis,
we restrict the movement of the R-head only to the right side.

Finite control. The input to the finite control will usually be the
symbol under the R-head, say g, and the present state of the machine,
say g, to give the following outputs: (a) A motion of R-head along
the tape to the next square {in some a null move, i.e. the R-head
remaining to the same square is permitted); (b) the next state of the
finite state machine given by &gq. a).

3.3 TRANSITION SYSTEMS

A transition graph or a transition system is a finite directed labelled graph in
which each vertex (or node) represents a state and the directed edges indicate
the transition of a state and the edges are labelled with input/output.

A typical transition system is shown in Fig. 3.5. In the figure, the initial
state is represented by a circle with an arrow pointing towards it, the final state
by two concentric circles, and the other states are represented by just a circle.
The edges are labelled by input/output (e.g. by 1/0 or 1/1). For example, if the
system is in the state g, and the input 1 is applied, the system moves to state
q; as there is a directed edge from g, to ¢, with label 1/0. It outputs O.

0/0 1/0 17

0/0
Fig. 3.5 A transition system.

We now give the (analytical) definition of a transition system.

Definition 3.2 A transition system is a 5-tuple (Q, Z, 6 Qo F). where

(1)

(i1)
(iii)

Q, X and F are the finite nonempty set of states, the input alphabet,
and the set of final states, respectively. as in the case of finite automata;
Oy < 0. and Qg is nonempty: and
0 is a finite subset of Q x ¥ x (.

Chapter 3: The Theory of Autecmata H 75

In other words, if (¢, w. g-) i3 in . it means that the graph starts at the
vertex ¢;, goes aiong a set of edges, and reaches the vertex ¢,. The
concatenation of the label of all the edges thus encountered is w.

Definition 3.3 "A transition system accepts a string w in Z¥ if

(i) there exists a path which originates from some Initial state, goes
along the arrows, and terminates at some final state; and

(ii) the path value obtained by concatenation of all edge-labels of thefpﬁfh

is equal to w.

‘Example 3.2

Consider the transition system given in Fig. 3.6.

é}‘ 01 @ A/ f@
d
| A0 /\0,\/\\0

0/

08
\

110
Fig. 3.6 Transition system for Example 3.2.

Determine the initial states, the final states. and the acceptability of 101011,
111010.

Solution

The initial states are g, and ¢,. There 1s only one final state, namely ga.
The path-value of gggng-gs is 101011, As g5 is the final state, 101011 is

accepted by the transition system. But, 111010 is not accepted by the transition

system as there is no path with path value 1110610.

Note: Every finite automaton (Q, Z. & g, F) can be viewed as a transition
system (Q, L, 8" Oy, F) if we take Qg = {go} and 6" = {(¢, w, &(g, w)lq €
Q, w € X*}. But a transition system need not be a finite automaton. For
example. a transition system may contain more than one initial state.

3.4 PROPERTIES OF TRANSITION FUNCTIONS

Property 1 5(g, A) = ¢ is a finite automaton. This means that the state of the
system can be changed only by an input symbol.

76 & Theory of Computer Science

Property 2 For all strings w and input symbols «,
8(g, aw) = 8(8(g, a), w)
6(q, wa) = 0(8(g, w), a)

This property gives the state after the automaton consumes or reads the
first symbol of a string aw and the state after the automaton consumes a prefix~
of the string wa. -

EXAMPLE 3.3

Prove that for any transition function & and for any two input strings x and y,
6(g. xv) = 6(6(q, x), ¥) (3.1
Proof By the method of induction on |y |, i.e. length of y.
Basis: When |y| =1 y=ae X
L.HS. of (3.1)= &(g, xa)
8(6(g, x), @) by Property 2

RH.S. of (3.1)

Assume the result. 1.e. (3.1) for all strings x and strings y with | v| = n. Let
v be a string of length n + 1. Write v = y;a@ where |y, | = n.

LHS. of 3.1)= 8(g, xvia) = d(g, x@), x| = Xy
o(dlg, x), a) by Property 2
(dlg, v, @)

8(8(8(g, x), v,), @) by induction hypothesis
g, x), yia@)
&(8(8(q, x), v), a) by Property 2

RH.S. of (3.1)

Hence, L.H.S. = R.H.S. This proves (3.1) for any string y of length n + 1.
By the principle of induction. (3.1) is true for all strings. |

EXAMPLE 3.4

Prove that if &g, x) = &(g, v). then &(g, xz) = &(g, yz) for all strings z in 27,

Solution
&g, x2) = 8(8(q, x) 2) by Example 3.3
= 8(0(g, ¥), 2) (3.2)
By Example 3.3,
8g, v2) = 8(8(g, ¥). 2)
= 8lg, x7) (3.3

Chapter 3: The Theory of Automata B 77

3.5 ACCEPTABILITY OF A STRING BY A FINITE
AUTOMATON
Definition 3.4 A string x is accepted by a finite automaton
M=(0 X 06 g, F)

if {gg. x) = q for some g € F.
This is basically the acceptability of a string by the final state.

Note: A final state is also called an accepting state.

EXAMPLE 3.5

Consider the finite state machine whose transition function ¢ is given by Table 3.1
in the form of a wansition table. Here. O = {g0 91, ¢~ g3}, = = {0, 1},
F = {go}. Give the entire sequence of states for the input string 110001.

TABLE 3.1 Transition Function Table for Example 3.5

State Input

2 a
9z Jo
do 3
s 2

@)
q
2

Solution
l J
&go. 110101) = 8(g,.10101)
L

8(gq, 0101)
|

4

8(q3.01)
!

S(gi, D
6(gp. A)
6}

Hence,

| i 0 1 0 1
o > Gy >4y > 4 > 43 >4 > gy

The symbol { indicates that the current input symbol is being processed by the
machine. ’

78 = Theory of Computer Science

3.6 NONDETERMINISTIC FINITE STATE MACHINES

We explain the concept of nondeterministic finite automaton using a transition
diagram (Fig. 3.7).

Fig. 3.7 Transition system representing nondeterministic automaton.

It the automaton is in a state {g,} and the input symbol is 0, what will be
the next state? From the figure it is clear that the next state will be either {gy}
or {g,}. Thus some moves of the machine cannot be determined uniquely by
the input symbol! and the present state. Such machines are called
nondeterministic automata. the formal definition of which is now given.

Definition 3.5 A nondeterministic finite automaton (NDFA) is a 5-tuple
(0, .0, qy F), where

{i) Q is a finite nonempty set of states;

(i) X is a finite nonempty set of inputs;

(iii) & is the transition function mapping from Q X X into 2¢ which is the

power set of @, the set of all subsets of Q;

(iv) gq € @ is the initial state; and

(v) F < Q is the set of final states.
We note that the difference between the deterministic and nondeterministic
automata is only in 8. For deterministic automaton (DFA), the outcome is a
state, i.e. an element of O; for nondeterministic automaton the outcome is a
subset of Q.

Consider, for example, the nondeterministic automaton whose transition
diagram is described by Fig. 3.8.

The sequence of states for the input string 0100 is given in Fig. 3.9. Hence,

gy, 0100) = {go, g3 qga}

Since ¢, 1s an accepting state, the input string 0100 will be accepted by
the nondeterministic automaton.

Chapter 3: The Theory of Automata = 79

=D
<
)

Fig. 3.8 Transition system for a nondeterministic automaton.

0
Sk 0 0
\)
\
93

N : go—0
N
\ 0 0
a4

d3 d3

g 5]

94
Fig. 3.9 States reached while processing 0100.

Definition 3.6 A string w € X* is accepted by NDFA M if 8(g,, w) contains
some final state.

Note: As M is nondeterministic, 6(g; w) may have more than one state. So
w is accepted by M if a final state is one among the possible states that M can
reach on application of w.

We can visualize the working of an NDFA M as follows: Suppose M
reaches a state ¢ and reads an input symbol a. If 8(g, @) has n elements,
the automaton splits into » identical copies of itself: each copy pursuing
one choice determined by an element of &8(g, a). This type of parallel
computation continues. When a copy encounters (g, a) for which 6(q, a) = 9,
this copy of the machine ‘dies’; however the computation is pursued by the
other copies. If any one of the copies of M reaches a final state after
processing the entire input string w. then we say that M accepts w. Another
way of looking at the computation by an NDFA M is to assign a tree structure
for computing 8(q. w). The root of the tree has the label g. For every input
symbol in w, the tree branches itself. When a leat of the tree has a final state
as 1ts label. then M accepts w.

Definition 3.7 The set accepted by an automaton M (deterministic or
nondeterministic) is the set of all input strings accepted by M. It is denoted by
T(M).

80 & Theory of Computer Science

3.7 THE EQUIVALENCE OF DFA AND NDFA

We naturally try to find the relation between DFA and NDFA. Intuitively we
now feel that:

(i) A DFA can simulate the behaviour of NDFA by increasing the number
of states. (In other words, a DFA (0, I, 4, ¢, F) can be viewed as an
NDFA (Q, Z. &', g5, F) by defining &(q. a) = {6(g, &)})

(it) Any NDFA is a more general machine without being more powertul.

We now give a theorem on equivalence of DFA and NDFA.

Theorem 3.1 For every NDFA, there exists a DFA which simulates the
behaviour of NDFA. Alternatively, if L is the set accepted by NDFA, then there
exists a DFA which also accepts L.

Proof 1etM=(0, %, d gy F)be an NDFA accepting L. We construct a DFA

M’ as:
M =(Q,% 0 gy F)
where
(1) O = 2¢ (any state in Q° is denoted by [g.. g2, - . .. 4, where g, g»,

e g € 0)

(i) q'o = [gol; and

(iil) F’ is the set of all subsets of Q containing an element of F.

Before defining 8", let us look at the construction of @', ¢ and F’. M is
initially at ¢, But on application of an input symbol, say a, M can reach any
of the states &(gg, @). To describe M. just after the application of the input
symbol a, we require all the possible states that M can reach after the
application of a. So, M has to remember all these possible states at any instant
of time. Hence the states of M’ are defined as subsets of Q. As M starts with
the initial state gq, g7 is defined as [gp]. A string w belongs to T(M) if a final
state is one of the possible states that M reaches on processing w. So, a final
state in M’ (i.e. an element of F’) is any subset of Q containing some final
state of M.

Now we can define &~

(iv) 6Ugi. g2 - qi), @) = 8(qi, @) U &gy, @) U ... U 6(g; a)
Equivalently.

Uar g2 - @l @ = [p1 .. pjl
if and only if

o{qr .. qi}. @ = {py, pa. ... pj}.
Before proving L = T(M"), we prove an auxiliary result
Mgo. x) = lg1. - gl (3.4)
if and only if 8(qy, x) = {gi. q;} for all x in T*.
We prove by induction on |x|. the ‘if* part, i.e.
(go.) = gy g2 - G (3.5)

it &g 0 = {gn .. aih-

Chapter 3: The Theory of Automata = 81

When |x] = 0. 8(gs, A) = {g,}. and by definition of &, &(g} A) =
g6 = [qo)- So. (3.5) is true for x with x| = 0. Thus there is basis for induction.

Assume that (3.5) is true for all strings y with |y| < m. Let x be a
string of length m + 1. We can write x as va, where |y] = m and a € X. Let
Ogo. v) = {pi. ... p;} and 8gy va) = {r, r ... i} As [¥] < m, by
induction hypothesis we have

61gh. » =1Ipi - pil (3.6)
Also.
(r 7o) = By va) = 8(8(go, V). @) = 8(ipy . py) @)
By definition of &
O'pre oo plh @ =t T (3.7
Hence.
'gh. ya)= 676°(¢y. ¥ @ = 8pr. ... pil. @ by (3.6)
= [r .1y by (3.7)

Thus we have proved (3.5) for x = va.

By induction. (3.5) is true for all strings x. The other part {i.e. the ‘only if’
part), can be proved similarly. and so (3.4) is established.

Now. x € T(M) if and only if &(g, x) contains a state of F. By (3.4).
&gy x) contains a state of F if and only if 6%(q7%, x) is in F’. Hence. x € T(M)
if and only if x € T(M"). This proves that DFA M accepts L. |

Note: In the construction of a deterministic finite automaton M; equivalent to
a given nondeterministic automaton M, the only difficult part is the construction
of 6" for M. By definition.

%
o'lgr -+ g @) = 91 6(gi. a)

So we have to apply 0 to (g,. a) for each i = 1. 2, k and take their
union to get 8°(lg; ... g4l a).

When & for M is given in terms of a state table. the construction is simpler.
8(g;, a) is given by the row corresponding to ¢; and the column corresponding

to a. To construct 8'([q, . .. g¢]. @), consider the states appearing in the rows
cotresponding 1o ¢;. ¢, and the column corresponding to a. These states
constitute 8'([q; ... q]. a).

Note: We write & as § itself when there is no ambiguity. We also mark the
initial state with — and the final state with a circle in the state table.

EXAMPLE 3.6

Construct a deterministic automaton equivalent to

M= ({go, ai}. {0. 1} 6. g5, {qo])

where 0 is defined by its state table (see Table 3.2).

82 B Theory of Computer Science

TABLE 3.2 State Table for Example 3.6

State/T 0 1
— @ o ai
ok gs o, Gi

Solution
For the deterministic automaton M.
(1) the states are subsets of {gy. g1}, i.e. 0. g5l (g0, g11- 1g1 L
{(i1) [gg} s the initial state:
(i) [go] and [qy, ¢, are the final states as these are the omly states

containing gq; and
(iv) & is defined by the state table given by Table 3.3.

TABLE 3.3 State Table of M, for Example 3.6

State/x 0 1
))]
[qo] [Go] (94]
{g4] [a4] [a0. g4
(0. o4] [go. Gl [90, g4l

The states gy and g, appear in the rows corresponding to g, and g, and the
column corresponding to 0. So, 8({q5. ¢11 0) = [g0. g1]-

When M has n states, the corresponding finite automaton has 2" states.
However, we need not construct 0 for all these 2" states, but only for those
states that are reachable from [gq]. This is because our interest is only in
constructing M; accepting T(M). So, we start the construction of o for [gg]. We
continue by considering only the states appearing earlier under the input
columns and constructing 8 for such states. We halt when no more new states
appear under the input columns.

EXAMPLE 3.7

Find a deterministic acceptor equivalent to

M = ({90- g1 92}, {a. b}, 6. qo. {q2})
where § is as given by Table 3.4.

TABLE 3.4 State Table for Example 3.7

State/Z a b

—0s Go. G4 o7}
Gy : o G4
@ o, G4

Chapter 3: The Theory of Automata = 83

Solution
‘The deterministic -automaton M, equivalent to M is defined as follows:
M, = (29 {a, b}, 6 [q0). F))
where
F = {lq:1. lgo- g2 L9 g:2). g0 91, 421}
We start the construction by considering [g,] first. We get {¢-] and [go. ¢]. Then
we construct 6 for [g-] and [gg. q1]. [g1, ¢-] is a new state appearing under the

input columns. After constructing o for {g;, ¢-], we do not get any new states
and so we terminate the construction of §. The state table is given by Table 3.5.

TABLE 3.5 State Table of M, for Example 3.7

State/L a b
[0} (90, g4 [92]
(g:]) {q0, g4

{90, g4 {90 g1 [g:. g2

[q:. g2l [90] [90. g4l

"ﬁXAMPLE 3.8

Construct a deterministic finite automaton equivalent to
M =gy g1, q» gz} 10, 1D, & go. {g3h)

where & is given by Table 3.6.

TABLE 3.6 State Table for Example 3.8

State/Z a b
- Go. Gs 9
g4 [o7) G4
9z G3 Ga
@ %

Solution
Let Q = {gn. g1, g~ gz}. Then the deterministic automaton M, equivalent to
M is given by
M, = (29 {a. b}. 8. [q0l, F)
where F consists of;
l93). [g0- 4:) 191 g3)- [go- a3). [qo- g1 g2l 1g0. 920 g3] [ars 920 g3l
and
[90- 1+ g2 45]
and where ¢ is defined by the state table given by Table 3.7.

Al

84 = Theory of Computer Scierice

i

TABLE 3.7 State Table of M, for Example 3.8

Statel T a b

Qe s ol [90)

(90, g4} 92 g1 q:l {90, g4l
{92 940 @3] [90- g1 G G3] {90, g1, 93}
[0, 0. 2l (G0, &1 2] [Go. g1, G2]

e 01 G2 il lge G+ 02 Gl [0, 94, G2, 3]

3.8 MEALY AND MOORE MODELS
3.8.1 FINITE AUTOMATA wiTH QUTPUTS

The finite automata which we considered in the earlier sections have binary
output. i.e. either they accept the string or they do not accept the string. This
acceptability was decided on the basis of reachability of the final state by the
initial state. Now. we remove this restriction and consider the model where the
outputs can be chosen from some other alphabet. The value of the output
function Z(r) in the most general case is a function of the present state g(7) and
the vpresent input x(#), i.e.

Z(ry = AMg(n, x(n)

where 4 is called the output function. This generalized model is usually called

the Mealy machine. I the output function Z(7) depends only on the present state

and is independent of the current input, the output function may be written as
Zty = Mq(h)

This restricted model 1s called the Moore machine. 1t is more convenient to use

Moore machine in automata theory. We now give the most general definitions

of these machines.

Definition 3.8 A Moore machine is a six-tuple (0. Z, A, § A, g). where

(1) @ is a hinite set of states:
{11y X is the input alphaber:
{iii} A is the output alphabet:
(iv) ¢ is the transition function T x ¢ into O

(v) A is the output function mapping Q into A:; and
{vi} gy is the initial starte.

Definition 3.9 A Tvleaﬁy machine is a six-tuple (Q, Z, A, 8. 4, gq). where
all the symbols except 4 have the same meaning as in the Moore machine. 4
is the oufput function mapping £ X @ into A.

For example. Table 3.8 describes a Moore machine. The initial state ¢y is

marked with an arrow. The table defines & and A

Chapter 3: The Theory of Automata E 85

TABLE 3.8 A Moore Machine

Present state Next state & Output
a=2o0 a=1 A
-y % g 0
o o 9z 1
aQz %53 qs 0
93 Gs Yo 0

For the input string 0111, the transition of states is given by ¢y — ¢z —
go — g1 — ¢~ The output string is 00010. For the input string A, the output
is Algy) = 0.

Transition Table 3.9 describes a Mealy machine.

TABLE 3.9 A Mealy Machine

Present state Next state
a =20 a=1
State oulput state output
=g d: 0 gz 0
7] q- 1 o) 0
9 a: 1 o 1
G4 Gs 1 Gz ¢

Note: For the input string 0011. the transition of states is given by ¢; = ¢
> ¢~ = g4 — ¢~ and the output string is 0100. In the case of a Mealy machine.
we get an output only on the application of an input symbol. So for the mput
string A, the output is only A. It may be observed that in the case of a Moore
machine, we get A(g,) for the input string A.

Remark A finite automaton can be converted into a Moore machine by
miroducing A = {0. 1} and defining A{g) = 1 if g € F and Alg) = 0 if
g ¢ F.

For a Moore machine if the input string is of length 5, the output string
is of length n + 1. The first output is A(gy) for all outpur strings. In the case
of a Mealy machine if the input string is of length », the output string is also
of the same length n.

3.8.2 PROCEDURE FOR TRANSFORMING A MEALY MACHINE
INTO A MOORE MACHINE

W= develop procedures for transforming a Mealy machine into a Moore
¥ & R

machine and vice versa so that for a given input string the output strings are the

same (except for the first svmbol) in both the machines.

86 & Theory of Computer Science

EXAMPLE 3.9

Consider the Mealy machine described by the transition table given by

Table 3.10. Construct a Moore machine which is equivalent to the -Mealy

machine.
TABLE 3.10 Mealy Machine of Example 3.9
Present state Next state
Input & = 0 Input a = 1
state oufpuf state oulput
- e 0 7 0
2 gs 1 94 ¢
93 9z 1 ol 1
Ga Qs 1 3 0
Solution

At the first stage we develop the procedure so that both machines accept
exactly the same set of input sequences. We look into the next state column
for any state, say g, and determine the number of different outputs associated
with ¢; in that column.

We split ¢; into several different states, the number of such states being
equal to the number of different outputs associated with g;. For example, in this
problem. g, is associated with one output 1 and ¢. is associated with two
different outputs 0 and 1. Similarly. g5 and g, are associated with the outputs
0 and 0. 1. respectively. So. we split g» into g,y and g,;. Similarly, g, is split
into g and g4;. Now Table 3.10 can be reconstructed for the new states as
given by Table 3.11.

TABLE 3.11 State Table for Example 3.9

Present state Next state
Input a = 0 Input a = 1
state output state output
-Gy G 0 G20 0
Q20 a4 1 Gao 0
21 q4 1 (2% 0
s Qo 1 a1 1
Gag a1 1 q3 0
Ga- Qa1 1 gs 0

The pair of states and outputs in the next state column can be rearranged as
given by Table 3.12.

Chapter 3: The Theory of Automata E 87
TABLE 3.12 Revised State Tabie for Example 3.9
Present state Next state Output
a=g0 a=1

G- gz a0 1

4z g Gao v

Q21 g- Qao 1

s Gz q 0
Qag 028 4] o __

Gas Ga- Tz 1

Table 3.12 gives the Moore machine. Here we observe that the ininal state
¢ is associated with output 1. This means that with input A we get an oufput
of 1, if the machine starts at state ¢,. Thus this Moore machine accepts a zero-
length sequence (null sequence) which is not accepted by the Mealy machine.
To overcome this situation. either we must neglect the response of a Moore
machine to input A, or we must add a new starting state ¢g), whose state
transitions are identical with those of ¢, but whose output is 0. So Table 3.12

is transformed to Table 3.13.

TABLE 3.13 Moore Machine of Example 3.9
Present state Next state Qutput
a=0 a=1
=g g3 G 0
41 Gz Jac 1
e g: Gao Y
Gza G Ga 1
43 24 G o
Gan Gar 3 Y
Q41 Gse gs 1

From the foregoing procedure it is clear that if we have an

m-output, 7n1-

state Mealy machine. the corresponding m-output Moore machine has no more

than m» + 1 states.

3.8.3 PROCEDURE FOR TRANSFORMING A MOORE MACHINE
INTO A MEALY MACHINE

We modify the acceptability of input string by a Moore machine by neglecting
the response of the Moore machine to input A. We thus define that Mealy
Machine M and Moore Machine M’ are equivalent if for all input strings w,
b7 y(w) = Zyp(w), where b is the output of the Moore machine for its initial
state. We give the following result Let M; = (Q, X, A, § 4) be a Moore
machine. Then the following procedure may be adopted to construct an

equivalent Mealy machine M-.

88 Theory of Computer Science

M{ B

Construction
(iy We have to define the output function A” for the Mealy machine as
a function of the present state and the input symbol. We define A’ by
Mg, @) = Mg, a)) for all states ¢ and inpui symbols «.
(i1} The transition function is the same as that of the given Moore
machine.

EXAMPLE 3.10
Construct a Mealy Machine which is equivalent to the Moore machine given
by Table 3.14.

TABLE 3.14 WMoore Machine of Exampie 3.10

Present state Next state Output
a=0 a=1
—q5 Gz a1 0
o8 [ef} [e)) 1
5] gz ds3 0
o) s) 0
Solution

We must follow the reverse procedure of converting a Mealy machine into a
Moore machine. In the case of the Moore machine, for every input symbol we
form the pair consisting of the next state and the corresponding output and
reconstruct the table for the Mealy Machine. For example, the states ¢; and ¢,
in the next state column should be associated with outputs 0 and 1, respectively.
The transition table for the Mealy machine is given by Table 3.15.

TABLE 3.15 Mealy Machine of Example 3.10

Present state Next state
a=40 a =1
state output state cutput
g g- 1 G2 0
q: Gz 0 Gs 0
Gz 3 0 9o 0

Nete: We can reduce the number of states in any modei by considering states
with identical transitions. If two states have identical transitons (i.e. the rows
corresponding to these two states are identical), then we can delete one of them.

EXAMPLE 3.11
Consider the Moore machine described by the transition table given by
Table 3.16. Construct the corresponding Mealy machine.

. Chapter 3: The Theory of Automata 2 89
TABLE 3.18 WMoore Machine of Example 3.11
Present state Next state Cutput
a=20 a =1
—#d4 G Gz G
9 el s G
s g Yz 1

Solution
We construct the transition table as in Table 3.17 by associating the output
with the transitions. '

in Table 3.17. the rows corresponding to ¢- and g are identical. So. we can
delete one of the two states. 1.e. g~ or ¢;. We delete ¢.. Table 3.18 gives the
reconstructed table.

TABLE 317 Transition Table for Example 3.11

Present state Next state
a=0 g =1
State output state output
= ai g g: 0
¢z g 0 s 1
& 9 0 93 1

s

TABLE 3.18 Mealy Machine of Example 3.1

Present state Next state
a=2a0 a =1
state output siate outputt
—{+ g- 0 @2 0
G2 g 0 % 1

In Table 3.18. we have deleted the gs-row and replaced gz by ¢» 1n the other
TOWS.

EXAMPLE 3.12
Consider a Mealy machine represented by Fig. 3.10. Construct a Moore
machine equivalent to this Mealy machine.

90 HE Theory of Computer Science

Start 0/Z,

0/Z,

112,

a3

12,
Fig. 3.10 Mealy machine of Exampie 3.12.

Solution

Let us convert the transition diagram into the transition Table 3.19. For the
given problem: g, is not associated with any output; g, is associated with two
different outputs Z; and Z»; ¢ is associated with two different outputs Z; and
Z,. Thus we must split ¢- into g», and ¢-» with outputs Z; and Z,, respectively
and ¢, into ¢+, and g3, with outputs Z, and Z-, respectively. Table 3.19 may be
reconstructed as Table 3.20.

TABLE 3.19 Transition Table for Example 3.12

Present state Next state
a=a0 a =1
state output state output
-G, G2 Z; 5 Zy
2 G2 Z; 3 Z,
3 Q2 Z; G Z

TABLE 3.20 Transition Table of Moore Machine for Example 3.12

Present state Next state Output
a=290 a =1
-1 Gos Gz
G G2 Q1 Z,
G2 G2z Ga1 Z,
Qa1 Q21 932 Z,
G2 Q21 Q32 Z;

Figure 3.11 gives the transition diagram of the required Moore machine.

Chapter 3: The Theory of Automata & 91

Fig. 3.11 Moore machine of Example 3.12.

3.9 MINIMIZATION OF FINITE AUTOMATA

In this section we construct an automaton with the minimum number of states
equivalent to a given automaton M.

As our interest lies only in strings accepted by M, what really matters is
whether a state is a final state or not. We define some relations in Q.

Definition 3.10 Two states g, and g~ are equivalent (denoted by ¢, = g,) if
both 6(g,. x) and &(g~, x) are final states. or both of them are nonfinal states
for all x e X*

As it is difficult to construct (g, x) and 8(q>, x) for all x € Z* (there

are an infinite number of strings in ¥*)., we give one more definition.

Definition 3.11 Two states ¢; and g- are k-equivalent (k = 0) if both
O(q, x) and 8(g~. x) are final states or both nonfinal states for all strings x
of length k or less. In particular, any two final states are 0-equivalent and any
two nonfinal states are also 0-equivalent.

We mention some of the properties of these relations.

Property 1 The relations we have defined. i.e. equivalence and k-equivalence,
are equivalence relations, i.e. they are reflexive. symmetric and transitive.

Property 2 By Theorem 2.1, these induce partitions of . These partitions
can be denoted by 7 and 7. respectively. The elements of 7, are k-equivalence
classes.

Property 3 If g, and g- are k-equivalent for all £ = 0. then they are equivalent.
Property 4 1If g, and ¢~ are (k + 1)-equivalent. then they are k-equivalent.

Property 5 =7, = 7, for some n. (7, denotes the set of equivalence classes
under n-equivalence.)

The following result is the key to the construction of minimum state
automaton.
RESULT Two states ¢; and ¢» are (k + 1)-equivalent if (i) they are
k-equivalent; (ii) 6(q,, a) and O(g~ a) are also k-equivalent for every a € ZX.

92 & Theory of Computer Science

Proof We prove the result by contradiction. Suppose ¢, and g, are not
(k + 1)-equivalent. Then there exists a string w = aw, of length &k + 1 such that
O(gy, aw,) is a final state and 8(g,, aw,) is not a final state (or vice versa; the
proof is similar). So 8(8(gy. a), w;) is a final state and 8(6(g», a), w;) is not
a final state. As w; is a string of length k, 8(q,, @) and (g, @) are not
k-equivalent. This is a contradiction. and hence the result is proved. 1

Using the previous result we can construct the (k + 1)-equivalence classes
once the k-equivalence classes are known.

3.9.1 CONSTRUCTION OF MINIMUM AUTOMATON

Step 1 (Construction of 7). By definition of 0-equivalence, 1, = {0, 07 }
where QU is the set of all final states and QJ = Q0 - Q.

Step 2 (Construction of 7., from 7). Let O/ be any subset in 7. If g, and
g- are in Qf, they are (k + 1)-equivalent provided &(q;, @) and 8(q,, a) are
k-equivalent. Find out whether 6(g,,) and 8(g,, a) are in the same equivalence
class in 7, for every a € X. If so. g, and g- are (k + 1)-equivalent. In this way,
Q/ is further divided into (k + 1)-equivalence classes. Repeat this for every o/
in m, to get all the elements of m.

Step 3 Construct 7, forn = 1. 2, untl 7, = 7.

Step 4 (Construction of minimum automaton). For the required minimum
state automaton. the states are the equivalence classes obtained in step 3. Le. the
elements of 7, The state table is obtained by replacing a state ¢ by the
corresponding equivalence class {g].

Remark In the above construction, the crucial part is the construction of
equivalence classes; for, after getting the equivalence classes, the table for
minimum automaton is obtained by replacing states by the corresponding
equivalence classes. The number of equivalence classes is less than or equal to
| @ |. Consider an equivalence class [qi] = {q1, ¢ - ... qi}. If q; is reached
while processing wyw, € T(M) with 6(gg, w;) = gq,. then d(g;, w») € F. So,
8(g;, w>) € Ffori=2...., k Thus we see that g;. i = 2, . . ., k is reached on
processing some w € T(M) iff g, is reached on processing w, i.e. g; of [g;] can
play the role of ¢-. g;. The above argument explains why we replace a state
by the corresponding equivalence class.

Note: The construction of my, m, 7, etc. is easy when the transition table
is given. m, = {QF Q). where Q0 = F and QY = Q — F. The subsets in
m are obtained by further partitioning the subsets of my. If ¢y, g- € 0P
consider the states in each a-column. where @ € Z corresponding to ¢, and ¢,.
If they are in the same subset of m,, ¢, and g, are 1-equivalent. If the states
under some g-column are in different subsets of 7. then ¢, and g, are not
l-equivalent. In general, (k + I)-equivalent states are obtained by applying the
above method for ¢, and ¢~ in QF.

Chapter 3: The Theory of Automata = 93

EXAMPLE 3.13

Construct a minimum state automaton equivalent to the finite automaton
described by Fig. 3.12.

Fig. 3.12 Finite automaton of Example 3.13.

Solution

It will be easier if we construct the transition table as shown in Table 3.21.

TABLE 3.21 Transition Table for Example 3.13

StatelT 0 1
—qo G4 gs
Q4 Qs G2
9 /)
) o)) G5
Qs g7 Qs
as Q2 ¢
Gs s A
g7 95 G2

By applying step 1, we get

Y=F={q). 09=0-0F
So,

m = {{g:}. {90 91, 93 94 95 qs 97}}

94 2 Theory of Computer Science

The {g-} in 7y cannot be further partitioned. So, Q'; = {¢»}. Consider g, and

. € 0. The entries under the 0-column corresponding to g, and g; are g,
and gy they lie in Q1. The entries under the l-column are gs and ¢». g €
0 and g5 € QX Therefore. g, and g, are not 1-equivalent. Similarly. g, is
not l-equivalent to gs, gs and g,

Now, consider gy and g4 The entries under the 0-column are ¢4 and g
Both are in Q+. The entries under the 1-column are gs, gs. So ¢4 and qg are
l-equivalent. Similarly, gg is 1-equivalent to g {go. g4 gs) is a subset in 7.
So. Q"> = {qo 94 g}

Repeat the construction by considering ¢; and any one of the states
1. gs- g7. Now, g is not 1-equivalent to g3 or g5 but 1-equivalent to g;. Hence,
0% = {gy, ¢7}. The elements left over in QY are g; and gs. By considering the
entries under the O-column and the l-column, we see that g3 and gs are
l-equivalent. So Q7% = {gs, gs}. Therefore,

m o= {{g:). {90 a4 g6} 195, g7} (g3 gs})

The {g-} is also in 7, as it cannot be further partitioned. Now. the entries
under the O-column corresponding to ¢, and g, are g; and ¢, and these lie
in the same equivalence class in ;. The entries under the l-column are gs.
qs. So gy and q4 are 2-equivalent. But ¢y and gg are not 2-equivalent. Hence.
{90 qs qe) is partitioned into {go g4} and {gs}. g, and g; are 2-equivalent.
gs and gs are also 2-equivalent. Thus. 7y = {{g:}, {g0 g4}, {g6}, {91 g7},
{gs qs}). qo and g4 are 3-equivalent. The g; and g; are 3-equivalent. Also,
g, and gz are 3-equivalent. Therefore.
2 = {{92h {go qah laed, {av @b {gs gst}
As 7. = m, W gives us the equivalence classes, the minimum state automaton
is
M’ =(Q, {0. 1}, & q%. F)

where

0”= {lg2). (g0 gal. (g6} 1g1. 7). 192 gsh}

a0 = Igo. qal. F'=lg.]
and &’ is defined by Table 3.22.

TABLE 3.22 Transition Table of Minimum State
Automaton for Example 3.13

StatelZ 0 1
{90, g4l {a+, a7 [gs. sl
g1, g7 {ge] {g-]
1g-1 {90, 94l [g2]
[0s. g5] {g:1 [ael

{Gel [gs] {90 gal

Chapter 3: The Theory of Automata = 95

Note: The transition diagram for the minimum state automaton is described
by Fig. 3.13. The states g, and ¢, are identified and treated as one state.
(So also are ¢q;, g7 and ¢, ¢s) But the transitions in both the diagrams (i.e.
Figs. 3.12 and 3.13) are the same. If there is an arrow from g; to g; with label
a. then there is an arrow from [¢;] to l¢;] with the same label in the

diagram for minimum state automaton. Symbolically, it &g, a) = g, then
0'llal. @ = [g).

Fig. 3.13 Minimum state automaton of Example 3.13.

EXAMPLE 3.14

Construct the minimum state automaton equivalent to the transition diagram
given by Fig. 3.14.

b a

) ’\/bx‘

{ N/ /
[b i \
[I [
a"]!a fa b a{(I
| , s
\ / b i \ \ /
L9 .\‘7_2/; [a7 g Z’?T\b
\'/__’/\ \

Fig. 3.14 Finite

Solution

We construct the transition table

96 & Theory of Computer Science

TABLE 3.23 Transition Table for Example 3.14

State/% a b
— Qo 1 do
G4 o 7]
7] a3 1

] do
Ga oF! gs

as Qs g4

Js ds ds

g7 Js 43

Since there is only one final state g5, Q) = {3}, 05 = Q — 0. Hence,
T = {{a3}: {90 41, 42 94 95 9o G7}}- As {g3} cannot be partitioned further,
Q') = {g3}. Now gy is l-equivalent to g, gs, g but not to g, g4, g7, and so
Q> = {40, 91> G5, 46} q- is 1-equivalent to g, Hence, Q'3 = {¢», q4}. The only
element remaining in QF is ¢;. Therefore, Q% = {g}. Thus,
m= a3}, {90 av 45 a6} {92 s} {g7})
le = {g:}

qg 1s 2-equivalent to gg but not to g; or gz So,

07 = {40, 9o}

>

As g, is 2-equivalent to gs,
035 = {q. gs}
As ¢- is 2-equivalent to qu,

07 = {92 4}, Q¢ = {q7}

Thus,
= {{a3}s {90 g6} {4 a5} {192 a4t {@7})

07 = {gs}
As g is 3-equivalent to gg,
07 = {q0 g6}
As gy is 3-equivalent to g5,
33 = {q1, gs}
As g» 1s 3-equivalent to g,

Q-E = {qu 04}= QD} = {47}
Theretore,

= Hash {90 g6) 1qu gsh {az qads 1a7))

As 13 = m, T, gives us the equivalence classes, the minimum state automaton

is
M =(Q, {a b}, &, g, F)

Chapter 3: The Theory of Automata = 97

where
Q" = {{gs) g0 g6l lar gsl. 19, g4l [g71}

Cq0= 190 g¢l F' = lgal
and &’ is defined by Table 3.24.

TABLE 3.24 Transition Table of Minimum State
Automaton for Example 3.14

State/Z a b
[G5. G5l lg4. gsl {90, gsl
[g1. qsl {go. sl {92, 4}
(92, G4l fgsi [G1. gs]
[g5] [g3] [90. Gel
{971 {0, sl (93]

Note: The transition diagram for M’ is given by Fig. 3.15.

Fig. 3.15 Minimum state automaton of Example 3.14.

3.10 SUPPLEMENTARY EXAMPLES

EXAMPLE 3.15

Construct a DFA equivalent to the NDFA M whose transition diagram is given
by Fig. 3.16.

a

Fig. 3.16 NDFA of Exampie 3.15.

98 & Theory of Computer Science

Solution

The transition table of M is given by Table 3.25.

TABLE 3.25 Transition Table for Example 3.15

State a b

—qy o5 o, G2
s a3 d2. Qs
Q2 Qs -
@ % -
@ - -

For the equivalent DFA:
(i) The states are subsets of Q = {qy. ¢1. 9>, g3, 94}
(i1) [go] 1s the initial state.
(iil) The subsets of Q containing g; or ¢, are the final states.
(iv) & is defined by Table 3.26. We start from [gy] and construct 0, only
for those states reachable from igy] (as in Example 3.8).

TABLE 3.26 Transition Table of DFA for
Example 3.15

State a b
[90] [Gol 90, G2l

[90. g2l {q0. g4} [gs. g2}

{90, Gal (G0l (90, 4]

EXAMPLE 3.16

Construct a DFA equivalent to an NDFA whose transition table is defined by
Table 3.27.

TABLE 3.27 Transition Table of NDFA for

Example 3.16
State a b
s g Gz qz Qz
g1 a1]
o7 s 4z
@ — —

Solution
Let M be the DFA defined by
M = 2l 92 G {a bY, 8 (gl F)

Chapter 3: The Theory of Automata & 99

where F is the set of all subsets of {¢,. ;. g». g3} containing ¢5. 8 is defined
by Table 3.28.

TABLE 3.28 Transition Table of DFA for

Example 3.16
State a b
[g¢] [q1. sl [g2. g3l
[9: gal (g4} [G:]
{g4] : (g} 1]
[g]]]
[9:. gl {gs] {g2]
[g:] [gal {g-]
] 9 @

EXAMPLE 3.17.

Construct a DFA accepting all strings w over {0, 1} such that the number of
I's in wis 3 mod 4.

Solution

Let M be the required NDFA. As the condition on strings of 7{M) does not
at all involve 0. we can assume that M does not change state on input 0. If 1
appears in w {4k + 3) times. M can come back to the initial state, after reading
4 1's and to a final state after reading 3 I's.

The required DFA is given by Fig. 3.17.

T \[/

|
|

)

Fig. 3.17 DFA of Example 3.17.

-~
R
N
[ew]

EXAMPLE 3.18

Construct a DFA accepting all strings over {a. b} ending in abh.

Solution

We require two transitions for accepting the string ab. If the symbol b is
processed after aa or ba. then also we end in ab. So we can have states for

100 2 Theory of Computer Science

remembering aa, ab, ba, bb. The state corresponding to ab can be the final
state in our DFA. Keeping these in mind we construct the required DFA. Its
transition diagram is described by Fig. 3.18.

Fig. 3.18 DFA of Example 3.18.

EXAMPLE 3.19

Find T(M) for the DFA M described by Fig. 3.19.

Fig. 3.19 DFA of Example 3.19.

~ Solution
TM) = {w e {a. b}*|w ends in the substring ab}

Note: If we apply the minimization algorithm to the DFA in Example 3.18,
we get the DFA as in Example 3.19. (The student is advised to check.)

EXAMPLE 3.20

Construct a minimum state automaton equivalent to an automaton whose
transition table is defined by Table 3.29.

Chapter 3: The Theory of Automata 2 101

TABLE 3.29 DFA of Example 3.20

State a b
—0qo a1 Q2
q: g1 G
G2 3 Ga
ds G4 Js
Ga 9z gz
Qs 4] Js

Solution

0! = {gs}. 07 = {ao 91 9> g3 @} So. m = {ash, g0 91~ 42 95 @}
0! cannot be partitioned further. So {gs} € 7. Consider 09, g, is equivalent
to g;, ¢~ and g, But ¢y is not equivalent to g since &(gy, b) = g, and
&gy, b) = {gs}.

Hence,

Qll = {gs}. Q:1 = {90 91 G qs}- Qsl = {¢3}
Therefore,

Hash, {90, 91, 92 91}, {q3H

qo 1s 2-equivalent to g; but not 2-equivalent o g, or ¢-.
Hence,

a1

{q0. 94} € >

g, and ¢ are not 2-equivalent.
Therefore.

7 = {gsh {qsh {qo q4b. {Aan} {21}
As ¢p is not 3-equivalent to gy, {go. gs} is further partitioned into {g;} and
{qs}.
So,

s = {{ao}: {q1} {q=}s {g:h. {gs)s {gsh

Hence the minimum state automaton M’ is the same as the given M.

EXAMPLE 3.21

Construct 2 minimum state automaton equivalent to a DFA whose transition
table is defined by Table 3.30.

TABLE 3.30 DFA of Example 3.21

State a b
—0p G1 G2
q- Q4 L’}
7/} Qs &}
@ gs s
Gs g7 9
gs Gs . s
Js Qs Qs

g9z Ga Gs

102 B Theory of Computer Science

Solution
QzO= {qs. a4t Q:O = {g0- 91> 4> G5+ qe 47}
= {93 g5} {q0- 41> G2 qs5- g6 g7l
gz is l-equivalent to g4. So. {gs. q1} € 7.
qo is not l-equivalent to ¢,. g-. g5 but gy is l-equivalent to g;.

Hence {q. q¢} € m. ¢ is l-equivalent to ¢- but not l-equivalent to
g5, 46 Or q7. S0, {q. ¢} € .

gs is not l-equivalent to g, but to ¢7. So. {gs. ¢7} € 7

Hence,
m = Has g4 {90, g6} {ar a2} {gs a7}
g is 2-equivalent to gi. So, {¢g3. g4} € T
go is not 2-equivalent t0 g4 So. {4o}. {46} € ™.
gy is 2-equivalent to g¢». So. {¢i, gz} € 7.
¢s is 2-equivalent to ¢-. So, {gs, g2} € .
Hence.
7 = gz g} g0} {gs) g1, a2b {gs5. g1

g5 is 3-equivalent to ¢4 g, is 3-equivalent 1o g, and g5 is 3-equivalent to g.
Hence.

o= ot {91 g2} {gs g4} {gs. g7}, {4e}}
As m; = m, the minimum state automaton is
M’ = (0" {a. b}, & lqol, {las qul})
where & is defined by Table 3.31.

TABLE 3.31 Transition Table of DFA for

Example 3.21
State a b
ey} 1g1. ga} [g:. a2}
(g1, @2 (92, gal {93, g4l
{2, g4l {gs. g7l [qel
[9s. 971 (G, 9l [qs]

{ge] Gel {gel

Chapter 3: The Theory of Automata = 103

SELF-TEST

Study the automaton given in Fig. 3.20 and choose the correct answers
to Questions 1-5:

Fig. 3.20 Automaton for Questions 1-5.

1. Mis a
(a) nondeterministic automaton
(b)Y deterministic automaton accepting {0, 1}*
(¢) deterministic automaton accepting all strings over {0. 1} having
3m Os and 3n U's. m, n 2 1
(d) deterministic automaton

>

M accepts
(a) 01110 (b) 10001 (c) 01010 (dy 11111
T(M) is equal to
(a) {ofj" 1 m. n 2 0}
(b) {0 1" {m. n2 1}
(¢) {w]|w has 111 as a substring}
(d) {w]w has 3n 1's.n 2 1}
4. If g» is also made a final state. then M accepts
(a) 01110 and 01100
(b) 10001 and 10000
(c) 0:110 but not 011110}
(&) 0. nz1butnot 17 21
. If g~ is also made a final state. then T(M) is equal to
(@) {0 1% | m, n 20} U (0 1" | m. n 20}
® {071 | m, 2 1w {01 [mon 2 1)
(cy {w|w has 111 as a substring or 11 as a substring}

[#%]

n

(d) {w| the number of I's in w is divisible by 2 or 3}

Study the automaton given in Fig. 3.21 and state whether the Statements
6-15 are true or false:

0.1 0.1
/\ 1 /CQ

Fig. 3.21 Automaton for Statements 6-15.

104

B2 Theory of Computer Science

® @ e

10.
11.
12.
13.
14,
15.

3.1

3.3

34

3.6

3.7

M is a nondeterministic automaton.

&g, 1) is defined.

0100111 is accepted by M.

010101010 is not accepted by M.

9(qg. 01001) = {q;}.

8(go. 011000) = {qo, g1, q2}-

0(gs, w) = g-» for any string w € {0, 1}*
(g, 11001) = 0.

T(M) = {w]|w = x00y, where x, y € {0, 1}*}.

A string having an even number of 0’s is accepted by M.

EXERCISES

For the finite state machine M described by Table 3.1, find the strings
among the following strings which are accepted by M: (a) 101101,
{by 11111, (c) 000000.

For the transition system M described by Fig. 3.8, obtain the sequence
of states for the input sequence 000101. Also. find an input sequence not
accepted by M.

Test whether 110011 and 110110 are accepted by the transition system
described by Fig. 3.6.

Let M = (Q, Z. 8. g5, F) be a finite automaton. Let R be a relation in
Q defined by g,Rg~ if 8(gy, @) = 8(g,, a) for all @ € Z. Is R an
equivalence relation?

Construct a nondeterministic finite automaton accepting {ab, ba}, and
use it to find a deterministic automaton accepting the same set.

Construct a nondeterministic finite automaton accepting the set of all
strings over {a, b} ending in aba. Use it to construct a DFA accepting the
same set of strings.

The transition table of a nondeterministic finite automaton M is defined
by Table 3.32. Construct a deterministic finite automaton equivalent to M.

TABLE 3.32 Transition Table for Exercise 3.7

State 0 1 2
—0a Q94 Qs G293
a Qs
Q2 9293
(s) Qa

qa

Chapter 3: The Theory of Automata & 105

3.8 Construct a DFA equivalent to the NDFA described by Fig. 3.8.

39 M = ({q1. g» g}, {0, 1}. 8. gq;. {gs}) is a nondeterministic finite
automaton, where 6 is given by ‘

6(g1. 0) = {g». g3}, g, 1) = {q1}
O(gn, 0) = {qy. g~} olg,)= 9
8(ga, 0) = {q-}. gy 1) = {qy, g2}

Construct an equivalent DFA.

3.10 Construct a transition system which can accept strings over the alphabet
a, b, ... containing either cat or rat.

3.11 Construct a Mealy machine which is equivalent to the Moore machine
defined by Table 3.33.

TABLE 3.33 Moore Machine of Exercise 3.11

Present state Next state Qutput
a=>¢ a=1
-0 a; Q2 1
g a3 a2 0
3z az ef 1
9 Qo 9 1

3.12 Construct a Moore machine equivalent to the Mealy machine M defined
by Table 3.34.

TABLE 3.34 Mealy Machine of Exercise 3.12

Present state Next state
a=0 a =1
state output state output
—1 Gs 1 a 0
gz Qs 1 Ja 1
e 2 1 e 1
94 qQa 0 G 1

3.13 Construct a Mealy machine which can output EVEN, ODD according
as the total number of I's encountered is even or odd. The input
symbols are 0 and 1.

3.14 Construct a minimum state automaton equivalent to a given automaton
M whose transition table is defined by Table 3.35.

106 B Theory of Compiuter Science

TABLE 3.35 Finite Automaton of Exercise 3.14

State Input

a b

—do Qo 3
g+ 92 Gs
9z a3 Ga
Gs Qo gs
Ga qo Js
gs g1 Qs

@ g4 g3
3.15 Construct a minimum state automaton equivalent to the DFA described
by Fig. 3.18. Compare it with the DFA described by Fig. 3.19.

3.16 Construct a minimum state automaton equivalent to the DFA described
by Fig. 3.22.

0,1
Fig. 3.22 DFA of Exercise 3.16.

Formal Languages

In this chapter we introduce the concepts of grammars ana formal languages
and discuss the Chomsky classification of languages. We also study the
inclusion relation between the four classes of languages. Finally, we discuss the
closure properties of these classes under the various operations.

4.1 BASIC DEFINITIONS AND EXAMPLES

The theory of formal languages is an area with a number of applications in
computer science. Linguists were trving in the early 1930s to define precisely
valid sentences and give structural descriptions of sentences. They wanted to
define a formal grammar (i.e. to describe the rules of grammar 1n a rigorous
mathematical way) to describe English. They thought that such a description of
natural languages (the languages that we use in everyday life such as English,
Hindi. French. etc.) would make language translation using computers easy. It
was Noam Chomsky who gave a mathematical model of a grammar in 1936.
Although it was not useful for describing natural languages such as English, it
turned out to be useful for computer languages. In fact. the Backus-Naur form
used to describe ALGOL followed the definiton of grammar (a context-free
grammar) given by Chomsky.

Before giving the definition of grammar, we shall study, for the sake of
simplicity. two tvpes of sentences in English with a view to formalising the
construction of these sentences. The sentences we consider are those with a
notn and a verb, or those with a noun—verb and adverb (such as ‘Ram ate
quickly” or "Sam ran’). The sentence ‘Ram ate quickly’ has the words ‘Ram’.
‘ate’, "quickly’ written in that order. If we replace "‘Ram’ by ‘Sam’. "Tom’,
"Gita’, etc. 1.e. by any noun, “ate’ by ‘ran’.-"walked’, etc. i.e. by any verb in the

107

108

i

Theory of Computer Science

past tense, and ‘quickly’ by ‘slowly’. i.e. by any adverb. we get other
grammatically correct sentences. So the structure of "Ram ate quickly’ can be
given as {noun) (verb) {adverb). For (noun) we can substitute ‘Ram’, ‘Sam’.
“Tom™. "Gita'. etc. . Similarly, we can substiture "ate”. “walked’, ‘ran’, etc. for
{verb). and "quickly’, “slowly’ for {adverb). Similarly. the structure of *‘Samn ran’
can be given in the form (nouny {verb).

We have to note that {noun) {verb) {adverb) is not a sentence but only the
escn; 1011 of a particular type of sentence. If we replace (noun), {verb) and
(dverb b}' suitable words, we get actual grammaticaily correct sentences. Let
s call ny. <’verb/ (adverb) as variables. Words like "Ram’, "Sam’, ‘ate’,
ran’. o “uc}\ ty", “slowly” which form sentences can be called terminals. So our
sentences turn out to be strings of terminals. Let S be a variable denoting a
sentence. Now. we can form the following rules to generate {wo types of
sentences: '

(..,

S — {(noun} {verb) {adverb)

S - {(noun) {(verb)

{noun) -» Sam

{noun) — Ram

{noun} — Gita

{verb) — ran

{verby — ate

{verb) — walked

{adverby — slowly

{adverb) — quickly
(Each arrow represents a rule meaning that the word on the right side of the
arrow can replace the word on the left side of the arrow.) Let us denote the
collection of the rules given above by P,

If our vocabulary is thus ISthCt@d to ‘Ram’, ‘Samy’, ‘Gita’, ‘ate’, ‘ran’,
‘walked”. "quickly’ and -slowly’. and our sentences are of the form {(noun)
(verb) {adverb) and (noun) {verb). we can describe the grammar by a 4-tuple
(Vy, Z. P, S). where
v = {{noun). {verb). {adverb)!

[N

= {Ram, Sam. Gita. ate. ran. walked. quickly, slowlv}

P is the collection of rules described above (the rules may be called
praoductions),

S 1s the special symbol denoting a sentence.

The sentences are obtamed by (i) starting with S. (ii) replacing words
using the productions. and (i) terminating when a string of terminals is
obtained.

With this background we can give the definition of a gramumar. As
mentioned earlier. this definition is due to Noam Chomsky.

Chapter 4: Formal Languages B 109

4.1.1 DEFINITION OF A GRAMMAR
Definition 4.1 A phrase-structure grammar {or simply a grammar) is
(V, . P, S). where

{1y Vy 15 a finite nonempty set whose elements are called variables,
i) X is a finite nonempty set whose elements are called terminals,

{1

¥
(iv) S is a special variable (i.e. an element of V) called the start symbol.
and
vy P is a finite set whose elements are ¢ — [5. where ¢ and [3 are strings
on V. X, o has at least one symbol from V.. The elements of P are
called productions or production rules or rewriting rules.
Note: The set of productions is the kerel of grammars and language
specification. We observe the following regarding the production rules.
{1) Reverse substtution i1s not permitted. For example, if S — AB 15 a
production, then we can replace S by AB. but we cannot replace AB
by S.
(i1) No version operation is permitted. For example. if § — AB is a
production. it is not necessary that AB — § is a production.

EXAMPLE 4.1

G=1(V.,, Z.P, 5)1s a grammar
R =

where
Vy = {{sentence). (nouny. (verb). (adverb)}
2 = {Ram. Sam. ate. sang. well]
S = {sentence)

P consists of the following productions:
(sentence) — {(noun) {verb)
(sentence) - (noun) {verb) {(adverb)
{noun) -» Ram
{noun) — Sam
(verby — ate
{verb) — sang
{adverb) — well

NoOTATION: (i) If A is any set. then A* denotes the set of all strings over A.
AT denotes A* — {A}. where A is the empty string.

(iiy A, B, C, A,. A~. ... denote the variables,

(1) a, b. ¢, ... denote the terminals.

V) xoxo Zow, ... denote the strings of terminals.

(vi 0. B. % ... denote the clements of (Vi u X)*

(viy XY = A for any symbol X in Vy U I

110 & Theory of Computer Science

4.1.2 DERIVATIONS AND THE LANGUAGE GENERATED
BY A GRAMMAR

Productions are used to derive one string over Vy U X from another string.
We give a formal definition of derivation as foliows:
Definition 4.2 If o — S is a production in a grammar G and % 0 are any
two strings on Vy U X, then we say that yod directly derives Y36 in G {we
write this as yo8 = yfBd). This process is called one-step derivation. In
G
particular. if & — [is a production, then a = f.
G
Note: 1If ¢z is a part of a string and o — f3 is a production. we can replace
o by [in that string {without altering the remaining parts). In this case we
say that the string we started with directly derives the new string.
For example,

G = ({8}, {0, 1}. {§ — 081, § — 01}. 5)

has the production § — 0S1. So, S in 0*S1* can be replaced by 0S1. The
resulting string is 0*0S11*. Thus. we have 0*S1* = 0%0S11*,

Note: :C> induces a relation R on (Vy U X)*, ie. oRBif o = [
; G

Definition 4.3 If & and [are strings on Vy w Z, then we say that ¢ derives

Bif o ———G> B. Here :G> denotes the reflexive-transitive closure of the relation =
G
in (Vy w Xy* (refer to Section 2.1.5).

Note: We can note in particular that & = . Also, if o :G> B, o= B then

G
there exist sirings o7, >, ..., &, where n = 2 such that
0= 0 = 0 = 0. = O =f

G G G

When o :C> Bis in n steps. we write & = f.
i G
Consider, for example, G = ({S}, {0. 1}. {§ —» GS1, § — 01}, S).
As § :G> 0S1 :G> 0°S1° = 0°S1°, we have § ”—;> 0°S17. We also have
G o
0°S1° = 0°S1° (as @ = o).
G G

Definition 4.4 The language generated by a grammar G (denoted by L(G)) is
defined as {w e X*|S 5—3 w}. The elements of L{G) are called senrences.

Stated in another way, L{G) is the set of all terminal strings derived from
the start symbol S.

Definition 4.5 If S = ¢, then « is called a sentential form. We can note
G

that the elements of L(G) are sentential forms but not vice versa.

Chapter 4: Formal Languages =2 111

Definition 4.6 G; and G- are equivalent if L(G;) = L(G~).

Remarks on Derivation
Any derivation involves the application of productions. When the
number of times we apply productxons 1S one, we write o :> B when

it is more than one, we write :> B (Note: o = o).
G

The string generated by the most recent application of production is

called the working string.

3. The derivation of a string is complete when the working string cannot
be modified. If the final string does not contain any variable. it is a
sentence in the language. If the final string contains a variable. it is a
sentential form and in this case the production generator gets ‘stuck’.

B

NOTATION: (i) We write o0 = [simply as or = fif G is clear from the context.
G

iy If A — o is a production where A € V,, then it is called an
A-production.

gi) f A - . A = o, ... A = ¢, are A-productions. these
productions are written as A — ;| o] ... | O,

We give several examples of grammars and languages generated by them.

EXAMPLE 4.2

If G = {S} {0. 1}. {S — 0S1, § = A} 9. find L(G).

Solution

As § — A is a production. § = A. So A is in L(G). Also. for all n 2 1,
G

S = 051 = 0°§1° = ... = 0's1" = 0"
G G Ie} G G
Therefore,

01" e L(G) forn =0

(Note that in the above derivation, S — 081 is applied at every step except
in the last step. In the last step. we apply S — A). Hence. {0"1"| n 2 0} < L(G).
To show that L(G) < {0"1"] » = 0}. we start with w in L(G). The
derivation of w starts with S. If § — A 1s applied first. we get A. In this case
= A. Otherwise the first production to be applied is S — 0S1. At any stage
if we apply § — A, we get a terminal string. Also, the terminal string is
obtained only by applying § — A. Thus the derivation of w is of the form

S % 0's1” ? o1 for some n > 1
i.e.
L(G)yc {017 n 2 0}

112 & Theory of Computer Science

Therefore,

L(G) = {0"1"]|n 2 0}

EXAMPLE 4.3
¥ G = ({8}, {al, {S — 85}, 5), find the language gencrated by G.

Solution

L{G) = @. since the only production § — 8§ in G has no terminal on the
right-hand side.

EXAMPLE 4.4

Let G = ({S. C}. {a b}, P, S), where P consists of § — aCa, C — aCa|b.
Find L(G).

Solution

S= aCa = aba. So aba € L(G)

S= aCa (by application of § — aCa)
= d'Cd” (by application of C — aCa (n — 1) times)
= d"ba" (by application of C — b)

Hence. a"ba" € L(G), where n = 1. Therefore,
{d'ba"|n 2 1} < L{G)

As the only S-production is § — aCaq, this is the first production we have
to apply in the derivation of any terminal string. If we apply C — b. we get aba.
Otherwise we have to apply only C — aCqa, either once or several times. So
we get @"Cd” with a single variable C. To get a terminal string we have to
replace C by b, by applying C — b. So any derivation is of the form

S = d'bd" with n = 1

Therefore,

LGy c {d"ba"|n 2 1}
Thus.

_ 1 1

LG = {d"bd" [n 2 1}
EXERCISE Construct a grammar G so that L(G) = {a"ba™ | n, m > 1},
Remark By applving the convention regarding the notation of variables.
terminals and the start symbol. it will be clear from the context whether a

symbol denotes a variable or terminal. We can specify a grammar by its
productions alone.

Chapter 4: Formal Languages 2B 113

EXAMPLE 4.5
It Gis S — aS|hS|alb find L(G).

Solution

We show that L(G) = {a. b}7. As we have only two terminals a, b,
L{G) < {a b}* Al productions are S-productions. and so A can be in L(G)
oniv when § — A is a production in the grammar G. Thus.

LGy ¢ {a b}* — (A} = {a B}

To show {a,)" < L(G). consider any string a,a» . . . a,. where each @;
is either ¢ or b, The first production in the derivation of aja- ... a,1s § —
aS or § — hS according as ¢; = a or @; = b. The subsequent productions are
obtained in a similar way. The last production is § — a or S — b according
as a, = aora, = b So gua~ ... a, € L(G). Thus. we have L(G) = {a, b}".
EXERCISE If Gis § — aSia then show that L(G) = {a}”.

Some of the following examples illustrate the method of constructing a
grammar (G generating a given subset of strings over X. The difficult part is the
construction of productions. We try to define the given set by recursion and then
develop productions generating the strings in the given subset of T,

EXAMPLE 4.6

Let L be the set of all palindromes over {a b}. Construct a grammar G
generating L.

Solution
For constructing a grammar G generating the set of all palindromes. we use
the recursive definition (given in Section 2.4) to observe the following:
1) A is a palindrome.
(i} a. b are palindromes.
(i) If x is a palindrome axa, then bxb are palindromes.
So we define P as the set consisting of:

i) §—> A
) S—aand S — b
(1)) § - aSa and § — bSh
Let G = ({58}, {a b}, P. 5). Then

S = A, S = a, S= 05
The. ~fore.
Aoa. be LG
If x 1s a palindrome of even length. then x = aya- ... a,, a,, . . . ;. where
each a; is either ¢ or b, Then § = @ ... a,, a, 4, ... a, by applying

S — aSa or § — bSh. Thus. x € L(G).

114 2 Theory of Computer Science

It x is a palindrome of odd length, then x = ¢ya-~ . .. a,cq, ... a. where
a;'s and ¢ are either ¢ or b. S0 § = a, ... a,8a, ... a; = x by applying

S — aSa, § — bSh and finally. S — ¢ or § — b. Thus. x € L(G). This proves
L = L(G).

EXAMPLE 4.7

Construct a grammar generating L = {wew! |w € {a, b}*}.

Solution

Let G = ({S), {a, b, ¢}, P, S), where P is defined as S — aSa | bSh|c. It
is easy to see the idea behind the construction. Any string in L is generated
by recursion as follows: (i) ¢ € L: (ii) if x € L. then wxw! € L. So, as in
the earlier example. we have the productions S — aSa | bSh | c.

EXAMPLE 4.8

Find a grammar generating L = {d'b"¢'|n 2 1. i = 0}.

Solution
L=1L, vl
L= {a"b"|nz21}
L= {ap'c¢' | n>1.i2 1}
We construct L by recursion and L~ by concatenating the elements of L,
and ¢ 7 2 1. We define P as the set of the following productions:
S — 4, A — ab, A — gAb, S —= Se

Let G = ({8 A}, {a b c}, P, S). Forn = 1.i —> 0, we have

§ S Sl = Ad S AV = dlabb™ N = a'bE
Thus,
{a'b'c¢" |n 21120} c LG)
To prove the reverse inclusion. we note that the only S-productions
are § — Sc and § — A. It we start with § — A4, we have to apply
A= AP = @'V and so a'b' e L(G)

If we start with § — Sc, we have to apply S — Sc repeatedly to get Sc'. But
to get a terminal string. we have to apply § — 4. As A = a'b", the resulting
terminal string is «"b"¢’. Thus, we have shown that

LG) c {a'b'c'in 21,120}
Therefore,

L(G)

\Y
=
Y

0}

{allb/z‘cf I n

Chapter 4: Formal Languages 2 115

EXAMPLE 4.9

Find a grammar generating {a/b"c"|n > 1, j 2 0}.

Solution

let G = ({S, A}, {a. b, ¢}, P, §), where P consists of § = «aS, § = A,
A — bAc | be. As in the previous example. we can prove that G is the required
grammar.

EXAMPLE 4.10

Let G = ({S, A}, {0. 1. 2}, P, S), where P consists of § — 0SA;2. § — 012,
24, - A2, 1A, — 11. Show that

Gy = {012\ n 2 1}
Solution

As § — 012 is a production, we have S = 012, ie. 012 € L(G}.
Also.

S 2 0sA) by applying § — 0S4;2 (n — 1) times
= 0"12(4,2)"" by applying § — 012
= 0M1A[2" by applying 24, — A2 several times
= 011 by applving 14, — 11 (n — 1) times
Therefore.

0'1"2" € L(G) foralln =1

To prove that L(G) < {0"1"2"] n 2 1}. we proceed as follows: If the first
production that we apply is § — 012, we get 012. Otherwise we have to apply
S — 0SA,2 once or several times to get 0"1(4,2)"}. To eliminate S, we have
to apply S — 012. Thus we arrive at a sentential form 0"12(4,2)"". To
eliminate the variable A,, we have to apply 24; — A2 or 1A; — 11. Now,
2A; — A2 interchanges 2 and A;. Only 14; — 11 eliminates A;. The sentential
form we have obtained is 0"124,24,2 ... A;2. If we use 14, — 11 before
taking all 2’s to the right. we will get 12 in the middle of the string. The A’s
appearing subsequently cannot be eliminated. So we have to bring all 2s to the
right by applying 24; — A2 several times. Then we can apply 14, — 11
repeatedly and get 07 172" (as derived in the first part of the proof). Thus.

LG) < {0"1"2" | n = 1}

This shows that
LG) = {0'1"2"|n 2 1}

In the next example we construct a grammar generating

{a"b"c* | n 2 1}

116 = Theory of Computer Science

EXAMPLE 4.11

Construct a grammar G generating {a"b"c" | n 2 1}.

Solution

Let L = {a"b"c"| n 2 1}. We try to construct L by recursion. We already know
how to construct «"b" recursively.

As it is difficult to construct a"b"c" recursively, we do it in two stages:
(i) we construct ¢"¢" and (ii) we convert ¢/ into b"¢". For stage (i), we can have
the following productions § — aSa | ac. A natural choice for o (to execute
stage (ii)) is be. But converting (be)” into. b"c" is not possible as (bc)” has no
variables. So we can take o = BC, where B and C are variables. To bring
B’s together we introduce CB — B(. We introduce some more productions
to convert B’s into b’s and C's into ¢'s. So we define G as

G=(S B C}, {a b c}, P S)
where P consists of
S — aSBC| aBC, CB — BC, aB — ab, bB — bb, bC — bc, ¢cC — cc

S = aBC = abC = abc

Thus,
abc € L(G)
Also,
S = a7 lS(BOY! by applying S — aSBc (n — 1) times
= a"'aBC(BC)™" by applying § — aBC
= a'B" " by applying CB — BC several times
(since CB — BC
interchanges B and ()
= 4" abB'C" by applying aB — ab once
= a'b'C” by applying b8 — bb several times
= a"b"heC! by applving bC — bc once
= a'b'c" by applying ¢C — cc several times
Therefore,

LG) < {aP'c"|n = 1}

To show that {a"b"¢" | n 2 1} < L(G), it is enough to prove that the only
way to arrive at a terminal string 1S to proceed as above in deriving «"b"c"
(nz1).

To start with, we have to apply only S-production. If we apply § — aBC,
first we get abe. Otherwise we have to apply S — aSBC once or several times
and get the sentential form &"~'S(BCY". At this stage the only production we
can apply is § — «BC, and the resulting string is a"(BC)".

Chapter 4: Formal Languages 2 117

In the derivation of &"b"¢”, we converted all B's into b’s and only then
converted C's into ¢'s. We show that this is the only way of arriving at a
terminal string.

a'(BC)" 1s a string of terminals followed by a string of variables. The
productions we can apply to a"(BC)" are either CB — BC or one of aB — ab.
bB — bb, bC — bc, ¢C — cc. By the application of any one of these
productions. the we get a sentential form which is a string of terminals followed
by a string of variables. Suppose a C is converted before converting all B’s.
Then we have a'(BCY' = a'blcc, where i < n and o/1s a string of B’s and C’s
containing at least one B. In @"b'co, the variables appear only in ¢ As ¢ appears
just before ¢, the only production we can apply is ¢C — cc. If ¢ starts with
B, we cannot proceed. Otherwise we apply ¢C — cc repeatedly until we obtain
the string of the form &'b'c’Ber’. But the only productions involving B are
aB — ab and bB — bb. As B is preceded by ¢ in a"b'¢/Ba’. we cannot convert
B, and so we cannot get a terminal string. So L(G) ¢ {d'b'c" | n 2 1}. Thus,
we have proved that

L(G) = {d"D'¢" | n 2 1}

'EXAMPLE 4.12

Construct a grammar G generating {xx | x € {a b}*}.

Solution
We construct G as follows:
G =S 5. S S2. A B}, {a B}, P S)
where P consists of
P S— §5.5;
P, Py: 5,5, — aS|A, S15- — bS8
Py P AS; > 5-aSs, BS3 — §.b8;

P P2, Ps. Pg: Aa— aA, Ab — bA, Ba — aB, Bb — bB
PID-, PH . [lS: — 53(2, bS: — S:b
P]:, Pl3: S;S: — Al 53 — A

Remarks The following remarks give us an idea about the construction of
productions P{—Pyx.

1. P is the only S-production.

2. Using ;5> — aS,4, we can add terminal ¢ to the left of §; and variable
A to the right. A is used to make us remember that we have added the
termimal a to the left of §y. Using AS; — S-aS:. we add a to the right
of S

118 B Theory of Computer Science

3. Using §,S; — bSB, we add b to the left of §; and variable B to the
right. Using BS; — 5,55, we add b to the right of §..

4. S, acts as a centre-marker.

We can add terminals only by using P—Ps.

6. PgPq simply interchange symbols. They push A or B to the right. This
enables us to place A or B to the left of S3. (Only then we can apply
P, or Ps.)

7. 815, = A, S3 — A are used to completely eliminate S, Sy, Ss.

8. Py, Py; are used to push S, to the left. This enables us to get S, to
the right of §; (so that we can apply Pyy).

Let L = {xx|x € {a, b}*}. We first prove that L ¢ I(G). Now, we have
S = SIS‘W_SS = aSlAS3 - (lS]SgdS} (41)

o

or
S = 51S353 = bS]BS‘; = bS]SQbS:; (42)

Let us start with xx with x € {ab}*. We can apply (4.1) or (4.2),
depending on the first symbol of x. If the first two symbols in x are ab (the
other cases are similar), we have

S = a$,5,aSy = ab$, Ba Sy = abSaBS; = abS$, aS; bS; = ab$;$,abS;

Repeating the construction for every symbol in x, we get x5.5,xS; On
application of P, and P;;, we get

S = x5.5:x8; = xAxA = xx

Thus, L ¢ LLG).

To prove that L(G) ¢ L, we note that the first three steps in any derivation
of L(G) are given by (4.1) or (4.2). Thus in any derivation (except S = A), we
get aS;S,aS; or bS(S-bS; as a sentential form.

We can discuss the possible ways of reducing aS,S.aS; (the other case is
similar) to a terminal string. The first production that we can apply to a$,5,a5;
is one of 5153 — A 53 — A, SIS: — CISIA, 5153 d bSIB

Case 1 We apply §;5- = A to aS,5-aS;. In this case we get aAaS; As the
productions involving S5 on the left are Py, Ps or P;3, we have to apply only
S3 — A to aaS; and get gaa € L.

Case 2 We apply S: = A to a8;5-a8;. In this case we get aS;S.aA. If we
apply 515, — A. we get aAaA = aa € L; or we can apply §;5, — aSA to
aS15-a to get aaS,Aa. In the latter case, we can apply only Aa — aA to aaS;Aa.
The resulting string is aaS;aA which cannot be reduced further.

From Cases 1 and 2 we see that either we have to apply both P;» and Py,
or neither of them.

Case 3 In this case we apply $;5. — a$,A or S5, — bS;B. If we apply
§18: — aS A to a$,S5-aS;. we get gaS AaS,. By the nature of productions we
have to follow only aaS,AaS; = aaS,aAS; = a°S,a$-aS; = a°8;5.a°Ss 1f

Chapter 4: Formal Languages B 119

we apply 515, — bS.B, we get abS,5.abS.. Thus the effect of applying
S1S» = aSiA is to add g to the left of 5,5, and S;.

If we apply $1S; — A, S35 — A (By Cases 1 and 2 we have to apply both)
we get abab € L. Otherwise, by application of P, or P;, we add the same
terminal symbol to the left of 5,5, and S3. The resulting string is of the form
x8,5,xS5. Ultimately, we have to apply P~ and P;5 and get xAxA =xx € L. So
L(G) ¢ L. Hence, L(G) = L.

EXAMPLE 4.13

Let G = ({5, A, 4>}, {a, b}, P, 5), where P consists of
S — (IAIA:(I, Al — baA]Azb, A: —> Alab, (!Al — baa, bA:b — abab
Test whether w = baabbabaaabbaba
is in L(G).
Solution

We have to start with an S-production. At every stage we apply a suitable
production which is likely to derive w. In this example, we underline the
substring to be replaced by the use of a production.

S:> _%Aga

= baaA; a

= baa A aba

= baab aA, Asbaba
= baabbaa A; baba

= baabba aA abbaba

= baabbabaaabbaba = w
Therefore.

EXAMPLE 4.14

If the grammar G is given by the productions § — aSa | bSb| aa|bb| A,
show that (1) L(G) has no strings of odd length, (ii) any string in L(G) is of
length 25, n = 0, and (iii) the number of strings of length 2n is 2"

w e L(G)

Solution

O: application of any production (except S — A), a variable is replaced by
two terminals and at the most one variable. So, every step in any derivation
increases the number of terminals by 2 except that involving § — A. Thus.
we have proved (1) and (ii).

120 & Theory of Computer Science

To prove (iii). consider any string w of length 2n. Then it is of the form
@qas ... aya, ... a;involving n “parameters’ ay, a-, ..., @, Each g; can be
cither @ or 6. So the number of such strings is 2". This proves (iii).

4.2 CHOMSKY CLASSIFICATION OF LANGUAGES

In the definition of a grammar (Vy, Z, P, S), Vy and X are the sets of symbols
and S € Vi So if we want to classify grammars. we have to do it only by
considering the form of productions. Chomsky classified the gramumars into
four types in terms of productions (types 0-3).

A type 0 grammar is any phrase structure grammar without any restrictions.
(All the grammars we have considered are type 0 grammars.)

To define the other types of grammars. we need a definition.

In a production of the form ¢ AW — oy, where A is a variable, ¢ is called
the lett context, y the right context, and ¢oy the replacement string.

"EXAMPLE 4.15

(&) In abAbcd — abABbcd, ab is the left context, bed 1s the right context,
o = AB.

(by In AC — A, A is the left context. A is the right context. oo = A. The
production simply erases C when the left context is A and the right
context 1S A.

(¢c) For C — A, the left and right contexts are A. And o = A. The
production simply erases € in any context.

A production without any restrictions is called a type 0 production.

A production of the form ¢Ay — oy is called a type 1 production if

o # A In type 1 productions. erasing of A is not permitted.

EXAMPLE 4.16|

(a) aAbeD — abcDbeD is a type 1 production where where a, beD are the
left context and right context. respectively. A is replaced by beD # A.

(b} AB — AbBc is a type 1 production. The left context is A, the right
context is A.)

{c) A — abA is a type 1 production. Here both the left and right contexts
are A

Definition 4.7 A grammar is called type 1 or context-sensitive or context-
dependent if all its productions are type 1 productions. The production S — A
1s also allowed in a type 1 grammar. but in this case S does not appear on the
right-hand side of any production.

Definition 4.8 The language generated by a type 1 grammar is called a
type | or context-sensitive language.

Chapter 4: Formal Languages B 121

Note: In a context-sensitive grammar G, we allow § — A for including A
in L(G). Apart from § — A, all the other productions do not decrease the
length of the working string.

A type 1 production @Ay — ¢y does not increase the length of the
working string. In other words. | Ay | < | ¢y | as o = A But if o — fB
is a production such that | o] < | |, then it need not be a type 1 production.
For example. BC — CB is not of type 1. We prove that such productions can
be replaced by a set of type 1 productions (Theorem 4.2).

Theorem 4.1 Let G be a type O grammar. Then we can find an equivalent
grammar G, in which each production is either of the form a — f3, where o
and [are strings of variables only. or of the form A — a, where A is a variable
and « is a terminal. G, is of type 1, type 2 or type 3 according as G is of type
1, wype 2 or type 3.

Proof We construct G, as follows: For constructing productions of G,
consider a production o — f in G, where & or 3 has some terminals. In both
o and [§ we replace every terminal by a new variable C, and get o and 8’
Thus. corresponding to every o — f§, where o or § contains some terminal, we
construct o — 7 and productions of the form C, — a for every terminal
a appearing in ¢ or 3. The construction is performed for every such o — f. The
productions for G, are the new productions we have obtained through the above
construction. For G the variables are the variables of G together with the new
variables (of the form C,). The terminals and the start symbol of Gy are those
of G. G, satisfies the required conditions and is equivalent to G. So L(G) =
LG). 1

Definition 4.9 A grammar G = (V,, Z, P, §) is monotonic (or length-
increasing) if every production in P is of the form « — f with | a| < | B
or S — A. In the second case, S does not appear on the right-hand side of any
production in P.

Theorem 4.2 Every monotonic grammar G is equivalent to a type 1 grammar.

Proof We apply Theorem 4.1 to get an equivalent grammar G;. We construct
G’ equivalent to grammar G, as follows: Consider a production A4 ... A, —
BB, ... B, with n 2 m in G;. If m = 1, then the above production is of
type 1 (with left and right contexts being A). Suppose m > 2. Corresponding
to 445 .. A, & BB~ ... B, we construct the following type ! productions
introducing the new variables Cy. C-, ..., C,,

AAr . A, = ClAs ... A

"

CIA?_"'Am — CIQAZ% Am

C1C:é... Am = C1C:§A4'...Am

C1C3 e Cm-l Am - CICZ e CmBnh-anH—l ... B

122 & Theory of Computer Science

g_l_cﬁ CmBm+1 Bn - _Bil_CZ CmBm+l L Bn
BC:Cx ... B, = BB,Cy ... B,...

BIB: C BHH—I"' B“—)BIB:..‘&..,B”

Hi
The above construction can be explained as follows. The production
AA> .. A, > BB, ... B,

is not of type 1 as we replace more than one symbol on L.H.S. In the chain of
productions we have constructed, we replace A, by Cy, A; by C5.... A, by
C,B,., ... B, Afterwards. we start replacing C, by By, C; by B,, etc. As we
replace only one variable at a time. these productions are of type 1.

We repeat the construction for every production in G, which is not of
type 1. For the new grammar G’. the variables are the variables of G, together
with the new variables. The productions of G’ are the new type 1 productions
obtained through the above construction. The terminals and the start symbol
of G are those of G|.

G’ is context-sensitive and from the construction it is easy to see that

LG) = LIG) = LG). |

Definition 4.10 A type 2 production is a production of the form A — ¢,
where A € Vi and o e (Vy w)% In other words, the LH.S. has no left
context or right context. For example. § — Aq, A - a. B — abc, A = Aare
type 2 productions.

~

Definition 4.11 A grammar is called a type 2 grammar if it contains only
type 2 productions. It is also called a context-free gramumar (as A can be
replaced by o in any context). A language generated by a context-free grammar
is called a type 2 language or a context-free language.

Definition 4.12 A production of the foom A — « or A — abB. where
A. B e Vyand a € X. is called a type 3 production.

Definition 4.13 A grammar is called a type 3 or regular grammar if all its
productions are type 3 preductions. A production § — A is allowed in type 3
grammar, but in this case S does not appear on the right-hand side of any
production.

EXAMPLE 4.17

Find the highest tvype number which can be applied to the following
productions:

(a) S = Aa A — c¢|Ba. B — abc

(by S — ASB|d, A — dA

(¢i § — aS|ab

i

Chapter 4: Formal Languages = 123

Solution

(&) S = Aa. A = Ba, B — abec are type 2 and A — ¢ is type 3. So the
highest type number is 2.

(b S > ASBistype 2. S — d. A — aA are type 3. Therefore. the highest
type number is 2.

(c) § = aS is type 3 and S — ab is type 2. Hence the highest type
number is 2.

4.3 LANGUAGES AND THEIR RELATION

In this section we discuss the relation between the classes of languages that we
have defined under the Chomsky classification.

Let.£y. o o, 4 oy and £ denote the family of type O languages, context-
sensitive languages, context-free languages and regular languages, respectively.

Property 1 From the definition. it follows that £ & L. Lo S Lo
Lo © Lo

Property 2 7. C© 7. The inclusion relation is not immediate as we allow
A — A in context-free grammars even when A # S, but not in context-sensitive
grammars (we allow onlv § = A in context-sensitive grammars). In Chapter 6
we prove that a context-free grammar G with productions of the form A — A
is equivalent to a context-free grammar (; which has no productions of the
form A — A (except S — A). Also. when Gy has § — A, § does not appear
on the right-hand side of any production. So G, is context-sensitive. This
proves o C Leg-

Property 3 7, C 4y & Lo © Z¢. This follows from properties 1 and 2.

Property 4 7, C. Zo Co Loq T Lo

In Chapter 5. we shall prove that <, 4. In Chapter 6. we shall
prove that /. C. Z.;. In Section 9.7. we shall establish that £ <. #.

Remarks 1. The grammars given in Examples 4.1-4.4 and 4.6-4.9 are
context- free but not regular. The grammar given in Example 4.5 is regular. The
grammars given in Examples 4.10 and 4.11 are not context-sensitive as we have
productions of the form 2A; — A;2, CB — BC which are not type 1 rules. But
they are equivalent to a context-sensitive grammar by Theorem 4.2.

2. Two grammars of different types may generate the same language. For
example, consider the regular grammar G given in Example 4.5. It generates
{a. b}7. Let G"be given by S — 8§|aS!bS|alb. Then L(G') = L(G) as the
productions § — aS|bS| a|b are in G as well. and S — SS does not generate
any more string.

3. The type of a given grammar is easily decided by the nature of
productions. But to decide on the type of a given subset of X*. it is more
difficult. By Remark 2. the same set of strings may be generated by a grammar
of higher tvpe. To prove that a given language is not regular or context-free.
we need powerful theorems like Pumping Lemma.

124 B Theory of Computer Science

4.4 RECURSIVE AND RECURSIVELY ENUMERABLE SETS

The results given in this section will be used to prove £ C. < in Section 9.7.
For defining recursive sets, we need the definition of a procedure and an
algorithm.

A procedure for solving a problem is a finite sequence of instructions
which can be mechanically carried out given any input.

An algorithm is a procedure that terminates after a finite number of steps
for any input.

Definition 4.14 A set X is recursive if we have an algorithm to determine
whether a given element belongs to X or not.

Definition 4.15 A recursively enumerable set is a set X for which we have
a procedure to determine whether a given element belongs to X or not.

It is clear that a recursive set is recursively enumerable.
Theorem 4.3 A context-sensitive language is recursive.

Proof Let G=(Vy Z, P, 5) and w € T* We have to construct an algorithm
to test whether w € L(G) or not. If w = A, then w € L(G) iff § - A is in
P. As there are only a finite number of productions in P, we have to test
whether § — A is in P or not.

Let | w|=n 2= 1. The algorithm is based on the construction of a sequence
{W.} of subsets of (Vy w Xy*. W, is simply the set of all sentential forms of
length less than or equal to n. derivable in at most ¢ steps. The construction
is done recursively as follows:

(1) W, = {S}

(i) Wiy = W, U {8 e (Vyu Z)* there exists o in W; such that o = 3

and | B < n}.

W;’s satisty the following:

(i) W, ¢ Wy, for all i = 0.

(iv) There exists k such that W, = W, .

(v) If k& is the smallest integer such that W, = W,,, then W, =

looe (Vy U Z}¥|S = o and || < n}.
The point (iii) follows from the point (ii). To prove the point (iv), we
consider the number N of strings over Vy U X of length less than or equal to
n | VyUZ|=m then N=1+m+m + ...+ m"since m' is the number
of strings of length i over Vi U Z. ie. N = (m™*' — 1)/(m — 1), and N is fixed
as it depends only on n and m. As any string in W, is of length at most 7,
| W;| < N. Therefore, W, = W, for some k < N. This proves the point (iv).
From point (i) it follows that W, = W, implies Wi, = W;,o.

e VyUX*IS> oo <nl=W oW, u...u WU W, ...
VV]) W:UUWk
W, from point (iii)

i

This proves the point {v).

Chapter 4; Formal Languages = 125

From the point (v) it follows that w € L(G) (i.e. S = w) if and only if
w e W. Also. W, W, ..., W, can be constructed in a finite number of steps.
We give the required algorithm as follows:

Algorirhhz to test whether w € L{G). 1. Construct W;, W», ... using the
points (i) and (ii). We terminate the construction when W, ; = W, for the first
time.

2. If w € W, then w € L(G). Otherwise, w ¢ L(G). (As | W, | < N, testing
whether w is in W, requires at most N steps.) |

EXAMPLE 4.18

Consider the grammar G given by § — 0SA;2. § — 012, 2A; — A2,
1A, — 11. Test whether (a) 00112 € L(G) and (b) 001122 € L(G).

Solution
(a) To test whether w = 00112 € L(G), we construct the sets Wy, W, W,
etc. w| =5.
Wo= {S}
W, = {012, S. 0SA,2}

W. = {012, S, 0SA,2}

As W, = W, we terminate. (Although 0S4,2 = 00124,2, we cannot
include 0012A4,2 in W, as its length is > 5.) Then 00112 ¢ W,. Hence,
00112 ¢ L(G).

(b) To test whether w = 001122 € L(G). Here, |w| = 6. We construct W,
W, W,, etc.

Wy = {S}
Wy = {012. S, 0SA,2}
W, = {012, S, 0SA,2, 001242}
W,y = {012, S, 05A4,2. 00124,2, 001A,22}
W, = {012, S, 0SA,2, 001242, 001A,22, 001122}
Ws= {012, S. 0SA,2. 001242, 001A,22, 001122}
As Wy = W, we terminate. Then 001122 € W,. Thus. 001122 € L(G).

The following theorem is of theoretical interest, and shows that there
exists a recursive set over {0, 1} which is not a context-sensitive language. The
proof is by the diagonalization method which is used quite often in set theory.

Theorem 4.4 There exists a recursive set which is not a context-sensitive
language over {0, 1}.

Proof Let X = {0. 1}. We write the elements of £* as a sequence (i.e. the
elements of X* are enumerated as the first element, second element, etc.) For

126 2 Theory of Computer Science

example. one such way of writing is A, 0, 1, 00, 01, 10, 11, 000, In this
case, 010 will be the 10th element.

As every grammar is defined in terms of a finite alphabet set and a finite
set of productions, we can also write all context-sensitive grammars over Z as
a sequence. say Gy, G,

We define X = {w; € £* |w; ¢ L(G)}. We can show that X is recursive.
If w e Z*, then we can find 7 such that w = w,. This can be done in a finite
number of steps (depending on |w |). For example, if w = 0100, then w = wx,.
As Gy is context-sensitive, we have an algorithm to test whether w = wy; €
L(G~y) by Theorem 4.3. So X is recursive.

We prove by contradiction that X is not a context-sensitive language. If it
is so, then X = L(G,) for some n. Consider w, (the nth element in X*). By
definition of X, w, € X implies w, ¢ L(G,). This contradicts X = L(G,).
w, € X implies w,, € L(G,) and once again, this contradicts X = L(G,). Thus,
X # L(G,) for any n, i.e. X is not a context-sensitive language. |

4.5 OPERATIONS ON LANGUAGES

We consider the effect of applying set operations on L. L. Loy, L. Let
A and B be any two sets of strings. The concatenation AB of A and B is
defined by AB = {uv |u € A, v € B}. (Here. uv is the concatenation of the
strings u and v.)

We define A' as A and A" as A"A for all n > 1.

The transpose set A” of A is defined by

AT = (u"|u e A}
Theorem 4.5 Each of the classes £y, . Lefy» £41 18 closed under union.

Proof Let L, and L, be two languages of the same type i. We can apply
Theorem 4.1 to get grammars

G =((Vy Z. P, S) and Gy = (Vi Zo, P, S0)

of type i generating L) and L., respectively. So any production in G, or G-
is either o — B, where ¢, 3 contain only variables or A — a, where A € Vy,
ae X

We can further assume that Vy N V'3 = @. (This is achieved by renaming
the variables of V' if they occur in V'y.)

Define a new grammar G, as follows:

Gu = (V,N “ V,;‘:\"U {S} EI J Z} Pu* $S)
where S is a new symbol, ie. § ¢ Viyu V%

PUZPIUPJU{S—)SI.S“?SZ}

Chapter 4: Formal Languages B 127

We prove L{G,) = L U L, as follows: If w € L, U L, then S, o owor
® ~ GI

S- = w. Therefore,

G,

S=> 85 =>w o §= 85 = wie we LG
G, G, G

u Gy

Thus, L} v L, € L(G).

To prove that L(G,) € L; w L., consider a derivation of w. The first step
shouldbe S = §, or S = §,. If § = §, is the first step, in the subsequent steps
S, is changed. As Vi n V4. # @, these steps should involve only the variables
of V4 and the productions we apply are in P,. So § ;G> w. Similarly, if the

first step is S = Sa, then § = $» = w. Thus, L(G,) = L, U L. Also, L(G,)
G, G,

is of type O or type 2 according as L, and L, are of type 0 or type 2. If A
is not in L; U L,, then L(G,) is of type 3 or type 1 according as L, and L.
are of type 3 or type 1.
Suppose A € L. In this case, define
G, =(VyuViu{sS SLZ Ui, P, S)

where (i) S is a new symbol, ie. § ¢ Vy U V4 U {S}, and (i) P, =
PLUP, US>8 S— 5,5 > 8} So LG, is of type 1 or type 3
according as L, and L. are of type 1 or type 3. When A € L, the proof is
similar. |

Theorem 4.6 Each of the classes £, £, Le» Zr 18 closed under
concatenation.

Proof 1let L, and L, be two languages of type i. Then, as in Theorem 4.5, we
get G, = (V4 Z.. Py, S) and G»> = (V' , Za, Py, S5) of the same type i. We
have to prove that L;L- is of type i.

Construct a new grammar G, as follows:

Geon = (V/,.\" N VI’(. {S} Z] (% 22» Pcom S)
where S ¢ Vi u V.
Poon =Py U Pru {S — 5,5}
We prove LiL~ = L(Gyy) If w = ww, € LL, then

Si = w. S-

1

Wa

oy

So,
*
S = S1$2 = Wiwa
con con

Therefore.)
L i LE jo L(Gcon)

128 & Theory of Computer Science

If w e L(Ggy), then the first step in the derivation of w is § = §;55.
As Viy n V'’ = @ and the productions in G, or G, involve only the variables

*
(except those of the form A — a), we have w = ww,, where § ? wy and
N 1

S ? wa. Thus LiL, = L(Gyp). Also, G, 1s of type 0 or type 2 according

as Gl and G, are of type O or type 2. The above construction is sufficient when
Gy and G, are also of type 3 or type 1 provided A ¢ L, U L,

Suppose Gy and G- are of type 1 or type 3 and A € L, or A € L, Let
L'y =L —{A}, L5 =L, — {A}. Then

LiL, UL, if Aisin L; butnot in L,
LiL,=4L/L) UL if Aisin L, but notin L,
LiLyuLi L, U{A} ifAisinZ; andalsoinL,

As we have already shown that £; and £, are closed under union, L;L, is
of type 1 or type 3 according as L; and L, are of type 1 or type 3. 1

Theorem 4.7 FEach of the classes £, L. Leri» Ly 18 closed under the
transpose operation.

Proof Let L be a language of type i. Then L = L(G), where G is of type i.

We construct a new grammar G as follows: G = (Vy, I, PT, S), where the
productions of P’ are constructed by reversing the symbols on L.H.S. and
R.H.S. of every production in P. Symbolically, af — f"is in PTif o — B is
inP.

From the construction it is obvious that G” is of type 0, 1 or 2 according
as G is of type 0, 1 or 2 and I(G”) = L. For regular grammar, the proof is given
in Chapter 5.

it is more difficult to establish the closure property under intersection at
present as we need the properties of families of languages under consideration.
We state the results without proof. We prove some of them in Chapter 8.

Theorem 4.8 (i) Each of the families £y, L. Z; is closed under
intersection.

(i) Zq is not closed under intersection. But the intersection of a context-
free language and a regular language is context-free.

4.6 LANGUAGES AND AUTOMATA

In Chapters 7 and 9, we shall construct accepting devices for the four types
of languages. Figure 4.1 describes the relation between the four types of
languages and automata: TM, LBA, pda, and FA stand for Turing machine,
linear bounded automaton, pushdown automaton and finite automaton,
respectively.

Chapter 4: Formal Languages 2 129

Languages Automata
Type O ™
Context-sensitive
or type 1 LBA
Context-free
or type 2 pda
Reguiar FA
or type
3

Fig. 4.1 Languages and the corresponding automata.

4.7 SUPPLEMENTARY EXAMPLES

EXAMPLE 4.19

Construct a context-free grammar generating
(a) L; = {d"b™" |n 2 1}

M) Ly ={d"V"|\m >n m n21}
(©) Li={d""|m<n mn 21}
(d) Ly = {d"0" |m, n 20, m # n}
Solution
(a) Let G, = ({S}, {a. b}. P, S) where P consists of S — aShb, S — abb.

(b)

o~
(g}
N

(d)

Let G- = ({S, A}, {a. b}, P, S) where P consists of § — aS|aA,
A — aAb, A — ab. It is easy to see that L(G) € L.. We prove the
difficult part. Let «"p" € L.. Then, m > n 2 1. As m > n, we have
m —n 2 1. So the derivation of &"b" = """ is

S :> auz-—zzwls = " gA : auz—zzau—IAbn—l = "B

y Let Gy = ({S, B}. {a, b}, P, S) where P consists of S — Sb| Bb,

B — aBb, B — ab. This construction is similar to construction in (b).
S — Sb | Bb are used to generate 4. The remaining productions
will generate ¢"b™. Hence L(G3) = La.

Note that Ly = L~ v Ly U L o L” where L” = {b"|n 2 1} and
L” = {a"|n 2 1}. It is easy to see how to construct grammars
generating L., Ly and L’ and L”. Define G, by combining these
constructions. Let

G, = ({S. S,. .. S5, S84, A}, {a, b}, Py. S) where P, consists of

S = S/|S5:18:18: S — aS; | Aa|aAb|ab,
S: - S:b 1Ab S3 - bS: % b, and S4 — CZS4 | a.
It is easy to see that L{G,) = L.

130 & Theory of Computer Science

‘EXAMPLE 4.20

Construct a grammar accepting

L = {w e {a, b}*|the number of &’s in w is divisible by 3}.
Solution

Consider a string over {a. b} having three a’s. These three a’s appear amidst
the strings of b. A typical string is b"ab"ab’al’. For generating b, we can have
the productions § — bS. For getting the first ¢, we can have S — aA. For
getting b" afterwards, we have A — bA. For getting the second a, we can have
A — aB. For getting #°, we have B — bB. For getting the third a and repetition
of this pattern. we can have B — a|aS.

Now we construct G as follows:

G = ({S. A, B}, {a. b}, P. S) where P consists of

S —>5bS. S —>aA A —> bA, A — aB, B — bB, B — a, B — as.
A string in L is of the form y,v» ... v, where each y; is of the form
b"ab"ab’a for some nonnegative integers m, n and s.

S 2 b'S = paA = bMab"A = b"ab"aB = b"ab"ab'S

Hence G is the required grammar.

Construct a grammar G such that
L(G) = {w € {a. b} |w has an equal number of &’s and b’s}.
Solution
Define G = ({S, A. B}, {a. b}. P, S) where P consists of
S— aB|bA. A > aS|bAA|la. B — bS|aBB|b

To prove that G accepts the given language. we prove the following by
induction on |wl.

(i) $ = w if and only if w consists of an equal number of &’s and &’s.

(i) A = wif and only if w consists of one more @ than the number of b’s.

(i) B = w if and only if w consists of one more b than the number of a’s.

The ponits (i). (ii). (iii) are true when |w| = 1. For A = ¢ and «a is the
only string of length one which can be derived from B. Also. no string of
length one is derivable from S. Thus. there is basis for induction.

Assume points (i), (ii), (iii) to be true for all strings of length k — 1. Let
Iw] = k.

We prove the "only if* part of (i). Let § => w. Then the first production
has to be either S — aB or § — bA. If the first production is § — aB, then

Chapter 4: Formal Languages = 131

S = aB = w. Hence w = aw;, B = w and |w,| = k — 1. By induction
hypothesis, the point (iii) is true for w,. This means that w, has one more b
than the number of «'s. Hence w = aw, has an equal number of &’s and b’s.
(The proof is similar if the first production is § — bA.)

To prove the "if part’, assume that w has an equal number of @’s and &’s.
It w starts with @, then w = aw,, where |w;| = k — 1. (If w starts with b the
proof is similar.) Also w, has one more b than the number of a’s. By induction
hypothesis, the point (ii1) is true for wy. Then B = w. As S - aBis a
production. we have S = aB. So § = aB = aw; = w, ie. S = yw, which
proves the “if part’ of point (i).

Similarly we can prove the points (ii) and (iii) for a string w of length £.
By the principle of induction the points (i), (ii), (iii) are true for all strings w.

In particular, from point (i), we can conclude that

L(G) = {w € {a b}|w has an equal number of a’s and b’s}

EXAMPLE 4.22

Construct a grammar G accepting the set L of all strings over {a, b} having
more @’s than b's.

Solution

For generating strings with «’s but with no &’s, we can have the production
S—a S—aS, 5— Sa. (If xa e L, then ax € L. Hence we have § — aS and
S — Sa.)If x, y € L. then xyv € L (also vx € L). So xy or yx has at least two
more a’s than b’s. So we can add a b. This can be done by having the
productions § — 5SS, § — 5bS, § — SSb. (i.e. b can be added at the beginning,
or at the end of SS, or between S and §). With this motivation, we can construct
G as follows:
G = ({5}, {a. b}. P, 5) where P consists of

S — a|aS| Sa|bSS|SbS|SSb

We can easily prove that G accepts all strings over {a, b} having more a’s
than b’s.

EXAMPLE 4.23

Construct a grammar G accepting all strings over {a. b} containing an unequal
number of a¢’s and &’s.

Solution

As n Example 4.20, we can construct a grammar accepting all strings having
more b’s than «a’s. The required language is the union of the language of
Example 4.20 and a similar one having more b's than a’s. So we construct
G as follows:

132 E Theory of Computer Science

G = (S, 5. 8-}, {a, b}, P. S) where P consists of
S — Sl | S:

S — alaS;|Sa| bS8, |5bS|S35b

S —b I bS: | S:b i as-S- l S-a$, | S$S-a.

G generates all strings over {a, &} having an unequal number of @’s and b’s.

EXAMPLE 4.24

If L, and L, are the subsets of {a, b}*, prove or disprove:

(a) If L; ¢ L, and L, is not regular. then L, is not regular.
(b) If L; < L- and L, is not regular, then L; is not regular.

Solution

(a) Let Ly = {d'D" | n 2 1}. L, is not regular. Let L, = {a, b}*. By
Example 4.5, L, is regular. Hence (a) is not true.

(b) Let L, = {"b" | » 2 1}. It is not regular. But any finite subset is
regular., Taking L, to be a finite subset of L,, we disprove (b).

EXAMPLE 4.25

Show that the set of all non-palindromes over {a, b} is a context-free
language.

Solution

Let w € {a, b}* be a non-palindrome. Then w may have the same symbol in
the first and last places, same in the second place from the left and from the
right, etc.: this pattern will not be there after a particular stage. The
productions S — aSa|bSh|A may be used for fulfilling the palindrome-
condition for the first and last few places. For violating the palindrome
condition, the productions of the form A — aBb|bBa and B — aB|bB|A
will be useful. So the required grammar is G = ({8, A4, B}, {a. b}, P. §)
where P consists of

S — aSa|bSh|A
A —> aBb|bBa
B — aB|bB|A

SELF-TEST

Choose the correct answers to Questions 1-12:
1. For a grammar G with productions S — 88, S — aSh, S -5 bSa, § — A,
(a)y S = abba (b) S = abba
(¢) abba & L(G) , (d) S = aaa

Chapter 4: Formal Languages H 133

2. If ¢ = [in a grammar G, then
() a=p G =0
) f > a (d) none of these
3. If o — Bis a production in a grammar G, then
(a) oo = PP (b) aof = Ppa
(c) oo = Po (d) aoo = PBAS
4. If a grammar G has three productions S — aSa | bsb | ¢, then
(a) abcba and bacab € L(G) (b) abcha and abecab € L(G)
(¢) accca and beeeh € L(G) (d) accch and beeca € L(G)
5. The minimum number of productions for a grammar G = {{S}, {0, 1,
2, 9} P, S) for generating {0, 1. 2. ..., 9} is
(a) 9 (b) 10
(¢) 1 (d) 2
6. 1 G, =N T P, S)and G- = (N, T, P>, S) and P, < P,, then
(@ L(Gy) < LGy (b) L(Gy) < L(GY)
(©) L(Gy)) = (G~ (d) none of these.
7. The regular grammar generating {a¢" : n = 1} is

10.

(2) ({S}. {a}. {S — aS}. S)

(b) ({8}, {a}. {S — SS. § = a})
(© ({S}, {a}. {S = aS}. S)

(d) ({S}. {a}. {S > aS. S = a §)

. L = {theory, of, computer, science} can be generated by

(a) a regular grammar

(b) a context-free grammar but not a regular grammar

(¢) a context-sensitive grammar but not a context-free grammar
{d) only by a type 0 grammar.

Adtnz 1} s

{a) regular

(b) context-free but not regular

{¢) context-sensitive but not context-free
(d) none of these.

{d"b'[n 21} is

(a) regular

(b) context-free but not regular

(c) context-sensitive but not context-free
(d) none of these.

L AdY N m 2 1Y s

(a) regular

(b) context-free but not regular

(c) context-sensitive but not context-free
(d) none of these.

134 & Theory of Computer Science

12.

State
13.

14.
15.
16.

17.

i8.

19.
20.

4.1

4.2

4.3

4.4

{a'b'c"|n, m > 1} is

{a) regular

(b) context-free but not regular

{c} context-sensitive but not context-free
{d) none of these.

whether the following Statements 13-20 are true or faise:

In a grammar G = (V, %, P, §), Vy and X are finite but P can be
infinite.

Two grammars of different types can generate the same language.

If G=WVy Z P S)and P # @, then L(G) # 0.

If a grammar G has three productions, i.e. S = AA, A = aa, A -
bb, then L(G) is finite.

If L; = {d"b"|m, n 21} and Ly = {b""|m, p 2 1}, then L; N L, =
{d'b'c"|n 2 1}.

If a grammar G has productions § — aS|bS
all strings over {a, b} ending in «a.

a, then L(G) = the set of

The language {a'bc"|n = 1} is regular.
If the productions of G are S — aS|Sb|a|b, then abab € L(G).

EXERCISES

Find the language generated by the following grammars:

(a) § — OS1]0Al, A — 1A]1

(b) S — 0S1|0A|0||1B]1, A — 0A|0, B — 1B]|1

(c) § — OSBA|0IA, AB — BA, 1B — 11, 1A — 10, 0A — 00

(d) S — 0S1]0A1, A — 1A40]10

() S —> 0A]|1S5|0]1. A - 1A]|1S]1

Construct the grammar, accepting each of the following sets:

{a) The set of all strings over {0, 1} consisting of an equal number of
0’s and 1’s.

(by {0"1"0"1"{m, n = 1}

(¢) {0"17"|n = 1}

(d)y {0"1"|n 2 1} v {1"0"|{m 2 1}

(e) {0"1™0"|m, n 2 1} w {0"1"2"|m, n 2 1}.

Test whether 001100, 001010, 01010 are in the language generated by

the grammar given in Exercise 4.1(b).

Let G = ({4, B, S}, {0, 1}, P, S), where P consists of § — 0AB,
Ay — SOB, A, — SBl, B — SA, B — 01. Show that L(G) = 9.

Chapter 4: Formal Languages B 135

4.5

4.6

4.7

4.8

4.9
4.10

4.11.

4.12.

4.13.

4.14.

4.15.

4.1,
4.17.

Find the language generated by the grammar S — AB, A — Al]0.
B — 2B | 3. Can the above language be generated by a grammar of
higher type?

State whether the following statements are true or false. Justify your
answer with a proof or a counter-example.

(a) If G, and G- are equivalent. then they are of the same type.

(b) If L is a finite subset of 2*, then L is a context-free language.
(¢) If L is a finite subset of X*, then L is a regular language.

Show that {@"” |72 > 1} is generated by the grammar § — a, S — A3A,
A; — A1A3A3, A3 — AlAz, AlAg — (lA:Al, A]Cl — GAI, Az(l - aA'_a)
A]A_; — A4a, A3A4 - A5G, AZAS ad Ag(l, A; —

Construct (1) a context-sensitive but not context-free grammar, (i) a
context-free but not regular grammar, and (iii) a regular grammar to
generate {a"{n 2 1}.

Construct a grammar which generates all even integers up to 998.

Construct coniext-free grammars to generate the following:

{a) {0"1"\m #n, m n2zl1}

(b) {a'b"c"|one of I m, n equals 1 and the remaining two are equal}.

(c) {0"1"|1 £ m < n}.

(d) {dpc* |l + m = n}.

(e) The set of all strings over {0. 1} containing twice as many 0’s as
I’s.

Construct regular grammars to generate the following:

(a) {az"[n > 1}

(b) The set of all strings over {a, #} ending in a

{c) The set of all strings over {a. b} beginning with a.

(d) {ab"c"|l, m. n = 1}).

(e) {(ab)'|n 2 1}.

Is = an equivalence relation on (Vy U X)*?
G

Show that G| = ({S}, {a b}, P, §), where P, = {S — aSb|ab} is
equivalent to G- = ({S, A, B, C}. {a, b}, P, S). Here P, consists of
S—>AC, C - SB, S ->AB, A > a B — b

If each production in a grammar G has some variable on its right-hand
side. what can you say about L(G)?

Show that {abc, bca. cab} can be generated by a reguiar grammar
whose terminal set is {a, b, c}.

Construct a grammar to generate {(ab)'|n = 1} U {(ba)"|n = 1}.
2 ! i

Show that a grammar consisting of productions of the form A — xB|y.
where x, vy are in £*¥ and A, B € V. is equivalent to a regular grammar.

Regular Sets and
Regular Grammars

In this chapter. we first define regular expressions as a means of representing
certain subsets of strings over X and prove that regular sets are precisely those
accepted by finite automata or transition systems. We use pumping lemma for
regular sets to prove that certain sets are not regular. We then discuss closure
properties of regular sets. Finally. we give the relation between regular sets
and regular grammars.

5.1 REGULAR EXPRESSIONS

The regular expressions are useful for representing certain sets of strings in an
algebraic fashion. Actually these describe the languages accepted by finite state
automata.

We give a formal recursive definition of regular expressions over X as
follows:

I. Any terminal symbol (i.e. an element of X), A and @ are regular
expressions. When we view ¢ in ¥ as a regular expression, we denote
it by a.

. The union of two regular expressions R, and R,, written as R, + R,,
is also a regular expression.

3. The concatenation of two regular expressions R; and R,, written as

R;R,, is also a regular expression.

4. The iteration (or closure) of a regular expression R. written as R*, is
also a regular expression.

. If R is a regular expression, then (R) is also a regular expression.

6. The regular expressions over X are precisely those obtained

recursively by the application of the rules 1-5 once or several times.

Q]

w

136

Chapter 5: Regular Sets and Regular Grammars B 137

Notes: (1) We use x for a regular expression just to distinguish it from the
symbol (or string) x.

(2) The parentheses used in Rule 5 influence the order of evaluation of
a regular expression.

(3) In the absence of parentheses, we have the hierarchy of operations as
follows: iteration (closure). concatenation, and union. That is, in evaluating a
regular expression involving various operations, we perform iteration first, then
concatenation. and finally union. This hierarchy is similar to that followed for
arithmetic expressions (exponentiation. multiplication and addition).

Definition 5.1 Any set represented by a regular expression is called a regular
ser.

If, for example, ¢, b € Z, then (i) a denotes the set {a}, (ii) a + b denotes
{a, b}, (ii1) ab denotes {ab}, (iv) a* denotes the set {A. a, aa. aaa, ...} and
{v) (a + b)* denotes {a b}*.

The set represented by R is denoted by L(R).

Now we shall explain the evaluation procedure for the three basic
operations. Let R, and R- denote any two regular expressions. Then (i) a
string in L(R; + R») is a string from R; or a string from R.; (ii) a string in
L(R;R,) is a string from R; followed by a string from R.. and (iii) a string
in L(R*) is a string obtained by concatenating n elements for some n 2 0.
Consequently, (i) the set represented by Ry + R, is the union of the sets
represented by R, and R, (ii) the set represented by R R, is the concatenation
of the sets represented by R, and Ra. (Recall that the concatenation AB of sets
A and B of strings over X is given by AB = {ww»|w, € A, wy € B}, and
(i) the set represented by R* is {wwa ... w,|w; is in the set represented by
R and 1 > 0.} Hence.

LR, + Ry) = L(R)) u LR, LRR>) = LRDLR»)
L(R¥) = (LR))*

(LR = U LR
n=0

L(g) = 9, L(a) = {a}.

Note: By the definition of regular expressions, the class of regular sets over
2 1s closed under union, concatenation and closure (iteration) by the conditions
2. 3, 4 of the definition.

EXAMPLE 5.1

Describe the following sets by regular expressions: (a) {101}. (b) {abba},
(¢ {01. 10}, (d) {A. ab}, (e) {abb. a, b, bba}, () {A 0, 00, 000, ...}, and
g {1, 11. 111, ...},

L(R*)

Solution

{a) Now. {1}, {0} are represented by; 1 and 0. respectively. 101 is obtained
by concatenating 1. 0 and 1. So. {101} is represented by 101.

138 & Theory of Computer Science

(b) abba represents {abba}.

(c) As {01, 10} is the union of {01} and {10}, we have {01, 10}
represented by 01 + 10.

(d) The set {A. ab} is represented by A + ab.

(e) The set {abb, a, b, bba} is represented by abb + a + b + bba.

(f) As {A, 0, 00, 000, ...} is simply {0}*, it is represented by 0%.

(g) Any element in {1. 11, 111, ...} can be obtained by concatenating
1 and any element of {1}*. Hence 1(1)* represents {1, 11, 111, ...}.

EXAMPLE 5.2

Describe the following sets by regular expressions:
{a) L, = the set of all strings of 0’s and 1’s ending in 00.
(b) L~ = the set of all strings of 0's and 1's beginning with 0 and ending
with 1.
(¢) Ly = {A, 11, 1111, 111111, ...},

Solution

(a) Any string in L, is obtained by concatenating any string over {0, 1}
and the string 00. {0, 1} is represented by 0 + 1. Hence L, is
represented by (0 + 1)* 00.

(b} As any element of L~ is obtained by concatenating 0, any string over
{0, 1} and 1, L. can be represented by 0(0 + 1)* 1.

(¢) Any element of L; is either A or a string of even number of 1’s, i.e.
a string of the form (11)", n 2 0. So Ls can be represented by (11)*.

5.1.1 IDENTITIES FOR REGULAR EXPRESSIONS

Two regular expressions P and Q are equivalent (we write P = Q) if P and
Q represent the same set of strings.
We now give the identities for regular expressions; these are useful for
simplifying regular expressions.
1 » +R=R
I, PR=RO =90
I AR =RA =R
Iy A¥ = A and 9% = A
kL R+R=R
Is R*R* = R*
I; RR*=RR
L (R¥* =R
Iy A+ RR* = R* = A + R*R
Iy, (PQY*P = P(QP)*

Chapter 5: Regular Sets and Regular Grammars 2 139

i P+ QF = (PRQ9* = (P + Q)

I~ P+ QR=PR+ QR and RP + Q) = RP + RQ

Note: By the ‘set P* we mean the set represented by the regular expression P.

The following theorem is very much useful in simplifying regular

expressions (i.e. replacing a given regular expression P by a simpler regular
expression equivalent to P).

Theorem 5.1 (Arden’s theorem) Let P and Q be two regular expressions
over X. If P does not contain A, then the following equation in R, namely
R=Q +RP (5.13
has a unique solution (i.e. one and only one solution) given by R = QP*.
Proof Q + (QP*)P = Q(A + P*P) = QP* by I,
Hence (5.1) is satisfied when R = QP*. This means R = QP* is a solution
of (3.1).
To prove uniqueness. consider (5.1). Here, replacing R by Q + RP on the
R.H.S.. we get the equation
Q+RP=Q + (Q + RPP
=Q + QP + RPP
= Q + QP + RP"
=Q + QP + QP + ... + QP + RP™!
= QA +P+P + ... +P)+ RPY
From (5.1).
R=QA+P+P +.- +P)+RP*" foriz0 (52
We now show that any solution of (5.1) is equivalent to QP*. Suppose R
satisfies (5.1), then it satisfies (5.2). Let w be a string of length 7 in the set
R. Then w belongs 1o the set Q(A + P + P* + ... + P) + RP™. As P does
not contain A, RP"! has no string of length less than i + | and so w is not
in the set RP!. This means that w belongs to the set QA + P + P~ + ...
+ P9, and hence to QP*.
Consider a string w in the set QP*. Then w is in the set QP* for some
k 2 0. and hence in QA + P + P* + -+« + P*). So w is on the RH.S. of
(5.2). Therefore, w is in R (L.H.S. of (5.2)). Thus R and QP* represent the
same set. This proves the uniqueness of the solution of (5.1). |

Note: Henceforth in this text, the regular expressions will be abbreviated r.e.

(a) Give an r.e. for representing the set L of strings in which every 0 is
immediately followed by at least two I's.

(b) Prove that the regular expression R = A + 1*(011)*(1* (011)*)* also
describes the same set of strings.

140 & Theory of Computer Science

Solution

(a) If wisin L, then either (a) w does not contain any 0, or (b) it contains
a 0 preceded by 1 and followed by 1i. So w can be written as
wiw- ... w,, where each w; is either 1 or O11. So L is represented

by the re. (1 + 011)*.
(b) R = A + PP, where P, = 1*(011)*
= PJ using Iy
= (1%(011)*)*
= (PIPHH* letting P, = 1, P; = 011
= (P, + Py* using Iy
= (1 + 01)*

EXAMPLE 5.4

Prove (1 + 00%1) + (1 + 00*1)(0 + 10%1)* (0 + 10*1) = 0*1(0 + 10%1)*.

Solution
LHS. =1 + 00*1) (A + (0 + 10%1)* (0 + 10*DA using I
= (1 + 00%1) (0 + 10*1)* using Iy
= (A + 00%)1 (0 + 10*1)* using I;, for 1 + 00%1
= 0%1(0 + 10%1)* using /oy
= RH.S.

5.2 FINITE AUTOMATA AND REGULAR EXPRESSIONS

In this section we study regular expressions and their representation.

5.2.1 TRANSITION SYSTEM CONTAINING A-MOVES

The transition systems can be generalized by permitting A-transitions or
A-moves which are associated with a null symbol A. These transitions can
occur when no input is applied. But it is possible to convert a transition system
with A-moves into an equivalent transition system without A-moves. We shall
give a simple method of doing it with the help of an example.

Suppose we want to replace a A-move from vertex v, to vertex v,. Then
we proceed as follows:

Step 1 Find all the edges starting from v,.

Step 2 Duplicate all these edges starting from v, without changing the edge
1abels. :

Chapter 5: Regular Sets and Regular Grammars E 141

Step 3 If v, is an initial state. make v also as initial state.

Step 4 1If v, is a final state, make v, also as the final state.

EXAMPLE 5.5

Consider a finite automaton, with A-moves, given in Fig. 5.1. Obtain an
equivalent automaton without A-moves.

0 1

&) &

Fig. 5.1 Finite automaton of Example 5.5.

(0

Solution

We first eliminate the A-move from gg to ¢; to get Fig. 5.2(a). g, is made
an initial state. Then we eliminate the A-move from ¢, to ¢-» in Fig. 5.2(a)
to get Fig. 3.2(b). As ¢- is a final state, g, is also made a final state. Finally,
the A-move from ¢, to ¢~ is eliminated in Fig. 5.2(c).

- | @ A
@ |

—B——0
o

!

(-

Fig. 5.2 Transition system for Example 5.5, without A-moves.

142 = Theory of Computer Science

' EXAMPLE 56

Consider a graph (i.e. transition system)., containing a A-move, given in
Fig. 5.3. Obtain an equivalent graph (i.e. transition system) without A-moves.

=N
S

d

Fig. 5.3 Finite automaton of Example 5.6.

Solution

There is a A-move from ¢ to g;. There are two edges, one from g5 to ¢» with
label O and another from ¢; to g, with label 1. We duplicate these edges from
go- As g 1s an initial state. gz is made an initial state. The resulting transition
graph is given in Fig. 5.4.

Fig. 5.4 Transition system for Example 5.6, without A-moves.

5.2.2 NDFAS wWITH A-MOVES AND REGULAR EXPRESSIONS

In this section, we prove that every regular expression is recognized by a
nondeterministic finite automaton (NDFA) with A-moves.

Theorem 5.2 (Kleene’s theorem) If R is a regular expression over X
representing L < X%, then there exists an NDFA M with A-moves such that
L = TiM).

Proof The prootf is by the pnnciple of induction on the total number of
characters in R. By “character’ we mean the elements of X, A, @, * and +.
For example, if R = A + 10%11*0, the characters are A, +, 1, 0. *, 1, 1, *,
0, and the number of characters i1s 9.

Let L(R) denote the set represented by R.

Chapter 5: Regular Sets and Regular Grammars = 143

Basis. Let the number of characters in Rbe 1. Then R=A, or R = @, or
R = a;, a; € Z. The transition systems given in Fig. 5.5 will recognize these
regular expressions.

-0 00 00
R=A R=0 R=a

Fig. 5.5 Transition systems for recognizing elementary regular sets.

Induction step. Assume that the theorem is true for regular expressions having
n characters. Let R be a regular expression having n + 1 characters. Then,

R=P+0Q or R =PQ or R = P*

according as the last operator in R is +, product or closure. Aiso P and Q are
regular expressions having »n characters or less. By induction hypothesis, L(P)
and L(Q) are recognized by M; and M- where M, and M- are NDFAs with
A-moves, such that L(P) = T(M)) and L(Q) = T(M-). M, and M, are

O O
RS -
O O

Fig. 5.6 Nondeterministic finite automata M, and M,.

The initial state and the final states of M, and M- are represented in the usual
way.

Case I R =P + Q. In this case we construct an NDFA M with A-moves
that accepts L(P + Q) as follows: g, is the initial state of M, gy not in M,
or M,. gy is the final state of M: once again g, not in M; or M~. M contains
all the states of M; and M. and also their transitions. We add additional
A-transitions from g, to the initial states of M, and M, and from the final
states of M, and M, to g. The NDFA M is as in Fig. 5.7. It is easy to see
that T(M) = T(M,) u T(M5) = L(P + Q).

Case 2 R = PQ. In this case we introduce g, as the initial state of M and
gr as the final state of M. both gg, ¢, not in M, or M>. New A-transitions are
added between g, and the initial state of M;. between final states of M, and
the initial state of M. and between final states of M> and the final state gy of
M. See Fig. 5.8. '

144 B Theory of Computer Science

R P

My
Fig. 5.7 NDFA accepting L(P + Q).

: O O
Oan®. Q/iC) o

M, M,
Fig. 5.8 NDFA accepting L(PQ).

Case 3 R = (P)*. In this case, g, g and g, are introduced. New A-transitions
are introduced from g to g, g t0 g5 g to the initial state of M, and from the
final states of M; to g. See Fig. 5.9.

Thus in all the cases. there exists an NDFA M with A-moves, accepting
the regular expression R with » + 1 characters. By the principle of induction,
this theorem is true for all regular expressions. |

Fig. 5.9 NDFA accepting L(P%).

Chapter 5: Regular Sets and Regular Crammars &= 145

Theorem 5.1 gives a method of constructing NDFAs accepting P + Q. PQ
and P* using the NDFAs corresponding to P and Q. In the later sections we
give a method of converting NDFA M with A-moves into an NDFA M,
without A-moves and then into a DFA M, such that T(M) = T(M;) = T(M>).
Thus, if a regular expression P is given, we can construct a DFA accepting
L(P).

The following theorem is regarding the converse. Both the Theorems 5.2
and 5.3 prove the equivalence of regular expressions or regular sets and the
sets accepted by deterministic finite automata.

Theorem 5.3 Any set L accepted by a finite automaton M is represented by
a regular expression.

Proof let
1M = ({41 (/m}‘ E 5» (]}v Fj

The construction that we give can be better understood in terms of the state
diagram of M. If a string w € X* is accepted by M, then there is a path from
g to some final state with path value w. So to each final state. say g;. there
corresponds a subset of * consisting of path values of paths from g, to g;
As T(M) is the union of such subsets of X*. it is enough to represent them by
regular expressions. So the main part of the proof lies in the construction of
subsets of path values of paths from the state g; to the state g;.

Let P{; denote the set of path values of paths from ¢; to gq; whose
intermediate vertices lie in {g, ..., q:}. We construct P§ for k = 0, 1.
n recursively as follows: ‘

P)={ae Z|8(g, a = g} (5.3)
Pi={ae Z|8g. @) = q} v {A} (5.4)
Pi= PP R U R (5.5)

In terms of the state diagram, the construction can be understood better.
E»]Q simply denotes the set of path values (i.e. labels) of edges from ¢; to g;.
In E? we include A in addition to labels of self-loops from g;. This explairis
(5.3) and (5.4).

Consider a path from ¢; to g; whose intermediate vertices lie in
{gi- ... g} If the path does not pass through g, then its path value lies in
PUK . Otherwise. the path passes through ¢, possibly more than once. The path
can be split into several paths with path values wy. w» ... wy as in Fig. 5.10.
W = wiw-, ... wp. w; is the path value of the path from ¢; to ¢, (without
passing through ¢, i.e. g; is not an intermediate vertex). w,. ..., wy_; are the
path values of paths from ¢, to itself without passing through ¢g;. w; is the path
value of the path from g, to ¢; without passing through ¢;. So w is in Pl.i‘l.,
Wi ... wepare in (P71, and wy is in BS. This explains (5.5).

146 & Theory of Computer Science

Wy W W w

2 {
DA DA DDA

Fig. 510 A path from ¢, to g;

We prove that the sets introduced by (5.3)-(5.5) are represented by
regular expressions by induction on & (for all 7/ and j). PUQ is a finite subset of
%, say {a;, a}. Then. P,JO 18 represented by Pi? =a +a+ -+ a.
Similarly, we can construct P{ representing P . Thus, there is basis for
induction.

et us assume the resuit for £ — 1. ie. P,-]A-'_1 is represented by a regular

expression P;;'l for all 7 and . From (5.5). we have P,]A =Bi_l(Pk’2'l) * P,S"1 UPZ-]’-H.

So it is obvious that P,f is represented by Pijf =Pf‘k’,—1(Pkkk_1)*P;ffl uPif’l.

Therefore, the result is true for all k. By the principle of induction, the sets
constructed by (5.3)—(5.5) are represented by regular expressions.

As O = {qi. g»}, P} denotes the set of path values of all paths from

n

g1 10 gz If F = {gs ... qp}. then T(M) = 'U1 Pf. So T(M) is represented
E i i Y

by the regular expression P} + .-+ P/} . Thus, L = T(M) is represented
by a regular expression.

Note: Pf and Pi? are the subsets of £ w {A}. and so they are finite sets. So

every P,}k is obtained by applving union, concatenation and closure to the set
of all singletons in X {A}. Using this we prove Kleene's theorem (Theorem
5.4) at the end of this section. Kleene's theorem characterizes the regular sets
in terms of subsets of ¥ and operations (union. concatenation, closure) on
singletons in £ U {A}.

5.2.3 CONVERSION OF NONDETERMINISTIC SYSTEMS TO
DETERMINISTIC SYSTEMS

The construction we are going to give is similar to the construction of a DFA
equivalent to an NDFA and involves three steps.

Step 1 Convert the given transition system into state transition table where
each state corresponds to a row and each input symbol corresponds to a
column.

Step 2 Construct the successor table which lists the subsets of states
reachable from the set of initial states. Denote this collection of subsets by Q.

Step 3 The transition graph given by the successor table is the required
deterministic system. The final states contain some final state of NDFA. If
possible. reduce the number of states.

Chapter 5: Regular Sets and Regular Grammars B 147

Note: The construction is similar to that given in Section 3.7 for automata
except for the initial step. In the earlier method for automata, we started with
[go]. Here we start with the set of all initial states. The other steps are similar.

EXAMPLE 5.7

Obtain the deterministic graph (system) equivalent to the transition system
given in Fig. 5.11.

Fig. 5.11 Nondeterministic transition system of Example 5.7.

Solution

We construct the transition table corresponding to the given nondeterministic
system. It is given in Table 5.1.

TABLE 5.1 Transition Table for Example 5.7

State/L a b

g1 G2

g1 o

@ 9o Gt

We construct the successor table by starting with [gg, ¢]. From Table 5.1
we see that [gy. g, g-] is reachable from {gq,. ¢g;] by a b-path. There are no
a-paths from [qg, g,]. Similarly, {g,, ¢;] is reachable from {g,; ¢, g»] by an
a-path and [qq, ¢;. g-] is reachable from itself. We proceed with the
construction for all the elements in Q"

We terminate the construction when all the elements of Q" appear in the
successor table. Table 5.2 gives the successor table. From the successor table
it is easy to construct the deterministic transition system described by Fig. 5.12

TABLE 5.2 Deterministic Transition Table for Example 5.7

Q a b
90, @1l 9 (9. 91, @2
9, 91, G2} 9. g4] [Go, G1. Q2]

9 # 9

148 & Theory of Computer Science

Fig. 5.12 Deterministic transition system for Example 5.7.

as gy and g, are the final states of the nondeterministic system [gp. ¢;] and
Ig0- 1. g»] are the final states of the deterministic system.

5.2.4 ALGEBRAIC METHOD USING ARDEN’S THEOREM

The following method is an extension of the Arden’s theorem (Theorem 5.1).
This is used to find the r.e. recognized by a transition system.
The following assumptions are made regarding the transition system:

(i) The transition graph does not have A-moves.
(ii) It has only one initial state, say v;.
(1i1) Tts vertices are v{ ... v,
{(iv} V, the r.e. represents the set of strings accepted by the system even
though v, is a final state.
(v) o; denotes the r.e. representing the set of labels of edges from v; to
v When there is no such edge. o; = §. Consequently, we can get the

following set of equations in V; ... V:
Vvl = ViOLH + Vzam + -+ V,IOL”] + /\
“73 = Vtohz + "730‘33 + o+ ‘/T;z(x'nl
\'yn = "T]alrz + ‘7:(13” R Vnamz

By repeatedly applying substitutions and Theorem 5.1 (Arden’s theorem).
we can express V; in terms of o;'s.

For getting the set of strings recognized by the transition system, we have
to take the ‘union’ of all Vs corresponding to final states.

| EXAMPLE 58

Consider the transition svstem given in Fig. 5.13. Prove that the strings
recognized are (a + a(b + aa)*b)* a(b + aa)* a.

Chapter 5: Regular Sets and Regular Grammars = 149

Fig. 5.13 Transition system of Example 5.8.

Solution

We can directly apply the above method since the graph does not contain any
A-move and there is only one initial state.
The three equations for g;. g, and gz can be written as

q = qa + @b + A, q: = qa + q;b + qaa. q; = qoa

Tt is necessary to reduce the number of unknowns by repeated substitution. By
substituting g4 in the g,-equation. we get by applying Theorem 5.1

q:-= q:2 + q;b + q-aa

qa + q~(b + aa)
qa(b + aa)*

Substituting q- in q;, we get
q = ga + qa + aa)*b + A
qia + a(b + aa)*b) + A

Hence,
q;= Ala + a(b + aa)*b)*

q>= (a + a(b + aa)*b)* a(b + aa)*

q:= (a + a(b + aa)*bh)* a(b + aa)*a

Since g5 is a final state, the set of strings recognized by the graph is given by

(a + a(b + aa)*b)*a(b + aa)*a
EXAMPLE 5.9

Prove that the finite automaton whose transition diagram is as shown in
Fig. 5.14 accepts the set of all strings over the alphabet {@, b} with an equal
number of «’s and &’s, such that each prefix has at most one more a than the
b's and at most one more b than the a’s.

Fig. 5.14 Finite automaton of Example 5.9.

150 B Theory of Computer Science

Solution

We can apply the above method directly since the graph does not contain the
A-move and there is only one initial state. We get the following equations for
91 92 93 g4

q=qb+qga+ A

q>= qa

q: = gb

q;=q.a + q:b + g2 + q4b
As q; is the only final state and the g-equation involves only q, and qs, we

use only q,- and gs-equations (the g,-equation is redundant for our purposes).
Substituting for q, and q;. we get
q; = quab + q;ba + A = qi(ab + ba) + A
By applying Theorem 5.1, we get
q, = A(ab + ba)* = (ab + ba)*

As qq is the only final state, the strings accepted by the given finite automaton
are the strings given by (ab + ba)*. As any such string is a string of ab’s,
and ba’s, we get an equal number of a’s and b’s. If a prefix x of a sentence
accepted by the finite automaton has an even number of symbols, then it
should have an equal number of a's and b’s since x is a substring formed by
ab’s and ba’s. If the prefix x has an odd number of symbols, then we can write

x as va or vb. As v has an even number of symbols. v has an equal number
of a’s and b’s. Thus, x has one more g than b or vice versa.

EXAMPLE 5.10

Describe in English the set accepted by the finite automaton whose transition
diagram is as shown in Fig. 5.15.

0

oo T¥G

Fig. 5.15 Finite automaton of Example 5:10.

Solution

We can apply the above method directly as the transition diagram does not
contain more than one initial state and there are no A-moves. We get the
following equations for q;, q», qs.

q=q0+A
q:= ql + q.1
4:=q0 + q3(0 + 1)

Chapter 5: Regular Sets and Regular Grammars B 151

By applying Theorem 5.1 to the q;-equation, we get
q; = A0* = 0*
So.
@ = ql1 + q1 =071 + g1
Therefore,
q. = (0*D)1*
As the final states are q, and g», we need not solve for ga:
q, + 9> = 0% + 0%(11%) = 0*%(A + 11%) = 0%(1%) by g

The strings represented by the transition graph are 0%1*. We can interpret the
strings in the English language in the following way: The strings accepted
by the finite automaton are precisely the strings of any number of 0’s (possibly
A) followed by a string of any number of 1's (possibly A).

EXAMPLE 5.11

Construct a regular expression corresponding to the state diagram described by
Fig. 5.16.

Fig. 5.16 Finite automaton of Example 5.11.

Solution

There is only one initial state. Also, there are no A-moves. The equations are
q=q0 + q:0 + A
Q= ql + ql + gzl

9 = q:0
So,
¢ = ql + q1 + (q:001 = ql + (1 + 01)
By applying Theorem 5.1. we get

G- = qll<1 + 01)*

152 & Theory of Computer Science

Also,

i

q10+q30+A:q10+q200+A
q0 + (11 + 013*)00 + A
q0 + 11 + 01)* 00) + A

q;

H

Once again applying Theorem 5.1, we get
q = A0 + 11 + 0)* 00)* = (0 + 1(A + C1)* 00)*

As ¢ is the only final state, the regular expression corresponding to the given
diagram is (0 + 1(1 + 01)* 00)*.

EXAMPLE 5.12

Find the regular expression corresponding to Fig. 5.17.

0 1

Fig. 5.17 Finite automaton of Example 5.12.

Solution

There is only one initial state. and there are no A-moves. So, we form the
equations corresponding to q;, qo. Gz, Q4

q = q0 + g0 + q,0 + A
4= ql + 1 + q41
q: = q,0

q:= g5l
Now.

q: = qs1 = (g:0)1 = ¢,01
Thus. we are able to write ¢z, . in terms of q,. Using the ¢s-equation, we
get

@ = ql + g1 + 2011 = gl + q-(1 + 011)

Chapter 5: Regular Sets and Reguiar Grammars & 153

By applying Theorem 5.1, we obtain
¢ = (g + 011)* = q(1(1 + 011)%)
From the g-equation. we have
q0 + q-00 + 010 + A
q0 + q>(00 + 010) + A
=q0 + ql(1 + 011)* (00 + 010) + A

q:

Again, by applying Theorem 5.1, we obtain
g, = A0 + 11 + 011)* (00 + 010))*
q: = G-01 = (1 + 011)* 01
= (0 + 11 + 011)*(00 + 010))*(1(1 + 011)* 01)

5.2.5 CONSTRUCTION OF FINITE AUTOMATA EQUIVALENT
TO A REGULAR EXPRESSION

The method we are going to give for constructing a finite automaton
equivalent to a given regular expression is called the subser method which
involves two steps.

Step 1 Construct a transition graph (transition system) equivalent to the
given regular expression using A-moves. This is done by using Theorem 5.2.

Step 2 Construct the transition table for the transition graph obtained in
step 1. Using the method given in Section 5.2.3, construct the equivalent DFA.
We reduce the number of states if possible.

. EXAMPLE 5.13

Construct the finite automaton equivalent to the regular expression
(0 + 100 + 11)0 + 1)*
Solution

Step 1 (Construction of transition graph) First of all we construct the
transition graph with A-moves using the constructions of Theorem 5.2. Then
we eliminate A-moves as discussed in Section 3.2.1.

We start with Fig. 5.18(a).

We eliminate the concatenations in the given r.e. by iniroducing new
vertices ¢, and ¢> and get Fig. 5.18(b).

We eliminate the » operations in Fig. 5.18(b) by introducing two new
vertices gs and gg and the A-moves as shown in Fig. 5.18(c).

We eliminate concatenations and + in Fig. 5.18(c) and get Fig. 5.18(d).

We eliminate the A-moves in Fig. 5.18(d) and get Fig. 5.18(e) which
gives the NDFA equivalent to the given ie.

154 B Theory of Computer Science

f\ (0 +1 (00 + 11)(0 + 1)*
)

(@)

(0 +1 00 +11) 0+ 1y
(oL et N O
N N N

(b)
0+1 0 +1
; ‘ 00 +11 A A
—f%—‘—.—% O D e € e G e
(c)
497

®
fk
.
@53*
©

Fig. 5.18 Construction of finite automaton equivalent to (0 + 1)*(00 + 11)(0 + 1)*.

Step 2 (Construction of DFA) We construct the transition table for the
NDFA defined by Table 5.3.

TABLE 5.3 Transition Table for Example 5.13

State/E 0 : 1
— ¢ Go. Q3 o, G4
i gr
qs Gr

@) gr qr

Chapter 5: Regular Sets and Regular Grammars = 155

The successor table is constructed as given in Table 5.4.

TABLE 5.4 Transition Table for the DFA of Example 5.13.

Q Qo Q4

= [go] [0, @5l {90, Q4]
{g0. a] [90: 93, 7] [90. g4l
{9o. G4 (90, Gl {90, 94. a7
{90, @3, a7 (90, gs. 7] (90, Ga. a7l
(G0 Qa g (G0, G2 90, 94 qd

The state diagram for the successor table is the required DFA as described by
Fig. 5.19. As gy is the only final state of NDFA. [go. g3, ¢;] and [qo. 4. g7l
are the final states of DFA.

Fig. 5.19 Finite automaton of Example 5.13.

Finally. we try to reduce the number of states. (This is possible when two
rows are identical in the successor table.) As the rows corresponding to
{gn. g3 g7] and [gq. g4. g¢] are identical. we identify them. The state diagram
for the equivalent automaton. where the number of states is reduced, is
described by Fig. 5.20.

Fig. 5.20 Reduced finite automaton of Example 5.13.

Note: While constructing the transition graph equivalent to a given r.e.. the
operation (concatenation. *. +) that is elim‘mated first, depends on the regular
expression.

156 = Theory of Computer Science

-EXAMPLE 5.]4_'
Construct a DFA with reduced states equivalent to the r.e. 10 + (0 + 11))0%1.
Solution

Step1 (Construction of NDFA) The NDFA is constructed by eliminating the
operation +. concatenation and *. and the A-moves in successive steps. The
step-by-step construction is given in Figs. 5.21(a)-5.21(e).

N 10 + {0 + 11) 01 @
NG (a)

10

2
(0 +11)0°1 ¢

{b) Eiimination of +.

A

\\v Ja | ;
\ }/
\\
\ 1,
/

4

¥

{d) Elimination of +.

{e} Elimination of A-moves.

Fig. 5.21 Construction of finite automaton for Example 5.14.

Chapter 5: Regular Sets and Regular Grammars 157

Step 2 (Construction of DFA) For the NDFA given in Fig. 5.18(¢), the
corresponding transition table is defined by Table 5.5.

- TABLE 5.5 Transition Table for Example 5.14

State/z 0 1
— G5 a3 g g2
g Qr
°f] a3
Qs g3 Gr

@

The successor table is constructed and given in Table 5.6.
In Table 5.6 the columns corresponding to [g] and @ are identical. So we
can identify [g] and 0.

TABLE 5.6 Transition Table of DFA for Example 5.14

Q Qg Q4
= [qd] [g3] {9+, g2l
[aa] {gs] {a]
[Q}\%} [ad {gs]
@) i 9

]]]

The DFA with the reduced number of states corresponding to Table 5.6
is defined by Fig. 5.22.

Fig. 5.22 Reduced DFA of Example 5.14.

5.2.6 EQUIVALENCE OF Two FINITE AUTOMATA

Two finite automata over T are equivalent if they accept the same set of strings
over X. When the two finite automata are not equivalent, there is some string

158 2 Theory of Computer Science

w over X satisfving the following: One automaton reaches a final state on
application of w, whereas the other automaton reaches a nonfinal state.

We give below a method. called the coemparison method. to test the
equivalence of fwo finite automata over X.

Comparison Method

Let M and M”be two finite automata over X, We construct a comparison table
consisting of 7 + [columns. where n is the number of input symbols. The first
column consists of pairs of vertices of the form (g, ¢"), where g € M and ¢
e M. If (g ¢') appears in some row of the first column, then the
corresponding entry in the a-column (a € Z) is (g, g.), where g, and ¢, are
reachable from g and ¢, respectively on application of a (i.e. by a-paths).

The comparison table is constructed by starting with the pair of initial
vertices ¢y, g, of M and M’ in the first column. The first elements in the
subsequent columns are (g, ¢,) where g, and g/, are reachable by a-paths
from g, and ¢j,. We repeat the construction by considering the pairs in the
second and subsequent columns which are not in the first column.

The row-wise construction is repeated. There are two cases:

Case 1 1f we reach a pair {¢, ¢) such that ¢ is a final state of M, and ¢ is
a nonfinal state of M’ or vice versa, we terminate the construction and
conclude that M and M~ are not equivalent.

Case 2 Here the construction is terminated when nc new element appears in
the second and subsequent columns which are not in the first column (i.e.
when all the elements in the second and subsequent columns appear in the first
column). In this case we conclude that M and M’ are equivalent.

EXAMPLE 5. 15

Consider the following two DFAs M and M’ over {0. 1} given in Eg 5.23.
Determine whether M and M’ are equivalent.

{a) (b)

Fig. 5.23 (a) Automaton M and (b) automaton M’

Chapter 5: Regular Sets and Regular Grammars EH 159

Solution

The initial states in M and M’ are g, and ¢, respectively. Hence the first
element of the first column in the comparison table must be (g, ¢,). The first
element in the second column is (g, ¢gy) since both ¢, and g, are c-reachable
from the respective initial states. The complete table is given in Table 5.7.

TABLE 5.7 Comparison Tabie for Example 5.15

{g. g’ (g- g2 (g4, qa)
(G«. Guj (G1, Ga) (G2, Gs)
(G2 Q=) (G Gal (gs, qa)
{9z G (92, G7) (G3. Ga)
(92 g-) (Gs. Gs) (g1, qa)

As we do not get a pair (g, ¢'), where ¢ is a final state and ¢ is a nonfinal
state {or vice versa) at every row, we proceed until all the elements in the
second and third columns are also in the first column. Therefore. M and M’
are equivalent.

(@) (b)
Fig. 5.24 (a) Automaton M, and (b) automaton M.

Solution

The initial states in M, and M- are ¢, and ¢,. respectively. Hence the first
column in the comparison table is (g, ¢3). ¢~ and gs are d-reachable from g,
and ¢.. We see trom the comparison table given in Table 5.8 that ¢, and ¢4
arc d-reachable from ¢~ and g, respectively. As ¢, is a final state in M,. and
¢ 1s a nonfinal state in M-, we see that M, and M- are not equivalent: we can
also note that g is dd-reachable from ¢, and hence dd is accepted by M. dd
is not accepted by M- as only g, is dd-reachable from ¢, but ¢, is nonfinal.

160 =2 Theory of Computer Science

TABLE 5.8 Comparison Table for Example 5.16

9. 9) (9s 99 (9s 90
(91, 94) (G4 Ga) (g2, gs)
(G2, gs) (93, G7) (g1, Qs)

5.2.7 EQUIVALENCE OF TwWO REGULAR EXPRESSIONS

Suppose we are interested in testing the equivalence of two regular
expressions, say P and Q. The regular expressions P and Q are equivalent iff
they represent the same set. Also, P and Q are equivalent iff the corresponding
finite automata are equivalent.

To prove the equivalence of P and Q, (i) we prove that the sets P and Q
are the same. (For nonequivalence we find a string in one set but not in the
other.) Or (ii) we use the identities to prove the equivalence of P and Q. Or
(iii) we construct the corresponding FA M and M” and prove that M and M’ are
equivalent. (For nonequivalence we prove that M and M’ are not equivalent.)

The method to be chosen depends on the problem.

EXAMPLE 5.17

Prove (a + b)* = a*(ba*)*.

Solution

Let P and Q denote (a + b)* and a*(ba*)*, respectively. Using the construction
in Section 5.2.5, P is given by the transition system depicted in Fig. 5.25.

a, b

o—H -0 -C

Fig. 5.25 Transition system for (a + b)*.

The wansition system for Q is depicted in Fig. 5.26.
It should be noted that Figs. 5.25 and 5.26 are obtained after eliminating
A-moves. As these two transition diagrams are the same, we conclude that
P = Q. T
We now summarize all the results and constructions given in this section.
(1) Every r.e. is recognized by a transition system (Theorem 5.2).
(11) A transition system M can be converted into a finite automaton
accepting the same set as M (Section 5.2.3).

(ili) Any set accepted by finite automaton is represented by an r.e.
(Theorem 5.3).

(iv) A set accepted by a transition system is represented by an r.e. (from
(i1) and (1i)).

Chapter 5: Regular Sets and Reguiar Crammars 2 161

71 ba*

A \/ A

a

(/,q\ \
R / N { /—\

C

A

Fig. 5.26 Transition system for a*(ba™)*.

{v) To get the r.e. representing a set accepted by a fransition system. we
can apply the algebraic method using the Arden’s theorem (see
Section 5.2.4).

(vi) If P 1s an r.e., then to construct a finite automaton accepting the set
P. we can apply the construction given in Section 5.2.5.
(vii) A subset L of X* is a regular set (or represented by an r.e.) iff it is
accepted by an FA (from (1). (il) and (iii)).
(vii1) A subset L of £* is a regular set iff it is recognized by a transition
system (from (i) and (iv)).
{(ix) The capabilities of finite automaton and transition systems are the
same as far as acceptability of subsets of strings is concerned.
(x) To test the equivalence of two DFAs. we can apply the comparison
method given in Section 3.2.6.
We conclude this section with the Kleene's theorem.

Theorem 5.4 (Kleene's theorem) The class of regular sets over X is the

srallest class A containing {a} for every a € I and closed under union,

concatenation and closure.

Proof The set {a} is represented by the regular expression a. So {a} is

regular for everv ¢ € X. As the class of regular sets is closed under union,

concatenation. and closure. % is contained in the class of regular sets.

162 E Theory of Computer Science

Let L be a regular set. Then L = T(M) for some DFA, M = ({g;, ...
qm}) Z-.- 6) do, F) By Theorem 5.3.

L=U Ry
=
where F = {q; ... gz} and P17y is obtained by applying union, concatenation

and closure to singletons in X. Thus, L is in R. |

5.3 PUMPING LEMMA FOR REGULAR SETS

In this section we give a necessary condition for an inpwt string to belong to
a regular set. The result is called pumping lemma as it gives a method of
pumping (generating) many input strings from a given string. As pumping
lemma gives a necessary condition, it can be used to show that certain sets are
not regular.

Theorem 5.5 (Pumping Lemma) Let M = (Q, Z. &, gy F) be a finite
automaton with 7 states. Let L be the regular set accepted by M. Let w € L
and | w| 2 m. If m 2 n, then there exists x, ¥, z such that w = xyz, y # A and
xy'z e L for each i = 0.

Proof Let
W= q Qs ...y m2n

0ge, ajas ... a)=gq; fori=1,2.....m 01 =190 4 - Gu)

That is, Q; is the sequence of states in the path with path value w = a2, . . . a,,
As there are only n distinct states, at least two states in Q, must coincide.
Among the various pairs of repeated states. we take the first pair. Let us take
them as g; and gi(g; = q)- Then j and k satisty the condition 0 < j < k < n.

The string w can be decomposed into three substrings aya; . .. aj, djyq - . -
a; and @i,y ... q, Let x, ¥ : denote these strings a\d; ... @ Gy ... G
et - - -y, respectively. As k < n, |xv] < n and w = xyz. The path with the
path value w in the transition diagram of M is shown in Fig. 5.27.

The automaton M starts from the initial state gy On applying the string
x, it reaches g(=¢;). On applying the string y, it comes back to g(= qi). So
after application of)* for each 7 2 0, the automaton is in the same state ;.
On applying z. it reaches g,,, a final state. Hence. xy'z € L. As every state in
0, is obtained by applying an input symbol, y # A. |

Fig. 5.27 String accepted by M.

Chapter 5: Regular Sets and Regular Grammars 2 163

Note: The decomposition is valid only for strings of length greater than or
equal to the number of states. For such a string w = xvz, we can ‘iterate’ the
substring v in xyz as many times as we like and get strings of the form xy'z
which are longer than xvz and are in L. By considering the path from gq to
g and then the path from ¢, to g,, (without going through the lcop), we get
a path ending in a final state with path value xz. (This corresponds to the case
when i = 0.)

5.4 APPLICATION OF PUMPING LEMMA

This theorem can be used to prove that certain sets are not regular. We now
give the steps needed for proving that a given set is not regular.

Step 1 Assume that L is regular. Let n be the number of states in the

corresponding finite automaton.

Step 2 Choose a string w such that | w | = n. Use pumping lemma to write
w=oxz with [ay | <nand [y >0

Step 3 Find a suitable integer { such that v’z ¢ L. This contradicts our
assumption. Hence L is not regular.

Note: The crucial par‘r of the procedure is to find 7 such that x»w'z ¢ L. In
some cases we prove v’z € L by considering | xv'z |. In some cases we may
have to use the ‘structure’ of strings in L.

EXAMPLE 5.18

Show that the set L = {a" | i> 1} is not regular.

Solution

Step 1 Suppose L is regular. Let n be the number of states in the finite
automaton accepting L.

Step 2 Letw =a". Then |w/| = n° > n. By pumping lemma. we can write
w = xvz with |xy| < nand [y| > 0.

Step 3 Consider xv°z. |xvz| = |x| + 2|v] + 2] > |x| + |y| + |z] as
|y > 0. This means n° = |xvz| = |x] + |v] + [z] < |07z] As || < n
we have |v| < n. Therefore.

o z) = lxl + 2yl + 2] <+ m

i.e.
n:<l RO 2 1
Ny s A< +nt+n+
Hence. | x7z | strictly lies between #~ and (n + 1), but is not equal to any

one of them. Thus | nz | is not a perfect square and so n'z ¢ L. But by
RN p q) Y
pumping lemma, vz € L. This is a contradiction.

164 2 Theory of Computer Science

EXAMPLE 5.19

Show that L = {¢/|p is a prime} is not regular.

Solution
Step 1 We suppose L is regular. Let n be the number of states in the finite
automaton accepting L.

Step 2 Let p be a prime number greater than n. Let w = ¢/ By pumping
lemma. w can be written as w = xyz, with |xy| <nand |v|> 0. x ¥ z are
simply strings of a’s. So, v = ¢ for some m = 1 (and £ n).

Step 3 Leti=p + 1. Then B vz]+ Mly=p+(G-1m=p+
pm. By pumping lemma. x3'z € L But | xv'z | = p + pm = p(1 + m), and p(1
+ m) is not a prime. So x3'z ¢ L. This is a contradiction. Thus £ is not regular.

EXAMPLE 5.20

Show that L = {O‘;I"}i > 1} is not regular,

Solution

Step 1 Suppose L is regular. Let n be the number of states in the finite
automaton accepting L.

Step 2 Let w = 0"1". Then |w| = 2n > n. By pumping lemma, we write
w = xvz with x| <nand |y] 2 0.

Step 3 We want to find 7 so that xv'z ¢ L for geiting a contradiction. The
string v can be in any of the following forms:

Case 1 vy has O’s, i.e. v = 0" for some k = 1.

Case 2 v has only 1's, i.e. y = 1/ for some 7 > 1.

Case 3 v has both 0's and I's, i.e. v = 0°V for some &, j > 1.

In Case 1. we can take 7 = 0. As vy = 01", 1z = 01" As k=1 n -
k#n So, xz ¢ L.

In Case 2. take i = 0. As before, xzis 0"1" and n #n — . So. xz ¢ L.

In Case 3. take i = 2. As xvz = 0" 0"V 1", v’z = 0" O VOF 1. As vz
is not of the form 0'L, xv°z ¢ L.

Thus in all the cases we get a contradiction. Therefore, L is not regular.

' EXAMPLE 5.21

Show that L = {ww|w € {a b}*} is not regular.

Solution

Step 1 Suppose L is regular. Let n be the number of states in the automaton
M accepting L. '

Chapter 5: Regular Sets and Regular Grammars = 165

Step 2 Let us consider ww = a"ba’h in L. [ww | = 2(n + 1) > n. We can
apply pumping lemma to write ww = xyz with | v| # 0. | x| < n

Step 3 We want to find i so that xy'z ¢ L for getting a contradiction. The
string v can be in only one of the following forms:

Case 1 v has no b’s, ie. v = o* for some k > 1.
Case 2 v has only one b.

We may note that v cannot have two b's. If so. [y| 2 n + 2. But |y]| £
|xv] < n In Case 1, we can take i = 0. Then 13‘0; = xz is of the form a”ba"b,
where m =1 — k < n (or a"ba”b). We cannot write 2 in the form wu with
we {a b}*. and so xz ¢ L. In Case 2 to, we can take i = 0. Then 0¥z = x2
has only one b {as one b is removed from xvz, b being in v). So xz ¢ L as
any element in L should have an even number of ¢’s and an even number of
b’s.

Thus in both the cases we get a contradiction. Therefore. L is not regular.

Note: 1If a set L of strings over T is given and if we have 1o test whether
L is regular or not, we try to write a regular expression representing L using
the definition of L. If this is not possible. we use pumping lemma to prove
that L is not regular.

'EXAMPLE 5.22

"
Is L = {a"|n = 1} regular?

Solution

2

. o . - ENEE C e 2
We can write ¢ as a(a”Ya, where i 2 0. Now {(a)' | i 2 0} is simply {a }*.
So L is represented by the regular expression a(P)*a, where P represents {a"}.
The corresponding finite automaton (using the construction given in Section

5.2.5) is shown in Fig. 5.28.

()

Fig. 5.28 Finite automaton of Example 5.22.

5.5 CLOSURE PROPERTIES OF REGULAR SETS

In this section we discuss the closure properties of regular sets under (i) set
union, (i1) concatenation. (iii) closure (iteration), (iv) transpose, (v) set
imtersection, and (vi) complementation.

166 = Theory of Computer Science

In Section 5.1. we have seen that the class ot regular sets is closed under
union. concatenation and closure

Theorem 5.6 If L is regular then L’ is also regular.

Proof As L is regular by (vii). given at the end of Section 5.2.7. we can
construct a finite automaton M = (Q. X, 6. gy F) such that T(M) = L.

We construct a transition system M by starting with the state diagram of
M, and reversing the direction of the directed edges. The set of imidal states
of M’ is defined as the set F, and ¢, is defined as the (cnly) final state of M’

e. M =1(Q X. 8. F g}

If w e T(M). we have a path from g, to some final state in F with path
value w. By ‘reversing the edges’, we get a path in M’ from some final state
in F to gg Its path value is w’. So w! € T(M'). In a similar way. we can
see that if w, € T(M"), then w/ € T(M). Thus from the state diagram it is
easy to see that T(UM’) = T(M)’. We can prove rigorously that w € T(M) iff

Te (M) by induction on jw|. So TN = T(M"). By (viit) of Section

2.7, T(M') is regular. ie. T(.M)T is regular. 1

-!EXAMPLE‘ 5.23

Consider the FA M given by Fig. 5.26. What is T(M)? Show that TV s
regular.

(%) : ©h»

\

ot

e

id

-/
0 /

O;1 \ C;2
Fig. 5.28 Finite automaton of Example 5.23.

Solution

As the elements of T(M) are given by path values of paths from g, to itself
or from gq to ¢, (note thar we have two final states ¢y and ¢¢), we can
construct 7(M) by inspection.

As arrows do not come into gy, the paths from ¢, to itself are se'{ loops
repeated any number of times. The corresponding path values are 0, i > 1.
As no arrow comes from ¢~ 10 ¢y or ¢,, the paths from ¢, to ¢ are of the
form gy ... = ¢y ... gy ... — ¢;. The corresponding path values are 0'1.
where 7 2 0 and j 2 1. As the iniual state ¢ is also a final state, A € T(M).
Thus.

M) = {0V] i j = 0}
Hence, »
TMy"

{10} j = 0}

Chapter 5: Regular Sets and Regular Grammars H 167

The transition system M’ is constructed as follows:
(1) The initial states of M” are g, and g,.
(ii) The (only) final state of M”15 qq
{ii1) The direction of the directed edges 1is reversed. M is given in Fig. 5.30.
From (1)—(i1i) it follows that
TCMy = T(M)Y
Hence, T(M)' is regular.

\m : \},q » 1
0 J L1 1
1\4 ~—

J

0

3

Fig. 5.30 Finite automaton of T(M)

Note: In Example 5.23. we can see by inspection that T(M") = (v o i,
j = 0}. The strings of T(M”) are obtained as path values of paths from ¢ to
itself or from g, 10 g
Theorem 5.7 If L is a regular set over Z. then ¥ — L is also regular over X.
Proof As L is regular by (vii). given at the end of Section 5.2.7, we can
construct a DFA M = (Q, . 8. go F) accepting L. ie. L = T(M).

We construct another DFA M’ = (0, Z. 6. gy, F’) by defining F = Q ~F,
i.e. M and A differ only in their final states. A final state of M’ is a nonfinal
state of M and vice versa. The state diagrams of M and M” are the same except
for the final states.

w e T(M" if and only if O0(gy, w) € F' = Q — F, ie. iff w ¢ L. This
proves T(M") = £* - X. |

Theorem 5.8 1If X and Y are regular sets over X, then X m Y is also regular
over X.

Proof By DeMorgan's law for sets. X m ¥ = 2% — ({(£* — X) U (ZF -~ 1)). By
Theorem 5.7. £* - X and £¥ — ¥ are regular. So, (¥ - X) U (Z* - }) is
also regular. By applving Theorem 5.7. once again Z* — (Z* — X) W
(Z* = Y)) 1s regular. 1.e. X n Y is regular. |

5.6 REGULAR SETS AND REGULAR GRAMMARS

We have seen that regular sets are precisely those accepted by DFA. In this
section we show that the class of regular sets over X is precisely the regular
languages over the terminal set X.

168 &HE Theory of Computer Science

5.6.1 CONSTRUCTION OF A REGULAR GRAMMAR
GENERATING T(M) rOrR A GIVEN DFA M

Let M= ({gg, - -+ . Guts Z. 6. gy, F). If wis in T(M), then it is obtained by
concatenating the labels corresponding to several transitions, the first from ¢g
and the last terminating at some final state. So for the grammar G to be
constructed, productions should correspond to transitions. Also, there should
be provision for terminating the derivation once a transition terminating at
some final state is encountered. With these ideas in mind, we construct ¢ as

G = ({AQ, A], PR A”}, Z, P AO)
where P is defined by the following rules:

(i) A; — aA; is included in P if 0(g. a)=gq; & F.
(i) A; = aA; and A; — a are included in P if 8(q. a) = q; € F.

We can show that L(G) = T(M) by using the construction of P. Such a
construction gives

A= aA; iff 8(g. @) = g
141' = a iff 5((]1'. a) e F

So.
AO = (11A1 = (11(7:44: = ... = dy ... a,(_lAk = s ... Q
iff (S(qO, [l]) = q 5((]1 (l:) = gh. .. 6(Qk’ ak) e F
This proves that w = a; ... a, € L(G) iff 8(go, @y ... a) € F, ie. iff
w e T(M). '

-EXAMPLE 5.24

Construct a regular grammar G generating the regular set represented by
P = a*b(a + b)*
Solution

We construct the DFA corresponding to P using the construction given in
Section 5.2.5. The construction is shown in Fig. 5.31.

a b (a+b)

_/ _/ o/
a a b
O—C—O0——0—E—®

Fig. 5.31 DFA of Example 5.24, with A-moves.

After eliminating the A-moves, we get the DFA straightaway, as shown in
Fig. 5.32.

Chapter 5: Regular Sets and Regular Grammars 2 169

Fig. 5.32 DFA of Example 5.24, without A-moves.

Let G = ({AQ, A;}. {a b}. P. Ap). where P is given by
AO - aAO, :’10 — bAl. ,40 — b
A] — aAI, A] —> bfh, ;4! — . A} — b

G is the required regular grammar.

5.6.2 CONSTRUCTION OF A TRANSITION SYSTEM M
ACCEPTING L{G) FOR A GIVEN REGULAR
GRAMMAR G

Let G = ({Aq Ay .. .0 AL 20 P, Ay). We construct a trapsition system M
whose (1) states correspond to variables. (ii) initial state corresponds to Ag.
and (iii) transitions in M correspond to productions in P. As the last
production applied in any derivation is of the form A, — g, the corresponding
transition terminates at a new state. and this is the unique final state.
We define M as ({go. g g7} . 6 go, {gy}) where & is defined as
follows: ‘ A
(i) Each production A; — wA; induces a transition from ¢; to g; with
label a. ' ‘
(i1) Each production A; — a induces a transition from g; to g with
label a.

From the construction it is easy to see that Ay = 4;A; = aj@A> = ...
= a ... a,A, = a; ... a,is a derivation of aa, ... a, iff there is a
path in M starting from g, and terminating in g, with path value ¢a, ... @,
Therefore. L(G) = T(M). '

EXAMPLE 5.25

Let G = ({Aq, A}, {a. b}, P, Ap). where P consists of Ay — ad,. A} — bA|,
Ay = a A, — bAg. Construct a transition system M accepting L(G).

Solution

Let M = ({qa q1- g7} {a. b}. 0. qo, {g}). where g, and g, correspond to Ag
and A, respectively and g, is the new (final) state introduced. A, — A,
induces a transition from E/O to ¢; with label 4. Similarly. A; — bA; and
Ay — bAy induce transitions from g, to ¢; with label 5 and from ¢, to g, with

170 2 Theory of Computer Science

label b, respectively. A; — a induces a transition from ¢; to g; with label a.
M is given in Fig. 5.33.

@

A
1%

Fig. 5.33 Transition system for Example 5.25.

'EXAMPLE 5.26

If a regular grammar G is given by S — aS|a, find M accepting L(G).

Solution

Let go correspond to S and g, be the new (final) state. M is given in
Fig. 5.34. Symbolically.

M = ({q0. q7}. {a}. & g0 {1gs)

Fig. 5.34 Transition system for Example 5.26.

Note: It S — A is in P, the corresponding transition is from gq to gy with
label A.

By using the construction given in Section 5.2.3, we can construct a DFA
M accepting L(G) for a given regular grammar G.

5.7 SUPPLEMENTARY EXAMPLES

EXAMPLE 5.27

Find a regular expression corresponding to each of the following subsets of
{a. b}.

{a) The set of all strings containing exactly 2a’s.

(b) The set of all strings containing at least 2a’s.

{c) The set of all strings containing at most 2a’s.

(d) The set of all strings containing the substring aa.

Chapter 5: Regular Sets and Regular Grammars = 171

Solution
(a) b*ab*ab®*
(b) (a + b)*a(a + b)*a(a + b)*
(c) b*ab*ab* + b*ab*
(d) (a + b)*aa(a + b)*

EXAMPLE 5.28

Find a regular expression consisting of all strings over {a, b} starting with any
number of a’s, followed by one or more b's. followed by one or more a’s,
followed by a single b, followed by any number of «s. followed by b and
ending in any string of a’s and &’s.

Solution

The re. is a*b b*aa*b(a + b)*.

EXAMPLE 5.29

Find the regular expression representing the set of all strings of the form

(a) d"b'’ where m, n. p 2 1

(b) b where m, n, p 2 1

(¢) d'ba”"'b* where m 2 0, n 2 1
Solution

(a) aa*bb*cc*
(b) aa*(bb)(bb)*cec(cce)*
(c) aa*b(aa)*bb

EXAMPLE 5.30

Find the sets represented by the following regular expressions.
(a) (a + b)*(aa + bb + ab + ba)*
(b) (aa)* + (aaa)*
(c) (1 +01 + 00DH*A + 0+ 00)
(d) a + b(a + b)*

Solution

(a) The set of all strings having an odd number of symbols from {a, b}*

(b) {x € {a}*| | x| is divisible by 2 or 3}

(¢) The set of all strings over {0, 1} having no substring of more than
two adjacent 0’s.

(d) {a. b, ba, bb, baa, bab, bba. bbb, ...}

172 & Theory of Computer Science

EXAMPLE 5.31.

Show that {w & {a. b}* | w contains an equal number of a's and b's} is not
regular.

Solution

We prove this by contradiction. Assume that L = T{M) for some DFA M with
n states. Let w = @b’ € L and |w]| = 2". Using the pumping lemma, we write
w = xyz with |xv| £ nand |y| > 0. As xXyz = a'b", xy = a where i < n and
hence v = ¢ for some] 1 £j < n. Consider xv?z. Now xyz has an equal number
of a's and b's. But xv°z has (n + j) @’s and n b’s. As n +j # n, we L
This contradiction proves that L is not regular.

EXAMPLE '5.32.

Show that L = {a¥/c* | k > i + j} is not regular.

Solution

We prove this by contradiction. Assume L = T(M) for some DFA with n
states. Choose w = a'b'¢” in L. Using the pumpmg7 femma, we write w = xyz
with |xv] <nmand [yl >0, As w = d'b'c A1 xv = ' for some i < n, This means
that) = a/ for some j. 1 <j < n. Then n“ o= &M, Choosing k large
enough so that n + jk > 2n, we can make # + jk + n > 3n. So, »**lz e L.
Hence L is not regular.

EXAMPLE '5.33

Prove the identities Is. ;. 1o, Iy, I, ;> given in Section 5.1.1.
Proof LR + R) = L(R) u L(R) = L(R). Hence Is.
L(R*R¥) = L(R*)L(R*\ = {wlwgiwh w. € LIRHL But wy = xpx, ...

X, € LRY* for x; € L(R). i =L, 2. ..., »n Similarly, w> = y,v5 ... v, €
L(R*) for v; € L(R). j =1, 2.m So wyw, € L{R)* proving I

An element of L(RR*) is of the form xv,...y, for some
X, Y.Ly, € LR

As xvy ...y, = (0 LDy, € LIR'R), /5 follows.

It is easy to see that L(R*) ¢ L((R")). Take w € L{((R**), Then
W= Xx, where v, € R* i = 1, .. m. Each x; in turn can be

written in the form yjv-» ... v, for some v; € L(R), i = 1. 2. n. So,
W= XX, =5 ... € LR,
(Note: x| = 2y ... Zn X2 = Ty ... Ty €1C)

Hence ;.

To prove ;. take w € L(P + Q)* Then w = w, ... w, where w; €

LP) v LQ). By writing w; = Aw; = wiA, we note that w; € P*Q*, Hence
w e LPF*Q*y*:. To prove L(P*Q*)* C L(P + Q)*, take w e L{P*Q*)*

Chapter 5: Regular Sers and Regular Grammars 2 173

Then, w = w| ... w, where w; e P*Q*. For simplicity take n = 2. (The result
can be extended by induction for any n). Then w;, = xx» ... x,.. where
x; € L(P) and wy = ypyo ...y where v, € L(Q) So w = xpx LAy ..V
Each x; or y; is in L(P + Q). Hence w 5 L(P + Q)*, proving the first identity
in /;;. The second identity can be proved in a similar way.

Finally, we prove /.

L(P + QR)

LP + QLRER)

(L(P) v LIQ)L(R)
L(PR) v L(QR)
(LPLR)) v (LIQL(R))

But (A U B)C = AC U BC for A, B, C ¢ X*. For. a string w in
(A W B)C is the concatenation of a string wy in A or B and a string w» in C.
If w, € A, then ww> € AC: if w; € B. then wyw, € BC. Hence w € AC U
BC. The other inclusion can be proved similarly. /;> follows from (A v B)C
= AC v BC.

| EXAMPLE 5.34

Prove that P + PQ*Q = a*bQ* where P = b + aa*b and Q is any regular
expression.

L(PR + QR)

Proof L.HS. = PA + PQ*Q by I3
= P(A + Q*Q) by 12
= PQ* by Iy
= (b + aa*b)Q* by definition of P
= (Ab + aa*h)Q* by I;
= (A + aa*)bQ* by I,
= a*hQ* by 1,
= RHS.

EXAMPLE 5.35]

Construct a regular grammar accepting L = {w € {a, b}*
{a. b} such that the number of b’s is 3 mod 4}.

W is a string over

Solution

We construct a DFA M accepting L directly. The symbol a can occur in any
place in w and b has to occur in 4k + 3 places, where k 2 0. So we can have
states ¢, 1 = 0, 1. 2, 3. for remembering that the string processed so far has
4k, 4k + 1, 4k + 2 and 4k + 3 b’s (k 2 0). g5 is the only final state. Also M
does not change state on reading «'s. The state diagram representing M is
given in Fig. 5.35.

174 & Theory of Computer Science

D
&

b

Fig. 5.35 DFA for Example 5.35.

By applying the construction given in Section 5.6.1. we can construct a
regular grammar G accepting L = T(M).

G = ({Ag. Ay, As Az}, {a, b}, P. Ay) where P consists of Ay — aAo.
Ay = PA|, A; = bA|, Ay & bAs. Ay — aAs, As — bAs, Ay — b, Ay — dAj,
A3 — (ZA().

EXAM PLE 5.36

Let G = ({Ag. A, As. Aj}. {a. b}, P. Ap)., where P consists of Ay —
aAg | A A] > aAy|ads, Ay — a| bA;| bAs. Ay — b| bAy. Construct an
NDFA accepting L(G).

Solution

The NDFA accepting L = L(G) is M where M = ({qs. q1. 4>, 3. g4}, {a. b},
S. qo, {qs}). 8 is described by the state diagram shown in Fig. 5.36.

Fig. 5.36 NDFA for Example 5.36.

Chapter 5: Regular Sets and Regular Grammars = 175

SELF-TEST

Choose the correct answer to Questions 1-10.

1.

190.

The set of all strings over {a, b} of even length is represented by the
regular expression

(a) {ab + aa + bb + ba)* (b) {a + b)*(a* + b)*

(¢) (aa + bb)* (d) (ab + ba)*

. The set of all strings over {a, b} of length 4. starting with an a is

represented by the regular expression

(a) a(a + b)* (b) a(ab)*

(c) (ab + ba)(aa + bb) (d) a(a + b)(a + b)(a + b)
(0*1%)* is the same as

(a) (0 + 1)* (b) (01)*

(c) (10)* (d) none of these.

If L is the set of all strings over {a. b} containing at least one a, then
it is not represented by the regular expression

(a) b*a(a + b)* (b) (a + by*a(b + a)*
(¢) (a + b)*ab* (d) (a + b)*a

{a™ | n = 1} is represented by the regular expression
(a) (aa)* (b) a*

{¢c) aa*a (d) a*a*

. The set of strings over {a, b} having exactly 35’s is represented by the

regular expression
(a) a*bbb {b) a*ba*ba*b
(c) ba*ba*b (d) a*ba*ba*ba*

. The set of all strings over {a. b} having abab as a substring is

represented by

(a) a*ababb* . (b) (a + b)*abab(a + b)*
(c) a*b*ababa*b* (d) (a + b)*abab
. (a + a*)* is equivalent to
(a) a(a®)* (b) a*
(c) aa* (d) none of these.
. a*(a + b)* is equivalent to
(a) a* + b* (b) (ab)*
(c) a*b* (d) none of these.

ab* + b* represents all strings w over {a. b}

(a) starting with an a and having no other a’s or having no a's but
only b's

(b) starting with an a followed by 5's

(¢) having no a’s but only b's

(d) none of these.

176

E Theory of Compiiter Science

EJI
[%)

n
~1

5.8

whether the following Statements 11-17 are true or false.

. If ¥ is finite then X* is finite.

Every finite subset of £¥ is a regular language.
Every regular language over X is finite.

a*b’ is in the regular set given by a*(a + b)b*,

5. aa* + bb* is the same as (a + h)*.
. The set of all strings starting with an a and ending in @b is defined by

the regular expression a(a + b)*b.

. The regular expression (a + b)*c* is the same as a*(b + ¢)*.

EXERCISES

Represent the following sets by regular expressions:
(a) {0. 1. 2}

(b) {171 s > 0}.

() {w e {a b}*|w has only one a}.

(d) The set of all strings over {0. 1} which has at most two zeros.
() {a, o, da* ...}
() {&"|nis divisible by 2 or 3 or n = 5}.

(g) The set of all strings over {a, b} beginning and ending with a.

Find all strings of length 5 or less in the regular set represented by the
following regular expressions:
{a) (ab + a)*(aa + b)
(b) (a*b + b*a)*a
(¢) a* + (ab + a)*
Describe, in the English language, the sets represented by the following
regular expressions:
(a) a(a + b)*ab
(b) a*h + b*a
(¢) (aa + b)*(bb + a)*
Prove the following identity:
(a*ab + ba)*a* = (a + ab + ba)*
Construct the transition systems equivalent to the regular expressions
given in Exercise 5.2.
Construct the transition systems equivalent to the regular expressions
given in Exercise 5.3. '
Find the set of strings over X = {a, b} recognized by the transition
systems shown in Fig. 5.37(a—d).

Find the regular expression corresponding to the automaton given in
Fig. 5.38.

Chapter 5: Regular Sets and Regular Grammars & 177

a, b

(d)
Fig. 5.37 Transition systems of Exercise 5.7.

()1

Fig. 5.38 Transition system of Exercise 5.8.

178 B Theory of Computer Science
5.9 Construct a transition system corresponding to the regular expressions
(i) (ab + ¢*)*b and (ii) a + bb + bab*a.

5.10 Find the regular expressions representing the following sets:

(a) The set of all strings over {0, 1} having at most one pair of 0’s
or at most one pair of I's.

(b) The set of all strings over {a, b} in which the number of
occurrences of a is divisible by 3

(c) The set of all strings over {a, b} in which there are at least two
occurrences of b between any two occurrences of a.

(d) The set of all strings over {a, b} with three consecutive b’s.

(e) The set of all strings over {0, 1} beginning with 0O.

(f) The set of all strings over {0. 1} ending with 00 and beginning
with L

5.11 Construct a deterministic finite automaton corresponding to the regular
expression given in Exercise 5.2.

5.12 Construct a finite automaton accepting all strings over {0, 1} ending in
010 or 0010.

5.13 Construct a finite automaton M which can recognize DFA in a given
string over the alphabet {A, B, ..., Z}. For example, M has to
recognize DFA in the string ATXDFAMN.

5.14 Construct a finite automaton for the regular expression (a + b)*abb.

5.15 Show that there exists no finite automaton accepting all palindromes
over {a, b}.

5.16 Show that {d"b" | n > 0} is not a regular set without using the pumping
lemma.

5.17 Using the pumping lemma, show that the following sets are not regular:
(a) {a'b™|n > 0};

(o) {a"p"|0 < n < m}.

5.18 Show that {0"1"]g.c.d. (m, n) = 1} is not regular.

5.19 Show that a deterministic finite automaton with n states accepting a
nonempty set accepts a string of length m, m < n.

5.20 Construct a finite antomaton recognizing L(G), where G is the grammar
S — aS|bA|b and A - aA |bS|a

5.21 Find a regular grammar accepting the set recognized by the finite
automaton given in Fig. 5.37(c).

5.22 Construct a regular grammar which can generate the set of all strings

starting with a letter (A to Z) followed by a string of letters or digits
(0 to 9).

Chapter 5: Regular Sets and Regular Grammars 2 179

5.23 Are the following true or false? Support your answer by giving proofs
or counter-examples.
(a) If Ly U L- is regular and L, is regular. then L, is regular.
(b) If L;L, is regular and L, 1s regular, then L, is regular.
(c) If L™ is regular. then L is regular.

5.24 Construct a deterministic finite automaton equivalent to the grammar
S = aS|bS|aA. A — bB, B —» aC, C — A.

In this chapter we study context-free grammars and languages. We define
derivation trees and give methods of simplifying context-free grammars. The
two normal forms—Chomsky normal form and Greibach normal form—are
dealt with. We conclude this chapter after proving pumping lemma and giving
some decision algorithms.

6.1 CONTEXT-FREE LANGUAGES AND DERIVATION
TREES

Context-free languages are applied in parser design. They are also useful for
describing block structures in programming languages. It is easy to visualize
derivations in context-free languages as we can represent derivations using tree
structures.

Let us recall the definition of a context-free. grammar (CFG). G is
context-free if every production is of the form A — . where A € V,, and
a e (Vy u Z)*,

EXAMPLE 6.1

Construct a context-free grammar G generating all integers (with sign).

Solution

Let
G=(Vy. Z. P, S)
where
Vi = {5, (sign). (digit). (Integer)}
2=1{0, 1. 2. 3, ..., 9 +, -}
180

Chapter 6: Context-Free Languages =2 181

P consists of § — (sign) (integer). (sign) = +| -,
(integer) — {(digit) (integer) | (digit)
(digity — 0f1]2]...]9

L(G) = the set of all integers. For example, the derivation of —17 can be
obtained as follows:

S = {(sign) {integer) = — {integer)
= — (digit) (integer) = — 1 (integer) = —1 (digit)
= - 17

6.1.1 DERIVATION TREES

The derivations in a CFG can be represented using trees. Such trees
representing derivations are called derivation trees. We give below a rigorous
definition of a derivation tree.

Definition 6.1 A derivation tree (also called a parse tree) for a CFG
G = (Vy. Z. P. §) is a tree satisfying the following conditions:

(i) Every vertex has a label which is a variable or terminal or A.

(i1) The root has label S.

(iii) The label of an internal vertex is a variable.

(iv) If the vertices n. na. ..., i written with labels X, X», ..., X; are
the sons of vertex n with label A, then A — X}X» ... X; is a
production in P.

(v) A vertex n is a leaf if its label is @ € X or A; n is the only son of
its father if its label is A.

For example. let G = ({S. A}. {a. b}. P. §). where P consists of § —
aAS|al|SS. A — SbA|ba Figure 6.1 is an example of a derivation tree.

Fig. 6.1 An example of a derivation tree.

182 B Theory of Computer Science

Note: Vertices 4-6 are the sons of 3 written from the left, and § — aAS is
in P. Vertices 7 and 8 are the sons of 5 written from the left, and A — ba
is a production in P. The vertex 5 is an internal vertex and its label is A, which
1S a variable.

Ordering of Leaves from the Left

We can order all the vertices of a tree in the following way: The successors
of the root (i.e. sons of the root) are ordered from the left by the definition
(refer to Section 1.2). So the vertices at level 1 are ordered from the left. If
v, and v, are any two vertices at level 1 and vy is to the left of v,, then we
say that v, is to the left of any son of v.. Also, any son of v; is to the left
of v- and to the left of any son of v». Thus we get a left-to-right ordering of
vertices at level 2. Repeating the process up to level k, where k is the height
of the tree, we have an ordering of all vertices from the left.

Our main interest is in the ordering of leaves.

In Fig. 6.1, for example, the sons of the root are 2 and 3 ordered from the
left. So, the son of 2, namely 10, is to the left of any son of 3. The sons of
3 ordered from the left are 4-5-6. The vertices at level 2 in the left-to-right
ordering are 10-4-3-6. The vertex 4 is to the left of 6. The sons of 5 ordered
from the left are 7-8. So 4 is to the left of 7. Similarly, 8§ is to the left of
9. Thus the order of the leaves from the left is 10-4-7-8-9.

Note: 1If we draw the sons of any vertex keeping in mind the left-to-right
ordering. we get the left-to-right ordering of leaves by ‘reading’ the leaves in
the anticlockwise direction.

Definition 6.2 The yield of a derivation tree is the concatenation of the
labels of the leaves without repetition in the left-to-right ordering.
The yield of the derivation tree of Fig. 6.1, for example, is aabaa.

Note: Consider the derivation tree in Fig. 6.1. As the sons of 1 are 2-3 in
the left-to-right ordering. by condition (iv) of Definition 6.1, we have the
production S — SS. By applyving the condition (iv) to other vertices, we get
the productions § — a. § — aAS, A — ba and § — a Using these
productions. we get the following derivation:

S = 55 = as = aaAS = aabaS = aabaa
Thus the yield of the derivation tree is a sentential form in G.

Definition 6.3 A subtree of a derivation tree 7T is a tree (i) whose root is
some vertex v of 7. (ii) whose vertices are the descendants of v together with
their labels, and (iil) whose edges are those connecting the descendants of v.

Figures 6.2 and 6.3. for example. give two subtrees of the derivation tree
shown in Fig. 6.1.

Chapter 6: Context-Free Languages E 183

A(s)

JOMIO

Fig. 6.2 A subtree of Fig. 6.1. Fig. 6.3 Another subtree of Fig. 6.1.

Note: A subtree looks like a derivation tree except that the label of the root
may not be S. It is called an A-tree if the label of its root is A.

Remark When there is no need for numbering the vertices. we represent the
vertices by points. The following theorem asserts that sentential forms in CFG
G are precisely the yields of derivation trees for G.

Theorem 6.1 Let G =(Vy, X, P, S) be a CFG. Then § = ¢ if and only if
there is a derivation tree for G with yield o

Proof We prove that A => ¢ if and only if there is an A-tree with yield o
Once this is proved. the theorem follows by assuming that A = S.

Let o be the vield of an A-tree 7. We prove that A = ¢« by induction on
the number of mternal vertices in 7

When the tree has only one internal vertex. the remaining vertices are
leaves and are the sons of the root. This is illustrated in Fig. 6.4.

A

Fig. 6.4 A tree with only one internal vertex.

By condition (iv) of Definition 6.1. A — AjA- ... A, = o is a production
in G, i.e. A = o Thus there is basis for induction. Now assume the result
for all trees with at most k& ~ 1 internal vertices (k > 1).

Let T be an A-tree with k& internal vertices (k = 2). Let vy, va, ..., v,
be the sons of the root in the left-to-right ordering. Let their labels be
Xy Xa. X,,. By condition (iv) of Definition 6.1, A — X; X~ ... X,, is in
P, and so

A= XX X, (6.1)

184 E Theory of Computer Science

As k = 2, at least one of the sons is an internal vertex. By the left-to-right
ordering of leaves, ¢ can be written as o3¢ ... o, where ¢ is obtained by
the concatenation of the labels of the leaves which are descendants of vertex
v, If v; is'an internal vertex, consider the subtree of 7 with v, as its root. The
number of internal vertices of the subtree is less than & (as there are k internal
vertices in T and at least one of them, viz. its root, is not in the subtree). So
by induction hypothesis applied to the subtree, X = o, If v; is not an internal
vertex. i.e. a leaf, then X; = o
Using (6.1), we get

A= XX ... X, = o4XX;... %, ... = 0 ... 0 =0,

ie. A = o By the principle of induction, A = o whenever « is the yield
of an A-tree.

To prove the ‘only if’ part, let us assume that A = a. We have to
construct an A-tree whose yield is ¢. We do this by induction on the number
of steps in A = 0.

When A = o, A — ¢ is a production in P. If @ = XX>... X, the
A-tree with vield « is constructed and given as in Fig. 6.5. So there is basis
for induction. Assume the result for derivations in at most k steps. Let
A A o we can split this as A = X, ... X, k;; o Now, A = X, ... X,
implies A — X;X»... X, is a production in P. In the derivation X;X> ... X,
/El; «, either (i) X; is not changed throughout the derivation, or (i) X; is
changed in some subsequent step. Let ¢; be the substring of ¢ derived from X;.
Then X, = o in (i) and X; = o; in (i). As G is context-free, in every step of
the derivation X, X~ ... X,, = o. we replace a single variable by a string. As
oy, 0. ..., O, account for all the symbols in ¢ we have o= g0 ... ¢,

A

Fig. 6.5 Derivation tree for one-step derivation.

We construct the derivation tree with yield o as follows: As A — X, ... X,
is in P. we construct a tree with m leaves whose labels are X, .. ., X,, in the
left-to-right ordering. This tree is given in Fig. 6.6. In (i) above, we leave the
vertex v; as it is. In (ii). X; = o is less than k steps (as X, ... X,, ”_;_I> a). By
mduction hypothesis there exists an X-tree 7; with yield ¢;. We attach the tree
T. at the vertex v; (l.e. v; is the root of T;). The resulting tree is given in
Fig. 6.7. In this figure. let i and j be the first and the last indexes such that
X; and X; satisfy (ii). So. ¢ ... ¢, are the labels of leaves at level 1 in T.

O 18 the vield of the X;-tree T,. etc.

Chapter 6: Context-Free Languages E 185

Fig. 6.6 Derivation tree with yield X; X, ... X,

Fig. 6.7 Derivation tree with yield gay ... o,

Thus we get a derivation tree with yield ¢ By the principle of induction
we can get the result for any derivation. This completes the proof of ‘only if”
part. 1

Note: The derivation tree does not specify the order in which we apply the
productions for getting & So. the same derivation tree can induce several
derivations.

The following remark is used quite often in proofs and constructions
involving CFGs.

Remark If A derives a terminal string w and if the first step in the derivation
iIs A = AA, ... A, then we can write w as ww. ... w, so that
A; = w; (Actually, in the derivation tree for w, the ith son of the root has
the label A;. and w; is the yield of the subtree whose root is the ith son.)

EXAMPLE 6.2

Consider G whose productions are § — aAS|a, A — SbA|SS|ba. Show that
S = aabbaa and construct a derivation tree whose yield is aabbaa.

186 & Theory of Computer Science

Solution
S = aAS = ashAS = aabAS = a“bbaS = a'b a’ (6.2)

Hence. S = b a”. The derivation tree is given in Fig. 6.8.

Fig. 8.8 The derivation tree with yield aabbaa for Example 6.2.

Note: Consider G as given in Example 6.2. We have seen that § = abrd,
and (6.2) gives a derivation of ab a”.
Another derivation of aba” is

S = uAS = aAa = aSbAa = aShbaa = aabbaa (6.3)
Yet another derivation of a°ba” is
S = aAS = aShAS = aShAa = aabAa = aabbaa (6.4)

In derivation (6.2), whenever we replace a variable X using a production.
there are no variables to the left of X. In derivation (6.3). there are no variables
to the right of X. But in (6.4), no such conditions are satisfied. These lead to
the tollowing definitions.

Definition 6.4 A derivation A = w is called a leftmosr derivation if we
apply a production only to the leftmost variable at every step.

Definition 6.5 A derivation A = w is a rightmost derivation if we apply
production to the rightmost variable at every step.

Relation (6.2). for example, is a leftmost derivation. Relation (6.3) is a
rightmost derivation. But (6.4) is neither leftmost nor rightmost. In the second
step of (6.4). the rightmost variable S is not replaced. So (6.4) is not a
rightmost derivation. In the fourth step, the leftmost variable S is not replaced.
So (6.4) is not a leftmost derivation.

Theorem 6.2 If A = w in G; then there is a leftmost derivation of w.

Chapter 6: Context-Free Languages = 187

Proof We prove the result for every A in Vi by induction on the number
of steps in A = w. A = w is a leftmost derivation as the L.H.S. has only
one variable. So there is basis for induction. Let us assume the result for

n+1

derivations in atmost & steps. Let A — w. The derivation can be split as

A=XX...X, & w

The string w can be split as wyw, ... w,, such that X; = w; (see the
Remark appended before Example 6.2). As X; = w; involves atmost k steps
by induction hypothesis, we can find a leftmost derivation of w;. Using these
leftmost derivations. we get a leftmost derivation of w given by

A=XX... X, = wiXa ... X,,1§> ww.Xs ... X, ... = oW ... Wy,
Hence by induction the result is true for all derivations A = w. |
Corollary Every derivation tree of w induces a leftmost derivation of w.
Once we get some derivation of w, it is easy to get a leftmost derivation of
w in the following way: From the derivation tree for w, at every level consider

the productions for the variables at that level, taken in the left-to-right ordering.
The leftmost derivation is obtained by applying the productions in this order.

EXAMPLE 6.3

Let G be the grammar S — 0B|1A. A — 0]05]| 144, B — 1]|1S|0BB. For
the string 00110101, find (a) the leftmost derivation, (b) the rightmost
derivation, and (c) the derivation tree.

Solution
(a) S = OB = 00BB = 001B = 0011S
= 0°1°0B = 0°1°01S = 0°1°010B = 0°1°0101
(b) S = 0B = 00BB => 00B1S = 00B10B

= 0°B101S = 0°B1010B = 0°B10101 = 0-110101.
(c) The derivation tree is given in Fig. 6.9.

: 0
Fig. 6.9 The derivation tree with yield 00110101 for Example 6.3,

188 E Theory of Computer Science

6.2 AMBIGUITY IN CONTEXT-FREE GRAMMARS

Sometimes we come across ambigtious sentences in the language we are using.
Consider the following sentence in English: “In books selected information is
given.” The word ‘selected” may refer to books or information. So the sentence
may be parsed in two different ways. The same situation may arise in context-
free languages. The same terminal string may be the yield of two derivation
trees. So there may be two different leftmost derivations of w by Theorem 6.2.
This leads to the definition of ambiguous sentences in a context-free language.

Definition 6.6 A terminal string w € L(G) is ambiguous if there exist two
or more derivation trees for w (or there exist two or more leftmost derivations
of w).

Consider, for example, G = ({S}, {a, b, +, #}, P. §), where P consists
of § > 8§+ S|S + S|a|b. We have two derivation trees for @ + a = b given
in Fig. 6.10.

Fig. 6.10 Two derivation trees for a + a = b.

The leftmost derivations of @ + a * b induced by the two derivation trees
are
S=>8§+S=2a+S=a+5+«S=>a+a+=S=>a+a=+bh

S=8+«8S=5+5«S=2a+S8S«S=a+axS=>a+ax*bh
Therefore. @ + a = b 1s ambiguous.

Definition 6.7 A context-free grammar G is ambiguous if there exists some
w € L{G), which is ambiguous.

EXAMPLE 6.4

If G is the grammar S — ShS|a, show that G is ambiguous.

Solution

To prove that G is ambiguous, we have to find a w € L(G), which is
ambiguous. Consider w = abababa € L(G). Then we get two derivation trees
for w (see Fig. 6.11). Thus, G is ambiguous.

Chapter 6: Context-Free Languages B 189

Fig. 6.11 Two derivation trees of abababa for Example 6.4.

6.3 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS

In a CFG G, it may not be necessary to use all the symbols in Vy U Z, or
all the productions in P for deriving sentences. So when we study a context-
free language L(G), we try to eliminate those symbols and productions in G
which are not useful for the derivation of sentences.

Consider, for example.

G =({S.A.B, C.E}, {a, b, ¢}, P, $)
where
P={(S§ 5 AB,A > a B —>b,B— C, E— ¢|A}

It is easy to see that L(G) = {ab}. Let G’ = ({S, A. B}, {a, b}, P’, S), where
P’ consists of § — AB, A — a, B = b. L(G) = L{G’). We have eliminated
the symbols C, E and ¢ and the productions B — C. E — ¢|A. We note the

190 E Theory of Computer Science

following points regarding the symbols and productions which are eliminated:

(i) C does not derive any terminal string.

(i) E and ¢ do not appear in any sentential form.

(i) £ — A is a null production.

(iv) B — C simply replaces B by C.

In this section, we give the construction to eliminate (i) variables not
deriving terminal strings, (ii) symbols not appearing in any sentential form,
(1i1) null productions. and (iv) productions of the form A — B.

6.3.1 CONSTRUCTION OF REDUCED GRAMMARS

Theorem 6.3 If G is a CFG such that L(G) # @, we can find an equivalent
grammar G’ such that each variable in G” derives some terminal string.

Proof Let G = (V\, I, P, §). We define G' = (V/y. Z. G', S) as follows:
(a) Construction of V'y:

We define W, ¢ Vy by recursion:
W, = {A € Vylthere exists a production A — w where w € Z*}. (If
W, = 0. some variable will remain after the application of any production, and
so L(GY = §.)
Wi = W, U {A e Vy|there exists some production A — o
with o € (X U W)*}

By the definition of W, W, ¢ W, for all . As Vy has only a finite number
of variables, W, = Wy, for some k < |Vy|. Therefore, W, = W,,; for j = 1.
We define Vi = W,.

(b) Construction of P’:
PP={A—> a|A, ae (ViU)}
We can define G' = (V, Z, P'. §). Sis in Vy. (We are going to prove that
every variable in Vy derives some terminal string. So if S ¢ Vy, L(G) = 0.
But L(G) # §.)
Before proving that G is the required grammar, we apply the construction
to an example.

EXAMPLE 6.5

Let G = (Vy, Z. P, §) be given by the productions § - AB, A — a, B = b,
B — C. E — c. Find G’ such that every variable in G’ derives some terminal
string.

Solution
(a) Construction of V'y:

Wy ={A, B, E} since A 5> a. B> b, E — ¢ are productions with a
terminal string on the R.H.S.

Chapter 6: Context-Free Languages B 191

W= Wy U {A € Vy|A, — aforsome a € (£ U {A, B, E})*}
W, U {S} = {A. B, E. S}

W= WU {A; € Vy|A, - aforsome o e (Z U {S, A, B, E})*}
=W, U =W,
Therefore,

Vi = {S. A. B, F}
(b) Construction of P’:
P'={A - alA, ae (ViU D)¥}
{S—>AB,. A > a, B—> b E— ¢}

Therefore,
G = (S, A B, E}, {a, b, c}. P'. S)
Now we prove:

(i) IfeachA e Vi, then A :G: w for some w € X*; conversely, if A ;G> w,
then A € Vi
(i) (G = L(G).
To prove (i) we note that W, = W, u W, ... u W,. We prove by
induction on 7 that for i = 1, 2, k, A € W, implies A ? w for some

we 2* If A e W,. then A = w. So the production A — w is in P’
G
Therefore. A = 1. Thus there is basis for induction. Let us assume the result
-

for i. Let A € W,,,. Then either A € W, in which case, A = w for some
e
w € X* by induction hypothesis. Or, there exists a production A — o with

o e (X U w)* By definition of P/, A — o is in P’. We can write
o=XX>... X, where X; ¢ L U W, If X; € W, by induction hypothesis,
X; = w; for some w; € T*. So. A = wiwy ... w, € I* (when X; is a terminal.
G " G' ‘
w; = X)) By induction the result is true for i = 1. 2, ..., k
The converse part can be proved in a similar way by induction on the
number of steps in the derivation A = w. We see immediately that L(G") <
G
L(G) as Vy € Vy and P’ ¢ P. To prove L(G) < L(G’), we need an auxiliary
result

ASw ifa :G> w for some w e ¥ (6.5)
=

We prove (6.5) by induction on the number of steps in the derivation A = w.
G

ItaA = w. thenA > wisinPandA e W, C Vi AsA e Viyand w e T,
G

A= wisin P SoA = w, and there is basis for induction. Assume (6.5)
ot

L kel .
for derivations in at most & steps. Let A = w. By Remark appearing after
G

192 B Theory of Computer Science

Theorem 6.1, we can split this as A :> X Xs ... X, % w\Ws ... W, such
thatX :>w HX e 2, thenw —X

It X € Vy then by (), X; € Vi As X; :> w; in at most k steps,
X; 3, w;. Also, Xy, Xa, X, € (Z U Viy* 1mphes that A - XX, ... X, is
in P. Thus, A :> XX ... X, :> ww, ... w,. Hence by induction, (6.5)

is true for all denvanom In pamcular S :> w implies § :> w. This proves
that L(G) < L(G"), and (ii) is completely proved. 1

Theorem 6.4 For every CFG G = (V. Z, P, §). we can construct an
equivalent grammar G' = (Vy, X', P, S) such that every symbol in Vy U X
appears in some sentential form (i.e. for every X in Vi U X’ there exists &

such that S = « and X is a symbol in the string 0).
c

Proof We construct G* = (V'y, £, P’, S) as follows:
(a) Construction of W, for i 2 1:

i w = {Sh
(il) Wi = W; U {X € Vy u Z|there exists a production A — o with
A € W, and o containing the symbol X}.

We may note that W; ¢ Vy U X and W; € W;,;. As we have only a finite
number of elements in Vy U X, W, = W,,; for some k& This means that
Wi = W, forallj 2 0.

(b) Construction of Vi, L' and P’

We define
V:\:= V\,('\ Wk. 2,=2UWk

= {A > o|A e W}

Before proving that G’ is the required grammar, we apply the construction to
an example.

EXAMPLE 6.6

Consider G = ({S, A, B, E}, {a, b, ¢}, P, S), where P consists of § — AB,
A—>a B> b E—c

Solution
W= {§}
W, = {S} U {X € Vy U X|there exists a production A — « with

A € W, and o containing X}

{S} v {A, B}

Chapter 6: Context-Free Languages H 193

=
|

= {S, A. B} U {a. b}
W4= W’g

Vi={S. A, B} Y = {a, b}
P={§ > AB, A - a. B — b}

Thus the required grammar is G' = (V4. ', P’, S).

To complete the proof, we have to show that (i) every symbol in Vi U
3’ appears in some sentential form of G, and (ii) conversely. L(G") = L(G).

To prove (i), consider X € Vi U X' = W,, By construction W, = W, U
W, ... U W, We prove that X € W,, i <k, appears in some sentential form
by induction on i. When i =1, X = S and § ? S. Thus, there is basis for
induction. Assume the result for all variables in W, Let X € W,,,. Then either
X € W, in which case. X appears in some sentential form by induction
hypothesis. Otherwise, there exists a production A — ¢, where A € W, and
o contains the symbol X;. The A appears in some sentential form, say BAY.
Therefore,

S :> BAY = PBoy
G G

This means that Sory is some sentential form and X is a symbol in Bory. Thus
by induction the result is true for X € W, i < k.

Conversely, if X appears in some sentential form, say X then =N BXy.

N G

This implies X € W, If I < k, then W, ¢ W, If | > k, then W, = W,. Hence
X appears in V., w X". This proves (i).

To prove (it), we note L(G") € L(G) as Viy c Vy. 2 ' c X and P'C P.
letwbein L(G)and S =0y =0 =03 =... = ¢, =>w. We prove

G G G
that every symbol in ¢, 1s in W;,, and o = o,; by induction on i
o = § = o~ implies § — - is a production i P. By construction, every
G

symbol in a» is in W>and § - o> is in P L.e. § ? 0. Thus, there is basis

for induction. Let us assume the result for 7. Consider &, = &;,». This one-
step derivation can be written in the form ¢

,BHIA}/HI = lBiHa}/Hl
where A — o is the production we are applying. By induction hypothesis,
A € W, By construction of W_,, every symbol in & is in W,,». As all the
symbols in 3;,, and ¥, are also in W,,; by induction hypothesis, every symbol
in B 0% = ¢y is in Wi By the construction of P, A — o is in P’
This means that ¢;,; => o;». Thus the induction procedure is complete.
o
So S=o =0 = 03 = ... 0, = w. Therefore, w € L(G’). This
G' G G G’
proves (ii). 1

194 = Theory of Computer Science

Definition 6.8 ILet G = (V,, X, P, §) be a CFG. G is said to be reduced or
non-redundant if every symbol in Vy U X appears in the course of the
derivation of some terminal string, i.e. for every X in Vy U X, there exists
a derivation S = aXB = w € L(G). (We can say X is useful in the
derivation of terminal strings.)

Theorem 6.5 For every CEG G there exists a reduced grammar G’ which is
equivalent to G.

Proof We construct the reduced grammar in two steps.

Step 1 We construct a grammar G, equivalent to the given grammar G s0
that every variable in G, derives some terminal string (Theorem 6.3).
Step 2 We construct a grammar G’ = (V'y, X', P, S) equivalent to G, so that
every symbol in G appears in some sentential form of G” which is equivalent
to G; and hence to G. G’ is the required reduced grammar.

By step 2 every symbol X in G’ appears in some sentential form, say
oXp. By step 1 every symbol in aXf3 derives some terminal string. Therefore,
S = oXB = w for some w in I*, i.e. G’ is reduced.

Note: To get a reduced grammar, we must first apply Theorem 6.3 and then
Theorem 6.4. For, if we apply Theorem 6.4 first and then Theorem 6.3, we may
not get a reduced grammar (refer to Exercise 6.8 at the end of the chapter).

EXAMPLE 6.7

Find a reduced grammar equivalent to the grammar G whose productions are

S — AB|CA, B — BC|AB. A —a, C — aB|b

Solution

Step 1 W, ={A, C} as A — g and C — b are productions with a terminal
string on R.H.S.
W= {A. C} U {A]A] » o with x € (2 U {A, CH*}

= {A. C} U {S} as we have § — CA
Wi= {4, C. S} U {A|A; - awith e (T U {S, A, CH*}

={A. C, Stu ¢
As Wy = W,
V= Wa = {85, A, C}
P'={A — alA, o e (Vyu Z)*}
={S > CA. A - a C — b}
Thus.

Gy =({S A C}.{a. b}, {S— CA. A = a, C - b}, 5)

Chapter 6; Context-Free Languages B 195

Step 2 We have to apply Theorem 6.4 to G,. Thus,
Wy = {S}

As we have production § — CA and S € W,, W, = {§} u {A. C}
As A — « and C — b are productions with A, C € W,, Wy = {8, A. C, a. b}

As Wy = V3 UX P'={S > ald € W3} = P
Therefore,
G =S A Cl{a b}, {S—CAA—a C—>bS)

is the reduced grammar.

EXAMPLE 6.8

Construct a reduced grammar equivalent to the grammar
S — adAa, A = Sb|bCC| DaA, C — abb| DD,
E — aC, D — aDA

Solution

Stepl W, = {C} as C — abb is the only production with a terminal string
on the R.H.S.

W.= {C} v {E. A}

as £ — aC and A — bCC are productions with RH.S. in & v {C}H*
W,= {C, E. A} U {5}

as § — dAa and cda is in (T W W-)*
Wy= WU @

Hence.

vy
P ’

Wy = {8, A, C E}
{A; > ajoe (Vy u D)¥}
={S > ada, A - Sh|bCC, C — abb, E — aC}
Gy = (Vly, {a. b}, P S)
Step 2 We have to apply Theorem 6.4 to G,. We start with
W, = {5}

As we have § — dAaq,
W, = {§} U {A, a}
As A — Sb|bCC,

Wiy = {S. A a} U {S, b, C} ={S, A, C. a, b}
As we have C — abb,
‘Vhi = "V:;) {Cl. b} = W3

196 =2 Theory of Computer Science

Hence.
P"={A - a|A, € W}
= {S — alda, A - Sb|bCC, C — abb}
Therefore,
G =({S. A C}. {a. b}, P", 5)

is the reduced grammar.

6.3.2 ELIMINATION OF NULL PRODUCTIONS

A context-free grammar may have productions of the form A — A. The
production A — A is just used to erase A. So a production of the form A —
A, where A is a variable, is called a null production. In this section we give a
construction to eliminate null productions.

As an example, consider G whose productions are S — aS|aA | A,
A — A We have two null productions § — A and A — A. We can delete
A — A provided we erase A whenever it occurs in the course of a derivation
of a terminal string. So we can replace S — aA by § — a If G, denotes
the grammar whose produetions are S — aS|a|A, then L(G) = L(G) =
{a"|n = 0}. Thus it is possible to eliminate the null production A — A. If
we eliminate S — A, we cannot generate A in L(G). But we can generate
L(G) = {A} even if we eliminate § — A.

Before giving the construction we give a definition.

Definition 6.9 A variable A in a context-free grammar is nullable if A = A.

Theorem 6.6 If G = (Vy, Z, P, S) is a context-free grammar, then we can
find a context-free grammar G, having no null prodctions such that L(G) =
L(G) - {A}.

Proof We construct G; = (Vy, X, P, S) as follows:

Step 1 Construction of the set of nullable variables:

We find the nullable variables recursively:

(i) Wy = {A e Vy|]A > Ais in P}

(il) Wi, = W, U {A € Vy| there exists a production A — o with o € W;*}.
By definition of W, W; ¢ W, for all i. As Vy is finite, Wy, = W, for some
k<|Vyl| So, Wy,; = W, for all j. Let W = W,. W is the set of all nullable
variables.

Step 2 (i) Construction of P’:
Any production whose R.H.S. does not have any nullable variable is included
in P’

) If A - X;X5 ... X, is in P, the productions of the form A — oo

. 0 are included in P’, where o; = X; if X; ¢ W. oy = X;or Aif X; €
W and oq0 ... op # A Actually, (i) gives several productions in P’ The
productions are obtained either by not erasing any nullable variable on the

Chapter 6: Context-Free Languages B 197

RHS. of A — X, X5 ... X, or by erasing some or all nullable variables
provided some symbol appears on the R.H.S. after erasing.

Let G| = (Vy. Z. P, 5). G, has no null productions.

Before proving that G is the required grammar, we apply the construction
to an example.

EXAMPLE 6.9

Consider the grammar G whose productions are § — aS|AB, A — A,
B — A. D - b. Construct a grammar G, without null productions generating
L(G) — {A}. :
Solution
Step 1 Construction of the set W of all nullable variables:

W,={A, € Vy|A, — A is a production in G}
{4, B}
{A, B} U {S} as S — AB is a production with AB € W}
{S. A, B}
Wiy=Wu =W,

W,

Thus.
W=W,={S A, B}

Step 2 Construction of P’:

(i) D — b is included in P".
(i) § > aS givesriseto § - aSand § — a
(iii) S > AB givesrise to § > AB. § -5 Aand § — B.

(Note: We cannot erase both the nullable variables A and B in § — AB as we
will get S — A in that case.)
Hence the required grammar without null productions is
Gy = ({S, A. B. D}.{a, b}, P, §)
where P’ consists of

D—>bS—>aS,.S5—2AB. S —>a, S—> A S — B

Step 3 L(G)) = L(G) — {A}. To prove that L(G) = L(G) — {A}. we prove
an auxiliary result given by the following relation:
Forall A e Vyand w € ¥,

A wifandonlyif A 55 wand w — A (6.6)
G, G

We prove the "if” part first. Let A = wand w # A. We prove that A Sow
G

) G,
by induction on the number of steps in the derivation A = w. If A = w and
G G

198 & Theory of Computer Science

w# A, A > wis a production in P/, and so A = w. Thus there is basis for

G, ,
induction. Assume the result for derivations in at most i steps. Let A =L v and
. G
. . . I
w # A We can split the derivation as A = X X» ... X, ? WiWs .. Wy,

G
where w = wiw, ... wyand A; = wi. As w # A, not all w/’s are A It w; 2 A,
=" . .

then by induction hypothesis, X; =N wi. If w; = A, then X; € W. So using the
1 :
production A — AA, ... A, in P, we construct A — 0 ... 04 in P,
where o = X; if w; # A and o = A if w; = A (le. X; € W), Therefore,
A D ooy ... Oy £> wilh ... Oy % el = WWY L. W S W
By the principle of induction, the ‘if’ part of (6.6) is proved.
We prove the ‘only if’ part by induction on the number of steps in the

derivation of A = w. If A = w, then A — w is in P,. By construction of P/,

1 Gl
A — w is obtained from some production A — X X5 ... X, in P by erasing
some (or none of the) nullable variables. Hence A _—g XX ... X, = w. So
G

there is basis for induction. Assume the result for derivation in at most j steps.

j+l i i J
Tlet A = W This can be split as A = X1 X> ... X; ? Wi,y ... Wy, where
G,

1

X; :G> w;. The first production A — X;X5 ... X, in P’ is obtained from some
production A — o in P by erasing some (or none of the) nullable variables

ino. SOA=o 2 XX»...X. IF X, € T then X, % X, =w. I X, € Vy
G G

then by induction hypothesis, X; = w. So, we get A =G> XX ... X, >
G G

*
wiwa ... wy. Hence by the principle of induction whenever A = w, we have

G

A :G> w and w # A. Thus (6.6) is completely proved.

By applying (6.6) to S. we have w € L(G)) if and only if w € L(G) and
w # A. This implies L(G)) = L(G) — {A}. 1

Corollary 1 There exists an algorithm to decide whether A € L(G) for a
given context-free grammar G.

Proof A € L(G) if and only if S € W. ie. S is nullable. The construction
given in Theorem 6.6 is recursive and terminates in a finite number of steps
(actually in at most |Vy| steps). So the required algorithm is as follows:
(i) construct W; (ii) test whether § € W.

Chapter 6: Context-Free Languages = 199

Corollary 2 If G = (V,, Z. P. §) is a context-free grammar we can find an
equivalent context-free grammar G; = (V. Z, P, S) without null productions
except §| — A when A is in L(G). If S, — A is in P;. S, does not appear
on the R.H.S. of any production in P;.

Proof By Corollary 1, we can decide whether A is in L(G).

Case 1 If A is not in L(G), G obtained by using Theorem 6.6 is the required
equivalent grammar.

Case 2 If A is in L(G), construct G' = (Vy. Z. P, S) using Theorem 6.6.
I(G") = L(G) — {A}. Define G, = (Vy U {5}, Z, P|, S). where P = P"U
{S, — §. 8, = A}. §; does not appear on the RH.S. of any production in
Py, and so G is the required grammar with L(G,) = L(G). 1

6.3.3 ELIMINATION OF UNIT PRODUCTIONS

A context-free grammar may have productions of the form A — B. A, B
€ Vi

Consider. for example, G as the grammar § - A, A — B, B — C,
C — a. It is easy to see that L{G) = {a}. The productions S — A, A — B,
B — C are useful just to replace S by C. To get a terminal string, we need
C—>a lf Gy is § — a. then L(G) = L(G).

The next construction eliminates productions of the form A — B.

Definition 6.10 A unit production (or a chain rule) in a context-free
grammar G 1s a production of the form A — B, where A and B are variables
i G.

Theorem 6.7 If G is a context-free grammar,we can find a context-free

grammar G; which has no null productions or unit productions such that
LGy = L(G).

Proof We can apply Corollary 2 of Theorem 6.6 to grammar G to get a
grammar G’ = (V,., Z, P. §) without null productions such that L(G") = L(G).
Let A be any variable in V.

Step 1 Construction of the set of variables derivable from A:
Define W(A) recursively as follows:
Wo(A) = {A}
WA= Wi{Ad) o {Be Vy|C — Bisin P with C € W(A)}

By definition of W;(4), W{(A) € Wy (A). As Vy is finite, W, (4) = W(4)
for some k < |Vy|. So. W (A) = W(A) for all j = 0. Let W(A) = W(A). Then
W(A . is the set of all variables derivable from A.

Step 2 Construction of A-productions in Gy:

The A-productions in G, are either (i) .the nonunit production in G’ or
(i) A = o whenever B — « is in G with B € W(A) and o ¢ Vy.

200 & Theory of Computer Science

(Actually, (1) covers (1) as A € W(A)). Now, we define G; = (Vy, Z, Py, 5),
where P, is constructed using step 2 for every A € Vy.

Before proving that Gy is the required grammar, we apply the construction
to an example. '

EXAMPLE 6.10|

Let Gbe S - AB, A —>a,B— C|b, C— D, D — E and E — a. Eliminate
unit productions and get an equivalent grammar.
Solution
Step 1 Wo(S) = {S}, Wi(S) = Wp(S) v @
Hence W(S) = {S}. Similarly,
W(A) = {A} W(E) = {E}
Wo(B)= {B}. Wi(B) = {B} v {C} = {B. C}
Wa(B) = {B. C} u {D}. Wi(B) = {B, C, D} v {E}, Wy(B) = W3(B)
Therefore,
W(B) = {B, C, D, E}
Similarly,
Wo(O) = {C}, Wi(O) = {C, D). WH{C} = {C. D, E} = W5O)
Therefore,
w(C) = {C. D, E} Wo(D) = {D}
Hence,
Wi(D) = (D, E} = WyD)
Thus,
W(D) = {D, E}
Step 2 The productions in G, are
S — AB. A = a, E — a
B —>bla. C—a, D —a

By construction, Gy has no unit productions.
To complete the proof we have to show that L(G") = L(G)).

Step 3 L(G) =L(G). If A — o is in P, — P, then it is induced by B — ¢
in P with B e WA), ¢ Vy. B e WA) implies A :> B. Hence, A :_G-> B
::> o. So, if A :> o, then A 3 o. This proves L(Gl) L(G").

To prove the reverse 1nclu51on we start with a leftmost derivation

S =20 =0... 0, =w
0 G G G G

Chapter 6: Context-Free Languages B 201

Let i be the smallest index such that o ? 0, 1s obtained by a unit
production and j be the smallest index greater than i such that o ? Q. 18

obtained by a nonunit production. So, § = «,. and 0o = 04 can be
G (e

t
written as
o = wAfl = wAdf = . = wAS = wiy B = o

A; € W(4;) and A; — ¥ is a nonunit production. Therefore, A; — ¥ is a

production in P;. Hence, &; = ¢;;;. Thus, we have § = O

G, G

Repeating the argument whenever some unit production occurs in the
remaining part of the derivation, we can prove that S = ¢, = w. This proves
G
LG < LG). |

Corollary- If G is a context-free grammar, we can construct an equivalent
grammar G” which is reduced and has no null productions or unit productions.

Proof We construct G; in the following way:

Step 1 Eliminate null productions to get G (Theorem 6.6 or Corollary 2 of
this theorem). '

Step 2 Eliminate unit productions in G; to get G- (Theorem 6.7).

Step 3 Construct a reduced grammar G’ equivalent to G| (Theorem 6.5). G’
is the required grammar equivalent to G.

Note: We have to apply the constructions only in the order given in the
corollary of Theorem 6.7 to simplify grammars. If we change the order we
may not get the grammar in the most simplified form (refer to Exercise 6.11).

6.4 NORMAL FORMS FOR CONTEXT-FREE GRAMMARS

In a context-free grammar. the RH.S. of a production can be any string of
variables and terminals. When the productions in G satisfy certain restrictions,
then G 1s said to be in a ‘normal form’. Among several ‘normal forms” we study
two of them in this section—the Chomsky normal form (CNF) and the
Greibach normal form.

6.4.1 CHOMSKY NORMAL FORM

In the Chomsky normal form (CNF). we have restrictions on the length of
R.H.S. and the nature of symbols in the R.H.S. of productions.

Definition 6.11 A context-free grammar G is in Chomsky normal form if
every production is of the form A — a, or A — BC. and S - A isin G if

202 E Theory of Computer Science

A € L(G). When A is in L(G), we assume that S does not appear on the
R.H.S. of any production.

For example, consider G whose productions are S — AB|A, A — a,
B — b. Then G is in Chomsky normal form.

Remark For a grammar in CNF, the derivation tree has the following
property: Every node has atmost two descendants—either two internal vertices
or a single leaf.

When a grammar is in CNF, some of the proofs and constructions are
simpler.

Reduction to Chomsky Normal Form -

Now we develop a method of constructing a grammar in CNF equivalent to a
given context-free grammar. Let us first consider an example. Let G be S —
ABClaC, A —>a B —> b C— c Except S — aCIABC, all the other
productions are in the form required for CNF. The terminal a in § = aC can
be replaced by a new variable D. By adding a new production D — a, the effect
of applying S — aC can be achieved by S = DC and D — a. S — ABC is not
in the required form. and hence this production can be replaced by S — AE and
E — BC. Thus, an equivalent grammar is S — AE | DC, E — BC, A — a.
B—=bC—c,D—>a

The techniques applied in this example are used in the following theorem.

Theorem 6.8 (Reduction to Chomsky normal form). For every context-free
grammar, there is an equivalent grammar G, in Chomsky normal form.

Proof (Construction of a grammar in CNF)
Step 1 Elimination of null productions and unit productions:

We apply Theorem 6.6 to eliminate null productions. We then apply
Theorem 6.7 to the resulting grammar to eliminate chain productions. Let the
grammar thus obtained be G = (Vy. X, P,).

Step 2 Elimination of terminals on RH.S.:
We define G, = (V. Z, Pi. §7), where P, and V' are constructed as follows:

(1) All the productions in P of the form A — a or A — BC are included
in P;, All the variables in Vy are included in V.

(i1) Consider A — X;X> ... X,, with some terminal on RH.S. If X; isa
terminal, say ag;, add a new variable Ca to Vyand C, - o; to P,.
In production A — X X> ... X,. every terminal on R.H. S is replaced
by the corresponding new Vanable and the variables on the R.H.S. are
retained. The resulting production is added to P,. Thus, we get
GI = (V/x\” zv Plv S)

Step 3 Restricting the number of variables on R.H.S.:

For any production in P;, the R.H.S. consists of either a single terminal (or

Chapter 6: Context-Free Languages B 203

A in § — A) or two or more variables. We define G» = (Viy, Z, P». S) as
follows:

(1) All productions in P are added to P, if they are in the required form.
All the variables in V'y are added to Vi

(i1) Consider A — AA~ ... A, where m = 3. We introduce new
productions A — AC,. C; = ACs ..., C,o — A,L1A, and
new variables C;, C-. ..., C,_». These are added to P” and V¥,
respectively.

Thus, we get G- in Chomsky normal form.
Before proving that G» is the required equivalent grammar, we apply the
construction to the context-free grammar given m Example 6.11.

EXAMPLE 6.11

Reduce the following grammar G to CNF. G is § = aAD, A — aB | bAB,
B—b D—d '

Solution
As there are no null productions or unit productions, we can proceed to step 2.

Step 2 Let G, = (V. {a. b. d}, P;. S). where P; and V} are constructed
as tollows:
(i) B — b, D — d are included in P,.
(i) § — aAD gives rise to § - C,AD and C, — a.
A — aB givesrise to A - C,B.
A — DAB gives rise to A = C,AB and C;, = b.
‘/f\' = {S A B D. Cd‘ Ch}
Step 3 P, consists of § — C,AD,A —» C,B|C,AB,B —» b.D —>d, C, > a.
Cb — b
A—->CB.B—-b D-—>d C,— a C, - b are added to P,
S — C,AD is replaced by § - C,C, and C; — AD.
A — C,AB is replaced by A — C,C> and C» — AB.
Let
.= ({S. A. B. D. C,, Cy. Cp. Ca}. {a. b, d}, Ps, S)
where P> consists of S — C,C;. A - C,B|C,C-. €y = AD, C- — AB,
B-—->bD->d C,— a C, - b. G,is in CNF and equivalent to G.

Step 4 L(G) = L(G-). To complete the proof we have to show that L(G) =
L(G) = L(G).

To show that L(G) < L(G)). we start with w € L(G). If A - X X5 ... X,
is used in the derivation of w, the same effect can be achieved by using the
corresponding production in P and the productions involving the new

variables. Hence, A = X,X~... X,. Thus. L(G) < L(G)).
G

204 B Theory of Computer Science

Let w € L{(G)). To show that w € L(G), it is enough to prove the
following:

A ? w o ifAe VA ? W 6.7)

We prove (6.7) by induction on the number of steps in A = W

1

IfA = w, then A — w is a production in P,. By construction of Py, w is
G

a single terminal. So A — w is in P, i.e. A = w. Thus there is basis for
induction. “

. . . k+1
Let us assume (6.7) for derivations in at most & steps. Let A = w. We can

1

split this derivation as A = A)A,. .. A, =N wy - w,, = w such that A; ——G‘> Wi
G, G

1 1

.
Each A; is either in Vy or a new variable, say C,. When A; € Vy. A; ? w;

1

is a derivation in at most k£ steps, and so by induction hypothesis, A; :G> Wi
When A; = C,. the production C,, — «; is applied to get A; = w;. The
production A — Aj;A-~ ... A4,, is induced by a production A — XX, ... X,
in P where X; = A;if A; € Vyand X; =w;if A;=C,. So A ? XX ... X,

= WyWwa ... w,. ie. A w. Thus, (6.7) is true for all derivations.
G G
Therefore, L(G) = L(G)).

The effect of applying A - A|A; ... A,, iIn a derivation for w € L(G))
can be achieved by applying the productions A — A,;C;, C; = A.Cs, ...,
Cpo = A,1A, In Po. Hence it is easy to see that L{(G,) ¢ L(G,).

To prove L(G-) € L(Gy), we can prove an auxiliary result

ASw ifAe VA 5w (6.8)
G, G,

i

Condition (6.8) can be proved by induction on the number of steps in A = w.
G,

Applying (6.7) to S. we get L(G-) < L(G). Thus.
LG) = L(GY = LGy |

EXAMPLE 6.12

Find a grammar in Chomsky normal form equivalent to § — adbB, A —
aAla. B — bB|b.

Chapter 6: Context-Free Languages 2 205

Solution

As there are no unit productions or null productions, we need not carry out
step 1. We proceed to step 2.

Step 2 Let G, = (Vy {a. b}. P, S), where P, and V'y are constructed as
follows: .

(1) A = a, B — b are added 10 P;.

(il) § — aAbB, A — aA, B — bB yield § - C,AC,B. A — C,A,

B— C‘;’,B, C(, — . C/') - b
VC\’ = {S A, B, Cm Cb}'
Step 3 P, consists. of § —» C,AC,B, A —» C,A, B —» (B, C, — a,
C,—> b, A > a B—>b
S - C,AC,B is replaced by § — C,(y, C; — AC.. G- — (B
The remaining productions in P; are added to P.. Let
G- = ({S. A. B. C,. G, Cy. C-}. {a. b}, P S),

where P- consists of § — C,C,, C; - AC,, C> = C,B. A — C,A. B = C,B,
C,—>a C,— b A—a and B — b
G- is in CNF and equivalent to the given grammar.

EXAMPLE 6.13

Find a grammar in CNF equivalent to the grammar

S— ~S|IS>) Sliplg (§ being the only variable)

Solution

As the given grammar has no unit or null productions, we omit step 1 and
proceed to step 2.
Step 2 Let G, = (V. Z. Py, S). where P, and V', are constructed as follows:

(1) S = plg are added to P;.

(ii)) S — ~ Sinduces § > AS and A — ~.
(1) S — [§ o S]induces S — BSCSD, B — [,C — . D —]

v = {S. A. B, C. D}
Step 3 P, consists of S - plg. S - AS. A > ~ B - [.[C —» >, D -]
S — BSCSD.
S — BSCSD is replaced by § — BC,, C; — SC-. C- — CC5, Cy — SD.
Let
G-=({S. A B.C.D, Ci. Cs. G5}, Z, P2, S)

where P, consists of S — p|g|AS|BC, A - ~. B = [C = D, D -],
C; = SCh. G- = CCy, C; = SD. G- is in CNF and equivalent to the given
grammar.

206 & Theory of Computer Science

6.4.2 GREIBACH NORMAL FORM

Greibach normal form (GNF) is another normal form quite useful in some
proofs and constructions. A context-free grammar generating the set accepted
by a pushdown automaton is in Greibach normal form as will be seen in
Theorem 7.4.

Definition 6.12 A context-free grammar is in Greibach normal form if every
production is of the form A — aa. where ot € V' and a € X(a may be A),
and § - A isin G if A € L(G). When A € L(G), we assume that S
does not appear on the R.H.S. of any production. For example, G given by
S — aAB|A, A = bC, B - b, C — ¢ 1s in GNF.

Note: A grammar in GNF is a natural generalisation of a regular grammar.
In a regular grammar the productions are of the foom A — acw, where a € £
and o € Vy U {A}, i.e. A = a0, with aVy and || < 1. So for a grammar
in GNF or a regular grammar, we get a (single) terminal and a string of
variables (possibly A) on application of a production (with the exception of
S —= A

The construction we give in this section depends mainly on the following
two technical lemmas:

Lemma 6.1 IetG=(Vy, Z. P.S)be a CFG. Let A — Bybe an A-production
in P. Let the B-productions be B — S| S3s| ...]| B,. Define

Pi=(P~-{A—>Byh) U{Ad > Byl|l <i<s)
Then. Gy = (Vy. Z, P, §) is a context-free grammar equivalent to G.
Proof 1If we apply A — By in some derivation for w € L{G), we have to

apply B — [; for some 7 at a later step. So A ;G> B;y. The effect of applying

A — By and eliminating B in grammar G is the same as applying A — [y
for some i in grammar G,. Hence w € L(G)), i.e. L(G) c L(G,). Similarly,
instead of applying A — f;y. we can apply A — By and B — [3; to get
A :G> By This proves L(Gy) € L(G). |

Note: Lemma 6.1 is useful for deleting a variable B appearing as the first
symbol on the R.H.S, of some A-production, provided no B-production has B
as the first symbol on R.H.S.

The construction given in Lemma 6.1 is simple. To eliminate B in A — BY,
we simply replace B by the right-hand side of every B-production.

For example. using Lemma 6.1. we can replace A — Bab by A — aAab,
A — bBab. A — aaab. A — ABab when the B-productions are B — aA | bB|
aa|AB.

The lemma is useful to eliminate A from the RH.S. of A — Ac.

Lemma 6.2 Let G = (V. Z, P, §) be a context-free grammar. Let the set
of A-productions be A — Ao | ... Ao, |Bi| ... |B, (Bs do not start with A).

Chapter 6: Context-Free Languages & 207

Let Z be a new variable. Let G, = (Vy U {Z}. £, Py, S), where P, is defined
as follows:

(i) The set of A-productions in P; are A — [Bi|B:| ... | B
A - BZiBZ] ... |BZ
(i1) The set of Z-productions in P, are Z — o |on| ... |&,

Z > OquOQZ](XIZ
(i11) The productions for the other variables are as in P. Then G, is a CFG
and equivalent to G.

Proof To prove L(G) C L(G), consider a leftmost derivation of w in G. The
only productions in P — P; are A — Aoy |Aa, ... |Aq,. If A — Agy,

A — A, ..., A > Aw, are used. then A — B; should be used at a later
stage (to eliminate A). So we have A = BAa,, ... o while deriving w in
G, "
G. However. '
A ? Bz ? BoyZ ... ? By iy -0y

i.e.

A ; ﬁ;AC/.Z-I Ce O(il

G :

Thus. A can be eliminated by using productions in G,. Therefore, w € L{(Gy).

To prove L(G,) = L(G). consider a lefumost derivation of w in Gy. The
only productions in P, — P are A — B Z|BZ] ... |BZ. Z = o] ... |o,.
Z = aZ|axZ | ... |o,Z If the new variable Z appears in the course of the
derivation of w. it is because of the application of A — f,Z in some earlier
step. Also. Z can be eliminated only by a production of the form Z — ¢; or

Z — o;Z for some i and j in a later step. So we get A = ,Bja,-laiz BN
: G

in the course of the derivation of w. But, we know that A = Bioy 0, .. 0,
il 2 :
Therefore, w € L(G). |

EXAMPLE 6.14

Applv Lemma 6.2 to the following A-productions in a context-free grammar
G.
A — aBD|bDB |c. A — AB|AD

Solution

In th's example. o4 = B, o» = D, ff; = aBD. B~ = bDB, B: = ¢. So the new
productions are:

(iy A = aBD|bDB|c. A — aBDZ|bDBZ|cZ
(i) Z > B. Z = D. Z — BZ|DZ

208 & Theory of Computer Science

Theorem 6.9 (Reduction to Greibach normal form). Every context-free
language L can be generated by a context-free grammar G in Greibach normal
form.

Proof We prove the theorem when A ¢ L and then extend the construction
to L having A.

Case 1 Construction of G (when A e L):

Step 1 We eliminate null productions and then construct a grammar G in
Chomsky normal form generating L. We rename the variables as
Ay, A, L LA, with S = AL We write G as ({A, Ay, .. Ayl X, PLA).

Step 2 To get the productions in the form A; = ay or A; — Ay, where
j > i, convert the A-productions (i = 1, 2. ..., n — 1) to the form A, — Ay
such that j > i. Prove that such modification is possible by induction on i

Consider A,-productions. If we have some A -productions of the form
A, = A7 then we can apply Lemma 6.2 to get rid of such productions. We
get a new variable. say Z;. and A,-productions of the form A; — a or A = Ay,
where j > 1. Thus there is basis for induction.

Assume that we have modified A-productions, A,-productions ...
Approductions. Consider A;;-productions. Productions of the form
A;y; — ay required no modification. Consider the first symbol (this will be
a variable) on the R.H.S. of the remaining A, -productions. Let ¢ be the
smallest index among the indices of such symbols (variables). If 1 > i + 1,
there is nothing to prove. Otherwise. apply the induction hypothesis to
Approductions for r < i. So any A-production is of the form A, — Ay
where j > 1 or A, — ay’. Now we can apply Lemma 6.1 to A;,;-production
whose R.H.S. starts with A, The resulting A, -productions are of the form
A — Ay where j > 1 (or Ay — ay).

We repeat the above construction by finding ¢ for the new set of
A;p-productions. Ultimately, the A, -productions are converted to the form
Aj.p — Ajys where j 2 i + 1 or A,y — ay’. Productions of the form
A — Ai;lycan be modified by using Lemma 6.2. Thus we have converted
A -productions to the required form. By the principle of induction, the
construction can be carried out for i = 1, 2, ..., n. Thusfori =1, 2, ...,
n — 1, any A;/production is of form A; — A;y. where j > i or A; — ay’. Any
A,-production is of the form A, — A,y or A, — ay’.

Step 3 Convert A,-productions to the form A, — ay Here, the productions
of the form A, — A,y are eliminated using Lemma 6.2. The resulting
A,-productions are of the form A, — ay

Step 4 Modify the Aj-productions to the form A, — ay for i = L. 2, ...,
n — 1. At the end of step 3, the A, -productions are of the form A, — ay.
The A,_;-productions are of the form A, | — ay’ or A,_; — A,¥. By applying
Lemma 6.1. we eliminate productions of the form A,_; — A, The resulting

Chapter 6: Context-Free Languages B 209

A, _;-productions are in the required form. We repeat the construction by
considering A, _». A,z A

Step 5 Modify Z-productions. Every time we apply Lemma 6.2, we get a
new variable. (We take it as Z; when we apply the Lemma for A;-productions.)
The Z-productlons are of the form Z; — aZ; or Z; — o (where ¢ is obtained
from A; — A;&), and hence of the form Z, — ay or Z;, — A,y for some k.
At the end of step 4. the R.H.S. of any A,-production starts with a terminal.
So we can apply Lemma 6.1 to eliminate Z; — A,y Thus at the end of
step 5, we get an equivalent grammar G; in GNF.

It is easy to see that Gy is in GNF. We start with G in CNG. In & any
A-production is of the foom A — a or A = AB or A — CD. When we apply
Lemma 6.1 or Lemma 6.2 in step 2, we get new productions of the form
A= actorA— B where € Viand fe Vyand a € X In steps 3-5.
the productions are modified to the form A — a0 or Z — a’a’, where a. &
e Tand o. o' e V%

Case 2 Construction of G when A € L:

By the previous construction we get G' = (Vi, Z. P;. S) in GNF such that
L(G") = L — {A}. Define a new grammar Gy as

G = (VyUISLE PuU{S 58S 5 — ALS)

S§” — § can be eliminated by using Theorem 6.7. As S-productions are in the
required form, S’-productions are also in the required form. So L(G) = L(G;)
and G, is in GNF. 1

Remark Although we convert the given grammar to CNF in the first step,
it is not necessary to convert all the productions to the form required for CNF.
In steps 2-5. we do not disturb the productions of the foorm A — ao, a € Z
and o € V%. So such productions can be allowed in G (in step 1). If we apply
Lemma 6.1 or 6.2 as in steps 2-5 to productions of the form A — o. where
oe Vi and || 2 2. the resulting productions at the end of step 5 are in the
required form (for GNF). Hence we can allow productions of the form A — o,
where o € V¥, and || 2 2.

Thus we can apply steps 2-5 to a grammar whose productions are either
A = a0 where a € V. or A — « € V% where || 2 2. To reduce the
productions to the form A — « € V% where || = 2, we can apply step 2
of Theorem 6.8.

EXAMPLE 6.15

Construct a grammar in Greibach normal form equivalent to the grammar
S s AAla. A — SS|b.
Solution

The given grammar is in CNF. § and A are renamed as A; and A-,
respectively. So the productions are A; — AA-|a and A> — AA]b. As the

210 E Theory of Computer Science

given grammar has no null productions and is in CNF we need not carry out
step 1. So we proceed to step 2.

Step 2 (i) A;-productions are in the required form. They are A; — A,A,| a.

(i) A» — b is in the required form. Apply Lemma 6.1 to A, — AA;.
The resulting productions are A, — A-A-A., A» — aA; Thus the
As-productions are

A: — A:A}Al, A2 — (lA], A: — b

Step 3 We have to apply Lemma 6.2 to A,-productions as we have
As — A>A-A|. Let Z, be the new variable. The resulting productions are

Ay = dAy, A: - b
A: hard (LA]Z:. A: —> bZ:
Zz — A:AI, Z: — A:A]Z'_».

Step 4 (i) The A.-productions are A» — aA,|b|aA Z>|bZx.

(ii) Among the A -productions we retain A; — a and eliminate
A, — A-A, using Lemma 6.1. The resulting productions are A; — aA{Ay| bA-.
A, = aAZ-A>|bZ-A-. The set of all (modified) A,-productions is

Al — a I aA 1A2 l bA: l CZAIZZAZ I bZZA:

Step 5 The Z>-productions to be modified are Z» — A)A,, Z» — AA 2.
We apply Lemma 6.1 and get

Z» = aA A | DA |aA\Z-A | bZ-A,
Zy = aAA\Zy|bAZ> | aA\ZA\Z, | BZ-AZ,y
Hence the equivalent grammar is
G = ({Al. Ax Zo), {a, B}, Py, Ay
where P, consists of
Ay = alaAjA5|bAS| aAZ-AL | bZ-AS
A — aA|b|aA Z,|bZ,
Zy — aA1A|bA| | aAZ:A, | BZ-A,

Z: — (lAlAlZ: k bA]Z2 ! ClA]Z:Alzp_ l bZZA123

EXAMPLE 6.16

Convert the grammar S — AB, A — BS|b, B — SA|a into GNF.

Solution

As the given grammar is in CNF, we can omit step 1 and proceed to step 2
after renaming S, A, B as A, A, A, respectively. The productions are A; —
A:A;. A: — A}A] Ib A3 — A]A:I[I.

Chapter 6: Context-Free Languages H 211

Step 2 (1) The A-production A; — A,A; is in the required form.
(i) The As-productions A, — AsA||b are in the required form.
(iii) A; —> a is in the required form.
Apply Lemma 6.1 to A; — A A,. The resulting productions are A; — AAzAx.
Applying the lemma once again to A; — A-A3A,. we get
Ax = AzAALA; | PAA-.
Step 3 The As-productions are Az — a|bAzA> and A; = A4 1A34,. As we
have A; — A3A,A:A.. we have to apply Lemma 6.2 to As-productions. Let
Z, be the new variable. The resulting productions are
A3 — ale;A:, A3 — (lZ3 bA‘;A:Z‘;
Zy = A1AzA, Z: = AAAZ;

Step 4 (i) The As-productions are
Az = a|bAsA-| aZy| bASA-Z; (6.9)

(ii) Among the A,-productions, we retain A, — b and eliminate A, —
AsA; using Lemma 6.1. The resulting productions are

A: - CIA] ibAzAgA]I(lZ:Ale:;A:Z}AJ

The modified A--productions are

A~ = blaA;|DAAA | aZ:A1 | DAASZAA, (6.10)
(ii1) We apply Lemma 6.1 to A; — A-A; to get
Al = bA3|aA Az | DASASA AL aZsA AL | DASASZA A (6.11)
Step 5 The Z;-productions to be modified are
Zy = AjAZAL A 1AANZ,

We apply Lemma 6.1 and get
71— bAsAsA, | bAASZs
Zs = aA1AsAzA, | aA 1 AsAsA L Zs
Zy — bAAA A AAL [DASACA | AAAZ; (6.12)
Zy = al:A1AAAL | aZ:A\AAALZ,
Zy = bAALZIA | AZAA L | DAALZIA | A3AALZ:

The required grammar in GNF is given by (6.9)—(6.12).

The following example uses the Remark appearing after Theorem 6.9. In
this example we retain productions of the form A — ao and replace the
terminals only when they appear as the second or subsequent symbol on
R.H.S. (Example 6.17 gives productions to generate arithmetic expressions
involving @ and operations like +. = and parentheses.)

212 B Theory of Computer Science

EXAMPLE 6.17

Find a grammar i GNF equivalent to the grammar
E—>E+T|T, T > T+F|F.F = (E)|a

Solution

Step 1 We first eliminate unit productions. Hence

Wo(E) = {E}, Wi(E) = {E} v (T} = {E. T}

W-(Ey={E, T} v {F} = {E, T, F}

So.
W(E) = {E. T. F}
So,
Wo(T) = {T}. Wi = {T} v {F} = {T. F}
Thus.

W(T) = {T. I}
Wo(F) = {F}. W) = {F} = W(F)
The equivalent grammar without unit productions is, therefore, Gy = (Vy,
2. P;. S), where P, consists of
(i) E— E + T|T=«F|(E)|a
(ily T — T=F[(E)|a. and
(i) F — (E)|a
We apply step 2 of reduction to CNF. We introduce new variables A, B,
C corresponding to +. =). The modified productions are

(i) E — EAT|TBF|(EC|a
(i) T — TBF|(EC|a
(i) F — (EC|a
(iviA—>+. B— -~ C—)
The variables A. B. C, F. T and F are renamed as A,. A>, Az, Ay Az, Ag
Then the productions become
Al — +. AAZ — %, A_: —>) A-i — (A6A3
Az = AsAAL(AgAs|a
Ag = AA A5 |AsAAL] (A6As
Step 2 We have to modify only the As- and Ag-productions. A; — AsA-Ay
can be modified by using Lemma 6.2. The resulting productions are
A5 — (A()Ag a. A5 — (AéA}ZS[(lZS (614)
Z; — A:A_MA:A_;ZS

a (6.13)

a

Ag — AsA-A; can be modified by using Lemma 6.1. The resulting
productions are

Ag = (AgA3AAL | aASA S| (AgAZsANA | aZsARA,
A¢ — (Agds|a are in the proper form.

Chapter 6: Context-Free Languages 2 213

Step 3 Ay — AgA1A; can be modified by using Lemma 6.2. The resulting
productions give all the As-productions:

Ag = (AcA3AA | aAXAL | (AAsZsAA,

As — aZsA:As| (Aghs| a (6.15)
Ay = (ApA3AALZG | aAALZG | (AcASZsAALZg

Ay — aZsAAZs | (AghaZs| aZe (6.16)
Ag — AAs|AIASZs

Step 4 The step is not necessary as A—productions for i = 5, 4, 3. 2. 1 are
in the required form.

Step 5 The Zs-productions are Zs — A-A4|A-A,Zs. These can be modified
as
ZS — % ;4_1 i *® [{425 (617)

The Zs-productions are Zs — A1As|AAsZ, These can be moditied as
Zo — + Asl+ AsZq (6.18)
The required grammar in GNF is given by (6.13)-(06.18).

6.5 PUMPING LEMMA FOR CONTEXT-FREE
LANGUAGES

The pumping lemma for context-free languages gives a method of generating
an infinite number of strings from a given sufficiently long string in a context-
free language L. It is used to prove that certain languages are not context-free.
The construction we make use of in proving pumping lemma yields some
decesion algorithms regarding context-free languages.

Lemma 6.3 Let G be a context-free grammar in CNF and T be a derivation
tree in G. If the length of the longest path in 7 is less than or equal to k. then
the vield of T is of length less than or equal to 2!,

Proof We prove the result by induction on k, the length of the longest path
for all A-trees (Recall an A-tree is a derivation tree whose root has label A).

When the Jongest path in an A-tree is of length 1. the root has only one son
whose label is a terminal (when the root has two sons, the labels are variables).
So the yield is of length 1. Thus. there is basis for induction.

Assume the result for £ — 1 (k > 1). Let 7 be an A-tree with a longest path
of length less than or equal to k. As &k > 1, the root of T has exactly two sons
with labels A; and A.. The two subtrees with the two sons as roots have the
longe st paths of length less than or equal to & — 1 (see Fig. 6.12).

If wy and w, are their yields. then by induction hypothesis. |w;]| < 252,
[ws| < 257 So the yield of T = wpw~ |wpwa| € 287 4 2472 = 241 By the
principle of induction. the result is true for all A-trees. and hence for all
derivation trees.

214 & Theory of Computer Science

Ay Az

Vic /A

Fig. 6.12 Tree T with subtrees T; and T,.

Theorem 6.10 (Pumping lemma for context-free languages). Let L be a
context-free language. Then we can find a natural number n such that:

(i) Every z € L with | z| 2 n can be written as uvwxy for some strings
u, v, W, X, .
(i) x| =2 1.
(iil) |vwx]| < n

(iv) w*wxfy e L for all k 2 0.

Proof By Corollary 1 of Theorem 6.6, we can decide whether or not A € L.
When A € L, we consider L — {A} and construct a grammar G = (Vy, Z, P, S)
in CNF generating L — {A} (when A ¢ L. we construct G in CNF generating
L).

Let |Vy| = m and n = 2". To prove that n is the required number, we
start
with z € L, |z] 2 2™, and construct a derivation tree 7 (parse tree) of z. If
the length of a longest path in T is at most m, by Lemma 6.3, |z| < 2™ (since
7 is the yield of T). But |z| = 2" > 2""". So T has a path, say I, of length
greater than or equal to m + 1. I has at least i + 2 vertices and only the last
vertex is a leaf. Thus in T all the labels except the last one are variables. As
| V| = m. some label is repeated.

We choose a repeated label as follows: We start with the leaf of T" and
travel along I" upwards. We stop when some label, say B, is repeated. (Among
several repeated labels, B is the first.) Let v; and v, be the vertices with label
B. v, being nearer the root. In I', the portion of the path from v, to the leaf has
only one label, namely B, which is repeated, and so its length is at most m + 1.

Let 7, and T, be the subtrees with vy, v, as roots and z;, w as yields,
respectively. As I' is a longest path in 7, the portion of T" from v, to the leaf
is a longest path in 7 and of length at most m + 1. By Lemma 6.3, |z, | £2"
(since z; 1is the yield of Ty).

For better understanding. we illustrate the construction for the grammar
whose productions are § — AB, A — aBla, B — bAib, as in Fig. 6.13. In
the figure,

I'=S—A—>B—>A—->B—=%b
7= ababb, 71 = bab, w=~h
ba, x = A, U= a, y=>5b

1

Chapter 6: Context-Free Languages = 215

As 7 and z; are the yields of T and a proper subtree 7, of 7, we can write
z = uzyy. As z; and w are the yields of 7y and a proper subtree T, of Ty, we
can write z; = vwx. Also, |ywx| > |w/|. So, |vx| 2 1. Thus, we have z = uvwxy
with [vwx| < nand |vx| 2 1. This proves the points (i)—(iii) of the theorem.

As T'is an S-tree and Ty, 7> are B trees, we get S = uBy, B = vBx and
B = w. As S = uBy = uwy, uv Oxlv e L.Fork>1,5 = uBy = w'Bxy
= w*wxty e L. This proves the point (iv) of the theorem. |

S

Fig. 613 Tree T and its subtrees T; and T,.

Corollary Let L be a context-free language and n be the natural number
obtained by using the pumping lemma. Then (1) L # @ if and only if there
exists w € L with |w| < n, and (ii) L is infinite if and only if there exists
z € L such that n < |z] < 2n.

216 B Theory of Computer Science

Proof (i) We have to prove the ‘only if’ part. If z € L with |[z]| 2 n. we
apply the pumping lemma to write z = wwwxy, where 1 < |wx| < n. Also.
wwy € L and [uwy| < |z|. Applying the pumping lemma repeatedly, we can
get 2 € L such that | "] < n. Thus (i) is proved.

(i) If z € L such that n < | 2] < 2n. by pumping lemma we can write
2 = wvwxy. Also. in*wx*y € L for all k > 0. Thus we get an infinite number
of elements in L. Conversely, if L is infinite. we can find z € L with |z| 2 n.
If |z]| < 2n. there is nothing to prove. Otherwise, we can apply the pumping
lemma to write z = wvwxy and get uwy € L. Every time we apply the pumping
lemma we get a smaller string and the decrease in length is at most n (being
equal to |vx]). So. we ultimately get a string 7 in L such that n < || < 2n.
This proves (ii). |

Note: As the proof of the corollary depends only on the length of vx, we can
apply the corollary to regular sets as well (refer to pumping lemma for regular
sets).

The corollary given above provides us algorithms to test whether a given
context-free language is empty or infinite. But these algorithms are not efficient.
We shall give some other algorithms in Section 6.6.

We use the pumping lemma to show that a language L is not a context-
free language. We assume that L is context-free. By applying the pumping
lemma we get a contradiction.

The procedure can be carried out by using the following steps:

Step 1 Assume L is context-free. Let n be the natural number obtamned by
using the pumping lemma.

Step 2 Choose £ € L so that [z| > n. Write £ = uvwxy using the pumping
lemma.

Step 3 Find a suitable & so that wv*wx'y ¢ L. This is a contradiction, and so
L is not context-free.

EXAMPLE 6.18

Show that L = {"b"c"|n = 1} is not context-free but context-sensitive.

Solution

We have already constructed a context-sensitive grammar G generating L (see
Example 4.11). We note that in every string of L. any symbol appears the
same number of times as any other symbol. Also a cannot appear after b, and
¢ cannot appear before b. and so on.

Step 1 Assume L is context-free. Let n# be the natural number obtained by
using the pumping lemma.

Step 2 Let z = ¢"P'c". Then |z| = 3n > n. Write z = wywxy, where |wx| 2 1,
i.e. at least one of v or x is not A.

Chapter 6: Context-Free Languages B 217

Step 3 wwwxy = @'P'¢”. As 1 < |vx| €, v or x cannot contain all the three
symbols a. b. ¢. So. (i) v or x is of the form a'b’ (or b'¢’) for some i, j such that
i+j<n Or(il) v or x is a string formed by the repetition of only one symbol
among a. b, c.

When v or x is of the form @b/, v= = a'Wa'b (or x* = aVd'b)). As v° isa
substring of wviwx“y. we cannot have uviwx“y of the form «”b"c™. So,
wiwxy g L,

When both v and x are formed by the repetition of a single symbol (e.g.
u=d and v = b for some i and j. i < n, j < n), the string uwy will contain the
remaining symbol, say a;. Also, af will be a substring of uwy as a; does not
occur in v or x. The number of occurrences of one of the other two symbols
in nwy is less than » (recall wvwxy = a"b"c"), and » is the number of occurrences
of a. So " wx’y = wwy ¢ L.

Thus for any choice of v or x, we get a contradiction. Therefore, L is not
context-free.

EXAMPLE 6.19

Show that L = {&’|p is a prime} is not a context-free language.

Solution
We use the following property of L: If w € L. then |w| is a prime.

Step 1 Suppose L = L(G) is context-free. Let n be the natural number
obtained by using the pumping lemma.

Step 2 Let p be a prime number greater than #. Then 7 = ¥ € L. We write
I = uvw

Step 3 By pumping lemma. %™ = wwy € L. So |wwy]| is a prime

number, say g. Let [vx| = r. Then, |wfwx?y| = g + gr. As g + gr is not a
prime. wwx% ¢ L. This is a contradiction. Therefore, L is not context-free.

6.6 DECISION ALGORITHMS FOR CONTEXT-FREE
LANGUAGES

In this section we give some decision algorithms for context-free languages and
regular sets.

(1) Algorithm for deciding whether a context-free language L is empty.
We can apply the construction given in Theorem 6.3 for getting
Vi =W, Lis nonempty if and only if § € W,

‘i1) Algorithm for deciding whether a context-free language L is finite.
Construct a non-redundant context-free grammar G in CNF generating
L - {A}. We draw a directed graph whose vertices are variables in
G. If A = BC is a production. there are directed edges from A to B
and A to C. L is finite if and only if the directed graph has no cycles.

218 H

Theory of Computer Science

(iii)

Algorithm for deciding whether a regular language L is empty.
Construct a deterministic finite automaton M accepting L. We construct
the set of all states reachable from the initial state ¢, We tind the

_states which are reachable from ¢, by applying a single input symbol.

(iv)

These states are arranged as a row under columns corresponding to
every input symbol. The construction is repeated for every state
appearing in an earlier row. The construction terminates in a finite
number of steps. If a final state appears in this tabular column, then
L is nonempty. (Actually, we can terminate the construction as scon
as some final state is obtained in the tabular column.) Otherwise, L
is empty.

Algorithm for deciding whether a regular language L is infinite.
Construct a deterministic finite automaton M accepting L. L is infinite
if and only if M has a cycle.

6.7 SUPPLEMENTARY EXAMPLES

EXAMPLE 6.20

Consider a context-free grammar G with the following productions,

S > ASA | B
B — aCbh | bCa
C'— ACA | A
A—>alb

and answer the following questions:

(a)
(b)
()

(d)
(e)
()
(2)
(h)

What are the variables and terminals of G7
Give three strings of length 7 in L(G).

Are the following strings in L(G)?

(1) aaa (ii) bbb (iii) aba (iv) abb
True or false: C = bab

True or false: C = bab

True or false: C = abab

True or false: C = AAA

Is A in L(G)?

Solution

(a)
(b)

Vy = {S. A. B. C} and ¥ = {a, b} ,
S = ASA® = A’BA® = AaCbA® = A“GAbA® = ababbab

Chapter 6: Context-Free Languages B 219

So ababbab € L(G).
S = A’aAbA- (as in the derivation of the first string)
= aaaabaa
S = A%aAbA® = bbabbbb

So ababbab, aaaabaa, bbabbbb are in L(G).

(¢) S — ASA. If B = w. then w starts with a and ends in b or vice versa
and |w| 2 3. If aaa is in L(G), then the first two steps in the
derivation of aaa should be S = ASA = ABA or § = aBa. The
length of the terminal string thus derived is of length 5 or more.
Hence aaa ¢ L(G). A similar argument shows that bbb ¢ L(G).

S = B = ach = aAb = abb. So abb € L(G)

(d) False. since the single-step derivations starting with C can only be
C = ACA or C = A

(e) C = ACA = AAA = bab. True

(f) Let w = abab. If C = w, then C = ACA = wor C = A = w.
In the first case |w|=3.5.7.....As|w| =4, and A = w if and
only if w = a or b, the second case does not arise. Hence (f) is false.

(g) C = ACA = AAA. Hence C = AAA is true.

(hy A ¢ LG).

EXAMPLE 6.21

If G consists of the productions S — aSa | bSb | aSh | bSa | A, show that L(G)
is a regular set.

Solution

First of all, we show that L(G) consists of the set L of all strings over {a, b}.
of even length. It is easy to see that L(G) < L. Consider a string w of even
length. Then, w = @yay ... as,_;a>, wWhere each a; is either a or b. Hence

S = alSag,, = alaZSagn_la:n = Qdy ... CZ”SCZ,H_I ey = aay - .. Aoy
Hence L ¢ L(G).
Next we prove that L = L(Gy) for some regular grammar G,. Define
Gy = ({S, 51, S5, s, 84}, {a, b}, P. S) where P consists of § — aS;, S; — aS$,
S > aS,, S = bS5, 5§ > bS5, S3 = bS, S > bSy, §; > aS, S - A
Then S = a;a-S where a; = a or b and a-> = a or b. It is easy to see that
L{(Gy) = L. As G is regular, L(G) = L(G,) is a regular set.

EXAMPLE 6.22

Reduce the following grammar to CNF:
S — ASA | bA. A > B|S. B —>c

220 B Theory of Computer Science

Solution

Step 1 Elimination of unit productions:
The unit productions are A — B, A — §.

Wo(S) = {St, Wi(S) = {S} v 8 = {5}
Wo(A) = {4}, Wi(4) = {4} U (S, B} = {S, A. B}
Wo(A) = {S. A, B} U @ = {S. A, B}
o(B)= {B}, W(B) = {B} U @ = {B}
The productions for the equivalent grammar without unit productions are
S —> ASA| DA, B - ¢

A > ASA|DA, A = ¢

So. Gy = ({S. A, B}, {b. c}, P, S) where P consists of S — ASA | bA,
B —c, A—> ASA|DbA|c.

Step 2 Elimination of terminals in RH.S.:

§ — ASA, B - ¢. A > ASA | c are in proper form. We have to modify
S — bA and A — DbA. '

Replace S - bPA by § - CA. C, — b and A — bA by A — CA,
C, = b

So, G5 = ({S. A. B, C,}. {b, ¢}, P>, §) where P, consists of

§— ASA | GA
A ASA|c|CA
B—>c C,—b
Step 3 Restricting the number of variables on R.H.S.:
S — ASA is replaced by § - AD. D — SA
A — ASA is replaced by A — AE, E — SA
So the equivalent grammar in CNF is
Gy = ({S. A. B, C,, D. E}, {b, ¢}, P53, S)
where P; consists of
S— CA|AD
A—> c|CA|AE
B—>c, C,—->b D —> SA E— SA

EXAMPLE 6.23

Let G = (Vy, Z, P, §) be a context-free grammar without null productions or
unit productions and k be the maximum number of symbols on the RH.S. of

Chapter 6: Context-Free Languages B 221

any production of G. Show that there exists an equivalent grammar G; in
CNF, which has at most (k — 1)|P| + || productions.

Solution
In step 2 (Theorem 6.8). a production of the foom A — XX, ... X, is
replaced by A — Y|V, ..., Y, where ¥; = X; if X; € Vy and Y; is a new

variable if X; € Z. We also add productions of the form ¥; — X; whenever
X; € X. As there are | £ | terminals, we have a maximum of | 2 | productions of
the form ¥, — X; to be added to the new grammar. In step 3 (Theorem 6.8),
A = AA, ... A, is replaced by n — 1 productions, A — AD, D — AD»

.D,» — A, A, Note that n < k. So the total number of new productions
obtained in step 3, is at most (k — 1) | P|. Thus the total number of productions
in CNF is at most (k —)| P| + |Z].

Example 6.24

Reduce the following CFG to GNF:

S — ABbla, A — adA, B — bADb
Solution

The valid productions for a grammar in GNF are A — aa, where a € X,

oe Vi
So. § — ABb can be replaced by S — ABC, C — b.

A — aaA can be replaced by A — aDA. D — a.

B — bAb can be replaced by B — bAC. C - b.

So the revised productions are:
S — ABC]a. A — aDA, B — bAC. C > b, D — a.
Name S, A, B, C, D as A, An. Aa, Ay As.

Now we proceed to step 2.

Step 2 G, = ({A. As. As, Ay, As), {a, b}, P, A,) where P, consists of
Al — AA::A}A_,; | a, A'_) - aA5A3, A3 —> bA3A4, A4 b b. AS — a
The only production to be modified using step 4 (refer to Theorem 6.9)

is A1 —> A:Aﬁ_l.

Replace A — A-AzA; by A — aAsAALA,
The required grammar in GNF is
G- = ({A. A, Aa, Ay, As), {a, b}, Py, A;) where P, consists of
A} — aAsA:As | a
A3 — (ZAsA:
A3 —> bA3A4, A4 - b, A5 —> a

222 E Theory of Computer Science

EXAMPLE 6.25

If a context-free grammar is defined by the productions
S — a| Sa|bSS|SSh| SbS

show that every string in L(G) has more a’s than &’s.

Proof We prove the result by induction on | w |, where w € L(G).

When |w| = 1. then w = a. So there is basis for induction.

Assume that S = w, |w| < n implies that w has more a’s than b’s. Let
lw| = n > 1. Then the first step in the derivation § = w is § = bSS or
S = SSh or S = SbS. In the first case, § = bSS = bw,w, = w for some
wy, wr € 2% and § = w;, § = w». By induction hypothesis each of w; and
w- has more a@’s than b’s. So wiw, has at least two more a's than b’s. Hence
bw,w- has more a’s than b’s. The other two cases are similar. By the principle
of induction, the result is true for all w € L(G).

'EXAMPLE 6.26

Show that a CFG G with productions S — SS|(S) | A is ambiguous.

Solution

S = 85 = 58 = A0®) = AN = (A)
Also, :
S = 85 = 85 = (A)S = (AMA = (A)

Hence G is ambiguous.

EXAMPLE 6.27

Is it possible for a regular grammar to be ambiguous?

Solution

Let G = (Vy, Z, P, S) be regular. Then every production is of the form
A—>aBorA— b Letwe L(G). Let S = w be a leftmost derivation. We
prove that any leftmost derivation A = w. for every A € Vy is unique by
induction on |w|. If |w| =1, then w = @ € T. The only production is A — a.
Hence there is basis for induction. Assume that any leftmost derivation of the
form A = w is unique when |w| = n — 1. Let |[w| =n and A = w be a
leftmost derivation.

Take w = aw,, a € T. Then the first step of A = w has to be A = aB
for some B € Vy. Hence the leftmost derivation A = w can be split into
1 = aB = aw;. So. we get a leftmost derivation B = w,. By induction
hypothesis, B = wy is unique. So. we get a unique leftmost derivation of w.
Hence a regular grammar cannot be ambiguous.

Chapter 6: Context-Free Languages B 223

SELF-TEST

1. Consider the grammer G which has the productions
A — a|Aa| bAA|AAb| ADA

and answer the following questions:

(a) What 1s the start symbol of G?7

(b) Is aaabb in L(G)?

(¢) Is gaaabb in L(G)?

(d) Show that abb is not in L(G).

(e) Write the labels of the nodes of the following derivation tree T
which are not labelled. It is given that T is the derivation tree
whose yield is in {a, b}*.

Fig. 6.14 Derivation tree for Question 1(e).

2. Consider the grammar G which has the following productions
S — aB|bA. A — aS|bAAla. B — bS|aBB|b.

and state whether the following statements are true or false.
(a) L(G) is finite.

(b) abbbaa € L(G)

(¢c) aab ¢ L(G)

(d) L(G) has some strings of odd length.

{e) L{G) has some strings of even length.

224

=2

Theory of Computer Science

3. State whether the following statements are true or false.

6.1

6.3

(a)
(b)
(c)
(d)
(e)

(f)
(g)
(b)

A regular language is context-free.

There exist context-free languages that are not regular.

The class of context-free languages is closed under union.

The class of context-free languages is closed under intersection.
The class of context-free languages is closed under
complementation.

Every finite subset of {«, b}* is a context-free language.
{a'b'c"|n 2 1} is a context-free language.

Any derivation tree for a regular grammar is a binary tree.

EXERCISES

Find a derivation tree of @ = b + a = b given that a * b + a » b is in
L(G), where G is given by S > S + S|§ « S, § — a|b.

A context-free grammar G has the following productions:

S — 0S0|1S1|A, A — 2B3. B — 2B3|3

Describe the language generated by the parameters.

A derivation tree of a sentential form of a grammar G is given in
Fig. 6.15.

Xy

6.4

(a)

Fig. .15 Derivation tree for Exercise 6.3.

What symbols are necessarily in Vy?

(b) What symbols are likely to be in £?
(¢) Determine if the following strings are sentential forms: (1) Xy4X>,

(11) X3X3X3X:X3X3, and (111) X:X4X4X2.

Find (i) a leftmost derivation, (ii) a rightmost derivation, and (iii) a
derivation which is neither leftmost nor rightmost of abababa,
given that abababa is in L{G), where G is the grammar given in
Example 6.4.

Chapter 6: Context-Free Languages 225

6.5

6.6
6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

Consider the following productions:
S — aB|bA
A — aS|bAA|a
B — bS|aBB|b

For the string aaabbabbba. find
(a) the leftmost derivation,

(b) the rightmost derivation, and
(c) the parse tree.

Show that the grammar S — a|abSb | aAb, A — bS|aAAb is ambiguous.

Show that the grammar S — aB|ab, A — aAB|a. B — ABb|b is
ambiguous.

Show that if we apply Theorem 6.4 first and then Theorem 6.3 to a
grammar G, we may not get a reduced grammar.

Find a reduced grammar equivalent to the grammar § — ada, A —
bBB, B — ab, C — aB.

Given the grammar S - AB, A > a. B —» C|b, C > D, D — E,
E — a, find an equivalent grammar which is reduced and has no unit
productions.

Show that for getting an equivalent grammar in the most simplified
form, we have to eliminate unit productions first and then the
redundant symbols.

Reduce the following grammars to Chomsky normal form:
(a) S - 1A| 0B, A — 1AA|0S]|0, B - OBB|1S|1
(b)) G = ({S}. {a b.c}. {S—> alb|cSS})

() S — abSb|a| aAb, A — bS | aAAb.

Reduce the grammars given in Exercises 6.1, 6.2, 6.6, 6.7, 6.9, 6.10
to Chomsky normal form.

Reduce the following grammars to Greibach normal form:

(@ $—>S8S. §$—>0s1]01

(b) S—>AB. A — BSB, A—> BB, B—aAb, B—a, A—>b
(¢c) S >A0, A—-0B. B— A0, B—>1

Reduce the grammars given in Exercises 6.1, 6.2, 6.6, 6.7, 6.9, 6.10
to Greibach normal form.

Construct the grammars in Chomsky normal form generating the

foilowing:

(@) {wew'|w e 0 {a, b}*},

(b) the set of all strings over {a, b} consisting of equal number of a’s
and b’s,

226

B Theory of Computer Science

6.17

6.18

6.19
6.20

6.21

6.22

6.23

(¢) {a"b"|m # n, m, n 2 1}, and
(d) {d"b"" | m, n = 1}.

Construct grammars in Greibach normal form generating the sets given
in Exercise 6.16.

If w e L(G) and [w]| = k, where G is in (i) Chomsky normal form,
(1) Greibach normal form, what can you say about the number of steps
in the derivation of w?

Show that the language {a”" |n 2 1} is not context-free.

Show that the following are not context-free languages:

(a) The set of all strings over {a, b, ¢} in which the number of
occurrences of a, b, ¢ is the same.

(b) {d"6"c"|m < n < 2m}.

(¢) {d"P"|n = m*}.

A context-free grammar G is called a right-linear grammar if each

production is of the form A — wB or A — w, where A, B are variables

and w € Z* (G is said to be left-linear if the productions are of the

form A — Bw or A —» w. (is linear if the productions are of the form

A -> vBw or A — w.) Prove the following:

(a) A right-linear or left-linear grammar is equivalent to a regular
grammar.

{b) A linear grammar is not necessarily equivalent to a regular
grammar.

A context-free grammar G is said to be self-embedding if there exists
some useful variable A such that A = wAv, where u, v € I¥, 1,
v # A. Show that a context-free language is regular iff it is generated
by a nonselfembedding grammar,

Show that every context-free language without A is generated by a
context-free grammar in which all productions are of the form A — a,
A — aab.

Pushdown Automata

In this chapter we introduce pushdown automaton {pda). We discuss two types
of acceptance of sets by pushdown automata. Finally, we prove that the sets
accepted by pushdown automata are precisely the class of context-free
languages.

7.1 BASIC DEFINITIONS

We have seen that the regular languages are precisely those accepted by finite
automata. If M is a finite automaton accepting L, it is constructed in such a way
that states act as a form of primitive memory. The states ‘remember’ the
variables encountered in the course of derivation of a string. (In M, the states
correspond to variables.) Let us consider L = {&"b"|n = 1}. This is a context-
free language but not regular. (S — aSh|ab generates L. Using the pumping
lemma we can show that L is not regular; cf. Example 5.20.)

A finite automaton cannot accept L. i.e. strings of the form &"b”, as it has
to remember the number of @’s in a string and so it will require an infinite
number of states. This difficulty can be avoided by adding an auxiliary
memory in the form of a “stack’ (In a stack we add the elements in a linear
way. While removing the elements we follow the last-in-first-out (LIFO)
basis. i.e. the most recently added element is removed first.) The «’s in the
given siring are added to the stack. When the symbol b is encountered in the
input string, an a is removed from the stack. Thus the matching of number
of ¢’s and the number of b’s is accomplished. This type of arrangement where
a finite automaton has a stack leads to the generation of a pushdown
automaton.

Before giving the rigorous definition, let us consider the components of a
pushdown automaton and the way it operates. It has a read-only input tape,

227

228 & Theory of Computer Science

an input alphabet, a finite state control, a set of final states, and an initial state
as in the case of an FA. In addition to these, it has a stack called the pushdown
store (abbreviated PDS). It is a read-write pushdown store as we add elements
to PDS or remove elements from PDS. A finite antomaton is in some state
and on reading, an input symbol moves to a new state. The pushdown
automaton is also in some state and on reading an input symbol and the
topmost symbol in PDS, it moves to a new state and writes (adds) a string of
symbols in PDS. Figure 7.1 illustrates the pushdown automaton.

We now give a formal definition of a pushdown automaton.

i ldef Ll

| Finite store z Storing | Removing
control direction L direction

Pushdown store
Fig. 7.1 Model of a pushdown automaton.

Definition 7.1 A pushdown automaton consists of
(1) a finite nonempty set of states denoted by @,
(i1} a finite nonempty set of input symbols denoted by Z,
(iii) a finite nonempty set of pushdown symbols denoted by I,
(iv) a special state called the initial state denoted by g,
(v) a special pushdown symbol called the initial symbol on the pushdown
store denoted by Z.
(vi) a set of final states, a subset of (denoted by F, and
(vii) a transition function & from @ X (T w {A}) X I' to the set of finite
subsets of O x T'*%
Symbolically. a pda is a 7-tuple, namely (Q, Z. T, 6. qo. Zo. F).

Note: When 6(q. a. Z) = @ for (g. a. Z) € O x (Z v {A}) x T, we do not
mention it.

EXAMPLE 7.1

Let
A=(0.Z. 1.0 gy Zy. F)

where

0 =1{490 gi. 9. T =A{a b} D ={a Z}. F={q

Chapter 7: Pushdown Automata = 229

and & is given by
O(qo. a. Zy) = {(qo. aZy)}, 6(qy. b. @) = {(g1. A)}
6(g0, a, @) = {(qu, am)}, 8(q1. A, Zy) = {{q1- M)}
8(qo. b a) = {(q1. M)}

Remarks 1. 0(g, ¢, Z) is a finite subset of Q x I'* The elements of
0(q, a. Zy are of the form (¢, @), where ¢’ € Q, o € T* (g, a. Z) may
be the empty set.

2. At any time the pda is in some state ¢ and the PDS has some symbols
from I'. The pda reads an input symbol ¢ and the topmost symbol Z in PDS.
Using the transition function 6, the pda makes a transition to a state ¢” and
writes a string o after removing Z. The elements in PDS which were below
Z initially are not disturbed. Here (¢’, @) is one of the elements of the finite
set 6(q, a, Z). When o = A, the topmost symbol, Z. is erased.

3. The behaviour of a pda is nondeterministic as the transition is given
by anyv element of 8(q. a, Z).

4. As §is defined on O X (£ w {4A}) x T, the pda may make transition
without reading any input symbol (when d(gq, A, Z) is defined as a nonempty
set for g € Q and Z € T). Such transitions are called A-moves.

5. The pda cannot take a transition when PDS is empty (We can apply
¢ only when the pda reads an input symbol and the topmost pushdown symbol
in PDS). In this case the pda halts.

6. When we write & = Z,Z, ... Z, in PDS. Z, is the topmost element,

lrd

Z- is below Z,. etc. and Z,, is below Z,,_,.

In the case of finite automaton, it is enough to specify the current state at
any time and the remaining input string to be processed. But as we have the
additional structure, namely the PDS in pda, we have to specify the current
state, the remaining input string to be processed, and the symbols in the PDS.
This leads us to the next definition.

Definition 7.2 Let A = (Q. %. T, J, qy. Zy, F) be a pda. An instantaneous
description (ID) is (g. x. &), where g € O, x € Z* and ¢ € T*

For example, (. qya> . .. a,. Z1Z> ... Z,,) is an ID. This describes the
pda when the current state is g. the input string to be processed is a,a- . . . q,,
The pda will process aja- ... a, in that order. The PDS has Z,, Z,, ..., Z,
with Z; at the top. Z, is the second element from the top, etc. and Z,, is the
lowest element in PDS.

11

Definition 7.3 An initial ID is (gg, x, Zy). This means that initially the pda
is in the initial state gq. the input string to be processed is x. and the PDS has
only one symbol. namely Z,.

Note: In an ID (¢. x. &). x may be A. In this case the pda makes a A-move.

230 B Theory of Computer Science

For a finite automaton. the working can be described in terms of change
of states. In the case of pda, because of its additional structure, namely PDS,
the working can be described in terms of change of IDs. So we have the
following definition:

Definition 7.4 ILet A be a pda. A move relation, denoted by [— between IDs
is defined as
(q. way ... ap 212, ... Z,) = ¢, @y ... a, BZo ... Z,)
if 8(g. a;. Z)) contains (¢, f).
Note: The move relation
(q. war .. ap 2,2, ... Z,) = ¢, aas ... a, BZ, ... Z,)

can be described as follows: The pda in state g with Z,Z, ... Z, m PDS
(Z; is at the top) reads the input symbol a;. When (¢, f) € 8(g. ai, Z;). the

pda moves to a state ¢ and writes § on the top of Z, ... Z,. After this
transition. the input string to be processed is a-as ... 4,
If B=YY-... Y, then Fig. 7.2 iliustrates the move relation.

N 7 S O WO % R A

q Z1 q Y1
Z / Y,

Yi

Zm ZZ

Zm

Fig. 7.2 An illustration of the move relation.

Remark As |— defines a relation in the set of all IDs of a pda, we can define
the reflexive-transitive closure | which represents a definite sequence of n
moves, where 7 is any non-negative integer.

If (g. x. @ = (4. y. P represents n moves. we write (g, x. ®) HL
(¢’. ». B. In particular, (g, x. 0) }i (g, x.). Also, (q. x, &) I~ (¢, v,)
can be split as

(g, x. a) — (g1 xp. o) = (g X2) — ... = (g". ». P)
for some x|, x5, € Z¥*). O, ..., € T%

Note: When we deal with more than one pda, we also specify the pda while
describing the move relation. For example. a move relation in A is denoted

by!T.

Chapter 7: Pushdown Automata 2 231

The next two results are properties of the relation |- and are frequently

used in constructions and proofs.
Result 1 If

(qls X, a) ‘; ((]2- A* B) (71)
then for every v € X*,

(g xy. @) F= (g2 ¥ B) (7.2)
Conversely. if (g;. xy. o) F= (g, ¥. B) for some v € I*, then (gq. x, o) -
((]2, 1\, ﬁ)
Proof The result can be easily understood once we refer to Fig. 7.2,
providing an illustration of the move relation.

If the pda is in state g, with o in PDS. and the moves given by (7.1) are
effected by processing the string x, the pda moves to state ¢, with 8 in PDS.
The same transition is effected by starting with the input siring xy and
processing only x. In this case, v remains to be processed and hence we
get (7.2).

We can prove the converse part. 1.e. (7.2) implies (7.1) in a similar way.
Result 2 If

(g. % @) = (q. AP (7.3)

then for every S € T'%
(- x. off) = (¢- A ¥D) (7.4)

Proof The sequence of moves given by (7.3) can be split as

(q. x. &) [— (g x1. &) = (g X2 02) =~ -+ = (G- A P

Consider (g;. x.. 049 F— (Gir1» X). Let 05 = Z1Z, ... Z,. As a result
of this move, Z; is erased and some string is placed above Z, ... Z,. So.
Z» ... Z, is not affected. If we have f§ below Z, ... Z,, then also
Z> ... Z,B is not affected. So we obtain (¢;, X O46f) F— (Gisr- Xz %)
Therefore. we get a sequence of moves ‘

- v of) = (g xi.) = ... b= (¢ A ¥P)
(. x. off) - (¢ A yB)]

Note: In general. (7.4) need not imply (7.3). Consider. for instance,

A = ({qo}. {a. b}, {Zo}. 6. g0 Zo. @)

1.e.

where
8o @ Zp) = {(go- N} Slau. b. Zo) = {(q0. ZoZo)}

(qo- aab. ZyZyZuZy)
— (qo. ab. ZyZoZy)
— (q0. b. ZpZy)

— {qo. A ZoZyZp)

232 =2 Theory of Computer Science

i.e.
(qo- aab, ZyZoZ0Z0) = (o A ZoZoZy)

However, (qqo. aab. Zy) |— (go. ab. A); hence the pda cannot make any more
transitions as the PDS is empty. This shows that (7.4) does not imply (7.3)
if we assume o = ZyZoZo. B = Zy. V= ZoZo.

- EXAMPLE 7.2

A = ({q0. 91~ i} {a. b, ¢}, {a. bo Zy}. 8. qo. Zo, {gf})

is a pda. where O is defined as

O(qo- a. Zp) = {(qo. aZp)}. 6(qo, by Zo) = {(qo. bZp)} (7.5)

0(qo.. a. @)= {(go, aa@)}. 6(qo. b, @) = {{qo. ba)} (7.6)

8(qo. a. b) = {(qo. ab)}, (qo. b. b) = {(q0. bD)} (7.7)
6(qo. ¢, @)= {(g;. @}, 0(qo. ¢ b) = {{q1. B)}. 8(qo. ¢ Zo)

= {(q1. Zo)} (7.8)

(g, a, a)= 6(q;. b. b) = {(g1. A} (7.9

8(q- A. Zo) = {(qr Zo)} (7.10)

We can explain 0 as follows:

If A is in initial ID. then using Rule (7.5). A pushes the first symbol of
the input string on PDS if it is ¢ or b. By Rules (7.6) and (7.7), the symbols
of the input string are pushed on PDS until it sees the centre-marker c. By
Rule (7.8). on seeing c. the pda moves to state ¢, without making any changes
in PDS. By Rule (7.9). the pda erases the topmost symbol if it coincides with
the current input symbol (i.e. if they do not match, the pda halts). By Rule
(7.10). the pda reaches the final state g; only when the input string is
exhausted. and then the PDS has only Zy.

We can explain the concepts of ID. moves. etc. for this pda A. Suppose
the input string is acab. We will see how the pda processes this string. An
initial configuration is (go. bacab, Zy). We get the following moves:

(qo- bacab, Zy) }— (g9, acab. bZy) by Rule (7.5)

— (g0, cab, abZy) by Rule (7.7)
— (q1. ab. abZy) by Rule (7.8)
— (qo b, bZy) by Rule (7.9)
— (g1, A, Zp) by Rule (7.10)
— (g0 A Z) by Rule (7.10)

i.e.

(qo» bacab. Zy) = (g5 Zp)

Chapter 7: Pushdown Automata = 233

Proceeding in a similar way, we can show that
(qo. wew!. Zy) F- (gr A, Zop) for all w e {a, b}*
Suppose an initial configuration is (gg. abebb. Zpy). Then, we have
(qo. abebb. Zy) — (qo. bebb, aZy) by Rule (7.5)
— (qo. cbb, baZy) by Rule (7.6)
F— {qy. bb, baZy) by Rule (7.8)
F— (q1, b. aZy) by Rule (7.9)
Once the pda is in ID (q,. b, aZy), it has to halt as d(g;, b. a) = §. Hence,

we have

(qo. abebb. Zy) 1 (q,. b. aZy)
As 8(gg. ¢. Zy) = @, the pda cannot make any trapsition if it starts with an
ID of the form {(gg. cw. Zp).

Note: In Example 7.2. each 6(g. a. Z) is either empty or consists of a single
element. So for making transitions, the pda has ounly one choice and the
behaviour is deterministic.

In general. a deterministic pda can be defined as follows:

Definition 7.5 A pda A = (Q. L. T. 8. qo. Z,. F) is deterministic if
(i) 8(q. a, Z) is either empty or a singleton. and (ii) 6(g. A. Z) # @ implies
6(q. a. Z) = @ for each a € X

Consider the pda given in Example 7.2. d(g. a. Z) given by Rules
(7.5)=(7.10) are singletons. Also. 6(¢q;. a. Zg) = @ and 6(q,. a. Zy) = @ for
all @ € Z. So the pda given in Example 7.2 is deterministic.

7.2 ACCEPTANCE BY pda

A pda has final states like a nondetermunistic finite automaton and has also the
additional structure, namely PDS. So we can define acceptance of input strings
by pda in terms of final states or in terms of PDS.

Definition 7.6 Let A = (Q. I, T. &. gp. Zg. F) be a pda. The set accepted
by pda by final state 1s defined by

T(A) = {w € Z¥(qo- w. Zo) I~ (g0 A 0) for some g, € F and o € T*}

EXAMPLE 7.3

Construct a pda A accepting L = {wew’ |w € {a. b}*} by final state.

234 = Theory of Computer Science

Solution

Consider the pda given in Example 7.2. Let wew! € L. Write w = aja, . . . a,,
where each q; is either @ or b. Then, we have

(qo- qa> ... a,ew', Zy)

L (go. ow!l @y . aZy) by Rules (7.5(7.7)
F- (g1 @@, - ap. aya,y ... aiZy) by Rule (7.8)

F= (g1 A Zy) by Rule (7.9)

F(gr A Zp) by Rule (7.10)

Therefore, wew! € T(A), i.e. L < T(A).
To prove the reverse inclusion, it is enough to show that L < T(A)". Let
xe L

Case 1 x does not have the symbol ¢. In this case the pda never makes a
transition to g). So the pda cannot make a transition to g, as we cannot apply
Rule (7.10). Thus, x € T(A)"

Case 2

X = Wicwa, Wy # wlf

(qo- wicwa. Zy)
(o o wZy)
— (g1, wa w‘TZO)
As w- # wi, the pda cannot reach an ID of the form (¢;. A. Zy). So we

cannot apply (7.10). Therefore. x € T(A)".
Thus we have proved L ¢ T(A)".

The next definition describes the second type of acceptance.
Definition 7.7 Tet A = (Q. Z. T. 8. qo. Zy, F) be a pda. The set N(A)
accepted by null store (or empty store) is defined by
NA) = {w e Z*(g0. w. Zy) = (g. A, A) for some g € Q}

In other words, w is in N(A) if A is in initial ID (gq, w. Zy) and empties
the PDS after processing all the symbols of w. So in defining N(A), we
consider the change brought about on PDS by application of w, and not the
transition of states.

- EXAMPLE 7.4

Consider the pda A given by Example 7.2 with an additional rule:

5((]f A, ZO) = {((1’;, A.)} (711)
Then.
N = wen [€t b))

Chapter 7: Pushdown Automata 235

Solution

From the construction of A, we see that the Rules (7.5)—(7.10) cannot erase
Z,. We make a provision for erasing Z; from PDS by Rule (7.11). By
Example 7.2, wew! € T(A) if and only if the pda reaches the ID (gp A, Zy).
By (7.11), PDS can be emptied by A-moves if and only if the pda reaches the
ID (gp A. Zy). Hence.

NA) = {wew' | w e {a. b}¥}
In the next theorem we prove that the set accepted by a pda A by null store
is accepted by some pda B by final state.
Theorem 7.1 If A = (Q, X. T, 6. qy. Zy. F) is a pda accepting L by empty
store. we can find a p~a
. B = (Q/’ 2: F/, 63’ q,O’ ZO’ F/)
which accepts L by final state, i.e. L = N(A) = T(B).

Proof B is constructed in such a way that (i) by the initial move of B, it
reaches an initial ID of A. (ii) by the final move of B, it reaches its final state,
and (1i1) all intermediate moves of B are as in A

Let us define B as follows:

B = (0.5 T, 8 o Zo F)

where
qo is a new state (not in Q).
F’ = {q4}. with g; as a new state (not in Q).
Q' = Q0 v {q gt

Zy 1s a new start symbol for PDS of B,
I"=T v {Z]}. and
Op is given by the rules R, R-, R;
with
Ri: 83(q'0- A Z') = {(qo. ZoZ'p)}-
R~ S83(q, a. Z) = 8(g. a. Z) forall (ga.2)in QO x T U {AhH)xT
Ry Gg(q. A, Z7) = {(g~ A} forall g € Q.

By R;. the pda B moves from an initial ID of B to an initial ID of A.
Ry gives a A-move. As a result of Ry, B moves to the initial state of A with
the start symbol Z; on the top of PDS.

R, is used to simulate A. Once B reaches an initial ID of A, R, can be used
to simulate moves of A. We can repeatedly apply R- until Z'y is pushed to the
top of PDS. As Z’) is a new pushdown symbol, we have to use Rs.

Ry gives a A-move. Using R;. B moves to the new (final) state gy erasing
Z’y in PDS.

Thus the behaviour of B and A are similar except for the A-moves given
by Ry and R:. Also, w € T(B) if and only if B reaches gy i.e. if and only

236 B Theory of Computer Science

it the PDS has no symbols from I' (since B can reach g only by the
application of R;). This suggests that T(B) = NA).

Now we prove rigorously that N(A) = T(B). Suppose w € N(A). Then by
the definition of N(A), (gg. w. Zp) - (g. A. A) for some g € Q. Using R,
we see that

(qo. w. Zo) by (q. A A)
By Result 2, -
(go- w. ZoZ'0) by (g, A Z() (7.12)
By R;.
(qo- A Zy) 5 (o A ZoZY)
By Result 1, we have
(o w. Z0) b5 (qo. w. Z'Zo) (7.13)
By R;,
(g. A Zo) 5 (qp A A) (7.14)

Combining (7.12)—(7.14), we have

(g w, Zy) I% (g0 A A

This proves that w e T(B). i.e. NA) ¢ T(B).
To prove T(B) < N(A), we start with w < T(B). Then

('(],(} W, Z,Q) l_é— (qf’ 1\, OC) (715)

But B can reach ¢, only by the application of R;. To apply Rs. Z% should be
the topmost element on PDS. Z7 is placed initially, and so when it is on the
top there are no other elements in PDS. So & = A, and (7.15) actually reduces
to

(o W Z0) g (@p A D) (7.16)

In (7.16), the initial and final steps are effected only by A-moves. The
intermediate steps are induced by the corresponding moves of A. So (7.16) can
be split as (¢ Aw. Z0) by (g0 w. ZZY) b5 (g A, Z§) for some
g € Q. Thus, (q0. Aw, Z4) b5 (g0, w. ZoZ0) b (@ A ZY) b (ap A D)
As we get (gg. w. ZyZ%) I% (g. A. Z3) by applying R» several times and R,
does not affect Zj at the bottom, we have (qg, w. Zo) b (¢. A, A). By the
construction of R,. we have (gq, w. Zy) bt (¢. A. A). which means w € N(A).
Thus. T(B) < N(A). and hence T(B) = NA) = L. |

Chapter 7: Pushdown Automata = 237

Note: From the construction of B, it is easy to see that B is deterministic if
and only if A is deterministic.

EXAMPLE 7.5

Consider the pda A given in Example 7.1 (Take F = @). Determine N(A).
Also construct a pda B such that 7(B) = N(A).

Solution
A = ({qo. g1}, {a. b}, {a. Zy}. 0. qo, Zy. D).

where & is given by
Ry d(gy. a. Zy)
R~ 8(qgg. a, a)

{(qo. aZy)}
{(qo. aa)}

Ry O(qo. b. @) = {(gq;. M)}
Ry &gy b, @) = {(q;. M)}
Rs: 6(q1. A Zy) = {(g1. N}

R, is used to store « in PDS if it is the first symbol of an input string.
R» can be used repeatedly to store ¢" in PDS. When b is encountered for the
first time in the input string, a is erased (in PDS) using R;. Also, the pda
makes a transition to state ¢;. After processing the entire input string, if Zg
remains in PDS, it can be erased using the null move given by Rs. So, if
w = a'b", then we have

(go- d"B". Zp) B~ (qo. D", a'Zy) by applying R, and R,
- (g1 A Zy) by applying R; and R,
— (g1- A A) by applying R;

Therefore, a'6" € N(A).

If w e N(A). then (go. w. Zy) - (g1. A, A). (Note that the PDS can be
empty only when A is in state ¢;.) Also, w should start with a. Otherwise, we
cannot make any move. We store the symbol ¢ in PDS if the current input
symbol is @ and the topmost symbol in PDS is a or Z;. On seeing the input
symbol b, the pda erases the symbol @ in PDS. The pda enters the ID (g, A. A)
only by the application of Rs. The pda can reach the ID (g, A, Z;) only
by erasing the a’s in pda. This is possible only when the number of &’s is

equal to number of a’s. and so w = &"b". Thus. we have proved that
NA) = {a"b" | n 2 1}.
Now let

B =(0". {a. b}. T, 6. qy. Z. F")
where

Q/ = {([Or q,O q1s [/f} F = {QI}t "= {[l. b. Z/O}

238 & Theory of Computer Science

and &g is defined by
8(qo. A Zo) = {(q0, ZoZo)}

Se(q1, a. Zy) = {(qo. aZy)}
(g0 a. @)= {(qo. aa)}
(g0 b, @)= {(q1, A}

8(q1. b, @) = {(q1. M)}

(g, A, Zo) = {(g1. M}

O(do- A, Zo) = {(gp A}

Os(q1, A Z%) = {(gp M)}
Thus.
T(B) = NA) = {d"b"|n 2 1}
The following theorem asserts that the set accepted by a pda A by final

state is accepted by some pda B by null store.

Theorem 7.2 If A = (Q. 2. T, 4, qp. Zy. F) accepts L by final state, we can
find a pda B accepting L by empty store; 1.e. L = T(A) = N(B).

Proof B is constructed from A in such a way that (i) by the initial move of
B an initial ID of A is reached, (ii) once B reaches an initial ID of A, it
behaves like A until a final state of A is reached, and (iii) when B reaches a
final state of A. it guesses whether the input string is exhausted. Then B
simulates A or it erases all the symbols in PDS.

The actual construction of B is as follows:

B=(0 v iqh d}. Z. T U {Z}, 8, q0. Z0, 9)

where ¢% is a new state (not in Q), d is a new (dead) state, and Zj is the new
start symbol for PDS of B.
Op is defined by rules R, R», Ry and Ry as

Ry: 65 (g% A Z0) = {(q0. ZoZp)}

Ry Oplg, a, 7) =8q, a, Z) foralae Z,ge Q. Ze T
Ry 83(g, A, 2)=8q. A, ZYyw {(d,A)} foralZe T U {Zy} andge F
R 8s(g. A Z) = {(d. M) forall Z e T U {Zp}

Using R, B enters an initial ID of A and the start symbol Z; is placed on top
of PDS.

Using R, B can simulate A until it reaches a final state of A. On reaching
a final state of A, B makes a guess whether the input string is exhausted or

Chapter 7: Pushdown Automata = 239

not. When the input string is not exhausted, B once again simulates A.
Otherwise, B enters the dead state 4. Rule R, gives a A-move. Using these
A-moves, B erases all the symbols on PDS.

Now w e T(A) if and only if A reaches a final state. On reaching a final
state of A, the pda can reach the state d and erase all the symbols in the PDS
by A-moves. So, it is intuitively clear that w € T(A) if and only if w € N(B).
We now prove rigorously that 7(A) = N(B).

Suppose w € T(A). Then for some g € F, ox € T'*,

(QO9 w, ZO) l";T (CL A, a)
Using R,, we get

(q()? w, ZO) ITi (q A, OI)
Applying Result 2. we obtain
(g0 w. ZZ'y) b (g A, oZ) (7.17)
As
(G A Z') 5 (g0 A ZoZh)
using Result 1. we get '

(@0 w. Z0) 5 (g0 W, ZoZ%) (7.18)
From (7.18) and (7.17), we can deduce

(@ w. Z) By (q. A, aZ) (7.19)
By applying R; once and R, repeatedly. we get

(. A aZy) B d A, A) (7.20)

Relations (7.19) and (7.20) imply that (gg, w, Zg) Ij (d, A. A). Thus we

have proved T(A) < N(B).
To prove that M(B) < T(A), we start with w € N(B). This means that for
some state g of B,

(qo w. Zp) b (g. AL A) (7.21)

As the initial move of B can be made only by using R;, the first move of
(7.21) is (q0. Aw. Z%) |5 (g0, w. ZoZ').

Z in the PDS can be erased only when B enters d; B can enter d only
when it reaches a final state g of A in an earlier step. So (7.21) can be split as

(o M. Zo) b (qo, w. ZoZ'0) b (g A aZh) By (g A A)

240 = Theory of Computer Science

for some ¢ € F and o € T* But (qo. w, ZoZ0) b5 (g, A, aZ’) can be

obtained only by the application of R.. So the moves involved are those
induced by the moves of A. As ZY, is not a pushdown symbol in A, Z lying
at the bottom is not affected by these moves. Hence

(¢ M. Z) Fr (g A @), g€ F

So w e T(A) and N(B) ¢ T(A). Thus,
L = N(B) = T(A)

'EXAMPLE 7.6

Construct a pda A accepting the set of all strings over {a, b} with equal
number of a’s and b’s.

Solution
Let
A= ({g}. la. D). [Zo, a. bL. 6, q. Zo. ©)
where § is defined by the following rules:
0lq. a. Zo) = {(g. aZp)} 8(g. b, Zo) = {(q, bZp)}
8(g. a. a) = {(g. aa)} &(g. b. b) = {(q. bb)}
8(g. a. b)= {(g. M)} 0(g. b. a) = {(g. M)}
o(g. A Zy) = {(g. M)}

The construction of & is similar to that of the pda given in Example 7.2.
But here we want to match the number of occurrences of ¢ and b; so, the
construction is simpler. We start by storing a symbol of the input string and
continue storing until the other symbol occurs. If the topmost symbol in PDS
is a and the current input symbol is b. « in PDS is erased. If w has equal
number of a’s and b's, then (g. w. Zg) = (q. A, Zo) |— (g, A, A). So
w e N(A). We can show that N(A) is the given set of strings over {a. b} using
the construction of &

7.3 PUSHDCOWN AUTOMATA AND CONTEXT-FREE
LANGUAGES

In this section we prove that the sets accepted by pda (by null store or final
state) are precisely the context-free languages.

Theorem 7.3 If L is a context-free language. then we can construct a pda
A accepting L by empty store, 1.e. L = N(A).

Chapter 7: Pushdown Automata B 241

Proof We construct A by making use of productions in G.
Step 1 (Construction of A) Let L = L(G), where G = (Vy, X, P, S) is a
context-free grammar. We construct a pda A as
A=g),Z VyulZ 6q S 0

where & is defined by the following rules:

Ry 0(qg. A A) = {(g.)| A — o is in P}

R~ 8(g. a, @) = {(g. A)} for every a in X

We can explain the construction in the following way: The pushdown

symbols in A are variables and terminals. If the pda reads a variable A on the
top of PDS, it makes a A-move by placing the R H.S. of any A-production (after
erasing A). If the pda reads a terminal @ on PDS and if it matches with the

current input symbol. then the pda erases a. In other cases the pda halts.
If w € L(G) 1s obtained by a leftmost derivation

S = ll]A]al = zqzt:A:O(:O.’l = ... = W,

then A can empty the PDS on application of input string w. The first move
of A is by a A-move corresponding to S — A0, The pda erases § and
stores 1;4,0;. Then using R.. the pda erases the symbols in u; by processing
a prefix of w. Now, the topmost symbol in PDS is A,. Once again by applying
the A-move corresponding to A; — -A~0h, the pda erases A, and stores
1-A~¢» above . Proceeding in this way, the pda empties the PDS by
processing the entire string w. :

Before proving that L(G) = N(A) (step 2). we apply the construction to
an example.

EXAMPLE 7.7

Construct a pda A equivalent to the following context-free grammar: S —
0BB. B — 0S|1S5]0. Test whether 010% is in N(A).

Solution
efine pda A as follows:
A= ({g}, {0. 1}. {S. B, 0. 1}. 6. ¢. S. ©)
0 is defined by the following rules:
Ri: 8(g. A. $) = {(g. OBB)}
Rs: 8(g. A BY= {(g. 05). (¢.©S). (g. O)}
R 8(g.0.0) = (g v}
Ry 8(g. 1. 1) = {(g. A)}

242 B Theory of Computer Science

(g. 010%, 8)

I (g. 010%, 0BB) by Rule R,

— (¢q. 10%, BB) by Rule R,

— (g. 10%, 1SB) by Rule R, since (g, 15) € a(q, A, B)
— (g. 0%, SB) by Rule R,

— (g. 0%, 0BBB) by Rule R,

|~ (g, 0°. BBB) by Rule R,

= (g 0%, 000) by Rule R» since (g, 0) € a(g, A, B)
- (g A A) by Rule R;

Thus.
010* ¢ N(A)

Note: After entering (¢. 10*. BB). the pda may halt for a different sequence
of moves, for example, (g, 10°, BB) |— (g, 10*, 0B) |— (g. 10, 00). As
&(g, 1, 0) is the empty set, the pda halts.

Let us continue with the proof of the theorem.

Step 2 (Proof of the construction, i.e. L(G) = N(A)). First we prove L(G)
< N(A). Let w € L(G). Then it can be derived by a leftmost derivation. Any
sentential form in a leftmost derivation is of the form pAo, where u € T¥,
A€ Vy and o € (Vy U Z)*. We prove the following auxiliary result: If
S = uAa by a leftmost derivation. then
(g, w. 8) B~ (q. v, Aoy for every v € X* (7.22)
We prove (7.22) by induction on the number of steps in the derivation of
uACLIES 2 uA,thenu=A, or=A, and S = A As (q. v, S) |2 (g, v, S), there
is basis for induction.
Suppose S gl uAa by a leftmost derivation. This derivation can be split
as § = A0y = uAo. If the Aj-production we apply in the last step is
‘41 4 113AO(3. then u = Uy, O = OHO.

As § = u A0, by induction hypothesis,

(g, wuzv,) - (g, uzv, Ajoy) - (7.23)

As A} = uAos is a production in P, by Rule R; we get (g, A, A)) —
(g. A, u-Aon). Applying Results 1 and 2 in Section 7.1, we get

(g. wv, Ajoy) = (g, uav. upAono)
— (q. v, Aayo,) by Rule R,

Hence,
(q. w2, Ajoy) = (g, v, AoLoy) (7.24)

Chapter 7: Pushdown Automata B 243

But uyu, = 1 and o0 = o So from (7.23) and (7.24), we have
(g. uv, §) - (g, v. A®)

Thus (7.22) is true for § g uAc. By the principle of induction, (7.22) is true
for any derivation. Now we prove that L(G) ¢ N(A). Let w € L(G). Then,
w can be obtained from a leftmost derivation,

S = uAv = u'v=w

From (7.22).

(g, uu'v, S) = (g, u'v, Av)
As A — v is in P,

(g, Wv, Av) &~ (g, u'v, u'v)
By Rule R..

(g, w'v, vy 2~ (g, A, A)
Therefore,

w = uu've NA proving L(G) € NA)

Next we prove

NA) ¢ L(G)
Before proving the inclusion, let us prove the following auxiliary result:
S = ua if (gouv, S) = (. v. @) (7.25)

We prove (7.25) by the number of moves in (g. uv, S) |~ (¢, v, ®).

0
If (g, w. S) & (g, v, 0). then u = A, S = o; obviously, S = Ao Thus
there is basis for induction.
Let us assume (7.25) when the number of moves is n. Assume

(g. w, S) X' (g, v. @) (7.26)

The last move in (7.26) is obtained either from (g, A, A) | (g. A, o’y or
from (¢. a, a) |— (g. A. A). In the first case. (7.26) can be split as

(g, uv.) P (g, v, A) |— (g, v, 0400) = (g, v. O)

By induction hypothesis, S = uAo,, and the last move is induced by
A — 0. Thus, S = uAa, implies o0 = o So,

S S uAcs = uonon = uo

In the second case, (7.26) can be split as

(g, uv, S) K- (g, av. a) }— (g. v, &)

Also. u = v'a for some v’ € X. So, (g, tav, S) H- (g, av, ao) implies (by
induction hypothesis) S = 1’ao = ua. Thus in both the cases we have shown
that § = uo. By the principle of induction, (7.25) is true.

244 B Theory of Computer Science

Now. we can prove that if w € N(A) then w € L(G). As w € NA).
we have (g. w,) |~ (g. A, A). By taking u = w, v = A, o = A and applying
(7.25), we get § = wA = w, ie. w € L(G). Thus,

L(G) = NA)

Theorem 7.4 If A = (Q, X. T, 8. qo. Zy. F) is a pda. then there exists a
context-free grammar G such that L(G) = N(A).

Proof We first give the construction of G and then prove that N(A) = L(G).
Step 1 (Construction of G). We define G = (Vy. Z, P, S), where
Vi=1{St v ilg. Z, qlig. ¢ € Q. Ze T}

i.e. any element of Vy is either the new symbol § acting as the start symbol
for G or an ordered triple whose first and third elements are states and the
second element is a pushdown symbol.

The productions in P are induced by moves of pda as follows:

R,: S-productions are given by § — [gg, Zg. g] for every g in Q.

R-: Each move erasing a pushdown symbol given by (¢". A) € (g, a. Z)
induces the production [¢. Z, ¢'] — a.

R-: Each move not erasing a pushdown symbol given by (g, Z/Z. ... Z,)
€ 6(g. a. Z) induces many productions of the form

lg. Z. 4'} = alqi. Zy. g9:llgo Z5. g3) - .- g Zne 4]

where each of the states ¢, ¢, ¢,, can be any state in Q. Each move yields
many productions because of R:. We apply this construction to an example
before proving that L(G) = N(A).

EXAMPLE 7.8

Construct a context-free grammar G which accepts N(A), where
A = ({g0. @1} {a. b} {Zy. Z}. 6. qo. Zy, ©)

and d is given by

8(qo. b. Zg) = {(qo. ZZy)}

8(q0. A Zo) = {(gqo. M)}

0(qo, b, Z) = {(q0. Z2)}

8(qo- a. 2) = {(q\. D)}

6(qi- b. 2) = {(q1. N}

8(gi. a. Zo) = {(qo. Zo)}
Solution

Let v
G = (Vy. {a. b}, P. 5)

Chapter 7: Pushdown Automata 2 245

where Vy consists of S, [g0. Zo. g0l [g0- Zo. 1] [qo- Z. qol- 1g0. Z. q1],
(4:- Zo, a0l Lav. Zo- qi)- a1 Z. qol g1 Z. g1l
The productions are

Pt S = g0 Zo qol
Py S = g0 % g1l
Slgy. b, Zg) = {(qo. ZZy)} yields
Pzt lgo. Zo, qol = blay.
Py {q0- Zo- gol — blgo-
Ps: qo. Zo- q1]1 = Dlgo.
Ps: a0 Zo. qi] = blqo,
Olgo- A Zy) = {{gqo. A)} gives

gollgo- Zo. 4ol
g11la1. Zo» ol
gollgo. Zo. q1]
q:illq. Zo- g1l

NN NN

Pt g0 Zo. qol = A

S8lgq. b. Z) = {{qg. ZZ)} gives
Ps: [qo. Z. g0l = blao. Z. gollgo. Z. qol
Py lgo. Z. gol = blgo. Z. qillgy- Z. g0l
Py lqo- Z. il = blgo- Z. qollgo. Z. g1l
Py lgo. Zo qil = blgo. Z. qillgi- Z. qi]
8tqo. a. 2y = {{gy. Z)} yields
Pi2 lgo. Z.o qol — alqi. Z. g0l
Pz lgo- Z. g1l — algi, Z. g1l
olgy. b. 2y = {(g1. A)} gives

Piilg. Zog)]l = b
5“]’1- a. ZO) = {((1(). Z())} gives
Pist lqis Zo. qol — algo, Zo. g0l

P gy 2o qi] — dlgo. Zo. 1]

P-Py, give the productions in P.
Using the techniques given in Chapter 6. we can reduce the number of
variables and productions.

Step 2 Proof of the construction. i.e. N(A) = L(G).

Before proving that N(A) = L(G). we note that a variable [q. Z, ¢'] indicates
- at for the pda the current state is ¢ and the topmost symbol in PDS is Z. In
the course of a derivation. a state ¢ is chosen in such a way that the PDS is
emptied ultimately. This corresponds to applying R.. (Note that the production
given by R. replaces a variable by a terminal.)

246 B Theory of Computer Science

To prove N(A) = L(G), we need an auxiliary result, i.e.

4 Z 4] = w (7.27)
if and only if
(g w. 2) | (g A, A) (7.28)

We prove the ‘if’ part by induction on the number of steps in (7.28). If
(g, ws Z2) — (¢’, A, A), then w is either @ in £ or a in A. So, we have

(d. A € dq. w, D

By R, we get a production [gq, Z, 41 = w. So, [g, Z. ¢'] = w. Thus there
1s basis for induction. G

Let us assume the result, namely that (7.28) implies (7.27) when the
former has less than £ moves. Consider (g, w, Z) }—"— (¢’, A, A). This can be
sphit as

(@ av'. 2 b= (@), W, ZZy ... Z,) = (@ A D) (729)

where w = aw’ and ¢ € Z or a = A, depending on the first move.

Consider the second part of (7.29). This means that the PDS has Z,Z- . ..
Z,. initially, and on application of w. the PDS is emptied. Each move of pda
can either erase the topmost symbol on the PDS or replace the topmost symbol
by some non-empty string. So several moves may be required for getting on the
top of PDS. Let wy be the prefix of w such that the PDS has Z,Z; . . . Z,, after
the application of w,. We can note that the string Z-Z; . . . Z,, is not disturbed
while applying w;. Lel w; be the substring of w such that the PDS has
Ziyi - .. Z, on application of w;. Z,; ... Z, 1s not disturbed while applying
Wi, Wa. w. The changes in PDS are illustrated in Fig. 7.3.

Z4
Ll Z T 4
Z;
Zist |~ | Zist| -~ | Zing
Empty
/ store
« ~ »y \ v J
W1 W2 Wm

Fig. 7.3 lllustration of changes in pushdown store.

Chapter 7: Pushdown Automata B 247

In terms of IDs, we have
(qi’ Wi, ZI) }; (q[+1, A, A) for i = 1, 2. .. o My gy & q, (730)

As each move in (7.30) requires less than k steps, by induction hypothesis we
have

(g Zi gl = w; fori= 12, ..., m (7.31)
G
The first part of (7.29) is given by (q;, Z\Z> ... Z,) € 6(q. a. Z). By Ry

we get a production

7

lg. Z, ¢1 = algy. Zi» ¢llg Zow G3) - - (@ Zow @1 (7.32)
From (7.31) and (7.32). we get
g, Z. ¢ = awwy ... w,, = W

By the principle of induction, (7.28) implies (7.27).

We prove the ‘only if® part by induction on the number of steps in the
derivation of (7.27). Suppose [q. Z, ¢'] = w. Then [q. Z. ¢'] = w is a
production in P. This production is obtained by R.. Sow = A orw € X and
(¢'. A) € 6(q. w, Z). This gives the move (¢, w. Z) — (g, A, A). Thus there
is basis for induction.

Assume the result for derivations where the number of steps is less than k.
Consider [g, Z. ¢'] £ w. This can be split as

’ k-
{q' Z. CI] = a[(h- Zl* Qﬂ[flza ZZa f]%] [qnv me QJ = w (733)
As G is context-free, we can write w = aww. ... w,,. where
[(/iv Zie Qiﬂ] ? Wi and m+1 = q,

By induction hypothesis, we have
(G» Wi Z) = (G- A A); fori=1,2,....m (7.34)
By applying Results 1 and 2, we get
(Gn wis Ziipy - Zy) = (G A Ziyy o0 Zy)
(G Wiy oo W 2y oo Zy) = (s Wisr oo W Zigy o0 Zy) (7.35)
By combining the moves given by (7.35), we get
(g, wiws o ooowi Zy oo Zy) - (d AL A) (7.36)

The first step in (7.33) is induced by (q,, Z,Z> ... Z,) € &g, a. Z). The
corresponding move is

(qr a, Z) ll_ (QD A’ ZlZ?, e Z‘nz)
By applying the Result 1, we get

(g. awy ... Wy, Z) }—' (Q]* Wi W Zl s Zm) (7.37)

248 = Theory of Computer Science

From (7.37) and (7.36). we get (¢. w. Z) I~ (¢’. A, A) . By the principle
of induction. (7.27) implies (7.28).
Thus we have proved the auxiliary result. In particular.

o Zoo] = w iff (go. w. Zg) = (¢". AL A) (7.38)
Now w e L(G)
itt § = w

iff S = [go. Zo. ¢ = w (for some ¢’ by Ry)

ift (qo, w. Zy) = (¢'. A. A) by the auxiliary result

iff w e NA)
Thus. N(A) = L(G). |
Corollary If A is a pda. then there exists a context-free grammar G such that
TA) = L(G).

Proof By Theorem 7.2 we can find a pda A" such that T(A) = N(A"). By
Theorem 7.4 we can construct G such that N(A") = L{G). Thus T(A) = L(G). |

' EXAMPLE 7.9

Construct a pda accepting {a"b"a" | m. n = 1} by null store. Construct the
corresponding context-free grammar accepting the same set.
Solution
The pda A accepting {¢"P"d"| m. n 2 1} is defined as follows:
A = ({qo- i} {a. b} {a, Zo}. 0. qo. Zo. ©)

where & is defined by
Ry gy, a. Z0) = {(qy. aZy)}
R+ O(qpy. a. @)= {(gy aa)}
Ryt Ogg. b. ay= {(g,. a)}
Ry Olgy. b.)= {(g. a)}
Rs: 6(qi. a. @)= {{q1. M}
Rg: 6(q- A Zy) = {{g1, M)}
This is a modification of & given in Example 7.2.
We start storing a’'s until a b occurs (Rules Ry and R,). When the current
input symbol is &. the state changes. but no change in PDS occurs (Rule Rj).

Once all the b's in the input string are exhausted (using Rule Ry). the
remaining a’s are erased (Rule R:). Using R,. 7, is erased. So,

('qg. (I“bm(l”, Z(;} l— (Q], Al ZO) I—(\Q‘L A, A)
This means that a"b™d" € N(A). We can show that

NA) = {d'b"a"\m. n 2 1}
by using Rules R—R;.

Chapter 7: Pushdown Automata = 249

Define G = (Va, {a, b}, P. S). where Vy consists of
(0. Zo- g0} [q1- Zo. a0l g0 @, qol. g1 a. qol
[0 Zo- 1l {1+ Zo- q1)- [go- a. qul. g1, @ g1l

The productions in P are counstructed as follows:
The S-productions are

Py S = g0 Zo. qol, P2 S — g0 Zo. q1]
0(qo. a. Zy) = {(qo. aZy)} induces

N

0- 4ol
- 4ol
. q1]
o 41l

3t Lo Zos qol = algo. a. gollqo.
Py [g0, Zo. qol = algo. a. qillqy
Ps: [qo. Zo. qi1 — alqo. a. gollgo.
Ps: lqo. Zos g1} = algo. a. q\llgs.

NN

N

Slqq, a. a) = {{(qgp. aa)} yields

P2 [go. a. qol — alqgo. a. gollgo. a. gol
Py [go- a. qol = algo. a. gillqy. a, g0l
Py {qo. a. ;1 — algo. a. qollgo. a. q1]

Pio: [go- a. q;] = algo, a. qillq,. a. q1]

-

S8lqy. b, a) = (g, @)} gives
Piitlgo. @ g0l — blgi. a. qol

Pi~ilgo. a. g1 — bla. a, q1]

=2
=
hl

. a) = {{q, a)} yields
Pzt [g1. a. gol = blg. a, qol
Py g1 a. qil — blg. a, q1]
(g, a. @) = {(q,. A)} gives
Pist lgi. ao qul — a
6(q:, A Zy) = {(g1. A)} yields
Pt g1 Zo-] > A

Note: When the number of states is a large number, it is neither necessary
nor advisable to write all the productions. We construct preductions involving
those variables appearing in some sentential form. Using the constructions in
Chapter 6, we can simplify the grammar further.

Theorem 7.5 The intersection of a context-free language L and a regular
language R is a context-free language.

250 & Theory of Computer Science

Proof Let L be accepted by a pda A = (Q4, Z, T, 84, qo. Zy, F4) by final
state and R by DFA M = (Qy, Z, Oy Po. Fup)

We define a pda M’ accepting L m R by final state in such a way that M’
simulates moves of A on input a in X and changes the state of M using . On
input A, M’ simulates A without changing the state of M. Let

M = (Qu X Qua X, T, 8 [po. q0l, Zo, Fig X Fa)
where 0 is defined as follows:

&([p. 4l. a, X) contains ([P", ¢']. ¥) when Sy(p, @) = p’ and 6,(q, a, X)
contains (¢, 7). &([p, ql, A, X) contains ([P, ¢},) when d:(q. A. X)
contains (¢,).

To prove T(M') = L N R we need an auxiliary result, i.e.

(o> g0l . Zo) bz (o 4l A7) (7.39)

if and only if
Go- w. Zo) b (@, A y) and Sylpo, w) = p (7.40)

We prove the “only if’ part by induction on i (the number of steps). If
i = 0, the proof is trivial (In this case. p = pg. ¢ = ¢p, w = A and y = Z;). Thus
there is basis for induction. Let us assume that (7.39) implies (7.40) when the
former has 7 — 1 steps.

Let ([po qol- Wa. Zo) b= ([p. gl A,). This can be split into ([po. gol,
wa, Zy) i’v_l (p'. g} a B) | (p, g, A, 7). where w = w'a and a is in Z
or a = A depending on the last move. By induction hypothesis, we have
(90, W', Zy) [iA;l (¢, A, B) and 8y,(p’, w") = p’. By definition of &, ([p’, ¢'],
a, B) b&? (Ip, ql, A, y) implies (¢, a. B) };1— (g. A, y) and S (p", @) = p.
(Note: p’ = p when a = A.) So, §py, wa) = Sp’, a) = p. By combining
the moves of A, we get (gy, wa, Zy) F;—] ¢, a, P |—A— (g, A, 7), 1e. (go. W,
Zy) }7' (g, A. 7). So the result is true for i steps.

By the principle of induction the ‘only if’ part is proved.
We prove the “if’ part also by induction on i It is trivial to see that there
is basis for induction.

Let us assume (7.40) with i — 1 steps. Assume that (gg, w, Zy) }% (g. A,)
and Oy(pg, W) = p. Writing w as w’a and taking Oy(py. w') as p’, we get
(o wa, Zy) 15 @ & P b (q. A 7). So, (g0, W', Zo) 5 (4, A, B).

By induction hypothesis, we get ([pg. qgol. W', Zg) }—’A%‘ (Ir. 1. A, D).
Also, 8y(p’. @) = p and (¢, a,) | (¢. A, p) implies (Ip’, ¢}, o B k7
(p. ql. A. 9.

Chapter 7: Pushdown Automata =2 251

Combining the moves. we get ([py. gol, w. Zy) }Lw (p, ql, A,).

>

Thus the result is true for 7 steps. By the principle of induction, the ‘if
past is proved.

Note: 1In Chapter 8 we will prove that the intersection of two context-free
languages need not be context-free (Property 3. Section 8.3).

7.4 PARSING AND PUSHDOWN AUTOMATA

In a natural language, parsing is the process of splitting a sentence into words.
There are two types of parsing, namely the top-down parsing and the bottom-
up parsing. Suppose we want to parse the sentence “Ram ate a mango.” If NP,
VP. N. V, ART denote noun predicate, verb predicate. noun. verb and article,
then the top-down parsing can be done as follows:

S — NPVP
— Name VP
— Ram V NP
— Ram ate ART N
~» Ram ate a N
— Ram ate a mango

The bottom-up parsing for the same sentence is

Ram ate a mango — Name afe a mango
Name verb a mango
Name V ART N
NP VN P

NP VP

S

In the case of formal languages. we derive a terminal string in L(G) by
applying the productions of G. If we know that w € £* in L(G), then § = w.
The process of the reconstruction of the derivation of w is called parsing.
Parsing is possible in the case of some context-free languages.

Parsing becomes important in the case of programming languages. If a
statement in a programming language is given. only the derivation of the
statement can give the meaning of the statement. (This is termed semantics.)

As mentioned earlier. there are two types of parsing: top-down parsing and
bottom-up parsing.

In top-down parsing. we attempt to construct the derivation {or the
corresponding parse tree) of the input string. starting from the root (with label
SY and ending in the given input string. This is equivalent to finding a leftmost
derivation. On the other hand. in bottom-up parsing we build the derivation
from the given input string to the top (root with label §).

VNN

252 . Theory of Computer Science

7.4.1 TOP-DOWN PARSING

In this section we present certain techniques for top-down parsing which can
be applied to a certain subclass of context-free languages. We illustrate them
by means' of some examples. We discuss LI(1) parsing, LL(k) parsing. left
factoring and the technique to remove left recursion.

EXAMPLE 7.10

Let G = ({S, A, B}, {qa, b}, P, S) where P consists of S — aAB, S — bBA,
A—>bS,A > a B—as, B— b w = abbbab is in L(G) . Let us try to
get a leftmost derivation of w. When we start with S we have two choices:
S — aAB and § — bBA. By looking at the first symbol of w, we see that
§ — bBA will not yield w. So we choose S — ¢AB as the production to be
applied in step 1 and we get S = aAB. Now consider the leftmost variable
A in the sentential form aAB. We have to apply an A-production among the
productions A — bS and A - a. A — «a will not yield w subsequently since
the second symbol in w is b. So, we choose A — bS and get S = vAB =
abSB. Also. the substring ab of w is a substring of the sentential form abSB.
By looking ahead for one symbol, namely the symbol b, we decide to apply
S — bBA in the third step. This leads to § = aAB = abSB = abbBAB. The
leftmost variable in the sentential form abbBAB is B. By looking ahead for
one symbol which is &. we apply the B-production B — b in the fourth step.
On similar considerations, we apply A — « and B — b in the last two steps
to get the leftmost derivation.

S = aAB = abSB = abbBAB = abbbAB = abbbaB = abbbab

Thus in the case of the given grammar. we are able to construct a leftmost
derivation of w by looking ahead for one symbol in the input string. In order
to do top-down parsing for a general string in L(G). we prepare a table called
the parsing table. The table provides the production to be applied for a given
variable with a particular look ahead for one symbol.

For convenience, we denote the productions S — aAB, S — bBA, A —
bS,A > a, B— aSand B — b by Py, P». ..., Py Let E denote an error.
It indicates that the given input string is not in L(G). The table for the given
grammar is given in Table 7.1.

TABLE 7.1 Parsing Table for Example 7.10

A a b
N E P, P,
A E P4 P3
8 E PS Pg

For example, if A is the leftmost variable in a sentential form and the first
symbol in unprocessed substring of the given input string is b, then we have to

apply Pa.

Chapter 7: Pushdown Automata 2 253

A grammar possessing this property (by looking ahead for one symbol in
the input string we can decide the production to be applied in the next step)
is called an LL(1) grammar.

EXAMPLE 7.11

Let G be a context-free grammar having the productions S —- F + 5. 5 —
F+S8 8-> Fand F — a Consider w = ¢ + a = a. This is a string in L{G).
Let us try to get the top-down parsing for w.

Looking ahead for one symbol will not help us. For the string a + a = a,
we can apply F — « on seeing . But if a is followed by + or =, we cannot
apply a. So in this case it is necessary to look ahead for two symbols.

When we start with § we have three productions S = F + 5, S — F=S§
and S — F. The first two symbols in ¢ + a = a are a +. This forces us to
apply only S — F + S and not other S-productions. So, § — F + 5. We can
apply F — anow to get § = F + § = a + S. Now the remaining part of
w is a = a. The first two symbols a = suggest that we apply § — F = S in
the third step. So. S = a + § = a + F = S. As the third symbol in w is a,
we apply F — a. yielding S = @+ F+S= a+a=+S The remaining part
of the input string w is a. So. we have to apply § — F and F' — « Thus the
leftmost derivation of e + a s a1is S = F+ S =a+ 5 =a+ F ~
S=>a+a+S=2a+a+F=a+a=xa

As in Example 7.10, we can prepare a table (Table 7.2) which enables us
to get a leftmost derivation for any input string. P, P,, P; and P, denote the
productions § - F+ 5. § - F = 8. § » Fand F — a. E denotes an error.

TABLE 7.2 Parsing Table for Example 7.11

A a + ® aa a+ ax

S E P E E E P, P,

E E P, E E E Py Py
+a ++ +x g w4 *
S E E E E E E
F E E E E E E

For example, if the leftmost variable in a sentential form is F and the next
two symbols to be processed are a =, then we apply Py, i.e. F — a. When we
encounter = g as the next two symbols, an error is indicated in the table and
so the input string is not in L(G).

A grammar G having the property (by looking ahead for k symbols we
derive a given input string in L(G)), is called an LL(k) grammar. The grammar
given in Example 7.11 is an LI(2) grammar.

254 HE Theory of Computer Science

In Examples 7.10 and 7.11 for getting a leftmost derivation, one
production among several choices was obtained by look ahead for & symbols.
This kind of nondeterminism cannot be resolved in some grammars even by
looking ahead.

This is the case when a grammar has two A-productions of the foorm A —
off and A — oy By a technique called ‘left factoring”, we resolve this
nondeterminism. Another troublesome phenomenon in a context-free grammar
which creates a problem is called left recursion. A variable A is called left
recursive if there is an A-production of the form A — Ac. Such a production
can cause a top-down parser into an infinite loop. Left factoring and technique
for avoiding left recursion are provided in Theorems 7.6 and 7.7.

Theorem 7.6 Let G be a context-free grammar having two A-productions of
the foom A — of and A — oy If A —» off and A — oy are replaced by
A — 0A A — Band A” - v where A" is a new variable then the resulting
grammar is equivalent to G.

Proof The equivalence can be proved by showing that the effect of applying
A — afiand A — oyin a derivation can be realised by applying A — oA’
A" — fand A” — yand vice versa.

Note: The technigue of avoiding nondeterminism using Theorem 7.6 is
called left factoring.

Theorem 7.7 Tet G be a context-free grammar. Let the set of all

A-productions be {4 — Aoy, ..., A = Aa,. A > Bi. ... A = B} Then
the grammar G’ obtained by introducing a new variable A” and replacing all
A-productions in Gby A — A ... A—> A A 5 A . LA - oA

and A" — A is equivalent to G.
Proof Similar to proof of Lemma 6.3.

Theorems 7.6 and 7.7 are useful to construct a top-down parser only for
certain context-free grammars and not for all context-free grammars. We
summarize our discussion as follows:

Construction of Top-Down Parser

Step 1 Eliminate left recursion in G by repeatedly applying Theorem 7.7 to
all left recursive variables.

Step 2 Apply Theorem 7.6 to get left factoring wherever necessary.

Step 3 If the resulting grammar 1s LL(k) for some natural number £, apply
top-down parsing using the technigues explained in Examples 7.10 and 7.11.

EXAMPLE 7.12

Consider the language consisting of all arithmetic expressions involving +,
(and) over the variables x1 and x2. This language is generated by a grammar

Chapter 7: Pushdown Automata 2 255

G=(T F. E} X, P, E), where £ = {x. 1. 2. +, %, (,)} and P consists of

E—-E~+T F— (E)
E—>T F— xl
T—>TsxF F— x2
T— F

Let us construct a top-down parser for L(G).

Step 1 We eliminate left recursion by applying Theorem 7.7 to the left
recursive variables £ and T. We replace E — E+ Tand E —» T by E — TE’,
E' — + TE and E' — A (£’ is a new variable). Similarly, T = T = F and
T — F are replaced by T — FT'. T — « FT" and T" — A. The resulting
equivalent grammar is

G, =({T. F E T.E} X P.E). where P’ consists of

E -~ TE' T— A

E"— +TE’ F — (E)
E'— A F— x]

T— FT’ F— 212

T~ =« FT’

Step 2 We apply Theorem 7.6 for left factoring to £ — x1 and F' — x2 to
get new productions F - xN > N = l and N — 2.
The resulting equivalent grammar is

G~=(UT. F. E. T, EY. 2, P”. E) where P” consists of

PrE = TE Pe: T" = A
P EY — +TE’ P, F = (E)
Py E' > A Py F —xN
P T —>FT Py N — 1
Ps: T — = FT’ Pyg: N -2

Step 3 The grammar (- obtained in step 2 is an LL(1) grammar. The
parsing table is given in Table 7.3.

TABLE 7.3 Parsing Table for Example 7.12

A X i 2 + ()
E E P, E E E E P E
T E Py E E E E Py E
F E Ps E E E E Py E
T Pe E E E E Ps E Ps
E’ Ps E E E P £ E Ps
N £ E Pe P E E E E

256 & Theory of Computer Science

7.4.2 ToOP-DOWN PARSING USING DETERMINISTIC pda’s

We have seen that pda’s are the accepting devices for context-free languages.
Theorem 7.3 gives us a method of constructing a pda accepting a given context-
free language by empty store. In certain cases the construction can be modified
in such a way that a leftmost derivation of a given input string can be obtained
while testing to know whether the given string is accepted by the pda. This
is the case when the given grammar is LL(1). We illustrate this by
constructing a (deterministic) pda accepting the language given in
Example 7.10 and a leftmost derivation of a given input string using the pda.

EXAMPLE 7.13

For the grammar given in Example 7.10, construct a deterministic pda
accepting L(G) and a leftmost derivaiton of abbab.
Solution

We construct a pda accepting L(G)S ($ is a symbol indicating the end of the
input string). This is done by using Theorem 7.3. The transitions are

5(g. A. &)= {(g. D)]A > o is in P}
6(g. r, n={(g. A} for every rin X

This pda is not deterministic as we have two S-productions, two
A-productions. etc. In Example 7.10 we resolved the nondeterminism by
looking ahead for one more symbol in the input string to be processed. In the
construction of pda this can be achieved by changing the state from ¢ to g,
on reading «. When the pda is in state ¢, and the current symbol is § we
choose the transition resulting in (g, ¢AB). Now the deterministic pda
accepting L{G)$ by null store is

A=Up. ¢ Gu gp}- {a. b, S} {S. A. B a, b. Zy}, 6. p, Zy. 9)

where & is defined by the following rules:
R, : 0(p. A, Zg) = (g. 5)

R, : 6(q, a. A) = (g, A)

Ry : 0(qp A @ = (q. e

Ryt 0(q. b A) = (gp N)

Rs : 8(q,. A. b) = (q. e)

Re @ 8(g, A, S) = (g, aAB)

Ryt 8(qp A S) = (g, BBA)

Ry @ 6(q,. A A) = (g, @)

Ry @ 6(qp A A) = (g bS)

Chapter 7: Pushdown Automata B 257

R1O : 5(‘]415 1\7 B) = (Qm (lS)
Ry @ 8(gp- A, B)= (qp. b)
Ry : 6(g. $. Zy) = (q. A)

Here R, changes the initial ID (p, w, Z) into (g, w, SZ). R, and R, are for
remembering the next symbol. R;—R; | are simulating the productions. R; and R;
are for matching the current input symbol and the topmost symbol on PDS and
for erasing it (in PDS). Finally, R;> is a move for erasing Z and making the
PDS empty when the last symbol $ of the input string is read.

To get a leftmost derivation for an input string w, apply the unique
transition given by R; to Rj,. When we apply Ry to Ry;, we are using a
corresponding production. By recording these productions we can test whether
w € L(G) and get a leftmost derivation. The parsing for the input string
abbbab is given m Table 7.4.

The last column of Table 7.4 gives us a leftmost derivation of abbbab. It
is § = aAB = abSB = abbBAB = abbbAB = abbbaB = abbbab.

st
2

TABLE 7.4 Top-down Parsing for w of Example 7.13

Step State Unread input Pushdown stack Transition Production
used applied

1 abbbab$ 2 —_ —

2 g abbbab$ Sz, R,

3 ol bbbab$ SZ, R,

4 g, bbbab$ aABZ, Rs S — aAB
5 bbbab$ ABZ, R

8 o bbab$ ABZ; R4

7 95 bbab$ bSBZ, Rq A — bS
8 q bbab$s SBZ, Rs

9 g bab$ SBZ, R,

10 Gs bab$ bBABZ, R+ S — bBA
11 g bab$ BABZ, Rs

12 Js ab$ BABZ, R4

13 Qs ab$ bABZ, Ry B - b
14 g abs ABZ, Rs

15 gs b$ ABZ; R,

16 e b$ aBZ, R A>a
17 q b3 BZ, Ry

18 Qs $ BZ, Ry

19 gs 3 bZ, Ry B —-b
3 q $ Zg Rs

21 q A A Ri

258 & Theory of Compurer Science

7.4.3 BOTTOM-UP PARSING

In bottom-up parsing we build the derivation tree from the given input siring
to the top. (the root with label S). For certain classes of grammars, called weak
precedence grammars, we can construct a deterministic pda which acts as a
bottom-up parser. We illustrate the method by constructing the parser for the
grammar given in Example 7.12.

In bottom-up parsing we have to reverse the productions to get § finally.
This suggests the following moves for a pda actng as bottom-up parser.

(i) 8(p. A. o) = {(P. A)|there exists a production A — o}

(ity 8(p, 0. A) = {{(p. o} for all ¢ in Z.

Using (i) we replace o' on the basis by A when A — « is a production.
The input symbol ¢ is moved onto the stack using (ii). For acceptability, we
require some moves when the PDS has § or Z; on the top.

As in top-down parsing we construct the pda accepting L(G)$. Here we
will have two types of operations, namely shifting and reducing. By shifting
we mean pushing the input symbol onto the stack (moves given by (i1)). By
reducing we mean replacing o by A when A — « is a production in G
{moves given by (i)).

At every step we have (i) to decide whether to shift or to reduce (iij 10
choose the prefix of the string on PDS for reducing, once we have decided to
reduce. For (i) we use a relation P called a precedence relation. If (a, b) € P
where « is the topmost symbol on PDS and b is the input symbol then we
reduce. Otherwise we shift b onto the stack. Regarding (ii), we choose the
longest prefix of the string on the PDS of the form ¢ 1o be reduced to A (when
A — ¢ 18 a production).

We illustrate the method using the grammar given in Example 7.12.

EXAMPLE 7.14

Construct a bottom-up parser for the language L(G)S. where G is the grammar
given in Example 7.12.

Here the productions are £ - £+ T. E > T.T —- T F, T — F,
F = (E), F - xl and F — x2. Using these productions, we can construct
the precedence relation P. It is given in Table 7.5. If (@, b) is in P, then we
have a tick mark “v in the (¢, b) cell of the table. Using Table 7.5 we can
decide the moves. For example, if the stack symbol is F and the next input
symbol is =, then we apply reduction. If the stack symbol is E, then any input
symbol is pushed onto the stack.

Chapter 7: Pushdown Automata 2 259

TABLE 7.5 The Precedence Relation for Example 7.14.

Stack symbol/ X () 1 2 + & 3
Input symbol

Zy

Ly

(

) v v v v
1 v v v v
2 v v v v
E

T y S, v
F N v v

Using the precedence relation and the moves given at the beginning of this
section we can construct a deterministic pda. As in the construction of top-down
parser. when we look ahead for one symbol we ‘remember’ it by changing state.

The deterministic pda which acts as a bottom-up parser is

A=(Q. 2. T.6.p.Zy. 0)
where
=X u s} 0= {ptuips; o€ X}

I'= {E T, F} Uor U {Z{), S}

it

and O is given by the following rules:

R, : 8(p. 0. A) = (p. A)

R- : 8(ps. A a) = (p, oa) for all (a. ©) ¢ P

Ry 1 0(po. A, T + E) = (po. Ey when (T, 0) € P

R, : 8(ps. A, Ta) = (pg, Eay when (T, o) € Pand a € T — {+}
R: : 8(pg. A. F+T) = (p,. T) when (F. 6) € P

Re @ O(ps. A, Fa) = (ps, Ta) when (F. 0) € Pand a € T — {5}
R- : d(ps- A, EC) = (py. Fy when (), o) € P

Ry @ 8(ps. A Iv) = (p,. F) when (1, 0) € P

Ro @ O(ps. A, 2x) = {ps F) when 2. 0) € P

Riy: 8(ps. A, E) = (ps. A)

Riy 6(pse A Zy) = (ps. A)

As A is deterministic, we have dropped parentheses on the R.H.S. of
Ry - Ry;. Using the pda A. we can get a bottom-up parsing for any input string
w. The bottom-up parsing for x1 + (x2) is given in Table 7.6.

260 & Theory of Computer Science

Table 7.6 Bottom-up Parsing for xI + (x2)

Production

Step State Unread Pushdown Rule
input stack used applied

1 p x o+ (x2) Zy C—

2 o, |+ (x2) Zs R

3 p 1+ (x2) xZo R,

4 Pi + (x2) xZg R

5) + (x2) 1xZ R,

6 Ds + {(x2) 1xZ, R,

7 De + (x2) FZy Rs F — xt
8 I + (x2) TZq Rs TS F
9 P+ + {x2) EZy R4 E—T
10 p (x2) +EZ, R

11 o x2) +EZ, R

12 fel x2) (+EZ, R

13 P, 2) (*EZ, Ry

14 p 2) x(+EZy R

15 oy) Y(+EZy Ry

16 p) 2v(+EZ, R,

17 P, $ 2+E£2Z, R,

18 Jol S F(+EZ, Rs F - x2
19 o) 5 T(+EZ, Rs T F
20 fel 3 E(+EZ, R4 E—>T
21 p $ VE(+EZ, R

22 Ds A VE(+EZ, R,

23 Ds A F+EZ, R, F - (B)
24 Ps A T+EZ, Rs T F
25 Ps A EZ; R E— E+T
28 Ps A Zy Ry

27 Ps A A Ry

By backiracking the productions that we applied, we get a rightmost
derivation E 2 E+ T = E+ F=E+(E)=E+ (D= E+(F)= E+ (x2)
=S5 T+ (2) = F+ (x2) = a0 + (x2).

In Chapter 8 we will discuss how LR(k) grammars are amenable for

parsing.

7.5 SUPPLEMENTARY EXAMPLES

EXAMPLE 7.15

Construct a pda accepting all palindromes over {a. b}.

Solution

Let L = {we {a b}*|w= w!}. Before constructing the required pda, note
that L consists of palindromes of odd or even length. If w in L is of odd

Chapter 7: Pushdown Automata B 261

length, there is a middle symbol which need not be compared with any other
symbol. If w in L 1s of even length, the rightmost symbol of the first half is
the same as the leftmost symbol of the second half. The key idea of the
construction is to store the symbols in the first half (or the symbols lying to
the left of the middle of the input string) and matching them with the symbols
in the second half (or the symbols to right of the middle of the input string).
It there is no matching. the machine halts.
We define the pda M as follows:

M= ({CIO 41 (]2}, {a, b}v {a, b? 20}9 57 4o- ZO: {C]:})
where & is defined by

0(qo. a. Zp) = {(qo. aZp). (q1- Zo)} (7.41)
0(q0. b, Zy) = {(qo. bZp), (a1 Zo)} (7.42)
8(qo. a. a)= {(go, aa), (g1, @)} (7.43)
6(go. b, @) = {(go, ba). (qi. @)} (7.44)
6(go. a. by = {(q0, ab), (q1, b)} (7.45)
8(go. b. b) = {{go- BD). (q1. D)} (7.46)
6(q0. A Zo) = {(q1- Zo)} (7.47)
6(qe. A @)= {(q1, @} (7.48)
o(gg. A b)Y = {(q). b)} (7.49)
6(qy, a. a)= {(q;. M)} (7.50)
8(gy. b. b)= {{q, M)} (7.51)
0(q1. A Zo) = {(g2 Zp)} (7.52)

Obviously, M is a nondeterministic pda. (7.41)—(7.46) give us two
choices. The first choice can be used for storing the input symbol without
changing the state. (7.47)—(7.49) are used for indicating that the first half of
the input string is over: there is change of state in this case. The second choice
of (7.41)—(7.46) is used when w is a palindrome of odd length and the middle
symbol of w is reached: in this case. we ignore the middle symbol and make
no change in PDS. (7.50) and (7.51) are used to match symbols of the input
string (second half) and cancel the symbol in PDS when they match. (7.52)
is used to move to the final state g» after reaching the bottom of PDS.

We can prove that L is accepted by M by final state. The reader can take
an odd palindrome and an even palindrome and check that the final state ¢»
is reached.

EXAMPLE 7.16

Construct a deterministic pda accepting L = {w € {a, b}* | the number of a’s
in w equals the number of b’s in w} by final state.

262 = Theory of Computer Science

Solution
We define a pda M as follows:
M = ({qy, q.}. {a. b}. {a. b. Zy}, 6. Go Zos {q1})
where 0 is defined by
0(qge, a. Zy) = {{q,. Zy)}
0(qo, b. Zo) = {(go. bZo)}

R N
Lh
g
e

n
(O]

0(gp. a. b)= {{gp- N} (7.55)
O(qo. b. b) = {{go. b))} (7.56)
o(qy. a. Zy) = {(q,. aZy)} (7.57)
0(qy. b. Zo) = {{qy. aZy)} (7.58)
O(qy. a. @) = {{q, aa)} (7.59)
8(qi. b @)= {(q;. N} (7.60)

The construction can be explained as follows:

If the pda M is in the final state ¢, it means it has seen more a’s than
b’s. On seeing the first a. M changes state (from g to ¢y) ((7.53)). Afterwards
it stores the g's in PDS without changing state ((7.57) and (7.59)). It stores
the initial » in PDS ({7.54)) and also the subsequent »’s ((7.56)). The pda
cancels a in the input string, with the first (topmost) b in PDS ((7.55)). If all
b’s are matched with stored a’s, and M sees the bottom of PDS, M moves
from ¢ to go ((7.58)). The »’s in the input string are cancelled on seeing a
in the PDS (7.60)).

M is deterministic since 9 is not defined for input A. The reader is advised
to check that ¢, is reached on seeing an input string w in L.

EXAMPLE 7.17
Construct a pda M accepting L = {a'b'c*|i = j or j = k} by final state.

Solution
We define pda M as follows:

M = (g0 gy, - qeb, {a. b ¢} {Zy, X}, 6 g0 Zos {915 g3))
where 0 is given by
O(qn. A Zo) = {(q1. Zo). (g2 Zo). (g3 Zo}} (7.61)
0(qy. ¢ Zy) = {(q1. Zy)} (7.62)
0(q> a. Zy) = {{q2, XZp)} (7.63)
8Mg-, a. X)= {{(g2. XX)} (7.64)
8(gr. by X) = (qs b. X) = {(qs M)} (7.65)

0lgs A Zy) = {(qr. Zy)} (7.66)

Chapter 7: Pushdown Automata 2 263

8(qs a. Zg) = {(gz Zo)} (7.67)
8(qs b. Zy) = {(gs. XZp)} (7.68)
8(ge. b. X) = {(gs. XX} (7.69)
8(gs. . X)= 6(qs- . X0 = {(ge. A} (1.70)
0(gs: A Zp) = {(ga. A} (7.71)

The states ¢y, g». ¢» stand for a0k, d'bct, dlbid respectively where
i>0,720. k=0 (7.61) indicates the initial guess. The three choices
correspond to the three cases.

(qo. . Zg) = (qo. A Zp) b= (g1, & Zo) |— (@1 A Zy)
by (7.61) and (7.62). As g, is a final state. ¢* € T(M).

The pda in state g» will not change state and stores «'s in the input string
as X's in PDS ((7.63) and (7.64)). On seeing the first b after many a's. M
changes Its state to ¢y and cancels X in PDS for subsequent b’s ((7.64)). If
it reaches the bottom of PDS. M goes back to ¢;. which is an accepting state
((7.76)). So M accepts a'b. Tt continuous to be in state g, on seeing c's
subsequently ((7.62)). So. M accepts a'bic".

For dealing with a'b/c’. M makes the initial guess using (7.61) and reaches
state ¢5. It simply reads a's without changing state or PDS ((7.67)).
M subsequently replaces b with X and changes to state gs. Afterwards M
goes on changing b's to X's ((7.09)). On seeing a ¢, M changes state.
Subsequent ¢’s are matched with X's (which correspond to »’s read earlier)
and X's in PDS are cancelled. On reaching the bottom of PDS, M reaches ¢,
a final state ((7.71)).

Thus. @, a'b'c*, a'be e I(My for i > 0, =2 0. k 2 0. Hence.
M = L.

EXAMPLE 7.18

Convert the grammar § — aSh|A. A — bSa|S|A to a pda that accepts the
same language by empty stack.

Solution
We construct a pda A as
A = {qg}. {a. b}. {8. A, a, b}. 6. ¢q. 5. @
where & is defined by the following rules
0(q. A. 5= {(g. aSh). (g. A)}
8(g. A. A= {(q, bSA). (q. S). (g. N}
. a. = {(g. M)}
0g. b. by = {{g. A)}
and A is the required pda.

264 E Theory of Computer Science

EXAMPLE 7.19

If A is a pda, then show that there is a one-state pda A, such that
N(A) = N(Ay).

Solution

By Theorem 7.4, we get a context-free grammar G such that L(G) = N(A).
Denote G by (Vy. X, P, S). By Theorem 7.3, we can get a one-state pda A,
given by

Al = ({Q}» 29 V\(y (- Z'ﬂ 65 Qw Ss ¢)
such that N(A)) = L(G).

SELF-TEST

Choose the correct answer to Questions 1-6.

1. If 8(q, a;. Z,) contains (¢.). then
(a) (q. ayar. Z\Z2) — (¢, ax BZy)
() (q. axay. Z\Z5) |— (¢ ayas BZ)
(©) (g, mar. Zo) = (¢, ar, Z;)

(d) (q. aja0, Z\Z) |— (g’ as. ZiZn)

2. In a deterministic pda. | 8(g. a. Z)] is
(a) equal to 1
(b) less than or equal to 1
{c) greater than 1
(d) greater than or equal to 1

3. In a deterministic pda:

(@) 6(g. a. 2) = § = &g. A, D) #
b) 8(g,a, 2y # § = Xg, A, Z) = §
(cy 8(g. A, Z)y = 0 = &g, a. Z) = @
(d) 6(g. A, Z)# 0= &g a. Z) = @

4. {d'V"|n =2 1} is accepted by a pda
(a) by null store and also by final state.
(b) by null store but not by final state.
(c) by final state but not by null store.
(d) by none of these.

{a"b""|n = 1} is accepted by

(a) a finite automaton

(b) a nondeterministic finite automaton
(c) a pda

(d) none of these.

w

Chapter 7: Pushdown Automata 2 265

6.

The intersection of a context-free language and a regular language is
(a) context-free

(b) regular but not context-free

(c) neither context-free nor regular.

(d) both regular and context-free.

Fill up the blanks:

7.

10.

7.1

7.3

~
in

7.6

In bottom-up parsing, we build the deviation from to

In LR(1) grammar, we can decide the production to be applied in the
next step by __ .

. w € T(A). where A is a pda if (qo. w. Zg) - .

w € N(A), where A is a pda if (gp. w, Zp) |~)

EXERCISES

If an initial ID of the pda A in Example 7.2 is (g. aacaa. Zy), what
is the ID after the processing of aacaa? If the input string is (i) abcba,
(i) abcb, (iii) acha, (iv) abac. (v) abab, will A process the entire
string? If so, what will be the final ID?

What is the ID that the pda A given in Example 7.5 reaches after
processing (1) @b, (i) @b, (i) &, (iv) &. (v) b’a’, (vi) ababab if
A starts with the initial ID?

Construct a pda accepting by empty store each of the following
languages.

(a) {dV"d"|m. n 2 1}

() {d'b™"|n 2 1}
(c) {d"b""{m. n 2 1}

(d) {d""\m > n 2 1}

Construct a pda accepting by final state each of the languages given in
Exercise 7.3.

Construct a context-free grammar generating each of the following
languages, and hence a pda accepting each of them by empty store.
(@) {d"V'|n 21} w {d"p"|m 2 1}

by {a"b"d"|m. n 21} U {d'"|n 2 1}

() {d"V""d"\m, n 2 1}

Let L = {a"b"| n < m}. Construct (i) a context-free grammar accepting
L, (ii) a pda accepting L by empty store. and (iii) a pda accepting L
by final state.

266

2 Theory of Computer Science

7.7

7.8

7.9

7.10

7.11

7.12

713

7.14

7.15

7.16

Do Exercise 7.6 by taking L to be the set of all strings over {a. b}
consisting of twice as many a’s as b's.

Construct a pda accepting the set of all even-length palindromes over
{a. b} by empty store.

Show that the set of all strings over {a, b} consisting of equal number
of a’s and b’s is accepted by a deterministic pda.

Apply the construction given in Theorem 7.4 to the pda M given in
Example 7.1 to get a context-free grammar G accepting N(M).

Apply the construction given in Theorem 7.4 to the pda obtained by
solving Exercise 7.4.

Show that {a'P"|n = 1} U {@"b”" | m = 1} cannot be accepted by a
1 P b
deterministic pda.

Show that a regular set accepted by a deterministic finite automaton
with n states is accepted to final state by a deterministic pda with n
states and one pushdown symbol. Deduce that every regular set is a
deterministic context-free language.

(A context-free language is deterministic if it is accepted by a determi-
nistic pda.)

Show that every regular set accepted by a finite automaton with n states
is accepted by a deterministic pda with one state and n pushdown
symbols.

If L is accepted by a deterministic pda A, then show that L is accepted
by deterministic pda A which never adds more than one symbol at a
time (ie. if 8(q. a. 2) = (¢". y). then | y] £ 2).

If L is accepted by a deterministic pda A, then show that L is accepted
by a deterministic pda A which always (i) removes the topmost symbol.
or (ii) does not change the topmost symbol, or (i) pushes a single
symbol above the topmost symbol.

LR(k) Grammars

In this chapter we study LR(k) grammars (a subclass of context-free grammars)
which play an important role in the study of programming languages and the
design of compilers. For example. a typical programming language such as
ALGOL has LR(1) parser.

8.1 LR(kl GRAMMARS

In Chapters 4 and 6 we were mainly interested in generating strings using
productions and in performing the membership test. In the design of
programming languages and compilers, it is essential to develop the parsing
techniques, i.e. techniques for obtaining the ‘reverse derivation” of a given
string in a context-free language. In other words, we require techniques to find
a derivation tree for a given sentence w in a context-free language.

To find a derivation tree for a given sentence w, we can start with w and
ieplace a substring, say w; of w, by a variable A if A — wy is a production. We
repeat the process until we get S. But this is more easily said than done, for at
every stage there may be several choices and we have to choose one among
them. If we make a wrong choice. we will not get S, and in this case we have
to backtrack and try some other subsiring. However, for a certain subclass of
context-free grammars, it is possible to carry out the process, i.e. getting the
derivation in the reverse order for a given string w in a deterministic way. LR(k)
grammars form one such subclass. Here, LR(k) stands for left-to-right scan of
the input string producing a rightmost derivation using the & symbol look-
ahead on the input string.

Before discussing the LR(k) grammars, we should note that although
parsing gives only the syntactical structure of a string, it is the first step in
understanding the ‘meaning’ of the sentence.

267

268 I Theory of Computer Science

Consider some sentential form offw of a context-free grammar G, where
o fe (Vyu X)* and w € I* Suppose we are interested in finding the
production applied in the last step of the derivation for ofiw. If A — S is a
production, it is likely that A — J is the production applied in the last step.
but we cannot definitely say that this is the case. If it is possible to assert that
A — [is the production applied in the last step by looking ahead for &
symbols (i.e. & symbols to the right of §in ofw), then G is called an LR(k)
grammar. The production A — [is called a handle production and f3 is called
a handle.

We write & = fif Bis derived from « by a right-most derivation. Before
R

giving the rigorous definition of an LR(k) grammar, let us consider a grammar
for which parsing is possible by looking ahead for one symbol.

EXAMPLE 8.1

Let Gbe S — AB. A - adAb, A > A, B — Bb, B — b. It is easy to see
that L(G) = {«"D"|n > m = 1}. Some sentential forms of G obtained by
right-most derivations are AB. ABB*. a"ARTH a"B"Y where k 2 1. AB
appears as the R.H.S. of § — AB. So AB may be a handle for AB or ABbB,
if we apply the handle to AB, we get § ? AB. If we apply the handle to ABB,

we get SB* = ABP'. But Sb* is not a sentential form. So to decide whether
AB can be a handle, we have to scan the symbol to the right of AB. If it is
A, then AB serves as a handle. If the next symbol is b, AB cannot be a handle.
So only by looking ahead for one symbol we are able to decide whether AB
is a handle. Let us consider a"b”. As we scan from left to right. we see that
the handle production A — A may be applied. A can serve as a handle only
when it is taken between the rightmost @ and the leftmost ». In this case we
get a“Ab* ? a'b® and we are able to decide that A — A is a handle

production only by looking ahead of one symbol (to the right of A). If A is
taken between two «'s. we get aAab’ ? a~b’. But ¢Aab’ is not a sentential

form. Similarly. we can see that the correct handle production can be
determined by looking ahead of one symbol for various sentential forms.

A rigorous definition of an LR(k) grammar is now given.
Definition 8.1 Let G = (V. X, P, §) be a context-free grammar in which
S &S only when 7 = 0. G is an LR(k) grammar (k = 0) if

() S Rz aAw => ofw, where ¢, Be Vi.w e T*,

R
(i) § ? oA —? o'f'w’, where o, B’ € V¥ w e T* and
(ii1) the first [af| + & symbols of ofw and o’ f'w’ coincide. Then o = o,
A=A, B=p.

Remarks 1. If offw or o’f'w’ have less than |of] + k symbols. we add
some ‘blank symbols’. say S. on the right and compare.

Chapter 8: LR(k) Grammars H 269

2. Tt is easy to see how we can get the derivation tree for a given
terruinal string. For getting the derivation tree. we want to get the derivation
“in the reverse order”. Suppose a sentential form ¢fw is encountered. We can
get a right-most derivation of fw in the following way: If A — [is a
production. then we have to decide whether A — 3 is used in the last step of
a right-most derivative of ¢ffw. On seeing k symbols beyond f in offw, we
are able to decide that A — f3 is the required production in the first step. For,
if o'f'w’ is another sentential form satisfying condition (iii), then we can
apply A” — " in the last step of a right-most derivation of o’'w’. But by
definition it follows that A = A", § = f7and o = &’. So A — [is the only
possible production we can apply and we are able to decide this after “seeing’
the k& symbols beyond 3. We repeat the process until we get S.

3. If G is an LR(k) grammar, it is an LR(X") grammar for all k"> k.

'EXAMPLE 8.2

Let G be the grammar S — ad, A — Abb|b. Show that G is an LR(0)
grammar.

Solution

It is easy to see that any element in L(G) is of the form ab-"*!. The sentential
forms of G. are aA. aAb~". ab™**'. Let us find ourt the last production applied
in the derivation of ab™"'. As aA, Abb, b are the possible right-hand sides
of productions. only A — b can be the last production: we are able to decide
this without looking at anv symbol to the right of b Similarly. the last
productions for aAb™ and aA are A — Abb and S — aA, respectively. (We
are able to say that A — Abb is the last production for any sentential form
aAb” for all n 2 1.) Thus. G is an LR(O) grammar.

EXAMPLE 8.3

Consider the grammar G given in Example 8.1. Show that G is an LR(})
grammar. but not an LR(0) grammar. Also. find the derivation tree for a-b*.

Solution

In Example 8.1 we have shown that for sentential forms of G we can determine
the last step of a right-most derivation by looking ahead of one symbol. So G
is LR(1). We have also seen that § — AB is a handle production for the
sentential form AB, but not for ABP*. In other words. the handle production
cannot be determined without looking ahead. So G is not LR(0).

To get the derivation tree for a“b*, we scan «~b* from left to right. After
scanning a. we look ahead. If the next symbol is a, we continue to scan. If
the next symbol is b. we decide that A — A 1s the required handle production.
Thus the last step of the right-most derivation of a b is

aAb* ? aAb?

270 & Theory of Computer Science

To get the last step of a"Ab*, we scan a"Ab* from left to right. aAb is a
possible handle. We are able to decide that this is the right handle without
looking ahead and so we get

aAbb® = aAb*
R
Once again using the handle aAb, we obtain
Ab® = aAbb*
R

To get the last step of the rightmost derivation of Ab”, we scan AD®. A possible
handle production is 8 — 5. We also note that this handle production can be
applied to the first b we encounter, but not to the last b. So, we get
ABb = Ab”.

For ABb, a possible a-handle is Bb. Hence, we get AB ? ABb. Finally,

we obtain S ?AB. Thus we have the following derivations:
a-Ab* ? a-Ab? by looking ahead of one symbol
aAbb” ? a-Ab? by not looking ahead of any symbol
Ab° 1? aAbb’ by not looking ahead of any symbol
ABb ?Ab3 by not looking ahead of any symbol
AB ?ABb by not looking ahead of any symbol
h) ? AB by looking ahead of one symbol

. . i . . .
The derivation tree for «'b* is as shown in Fig. 8.1.

Fig. 8.1 Derivation tree for a?h*.

8.2 PROPERTIES OF LR(k) GRAMMARS

In this section we give some important properties of LR(k) grammars which
are useful for parsing and other applications.

Chapter 8: LR(k) Grammars B 271

Recall the definition of an ambiguous grammar. A grammar G is
ambiguous if there exists w € L(G) which has two derivation trees. The next
theorem gives the relation between LR(k) grammars and unambiguous
grammars.

Property 1 Every LR(k) grammar ¢ is unambiguous.

Proof We have to show that for any x € £*, there exists a unique right-most
derivation. Suppose we have two rightmost derivations for x, namely

S = oAw — affw = x (8.1)
R R

S = AW = dbw = x (8.2)
R R

As offw = o/ '/, from the definition it follows that o = o, A = A" and
B =" As afw = o’f'w, we get w=w’, and so cAw = o’A’w". Hence the
last step in the derivations (8.1) and (8.2) is the same. Repeating the arguments
for the other sentential forms derived in the course of (8.1) and (8.2), we can
show that (8.1) is the same as (8.2). Therefore. G is unambiguous. |

We have seen that the deterministic and the nondeterministic finite
automata behave in the same way in so far as acceptability of languages is
concerned. The same is the case with Turing machines. But the behaviour of
deterministic and nondeterministic pushdown automata is different. In
Chapter 7 we have proved “that any pushdown automaton accepts a context-
free language and for any context-free language L, we can construct a
pushdown automaton accepting L. The following property gives the relation
between LR(k) grammars and pushdown automata.

Property 2 If G is an LR(k) grammar, there exists a deterministic pushdown
automaton A accepting L(G).

Property 3 If A is a deterministic pushdown automaton A, there exists an
LR(1) grammar G such that L(G) = N(A).

Property 4 1If G is an LR{k) grammar, where k& > 1, then there exists an
equivalent grammar (; which is LR(1). In so far as languages are concerned.
it 1s enough to study the languages generated by LR(0) grammars and LR(1)
grammars.

Definition 8.2 A context-free language is said to be deterministic if it is
accepted by a deterministic pushdown automaton.

Property 5 The class of deterministic languages is a proper subclass of the
class of context-free languages.
The class of deterministic languages can be denoted by £ .eq.

Property 6 .. is closed under complementation but not under union and
intersection.

The following definition is useful in characterizing the languages accepted
by an LR(0) grammar.

272 B Theory of Computer Science

Definition 8.3 A context-free language has prefix property if no proper
prefix of strings of L belongs to L.

Property 7 A context-free language is generated by an LR{0) grammar if
and only if it is accepted by a deterministic pushdown automaton and has
prefix property.

Property 8 There is an algorithm to decide whether a given context-free
grammar is LR(k) for a given natural number k.

8.3 CLOSURE PROPERTIES OF LANGUAGES

We discussed closure properties under union, concatenation, and so on in
Chapter 4. In this section we will discuss closure properties under intersection,
complementation, etc. Recall that 2, 7., 4. £4,; are the families of type O

languages. context-sensitive languages. context-free languages and regular
languages, respectively.

Property 1 Each of the classes .4, s . 45 4y 18 closed ander union,

concatenation, closure and transpose operations (Theorems 4.5-4.7).

Property 2 7, is closed under intersection and complementation (Theorems
5.7 and 5.8).

Property 3 4 is not closed under intersection and complementation.

We establish property 3 by a counter-example. We have already seen that
L= {d'b'¢|nz1.1>0} and L, = {&b"c"|n = 1, j = 0} are context-free
languages (Examples 4.8 and 4.9). L; n L. = {"V"¢" | n 2 1}. In Example 6.18.
we have shown that {d'b"¢"|n 2 1} is not context-free. Thus, 7 is not
closed under intersection.

Using DeMorgan’'s law, we can write L; n Ly = (L] W LS. We have
proved in Chapter 4 that 7 is closed under union. If 7, were closed under
complementation. then L; »n L- turns out to be context-free which is not true.
Hence. 7, is not closed under complementation.

8.4 SUPPLEMENTARY EXAMPLES

EXAMPLE 8.4

Show that the grammar S — aAc, A — Abb | b is an LR(0) grammar.

Solution

It is easy to see that L(G) = {ab™"'¢ | n = 0}. The sentential forms of G are
aAc, aAb™'c, ab™""'c. We consider the last production applied in the derivation
of ab™"*'c. As aAc, Abb and b are the possible right-hand sides of productions,

Chapter 8: LR(k) Grammars B 273

only A — b can be the last production in the rightmost derivation of ab™*'c.
(We do not have aAc and Abb as substrings of ab”'¢). Similacly the last
productions for ¢Ac and aAb™c are S — aAc and A — Abb respectively.
Hence G is an LR(0) grammar.

'EXAMPLE 8.5

Show that § — aAb, A — cAc|c is not LR(k) for any natural number k.

Solution

It is easy to see that
LG) = {ac™™'b|n 2 0}

Consider accch € L(G). The last production is A — ¢. But we can apply this
handle only by knowing the entire string. This can be applied to the middle ¢
but this is known only after looking at two symbols beyond the ¢ which
replaces A. Continuing this argument, we can decide the handle of ac”'b by
onlv looking at n + 1 symbols beyond the ¢ which replaces A. So it is not
LR¢k) for any k.

EXAMPLE 8.6

Give an example of a language which can be generated by an LR(k) grammar
for some k and also by a grammar that is not LR(k) for any k.

Solution

Consider {ac™™'b|n = 0}. This is generated by the grammar S — aAb,
A — cAc|c which is not LR(k) for any k.

This language can also be generated by the grammar S — aAb,
A — Acc|c. This is LR(0). (This grammar is similar to the grammar in
Example 8.4.)

SELF-TEST

Choose the correct answer to Questions 1-5:

1. An LR(%) grammar has to be
(a) a type O grammar
(b) a type 1 grammar
(c) a type 2 grammar
(d) none of these.

2. An LR{k) grammar is

(a) always unambiguous

(b) always ambiguous

(c) need not be unambiguous
(d) none of these.

274

E Theory of Computer Science

3.

8.1

8.2
8.3
8.4

8.6
8.7

A handle is

(a) a string of variables and terminals

(b) a string of variables

(c) a string of terminals

(d) a production.

The automaton corresponding to an LR(k) grammar is
(a) a deterministic finite automaton

(b) a nondeterministic finite automaton

(¢) a deterministic PDA

(d) a nondeterministic PDA.

Zyeq 18 closed under
(a) union

(b) complementation
(c) intersection

(d) none of these.

EXERCISES

Show that the grammar S — aAb, A — aAb|a is an LR(1) or is it an
LR(0)?

Show that the grammar § — 042, A — 1Al, A — 1 is not an LR(0).
IsS 5 AB, S — aA, A = aA, A - a, B — a an LR(k) for some k?

Show that {@"b"c"|m, n 2 1} U {a"b" | m, n 2 1} cannot be generated
by an LR(k) grammar for any k.

Are the following statements true? (a) If G is unambiguous, it is LR(k)
tor some k. (b) If G is unambiguous. it is LR(k) for every k. Justify your
answer.

Is S —> C|D, C —> aC|b, D — aD|an LR(0)?

For a production A — f of a context-free grammar G and w in T*$*
($ is a symbol not in V, U X), define R, (w) to be the set of all strings
of the form ofiw such that A — f is a handle for affww’ for some w’

in L* $* and S$ = cAww’ ? ofpww’. (In other words, a string offw is
R

in R (w) if we get a penultimate step of a rightmost derivation of affww’
for some w’.) Show that R, (w) is a regular set.

[Hint: Define G'= (V, Vy U X, P’, §’), where
Vi={[A w]|A € Vy we I*$F and |w]| = &}
S =[S, $%]

Chapter 8: LR(k) Grammars B 275

8.8

8.9

Also show that each production in P induces a production in P’ in the
following manner:

(@) If A > x 1s in P, where x € Z%*, then [A, w] — xw is included in
P

‘/N) X/+l PN me’ % VV,VV” for

k. then [A, w] — B, ... B,

b IfA - XX,... X, isinP. X
some w’, w” in Z*$* with |[w']
(B, w’] is included in P’

As the productions in P’ have either a terminal string or a terminal string

followed by a variable on RH.S., G’ can be reduced to an equivalent

regular grammar. Use the principle of induction to show that

m

[S. $1 = [A. w] if and only if for some w'S$" = aww’

This will establish L(G") = Ry(w).

Prove that a context-free grammar G is an LR(k) if and only if the
following holds: A string y in Ry(w) corresponding to a production
A, — [is a substring of some element § in Ry (w") corresponding to a
production A, — [~ implies y = 6, A, = A, f, = B

[Hinr: The proof follows from the definition of LR(k) grammars.]
Prove Property 2 of Section 8.2.

Solution We give an outline of the construction of the required dpda
A. A accepts a string w if S$* remains in the stack after the processing
of w. For this purpose. A has to simulate the reverse derivation of w.
This is achieved by finding suitable handles. R,(w)'s are defined
precisely for this purpose (refer to Exercise 8.7). As R.(w)’s are regular.
there exist deterministic finite automata M (w) corresponding to Ry (w).

For our deterministic pda A to contain the information regarding the
finite automata. the pushdown store of A is required to have an additional
track. In the first track, symbols from V, U Z are written or erased. In the
additional track, the information regarding M (w)’s is stored in the form
of maps. The map N, gives the states of finite automata M (w) after the
processing of a string « for all productions in G and strings w in Z*$#*
of length k. The existence of a suitable handle is indicated by a final state
of M (w) (in the second track).

We can describe the way A acts as follows: A is capable of reading
k+ 1 symbols on PDS, where [is the length of the longest RH.S. of
productions of G. (This can be achieved by modifying the finite control.)
A reads the top m symbols on track 1 for some m < k + I. The second track
is suitably manipulated. For example. if X, ... X,, is in track 1, then
track 2 stores the maps Nx;Nyx> - .- Ny . x If a suitable handle is
found, then a sentential form is obtained by replacing the R.H.S. of the

276 B Theory of Computer Science

handle of its L.H.S. in the given string on track 1. As G is LR(k), this
can be done in almost one way.

The above process is repeated until it is no longer possible. If m
symbols are not sufficient to carry out the process. more symbols are read
and placed on the stack (track 1).

If stack 1 has S$* at a particular stage, A accepts the corresponding
string. A is the required dpda accepting L(G).

Turing Machines
“and Linear Bounded
_ Automata

In the early 1930s. mathematicians were trying to define effective computation.
Alan Turing in 1936, Alanzo Church in 1933, S.C. Kleene in 1935, Schonfinkel
in 1965 gave various models using the concept of Turing machines, A-calculus,
combinatory logic, post-systems and y-recursive functions. It is interesting to
note that these were formulated much before the electro-mechanical/electronic
computers were devised. Although these formalisms, describing effective
computations, are dissimilar, they turn to be equivalent.

Among these formalisms, the Turing’s formulation is accepted as a model
of algorithm or computation. The Church-Turing thesis states that any
algorithmic procedure that can be carried out by human beings/computer can be
carried out by a Turing machine. It has been universally accepted by computer
scientists that the Turing machine provides an ideal theoretical model of a
computer.

Turing machines are useful in several ways. As an automaton, the Turing
machine is the most general model. It accepts type-0 languages. It can also be
used for computing functions. It turns out to be a mathematical model of partial
recursive functions. Turing machines are also used for determining the un-
decidability of certain languages and measuring the space and time complexity
of problems. These are the topics of discussion in this chapter and some of the
subsequent chapters.

For formalizing computability, Turing assumed that, while computing,
a person writes symbols on a one-dimensional paper (instead of a two-
dimensional paper as is usually done) which can be viewed as a tape divided
into cells.

One scans the cells one at a time and usually performs one of the three
simple operations, namely (i) writing a new symbol in the cell being currently

277

278 B Theory of Computer Science

scanned, (i1) moving to the cell left of the present cell. and (iii) moving to the
cell right of the present cell. With these observations in mind, Turing proposed
his "computing machine.’

9.1 TURING MACHINE MODEL

The Turing machine can be thought of as finite control connected to a R/W
(read/write) head. It has one tape which is divided into a number of cells. The
block diagram of the basic model for the Turing machine is given in Fig. 9.1.

R/W head Tape divided into cells
and of infinite length

Finite control

Fig. 9.1 Turing machine model.

Each cell can store only one symbol. The input to and the output from the finite
state automaton are effected by the R/W head which can examine one cell at
a time. In one move, the machine examines the present symbol under the
R/W head on the tape and the present state of an automaton to determine

(1) anew symbol to be written on the tape in the cell under the R/W head,
(i1) a motion of the R/W head along the tape: either the head moves one
cell left (L). or one cell right (R),
(ii1) the next state of the automaton, and
(iv) whether to halt or not.

The above model can be rigorously defined as follows:
Definition 9.1 A Turing machine M is a 7-tuple, namely (Q, X, T", 6, gy. b. F),
where

Q is a finite nonempty set of states,
I" is a finite nonempty set of tape symbols,

[

3. b e I is the blank,

4. X is a nonempty set of input symbols and is a subset of ' and b ¢ X.

5. 6 is the transition function mapping (g, x) onto (¢, v, D) where D
denotes the direction of movement of R/W head: D = L or R according
as the movement is to the left or right.

6. qg € 1s the initial state, and

0
7. F ¢ Q is the set of final states.

Chapter 9: Turing Machines and Linear Bounded Automata 2 279

Notes: (1) The acceptability of a string is decided by the reachability from the
initial state to some final state. So the final states are also called the accepting
states.

(2) & may not be defined for some elements of @ x T'.

9.2 REPRESENTATION OF TURING MACHINES

We can describe a Turing machine employing (i) instantaneous descriptions
using move-relations, (ii) transition table. and (iii) transition diagram (fransition
graph).

9.2.1 REPRESENTATION BY INSTANTANEOUS DESCRIPTIONS

‘Snapshots” of a Turing machine in action can be used to describe a Turing
machine. These give ‘instantaneous descriptions’ of a Turing machine. We have
defined instantaneous descriptions of a pda in terms of the current state. the
input string to be processed, and the topmost symbol of the pushdown store.
But the input string to be processed is not sufficient to be defined as the D of
a Turing machine, for the R/W head can move to the left as well. So an ID of a
Turing machine is defined in terms of the entire input string and the current
state.

Definition 9.2 An ID of a Turing machine M is a string afy. where [is the
present state of M, the entire input string is split as ¢y the first symbol of yis
the current symbol @ under the R/W head and y has all the subsequent symbols
of the input string, and the string o is the substring of the input string formed
by all the symbols to the left of a.

EXAMPLE 9.1

A snapshot of Turing machine is shown in Fig. 9.2. Obtain the instantaneous
description.

g b |aslai|alajla|ay|ajias|ax b|b ?

R/W head

State
a3

Fig. 9.2 A snapshot of Turing machine.

Solution

The present symbol under the R/W head is a,. The present state is g3. So a
is written to the right of g;. The nonblank symbols to the left of «; form the
string ayaa,a,a-a-, which is written to the left of ¢;. The sequence of nonblank
symbols to the right of a, is asa-. Thus the ID is as given in Fig. 9.3.

280 &2 Theory of Computer Science

a4a4a,8,8,8y
Left sequence / \Rght sequence
Present Symbol under
state R/W head

Fig. 9.3 Representation of ID.

Notes: (1) For constructing the ID, we simply insert the current state in the
input string to the left of the symbol under the R/W head.

(2) We observe that the blank symbol may occur as part of the left or right
substring.

Moves in a T™M

As in the case of pushdown automata, d(g, x) induces a change in ID of the
Turing machine. We call this change in ID a move.

Suppose 8(g, x;) = {(p, v, L). The input string to be processed is xx> . . . X,
and the present symbol under the R/W head is x;. So the ID before processing
X; 1S

After processing x;, the resulting ID is
XUoeo X2 PXadXey o0 Xy
This change of ID is represented by
XiXa oo XM (]Xi e .\'n "-— Xi .. x,--: pr_l yxl-H [N x,,
If i = 1, the resulting ID is py %2 %5 . .. X,
If 8(g. x;) = {p, y. R), then the change of ID is represented by
XI.\'Z . ,\'[‘_1([.\‘I' e Xy l—— XiXa oL x,;lypxiﬂ PR x,,
If i = n, the resulting ID is xix> ... x,_; v p b.
We can denote an ID by /; for some j. /; |— 1, defines a relation among IDs.
So the symbol = denotes the reflexive-transitive closure of the relation |—.
In particular, [; = [;. Also, if I} = [, then we can split this as /) |— I, |—
Lit— ... =1, for some IDs, I, ..., I,;.

Note: The description of moves by IDs is very much useful to represent the
processing of input strings.

9.2.2 REPRESENTATION BY TRANSITION TABLE

We give the definition of & in the form of a table called the transition table. If
0(q, a) = (¥, a. B), we write offy under the o-column and in the g-row. So if

Chapter 9: Turing Machines and Linear Bounded Automata =2 281

we get affy in the table, it means that ¢ is written in the current cell, § gives
the movement of the head (L or R) and y denotes the new state into which the
Turing machine enters.

Consider, for example, a Turing machine with five states ¢, . . ., g5, where
g, 1s the initial state and g5 is the (only) final state. The tape symbols are 0. 1
and b. The transition table given in Table 9.1 describes o.

TABLE 9.1 Transition Table of a Turing Machine

Present state Tape symbol
b 0 1
G 1Lg, 0Rg,
G2 bRaq; 0Lg, 1Lg,
93 bRq, bRgs
Q4 0Rgs 0Rgq,4 1Rq,

OLqg,

As in Chapter 3, the initial state is marked with — and the final state
with ©.

EXAMPLE 9.2

Consider the TM description given in Table 9.1. Draw the computation
sequence of the input string 00.

Solution

We describe the computation sequence in terms of the contents of the tape and
the current state. If the string in the tape is ajas . .. ¢;a;,; . . . a, and the TM
in state ¢ is to read aj,, then we write @1as ... 4G Qjzy - - - Gy,

For the input string 00b. we get the following sequence:
1006 |— 0g,0b |— 00g,b }— 0g:01 }— g,001
F— 26001 |— bq3001 |— bbqi01 }— bbygdl |— bbylqsb
t— bb010gs |— bb01¢,00 |— bb0g,100 |— bbg,0100
f— bq:b0100 }— bbq;0100 |— bbbg,100 |— bbb,q500
t— £bb10g,0 |— bbb100gsb +— bbb1000gsh
f— bbb100g,00 |— bbb10¢-000 |— bbb14g,0000
— bbbg-10000 |— bbg,b10000 |— bbbg;10000 |— bbbbgs0000

9.2.3 REPRESENTATION BY TRANSITION DIAGRAM

We can use the transition systems introduced in Chapter 3 to represent Turing
machines. The states are represented by vertices. Directed edges are used to

282 E Theory of Computer Science

represent transition of states. The labels are triples of the form (o, B, 7), where
o. . e Tand ye {L. R}. When there is a directed edge from ¢; to g; with label
(¢, B. 7). it means that
' og;.) = (q. B. y)

During the processing of an input string, suppose the Turing machine enters
g; and the R/W head scans the (present) symbol a. As a result, the symbol
is written in the cell under the R/W head. The R/W head moves to the left or
to the right. depending on y and the new state is g;.

Every edge in the transition system can be represented by a 5-tuple (g;, 0.
B. 7. g;). So each Turing machine can be described by the sequence of 5-tuples
representing all the directed edges. The initial state is indicated by — and any
final state is marked with ©.

EXAMPLE 9.3

M is a Turing machine represented by the transition system in Fig. 9.4. Obtain
the computation sequence of M for processing the input string 0011.

(b, b, R)

Fig. 8.4 Transition system for M.

Solution

The initial tape input is b0011b. Let us assume that M is in state g, and the
R/W head scans O (the first 0). We can represent this as in Fig. 9.5. The figure
can be represented by '

\:
b0011b
q1
From Fig. 9.4 we see that there is a directed edge from ¢; to g, with the label
(0. x. R). So the current symbol 0 is replaced by x and the head moves right.
The new state is ¢-». Thus. we get

bx011b
qn

Chapter 9: Turing Machines and Linear Bounded Automata 2 283

The change brought about by processing the symbol 0 can be represented as

J
p0011h OR L prO11b

q1 q>
b 0 0 f1 1 b
R/W head
State
a4

Fig. 9.5 TM processing 0011.

The entire computation sequence reads as follows:

i | 4 g
p0011p DR pro11b OB px011h
G q g2
d l ‘ L
(vl o bxOvlb (90D o bxOylb ("'""'R), bx0vib
73 94 4
0.rR (v.R Loy v.L) ‘
(0.x.R) bravlb YOLR) bxvlb s pxyyb
g2 qz 93
(ryL TR (x.v.R)
SN bxxyvb BESLN bxxyyb IERIEN bxxyvb
q3 qs qs
(v.v.R) (bb.R 4
qs s

9.3 LANGUAGE ACCEPTABILITY BY TURING
MACHINES

L~t us consider the Turing machine M = (Q, Z. T, 4. gy, b, F). A string w in
Z* is said to be accepted by M if gow |~ oypos for some p € F and o, o
e T'*

M does not accept w if the machine M either halts in a nonaccepting state
or does not halt.

284 E Theory of Computer Science

It may be noted that though there are other equivalent definitions of
acceptance by the Turing machine, we will be not discussing them in this text.

EXAMPLE 9.4

Consider the Turing machine M described by the transition table given in
Table 9.2. Describe the processing of (a) 011, (b) 0011, (¢) 001 using IDs.
Which of the above strings are accepted by M?

TABLE 9.2 Transition Table for Example 9.4

Present state Tape symbol
0 1 x y b
— G xRq, bRgs
G2 O0Rg, yLgs yRq,
s 0Lg4 xRgs yLa;
Q4 OLg. xRq;
Js yxRqs bRge
@
Solution

(@) 011 = xq211 = gyl = xgsyl = xvgsl
As 0(gs. 1) is not defined. M halts; so the input string 011 is not accepted.
(®) ¢,0011 }— xg:011 |— x0g,11 }— xg:0v1 |— qsx0y1 |— xq,0v1.
F-xxgavl b= xxyqel = xxqayy = xqaxvy = xxgsyy
F—xxygsy = xxvvgsb |— xxyvbgg
M halts. As g, is an accepting state, the input string 0011 is accepted by M.
(¢) 1001 }— x¢:01 |— x0ga1 |— xq30v |— gsx0y
F— xq, 0y |— xxgayv |— xxyq»

M halts. As g, is not an accepting state, 001 is not accepted by M.

9.4 DESIGN OF TURING MACHINES

We now give the basic guidelines for designing a Turing machine.

(1) The fundamental objective in scanning a symbol by the R/W head is
to "know’ what to do in the future. The machine must remember the
past symbols scanned. The Turing machine can remember this by
going to the next unique state.

(i1) The number of states must be minimized. This can be achieved by
changing the states only when there is a change in the written symbol
or when there is a change in the movement of the R/W head. We shall
explain the design by a simple example.

Chapter 9: Turing Machines and Linear Bounded Automata = 285

EXAMPLE 9.5

Design a Turing machine to recognize all strings consisting of an even number
of I's.

Solution

The construction is made by defining moves in the following manner:
(a) g, is the initial state. M enters the state ¢, on scanning 1 and writes b.
(b) If M is in state g, and scans |, it enters ¢, and writes b.
(c) q; is the only accepting state.

So M accepts a string if it exhausts all the input symbols and finally is in
state ¢;. Symbolically,

M = ({Q1 (12}: {1' b} {1? b}- 5& Qs b {QI})
where 0 is defined by Table 9.3.

TABLE 9.3 Transition Table for Example 9.5

Present state 1
—) bQQR
o)} bChR

Let us obtain the computation sequence of 11. Thus, ¢,11 |~ bg~1 }|— bbg,.
As gy is an accepting state. 11 is accepted. ¢;111 | bg211 |— bbg,1 |— bbbg,.
M halts and as ¢- is not an accepting state. 111 is not accepted by M.

EXAMPLE 9.6

Design a Turing machine over {1. &} which can compute a concatenation
function over X = {1}. If a pair of words (wy, w») is the mput. the output has
to be Winwa.

Solution

Let us assume that the two words w; and w, are written initially on the input
tape separated by the symbol b. For example, if w; = 11, w- = 111, then the
input and output tapes are as shown in Fig. 9.6.

golrfrfelnfofrifes gefrfrfiofrfe]os

Fig. 9.6 Input and output tapes.

We observe that the main task is to remove the symbol b. This can be done
in the following manner:

(a) The separating symbol & is found and replaced by 1.

286 & Theory of Computer Science

(b) The rightmost 1 is found and replaced by a blank b.
{¢c) The R/W head returns to the starting position.

A computation is illustrated in Table 9.4.

TABLE 9.4 Computation for 11b£111

Go11b111 = 1go1b111 = 11geh111 = 111g4111

— 11g 1 = 11111g1 — 111111g:b — 11111g.1b
— 1111g31bb — 111gs11bb — 11gs111bb |— 1g51111bb
— gs11111bb — gsb11111bb — bg,11111bb

From the above computation sequence for the input string 115111, we can
construct the transition table given in Table 9.5.
For the input string 151, the computation sequence is given as

Golbl |— 1gobl |— 11q;1 |— 111g,b | 11g:b |— 1¢;31bb
b= q311bb |— q3b11bb }— bg L 1bb.

TABLE 9.5 Transition Table for Example 9.6

Present state Tape symbol
1 b
0o 1Ry 1Rg;
G 1Rg, bLg,
G bLgs —
92 1Lg; bRg:
— —

EXAMPLE 9.7

Design a TM that accepts
{0"1"|n 2 1}.

Solution
We require the following moves:

(a) If the leftmost symbol in the given input string w is 0, replace it by x
and move right till we encounter a leftmost 1 in w. Change it to y and
move backwards.

(b) Repeat (a) with the leftmost 0. If we move back and forth and no 0 or
1 remains. move to a final state.

(c) For strings not in the form 01" the resulting state has to be nonfinal.

Chapter 9: Turing Machines and Linear Bounded Automata 2 287

Keeping these ideas in our mind, we construct a TM M as follows:

M=(0, %1, 8 gy b, F)

where
0= {90 1> 92, g3 qp
F= {C]f}
Z=1{0.1}

I'=1{0, 1, x. v, b}

The transition diagram is given in Fig. 9.7. M accepts {0"1"|n 2 1}. The moves
for 0011 and 010 are given below just to familiarize the moves of M to the
reader.

Fig. 9.7 Transition diagram for Example 9.7.

qo0011 |— xq,011 |— x0g; 11 |— xq;0y1
= q2x0y1 |— xqo0y1 |— xxqiyl |— xxyg) 1
= xxgayy b= xgaxyy f— xxqoyy f— xxyqsy
= xxvygs = xxyvgab |— xxyybgub
Hence 0011 is accepted by M.
40010 |— x¢,10 }— g>xy0 = xgoy0 = xygs0
As 0(gs. 0) is not defined, M halts. So 010 is not accepted by M.

--EXAMPLE 9.8

Design a Turing machine M to recognize the language
{172"3"|n 2 1}.

288 = Theory of Computer Science

Solution

Before designing the required Turing machine M, let us evolve a procedure for
processing the input string 112233, After processing, we require the ID to be
of the form bbbbbbg-. The processing is done by using five steps:

Step 1 g, is the initial state. The R/W head scans the leftmost 1, replaces 1
by b, and moves to the right. M enters g-.

Step 2 On scanning the leftmost 2, the R/W head replaces 2 by b and moves
to the right. M enters gs.

Step 3 On scanning the leftmost 3, the R/W head replaces 3 by b, and moves
to the right. M enters g,.

Step 4 After scanning the rightmost 3, the R/W heads moves to the left until
it finds the leftmost 1. As a result. the leftmost 1, 2 and 3 are replaced by b.

Step 5 Steps 1-4 are repeated until all I's, 2°s and 3’s are replaced by blanks.
The change of 1Ds due to processing of 112233 is given as

112233 |— bq-12233 |— blg22233 |— b1bqs233 | — b1b2¢333
— b1b2bq 3 |— blbagsh3 |— Dlbgs2b3 |— blqsb2b3 |— bqs1b2b3
F— qeb1b2b3 |— bq 15253 |— bbq-b2b3 |— bbbg,2b3
p— bbbbg:b3 |- bbbbbqs3 |— bbbbbbqb |— bbbbbgbb
Thus.
q1112233 = g:bbbbbb

As g- is an accepting state. the input string 112233 is accepted.
Now we can construct the transition table for M. It is given in Table 9.6.

TABLE 9.6 Transition Table for Example 9.7

Present state Input tape symbol
| 2 3 b

—§s bRq, bRq,
gz 1Rq; bRg; bRg,
Gs 2Raq, bRy bRa,
Q. 3Lgs bLg;
gs 1Lgs 2Lgs bLgs
9s 1Lgs bRa;
@
®

It can be seen from the table that strings other than those of the form 0"12"
are not accepted. It is advisable to compute the computation sequence for
strings like 1223, 1123, 1233 and then see that these strings are rejected by M.

Chapter 9: Turing Machines and Linear Bounded Automata E 289

9.5 DESCRIPTION OF TURING MACHINES

In the examples discussed so far, the transition function ¢ was described as a
partial function (function 6: @ x T’ — Q x T' x {L. R} is not defined for all
(g. x)) by spelling out the current state, the input symbol, the resulting state. the
tape symbol replacing the input symbol and the movement of R/W head to the
left or right. We can call this a formal description of a TM. Just as we have the
machine language and higher level languages for a computer, we can have a
higher level of description, called the implementation description. In this case
we describe the movement of the head, the symbol stored ete. in English. For
example, a single instruction like ‘move to right till the end of the input string’
requires several moves. A single instruction in the implementation description
is equivalent to several moves of a standard TM (Hereafter a standard T™M
refers to the TM defined in Definition 9.1). At a higher level we can give
instructions in English language even without specifying the state or transition
function. This is called a high-level description.

In the remaining sections of this chapter and later chapters, we give
implementation description or high-level description.

9.6 TECHNIQUES FOR TM CONSTRUCTION

In this section we give some high-level conceptual tools to make the
construction of TMs easier. The Turing machine defined in Section 9.1 is called
the standard Turing machine.

9.6.1 TURING MACHINE WITH STATIONARY HEAD

In the definition of a TM we defined 6(q. a) as (¢’, y, D) where D = L or R.
So the head moves to the left or right after reading an input symbol. Suppose,
we want to include the option that the head can continue to be in the same cell
for some input symbol. Then we define d(g, a) as (¢’, y. S). This means that
the TM, on reading the input symbol a, changes the state to ¢" and writes y in
the current cell in place of @ and continues to remain in the same cell. In terms
of IDs,
wgax |— wq'yx

Of course, this move can be simulated by the standard TM with two moves,

namely
wgax = wyq'x = wq'yx

That is, 8{q, @) = (¢, v. S) is replaced by 8(g. @) = (¢”, v, R) and 6(q¢”. X) =
(¢ . v. L) for any tape symbol X.

Thus in this model 8(g. a) = (¢, v, D) where D = L, R or §.

290 2 Theory of Computer Science

9.6.2 STORAGE IN THE STATE

We are using a state, whether it is of a FA or pda or TM, to ‘remember’ things.
We can use a state to store a symbol as well. So the state becomes a pair
(g, @) where g is the state (in the usual sense) and a is the tape symbol stored
in {g. a). So the new set of states becomes Q X T.

EXAMPLE 9.9

Construct a TM that accepts the language 0 1% + 1 0%,

Solution

We have to construct a TM that remembers the first symbol and checks that it
does not appear afterwards in the input string. So we require two states, go. ¢1.
The tape symbols are 0, 1 and b. So the TM. having the ‘storage facility in
state”. is

M = ({qo. q1} x {0. L. b}, {0, 1}, {0, 1, b}. 6. lgo. DI {lg1. D1}

We describe 0 by its implementation description.

1. In the initial state, M is in g, and has b in its data portion. On seeing
the first symbol of the input sting w, M moves right, enters the state
¢, and the first symbol, say «, it has seen.

. M is now in gy, a]. (1) If its next symbol is b, M enters {g;. b], an
accepting state. (i1) If the next symbol is a. M halts without reaching

[\

the final state (i.e. § is not defined). (iii) If the next symbol is @
(a =0ifa=1and @ =1 if ¢ = 0), M moves right without changing
state.

3. Step 2 is repeated until M reaches [¢;. b] or halts (& is not defined for
an input symbol in w).

9.6.3 MULTIPLE TRACK TURING MACHINE

In the case of TM defined earlier, a single tape was used. In a multiple track
TM. a single tape is assumed to be divided into several tracks. Now the tape
alphabet is required to consist of i-tuples of tape symbols. k being the number
of tracks. Hence the only difference between the standard TM and the TM with
multiple tracks is the set of tape symbols. In the case of the standard Turing
machine, tape symbols are elements of I'; in the case of TM with multiple track,
it is I'*. The moves are defined in a similar way.

9.6.4 SUBROUTINES

We know that subroutines are used in computer languages, when some task has
to be done repeatedly. We can implement this facility for TMs as well.

Chapter 9: Turing Machines and Linear Bounded Automata = 291

First, a TM program for the subroutine is written. This will have an initial
state and a ‘return’ state. After reaching the return state. there is a temporary
halt. For using a subroutine, new states are introduced. When there is a need
for calling the subroutine, moves are effected to enter the initial state for the
subroutine (when the return state of the subroutine is reached) and to return to
the main program of TM.

We use this concept to design a TM for performing multiplication of two
positive integers.

EXAMPLE 9.10

Design a TM which can multiply two positive integers.

Solution

The input (m. n), m. n being given, the positive integers are represented by

010", M starts with 0710" in its tape. At the end of the computation,

0™"(mn in unary representation) surrounded by b's is obtained as the ouput.
The major steps in the construction are as follows:

1. 0"10"1 is placed on the tape (the output will be written after the
rightmost 1).

2. The leftmost O is erased.

3. A block of 12 0's is copied onto the right end.

4. Steps 2 and 3 are repeated m times and 10™10™" is obtained on the
tape.

5. The pretix 10"1 of 10™10™" is erased. leaving the product mn as the
output.

For every 0 in 0™, 0" is added onto the right end. This requires repetition
of step 3. We define a subroutine called COPY for step 3.

For the subroutine COPY. the initial state is ¢; and the final state is gs. 0
is given by the transition table (see Table 9.7).

TABLE 9.7 Transition Table for Subroutine COPY

State Tape symbol
0 1 2 b
qs G22R g41L — -
G2 q20R RIR - G:0L
gs q:0L gs1L G12R -
Qs — gs1R q40L —
s - — — -

The Turing machine M has the initial state gy The initial ID for M is
qs0"10"1. On seeing 0. the following moves take place (g, is a state of M).
Gu0""10"1 = bg0" ' 10" 0™ gel0"L - b0 1g,0"1. gy is the initial state

292 2 Theory of Computer Science

of COPY. The TM M, performs the subroutine COPY. The following moves
take place for M;: q,0"1 |— 2¢:0""'1 |- 20"'1g:b |—20""g310 |- 24,0"'10.
After exhausting 0's. ¢, encounters 1. M, moves to state g,. All 2’s are
converted back to 0’s and M| halts in gs. The TM M picks up the computation
by starting from ¢s. The g, and ¢, are the states of M. Additional states are
created to check whether each 0 in 0 gives rise to 0”7 -at the end of the
rightmost 1 in the input string. Once this is over, M erases 101 and finds O™
in the input tape.
M can be defined by

M= ({(/0 d1s -+ o Q13}~ {O 1} {O 1’ 27 b} 5= qdo» b7 {qu})
where § is defined by Table 9.8.

TABLE 9.8 Transition Table for Example 9.10

0 1 2 b

Go qsbR - - -
Qs Gs0R G1R - —
gs g-0L - - -
gz - as1L — -
s gs0L — — GiobR
ds q50L — - GobR

10 - q1bR - -
oo gubR G12bR — -

Thus M performs multiplication of two numbers in unary representation.

9.7 VARIANTS OF TURING MACHINES

The Turing machine we have introduced has a single tape. 8(q, @) is either a
single triple (p. v, D). where D = R or L, or is not defined. We introduce two
new models of TM:
(1) a TM with more than one tape
(i) a TM where 8(q. a@) = {(pi. ¥1, D). (P2, v2. Do), .. o (psy ¥, D3}, The
first model is called a multitape TM and the second a nondeterministic
™.

9.7.1 MULTITAPE TURING MACHINES

A multitape TM has a finite set Q of states, an initial state gg, a subset F of O
called the set of final states. a set P of tape symbols, a new symbol b, not in
P called the blank symbol. (We assume that Z c T"and b ¢ X.)

Chapter 9: Turing Machines and Linear Bounded Automata B 293

There are k tapes. each divided into cells. The first tape holds the input
string w. Initially, all the other tapes hold the blank symbol.

Initially the head of the first tape (input tape) is at the left end of the input
w. All the other heads can be placed at any cell initially.

0 is a partial function from Q X ™ into 0 x T x {L, R. S}*. We use
implementation description to define 0. Figure 9.8 represents a multitape TM.
A move depends on the current state and & tape symbols under k tape heads.

Finite
control

N\

HEEED N
|

e

{

JEEEEEE

Fig. 9.8 Multitape Turing machine.

In a typical move:

(i) M enters a new state.
(ii) On each tape. a new symbol is written in the cell under the head.
(ii1) Each tape head moves to the left or right or remains stationary. The
heads move independently: some move to the left, some to the right
and the remaining heads do not move.

The initial ID has the initial state gg. the input string w in the first tape
(input tape). empty strings of b's in the remaining & — 1 tapes. An accepting ID
has a final state. some strings in each of the & tapes.

Theorem 9.1 Every language accepted by a multitape TM is acceptable by
some single-tape TM (that is, the standard TM).

Proof Suppose a language L is accepted by a i-tape TM M. We simulate M
with a single-tape TM with 2k tracks. The second. fourth, (2k)th tracks hold
the contents of the k-tapes. The first. third, (2k — D)th tracks hold a head
marker (a symbol say X) to indicate the position of the respective tape head.
We give an "implementation description’ of the simulation of M with a single-
tape TM M. We give it for the case & = 2. The construction can be extended
to the general case.

Figure 9.9 can be used to visualize the simulation. The symbols A, and Bs
are the current symbols to be scanned and so the headmarker X is above the two
symbols.

294 HE Theory of Computer Science

Finite
control

By| By| B3| B4} B3

Fig. 9.9 Simulation of multitape TM.

Initially the contents of tapes 1 and 2 of M are stored in the second and
fourth tracks of M,. The headmarkers of the first and third tracks are at the cells
containing the first symbol.

To simulate a move of M. the 2k-track TM M, has to visit the two
headmarkers and store the scanned symbols in its control. Keeping track of the
headmarkers visited and those to be visited is achieved by keeping a count and
storing it in the finite control of M;. Note that the finite control of M, has also
the information about the states of M and its moves. After visiting both head
markers. M, knows the tape symbols being scanned by the two heads of M.

Now M, revisits each of the headmarkers:

(1) It changes the tape symbol in the corresponding track of M based
on the information regarding the move of M corresponding to the state
(of M) and the tape symbol in the corresponding tape M.
(i1) It moves the headmarkers to the left or right.
(iii) M, changes the state of M in its control.

This is the simulation of a single move of M. At the end of this, M, is ready
to implement its next move based on the revised positions of its headmarkers
and the changed state available in its control.

M, accepts a string w if the new state of M. as recorded in its control at
the end of the processing of w. is a final state of M.

Definition 9.3 Let M be a TM and w an input string. The running time of M
on input w. is the number of steps that M takes before halting. If M does not
halt on an input string w, then the running time of M on w is infinite.

Note: Some TMs may not halt on all inputs of length n. But we are interested
in computing the running time. only when the TM halts.

Definition 9.4 The time complexity of TM M is the function 7(n), n being the
input size, where T(n) 1s defined as the maximum of the running time of M over
all inputs w of size n.

Theorem 9.2 If M, is the single-tape TM simulating multitape TM M, then
the time taken by M, to simulate n moves of M is O(n").

Chapter 9: Turing Machines and Linear Bounded Automata B 295

Proof Tet M be a k-tape TM. After n moves of M, the head markers of M,
will be separated by 2n cells or less. (At the worst. one tape movement can be
-to the left by » cells and another can be to the right by n cells. In this case the
tape headmarkers are separated by 2n cells. In the other cases, the ‘gap’
- between them is less). To simulate a move of M, the TM M, must visit all the
k headmarkers. If M starts with the leftmost headmarker. M| will go through all
the headmarkers by moving right by at most 2n cells. To simulate the change
in each tape. M, has to move left by at most 2r cells; to simulate changes in
k tapes, it requires at most two moves in the reverse direction for each tape.
Thus the total number of moves by M, for simulating one move of M is
atmost 4n + 2k. (2n moves to right for locating all headmarkers, 2n + 2k moves
to the left for simulating the change in the content of k tapes.) So the number
of moves of M, for simulating » moves of M is n{d4n + 2k). As the constant k
is independent of n, the time taken by M; is OGr°).

9.7.2 NONDETERMINISTIC TURING MACHINES

In the case of standard Turing machines (hereafter we refer to this machine as
deterministic TM). 6(g,;. a) was defined (for some elements of O X I') as an
element of 0 x I’ x {L, R}. Now we extend the definition of 8 In a
nondeterministic TM. 8(gy. «) is defined as a subset of O x ' x {L, R}.

Definition 9.5 A nondeterministic Turing machine is a 7-tuple (Q, Z. T, 6, qo.
b, F) where
Q is a finite nonempty set of states
I' 1s a finite nonempty set ot tape symbols
b e T is called the blank symbol
Z is a nonempty subset of T'. called the set of input symbols. We
assume that b ¢ Z.
gp is the initial state
F < Q is the set of final states

7. 6 is a partial function from Q x T into the power set of O x T’ x

{L. R}.

Note: If g e Qand x € T and 6(q. x) = {(g,, v, D). (gs ¥y», Ds). ...,
(G ¥ D)} then the NTM can chose any one of the actions defined by
(g v, Dy fori=12.....n

We can also express this in terms of |— relation. If 6(q. x) = {(g;. ;. D))
i=1.2.... n} then the ID zgxw can change to any one of the n IDs specified
by the n-element set 6(q. x).

Suppose 6(q. x) = {(g1. ¥1. L), (g2 ¥2. R). (g3 ¥3. L)}. Then

:l:.pJ!\)H

IS

N B A S BRI B LA N A B SR B
or

B N R A S S e R L V1 O B
or

o Y A e T R S LRV T 1t LY FE R

296 E Theory of Computer Science

So on reading the input symbol, the NTM M whose current ID is 7,2 . . .
24X - - - I, can change to any one of the three IDs given earlier.

Remark When 6(¢q. x) = {(g;. v, D;)|i = 1.2... .. n} then NTM chooses any
one of the n triples totally (that is. it cannot take a state from one triple, another
tape symbol from a second triple and a third D(L or R) from a third triple, etc.

Definition 9.6 1w € X* is accepted by a nondeterministic TM M if gow |-
xgp for some final state gy
The set of all strings accepted by M is denoted by T(M).

Note: As in the case of NDFA, an ID of the form xgv (for some ¢ ¢ F) may
be reached as the result of applying the input string w. But w is accepted by M
as long as there is some sequence of moves leading to an ID with an accepting
state. It does not matter that there are other sequences of moves leading to an
ID with a nonfinal state or TM halts without processing the entire input string.

Theorem 9.3 If M is a nondeterministic TM, there is a deterministic TM M|
such that T(M) = T(M,).

Proaf We construct M, as a multitape TM. Each symbol in the input string
leads to a change in ID. M, should be able to reach all IDs and stop when an
ID containing a final state is reached. So the first tape is used to store IDs of
M as a sequence and also the state of M. These IDs are separated by the symbol
% (included as a tape symbol). The current ID is known by marking an x along
with the ID-separator * (The symbol * marked with x is a new tape symbol.)
All IDs to the left of the current one have been explored already and so can be
ignored subsequently. Note that the current ID is decided by the current input
symbol of w.

Figure 9.10 illustrates the deterministic TM M.

Finite
control
RY
Tape 1
P (ID4 1Dy -1D5 1D, -1D5-1Dg~ ...

\

Fig. 9.10 The deterministic TM simulating M.

Tape 2

To process the current ID, M, performs the following steps.

1. M, examines the state and the scanned symbol of the current ID. Using
the knowledge of moves of M stored in the finite control of M. M,
checks whether the state in the current ID is an accepting state of M.
In this case M, accepts and stops simulating M.

Chapter 9: Turing Machines and Linear Bounded Automata B 297

2. If the state ¢ say in the current ID xgay is not an accepting state of M|
and 6(q. a) has k triples. M, copies the ID xgay in the second tape and
makes k copies of this ID at the end of the sequence of IDs in tape 2.

3. M, modifies these k IDs in tape 2 according to the k choices given by
o(g. a).

4. M, returns to the marked current ID. erases the mark x and marks the
next ID-separator * with x (to the * which is to the left of the next ID
to be processed). Then M, goes back to step 1.

M, stops when an accepting state of M is reached in step 1.

Now M, accepts an input string w only when it is able to find that M has
entered an accepting state, after a finite number of moves. This is clear from
the simulated sequence of moves of M, (ending in step 1)

We have to prove that M| will eventually reach an accepting ID (that is,
an ID having an accepting state of M) if M enters an accepting 1D after n
moves. Note each move of M is simulated by several moves of M.

Let m be the maximum number of choices that M has for various (g, a)’s.
(It is possible to find m since we have only finite number of pairs in Q X I'))
So for each initial ID of M, there are at most m IDs that M can reach after one
move, at most m~ IDs that M can reach after two moves. and so on. So
corresponding to # moves of M. there are at most 1 +m + m~ + - - - + m" Moves
of M;. Hence the number of IDs to be explored by M, is at most nm”.

We assume that M, explores these IDs. These IDs have a tree structure
having the initial ID as its root. We can apply breadth-first search of the nodes
of the tree (that is. the nodes at level 1 are searched. then the nodes at level 2,
and so on.) If M reaches an accepting ID after » moves. then M| has to search
atmost nm” IDs before reaching an accepting ID. So, if M accepts w, then M,
also accepts w (eventually). Hence T(M) = T(M)).

9.8 THE MODEL OF LINEAR BOUNDED AUTOMATON

This model is important because (a) the set of context-sensitive languages is
accepted by the model. and (b) the infinite storage is restricted in size but not
in accessibility to the storage in comparison with the Turing machine model. It
is called the linear bounded automaton (LBA) because a linear function is used
to restrict (to bound) the length of the tape.

In this section we define the model of linear bounded automaton and
develop the relation between the linear bounded automata and context-sensitive
languages. It should be noted that the study of context-sensitive languages is
important from practical point of view because many compiler languages lie
between context-sensitive and context-tree languages.

A linear bounded automaton is a nondeterministic Turing machine which
has a single tape whose length is not infinite but bounded by a linear function

298 & Theory of Computer Science

of the length of the input string. The models can be described formally by the
following set format:

M:(Q~ z-, r‘ 5~, q“' b9¢$~F)

All the symbols have the same meaning as in the basic model of Turing
machines with the difference that the input alphabet X contains two special
symbols € and $. is called the left-end marker which is entered in the left-
most cell of the input tape and prevents the R/W head from getting off the left
end of the tape. $ is called the right-end marker which is entered in the right-
most cell of the input tape and prevents the R/W head from getting off the right
end of the tape. Both the endmarkers should not appear on any other cell within
the input tape, and the R/W head should not print any other symbol over both
the endmarkers.

Let us consider the input string w with |w| = n — 2. The input string w can
be recognized by an LBA if it can also be recognized by a Turing machine
using no more than kn cells of input tape, where k is a constant specified in the
description of LBA. The value of k does not depend on the input string but is
purely a property of the machine. Whenever we process any string in LBA, we
shall assume that the input string is enclosed within the endmarkers ¢ and $.
The above model of LBA can be represented by the block diagram of Fig. 9.11.
There are two tapes: one is called the input tape, and the other, working tape.
On the input tape the head never prints and never moves to the left. On the
working tape the head can modify the contents in any way, without any
restriction.

“«—— ncells

gel | | | ’
/¢ L1] sl

R head moving to the right only

input
tape

Finite state
control

head

kn cells

i
\
Working tape
Fig. 9.11 Model of linear bounded automaton.

In the case of LBA, an ID is denoted by (q. w. k), where g€ Q. we T

and £ is some integer between 1 and #. The transition of IDs is similar except

Chapter 9: Turing Machines and Linear Bounded Automata 2B 299

that k£ changes to k — 1 if the R/W head moves to the left and to & + 1 if the
head moves to the right.
The language accepted by LBA is defined as the set

C(we @-1{E $Hge Gws. D = (g o)
for some ¢ € F and for some integer 7 between 1 and n}.

Note: As anull string can be represented either by the absence of input string
or by a completely blank tape. an LBA may accept the null string.

9.8.1 RELATION BETWEEN LBA AND CONTEXT-SENSITIVE
LANGUAGES

The set of strings accepted by nondeterministic LBA is the set of strings
generated by the context-sensitive grammars, excluding the null strings. Now
we give an important result:

If L is a context-sensitive language, then L is accepted by a linear bounded
automaton. The converse is also true.

The construction and the proof are similar to those for Turing machines
with some modifications.

9.9 TURING MACHINES AND TYPE 0 GRAMMARS

In this section we construct a type 0 grammar generating the set accepted by
a given Turing machine M. The productions are constructed in two steps. In
step 1 we construct productions which transform the string [¢,§ w$] into the
string [g,b]. where ¢, is the initial state. ¢~ is an accepting state, €is the left-
endmarker. and $ is the right-endmarker. The grammar obtained by applying
step 1 is called the rransformational grammar. In step 2 we obtain inverse
production rules by reversing the productions of the transformational grammar
to get the required type 0 grammar G. The construction is in such a way that
w is accepted by M if and only if w is in L(G).

9.9.1 CONSTRUCTION OF A GRAMMAR CORRESPONDING
TO TM

For understanding the construction. we have to note that a transition of ID
corresponds to a production. We enclose IDs within brackets. So acceptance of
w by M corresponds to the transformation of initial ID [g, ¢ w $] into [g.:b].
Also, the "length” of ID may change if the R/W head reaches the left-end or the
right-end. i.e. when the left-hand side or the right-hand side bracket is reached.
So we get productions corresponding to transition of IDs with (i) no change in
length, and (i) change in length. We assume that the transition table is given.

300 B Theory of Computer Science

We now describe the construction which involves two steps:
Step 1 (i) No change in length of IDs: (a) Right move. aRq; corresponding
to g;-row and a-column leads to the production
qia; —> iy
(b) Left move. a;Lq, corresponding to g;-row and a;-column yields several

productions
AQil; —> forall @, € T

(i1) Change in length of IDs: (a) Left-end. a,Lg; corresponding 1o g;-row
and a-column gives
[qia; — lgibay

When b occurs next to the left-bracket, it can be deleted. This is achieved
by including the production [b — [.

(b) Right-end. When b occurs to the left of], it can be deleted. This is
achieved by the production

ab] — a] forall ¢ e T

When the R/W head moves to the right of], the length increases.
Corresponding to this we have a production

g;] — gb] forallg, e Q

(iii) Inrroduction of endmarkers. For introducing endmarkers for the input
string, the following productions are included:

a; — g Ca forag,e T.a;# b
a; = a;%] forall g, e I, q; # b
For removing the brackets from [¢-b]. we include the production
[g-b] — S
Recall that ¢, and ¢- are the initial and final states, respectively.

Step 2 To get the required grammar, reverse the arrows of the productions
obtained in step 1. The productions we get can be called inverse productions.
The new grammar is called the generarive grammar. We illustrate the
construction with an example.

EXAMPLE 9.11

Consider the TM described by the transition table given in Table 9.9. Obtain
the inverse production rules.

Solution
In this example. g is both initial and final.
Step 1 (i) Productions corresponding to right moves

g €— Cq. gl - bgr, g2l — bg, 9.1)

Chapter 9: Turing Machines and Linear Bounded Automata = 301

(i) {a) Productions corresponding ro left-end
-1 (9.2)
(b) Productions corresponding to rig’it-end
bb] —» b].] =1}, gl = qbl. g = q:b] 9.3)
(i) 1 — [¢¢1. 1 — 18], [gib] — S 9.4

TABLE 9.9 Transition Table for Example 9.11

Present state ¢ b 1
=@ CRyq, bRg»
9z bRQA,

Step 2 The inverse productions are obtained by reversing the arrows of the
productions (9.1)—(9.4).

¢q1 — q/Q bgr = q1, bgy = ¢-1
[— [b, b] — bb], 1] — 1b]
qib — g1, g-b = ¢-]. [g:¢1 -1
18] — 1, S = [gb]

Thus we have shown that there exists a type 0 grammar corresponding to
a Turing machine. The converse is also true (we are not proving this), i.e. given
a type 0 grammar G, there exists a Turing machine accepting L(G). Actually,
the class of recursively enumerable sets, the type 0 languages, and the class of
sets accepted by TM are one and the same. We have shown that there exists
a recursively enumerable set which is not a context-sensitive language (see
Theorem 4.4). As a recursive set is recursively enumerable, Theorem 4.4 gives
a type O language which is not type 1. Hence. 7 < %, (cf Property 4.
Section 4.3) is established.

9.10 LINEAR BOUNDED AUTOMATA AND LANGUAGES

A linear bounded automaton M accepts a string w if. after starting at the initial
state with R/W head reading the left-endmarker, M halts over the right-end-
marker in a final state. Otherwise, w is rejected.

The production rules for the generative grammar are constructed as in the
case of Turing machines. The following additional productions are needed in
the case of LBA.

aiqrS — g% forall q; € T

QS — Qg G¢q; — g5

302 & Theory of Computer Science

EXAMPLE 9.12

Find the grammar generating the set accepted by a linear bounded automaton
M whose transition table is given in Table 9.10.

TABLE 9.10 Transition Table for Example 9.12

Present state Tape input symbol

¢ $ 0 1
=0 CRg, 1Lg, 0Rq,
9 CRa, 1Rg 1Lq,
g3 SLq-] 1 RQ3 1RQ3

N Halt oL OR
@ G4 Q4

Solution

Step 1 (A) (i) Productions corresponding to right moves. The seven right
moves in Table 9.10 give the following productions:

f]1¢—> (g g:0 — lg;

ql — 0g-. g3l — 1g; (9.5)
q-¢ — (g qs1 — Ogy

g0 — 1g3

(i) Productions corresponding to left moves. There are four left moves in
Table 9.10. Each left move yields four productions (corresponding to the four
tape symbols). These are:

(a) 1Lg-~ corresponding to g;-row and O-column gives

$q,0 = ¢-C1. Sq,0 = g-31, 09,0 — ¢-01, 1,0 — ¢.11 (9.6)
(b) 1Lq, corresponding to g;-row and 1-column yields

Gq-1 = q,¢1. Sg-1 = ¢;$1. 0g-1 — q,0L, 1g-1 — g,11 9.7
(c) $Lq, corresponding to g;-row and S-column gives

Tq:$ = q1€'S, $¢:8 — 188, 0g38 — ¢108. 1g5$ — ¢118 (9.8)
(d) OLgy corresponding to gs-row and O-column yields

Cq0 — .00, $g:0 — 4,50, 09,0 — g,00, 1,0 = 410 (9.9)

(B) There are no productions corresponding to change in length.
(C) The productions for introducing the endmarkers are

¢—[a¢¢ ¢ C3)

$ — [¢.¢S. $ — $$] (9.10)
0 — [¢:¢0, 0 — 0%]

g1 = S (9.11)

Chapter 9: Turing Machines and Linear Bounded Automata = 303

(D) The LBA productions are

¢q:8 — q.8. g8 — Cgs

$9:3 = qu$. Cay — g4 (9.12)
0q.% — ¢.5.

1948 — q,8

Step 2 The productions of the generative grammar are obtained by reversing
the arrows of productions given by (9.5)-(9.12).

9.11 SUPPLEMENTARY EXAMPLES

EXAMPLE 9.13

Design a TM that copies strings of 1's.

Solution

We design a TM so that we have ww after copying w € {1}*. Define M by
M= ({QO' Gy 4o (13}- {l} {1‘ b}, 5~ qos bs {(13})

where & is defined by Table 9.11.

TABLE 9.11 Transition Table for Example 9.13

Present state Tape symbol
1 b a
ds GoaR q:bL -
g- gL G3bR 1R
op} 1R gL —
as —_ b —

The procedure is simple.

M replaces every 1 by the symbol a. Then M replaces the rightmost a by
1. It goes to the right end of the string and writes a I there. Thus M has added
a 1 for the rightmost 1 in the input string w. This process can be repeated.

M reaches g; after replacing all 1's by a's and reading the blank at the end
of the input string. After replacing a by 1. M reaches ¢-. M reaches g5 at the
end of the process and halts. If w = 1. than we have 1" at the end of the
computation. A sample computation is given below.

Goll = aqol }— aaqeb t+— aq,a
b= alg:b |- aq1l |- gall
= lg-11 = 1lge1 | 111g:0
b= 11g-11 }— 1g,111
= q 1111 = q,p1111 |— g51111

304 B Theory of Computer Science

EXAMPLE 9.14

Construct a TM to accept the set L of all strings over {0,1} ending with 010.

Solution

L is certainly a regular set and hence a deterministic automaton is sufficient to
recognize L. Figure 9.12 gives a DFA accepting L.

Fig. 9.12 DFA for Example 9.14.

Converting this DFA to a TM is simple. In a DFA M, the move is always to
the right. So the TM's move will always be to the right. Also M reads the input
symbol and changes state. So the TM M, does the same; it reads an input
symbol. does not change the symbol and changes state. At the end of the
computation. the TM sees the first blank b and changes to its final state. The
initial ID of M, is ggw. By defining 0(qo. b) = (g1, b, R), M, reaches the initial
state of M. M, can be described by Fig. 9.13.

(0.0, R)

(1,1, R (0,0, R)

)
qu\(b, b R) ;q} (0.0.R)
_ 3

(b, b, R

(1,1, R)
1,1.R

Fig. 9.13 TM for Example 9.14.

Note: g5 is the unique final state of M. By comparing Figs. 9.12 and 9.13 it
is easy to see that strings of L are accepted by M;.

EXAMPLE 9.15

Design a TM that reads a string in {0. 1}* and erases the rightmost symbol.

Solution
The required TM M is given by

M = ({QO7 q1s 425 g3 C]4} {Os 1} {O 1> b} 5., qo- b, {(]4}>

Chapter 9: Turing Machines and Linear Bounded Automata = 305

where & is defined by

6(qp- 0) = (g1, 0. R) 0(go. 1) = (q1. 1, R Ry)
6(g,- 0)= (g1, 0, R) 8(g;-) =(q. L, R) Ry
&g, D)= (g2 b, L) (Ra)
6(qs, 0) = (g3, b. L) 0(qa 1) = (g3, b. L) (Ry)
6(gs. 0) = (¢, 0. L) 0(gs D) = (ga. 1. L) (Rs)
0(qs, b) = (g4, b, R) (Re)

Let w be the input string. By (R;) and (R,), M reads the entire input string
w. At the end, M is in state ¢,. On seeing the blank to the right of w. M reaches
the state g> and moves left. The rightmost string in w is erased (by (Ry)) and
the state becomes g;. Afterwards M moves to the left until it reaches the left-
end of w. On seeing the blank b to the right of w. M changes its state to gy,
which is the final state of M. From the construction it is clear that the rightmost
symbol of w is erased.

EXAMPLE 9.16

Construct a TM that accepts L = {0% | n > 0}.

Solution
Let w be an input string in {0}*. The TM accepting L functions as follows:

1. It writes b (blank symbol) on the leftmost O of the input string w. This

is done to mark the left-end of w.

M reads the symbols of w from left to right and replaces the alternate

0’s with x’s.

If the tape contains a single 0 in step 2. M accepts w.

4. If the tape contains more than one 0 and the number of 0’s is odd in
step 2, M rejects w.

5. M returns the head to the left-end of the tape (marked by blank b in
step 1).

6. M goes to step 2.

[

(5]

Each iteration of step 2 reduces w to half its size. Also whether the number
of O's seen is even or odd is known after step 2. If that number is odd and
greater than 1, w cannot be 07 (step 4). In this case M rejects w. If the number
of 0's seen is 1 (step 3), M accepts w (In this case 0% is reduced to O in
successive stages of step 2).

We define M by

M = ({q0. q1- 42 43 G- g5 @:}s {0}, {0, x. b}, 6, qo. b {gs})
where 6 is defined by Table 9.12.

UL E—

306 B Theory of Computer Science

TABLE 9.12 Transition Table for Example 9.16

Present state Tape symbol
0 b X

9o bRa, bRa; xR,
G4 xRq, bRq; ¥Rg,

2 0Rgs bRq, xRqy
G *Rqy bR xRgs
e OLqgs4 bRg, xLgy
g: - - -
Qt - — -

From the construction, it is apparent that the states are used to know
whether the number of 0's read is odd or even.
We can see how M processes 0000.

¢,0000 }— bq;000 | bxq:00 |— bxq30 p— bxOxq,b
= bx0quxb |— bxqOxb bqx0xb |— qybx0xb
= bqx0xb |— bxq,0xb |— bxxqaxb bxxxq-b
— bxxqxb — bxquxxb }— bq soexb = qubxxxb
= bgoxxb = bxqxxb b= bxxqxb — bxxxqb
b= baxby;.

Hence M accepts w.

Also note that M always halts. If M reaches g5 the input string w 1s
accepted by M. If M reaches ¢, w is not accepted by M: in this case M halts
in the trap state.

EXAMPLE 9.17
Let M = ({go. q1, g-}. 10. 1}, {0. 1, b}. & go. {92}

where 0 is given by

0(qo- 0) = (g1, 1. B) (Rp
0(g1. 1) = (gp. 0, R) (R»)
0(qy. b) = (g». b, R) (Rj)
Find T(M).
Solution

Let w e T(M). As 8(go, 1) is not defined, w cannot start with 1. From (R;)
and (R»). we can conclude that M starts from ¢, and comes back to gq after
reaching 01.

So. qo(01)" = (10)"go. Also. qo0b |— 1gb |— 1bq2.

Chapter 9: Turing Machines and Linear Bounded Automata

jus|

=

307

So, (01)'0 € T(M). Also, (01)"0 is the ounly string that makes M move from
Go to g». Hence, T(M) = {{01Y'0 | n 2 O}.

SELF-TEST

Choose the correct answer te Questions 1-10:

1.

(=]

n

For the standard TM:

(ay 2 =T

b T'cX

) 2cl

(d) Z is a proper subset of T,

. In a standard TM. 6(q. a), g€ Q. a e T is

(a) defined for afl (q. @) € @ x T

(b} defined for some. not necessarily for all (¢, a) € O x T

(¢} defined for no element (¢. a) of @ x T
(d) a set of triples with more than one element.

If 8(g. x) = (p. v. L), then

(@) X1Xa oo X QX e Xy b XX XX W - Y,
(0) X XY Xy Xy L XN
iGN e Ny X XD XN
(d) xixoooxLgy X X XYY

(c) ¥x» ... x

If 8(g. x) = (p. v. R). then

x!?

(@) XpXa oo X gy - Xy e X e Xl P

(b) XX L Xgyy Ly, |>——— R AR I ¢ 22 SR I

(C) R G N I 17 A . i— LD o B IR 22 93 SVE TN
(d) XpXa o X gy Xy, i— XX o X VP -

If 8(g. x;) = (p. v. L). then

(@) g X, = pyxs X,

M) g ox, b= yprs L x,

(€) gvixa ... x, b pbxy ... x,

(d) goixy .o x =pbyy .y,

If 8(g. x,) = (p. v. R). then

(@) x; ... X00x, B pavods o,
() X1 Ly, P opyaxs L. X,
(€) ¥ . X%, = XX . xo0pb
(d) xp oo Xy, B oxxa L X 0pb
For the TM given in Example 9.6:

(@) golbll | bql1bbl

(b) galbll — bg,i1bbl

(©) gplbll |— 1gpblll

{(d) golbll |— g:b11bbl1

308

2 Theory of Computer Science

8.

For the TM given in Example 9.4
(a) 011 is accepted by M

(b) 001 is accepted by M

(c¢) 00 is accepted by M

(d) 0011 is accepted by M.

9. For the TM given in Example 9.5:

10.

923

9.4

9.5

9.6

9.7
9.8

9.9

9.10
9.11

(a) 1 is accepted by M

{b) 11 is accepted by M

{¢) 111 is accepted by M
(dy 11111 is accepted by M

In a standard TM (Q. . I", &. qq, b. F) the blank symbol b is

(a)y imnx-T
by inT - X
Iz

(d) none of these

EXERCISES

1 Draw the transition diagram of the Turing machine given in Table 9.1.

Represent the transition function of the Turing machine given in
Example 9.2 as a set of quintuples.

Construct the computation sequence for the input 111 for the Turing
machine given in Example 9.5.

Construct the computation sequence for strings 1213, 2133, 312 for the
Turing machine given in Example 9.8.

Explain how a Turing machine can be considered as a computer of integer
functions (i.e. as one that can compute integer functions; we shall discuss
more about this in Chapter 11).

Design a Turing machine that converts a binary string into its equivalent
unary string.

Construct a Turing machine that enumerates {0"1"|n = 1}.

Construct a Turing machine that can accept the set of all even
palindromes over {0, 1}.

Construct a Turing machine that can accept the strings over {0, 1}
containing even number of 1's.

Design a Turing machine to recognize the language {a"'b"c™|n.m > 1}.
Design a Turing machine that can compute proper subtraction. i.e.

m = n. where m and n are positive integers. m = n is defined as m — n
ifm>nand 01if m < n.

\ Decidability and
J Recursively Enumerable
Languages

In this chapter the formal definition of an algorithm is given. The problem of
decidability of various class of languages is discussed. The theorem on halting
problem of Turing machine is proved.

10.1 THE DEFINITION OF AN ALGORITHM

In Section 4.4, we gave the definition of an algorithm as a procedure (finite
sequence of instructions which can be mechanically carried out) that terminates
after a finite number of steps for any input. The earliest algorithm one can think
of is the Euclidean algorithm, for computing the greatest common divisor of
two natural numbers. In 1900, the mathematician David Hilbert, in his famous
address at the International congress of mathematicians in Paris, averred that
every definite mathematical problem must be susceptible for an exact settlement
either in the form of an exact answer or by the proof of the impossibility of its
solution. He identified 23 mathematical problems as a challenge for future
mathematicians; only ten of the problems have been solved so far.

Hilbert's tenth problem was to devise ‘a process according to which it can
be determined by a finite number of operations’. whether a polynomial over
Z has an integral root. (He did not use the word ‘algorithm’ but he meant the
same.) This was not answered until 1970.

The formal definition of algorithm emerged after the works of Alan Turing
and Alanzo Church in 1936. The Church-Turing thesis states that any
algorithmic procedure that can be carried out by a human or a computer, can
also be carried out by a Turing machine. Thus the Turing machine arose as
an ideal theoretical model for an algorithm. The Turing machine provided a
machinery to mathematicians for attacking the Hilberts’ tenth problem. The
problem can be restated as follows: does there exist a TM that can accept a

309

310 & Theory of Computer Science

polynomial over n variables if it has an integral root and reject the polynomial
if it does not have one.

In 1970, Yuri Matijasevic. after studying the work of Martin Davis, Hilary
Putnam and Julia Robinson showed that no such algorithm (Turing machine)
exists for testing whether a polynomial over n variables has integral roots. Now
it is universally accepted by computer scientists that Turing ronachine is a
mathematical model of an algorithm.

10.2 DECIDABILITY

We are familiar with the recursive definition of a function or a set. We also
have the definitions of recursively enumerable sets and recursive sets (refer to
Section 4.4). The notion of a recursively enumerable set (or language) and a
recursive set (or language) existed even before the dawn of computers.

Now these terms are also defined using Turing machines. When a Turing
machine reaches a final state. it “halts.” We can also say that a Turing machine
M halts when M reaches a state g and a current symbol ¢ to be scanned so
that 6(q. a) is undefined. There are TMs that never halt on some inputs in any
one of these ways. So we make a distinction between the languages accepted
by a TM that halts on all inpur strings and a TM that never halts on some input
strings.

Definition 10.1 A language L < X* is recursively enumerable if there exists
a T™M M. such that L = T(M).

T

Definition 16.2 A language L ¢ Z* is recursive if there exists some
T™M M that satisfies the following two conditions.

PERN

(1) If w & L then M accepts w (that is. reaches an accepting state on

processing w) and halts.
i1y If w ¢ L then M eventually halts. without reaching an accepting state.

Note: Definition 10.2 formalizes the notion of an “algorithm’. An algorithm,
in the usual sense, is a well-defined sequence of steps that always terminates
and produces an answer. The Conditions (i) and (ii) of Definition 10.2 assure
us that the TM always halts, accepting w under Condition (i) and not accepting
under Condition (i1). So a TM. defining a recursive language (Definition 10.2)
always halts eventually just as an algorithm eventually terminates.

A problem with only two answers Yes/No can be considered as a language
L. An instance of the problem with the answer “Yes™ can be considered as an
element of the corresponding language L; an instance with answer ‘No’ is
considered as an element not in L.

Definition 10.3 A problem with two answers (Yes/No) is decidable if the
corresponding language is recursive. In this case, the language L is also called
decidable.

Chapter 10: Decidability and Recursively Enumerable Languages B 311

Definition 10.4 A problem/language is undecidable if it is not decidable.

Note: A decidable problem is called a solvable problem and an undecidable
problem an unsolvable problem by some authors.

10.3 DECIDABLE LANGUAGES

In this section we consider the decidability of regular and context-free
languages. '

First of all. we consider the problem of testing whether a deterministic
{finite automaton accepts a given input string w.

Definition 10.5
Appa = {(B, w) | B accepts the input string w}
Theorem 10.1 App, is decidable.

Proof To prove the theorem. we have to construct a TM that always halts
and also accepts Apgy. We describe the TM M using high level description
(refer to Section 9.5). Note that a DFM B alwavs ends in some state of B after
n transitions for an input string of length .

We define a TM M as follows:

1. Let B be a DFA and w an input string. (B, w) is an input for the Turing
machine M.
Simulate B and input w in the TM M.
If the simulation ends in an accepting state of B. then M accepts w.
If it ends in a nonaccepting state of B. then M rejects w.

[UNI SO

We can discuss a few implementation details regarding steps 1. 2 and 3
above. The input (B. w) for M is represented by representing the five
components Q, X. &, g, f by strings of £* and input string w € Z¥. M checks
whether (B. w) 1s a valid input. If not. it rejectes (B, w) and halts. If (B, w)
is a valid input. M writes the initial state ¢, and the leftmost input symboi of
w. It updates the state using 6 and then reads the next symbol in w. This
explains step 2.

If the simulation ends in an accepting state w, then M accepts (B, w).
Otherwise, M rejects (B. w). This is the description of step 3.

It is evident that M accepts (B. w) if and only if w is accepted by the
DFA B i

Definition 10.6
Acrg = (G, w) | the context-free grammar G accepts the input string w}
Theorem 10.2 Acg; 1s decidable.

Preof We convert a CFG into Chomsky normal form. Then any derivation
of w of length & requires 2k — 1 steps if the grammar is in CNF (refer
to Example 6.18). So for checking whether the input string w of length & is

312 B Theory of Computer Science

in L(G), it is enough to check derivations in 2k — 1 steps. We know that there
are only finitely many derivations in 2k — 1 steps. Now we design a TM M
that halts as follows.

1. Let G be a CFG in Chomsky normal form and w an input string.
(G, w) is an input for M.

2. If k =0, list all the single-step derivations. If & # 0, list all the
derivations with 2k — 1 steps.

3. If any of the derivations in step 2 generates the given string w, M
accepts (G, w). Otherwise M rejects.

The implementation of steps 1-3 is similar to the steps in Theorem 10.1.
(G, w) is represented by representing the four components Vy, X, P, S of G
and input string w. The next step of the derivation is got by the production
to be applied.

M accepts (G, w) if and only if w is accepted by the CFG G.

In Theorem 4.3, we proved that a context-sensitive language is recursive.
The main idea of the proof of Theorem 4.3 was to construct a sequence
{Wo. Wy, ..., W,} of subsets of (Vy u Z)* that terminates after a finite
number of iterations. The given string w € I* is in L(G) if and only if w &
W, With this idea in mind we can prove the decidability of the context-
sensitive language. I

Definition 10.7 Acss = {(G, w) | the context-sensitive grammar { accepts
the input string w}.

Theroem 10.3 A-g; is decidable.

Proof The proof is a modification of the proof of Theorem 10.2. In
Theorem 10.2, we considered derivations with 2k — 1 steps for testing whether
an input string of length & was in L(G). In the case of context-sensitive

grammar we construct W; = {a e (Vy U Z)* | S :G> o in i or fewer steps and

| o} € n}. There exists a natural number k such that W, = Wiy = W = ...
(reter to proof of Theorem 4.3).

So w € L(G) if and only if w € W,. The construction of W, is the key
idea used in the construction of a TM accepting Acsg. Now we can design a
Turing machine M as follows:

1. Let G be a context-sensitive grammar and w an input string of length
n. Then (G, w) is an input for TM.

2. Construct Wy = {S}. Wy = W, U {B e (Vy U X)*|there exists
o; € W, such that @ = f and | B| < n}. Continue until W, = W,
for some k. (This is possible by Theorem 4.3.)

3. Ifwe W, we L(G) and M accepts (G, w); otherwise M rejects
(G, w). i

Note: If £, denotes the class of all decidable languages over X, then

irl c l<cﬂ o icﬂ c id

Chapter 10: Decidability and Recursively Enumerable Languages & 313

10.4 UNDECIDABLE LANGUAGES

In this section we prove the existence of languages that are not recursively
enumerable and address the undecidability of recursively enumerabie
languages.

Theorem 10.4 There exists a language over Z that is not recursively
enumerable.

Proof A language L is recursively enumerable if there exists a TM M such
that L = T(M). As Z is finite, Z¥ is countable (that is, there exists a one-to-
one correspondence between X* and N).

As a Turing machine M is a 7-tuple (Q, £, T, 6 ¢y b, F) and each
member of the 7-tuple is a finite set. M can be encoded as a string. So the
set [of all TMs is countable.

Let # be the set of all languages over X. Then a member of £ is a subset
of * (Note that T* is infinite even though ¥ is finite). We show that / is
uncountable (that is. an infinite set not in one-to correspondence with N).

We prove this by contradiction. If # were countable then £ can be

written as a sequence {L;, L., Ls, ...}. We write ¥ as a sequence {wy, wo,
w2, ...} So L; can be represented as an infinite binary sequence x;;xpXp. . .
where
(1 iftw, el
- j

,’C”

0 otherwise

Using this representation we write L; as an infinite binary sequence.

LI XXy L. -\-]‘f e
L: : X:X,’C::X:‘; e .X':]' .
Li XXXy L YU

Fig. 10.1 Representation of + .

We define a subset L of T* by the binary sequence vy y.vy ... where y; =
I—x; Itx;=0.v,=1and if x; = 1, v, = 0. Thus according to our assumption
the subset L of X* represented by the infinite binary sequence yv-vs ...
should be L, for some natural number & But L # L, since w;, € L if and only
if wy, ¢ L;. This contradicts our assumption that - is countable. Therefore £
is uncountable. As / is countable. 7 should have some members not
corresponding to any TM in [This proves the existence of a language over
2 tnat is not recursively enumerable. i

Definition 10.8 Ay = {(M, w)| The TM M accepts w}.

314 & Theory of Compurter Science

Theorem 10.5 Ary is undecidable.

Proof We can prove that Ay Is recursively enumerable. Construct a TM U
as folows:

(M, w) is an input to U. Simulate M on w. If M enters an accepung state,
U accepts (M, w). Hence Apy is recursively enumerable. We prove that Ay
is undecidable by contradiction. We assume that Aty is decidable by a TM H
that eventually halts on all inputs. Then

accept it M accepts w
HM, w) = reject if M does not accept w
We construct a new TM D with H as subroutine. D calls / to determine
what M does when it receives the input {M}, the encoded description of M as
a string. Based on the received information on (M. (M), D rejects M if M
accepts (M) and accepts M if M rejects (M). D is described as follows:

1. (M) is an input to D, where (M) is the encoded string representing M.
2. D calls H to run on (M, {M))
3. D rejects (M) if H accepts (M, {M)) and accepts (M) if H rejects
(M, M),
Now step 3 can be described as follows:
(accept if M does not accept (M)
DUMY) = 4 ,
Lreject if M accepts (M)
Let us look at the action of D on the input (D). According to the
construction of D,
2['accept if D does not accept (D)

D)) =
Lreject if D accepts (D)

This means D accepts (D) if D does not accept (D}, which is a
contradiction. Hence ATM is undecidable. I

The Turing machine U used in the proof of Theorem 10.5 is called the
universal Turing machine. U is called universal since it is simulating any other
Turing machine.

10.5 HALTING PROBLEM OF TURING MACHINE

In this section we introduce the reduction technique. This technique is used to
prove the undecidability of halting problem of Turing machine.

We say that problem A is reducible to problem B if a solution to problem
B can be used to solve problem A.

For example, if A is the problem of finding some root of x* = 3x" + 2 =0
and B is the problem of finding some root of r-2= 0, then A is reducible
0 B. As x” = 2 is a factor of x* — 3x° + 2, a root of ° — 2 = 0 is also a root
of ¥ = 3x + 2 =0.

Chapter 10: Decidability and Recursively Enumerable Languages & 315

Note: If A is reducible to B and B is decidable then A is decidable. If A is
reducible to B and A is undecidable, then B is undecidable.

Theorem 10.6 HALT = {(M, w)|The Turing machine M halts on input
w} is undecidable.

Proof We assume that HALTyy is decidable, and get a contradiction. Let M,
be the TM such that T(M,) = HALT{y and let M, halt eventually on all
(M, w). We construct a TM M, as follows:

1. For M,, (M, w) is an input.

2. The TM M, acts on (M, w).

3. If M, rejects (M, w) then M, rejects (M, w).

4. If M, accepts (M, w), simulate the TM M on the input string w until
M halts. '

5. If M has accepted w, M, accepts (M, w); otherwise M, rejects (M, w).

When M, accepts (M, w) (in step 4), the Turing machine M halts on w.
In this case either an accepting state ¢ or a state ¢ such that 6(q, a) is
undefined till some symbol a in w is reached. In the first case (the first
alternative of step 5) M. accepts (M. w). In the second case (the second
alternative of step 5) M, rejects (M, w).

It follows from the definition of M- that M, halts eventually.

Also, T(M-~) = {(M, w)| The Turing machine accepts w}
= Amm
This is a contradiction since Aty is undecidable. I

10.6 THE POST CORRESPONDENCE PROBLEM

The Post Correspondence Problem (PCP) was first introduced by Emil Post
in 1946. Later, the problem was found to have many applications in the theory
of formal languages. The problem over an alphabet £ belongs to a class of
yes/no problems and is stated as follows: Consider the two lists x = (xy .. . x,).
v =1(y ...y, of nonempty strings over an alphabet £ = {0, 1}. The PCP
is to determine whether or not there exist i;. ..., i,, where 1 <i; < n, such
that
Xip oo Xipy = Vi oo Vi,

Note: The indices i;’s need not be distinct and m may be greater than n.

Also, if there exists a solution to PCP, there exist infinitely many solutions.

EXAM PLE 10.1

Does the PCP with two lists x = (b, bab®, ba) and v = (b°, ba, a) have a
solution? '

316 = Theory of Computer Science

Solution

We have to determine whether or not there exists a sequence of substrings of
x such that the string formed by this sequence and the string formed by the
sequence of corresponding substrings of y are identical. The required sequence
is given by iy = 2, ih = 1, i3 = 1, iy = 3, ie. (2, 1, 1.3), and m = 4. The

corresponding strings are
wr] [2] [7] e B
X X3 Y2 R4 N y3

X X1

Thus the PCP has a solution.

EXAMPLE 10.2

Prove that PCP with two lists x = (01, 1, 1), y = (012, 10, 11) has no solution.

Solution

For each substring x; € x and y; € y, we have |x;| < |y;]| for all i. Hence
the string generated by a sequence of substrings of x is shorter than the string
generated by the sequence of corresponding substrings of y. Therefore, the PCP
has no solution.

Note: If the first substring used in PCP is always x; and y;, then the PCP
is known as the Modified Post Correspondence Problem.

EXAMPLE 10.3

Explain how a Post Correspondence Problem can be treated as a game of
dominoes.

Solution

The PCP may be thought of as a game of dominoes in the following way: Let
each domino contain some x; in the upper-half, and the corresponding
substring of y in the lower-half. A typical domino is shown as

x; | upper-half

¥i lower-half

The PCP is equivalent to placing the dominoes one after another as a
sequence (of course repetitions are allowed). To win the game, the same string
should appear in the upper-half and in the lower-half. So winning the game
is equivalent to a solution of the PCP.

Chapter 10: Decidability and Recursively Enumerable Languages =2 317

We state the following theorem by Emil Post without proof.
Theorem 10.7 The PCP over X for |X| = 2 is unsolvable.

It is possible to reduce the PCP to many classes of two outputs
(ves/no) problems in formal language theory. The following results can be
proved by the reduction technique applied to PCP.

1. If L, and L, are any two context-free languages (type 2) over an
alphabet £ and |Z| 2 2, there is no algorithm to determine whether or
not
(@ LinLy=9,

(b) L, n L, is a context-free language,
(¢) L, ¢ Lo, and
(d) L, = L.

2. If G is a context-sensitive grammar (type 1), there is no algorithm to
determine whether or not
(a) LG) =0,

(b) L(G) is infinite, and
(¢) xy € L{G) for a fixed string xg.

3. If G is a type O grammar, there is no algorithm to determine whether

or not any string x € X* is in L(G).

10.7 SUPPLEMENTARY EXAMPLES

EXAMPLE 104

If L is a recursive language over X, show that L (L is defined as T* — L) is
also recursive.

Solution

As L is recursive, there is a Turing machine M th_at halts and T(M) = L. We
have to construct a TM M|, such that T(M;) = L and M, eventually halts.
M, is obtained by modifying M as follows:

1. Accepting states of M are made nonaccepting states of M.

2. Let M, have a new state gz After reaching g; M, does not move in
further transitions.

3. If ¢ is a nonaccepting state of M and &(g, x) is not defined, add a
transition from ¢ to gy for M.

As M halts, M, also halts. (If M reaches an accepting state on w, then M,
da-es not accept w and halts and conversely.)
Also M, accepts w if and only if M does not accept w. So I is recursive.

318 B Theory of Computer Science

EXAMPLE 10.5

If L and L are both recursively enumerable, show that L and L are recursive.

Solution

Let M, and M, be two TMs such that L = 7(M,) and L = T(M,). We construct
a new two-tape TM M that simulates M, on one tape and M, on the other.

If the input string w of M is in L, then M, accepts w and we declare that
M accepts w. If w e L, then M, accepts w and we declare that M halts without
accepting. Thus in both cases, M eventually halts. By the construction of M
it is clear that T{M) = T(M;) = L. Hence L is recursive. We can show that
L is recursive, either by applying Example 10.4 or by interchanging the roles
of M, and M, in defining acceptance by M.

EXAMPLE 106

Show that ETM is not recursively enumerable.

Solution

We have already seen that Ay is recursively enumerable (by Theorem 10.5).
If Aqy were also recursively enumerable, then Apy is recursive (by
Example 10.5). This is a contradiction since Apy is not recursive by
Theorem 10.5. Hence A 1™ 18 not recursively enumerable.

"EXAMPLE 10.7

Show that the union of two recursively enumerabie languages is recursively
enumerable and the union of two recursive languages is recursive.

Solution

Let L; and L~ be two recursive languages and M,, M, be the corresponding
TMs that halt. We design a TM M as a two-tape TM as follows:

1. w is an input string to M.

M copies w on its second tape.

M simulates M, on the first tape. If w is accepted by M, then M

accepts w.

4. M simulates M- on the second tape. If w is accepted by M, then M
accepts w.

[T

M always halts for any input w.

Thus L; v L, = T(M) and hence L; U L is recursive.

If Ly and L» are recursively enumerable. then the same conclusion gives
a proof for L; v L, to be recursively enumerable. As M, and M, need not
halt. M need not halt.

Chapter 10: Decidability and Recursively Enumerable Languages B 319

SELF-TEST

1. What is the difference between a recursive language and a recursively
enumerable language?

2. The DFA M is given by
M = ({g0. ¢ 42 43} {0, 1}, 8 qo. {go])

where & is defined by the transition Table 10.1.

TABLE 10.1 Transition Table for Self-Test 2

State 0 1
%@ A2 g1
G1 7] o
9z do g3
93 @ gz

Answer the following:

(ay Is (M, 001101) in Apgs?

(b) Is (M, 01010101) in Apga?

(c) Does M € Appa?

(d) Find w such that (M, w) € Apga.

3. Whar do you mean by saying that the halting problem of TM is
undecidable?

4. Describe Appa, Aceg. Acsg: Ay, and HALT 7.

5. Give one language from each of £y, £ Leqr

6. Give a language
(a) which is in 7 but not in 7,
{b) which is in Z but not in £

{c¢) which is in £ but not in £ 4.

EXERCISES
10.1 Describe the Euclid’s algorithm for finding the greatest common
divisor of two natural numbers.

10.2 Show that Aypra = {(B, w)|B is an Npgs and B accepts w} is
decidable.

10.3 Show that Epgs = {M|M is a Dpy and T(M) = @} is decidable.
10.4 Show that EQprs = {(A, B)|A and B are DFAs and T(A) = T(B)} is
decidable

10.5 Show that Ecgg is decidable (Ecgg 1s defined in a way similar to that
of Epga).

320

B Theory of Computer Science

10.6

10.7
10.8

10.9
10.10

10.11
10.12
10.13

10.14

10.15

10.16

Hints:

10.17

Give an example of a language that is not recursive but recursively
enumerable.

Do there exist languages that are not recursively enumerable?

Let L be a language over X. Show that only one of the following are
possible for L and L.

(a) Both L and L are recursive.

(b) Neither L nor L is recursive.

(c) L is recursively enumerable but L is not.

(d L is recursively enumerable but L is not.

What is the difference between Ay and HALTty?

Show that the set of all real numbers between 0 and 1 is uncountable.
(A set § is uncountable if S is infinite and there is no one-to-one
correspondence between S and the set of all natural numbers.)

Why should one study undecidability?
Prove that the recursiveness problem of type 0 grammar is unsolvable.

Prove that there exists a Turing machine M for which the halting
problem is unsolvable.

Show that there exists a Turing machine M over {0, 1} and a state g,
such that there is no algorithm to determine whether or not M will enter
the state g,, when it begins with a given ID.

Prove that the problem of determining whether or not a TM over {0,1}
will ever print the symbol 1, with a given tape configuration, is
unsolvable.

(a) Show that {x|x is a set and x ¢ x} is not a set. (Note that this
seems to be well-defined. This is one version of Russell’s paradox.)

(b) A village barber shaves those who do not shave themselves but no
others. Can he achieve his goal? For example, who is to shave the
barber? (This is a popular version of Russell’s paradox.)

(a) Let S = {x|x be asetand x ¢ x}. If S were a set, then S € S or
Se S If § ¢ §by the “definition’ of S, then S € S. On the other
hand, if S € § by the ‘definition’ of S, then S ¢ S. Thus we can
neither assert that S ¢ S nor § € §. (This is Russell’s paradox.)
Therefore, S is not a set.

(b) Let S = {x|x be a person and x does not shave himself}. Let b
denote the barber. Examine whether » € S. (The argument is
similar to that given for (a).) It will be instructive to read the proof
of HP of Turing machines and this example, in order to grasp the
similarity.

Comment on the following: “We have developed an algorithm so

complicated that no Turing machine can be constructed to execute the

algorithm no matter how much (tape) space and time is allowed.”

Chapter 10: Decidability and Recursively Enumerable Languages 321

10.18

10.19

10.20

10.21

10.22
10.23

10.24

Prove that PCP is solvable if |Z| = 1.

Ietx=(x;...x)andy=(y ...y, be two lists of nonempty strings
over L and | Z | 2 2. (1) Is PCP solvable for n = 1? (ii) Is PCP solvable
for n = 27

Prove that the PCP with {(01, 011), (1, 10), (1, 11)} has no solution.
(HSI’C, Xy = 01, Xy = 1, X3 = 1, Yy = 011 ¥y = 10, V3 = 11)

Show that the PCP with § = {(0, 10), (1°0, 0%, (071, 10)} has no
solution. [Hint: No pair has common nonempty initial substring.]

Does the PCP with x = (b°, ab®) and y = (b°, bab?) have a solution?
Find at least three solutions to PCP defined by the dominoes:

1 10 10111

111 0 10

(a) Can you simulate a Turing machine on a general-purpose
computer? Explain.

(b) Can you simulate a general-purpose computer on a Turing
machine? Explain.

In this chapter we shall discuss the class of primitive recursive functions—a
subclass of partial recursive functions. The Turing machine is viewed as a
mathematical model of a partial recursive function.

11.1 INTRODUCTION AND BASIC CONCEPTS

In Chapters 5, 7 and 9, we considered automata as the accepting devices. In
this chapter we will study automata as the computing machines. The problem
of finding out whether a given problem is ‘solvable’ by automata reduces to
the evaluation of functions on the set of natural numbers or a given alphabet
by mechanical means.

We start with the definition of partial and total functions.

A partial function f from X to Y is a rule which assigns to every element
of X at most one element of Y.

A total function from X to Y is a rule which assigns to every element of
X a unique element of Y. For example, if R denotes the set of all real numbers,
the rule f'from R to itself given by f(») = +/r is a partial function since f(r)
is not defined as a real number when r is negative. But g(r) = 2r is a total
function from R to itself. (Note that all the functions considered in the earlier
chapters were total functions.)

In this chapter we consider total functions from X* to X, where
X=1{0,1,2 3, ...} or X = {a b}* Throughout this chapter we denote
(0, 1, 2, ...) by N and (a. b) by Z. (Recall that X* is the set of all k-tuples
of elements of X.) For example, fim, n) = m — n defines a partial function
from N to itself as f(m, n) is not defined when m — n < 0; glm, n) = m+n
defines a total function from N to itself.

322

Chapter 11: Computability H 323

Remark A partial or total function f from X* to X is also called a function
of k variables and denoted by f(x;, x», ..., xp). For example. f(x;. x;) =
2x; + xy 15 a function of two variables: f(1, 2) = 4, 1 and 2 are called
arguments and 4 is called a value. g(w;. w-) = wpw. is a function of two
variables (wyw, € X¥); glab, aa) = abaa. ab, aa are called arguments and
abaa is a value.

11.2 PRIMITIVE RECURSIVE FUNCTIONS

In this section we construct primitive recursive functions over N and X. We
define some initial functions and declare them as primitive recursive functions.
By applying certain operations on the primitive recursive functions obtained so
far. we get the class of primitive recursive functions.

11.2.1 INITIAL FUNCTIONS

The initial functions over N are given in Table 11.1. In particular,

Sdy =35 Z7)y=90

~

USQ, 4, Ty =4, UP2. 4, Ty =2 U2 4.7 =7

TABLE 11.1 Initial Functions Over N

Zero function Z defined by Z{(x) = O.
Successor function S defined by S(x) = x + 1.
Projection function U/ defined by U (xy, ..., xp) = ¥

Note: As Ul(x) = x for every x in N. U} is simply the identity function. So
Ul is also termed a generalized identity function.

The initial functions over X are given in Table 11.2. In particular,
nil (abab) = A
cons a(abab) = aabab
cons b(abab) = babab

Note: We note that cons a(x) and cons b(x) simply denote the concatenation
of the ‘constant’ string « and x and the concatenation of the constant string
b and x.

TABLE 11.2 Initial Functions Over {a, b}

nil (x) = A
cons a(x)
cons b(x)

ax
bx

324 H Theory of Computer Science

In the following definition, we introduce an operation on functions over X.

Definition 11.1 1If f}, f5, ..., f; are partial functions of n variables and g is
a partial function of k variables, then the composition of g with fi, 5, . . ., f
is a partial function of n variables defined by

g(fl(xls X oo xn)9 fZ(-xlﬂ X2s vy 'xll)’ sy fk(xls X2y s xn))

If, for example, f}, f> and f3 are partial functions of two variables and g
is a partial function of three variables, then the composition of g with fi, f5,

fiis given by g(fi(xy, x2), folxy, x2). falx1, x2))-

EXAMPLE 11.1

Let fitx, v) = x + y. folx, ¥) = 2x, falx, v) = xy and g(x, ¥y,) = x + ¥y + z be
functions over N. Then
g(filx. 3, folx, ¥), falx,) = g(x + v, 2%, xy)
=X +y+ 2+
Thus the composition of g with f, f3, f3 is given by a function A:
Ax, y) =x+y+ 2x + xy

Note: Definition 11.1 generalizes the composition of two functions. The
concept is useful where a number of outputs become the inputs for a subsequent
step of a program.

The composition of g with fi. .. ., f, is total when g, fi, f5, . . ., f, are total.
The function given in Example 11.1 is total as f;, f», f3 and g are total.

EXAMPLE 11.2

let fi (x, vy = x— v, folx,¥) = vy — x and g(x, ¥y) = x + y be functions over
N. The function f] is defined only when x = y and f, is defined only when
y 2 x. So f; and f5 are defined only when x = y. Hence when x =y,

g(file. 3. folx, ¥)) = gx — x, x = x) = g(0, 0) = 0

Thus the composition of g with f] and f, is defined only for (x, x), where
x € N

EXAMPLE 11.3

Let fi(xi. x2) = xyxa, folxy, x2) = A, falxy, x2) = xp, and glxy, xa, x3) = Xox3
be functions over X. Then
g(filx1. x2), folxr, xa), falxy, x2)) = glxpxa, AL x) = Axy = x;

So the composition of g with f|. f5, f5 is given by a function h, where
h(xl, x:) = Xi.

Chapter 11: Computability = 325

The next definition gives a mechanical process of computing a function.

Definition 11.2 A function f(x) over N is defined by recursion if there exists
a constant k (a natural number) and a function h{x, y) such that

fO) =k fin+ 1) = hn, fin) (11.1)

By induction on n, we can define f(n) for all #n. As f (0) = k, there is basis
for induction. Once f(n) is known, f(n + 1) can be evaluated by using (11.1).

EXAMPLE 11.4

Define n! by recursion.

Solution
fO) =1 and f(n + 1) = h(n, f(n)), where h(x, y) = S(x) = y.

The above definition can be generalized for f(x;. xp, X, X,p1). We

fix » variables in f(x;, X2, . . . X,u(), S8Y. X|, X2 .. . X,. We apply Definition
11.2 to f(x;, x5, ..., X, ¥). In place of k we get a function g(xy, x, ..., X,)
and in place of A(x, y), we obtain A(x;, xa, ..., X, v, flxg, ... X, YD)

Definition 11.3 A function f of n + 1 variables is defined by recursion if
there exists a function g of n variables, and a function /1 of n + 2 variables,
and f is defined as follows:

flx x5 on X, 0) = g3 X0, LX) (11.2)

fOqg oo x, y £ D) = B, xan o X y, fX X0 o X,) (11.3)
We may note that f can be evaluated for all arguments (x|, x5, ..., x,, ¥)

by induction on y for fixed x;, x», ..., x,. The process is repeated for every

X1 X2 o X

Now we can define the primitive recursive functions over N.

11.2.2 PRIMITIVE RECURSIVE FUNCTIONS OVER N

Definition 11.4 A total function f over N is called primitive recursive
(1) if it is any one of the three initial functions, or (ii) if it can be obtained
by applying composition and recursion a finite number of times to the set of
initial functions.

EXAMPLE 11.5

Show that the function fi(x, ¥) = x + y is primitive recursive.

Solution

fi 1s a function of two variables. If we want f; to be defined by recursion, we
need a function g of a single variable and a function /2 of three variables.

filx,) =x+0=x

326 & Tneory of Computer Science

By comparing fi(x, 0) with LH.S. of (11.2), we see that g can be defined by
glv) = x = Ul(®
Also. fils, v+ D =x+ G+ D=+ +1=filx, v +1
By comparing fi(x, ¥ + 1) with LH.S. of (11.3), we have
h(x v, filee ¥) = fitx,) + 1= S((x) = S(US(x . fitx, »))

Define h(x, v, z) = S(U3(x, y, 2)). As g = U, it is an initial function. The
function 1 is obtained from the initial functions U5 and S by composition, and
by recursion using g and h. Thus f; is obtained by applying composition and
recursion a finite number of times to initial functions U/, U3 and S. So f, is
primitive recursive.

Note: A total function is primitive recursive if it can be obtained by applying
composition and recursion a finite number of times to primitive recursive
functions f;. f>. ..., f,» This is clear as each f; is obtained by applying
composition and recursion a finite number of times to initial functions.

EXAMPLE 11.6

The function fr(x. v) = x # v is primifive recursive.

Solution

As multiplication of two nawral numbers is simply repeated addition, f> has
to be primitive recursive. We prove this as follows:

flx 0) =0 fley+D=x>@+1D =k +x

te. frlx, y + 1) = fi(fa(x. ¥), x). Comparing these with (11.2) and (11.3), we
can write

flr 0) = Z(x) and folr v + 1) = AU v, Bl 9, UL, v, ol y))
By taking g = Z and h defined by
h(x. v, 2) = fitUs(x, y. 2), Uix, y. 2)

we see that f> is defined by recursion. As g and h are primitive recursive, f»
is primitive recursive (by the above note).

EXAMPLE 11.7

Show that f(x, ¥) = x* is a primitive recursive function.

Solution
We define
flx, 0)=1
fly + D=x = flxy)
= Uix, v, f& y) = UsG v, fx,)

Therefore. f(x. v) is primitive recursive.

Chapter 11: Computability =2 327

EXAMPLE 11.8

Show that the following functions are primitive recursive:
(a) The predecessor function p(x) defined by
px)y =x-1 ifx#0, px)=0 ifx=0
(b) The proper subtraction function - defined by
x =~ y=x-y ifxzy and x = y=0 ifx<y
(¢) The absolute value function | | given by
x| =x ifx20, |x]=-=x ifx<0

(d) min (x, y), i.e. minimum of x and y.

Solution

(@) p(0) = 0 and p(v + 1) = UZG. p())

M x=0=xandx =~ G+ 1D =pk = v

© Jx=y=@=»N+0G =0

(&) min(x,) =¥ = (v = ¥)
The first function is defined by recursion using an initial function. So it is
primitive recursive.

The second function is defined by recursion using the primitive recursive

function p and so it is primitive recursive. Similarly. the last two functions are
primitive recursive.

11.2.3 PRIMITIVE RECURSIVE FUNCTIONS OVER {a, b}

For constructing the primitive recursive function over {a, b}, the process is
similar to that of function over N except for some minor modifications. It
should be noted that A plays the role of 0 in (11.2) and ax or bx plays the role
of v + 1 in (11.3). Recall that £ denotes {a. b}.

Definition 11.5 A function f(x) over X is defined by recursion if there exists
a ‘constant” string w € X* and functions h;(x, ¥) and hy(x. y) such that

JN)=w (11.4)
flax) = h(x, f(x) (11.5)
f(bx) = hylx, f(x))

(*- and h» may be functions in one variable.)

328 & Theory of Computer Science

Definition 11.6 A function f(x;, X2, x,) over X is defined by recursion
if there exist functions g(xi. ... X, (), A(xy, - oo Xuya1)s Fo(Xy, oo Xe1),s
such that
S, % oo xy) = glxa, o Xy (11.6)
f(a.xl. Xow v X”) = hl(_xl. Koy vy Xy f(xl, [% RN x”)) (117)
fbxy x0, o X = Bolxy, Xa, oo X fX X, ool X))

(h, and h, may be functions of m variables, where m < n + 1.)

Now we can define the class of primitive recursive functions over X.

Definition 11.7 A total function f is primitive recursive (i) if it is any one
of the three initial functions (given in Table 11.2), or (ii) if it can be obtained
by applying composition and recursion a finite number of times to the initial
functions.

In Example 11.9 we give some primitive recursive functions over X.
Note: As in the case of functions over N, a total function over X is primitive

recursive if it is obtained by applying composition and recursion a finite number
of times to primitive recursive function f, f5. ... fu-

EXAMPLE 11.9

Show that the following functions are primitive recursive:

(a) Constant functions a and b (i.e. a(x) = a. b(x) = b)
(b) Identity function

(c) Concatenation

(d) Transpose

(e) Head function (i.e. head (@1a> . . ., a,) = ay)

(f) Tail function (ie. tail (qya- ... a,) = a» ..., a,)

(g) The conditional function “if x; # A. then x, else x3.”

Solution
(a) As a(x) = cons a (nil (x)). the function a(x) is the composition of the
initial function cons a with the initial function nil and is hence
primitive recursive.
(b) Let us denote the identity function by id. Then,
idA) = A
id(ax) = cons a(x)
id(bx) = cons b(x)
So id is defined by recursion using cons a and cons b. Therefore, the
identity function is primitive recursive.
(¢c) The concatenation function can be defined by
concat(x;. x») = xyx»

concat(A, x,) = id(x,)

Chapter 11: Computability H 329

concat(ax;, x,) = cons a (concat(x;, x))
concat(bx;, x;) = cons b (concat(x;, x1))

So concat is defined by recursion using id, cons a and cons b.
Therefore, concat is primitive recursive.
(d) The transpose function can be defined by trans(x) = xT. Then

trans(A) = A
trans(ax) = concat(trans(x), a(x))
trans(bx) = concat(trans(x), b(x))

Therefore, trans(x) is primitive recursive.
(¢) The head function head(x) satisfies

head(A) = A
head(ax) = a(x)
head(bx) = b(x)

Therefore, head(x) is primitive recursive.
(f) The tail function tail(x) satisfies

tail(A) = A
tail(ax) = id(x)
tail(bx) = id(x)

Therefore, tail(x) is primitive recursive.
(g) The conditional function can be defined by

cond(x), x3, x3) = “if x; # A then x» else x3”
Then,
cond(A, x5, x3) = id(x3)
cond(ax;, x», x3) = id(xs)
cond(bx;, X3, X3) = id(x»)

Therefore, id(x;, x,. x3) is primitive recursive.

11.3 RECURSIVE FUNCTIONS

By introducing one more operation on functions, we define the class of
recursive functions, which includes the class of primitive recursive functions.

Definition 11.8 Let g(x, x». ..., x,, ¥) be a total function over N. g is a
regular function if there exists some natural number y, such that g(x;, x»,
X, ¥o) = 0 for all values x;, x5, ..., x, in N.

330 2 Theory of Computer Science

For mstance, g{x, ¥v) = min(x, v) is a regular function since g(x, 0) = 0
for all x in N. But f(x. ¥) = | x — v | is not regular since f(x, y) = 0 only when
x =y, and so we cannot find a fixed v such that f(x. y) = 0 for all x in N.

Definition 11.9 A function f(x,. X2, ... X,) over N is defined from a total
function g(x;. x> ..., X, v) by minimization if

{a) fix, xo ... x,) is the least value of all v's such that g(x, x5, ... %, ¥) =0
if it exists. The least value is denoted by u(g(x. xa, ..., X, ¥) = 0).
(b) fix. xo.....x,) is undefined if there is no v such that g(x, x;...x, y)=0.

Note: In general, f is partial. But, if g is regular then f is total.

Definition 11.10 A functon is recursive if it can be obtained from the initial
functions by a finite number of applications of composition, recursion and
minimization over regular functions.

Definition 11.11 A function is partial recursive if it can be obtained from
the initial functions by a finite number of applications of composition,
recursion and minimization.

EXAMPLE 11.10

fix) = x/2 is a partial recursive function over N.

Solution

Let g(x, v) = |2v — x|. where 2y — x = 0 for some y only when x is even.
Let fi(x) = i.(]2y — x| = 0). Then fi(x) is defined only for even values of x
and is equal to x/2. When x is odd. f;(x) is not defined. f; is partial recursive.
As flx) = x/2 = fi(x). f1s a partial recursive function.

The following example gives a recursive function which is not primitive
recursive.

EXAMPLE 11.11

The Ackermann’s function is defined by

A0, vy= v + 1 (11.8)
Ax + 1. 0) = Alx, 1) (11.9)
Ax + 1, v +)= A(x. A(x + 1, v) (11.10)

A(x. ¥) can be computed for every (x, v), and hence A(x, v) is total.
The Ackermann’s function is not primitive recursive but recursive.

Chapter 11: Computability 2 331

Compute A(L, 1). A2, 1) Adl, 2), A2, 2.

Solution
A(l, 1)= A0 + L 0+ 1)

= A(D. A(L. O) by (11.10)
= A0, A0, 1)) by (11.9)
= AW, 2) by (11.8)
=3 by (11.8)
A(l,)= A0 + 1, 1+ 1
= A0, AL, 1) by (11.10)
= A0, 3)
=4 by (11.8)
A2, D= Al + L 0+ D
= A(l. AQ. 0) by (11.10)
= A(l. A(1. 1)) by (11.9)
= A(l. 3)
= A0+ 1.2+ 1D
= AQ. A, 2) by (11.10)
= A0, 4
=5
AQ.) =A0+ L 1+ 1)
= A(1, AQ2. 1) by (11.10)
= A(l, 5)
A(l. 5)= A0 + L. 4+ 1D
= A(0. A(L, 4) by (11.10)

1+ AL 4 by (11.8)
1+A0+1L3+1D

=1 + A0. A(L. 3)
1+ 1+ A 3)
1+1+1+A(1,2}=1+1+1+4

H
~1

As A2, 2) = AL, 5). we have A2, 2) =7

R

332 2 Theory of Computer Science

So far we have dealt with recursive and partial recursive functions over
N. We can define partial recursive functions over X using the primitive
recursive predicates and the minimization process. As the process is similar,
we will discuss it here.

The concept of recursion occurs in some programming languages when a
procedure has a call to the same procedure for a different parameter. Such a
procedure is called a recursive procedure. Certain programming languages like
C, C++ allow recursive procedures.

11.4 PARTIAL RECURSIVE FUNCTIONS AND TURING
MACHINES

In this section we prove that partial recursive functions introduced in the earlier
sections are Turing-computable.

11.4.1 COMPUTABILITY

In mid 1930s. mathematicians and logicians were trying to rigorously define
computability and algorithms. In 1934 Kurt Godel pointed out that primitive
recursive functions can be computed by a finite procedure (i.e. an algorithm).
He also hypothesized that any function computable by a finite procedure can
be specified by a recursive function. Around 1936, Turing and Church
independently designed a ‘computing machine’ (later termed Turing machine)
which can carry out a finite procedure.

For formalizing computability, Turing assumed that, while computing. a
person writes symbols on a one-dimensional paper (instead of a two-
dimensional paper as is usually done) which can be viewed as a tape divided
into cells. He scans the cells one at a time and usually performs one of the three
simple operations. namely (i) writing a new symbol in the cell he is scanning,
(i1) moving to the cell left of the present ceil, and (iii) moving to the cell right
of the present cell. These observations led Turing to propose a computing
machine. The Turing machine model we have introduced in Chapter 9 is based
on these three simple operations but with slight variations. In order to introduce
computability, we consider the Turing machine model due to Post. In the
present model the transition function is represented by a set of quadruples (i.e.
4-tuples). whereas the transition function of the model we have introduced in
Chapter 9 can be represented by a set of quintuples (5-tuples). For example,
0(g;- @) = (g;. . B) is represented by the quintuple gacfig;. Using the model
specifying the transition function in terms of quadruples. we define Turing-
computable functions and prove that partially recursive functions are Turing-
computable.

Chapter 11: Computability B 333

11.4.2 A TURING MODEL FOR COMPUTATION

As in the model introduced in Chapter 9, Q, g and T denote the set of states,
the initial state, and the set of tape symbols, respectively. The blank symbol b
is in I". The only difference is in the transition function. In the present model
the transition function represents only one of the following three basic
operations:

(i) Writing a new symbol in the cell scanned
(11) Moving to the left cell
{(i11) Moving to the right cell

Each operation is followed by a change of state. Suppose the Turing machine
M is in state g and scans a;. If @, is written and M enters ¢', then this basic
operation is represented by the quadruple gaaq’. Similarly. the other two
operations are represented by the quadruples ga;Lg" and qa;Rq’. Thus the
transition function can be specified by a set P of quadruples. As in Chapter 9,
we can define instantaneous descriptions, i.e. IDs.

Each quadruple induces a change of IDs. For example, ga,a;q” induces

oqa;f t— oq'a;f
The quadruple ga,Lg’ induces
@a- ... agGa; ... Gy aas . daqasd ...
and ga;Rq’ induces
ay ...oaqa; .. G =@y @' a4,

When we require M to perform some computation, we ‘feed’ the input by
initial tape expression denoted by X. So goX 1s the initial ID for the given
input. For computing with the given input X, the Turing machine processes
X using appropriate quadruples in P. As a result. we have goX = ID; |— ID,

... When an ID. say ID,,. is reached. which cannot be changed using any
quadruple in P, M halts. In this case, ID,, is called a terminal ID. Acwmally,
ag,0f is a terminal ID if there is no quadruple starting with ¢;a. The terminal
ID is called the result of X and denoted by Res(X). The computed value
corresponding to input X can be obtained by deleting the state appearing in it
as also some more symbols from Res(X).

11.4.3 TURING-COMPUTABLE FUNCTIONS

Before developing the concept of Turing-computable functions. let us recall
Example 9.6. The TM developed in Example 9.6 concatenates two strings o
a~d f. Initially, o and S appear on the input tape separated by a blank b.
Finally, the concatenated string off appears on the input tape. The same

Suppose we want to construct a TM which can compute f(x;, x,,) over

334 & Theory of Computer Science

N for given arguments i, @, Initially. the input a,, a@-, .. ., a,, appears
on the input tape separated by markers x;, ..., x,. The computed value
fla;. a,). say. ¢ appears on the input tape , once the computation is over.

To locate ¢ we need another marker. say v. The value ¢ appears to the right
of x,, and to the left of v. To make the construction simpler, we use the tally
notation to represent the elements of N. In the tally notation, 0 is represented
by a string of b's. A positive integer n is represented by a string consisting
of n U's. So the initial tape expression takes the form 1lx)19%, ... 1%ux by,
As a result of computation, the initial ID gol%x1%2x, . .. 1%nx,, by is changed
to a terminal ID of the form 1“1y 1%k, ... 1%x, 1%’y for some ¢ « Q. In
fact, the position of ¢’ in a terminal ID is immaterial and it can appear
anywhere in Res(X). The computed value is found between x, and y.
Sormetimes we may have tc omit the leading b’s.

We say that a function fix,. x,,) is Turing-computable for arguments
ay, a, if there exists a Turing machine for which
qoluiv\‘ildlxl iamxmb)" !_ ID}!
where ID, is a terminal ID containing f(a. @,) to the left of y.

Our ultimate aim is to prove that partial recursive functions are Turing-
computabie. For this purpose. first of all we prove that the three initial primitive
recursive functions are Turing-computable.

11.4.4 CONSTRUCTION OF THE TURING MACHINE THAT
CAN COMPUTE THE ZERO FUNCTION Z

The zero function Z is defined as Z{a;) = O for all a, =2 0. So the initial tape
expression can ve taken as X = 1“xby. As we require the computed value
Z(ay). namely 0. to appear to the left of y. we require the machine to halt
without changing the input. (Note that O is represented by & in the tally
notation.)

Thus we define a TM by taking Q@ = {go, ¢i}. T = {b, 1, x;. v},
X = 1%ixby. P consists of ¢abRqq. golRqy. gox1x1q;- qobRqg and gylRqq are
used to move to the right until x, is encountered. gyx;x,¢4; enables the TM to
enter the state g;. M enters g; without altering the tape symbol. In terms of
change of IDs. we have

Golixyby = 1%gpx,by — g x,by

As there is no quadruple starting with ¢;. M halts and Res(X) = 1%g;x,by.
By deleting ¢, in Res(X), we get 19ix;bv (which is the same as X) yielding 0O
(given by b).
Note: We can also represent the quadruples in a tabular form which is
similar to the transition tazble obtained in Chapter 9. In this case we have t
specify (1) the new symbol written. or (ii) the movement to the left (denoted
by L) or (iii) the movement to the right (denoted by R). So we get
Table 11.3.

Chapter 11: Computapility & 335

TABLE 11.3 Representation of Quadruples

State b 1 ¥

Qo (R. go) (R qo) (v q9)
Q1

11.4.5 CONSTRUCTION OF THE TURING MACHINE FOR
COMPUTING—THE SUCCESSOR FUNCTION

The successor function § is defined by S{ai) = a; + 1 for all ¢; 2 0. So the
initial tape expression can be taken as X = 1%x;by (as in the case of the zero
function). At the end of the computation. we require 1“1*'to appear to the left
of v. Hence we define a TM by taking

Q0 = {g90. - - g0} I'={b L x. v} X = 1"ix; by
where P consists of

(1) g0bRgq. qolbg). goviRqs
(i) q:bRq;. qlRg;. qixiRqy. g1¥lga
(i) g-1Rg>. g:byga.
(iv) g:bLgs. qalLqs. givLgs. gavilq,
(V) gslLqgy. qiblgs.
(v1) gs51Rqgg.
(vii) gebRgs 461RGs qs¥i1RGs qo¥Lgs
(vill) q71Lg7. g7b1gs.
(X) gebLlgs. qsllas. gsvlqgs. qgyixigo.
The corresponding operations can be explained as follows:

(i) If M starts from the initial 1D. the head replaces the first 1 it
encounters by b. Afterwards the head moves to the right until it
encounters v (as a result of gylbg,. g:6Rq,. q1Rg,. qx;Rq,).

(i1) v is replaced by 1 and M enters ¢.. Once the end of the input tape is
reached. y is added to the next cell. M enters g3 (¢,v1gs, g21RgA,
g2bvq3).

(iii) Then the head moves to the left and the state is not changed until x,
is encountered (g:vLgs, gyLga. q:bLqn).

{(iv) On encountering x, the head moves to the left and M enters ¢,. Once
again the head moves to the left till the left end of the input string is
reached (gax1lqs. gi1Llqy).

(v) The leftmost blank (written in point (1)) is replaced by 1 and M enters
gs(g:b1gs).

Thus at the end of operations (i)—(v). the input part remains unaffected but

the first 1 is added to the left of y.

336 &

Theory of Computer Science

(vi)

(vii)

(viii)

(ix)

Then the head scans the second 1 of the input string and moves right,
and M enters ¢, (¢s1Rgq).

Operations (i)—(vi) are repeated until ali the 1’s of the input part
(ie. in 1) are exhausted and 11 ... 1 (a; times) appear to the left
of v. Now the present state is g, and the current symbol is x;.

M in state g scans x;, moves right. and enters gg. It continues to move
to the right until it encounters v (gox1Rgs. 96bRgs, qslRqs. Go¥1Rqe)-
On encountering v. the head moves to the left and M enters g5, after
which the head moves to the left until it encounters b appearing to the
left of 1% of the output part. This » is changed to 1. and M enters
g3 (gevLgr. q11Lg7, g7b1gs).

Once M is in gs, the head continues to move to the left and on scanning
x;. M enters go. As there is no quadruple starting with g, M halts

(gshLag. qgllqs, qsxix1q9)-

The machine halts, and the terminal ID is 1%igox;14*'y. For example, let
us compute S(1). In this case the initial ID is golx; by. As a result of the
computation, we have the following moves:

Golxiby |— qibxby — bgxby
b bxyqiby |— bx\bgy bxibg»1
— bx,blg>b — bxblgsy }— bxibgsly
F= bgaxibly = qubxbly b— gslxbly
- lgexibly = lxiblgey — lxibgsly
F— lxgebly = lxigglly |— lggx;1ly
— lgox 11y

Thus, M halts and S(1) = 2 (given by 11 to the left of).

11.4.6 CONSTRUCTION OF THE TURING MACHINE FOR

COMPUTING THE PROJECTION U

Recall U™(a,. a,) = a;. The initial tape expression can be taken as

X = "y 1%, .00 19y, by

We define a Turing machine by taking Q = {gqg, - ... g3}

I'={b, 1. x,....x, v}. P consists of
qo:Rqy for all z € T = {x;}
qoxiLgy, qibbg,. qlibg-
g-2RqA forall - € T - {v}
gv1gs. q:l1Rgx. gibvq,

Chapter 11: Computability B 337

qazlgy forall z e T - {x}
gwxiLgs. gslLgs. qsb1qs. g6lLqs. q71bq,
q72Rgg forall z e T - {1}

The operations of M are as follows:

(i) M starts from the initial ID and the head moves to the right until it
encounters x; (gozRqp).
(i1) On seeing x;, the head moves to the left (gyxLg,).
(1ii) The head replaces 1 (the rightmost 1 in 1%) by b (g, 1bg,).
(iv) The head moves to the right until it encounters y and replaces y by 1
(q22Rg,, z € T' ~ {y} and gqaylgs).
(v) On reaching the right end, the head scans b and replaces this b by
v (g3byqy).
(vi) The head moves to the left until it scans the symbol b. This b is
replaced by 1(qyilgy, = € T — {x}, quxilgs. gsblge).
(vii) The head moves to the left and one of the 1's in 1% is replaced by
b. M reaches ¢~ (gsllg-. g:16g7).
As a result of (()—(vii), one of the I's in 1% is replaced by b and
1 is added to the left of v. Steps (iv)—(vii) are repeated for all 1's
in 19
(viii) On scanning x._;. the head moves to the right and M enters
s (g7 1Rqg).
As there are no quadruples starting with ¢g, the Turing machine M halts.
When i # 1 and «; # 0. the terminal ID is 19y ... xiggl¥ix; ... x,b1%y.
For example. let us compute Us(1. 2. 1):

golx 1xslsby | 1x)11goxs1xsby
F— Ly lg) Lxolaby b 1x;1g-bx;lxaby
L L lbxaleabgay = Lx1bxalxsbgsl
= lx;1bxalxsblgsb b= 1x1bx;1xsblgyy
F- 1o lbgeelably b= Ix1gsbxslxsbly
— Ixlgelyalxably = lxjg711x1xbly
— lxg:blx1xbly
From the above derivation. we see that
Ixilgsbxs lxaby b= lxg-blxalxsbly
Repeating the above steps, we get
Lyig-blaabsbly - luggllvalesblly

It should be noted that this construction is similar to that for the successor
function. While computing U;", the head skips the portion of the input
corresponding to ;. j # i. For every 1 in 19, 1 is added to the left of v.

338 & Theoryof Computer Science

Thus we have shown that the three initial primitive recursive functions are
Turing-computable. Next we construct Turing machines that can perform
composition, recursion. and minimization.

11.4.7 CONSTRUCTION OF THE TURING MACHINE THAT
CAN PERFORM COMPOSITION

Let filx). x5« X)s - oo filxr. oo . x,,) be Turing-computable functions. Let
¢(v,. vp) be Turing-computable. Let A(x). x,) = g(filx;. .. %) -+
filxy, oo x,)). We construct a Turing machine that can compute k(ay, .. ., a,,)
for given arguments @, a,. This involves the following steps:

Step 1 Construct Turing machines M. M; which can compute f;. fi.
respectively. For the TMs My, M let T = {1, b, x;, xo. x,,, ¥} and
X = 1%y ... "% x,, bv. But the number of states for these TMs will vary.
Let iy + 1, + 1 be the number of states for M. Mg respectively.
As usual, the initial state is gy and the states for M; are qq, g, As in the
earlier constructions. the set P; of quadruples for M, is constructed in such a
way that there is no quadruple starting with ¢,

Step 2 Let fley. a,) = b, fori =1, 2, k. At the end of step 1,
we have M,’s and the computed values b;’s. As g is Turing-computable, we
can construct a TM M, which can compute g(by. by). For M.,

T={1l.b X ...xX,. v} X =1 ... 1% by

ni

{We use different markers for M., so that the TM computing 4 1o be
constructed need not scan the inputs ;. . . ., a,.) Let 1., + 1 be the number
of states of M;.,. As in the earlier constructions, M,,, has no quadruples
starting with g..,.

Step 3 At the end of step 2. we have TMs M. ..., My, M, which give
bi. b, and g(by. by) = ¢ {(say). respectively. So we are able to
compute h(a;. a,) using k + 1 Turing machines. Our objective is to
construct a single TM M~ which can compute Ala,. a,,). We outline the
construction of M without giving the complete details of the encoding
mechanism. For M. let

" . i F .
I'= {1. b, X voes Xy Ao v X }}
X = 1"x1%x, ... 19, by

(1) In the beginning, M simulates M;. As a result, the value b, =
filay. a,) 1s obtained as output. Thus we get the tape expression
193 19x ... 1%x, 171y which is the same as that obtained by M,
while halting. M does not halt but changes v to x’; and adds by 10 the
right of x’;. The head moves to the left to reach the beginning of X.

Chapter 11: Computability 2 339

(i) The tape expression obtained at the end of (i) is
1 19x, .. 19y, 100 by

The construction given in (i) is repeated. i.e. M simulates M. ..., My,
changes v to x}, and adds by to the right of x}. After simulating M,
the tape expression is

X' = 19x ... 1%, 101y ... 10%1x 1% by

Then the head moves to the left until it is positioned at the cell having
1 just to the right of x,,.

(iii) M simulates M, ;. M,,; with initia] tape expression X’ halts with the
tape expression 1°1x} . .. 1%}, 1°y. As a result, the corresponding tape
expression for M is obtained as

193 1%0x, .. 19, 170 oL 100,10y

(iv) The required value is obtained to the left of y. but 1°x; . .. 1%x} also

appears to the left of ¢. M erases all these symbols and moves 1"y just

to the right of x,,. The head moves to the cell having x,, and M halts.
The final tape expression is 1“x1%x, ... 19x, 1.

11.4.8 CONSTRUCTION OF THE TURING MACHINE THAT
CAN PERFORM RECURSION

Let g(x;. ... x,). AQq vae .0 ¥,.0) be Turing-computable. Let f(x|,
X,:1) be defined by recursion as follows:
flxe oowx,. 0) = glxy o0 xy)
e oo xe v+ L) = hlxg, o x v FX. e X YD)
For the Turing machine M. computing f(a;, ..., @, ¢). (say k). X is
taken as
1% oo 19, 1%, by

As the construction is similar to the construction for computing
composition, we outline below the steps of the construction.

Step 1 Let M simulate the Turing machine M which computes g(a. a,,).
The computed value, namely gla;. a,). is placed to the left of y. If
¢ = 0. then the computed value glay. ..., a@,) s flay. a,. 0). The head

1s placed to the right of x,, and M halts.

Step 2 If ¢ is not equal to zero, 1 to the left of x,,,, is replaced by &°. The
marker v is changed to x,,,» and bv is added to the right of x,,.». The head
moves to the left of 191

Step 3/ is computable. M is allowed to compute £ for the arguments a;. .. .,
a,. 0. glay. a,) which appear to the left of xj. 2. Xu1. Xnsos

340 E Theory of Computer Science

respectively. The computed value is f(a. a,, 1). And fla, a,. 2)
. flay, a,. ¢) are computed successively by replacing the rightmost b
and computing /4 for the respective arguments.

The computation stops with a terminal ID. namely

b1y 1es L. qf~1"x,,+1lk)'. = flay,. ... a,. ©)

11.4.9 CONSTRUCTION OF THE TURING MACHINE THAT
CAN PERFORM MINIMIZATION

When f(x;, x,) is defined from g(x;. ..., x,. ») by minimization,
flx;. ... x,) is the least of all &’'s such that g(xy. x,. k&) = 0. So the
problem reduces to computing g(a;. a,, k) for given arguments
ay. ..., a, and for values of & starting trom 0. f(ay. ..., a,) is the first &
for which gla;, a,. k) = 0. Hence as soon as the computed value of
gla,. a, v) is zero, the required Turing machine M has to halt. Of
course, when no such v exists. M never halts, and f(ay. . . ., a,) is not defined.

Thus the construction of M is in such a way that it simulates the TM that
computes gla. a,. k) for successive values of k. Once the computed value
glay. a,. k) =0 for the first time, M erases by and changes x,,,; to v. The
head moves to the left of x, and M halts

As partial recursive functions are obtained from the initial functions by a
finite number of applications of composition. recursion and minimization
(Definition 11.11) by the various constructions we have made in this section.
the partial recursive functions become Turing-computable.

Using Godel numbering which converts operations of Turing machines
into numeric quantities. it can be proved that Turing-computable functions are
partial recursive. (For proof. refer Mendelson (1964).)

11.5 SUPPLEMENTARY EXAMPLES

EXAMPLE 11.13

Show that the function f(x;, x», x,) = 4 is primitive recursive.
Solution
4= 5%0)
= SZ(xy)
= SHZUM . e o x)))
ie.
f(xb Ao 11) 54 Z(U ﬂ(\l A2 s ’xll)))'

As fis the composition of initial functions, f is primitive recursive.

Chapter 11: Computability 2 341

EXAMPLE 11.14

If f(x;. x») is primitive recursive, show that g(x). x», xa, xy) = flx;, xy) 18
primitive recursive.

Solution
glxy, xa, X3, Xy)
= flxg. xy)
= f(Uxy xae x5 3 UGy, xo, xa0 x9)

U and U} are initial functions and hence primitive recursive. f is primitive
recursive. As the function g is obtained by applying composition to primitive
recursive functions, g is primitive recursive (by the Note appearing at the end
of Example 11.5).

EXAMPLE 1 17.1 5

If f(x. v) is primitive recursive, show that g(x, v) = f(4. y) is primitive
recursive.
Solution
Let h(x. v) = 4. h is primitive recursive by Example 11.13.
gl V)
= fl4.)
= f(h(x. v). Us(x. 1))

. . £ Lo . .
As f and g are primitive recursive and [Js is an initial function, g is
primitive recursive.

EXAMPLE 11.16

Show that fix, v) = V" + T’ + 4v® is primitive recursive.

Solution
As filx. ¥) = x + ¥ is primitive recursive (Example 9.5), it is enough to prove
that each summand of flx. ¥) is primitive recursive.
But,
vt = Ui vy« U 3) = U ¥) = UG) = U2)+ U,)
As multiplication is primitive recursive, g(x, 1) = +-y* is primitive recursive.
As h(x. v) = xv" is primitive recursive, 7xy” = xy” + - -+ + x)y° is primitive
recursive. Similarly, 4y is primitive recursive.

342 B Theory of Computer Science

SELF-TEST

Choose the correct answer to Questions 1-10.

1. S(Z(6)) is equal to
(a) U, 2.3)
(b U, 2. 3)
(c) Ui, 2. 3)
{d) none of these.

2. Cons a(v) is equal to
(@) A
() ya
(©) ay
(d) a

3. min(x, ¥) is equal to
(@) x ~(x =)
)y (v =%
(¢) x =y
d y-x

4. A(1, 2) is equal to
(a) 3
(b) 4
(¢) 5
(d) 6

5. f(x) = x/3 over N is
(a) total
(b) partial
(c) not partial
(d) total but not partial.

6. y4(3) is equal to
(@ 0
(b) 3
(c) 4
(d) none of these.

7. sgn(x) takes the value 1 if
(a) x< 0
by x<0
© x>0
(d x=0

8. Y + Y = Yyup if
() AUB=A
(b)) AUB-=
(AN B
(dy AN B

Il
S

Chapter 11: Computability = 343

9. U(S(4), 5(5), S(6), Z(7)) is
(a) 6
(b) 5
(c) 4
(d) 0O
10. If g(x, y) = min(x, y) and A(x, y) = |x — y|. then:
(a) Both functions are regular functions.
(b) The first function is regular and the second is not regular.
(¢) Neither of the functions is regular.
(d) The second function is not regular.

State whether the Statements 11-15 are true or false.
11. f(x. ¥) = x + y is primitive recursive.
12. 3 = 4 =0.
13. The transpose function is not primitive recursive.
14. The Ackermann’s function is recursive but not primitive recursive.

15. AQ2. 2) = 7.

EXERCISES

11.1 Test which of the following functions are total. If a function is not
total, specify the arguments for which the function is defined.
(a) f(x) = x/3 over N
(b) f(x) = /(x - 1) over N
(¢) f(x) = X — 4 over N
(d) fix) = x+1over N
(e) f(x) = x~ over N

11.2 Show that the following functions are primitive recursive:
J 1 ifx=0
@ 20 =10 ks
(®) flx) = &

(¢) flx, y) = maximum of x and y

(d) f)

_ x/2 when x is even
" l(x=1)/2 when x is odd

(e) The sign function defined by
sgn(0) = 0. sgn(x) = 1 if x> 0.

344 2 Theory of Computer Science
R 1 ifx>vy
(f) Lix. ») = ’
0 ifx<y
(@) Ex.) (1 ifx=v
o X, V) =
- ﬁO if x #v

11.3 Compute A(3, 2). A2, 3), A(3. 3).

11.4 Show that the following functions are primitive recursive:
(a) g(x. v) = the quotient obtained when x is divided by ¥
(b) r(x. v) = the remainder obtained when x is divided by ¥

‘ 2x if x is a perfect square
(¢) flx) = _
2x +1 otherwise

11.5 Show that f(x) = integral part of [y is partial recursive.

11.6 Show that the Fibonacci numbers are generated by a primitive recursive
function.

117 Let f(O) = 1, f(1) = 2, f(2) = 3 and fix + 3) = flix) + flx + 1"+
fix + 2)°. Show that fix) is primitive recursive.

11.8 The characteristic function y, of a given set A is defined as

@ (0 ifagA
(@) = 1
1 Il ifacA
It A, B are subsets of N and y,. yp are recursive, show that Y., Xiua:
Yi~p are also recursive.

11.9 Show that the characteristic function of the set of all even numbers is
recursive. Prove that the characteristic function of the set of all odd
mtegers is recursive.

11.10 Show thar the function flx.) = x — v is partial recursive.

11.11 Show that a constant function over N, i.e. fin) = k for all n in N where
k is a fixed number. is primitive recursive.

11.12 Show that the characteristic function of a finite subset of N is primitive
recursive.

11.13 Show that the addition function fi(x, v) is Turing-computable.
(Represent x and v in tally notation and use concatenation.)

11.14 Show that the Turing machine M in the Post notation (i.e. the transition

function specitied by quadruples) can be simulated by a Turing
machine M (as defined in Chapter 9).

[Hinr: The transition given by a quadruple can be simulated by two
quintuples of M’ by adding new states to M"]

Chapter 11: Computability 2 345

11.15

11.16
11.17

11.18
11.19

11.20

Compute Z(4) using the Turing machine constructed tor computing the
zero function.

Compute S(3) using the Turing machine which computes S.

Compute U2, 1, 1), Us(l. 2. 1), Us(1. 2. 1) using the Turing
machines which can compute the projection functions.

Construct a Turing machine which can compute f(x) = x + 2.
Construct a Turing machine which can compute f(x;, x») = x| + 2 for
the arguments 1, 2 (i.e. ay = 1, x» = 2).

Construct a Turing machine which can compute f(x;. x2) = x| + x; for
the arguments 2. 3 (i.e. x; = 2, x» = 3).

» 2 Complexity

i

When a problem/language is decidable. it simply means that the problem is
computationally solvable in principle. It may not be solvable in practice in the
sense that it may require enormous amount of computation time and memory.
In this chapter we discuss the computational complexity of a problem. The
proofs of decidability/undecidability are quite rigorous, since they depend
solely on the definition of a Turing machine and rigorous mathematical
techniques. But the proof and the discussion in complexity theory rests on the
assumption that P # NP. The computer scieniists and mathematicians strongly
believe that P # NP. but this is still open.

This problem is one of the challenging problems of the 21st century. This
problem carries a prize money of $1M. P stands for the class of problems that
can be solved by a deterministic algorithm (i.e. by a Turing machine that
halts) in polynomial time: NP stands for the class of problems that can be
solved by a nondeterministic algorithm (that is, by a nondeterministic TM) in
polynomial time; P stands for polynomial and NP for nondeterminisitc
polynomial. Another important class is the class of NP-complete problems
which is a subclass of NP,

In this chapter these concepts are formalized and Cook’s theorem on the
NP-completeness of SAT problem is proved.

12.1 GROWTH RATE OF FUNCTIONS

When we have two algorithms for the same problem, we may require a
comparison between the running time of these two algorithms. With this in
mind. we study the growth rate of functions detined on the set of natural
numbers.
In this section. N denotes the set of natural numbers.
346

Chapter 12: Complexity 2 347

Definition 12.1 Tet f, g : N — R (R* being the set of all positive real
numbers). We say that f(n) = O(g{n)) if there exist positive integers C and
Ny such that

Jn) £ Ce(n) for all n =2 Nj.

In this case we say f is of the order of g (or fis ‘big oh™ of g)

Note: f(n) = O(g(n)) is not an equation. It expresses a relation between two
functions f and g.

EXAMPLE 12.1

Let f(n) = 4’ + 507 + Tn + 3. Prove that f(n) = omn.

Solution

In order to prove that f(n) = o), take C = 5 and N, = 10. Then

fn) = 4n° + 500 + Tn + 3 <500 for n =2 10
When n = 10, 57" + 7n + 3 = 573 < 10°. For n > 10. 52° + Tn + 3 < n’.
Then, f(m) = oor).
Theorem 12.1 If p(n) = an* + @ n*' + -+ + @n + a; is a polynomial
of degree k over Z and a; > 0. then p(n) = O(n%).

. o : .
Proof p(n) = an® + a 0™ + -~ + an + ag. As a is an integer and
positive. a; 2 1.

AS ap_;. ai~ ... ay. ay and k are fixed mtegers, choose Ny such that for

all n 2 N, each of the numbers

a,_ a;_~ a a,l . 1
i II, | *;l“... Ill_ll—i (zl is less than — (*)
n n-] n k
Hence.
1
la, a;._» a,
| k- + l‘_:. 4. - _(]\)l <1
n n- nt
. i a, a a .
As ap 2 1. PUD Bt n 4 B g for all n 2 N,
‘ k k k-1 k !
n n n n
Also,
p(”) _ | aA_l + i 1 ao \
T % T : Tt
n* L a7l nt
Sap+ 1 by (%)
So,
pln)y < i, where C=aq+1
Hence.

p(n) = OG"). I

348 G Theory of Computer Science

Corollary The order of a polynomial is determined by its degree.

Definition 12.2 An exponential function is a function ¢ : N — N defined by
g(n) = 4" for some fixed a > 1.

When n increases, each of n, n-. 2" increases. But a comparison of these
functions for specific values of » will indicate the vast difference between the
growth rate of these functions.

TABLE 12.1 Growth Rate of Polynomial and Exponential Functions

n fin) = ? glny =n®+3n+9 gn) = 27
1 1 13 2

5 25 49 32

10 100 139 1024
50 2500 2659 {(1.13)10"
100 10000 10309 (1.27)10%
1000 1000000 1003009 (1.07)10%

From Table 12.1, it is easy to see that the function g(n) grows at a very fast
rate when compared to f{n) or g(n). In particular the exponeatial function
grows at a very fast rate when compared to any polynomial of large degree.
We prove a precise statement comparing the growth rate of polynomials and
exponential function.

Definition 12.3 We say g # O(f), if for any constant C and N, there exists
n 2 Ng such that g(n) > Cf(n).

Definition 12.4 If f and g are two functions and f = O(g), but g # O(f),
we say that the growth rate of g is greater than that of £ (In this case
g(m)/f(n) becomes unbounded as n increases to o<.)

Theorem 12.2 The growth rate of any exponential function is greater than
that of any polynomial.

Proof Let p(n) = an® + an*™ + ... + an + ag and g(n) = o" for some
a > 1.

As the growth rate of any polynomial is determined by its term with the
highest power. it is enough to prove that n* = O(¢") and ' # O®"). By

L'Hospital's rule, log 7 tends to O as i — o, (Here log n = log,n.) If
’ [i Lo]
m=les "]
then.
[flozn
(z(m)" = Le V! J = ozt = glosnt _ pk
[logn)

\ n

As n gets large, k) tends to 0 and hence z(n) tends to 0.

Chapter 12: Complexity & 349

So we can choose N, such that z(n) < a for all #n > N,. Hence n* =
An)" < &', proving n* = O(dY).

To prove @" # O(1Y), it is enough to show that @'/n* is unbounded for
large n. But we have proved that n* < 4" for large n and any positive integer

n
k+1

k and hence for k + 1. So ™ £ 4" or = 1.

C+
n

n 1
Multiplying by #n, n(a’H j 2 n, which means a_k is unbounded for large
n n

values of 7. I

Note: The function n'°" lies between any polynomial function and &”" for
any constant a. As log n = k for a given constant £ and large values of n,
Rl°2 " > ut for large values of n. Hence #'¢” dominates any polynomial. But

o 2 _(log x)° ; -
7% = (glog)02 = p(logn)”, Let us calculate hm&. By L’Hospital’s
X CcxX

_(logx)” . Vx . 2logx .. 2
rule, hm(—g—):hm(Zlogx)——zhm EY _fim = =0.

X—=7 CcX x> C xX—>o cx x—ow CX

5 oo 2
So (log) grows more slowly than cn. Hence /%2 = ¢ grows more

slowly than 2. The same holds good when logarithm is taken over base 2
since log,n and log-n differ by a constant factor.

Hence there exist functions lying between polynomials and exponential
functions.

12.2 THE CLASSES P AND NP

In this section we introduce the classes P and NP of languages.

Definition 12.5 A Turing machine M is said to be of time complexity T(rn)
if the following holds: Given an input w of length », M halts after making at
most T(1) moves.

Note: In this case. M eventually halts. Recall that the standard TM is called
a deterministic TM.

Definition 12.6 A language L is in class P if there exists some polynomial
T(n) such that L = T(M) for some deterministic TM M of time complexity
T(n).

EXAMPLE 12.2

Construct the time complexity 7(n) for the Turing machine M given in
Example 9.7.

350 = Theory of Computer Science

Solution

In Example 9.7. the step (1) consists of going through the input string (071"
forward and backward and replacing the leftmost 0 by x and the leftmost 1
by v. So we require at most 2n moves to match a 0 with a 1. Step (1) is
repetition of step (i) n times. Hence the number of moves for accepting a"b"
is at most (2n)(n). For strings not of the form «"b", TM halts with less than
" steps. Hence T(M) = o).

We can also define the complexity of algorithms. In the case of
algorithms. T(n) denotes the running time for solving a problem with an input
of size n, using this algorithm.

In Example 12.2. we use the notation ¢ which is used in expressing
algorithm. For example. ¢ « b means replacing « by b.

la" denotes the smallest integer greater than or equal to a. This is called
the ceiling function.

EXAMPLE 123

Find the running time for the Euclidean algorithm for evaluating ged(a. b)
where @ and b are positive integers expressed in binary representation.

Solution
The Euclidean algorithm has the following steps:

1. The input is (a. b)
Repeat until » = 0
Assign a « a mod b
Exchange ¢ and b
Output a.

EPOR VI IS

wh

Step 3 replaces @ by amod b. If /2 2 b, then amod b < b < /2. If
al2 < b, then a < 2b. Write a = b + r tor some » < b. Then eamod b =
r<b<all Hence amod b < @/2. So a is reduced by at least half in size on
the application of step 3. Hence one iteration of step 3 and step 4 reduces «
and b by at least half in size. So the maximum number of times the steps 3
and 4 are executed is min{log-a'. [log-b1}. If n denotes the maximum of the
number of digits of @ and b. that is max{{log-al [log-b1} then the number of
iterations of steps 3 and 4 is O(n). We have to perform step 2 ar most
min{log~al. Tlog-b1} times or n times. Hence T(n) = nO(n) = O@r).

Note: The Euclidean algorithm is a polynomial algorithm.

Definition 12.7 A language L is in class NP if there is a nondeterministic
TM M and a polynomial time complexity T(n) such that L = T(M) and M
executes at most 7(n) moves for every input w of length n.

Chapter 12: Complexity = 351

We have seen that a deterministic TM M, simulating a nondeterministic
TM M exists (refer to Theorem 9.3). It T{(#n) is the complexity of M, then the
complexity of the equivalent deterministic TM M, is 297", This can be
justified as follows. The processing of an input string w of length n by M is
equivalent to a “tree’ of computations by M,. Let k be the maximum of the
number of choices forced by the nondeterministic transition function. (It is
max|d(g, x)), the maximum taken over all states ¢ and all tape symbol X.)
Every branch of the computation tree has a length 7T(n) or less. Hence the total
number of leaves is atmost k7(n). Hence the complexity of M, is at most
AOTinn

It is not known whether the complexity of M, is less than 297", Once
again an answer to this question will prove or disprove P # NP. But there do
exist algorithms where T(n) lies between a polynomial and an exponential
function (refer to Section 12.1).

12.3 POLYNOMIAL TIME REDUCTION AND
NP-COMPLETENESS

If P; and P- are two problems and P~ € P, then we can decide whether
P, € P by relating the two problems P; and P.. If there is an algorithm for
obtaining an instance of P~ given any instance of P;. then we can decide about
the problem P,. Inwitively if this algorithm is a polynomial one, then the
problem P, can be decided in polynomial time.

Definition 12.8 Let P and P~ be two problems. A reduction from P; to P-
is an algorithm which converts an instance of P, to an instance of P.. If the
time taken by the algorithm is a polynomial p(n), n being the length of the
input of P;. then the reduction is called a polynomial reduction P; to P-.

Theorem 12.3 If there is a polynomial time reduction from £, to P- and if
P-is in P then P, is in P.

Proof Let m denote the size of the input of P;. As there is a polynomial-
time reduction of P; to P-. the corresponding instance of P> can be got in
polynomial-time. Let it be O(n¥), So the size of the resulting input of P, is
atmost cn?' for some constant ¢. As P- is in P, the time taken for deciding the
membership in P is O(n"). n being the size of the input of P-. So the total
time taken for deciding the membership of m-size input of P, is the sum of
the time taken for conversion into an instance of P-~ and the time for decision
of the corresponding nput in P.. This is O[m + (cm))¥]. which is the same
as O(m). So P, is in P. 1

Definition 12.9 Ilet L be a language or problem in NP. Then L is NP-
complete if
1. Lis in NP

352 & Theoryof Computer Science

2. For every language L’ in NP there exists a polynomial-time reduction
of L' to L.

Note: . The class of NP-complete languages is a subclass of NP.
The next theorem can be used to enlarge the class of NP-complete
problems provided we have some known NP-complete problems.

Theorem 12.4 If P, is NP-complete, and there is a polynomial-time
reduction of Py to P», then P, is NP-complete.

Proof 1If L is any language in NP, we show that there is a polynomial-time
reduction of L to P,. As P; is NP-complete, there is a polynomial-time
reduction of L to P;. So the time taken for converting an n-size input string
win L to a string x in Py is at most py(n) for some polynomial p,. As there
is a polynomial-time reduction of P, to P,, there exists a polynomial p, such
that the input x to P, is transferred into input y to P in at most p,(n) time.
So the time taken for transtorming w to y is at most pi(n) + p-(p1(n)). As
pi(n) + pa(p(m)) is a polynomial. we get a polynomial-time reduction of
L to P,. Hence P. is NP-complete. i

Theorem 12.5 If some NP-complete problem is in P, then P = NP.

Proof lLet P be an NP-complete problem and P € P. ILet L be any
NP-complete problem. By definition, there is a polynomial-time reduction of
Lt P. As Pisin P, L is also in P by Theorem 12.3. Hence NP = P.

12.4 IMPORTANCE OF NP-COMPLETE PROBLEMS

In Section 12.3, we proved theorems regarding the properties of NP-complete
problems. At the beginning of this chapter we noted that the computer
scientists and mathematicians strongly believe that P = NP. At the same time.
no problem in NP is proved to be in P. The entire complexity theory rests
on the strong belief that P = NP.

Theorem 12.4 enables us to extend the class of NP-complete problems,
while Theorem 12.5 asserts that the existence of one NP-complete problem
admitting a polynomial-time algorithm will prove P = NP. More than 2500
NP-complete problems in various fields have been found so far.

We will prove the existence of an NP-complete problem in Section 12.5.
We will give a list of NP-complete problems in Section 12.6. Thousands of
NP-complete problems in various branches such as Operations Research,
Logic, Graph Theory, Combinatorics. etc. have been constructed so far. A
polynomial-time algorithm for any one of there problems will yield a proof
of P = NP. But such multitude of NP-complete problems only strengthens the
belief of the computer scientists that P NP. We will discuss more about this
in Section 12.7.

Chapter 12: Complexity B 353

12.5 SAT IS NP-COMPLETE

In this section, we prove that the satisfiability problem for boolean expressions
(whether a boolean expression is satisfiable) is NP-complete. This is the first
problem to be proved NP-complete. Cook proved this theorem in 1971.

12.5.1 BOOLEAN EXPRESSIONS

In Section 1.1.2, we defined a well-formed formula involving propositional
variables. A boolean expression is a well-formed formula involving boolean
variables x, y, z replacing propositions P, Q, R and connectives v, A and .
The truth value of a boolean expression in x, y, z is determined from the truth
values of x, y, z and the truth tables for v, A and —. For example, - x A —
(v v 2) is a boolean expression. The expression — x A — (¥ v z) is true when
x is false, y is false and 7 is false.

Definition 12.10 (a) A truth assignment ¢ for a boolean expression E is the
assignment of truth values T or F to each of the variables in E. For example,
t=(F, F, F)is a truth assignment for (x, y, 1) where x, v, £ are the variables
in a boolean expression £(x, ¥, I) = = x A = (¥ V 2)

The value E(7) of the boolean expression E given a truth assignment f 18
the truth value of the expression of £, if the truth values give by 7 are assigned
to the respective variables.

If t = (F, F, F) then the truth values of — x and — (v v 2} are T and T.
Hence the value of E= —wx A=~ (yv 2)is T. So E(r) = T.

Definition 12.11 A truth assignment 7 satisfies a boolean expression E if the
truth value of E(r) is 7. In other words, the truth assignment ¢ makes the
expression £ true.

Definition 12.12 A boolean expression £ is satisfiable if there exists at least
one truth assignment ¢ that satisfies £ (that is E(#) = T). For example, £ =
—x A — (v v) is satisfiable since E(f) = T when r = (F, F, F).

12.5.2 CODING A BOOLEAN EXPRESSION

The symbols in a boolean expression are the variables x, v, z, etc. the

connectives v. A, —. and parantheses (and). Thus a boolean expression in

three variables will have eight distinct symbols. The variables are written as

X;. xa, X3, ete. Also we use x, only after using xy, x». ..., x,; for variables.
We encode a boolean expression as follows:

1. The variables xy. xa. x3, ... are written as x1. .flO, x11. ... etc. (The
binary representation of the subscript is written after x.)

2. The connectives v, A, —. {, and) are retained in the encoded
expression.

354 = Theory of Computer Science

For example, — x A = (v v 2) is encoded as — xIa — (x10 v x11), (where
x, ¥, I are represented by xy, xi, x3).
Note: Any boolean expression is encoded as a string over £ = {x, 0, 1, v,
A= e)}

Consider a boolean expression having m occurrences of variables,
connectives and parantheses. The variable x,, can be represented using
1 + log~ m symbols (x together with the digits in the binary representation of
m). The other occurrences require less symbols. So any occurrence of a
variable. connective or a parenthesis requires at most 1 + log, m symbols over
2. So the length of the encoded expression is at most O(m log m).

As our interest is only in deciding whether a problem can be solved in
polynomial-time. we need not distinguish between the length of the coded
expression and the number of occurrences of variables etc. in a boolean
expression.

12.5.3 CooOK’s THEOREM

In this section we define the SAT problem and prove the Cook’s theorem that
SAT is NP-complete.

Definition 12.13 The satisfiability problem (SAT) is the problem:
Given a boolean expression. Is it satistiable?

Note: The SAT problem can also be formulated as a language. We can
detine SAT as the set of all coded boolean expressions that are satistiable. So
the problem is to decide whether a given coded boolean expression is in SAT.

Theorem 12.6 (Cook’s theorem) SAT is NP-complete.
Proof PART L. SAT € NP.

It the encoded expression E is of length 5, then the number of variables is
/2" Hence. for guessing a truth assignment r we can use multitape TM for
E. The time taken by a multitape NTM M is O(n). Then M evaluates the
value of E for a truth assignment 7. This is done in O(n°) time. An equivalent
single-tape TM takes O(n™) time. Once an accepting truth assignment is found,
M accepts £ and M and halts. Thus we have found a polynomial time
NTM for SAT. Hence SAT € NP.

PART II: POLYNOMIAL-TIME REDUCTION OF ANY L IN NP TO SAT.

1. Construction of NTM for L

Let L be any language in NP. Then there exists a single-tape NTM M and a
polynomial p(n) such that the time taken by M for an input of length n is at
most p(n) along any branch. We can further assume that this M never writes
a blank on any move and never moves its head to the left of its initial tape
position (refer to Example 12.6).

Chapter 12: Complexity 2 355

If M accepts an input w and |w| = n. then there exists a sequence of moves
of M such that

1. op is the initial ID of M with input w.

2000 0y b= = 0 kS p(n).

3. o4 is an ID with an accepting state.

4. Each ¢, is a string of nonblanks, its leftmost symbol being the

leftmost symbol of w (the only exception occurs when the processing
of w is complete. in which case the ID is ¢b).

2. Representation of Sequence of Moves of M

As the maximum number of steps on w is p(r) we need not bother about the
contents beyond p(n) cells. We can write ¢; as a sequence of p(n) + 1 symbols
(one symbol for the state and the remaining symbols for the tape symbols).
So a; = XXy - X oo

By assuming @ N I’ = @, we can locate the state in ¢; and hence the
position of the tape head. The length of some ID may be less than p(n). In
this case we pad the ID on the right with blank symbols. so that all IDs are
of the same length p(n) + 1. Also the acceptance may happen earlier. If ¢,
is an accepting ID in the course of processing w, then we write op— ... |—

Uy ""‘ (AT }_ o, = az'.puz)'

Thus all IDs have p(n) + 1 symbols and any computation has p{n) moves.

TABLE 12.2 Array of IDs

D 0 1 U j j p(n)
243} AXOQ ,Y04 RN XO,p(n}
o Xig X4 X1 ptn)
o Xig Xiq X Y'j‘ X/,p(m
v Nier0 Xie1 1 Xiev 1 Xwry Nt e Kist.ptn)
Ugin) S Xpiryo0m

So we can represent any computation as an (p(n) +1) X (p(n) + 1) array
as in Table 12.2.

3. Representation of IDs in Terms of Boolean Variables

We define a boolean variable vy, corresponding to (i, j)th entry in the ith ID.
The variable v;4 represents the proposition that x; = A. where A is a state or
tape symbol and 0 < 7, j < p(n). .

We simulate the sequence of IDs leading to the acceptance of an input
string w by a boolean expression. This is done in such a way that M accepts
w if an only if the simulated boolean expression Ey,. is satisfiable.

356 = Theory of Computer Science

4. Polynomial Reduction of M to SAT

In order to check that the reduction of M to SAT is correct, we have to ensure
the correctness of

(a) the initial ID,

{b) the accepting 1D. and

{¢) the intermediate moves between successive IDs.

(a) Simulation of initial ID

Xgo must start with the initial state gy of M followed by the symbols of
W = aa> ... a, of length n and ending with b’s (blank symbol). The
corresponding boolean expression S is defined as

S = Y00gg N Yolay AN Y0las AN - oo AN Yona, N YOourlob N v A Y0sp(mib

Thus given an encoding of M and w, we can write S in a tape of a multiple
T™M M,. This takes O(p(n)) time.

(b) Simulation of accepting ID

Oy, 18 the accepting ID. If py. pa. py are the accepting states of M, then
0y, contains one of p;’s. 1 <7 < kin any place j. If ¢, contains an accepting
state p; in jth position. then X,,,; Is the accepting state p; The corresponding
boolean expression covering all the cases (0 £ j < p(n). 1 < i < k) is given
by

F=Fy,vF v ...vF

pay

where

Fi= Ypimvipy Y Ypuodopy Y- Y Yot gops

Each F; has & variables and hence has constant number of symbols
depending on M but not on n. The number of F;'s in F is p(n). Thus given
an encoding of M and w, F can be written in O(p(n,)) time on the multiple
™ M,.

{c) Simulation of intermediate moves

We have to simulate valid moves o; |— o4, 1 = 0, 1, 2, ... p(n).
Corresponding to each move. we have to define a boolean variable N,. Hence
the entire sequence of IDs leading to acceptance of w is

N = l\yo AN]\71 AN oo A Np(n)—l

First of all note that the symbol X;.; ; can be determined from X; ;. Xj;,
X; j-1 by the move (if there is one changing ¢; to a different 04,,). For every
position (i, j). we have two cases:

Case 1 The state of ¢; is at position J.

Case 2 The state of ¢; is not in anyv of the (j— Dth, jth and (j+ Dth

positions.

Chapter 12: Complexity H 357

Case 1 is taken care of by a variable A; and Case 2 by a variable Bj;.

The variable N; will be designed in such a way that it gurantees that 1D
¢, 1s one of the IDs that follows the ID ¢

Xis1,; can be determined from

(i) the three symbols X;; . Xj; X, above it
(i1) the move chosen by the nondeterministic TM M when one of the three

symbols (in (1)) is a state.

If the state of ¢; is not Xy, X; ;- or X; ;1. then Xpy; ; = Xj;. This is taken
care of by the variable Bj;.

If X, is the state of o, then X; ,,; is being scanned by the state X;;. The
move corresponding to the state-tape symbol pair (X X; 1) will determine
the sequence Xy j_i Xis1.j Xis1,jor- This is taken care of by the variable Aj.

We write N; = Aj (45 v By), where A is taken over all j's. 0 = j < p(n).

(i) Formulation of B;; When the state of ¢; is none of X; iy, Xj; X ji1
then the transition corresponding to ¢ }— ¢y will not affect X; ;,;. In this
case X1 = Xj

Denote the \tape symbols by Zy. Z-, ..., Z. Then X; ;. X;; and X,
are the only tape symbols. So we write Bj; as

By =Wijoiz, vV Yijrz, ¥V oo VY dignz) A

Cigoz, ¥ Yigizy o M Nijz) A
Vijetzp ¥ Vijeiz, o0 YV Yigrnz) A
(ijozy A Vez) vV Wiz, A Visgiz, VoV Ovij,z, A Yieljiz)

This first line of By says that X;;; is one of the tape symbols
Zy. Z>. Z,. The second and third lines are regarding X; ; and X; ;.. The
fourth line says that Xj; and X;;,, are the same and the common value is any
one of Z,. Z~. ..., Z.

Recall that the head of M never moves to the left of O-cell and does not
have to move to the right of the p(n)-cell. So B;y will not have the first line
and B; ., will not have the third line.

(ii) Formulation of A;; This step corresponds to the correctness of
the 2 X3 array (see Table 12.3).

TABLE 12.3 Valid Computation

358 = Theory of Computer Science

The expression Bj; takes care of the case when the state of ¢; is not at the
position X; jj. X;; or X; ;.. The Ay corresponds to the case when the state
of ¢ is at the position Xl-j. In this case we have to assign boolean variables
to six positions given in Table 12.3 so that the transition corresponding to
O f— 04, is described by the variables in the box correctly.

We say that that an assignment of symbols to the six variables in the box
1s valid if

1. X, is a state but X; ;; and X ;;; are tape symbols.
Exactly one of Xp g0 Xip o Xiwpjs1 18 @ state.
There is a move whmh explains how (X ;. X ;, X; ;4;) changes to
Kist o1 Xiwt p Xivrjp) 100 O = Oy

There are only a finite number of valid assignments and A;; is obtained
by applying OR (that is v) to these valid assignments. A valid assignment
corresponds to one of the following four cases:

Case A (p, C, L) € 6(gq, A)

Case B (p. C, R) € d(g, A)

Case C o = ¢, (when o and ¢, contain an accepting state)
Case D j=0and j= pin

Case A Let D be some tape symbol of M. Then X; i X;X; ;1 = DgA and
Xivt. iiXi1 ; Xiwr w0 = pDC. This can be expressed by the boolean variable.

i+1. 7

OV)

YigeeD AN Vigog A Vigeta AN Nielj-lp N YislgD A Yieljrl C
Case B As in case A, let D be any tape symbol. In this case X; 1 XX ;.
= DgA and X Xy X1 = DCp. The corresponding boolean
expression is

Mi=tD AN Yijg AN Yigrr A N Nizlj-l.p AN Vel ¢ N Vsl j+lp

Case C In this case XZ _JX X 1= X'+1_7"1Xj+1‘]‘X[~+1A]'+1.

l/-v-

In this case the same tape symbol say D appears in X; ;- and X;;; j_;; some
other tape symbol say D" in X; 1) and Xy ;. X ; and X, ; contain the
same state. One typical boolean expression is

YijtZe N Yijog N YNigezy N Nislg-rze N Yislog N Yirl 7,
Case D When j = 0. we have only X;uX;, and X, ¢ Xix; ;- This is a special
case of Case B. j = p(n) corresponds to a special case of Case A.

So. A; 1s defined as the OR of all valid terms obtained in Case A to
Case D.

(iif) Definition of N, and N We define V. and N by
Ni= (A v Bi) A (A v B A oo A (A ooy VB)

N=Nyg AN AN A oA Ny

Chapter 12: Complexity 2 359

(iv) Time taken for writing N The time taken to write B;; is a constant
depending on the number || of tape symbols. (Actually the number of
variables in Bj; is 5|I'|). The time taken to write A; depends only on the
number of moves of M. As N: is obtained by applying OR to A A By,
O0si<pm -1 0<j<pw) — 1, the time taken to write on N, is O(p(n)).
As N is obtained by applying A to Ny, Ny. Ny, . the time taken to write
N is p()Oip(n)) = O(pj(n)).

5. Completion of Proof

Let Eyy . = S ANAF

We have seen that the time taken to write S and F are O(p(n)) and the
time taken for N is O(p(n)). Hence the time taken to write Ey; . is O (n)).

Also M accepts w if and only if Ej; . is satisfiable.

Hence the deterministic multitape TM M can convert w to a boolean
expression £y . in O(p~(n)) time. An equivalent single tape TM takes
O(p*(n)) time. This proves the Part I of the Cook’s theorem, thus completing
the proof of this theorem. 1

12.6 OTHER NP-COMPLETE PROBLEMS

In the last section. we proved the NP-completeness of SAT. Actually it is
difficult to prove the NP-completeness of any problem. But after getting one
NP-complete problem such as SAT. we can prove the NP-completeness of
problem P’ by obtaining a polynomial reduction of SAT to P’. The
polynomial reduction of SAT to P’ is relatively easy. In this section we give
a list of NP-complete problems without proving their NP-completeness. Many
of the NP-complete problems are of practical interest.

1. CSAT—Given a boolean expression in CNF (conjunctive normal

form—Definition 1.10). is it satisfiable?

We can prove that CSAT is NP-complete by proving that CSAT is
in NP and getting a polynomial reduction from SAT to CSAT.
Hamiltonian circuit problem~Does G have a Hamiltonian circuit (i.e.
a circuit passing through each edge of G exactly once)?

3. Travelling salesman problem (TSP)—Given n cities, the distance
between them and a number D, does there exist a tour programme for
a salesman to visit all the cities exactly once so that the distance
travelled is at most D?

4. Vertex cover problem-—Given a graph G and a natural number &, does
there exist a vertex cover for G with k vertices? (A subsets C of
vertices of (G is a vertex cover for G if each edge of & has an odd
vertex in C.)

rJ

360 = Theoryof Computer Science
5. Knapsack problem—Given a set A = {a;. a», .. ., a,} of nonnegative
integers. and an integer K, does there exist a subset B of A such that
b, = g
beB ’ K

This list of NP-complete problems can be expanded by having a
polynomial reduction of known NP-complete problems to the problems which
are in NP and which are suspected to be NP-complete.

12.7 USE OF NP-COMPLETENESS

One practical use in discovering that problem is NP-complete is that it
prevents us from wasting our time and energy over finding polynomial or easy
algorithms for that problem.

Also we may not need the full generality of an NP-complete problem.
Particular cases may be useful and they may admit polynomial algorithms.
Also there may exist polynomial algorithms for getting an approximate
optimal solution to a given NP-complete problem.

For example. the travelling salesman problem satistying the triangular
inequality for distances between cities (i.e. dj < dy + dy; for all i, j, k) has
approximate polynomial algorithm such that the ratio of the error to the
optimal values of total distance travelled is less than or equal to 1/2.

12.8 QUANTUM COMPUTATION

In the earlier sections we discussed the complexity of algorithm and the dead
end was the open problem P = NP. Also the class of NP-complete problems
provided us with a class of problems. If we get a polynomial algorithm for
solving one NP-complete problem we can get a polynomial algorithm for any
other NP-complete problem.

In 1982, Richard Feynmann, a Nobel laurate in physics suggested that
scientists should start thinking of building computers based on the principles
of quantum mechanics. The subject of physics studies elementary objects and
simple systems and the study becomes more intersting when things are larger
and more complicated. Quantum computation and information based on the
principles of Quantum Mechanics will provide tools to fill up the gulf between
the small and the relatively complex systems in physics. In this section we
provide a brief survey of quantum computation and information and its impact
on complexity theory.

Quantum mechanics arose in the early 1920s, when classical physics could
not explain everything even after adding ad hoc hypotheses. The rules of
quantum mechanics were simple but looked counterintuitive. and even Albert
Einstein reconciled himself with quantum mechanics only with a pinch of salt.

Quantum Mechanics is real black magic calculus.
—A. Einstein

Chapter 12: Complexity B 361

12.8.1 QuUANTUM COMPUTERS

We know that a bit (a O or a 1) is the fundamental concept of classical
computation and information. Also a classical computer is built from an
electronic circuit containing wires and logical gates. Let us study quantum bits
and quantum circuits which are analogous to bits and (classical) circuits.

A quantum bit, or simply qubit can be described mathematically as

ly) = al0) + Bl0)

The qubit can be explained as follows. A classical bit has two states, a 0 and
a 1. Two possible states for a qubit are the states [0) and [1). (The notation
|y is due to Dirac.) Unlike a classical bit, a qubit can be in infinite number
of states other than |0) and |1). It can be in a state [¥) = a|0) + B|0), where
o and B are complex numbers such that |of* + |B]* = 1. The 0 and 1 are called
the computational basis states and |y) is called a superposition. We can call
lv) = o]0) + B|0) a quantum state.

In the classical case. we can observe it as a 0 or a 1. But it is not possible
to determine the quantum state on observation. When we measure/observe a
qubit, we get either the state |0) with probability o] or the state |{1) with
probability |f]-.

This is difficult to visualize. using our "classical thinking’ but this is the
source of power of the quantum computation.

Multiple qubits can be defined in a similar way. For example. a two-qubit
system has four computational basis states. [00), [01), |10) and |11) and
quantum states | W) = 0gol00) + 04;]01) + 04o]10) + 01y |11) with |ogol” + |0
+ loggl + lonl[” = 1.

Now we define the qubit gates. The classical NOT gate interchanges 0
and 1. In the case of the qubit the NOT gate, «|0) + B|I), is changed to
afly + B10).

The action of the qubit NOT gate is linear on two-dimensional complex
vector spaces. So the qubit NOT gate can be described by

AR AR

0 1
The matrix L O} 1S a unitary matrix. (A matrix A is unitary if A adjd =1.)

We have seen earlier that {NOR} is functionally complete (refer to
Exercises of Chapter 1). The qubit gate corresponding to NOR is the
centrolled-NOT or CNOT gate. It can be described by

lA. B) = |A. B ® A)

362 = Theoryof Computer Science

where @ denotes addition modulo 2. The action on computational basis is
[00) — [00). |01) — |01). |10) — [11). [11) — |10). It can be described by
the following 4 X 4 unitary matrix:

(1000
01 0 0
T 700 01
00 1 0]

Now. we are in a position to define a quantum computer:

A quantum computer is a system built from quantum circuits, containing
wires and elementary quantum gates, to carry out manipulation of quantum
information.

12.8.2 CHURCH-TURING THESIS

Since 1970s many techniques for controlling the single quantum systems have
been developed but with only modest success. But an experimental prototype
for performing quantum cryptography. even at the initial level may be useful
for some real-world applications.

Recall the Church-Turing thesis which asserts that any algorithm that can
be performed on any computing machine can be performed on a Turing
machine as well.

Miniaturization of chips has increased the power of the computer. The
growth of computer power is now described by Moore’s law. which states that
the computer power will double for constant cost once in every two years.
Now it is felt that a limit to this doubling power will be reached in two or
three decades. since the quantum effects will begin to interfere in the
functioning of electronic devices as they are made smaller and smaller. So
efforts are on to provide a theory of quantum compuwtation which will
compensate for the possible failure of the Moore’s law.

As an algorithm requiring polynomial time was considered as an efficient
algorithm. a strengthened version of the Church~Turing thesis was enunciated.

Any algorithmic process can be simulated efficiently by a Turing machine.
But a challenge to the strong Church—Turing thesis arose from analog
computation. Certain types of analog computers solved some problems
efficiently whereas these problems had no efficient solution on a Turing
machine. But when the presence of noise was taken into account, the power
of the analog computers disappeared.

In mid-1970s. Robert Soiovay and Volker Strassen gave a randomized
algorithm for testing the primality of a number. (A deterministic polynomial
algorithm was given by Manindra Agrawal. Neeraj] Kayal and Nitein Saxena
of IIT Kanpur in 2003.) This led to the modification of the Church thesis.

Chapter 12: Complexity 2 363

Strong Church-Turing Thesis

Any algorithmic process can be simulared efficiently using a nondeterministic
Turing machine.

In 1985, David Deutsch tried to build computing devices using quantum
mechanics.

Computers are physical objects, and computations are physical processes.
What computers can or cannot compute is determined by the law of
physics alone, and not by pure mathematics

—David Deutsch

But it is not known whether Deutsch’s notion of universal quantum
computer will efficiently simulate any physical process. In 1994, Peter Shor
proved that finding the prime factors of a composite number and the discrete
logarithm problem (i.e. finding the positive value of s such that b = &' for the
given positive integers ¢ and b) could be solved efficiently by a quantum
computer. This may be a pointer to proving that guantum computers are more
efficient than Turing machines (and classical computers).

12.8.3 POWER OF QUANTUM COMPUTATION

In classical complexity theory, the classes P and NP play a major role, but
there are other classes of interest. Some of them are given below:

L —The class of all decision problems which may be decided by a TM
running in logarithmic space.

PSPACE —The class of decision problems which may be decided on a Turing
machine using a polynomial number of working bits, with no limitation on the
amount of time that may be used by the machine.

EXP —The class of all decision problems which may be decided by a TM in
exponential time, that is, O(2”k). k being a constant.

The hierarchy of these classes is given by
L < P ¢ NP ¢ PSPACE < EXP

The inclusions are strongly believed to be strict but none of them has been
proved so far in classical complexity theory.
We also have two more classes.

BPP—The class of problems that can be solved using the randomized
algorithm in polynomial time, if a bounded probability of error (say 1/10) is
allowed in the solution of the problem.

BOP—The class of all computational problems which can be solved
efficiently (in polynomial time) on a quantum computer where a bounded
probability of error is allowed. It is easy to see that BPP ¢ BQP. The class
BQP lies somewhere between P and PSPACE, but where exactly it lies with
respect to P, NP and PSPACE is not known.

364 2 Theory of Computer Science

It is easy to give non-constructive proofs that many problems are in EXP,
but it seems very hard to prove that a particular class of problems is in EXP
(the possibility of a polynomial algorithm of these problems cannot be ruled
out).

As far as quantum computation is concerned. two important classes are
considered. One is BQP. which is analogous to BPP. The other is NPI
(NP intermediate) defined by

NPI — The class of problems which are neither in P nor NP-complete

Once again. no problem is shown to be in NPL In that case P # NP is
established.

Two problems are likely to be in NPI, one being the factoring problem
(i.e. given a composite number # to find its prime factors) and the other being
the graph isomorphism problems (i.e. to find whether the given undirected
graphs with the same set of vertices are isomorphic).

A quantum algorithm for factoring has been discovered. Peter Shor
announced a quantum order-finding algorithm and proved that factoring could
be reduced to order-finding. This has motivated a search for a fast quantum
algorithm for other problems suspected to be in NPL

Grover developed an algorithm called the quantum search algorithm. A
loose formulation of this means that a quantum computer can search a
particular item in a list of N items in O(Jp) time and no further improvement
is possible. If it were O(log N). then a quantum computer can solve an NP-
complete problem in an efficient way. Based on this, some researchers feel that
the class BQP cannot contain the class of NP-complete problems.

If it is possible to find some structure in the class of NP-complete
problems then a more efficient algorithm may become possible. This may
result in finding efficient algorithms for NP-complete problems. If it is
possible to prove that quantum computers are strictly more powerful than
classical computers, then it will follow that P is properly contained in
PSPACE. Once again. there is no proof so far for P < PSPACE.

12.8.4 CONCLUSION

Deutsch proposed the first blueprint of a quantum computer. As a single qubit
can store two states 0 and 1 in quantum superposition, adding more qubits to
the memory register will increase the storage capacity exponentially. When
this happens. exponential complexity will reduce to polynomial complexity.
Peter Shor’s algorithm led to the hope that quantum computer may work
efficiently on problems of exponential complexity.

But problems arise at the implementation stage. When more interacting
qubits are involved in a circuit, the surrounding environment is affected by
those interactions. It is difficult to prevent them. Also quantum computation
will spread outside the computational unit and will irreversibly dissipate usetul

Chapter 12: Complexity B 365

information to the environment. This process is called decoherence. The
problem is to make qubits interact with themselves but not with the
environment. Some physicists are pessimistic and conclude that the efforts
cannot go beyvond a few simple experiments involving only a few qubits.

But some researchers are optimistic and believe that efforts to control
decoherence will bear fruit in a few years rather than decades.

It remains a fact that optimism. however overstretched, makes things
happen. The proof of Fermat's last theorem and the four colour problem are
examples of these. Thomas Watson. the Chairman of IBM. predicted in 1943,
“1 think there is a world market for maybe five computers”. But the growth
of computers has very much surpassed his prediction.

Charles Babbage (1791-1871) conceived of most of the essential elements
of a modem computer in his analytical engine. But there was not sufficient
technology available to implement his ideas. In 1930s, Alan Turing and
John von Neumann thought of a theoretical model. These developments in
"Software’ were matched by ‘Hardware’ support. resulting in the first
computer in the early 1930s. Then. the microprocessors in 1970s led to the
design of smaller computers with more capacity and memory.

But computer scientists realized that hardware development will improve
the power of a computer only by a multiplicative constant factor. The study
of P and NP led to developing approximate polynomial algorithms to
NP-complete problems. Once again the importance of software arose. Now the
quantum computers may provide the impetus to the development of computers
from the hardware side.

The problem of developing quantum computers seems to be very hard but
the history of sciences indicates that quantum computers may rule the universe
in a few decades.

12.9 SUPPLEMENTARY EXAMPLES

EXAMPLE 124

Suppose that there is an NP-complete problem P that has a deterministic
solution taking O(n'*¢") time (here log n denotes log»n). What can you say
about the running time of any other NP-complete problem Q7

Solution

As Q € NP, there exists a polynomial p(n) such that the time for reduction
of Q to P is atmost p(n). So the running time for Q is O(p(n) + p(n)°&"™,
As p(n)°r dominates p(n), we can omit p(n) in p(n) + p(n)°¢7", If the
degree of p(n) is k, then pn) = OGM). So we can replace p(n) by n*. So
() = O((n*)F 0y = 02, Hence the running time of Q is 0" ¢
for some constant ¢.

366 L Theory of Computer Science

EXAMPLE 12.5

Show that P is closed under (a) union, (b) concatenation, and (¢) comple-
mentation.

Solution

Let L, and L, be two languages in P. Let w be an input of length n.

(a) To test whether w € L, U L,, we test whether w € L;. This takes
polynomial time p(n). If w & L, test another w € L,. This takes
polynomial time g(n). The total time taken for testing whether
w € L; U L, is p(n) + g(n), which is also a polynomial in »n. Hence
L v L, e P

(b) Let w =xx»...x, Foreach k, 1 £k < n— 1. test whether x;x> ... x;
e L, and x; 1 Xpn .- - X, € Lo. If this happens, w € LL,. If the test
fails for all k&, w ¢ L,L-. The time taken for this test for a particular
k is p(n) + g(n), where p(n) and g(n) are polynomials in n. Hence the
total time for testing for all £’s is at most n times the polynomial
p(n) + g(n). As n(pn) + g(n) is a polynomial, L,L, € P.

(¢) Let M be the polynomial time TM for L,. We construct a new TM
M, as follows:

1. Each accepting state of M is a nonaccepting state of M; from
which there are no further moves. So if M accepts w, M; on
reading w will halt without accepting.

Let g- be a new state. which is the accepting state of M;. If

8(g. a) is not defined in M, define 8y (g, @) = (g5 a R). So,

w ¢ L if and only if M accepts w and halts. Also M; is a

polynomial-time TM. Hence L € P.

EXAMPLE 126

Show that every language accepted by a standard TM M is also accepted by
a TM M, with the following conditions:

[8]

1. M;’s head never moves to the left of its initial position.
2. M, will never write a blank.

Solution

It is easy to implement Condition 2 on the new machine. For the new TM,
create a new blank b’ If the blank is written by M, the new Turing machine
writes b". The move of this new TM on seeing b’ is the same as the move of
M tor b. The new TM satisfies the Condition 2. Denote the modified TM by
M itself. Define the modified M by

M=(Q T & qnb F)
Define a new TM M, as
Ml = (QI XX {b}’ 1—1‘ 51) 40> [b’ b]: FI)

Chapter 12: Complexity B 367

where
0= {q0. i} v (Q x {U. L})
M= xD v {x « |xe I}

qp and g are used to initiate the initial move of M. The two-way infinite tape
of M 1s divided into two tracks as in Table 12.4. Here * is the marker for the
leftmost cell of the lower track. The state g, U] denotes that M, simulates M
on the upper track. [g, L] dentoes that M; simulates M on the lower track. If
M moves to the left of the cell with *, M; moves to the right of the lower
track.

TABLE 12.4 Folded Two-way Tape

X ' X X

* X X X3

We can define F, of M, by
F, = Fx {U L}
We can describe § as follows:
L. 6(go. a b = (g1, [a <. R)
S(qi- [X b)) = (g2 UL [X. b], L)

By Rule 1, M; marks the leftmost cell in the lower track with * and
initiates the initial move of M.

2. If 6(q, X) =(p, ¥, D) and Z € T. then:
1) 6llg, Ul X ZD) = (p, U], [Y. Z], D) and
(i &g LI (Z XD = (p, L] [Z Y], D)
where D =L iftD=Rand p =RifD=1L.
By Rule 2. M, simulates the moves of M on the appropriate track. In
(1) the action is on the upper track and Z on the lower track is not
changed. In (ii) the action is on the lower track and hence the
movement is in the opposite direction p: the symbol in the upper
track is not changed.

3. If 8(g. X) = (p, ¥, R) then

6i(lg. L]. [X. «) = &(lg. Ul [X. <1 = ([p. Ul [¥. =1, R)

When M, see = in the lower track, M moves right and simulates M
on the upper track.
4. If 8(g. X) = (p. Y. L), then

8ilg. L1 [X. <D = &(lg. UL [X. - = (Ip. LI [¥. +]. R)

When M| sees = in the lower track and M’s movement is to the left
of the cell of the two-way tape corresponding to the = cell in the
lower track. the M’s movement is to X_; and the M,’s movement is
also to X_; but towards the right. As the tape of M is folded on the

368

o

Theory of Computer Science

cell with » the movement of M to the left of the = cell is equivalent
to the movement of M, to the right.

M reaches ¢ in F if and only if M, reaches {g. L} or [g, R]. Hence
TM) = T(M)).

- EXAMPLE 12.7

We can define the 2SAT problem as the satisfiability problem for boolean
expressions written as A of clauses having two or fewer variables. Show that
2SAT is in P.

Solution

Let the boolean expression E be an instance of the 2SAT problem having n
variables.

Step 1 Let E have clauses consisting of a single variable (x; or x). If {x;)
appears as a clause in E, then x; has to be assigned the truth value T in order
to make E satisfiable. Assign the truth value T to x. Once x; has the truth value
T, then (x; v x)) has the truth value 7 irrespective of the truth value of x; (Note
that x; can also be). So (y; v x) or (x; v ¥,) can be deleted from E. If
E contains (¥; v x;) as a clause. then v; should be assigned the truth value T
in order to make E satisfiable. Hence we replace (X; v x;) by x; in £ so that
x; should be assigned the truth value T is order to make E satisfiable. Hence
we replace (¥; v x;) by x; in £ so that x; can be assigned the truth value 7
later. If we repeat this process of eliminating clauses with a single variable (or
its negation). we end up in two cases.

Case I We end up with (x;) A (x;). In this case E is not satisfiable for any
assignment of truth values. We stop.

Case 2 In this case all clauses of E have two variables. (A typical clause is
X; VX 06 X Vv I:’)

Step 2 We have the apply step 2 only in Case 2 of step 1. We have already
assigned truth values for variables not appearing in the reduced expression E.
Choose one of the remaining variables appearing in E. If we have chosen x;
assign the truth value T to x; Delete x; v x; or x; v X; from E. If X, v x
appears in E, delete X; to get (x;). Repeat step 1 for clauses consisting of a
single variable. If Case 1 occurs. assign the truth value £ for x; and proceed
with E that we had before applying step 1.

Proceeding with these iterations, we end up either in unsatisfiability of E
or satisfiability of E.

Step 2 consists of repetition of step 1 at most » times and step 1 requires
O(n) basic steps.

Chapter 12: Complexity 2 369

Let n be the number of clauses in £. Step 1 consists of deleting {x; v x;)
from E or deleting ¥; from (%; v x;). This is done at most » times for each
clause. In step 2. step 1 is applied at most two times, one for x; and the second
for x;. As the number of variables appearing in £ is less than or equal to n,
we delete (v; v x;) or delete X; from (X; v x;) at most O(n) times while
applying steps 1 and 2 repeatedly. Hence 2SAT is in P.

SELF-TEST

Choose the correct answer to Questions 1-7:

1. If fn) = 21° + 3 and g(n) = 10000n% + 1000, then:
(a) the growth rate of g is greater than that of f
(b) the growth rate of fis greater than that of g.
(c) the growth rate of fis equal to that of g.

(d) none of these.

2. If fo1) = n° + 4n + 7 and g(n) = 10005~ + 10000, then f(n) + g(n) is
(a) On7)
(b)y O(n)
(©) 00r)
(d) 0()

3. If f) = 0" and g(n) = O@), then f(n)g(n) is
(a) max{k, [}
(by k+1
(cy kI
(d) none of these.

4. The ged of (1024, 28) is
(a)
(b)
(c)
(d)y 14

5. 710.77 + 19.97 is equal to
(a) 19
(b) 20
(c) 18
(d) none of these.

R S O]

6. log-1024 is equal to
(a) 8
(b) 9
(¢) 10
(d) none of these.

370

& Theory of Computer Science

7.

The truth value of fix. v,) = (x V=) A(mx vy Azis Tif x v 2
have the truth values

() T.T. T

(by F. F. F

() T, F. F

(d) F, T. F

State whether the following Statements 8-15 are true or false.

8.

If the truth values of x, v. 7 are T. F, F respectively. then the truth value
of flx.v, Y= x A=y v is T

. The complexity of a k-tape TM and an equivalent standard TM are the

same.

. If the time complexity of a standard TM is polynomial. then the time

complexity of an equivalent k-tape TM is exponential.

. If the time complexity of a standard TM is polynomial. then the time

complexity of an equivalent NTM is exponential.

flx. v,) = (X VYV IIA(RXA=YATDIS satisfiable.

. flxo v, D) = (x v) A (= x A =) s satisfiable.
. If fand g are satisfiable expressions, then f v g is satisfiable.

. If fand g are satisfiable expressions. then f A g is satisfiable.

EXERCISES
If i) = O(n) and g(n) = O(x)), then show that fln) + g(n) = O()
where t = max{k, [} and f(n)g(n) = OG").

Evaluate the growth rates of (1) fin) = 2. (i) g(n) = 100> + Tn log n +
log n. (iii) h(n) = n"logn + 2nlogn + 7n + 3 and compare them.

Use the O-notation to estimate (i) the sum of squares of first n natural

numbers. (ii) the sum of cubes of first n natural numbers, (iii) the sum
of the first n terms of a geometric progression whose first term is ¢ and
the common ratio is #. and (iv) the sum of the first n terms of the
arithmetic progression whose first term is a and the common difference
is d.

Show that f(n) = 3n~log~n + 4n logs n + 5logslogan + logn + 100
dominates 7° but is dominated by #°.

Find the gcd (294. 15) using the Euclid’s algorithm.

Show that there are five truth assignments for (P, @, R) satisfying
Pv (=P A—=0 AR

Chapter 12: Complexity B 371

12,7 Find whether (P A @ A R) A — (@ is satisfiable.
128 Is fx, v z w) = (x vy Vv) A (X vy wvZ) satisfiable?

12.9 The set of all languages whose complements are in NP is called
CO-NP. Prove that NP = CO-NP if and only if there is some
NP-complete problem whose complement is in NP.

12.10 Prove that a boolean expression E is a tautology if and only if — E is
unsatisfiable (refer to Chapter 1 for the definition of tautology).

Answers to Self-Tests

Chapter 1
1. (@)
5. (b)
Chapter 2
1. ()
5. (o)
9. (d)
Chapter 3
1. (@
5. (d
9. T
13. F
Chapter 4
1. (b)
5. (b)
9. (a)
13. F
17. F
Chapter 5
1. (a)
5. ()
9. ()
13. F
17. F

(d)
(d)
(a)
T

w

N

11.
15.

11.
15.
19.

11.
15.

373

(©

(a)
(©)

(b)

4.
FT F,FFT.T 8.

b

12.
16.
20.

12.
16.

(c)

(b)
(d)

(a)
(a)
(b)

(d)
(b)

374 B Answers to Self-Tests

Chapter 6
1. (@ A (b) Yes (¢) Yes
(e) Lables for nodes 1-14 are A, b, A, A, A, b, a, a, A, A, b, A,
a, a.
2. (a F by T @ T (d) F
(e T
3, (@ T by T ¢ T (d) F
(e) F T (& F : (hy T
Chapter 7
1. (a) 2. (b) 3. (@ 4. (a)
5. (o) 6. (a) 7. input string to S
8. looking ghead by one symbol
9. (g5 A) for some g€ F and o € r*
10. (g, ~. A) for some state g.
Chapter 8
1. (o) 2. (a) 3. (a) 4. (©
5.
Chapter 9
1. @ 2. () 3. (@ 4. (d)
5. (@) 6. (c) 7. (b) 8. (d)
9. (b 10. (b)
Chapter 11
1. (a) 2. (o) 3. (@ 4. (b)
5. (b 6. (a) 7. (0 8. (@
9. (a) 10. (b) 11. T 12. T
13. F 14. T 15. T
Chapter 12
1. (b) 2. (¢ 3. (b 4. (b
5. (a) 6. (0 7. (a) 8. T

9. F 10. F 1. T 12. F
13. T 4. T 15. F

Solutions (or Hints) to
Chapter-end Exercises

Chapter 1
1.1 All the sentences except (g) are propositions.
1.2 Let L, £, and G denote a < b, a = b and a > b respectively. Then
the sentence can be written as
EA-GCGA-LDVIGA—=EA-LVILA—-EA-=SG).

1.3 (i) David gets a first class or he does not get a first class. Using the
truth table given in Table Al.1,V is associative since the columns
corresponding to (P Vv)V R and PV (Q V R) coincide.

TABLE A1.1 Truth Table for Exercise 1.3

P Q R P7Q QYR (PYQvR Pv(QVR
T T T F F T T
T T F F T F F
T F T T T F F
T F F T F T T
F T T T F F F
F T F T T T T
F F T F T T T
F F F F T F F

The commutative and distributive properties of Exclusive OR can be
proved similarly.

1.4 Using v and —, all other connectives can be described. P A Q and
P = @ can be expressed as — (= P v — Q) and — P v Q respectively.
i5 -pP=pP7TP
PAQ=PTOTETOQO
Pvo=rTPnT@ETO
Verity these three equations using the truth tables.
375

376 &2 Solutions (or Hints) to Chapter-end Exercises

16 -P=PlP
pvo=rPlolel
PArQ=®iPl@lO

1.7 (a) The truth table is given in Table Al.2.

TABLE A1.2 Truth Table for Exercise 1.7(a)

P Q R PvQ PVR RvQ@ PVR=RvQ PVvQR=({(PVvR)=(RvQ))
T T T T T T T T
T T F T T T T T
T F T T T T T T
T F F T T F F F
F T T T T T T T
F T F T F T T T
F F T F T T T T
F F F F F F T T
1.8 (a) —-P = ("1P A Q) = - (—1 P) 2 (—1P A Q) by 112
=Pv (=PAQ by I;
=Pv-P)A PV D by I,
=T APV Q) by Ig
=PvQ by Iy
PGP EPA)=s-EP) VYO by
=Pv(PV O by I;
=PvQ by 5 and [,

1.9 We prove [s and s using the truth table.
TABLE A1.3 Truth Table for Exercise 1.9

PAQ =P —-Q PVv(PAQ =(PrQ -Pv-Q

MM
MM~ O
mTm T
~~Tnm
~=~=m
~~=~m

~ TN~
mTno

P v (P A Q) = P since the columns corresponding to P and
P v (P A Q) are identical; - (P A Q) = — P v — @ is true since the
columns corresponding to - (P A Q) and = P v — Q are identical.

1.11 We construct the truth table for (P = — P) = = P.

TABLE A1.4 Truth Table for Exercise 1.11

P - P P = =P P=—-P) = =P
T F F T
F T T T

As the column corresponding to (P = — P) = — P has T for all
combinations, (P = — P) = — P is a tautology.

Solutions (or Hints) to Chapter-end Exercises =2 377

112

1.13

1.14

1.15

P/\(P:>—\Q)EP/\(—“«P\/—\Q)E(P/\—!P)V(P/\—1Q)5
Fv@PAr-0=Pr-Q

SOPAP=>-9DVvQ=-D=PAr-0Vv{=QVv-0Qs=
(P A=Q)v -Q = -0Q. Hence

(PAP=-0)Vv@=>-0)=-0=-0=-0=-(=0)
\/-ﬂQEQ\/ﬁQ=T

a=(Q@A—=RA-=8VRAS
=(QOA-RA=SSVRASAOQD VRASA=Q
QOA-RA=SSVIQ@ARASSVEOARAS

Let the literals be P, , R. Then

o =110 v 100 v 010 v 000
=(PAQA-RVEPA=QA—=R)vV (010 v 000

PA-RVEPAQA-RY (=P A= A—-R)

(P A —|R) \% (-—1P A —sR)

- R

{(a) The given premises are: (i) P = Q, (ii) R = — Q. To derive
P = — R, we assume (iii) P as an additional premise and deduce — R.
1. P Premise (iii)

2.P=0 Premise (1)

e RI,

L =(=0 L

.R= -0 Premise (ii)

- R RI;

. P = =R Lines 1 and 6

Hence the argument is valid.

(b) Valid

(c) Let the given premises be (i) P, (ii) Q. (iii) =@ = R,
(iv) Q = —R. Then

1. Q Premise (ii)

2. =R Premise (iv)

Hence the given argument is valid.

(d) Let the given premises be (1) S. (ii) P, (iti) P = Q A R,
(iv) @ v S = T. Then

Premise (ii)
AR Premise (iii)

P
o
Q RI;
0
T

me i

SOy e Wt

[y

v S RI,

. Premise (iv)
Hence the argument is valid. Note that in (c) and (d) the conclusions
are obtained without using some of the given premises.

378 =

Solutions (or Hints) to Chapter-end Exercises

1.16

1.17

1.18
1.19

1.20
1.21

1.22

We name the propositions in the following way:

R denotes ‘Ram is clever’.

P denotes ‘Prem is well-behaved’.

J denotes ‘Joe is good’.

S denotes ‘Sam is bad’.

L denotes ‘Lal is educated’.

The given premises are (i) R => P, (i) J = § A =P, (iii)) L =
J v R. We have to derive L A = P = S. Assume (iv) L A = P as an
additional premise.

1. L A =P Premise (iv)

2. L RI,

3. -P Rl

4. J v R Premise (iii)

5. R = P Premise (i)

6. =R Line 3, Premise (i) and RIs
7.J Lines 5 and 4 and RI,

8 S A =P Premise (ii)

9.8 RI4

Hence, L A =P = S.

The candidate should be a graduate and know Visual Basic, JAVA and
C++.

{5, 6,7, ...}

Let the universe of discourse be the set of all complex numbers. Let
P(x) denote ‘x is a root of © + at + b = 0°. Let a and b be nonzero
real numbers and b # 1. Let P(x) denote ‘x is a root of #* + at + b
= 0. Let O(x) denote ‘x is a root of b~ + ar + 1 = 0". If x is a root
of £ + ar + b = 0 then Ux is a root of b + at + 1= 0. But x is a
root of > + ar + b = 0 as well as that of b” + ar + 1 = 0 only when
x = zl. This is not possible since b = 1. So, 3Ix (P(x) = Q) &
(3x P(x) = Jx O(x)) is not valid.

Similar to Example 1.22.

Let the universe of discourse be the set of all persons. Let P(x) denote
x is a philosopher’. Let Q(x) denote ‘x is not money-minded’. Let
R(x) denote x is not clever’. Then the given sentence is

(Vx (P(x) = Q) A (Fx(= Q@) A RX))) = (Fx(=Px) A RX)))
1. = Q(c) A R(c) Rl

2. = Q(c) RI,
3. = P(C) R]5
4. R(c) Line 1 and RL;

5. = Q(c) A R(c) Lines 2 and 4
Hence the given sentence is true.
Similar to Exercise 1.21.

Solutions (or Hints) to Chapter-end Exercises E 379

Chapter 2

21

2.2

23

24

25

2.6

2.7

28

29

211

(a) The set of all strings in {a, b, c}*.

(b) A n B = {b}. Hence (A N B)* = {b"|n = 0}.

(c) The set of all strings in {a, b, c}* which are in {a, b}* or in
{b, c}*.

(d) A* n B* = {b"|n 2 0}.

() A - B = {a}. Hence (A - B)* = {d"'|n 2 0}.

(f) (B - A* = {"|n 20}

(a) Yes

(b) Yes

(¢) Yes. The identity element is A.

(d) o is not commutative since x 0 y # y 0 x when x = ab and
vy = ba; in this case x 0 vy = abba and y o x = baab.

(a) o is commutative and associative. (b) @ is the identity element

with respect to 0. (¢) A U B = A U C does not imply that B = C.

For example, take A = {a, b}, B = {b, ¢} and C = {c}. Then A U

B=AuyU C={a b, c}. Obviously, B # C.

(a) True. 1 is the identity element.

(b) False. 0 does not have an inverse.

(¢) True. O is the identity element.

(d) True. ¢ is the identity element. The inverse of A is A“.

(¢c) Obviously, mRm. If mRn, then m - n = 3a. So, n — m = 3(—a).
Hence nRm. If mRn and nRp, then m — n = 3a and n — p = 3b.
m—p = 3(a+ b), i.e. mRp.

(a) R is not reflexive.

(b) R is neither reflexive nor transitive.

(¢) R is not symmetric since 2R4, whereas 4R’2.

(d) R is not reflexive since IRl (1 + 1 # 10).

An equivalence class is the set of all strings of the same length. There

i1s an equivalence class corresponding to each non-negative number.

For a non-negative number n, the corresponding equivalence class is

the set of all strings of length n.

R is not an equivalence relation since it is not symmetric, for example,

abRaba, whereas abaR ab.

R ={(1,2), 2 3), 1 4, 4 2), 3 9}

R* = {(1, 3), 2, 4). (1, 2). (4, 3), (3. 2)}

R = {(1, 4), (2.2, (1. 3). 4. 4), (3. 3)}

RY = {(1,2), (2,3), (1,4, 4 2), 3. 4} =R

Hence
RPt=RUR UR
R* = R* U {(1, 1}

R* = R* = R, Since R® = R (an equivalence relation is transitive).

380 =

Solutions (or Hints) to Chapter-end Exercises

212

2.14
215

2.16

217

Suppose f(x) = f(v). Then ax = ay. So, x = y. Therefore, f is one-one.

fis not onto as any string with b as the first symbol cannot be written

as flx) for any x € {a, b}*.
(a) Tree given in Fig. 2.9.

(a) Yes.

(by 4. 5. 6 and 8

)1, 2,3 and 7

(&) 3 (The longest pathis 1 - 3 = 7 — §)
(e) 4-5-6-8

(f) 2

(g) 6 and 7

Form a graph G whose vertices are persons. There is an edge
connecting A and B if A knows B. Apply Theorem 2.3 to graph G.

Proof is by induction on |X]. When |X| = 1. X is a singleton. Then
2¥ = {§. X}. There is basis for induction. Assume |2%| = 2% when
X has n — 1 ‘elements. Let ¥ = {a;. a» ..., a,}

Y=Xu {a,}, where X = {ay. a», a,_4}. Then X has n - 1
elements. As X has n — 1 elements. | 2| = 2% by induction hypothesis.

Take any subset Y, of Y. Either Y, is a subset of X or Y| — {a,}
is a subset of X. So each subset of ¥ gives rise to two subsets of X.
Thus. |2'1 = 22%]. But [2¥| = 2. Hence [2'] = 2'". By induction the
result is true for all sets X.

11+ 1) +2)

(@) When n = 1. 1° = = 1. Thus there is basis for

tnduction. Assume the result for n — 1. Then

50

k=l

n-1
5

Z k- o+ 0t
=1

1!

(n-Dn-1+D2n -1
n = D X) + 1~ [by induction hypothesis]

6

e 9]
=ﬂ1~‘£6(ili2 on simplification.

Thus the result is true for n.

(¢) When 1 = 2. 10" — 1 = 9999 which is divisible by 11. Thus
there is basis for induction. Assume 10" — 1 is divisible by 11.
Then, 107 — 1 = 10°10°" =1 = 1 = 107[10°" =P — 1] + 10" — 1. As
10771 — 1 and 107 — 1 are divisible by 11, 16°" — 1 is divisible by
11. Thus the result is true for n.

Solutions (or Hints) to Chapter-end Fxercises =2 381

219

2.20

221

222

223

(b) 2° > 2 [Basis for induction]. Assume 2" ! > n - 1 for n > 2.

Then, 2" =2-2""" > 2(n — 1), ie. 2" > n + n — 2 > n (since
n > 2). The result is true for n. By the principle of induction, the
result is true for all n > L.

(a) When n = 1, F2n + 1) = F(3) = F(1) + F(2) = F(0) + F(2). So,

1
FQn + 1) = Z FQ2k).
k=0

Thus there is basis for induction. Assume

n-1
FQn -)= Y FQk [by induction hypothesis]
k=0

F2n +)= F2n — 1) + F(2n) [by definition]
By induction hypothesis,

n-1 I
F2n + 1) = FQky + F(2n) = Z F(2k)
£=0 k=0
So the result is true for n.

In a simple graph, any edge connects two distinct nodes. The
number of ways of choosing two nodes out of n given nodes is

n(n~1)
2

"Cy =

. So the maximum number of edges in a simple graph

n(n-1)

1S By

We prove by induction on |w|. When w = A, we have abA = Aab.
Clearly, |A| = 0, which is even. Thus there is basis for induction.
Assume the result for all w with |w| < n. Let w be of length n and
abw = wab. As abw = wab, w = abw, for some w in {a, b}*. So
ababw| = abwab and hence abw,; = wiab. By induction hypothesis,
|w| is even. As [w| = |w;| + 2, |w| is also even. Hence by the principle
of induction, the result is true for all w.

Let P(n) be the ‘open the nth envelope’. As the person opens the first
envelope, P(1) is true. Assume P(n — 1) is true. Then the person
follows the instruction contained therein. So the nth envelope is
opened, i.e. P(n) is true. By induction, P(n) is true for all n.

Cnapter 3

31
32

101101 and 000000 are accepted by M. 11111 is not accepted by M.
{g0. q1» g4}. Now, 6(qy, 010) = {qo, g2} and so 010 is not accepted
by M.

382 E Solutions (or Hints) to Chapter-end Exercises

3.3 Both the strings are not accepted by M.

3.4 As d(g;, @) = 6(qy, a), R is reflexive. Obviously it is symmetric.
If giRg,. then 6(q;, @) = 6(ga, a).
If g-Rgs then 6(qa, a) = 6(gs, a). Thus 8(q;, a) = 6(q, a), implying
that g;Rgs. So R is an equivalence relation.

3.5 The state table of NDFA accepting {ab, ba} is defined by Table A3.1.

TABLE A3.1 State Table for Exercise 3.5

State/s a b
Go gy 3
o} (o]
Q2 Q3

The state table of the corresponding DFA is defined by Table A3.2.

TABLE A3.2 State Table of DFA for Exercise 3.5

State/z a b
[90] {g4] [9.]
[1] ¢ [qs]
(g2} [gs] 0

0 /]
¢ ¢ 0

3.6 The NDFA accepting the given set of strings is described by
Fig. A3.1. The corresponding state table is defined by Table A3.3.

a b

Fig. A3.1 NDFA for Exercise 3.6.

TABLE A3.3 State Table for Exercise 3.6

StatelZ a b
Qo Jo. G4 Go
g1 7]
Q2 gz
g3

The DFA accepting the given set is defined by Table A3.4.

Solutions (or Hints) to Chapter-end Exercises = 383

TABLE A3.4 State Table of DFA for Exercise 3.6

State/z a b
(g0l - 90 g4l [g4]
[90. gl (9, a1l [q0. @2l
{90, G2 [90. G1. Gl (g0l
[%. 1, Gl {9, g1l (90, G2l

3.7 The state table for the required DFA is defined by Table A3.5.

TABLE A3.5 State Table for Exercise 3.7

State o] 1 2
[q0] [a1 qd] [qd] (G2, G3]
[9a] ?] ?

(91, G4l] [94]]

[g2. g2l 9 [94] [q2, gal
) [}]]

3.9 The state table for the required DFA is defined by Table A3.6.

TABLE A3.6 State Table for Exercise 3.9

State 0 1
(1] [92. gal (4]
(G2, g4l (g1, @2l [a1, g2
{91, 921 a1, 92 93] [q:]
[01, G2, Gs] [g1. g2 Gl [91, g2l

3.10 The required transition system is given in Fig. A3.2. Let X denote
{a, b, c, ..., z}. » denotes any symbol in ¥ — {c, r}. »= denotes any
symbol in £ — {¢, a, r}. == denotes any symbol in X.

Fig. A3.2 Transition system for Exercise 3.10

3.11 The corresponding Mealy machine is defined by Table A3.7.

384 L= Solutions (or Hints) to Chapter-end Exercises

TABLE A3.7 Mealy Machine of Exercise 3.11

Present state Next state
a=>0 a =1
state output state output
Go a1 0 4z 1
g1 g3 1 qz 1
G2 a2 1 94 0
93 do 1 93 1

312 g, is associated with 1 and ¢, is associated with 0 and 1. Similarly, ¢;
is associated with 0 and 1, whereas g, is associated with 1. The state
table with new states gy, ¢, g1 ¢30- g2, and ¢4 is defined by Table A3.8.

TABLE A3.8 State Table for Exercise 3.12

Present state Next state
a=0 a=1
state output state output
G g1 0 G20 0
920 da 1 o 1
g2 Qs 1 ds 1
G0 a1 1 Q31 1
934 921 1 934 1
qs 930 0 g 1

The revised state table is defined by Table A3.9.

TABLE A3.9 Revised State Table for Exercise 3.12

Present state Next state
a=0 a=1 output
> 4o G4 920 0
a4 g G20 1
Q20 [°71 qa 0
g2 e G4 1
930 Ga1 31 0
91 921 O3 1
Ga G30 g4 1

3.13 The Mealy machine is described by Fig. A3.3.

0, Even 0, Odd

. 1, Odd .

90 -—-@

1, Even
Fig. A3.3 Mealy machine of Exercise 3.13.

Solutions (or Hints) to Chapter-end Exercises = 385

fici

3.14 n’s are given below:

3.16

Ty = {{496}> {90- G 92> G3 4 G5t}

T = {96}, {90 1> 92 g3 Gshs {qu})
o= {{qe}, {qa}s {q0. g1, @3} {92 gs}}
= {{qe}, 1q4}s {q0}, {ai}. a3}, {qa st}

Ty = {{g6}s {as}s {qo} {ah {a3}. (@2}, {gst}
Here n = Q. The minimum state automaton is simply the given
automaton.

Chapter 4

41

4.2

(a) § = 0'S1"= 0'0"A1"™". n 20, m 2 1.
AS A s M >0
0"1" € I(G) when n > m 2 1. So L(G) = {0"1":n>m 2 1}
(b) L(G) = {0"1"|m # n and at least one of m and n = 1}. Clearly,
0" € L(G) and 1" € L(G), where m, n = 1.
For m > n, § = 0"S1" = 0"0A1" =5 0"00""'1" = 0"1". Thus
01" e L(G).
(¢) IL(G) = {0"1"0"|n 2 1}. The proof is similar to that of
Example 4.10.
(@) L(G) = {0"1"0"1" |m, n 2 1}.
For m, n 2 1,
§ = 0s1 = 00ALY = 0717TA0M T = 071071
So,
{(0"170"1" [m, n 2 1} < L(G).
It is easy to prove the other inclusion.
(e) L(G) = {x € {0. 1}7|x does not contain two consecutive 0’s}
(a) G = ({5, A, B}, {0. 1}. P, S), where P consists of § — 0B | 1A,
A — 0]|0S| 144, B — 1|1S| 0BB.
Prove by induction on |w|, w € Z*, that
(i) S = wif and only if w consists of an equal number of 0’s and 1’s
(i) A = w if and only if w has one more O than it has 1’s.
(iii) B = w if and only if w has one more 1 than it has 0’s.
A =0, B = 1 and § does not derive any terminal string of length one.

386 & Solutions (or Hints) to Chapter-end Exercises

Thus there is basis for induction. Assume (i), (ii) and (iii) are true
for strings of length & — 1. Let w be a string in £* with |w| = k.
Suppose S = w. The first step in this derivation is either § = 0B or
S = 1A. In the first case w = Ow;, B = w; and |w,| = k — 1. By
induction hypothesis, w has one more 1 than it has 0’s. Hence w has
an equal number of 0’s and 1’s. To prove the converse part, assume
w has an equal number of 0’s and 1’s and |w| = k. If w starts with
0, then w = Ow; where |w,| = k — 1. wy has one more 1 than it has
0’s. By induction hypothesis, B = w,. Hence § = 0B = Ow; = w.
Thus (i) is proved for all strings w. The proofs for (ii) and (iii) are
similar.

(b) The required grammar G has the following productions:
S — 051, S - 0Al, A —» 140, A — 10.

Obviously, L(G) < {0"1"0™1"|m, n = 1}. For getting any terminal

string, the first production is § — 0S1 or § — 0Al, the last

production is A — 10. By applying S — 051 (n — 1) times, S — 0Al

(once), A — 140 (m — 1) times, and A — 10 (once) we get 0"170™1".

So, {0"170"1" | m, n 2 1} < L(G).

(¢) The required productions are S — 0S511]011.

(d) The required productions are S — 0Al|1B0, A — 0Al|A, B —
1BO | A.

() Modify the constructions given in Example 4.7 to get the
required grammar.

4.3 For the derivation of 001100, 001010 or 01010, the first production
cannot be § — 0S1. The other possible productions are S — 04 and
§ — 1B. In these cases the resulting terminal strings are 0" or 1. So
none of the given strings are in the language generated by the
grammar given in Exercise 4.1(b).

4.4 It is easy to see that any derivation should start with § = 0AB =
0ASA = OAOABA or § = 0AB = 0A01 = 0SOBl. If we apply
S — 0AB, we get A in the sentential. form. If we try to eliminate A
using A0 — SOB or Al — SB1, we get S in the sentential form. So
one of the two variables, namely A or S, can never be eliminated.

4.5 The language generated by the given grammar is {0172"3| m, n 2 1}.
This language can also be generated by a regular grammar (refer to
Chapter 5).

4.6 (a) False. Refer to Remark 2 on page 123.
(b) True. If L = {wy, wa, ..., w,}, then G = ({S§}, Z, P, S), where
P consists of § — wilws| ... |w,.
(¢) True. By Theorem 4.5 it is enough to show that {w} is regular
where w € X*. Let w = aia, ... @,. Then the grammar whose

Solutions (or Hints) to Chapter-end Exercises H 387

productions are S — ajA[, A| = @A-, ... A, > a, generate

{w}.

4.7 We prove (a) S = AJAJA,, (b) AJAJA, = dVAJA,, (c) AJATA, =

4.8

49

410

al)z+1)

We first prove (a). S = AsA; = AjAzAA, = ATAATA; =
A7AALAF Ay (We are applying A; — AjA3A>(n — 2) times and
Az > AjA, once.) Hence (a). To prove (b) start with A"A7A,. Then
AMTAAATTA = AMaAAALTA, = AlTPAAAALTIAL =
AlPPAAA AT A= Al AA GAA AT AL S AT G AA AA AT AL =
Al AaAA A ASTA, S aATATATAT A,

Proceeding in a similar way, we get AJAJA, = adCATA A,
Hence (b).

Finally, AJA{A; = AJA Aua = AJA G = AF'Asd™ 5 Asa™
= a®*l (We apply A\Ay — Asa, AyA; > Asa, AxAs — Asa and
finally A5 — a).

Using (a), (b) and (c). we get § = """,

The productions for (i) are § — aS|B., aS — aa, B — a. For (ii) the
productions are S — AS|a, A — a. For (iii) the productions are
S — aS|a.

The required grammar G = ({S, S|. A, B}, Z, P, §), where L =

{0, 1, 2, ..., 9} and P consists of
S$—>0]2]/4]6]8 S>> AS,A—>1]2]...1]9
S; —>0]2]4|6(8, S —> ABS;.B—> 1]2]...]9

S — 0]2]4]6]|8 generate even integers with one digit.

S -» AS| and A-productions and S;-productions generate all even
numbers with two digits. The remaining productions can be used to
generate all even integers with three digits.

(@) G = ({S, A, B}, {0, 1}, P, S), where P consists of § — 0S1 | 0A
|1B|0|1, A - 0A|0, B — 1B|1. Using § — 051, S — 0,
S — 1, we can get 01", where m and differ by 1. To get more 0’s
(than 1’s) in the string we have to apply A — 0A |0, § — 04
repeatedly. To get more I's, apply § — 1B, B — 1B 1 repeatedly.
(b) The required productions are S — aS;, §; = bSic, S; — be,
S — CZS_‘ZC, 53 — aS;c, S: d b, S - S3C, S3 e aS3b, S3 — ab. The
first three productions derive ab”c”. S — aSyc and the S,-productions
generate a’bc”. The remaining productions generate a"'b"c.

(¢) The required productions are S — 051, S — 01, § — 0Al, A —
1A, A - 1.

(d) The required productions are S — aSc, S = ac, § = bc, S —
bSic, Sy — bSc, §| — be. A typical string in the given language can
be written in the form a'b"¢”c! where 1. m > 0. § — aSc, S — bc

388 = Solutions (or Hints) to Chapter-end Exercises

generate a'c' for 1 = 1. § — bS,c, S; — bSic, S| — bc generate b"¢"
for m > 1. For getting a'b"'c"c', we have to apply § — aSc [times;
S = bc, S — bSic. S = bSic and S; — bc are to be applied. For
m =1, § — bc has to be applied. For m > 1, we have to apply
S —= bSic. §{ = bSic and S, — bc repeatedly. The terminal ¢ 1s added
whenever the terminal ¢ or b is added in the course of the derivation.
This takes care of the condition 1 + m = n.

(¢) Let G be a context-free grammar whose productions are
§ — 5051508, S — S0S0S1S, S — 5150505, § — A. It 1s easy to see
that elements in L(G) are in L. Let w € L. We prove that w € L(G)
by induction on |w|l. Note that every string in L is of length 3n,
n = 1. When |w] = 3. w has to be one of 010, 001 or 100. These
strings can be derived by applying S — S051S0S, § — S0S0S1S and
S — S150S0S and then S — A. Thus there is basis for induction.
Assume the result for all strings of length 3n — 3. Let w € L and let
|wl = 31, w should contain one of 010, 001 or 100 as a substring. Call
the substring w,. Write w = w-w;ws. Then |w-ws| = 3n — 3 and by
induction hypothesis S = w-ws. Note that all the productions (except
S — A) yield a sentential form starting and ending with S and having
the symbol § between every pair of terminals. Without loss of
generality, we can assume that the last step in the derivation
S 5 wawy is of the form w.Swa = wows. So, § = waSws. But
w, € Land so § = w;. Thus, S = w-,w;ws. In other words, w € L(G).
By the principle of induction, L = L(G).

411 The required productions are:
(@S —=>aS,, 8 —>aS. 5 = aS~, S = a
® S —>aS,5—>5bS,5 > a
€S —>as., S = aS, 8, =2 b3, 5 5 a S - b
(d) S — aS;, § = a8, S§ = bS5, S» — bSy, S5 = ¢S5, 53— o
&) S — aS. S = bS, S — aS», S, — b

412 2= is not symmetric and so the relation is not an equivalence relation
(Refer to Note (i1), page 109)

413 Tt is clear that L(G,) = {@"p" | n 2 1}. In G», S = AC = ASB =
A1 SB"!. Also, § = AB = ab. Hence § = @'b" for all n > 1. This
means L(G.) = {d'b"|n 2 1} = L(G)).

414 L(G) = 9, tor we get a variable on the application of each production
and so no terminal string results.

4.15 The required productions are § — aSy, Sy = 55>, > — ¢, § — bS5,
53 — CS4, 54 - a, S - CS5, S5 — (ZSO, 56 — b.

4.16 The required productions are S — Sy, §; — abSi, S; — ab, § — S,
S: — baS:, Sj_ — ba.

Solutions (or Hints) to Chapter-end Exercises = 389

417 Let the given grammar be G,. The production A — xB where
X =aa ... a,is replaced by A — aA, A — @A, .. LA, —
a,B8. The production A — y, where y = bib, ... b, is replaced by
A — bB, B, » b:B,, ..., B, | — b,. The grammar G, whose
productions are the new productions is regular and equivalent to G;.

Chapter 5
51 (@) 0+1+2
(b) 1AD*

52

53

55

(¢) w in the given set has only one a which can occur anywhere in
w. So w = xay, where x and y consist of some b’s (or none).
Hence the given set is represented by b* ab¥.

(d) Here we have three cases: w contains no «, one a or two a’s.
Arguing as in (c¢), the required regular expression is

b* + b* ab* + b* ab* ab*

(e) aa(aaa)*

(f) (aa)* + (aaa)* + aaaaa

(g) a(a + b)* a

(a) The strings of length at most 4 in (ab + a)* are A, a, ab, aa,
aab, aba, abab, @, aaba, aaab and a*. The strings in aa + b are
aa and b. Concatenating (i) strings of length at most 3 from the
first set and aa and (i) strings of length 4 and b, we get the
required strings. They are aa, aaa, abaa, aaad, aabaa, abaaa,
@, ababb, aabab, aaabb, and aaaab.

(¢) The strings in (ab + a) + (ab + a)z are a, ab, aa, abab, aab and
aha. The strings of length 5 or less in (ab + a)’ are a’, abaa,
aaab, ababa. The strings of length 5 or less in (ab + a)4 are a4,
a’ab. aba’. In (ab + a)°, @ is the only string of length 5 or less.
The strings in a* are in (ab + a)* as well. Hence the required
strings are A, a, ab, @, abab, aab, aba, @, abaa, aaab, ababa,
a*, aaaab, abaaa, and @ .

(a) The set of all strings starting with « and ending in ab.

(b) The strings are either strings of a’s followed by one b or strings
of b’s followed by one a.

(c) The set of all strings of the form vw where a’s occur in pairs in
v and b’s occur in pairs in w.

The transition system equivalent to (ab + a)*(aa + b) (5.2(a)) is

given in Fig. AS.1.

390 & Solutions (or Hints) to Chapter-end Exercises

b * b
(o)==

(ab +a)* (aa + b)

Fig. A5.1 Transition system for Exercise 5.5.

5.6 The transition system equivalent to a(a + b)*ab (5.3)(a)) is given in
Fig. A5.2.

@ a(a +b)ab

Fig. A5.2 Transition ,system for Exercise 5.6.

Solutions (or Hints) to Chapter-end Exercises = 391

5.7

58

59

510

(a) 9; (b) (a + b)*; (c) the set of all strings over {a, b} containing
two successive a’s or two successive b’s; (d) the set of all strings
containing even number of @’s and even number of b’s.

We get the following equations:
qo=A
Q1= gol + qil + g3l
Q= q:0 + 0 + q30
q; = q;1
Therefore,
Q2 = @0 + g0 + qx10 = q;0 + q;(0 + 10)
Applying Theorem 5.1, we get
q = ;000 + 10)*
Now,
qi=1+qi +q11 =1+ q + q;00 + 10)*11
=1+ q@ + 000 + 10)* 11)
By Theorem 5.1, we get
q1= 11 + 00 + 10)*11)*

g3 = q;1 = 11 + 000 + 10)11)* 00 + 10)*1

As qs is the only final state, the regular expression corresponding to
the given diagram is 1(1 + 0(0 + 10)* 1D* 0 (0 + 10)* 1.

The transition system corresponding to (ab + ¢*)*b is given in Fig.
AS53.

(a) The required regular expression

T +0D* + A+ 01)* 001 + O1)* + (0 + 10)* + (0 + 10)* 11(0
+ 10)* (1 + 01)* represents the set of all strings containing no pair
of 0’s. (1 + 01)* 00 (1 + 01)* represents the set of all strings
containing exactly one pair of 0’s. The remaining two expressions
correspond to a pair of 1’s.

(c) Let w be in the given set L. If w has n a’s then it is in a set
represented by (b)*. If w has only one a then it is in a set represented
by b*ab*. If w has more than one a, write w = w,aw,, where w does
not contain any a. Then wy is in a set represented by (b + abb)*. So
the given set is represented by the regular expression b* + (b + abb)*
ab*. (Note that the regular set corresponding to b* is a subset of the
set corresponding to (b + abb)*

(d) (0 + 1)* 000 (0 + 1)*

(e) 00(0 + 1)*

() 10 + D* 00.

392 & Solutions (or Hints) to Chapter-end Exercises

(ab+ ¢’y b
94

Fig. A5.3 Transition system for Exercise 5.9.

512 The corresponding regular expression is (0 + 1)* (010 + 0010). We
can construct the transition system with A-moves. Eliminating
A-moves, we get the NDFA accepting the given set of strings. The
NDFA is described by Fig. A5.4.

Fig. A5.4 NDFA for Exercise 5.12.

The equivalent DFA is defined by Table AS.1.

Solutions (or Hints) to Chapter-end Exercises = 393

513

TABLE A5.1 State Table of DFA for Exercise 5.12

State/%. 0 1
[q0] [0, 91, 93] [Go]
90, g1 G4l [9o. G1. Ga. Q4] [Go. G2
{90, a2l (6o, G1. s, 9] (G
{90, G1, 93, G4l [Go. G+, s 94l [90. 92, Gsl
(9. G1. Ga. G4 G0, a1, Ga, Gdl {Go. G2l
(95, 92, Gsl {90, 91, 93, Gfl [90]

Similar to Exercise 3.10.

5.14 The state table for the NDFA accepting (a + h)* abb is defined by

Table AS5.2.
TABLE A5.2 State Table for Exercise 5.14
State/% a b
Go GQo, G4 do
o] » 92
[0} qr
ar

The corresponding DFA is defined by Table AS5.3.

TABLE A5.3 State Table of DFA for Exercise 5.14

Statel/x a b
{Go] [qo. g4l [Go]
{96, g1l (G0, g:] [q0, g2
{90, @2] [0o. 94] [g0. a4
(9. /] (90, q4] 90, qd

5.15 Let L be the set of all palindromes over {a. b}. Suppose it is accepted

5.16

by a finite automaton M = (Q, %, 6, g, F). {6(gp, a)|n 21} is a
subset of @ and hence finite. So 8(gg, @) = &(qy, ™) for some
m and n, m < n. As d'b”'d" € L, 8(qy, a'b*'d") € F. But 8(qy, a™)
= &qo, d"). Hence 8(gy. d"b7'a") = 8(qo, a'b*a"). which means
a"b™a" € L. This is a contradiction since a”b”'d" is not a palindrome
(remember m < n). Hence L is not accepted by a finite automaton.

The proof is by contradiction. Let L = {a"b" | n > 0}. {d(qq, d") |
n > 0} is a subset of Q and hence finite. So 8(gy, @) = 6(qy,)
for some m and n, m # n. So 6(gy, a"b") = 6(6(gg, a™), b =
8(8(qq, dh), By = d(qq. d'b"). As a"b" € L, 8(qy, a'b") is a final state
and so is O(gg. &"P™). This means 4"F" € L with m # n, which is a
contradiction. Hence L is not regular

394 & Solutions (or Hints) to Chapter-end Exercises

517 (a) Let L = {d"b™|n > 0}. We prove L is not regular by
contradiction. If L is regular, we can apply the pumping lemma. Let
n be the number of states. Let w = 4"b™". By pumping lemma,
w = xvz with |xy| <n, |y| >0and xz € L. As |xy| S n, xy = &" and
y = a' where 0 < 1 <n. So xz = d~'p* e L, a contradiction since
n — 1 # n. Thus L is not regular.

(b) Let L = {a"0"| 0 < n < m}. We show that L is not regular. Let
n be the number of states and w = "b", where m > n. As in (a),
v =a', where 0 < 1 < n. By pumping lemma xy*z € L for k = 0. So
ad"1a*p" e L for all k > 0. For sufficiently large k, n — 1 + Ik > m.
This is a contradiction. Hence L is not regular.

519 Let M =(Q, L, 6, gy F) be a DFA accepting a nonempty language.
Then there exists w = aja; . . . a, accepted by M. If p < n, the result
is true. Suppose p > n. Let 8(qp, ajas ... a) =¢g;fori=1.2,...,p.
As p > n, the sequence of states {g;, ¢o, g,} must have a pair
of repeated states. Take the first pair (g; gq;) (Note g; = gp). Then
8(q0. a1as ... @) = g 0(g; a4y .- @) = g; and O(gqj, TGy - - -
a,) € F. So 8(q0, a1as ... Gjagy; - .. @) = 8(g;, @143 ay) € F.
Thus we have found a string in * whose length is less than p (and
differs from |w| by k ~ j). Repeating the process, we get a string of
length m, where m < n.

520 Let M= ({q0. g1 g5}, {a. b}, 6, qo. {gs}). where gy and ¢, correspond
to § and A respectively.
Then the NDFA accepting L(G) is defined by Table A5.4.

Table A5.4 Table for Exercise 5.20

State/L a b
Qo o g1 Gr
g1 Q1. Gr Go

5.21 The transitions are:

0(q:, a) = qa, 3(g b) = g,
0(gy. b) = ga 3(qs @) = q
8(ga a) = g3
6(gs. @) = g>
6(g3. b) = g4
8(q4. b) = g5

Let A;, A, A; A, correspond to ¢g;, ¢, ¢3. ¢4. The induced
productions are A; — aAy, Ay — bAy, A, = aAsz Ay = aAs, A3 —

Solutions (or Hints) to Chapter-end Exercises & 395

522

5.24

bA,, Ay — bA; (corresponding to the first six transitions) and A, —
bA|, A — b, Ay — aA,, Ay — a {corresponding to the last two
transitions). So G = ({4, A,, Az, A4}, {a, b}, P, A)), where P
consists of the induced productions given above.

The required productions are:

S — AS\BS)| ... |ZS.,
S, — AS||BS| ... |ZS..
S, — 0S1|1S,] ... |95,
S, — A|B| ... |Zand §; - O|1] ... |9

The given grammar is equivalent to G = ({S, A, B}, {a, b}, P. §),
where P consists of § — aS|bS|aA, A — bB, B — a(B — aC and
C — A is replaced by B — a). Let gy, g and g, correspond to S, A
and B. gy is the only final state. The transition system M accepting
L(G) 1s given as

M = ({C]o, ql: q'_’e qf}‘ {av b}s 63 f]oa {C}f})
where ¢, ¢;, and g, correspond to S, A and B and gy is the (only)
final state. S — a8, § — bS, S — aA and A — bB induce transitions
from qo to gy with, labels b and a, from ¢y — g; with label a and

from g; to g, with label b. B — a induces a transition from g- to gr
with label a. M is defined by Fig. AS5.5.

Fig A5.5 Transition system for Exercise 5.24.
The equivalent DFA is given in Table AS.5.

TABLE A55 State Table of DFA for Exercise 5.24

State/Z a b
[90] [0, g1l (G0l
{90, 1] (90, G1] [0, G2l
[0, G2l G0, 1. a1 (gcl

[

Go, G1, G5l (9. a4 [90. 2]

396 2

Solutions (or Hints) to Chapter-end Exercises

Chapter 6
6.1. The derivation tree is given in Fig. A6.1.

S

O

Fig. A6.1 Derivation tree for Exercise 6.1.

6.2. S — 080, S — 151 and S — A give the derivation S = wAw, where
we {0, 1}]7. A — 2B3 and B — 2B3 give A = 2"B3". Finally,
B — 3 gives B = 3. Hence S =& wAw = w2"B3"w = w2"3" "y,
Thus, L(G) {w2"3" W |w € {0, 1} and m = 1}. The reverse
inclusion can be proved similarly.

6.3 (a) X, X5, Xs; (b) X5, X5 (¢) As X; = 8, XuXo and XXXy X, are
sentential forms.

6.4 (i)
(i)
(iii)

6.5 (a)

(b)

S = SbS = abS = abSbS = ababS = ababSbS = abababS =
abababa.

S = SbS = SbSHS = SbSbSbS = SbSbSba = SbSbaba =
Sbababa = abababa

S = SbS = abS = abSbS = abSbSbS = abab5bS = ababab$
= abababa

S = aB = aaBB = aaaBBB = aaabBB = aaabbB =
aaabbaBB = aaabbabB = aaabbabbS = aaabbabbbA =
aaabbabbba

S = aB = aaBB = aaBbS = aaBbbA = aaBbba = aaaBBbba
= aaabBbba = aaabbSbba = aaabbaBbba = aaabbabbba.

6.6 abab has two different derivations S = abSb = abab (using
S — abSb and S — @) S = aAb = abSh = abab (using § — aAb,
A — bSand S — a).

6.7 ab has two different derivations.

S = ab (using S — ab)
S = aB = ab (using S — aB and B — b).

Solutions (or Hints) to Chapter-end Exercises E 397

6.8

6.9

6.10

6.11

Consider G = ({S. A, B}, {a, b}, P, S), where P consists of
S — AB |ab and B — b.

Step 1 When we apply Theorem 6.4, we get
Wi = (Sh Ws = {S} U {4, B. a. b} = Ws
Hence G, = G.

Step 2 When we apply Theorem 6.3, we obtain

W1={S,B}, W2={S,B}U] = W,

So, G, = ({8, B}, {a. b}. {S — ab. B — b}. S).

Obviously, G- is not a reduced grammar since B — b does not appear
in the course of derivation of any terminal string.

Step 1 Applying Theorem 6.3, we have

W, = {B}, W, = {B} u {C, A}, W; = {A, B, C} v {S} = Vy
Hence G, = G.

Step 2 Applying Theorem 6.4, we obtain

W, = {8}, W, = {8} U {A. a}, W5 = {5, A, a} v {B, b}
W,=1{S. A B, a b} U @

Hence. G, = ({5, A, B}, {a, b}, P. §), where P consists of S — adAa,
A — bBB and B — ab.

The given grammar has no null productions. So we have to eliminate
unit productions. This has already been done in Example 6.10. The
resulting equivalent grammar is G = ({S. A. B, C, D, E}, {a, b}, P,
S), where P consists of S > AB,A > a. B—>b|la, C—>a D —a
and E — a. Apply step 1 of Theorem 6.5. As every variable derives
some terminal string, the resulting grammar is G itself.

Now apply step 2 of Theorem 6.5. Then
W, = {S}. W. = {S} u {A, B} = {S, A, B}, Wy, = {S, A, B} U
{a, b} = {S. A, B, a. b} and W, = Ws.
Hence the reduced grammar is G’ = ({8, A, B}, {a, b}, P’, S), where
P={§—>AB, A —a B— b, B— al.

We prove that by eliminating redundant symbols (using Theorem 6.3
and Theorem 6.4) and then Unit productions, we may not get an
equivalent grammar in the most simplified form. Consider the
grammar G whose productions are S — AB,A = a, B > C, B —> b,
C—-D D— EadE — a

Step 1 Using Theorem 6.3, we get

W, = {A, B, E}, W, = {A, B, £} u {S. D},
Wy = {S, A, B, D, E} U {C} = V.

Hence G, = G. '

Step 2 Using Theorem 6.4, we obtain

W, = {S}, Wo = {S} u {A, B}, W; = {S, A, B} U {a, ¢, b},
W, = {S, A. B, ¢. a, b} U {D},

= {S. A, B. C. D, a, b} U {E} = Vyu X

Hence G~ = G| = G.

I}

=
[

398 2

Solutions (or Hints) to Chapter-end Exercises

6.12

6.13

Step 3 We eliminate unit productions. We then have

W(S) = {S} W(A) = {Al, W(E) = {E} Wi(B) = {B}.

Wi(B) = {B} v {C}, Wo{B) = {B. C} u {D},

WiB) ={B, C, D, E} = W(B), W) = {C, D, E}, WD) = {D, E}.
The productions in the new grammar G; are § — AB, A — a,
B — b, B - g and E — a. G5 contains the redundant symbol E. So
G5 is not the equivalent grammar in the most simplified form.

(a) As there are no null productions -or unit productions, we can
proceed to step 2.

Step 2 Let G, = (V). {0. 1}, P, S), where P, and VY are
constructed as follows:

(i) A — 0, B —> 1 are included in P,.

(i) S—> 1A, B > 1Sgiveriseto S - CA. B - (1S and C; — 1.
(iii) § = 0B, A — 0S give rise to § — CyB, A — (S and Cy — 0.
(iv) A — 1AA, B — 0BB give rise to A — C;AA and B — (,BB.

Vv = {S. A, B. Cy. Ci}.

Step 3 G, = (V¥, (0. 1}, P-, §), where P, and Vy/, are constructed

as follows:

() A >0,B—>1 5S> CA B—>CS C = 1,5 - (B,
A — (S, Cy — 0 are included in P-.

(ii) A - C,AA and B — (BB are replaced by A — C\Dy, D, —
AA, B - (3D, D, — BB.

Thus, G- = ({S, A, B, Cy, C,, Dy, D-}, {0, 1}, P,, §) is in CNF and

equivalent to the given grammar where P, consists of S — C;A|CB,

A—> O\C()S{C&Dl, B - 1iC1S|C0D3, Ci—->1,C—->0,D - AA and

D, — BB.

(b) Step 2 Gy = (V'y, {a, b, ¢}, Py, S), where P; and V'y are
defined as follows:

(i) S — a S — b are included in P;

(it) § — ¢SS is replaced by § — CSS, C — ¢, Viy = {8, C}

Step 3 G, = (V¥, {a, b, ¢}, P,, S), where P, is defined as follows:

i) §$ > a S - b, C > c¢ are included in P,.

(i) § — CSS is replaced by § — CD and D — SS.

Thus, the equivalent grammar in CNF is G, = ({8, C, D}, {a, b, c},
P», S), where P, consists of § — a|b|CD, C — ¢, D — SS.

Consider G = ({S}, {a. b. +, =}, P, S), where P consists of S — S+ 5,
S—>5+88>4q S->b
Step 2 G, = (V§, {a. b, +, =}, P1. S), where P, is constructed as
follows:
(i) S —» a, S — b are included in Py,
(i) S—> S+ Sand § — § = § are replaced by § — SAS, S — SBS.
A—> + B > =
Vi = {S, A, B}

Solutions (or Hints) to Chapter-end Exercises =E 399

6.14

Step 3 G~ = (VY, {a, b, +, *}. P», §), where P, is constructed as
follows:

1) S—>a S > b A—> + and B - = are included in P,.
(i) S — SAS and § — SBS give rise to § — S4;, A; — AS,
S - S§B,. B, - BS.

The required grammar in CNF is
Gy = ({S. A, B, A, Bi}. {a, D, +, =}, P, 5)
where P, consists of
S — a|b|SA|SB;, A - +, B > *, A; - AS and B; — BS

(a) Rename S as 4;, By Remark following Theorem 6.9, it is enough
to replace terminals by new variables to get an equivalent grammar
G,. Now, G, is defined as

Gy = ({A1, A Az}, {0, 1}, Py, A
where P; consists of
Ay > AAJASAA3JAA;, Ao > O and A; —]
This completes step 1.

Step 2 All productions of G, except A; — A;A, are in proper form.
Applying Lemma 6.2 to A; — AjA;, we get a new variable Z; and
new productions Al 4 A2A1A3ZI | A2A3Z], Z] ard A], Zl bl AIZ]‘ The
new grammar is

G: = ({A1, Ay, Az, 21}, {a. b}, P, A))
where P, consists of

Al - A:A1A3 iAZA'j !A:AIA'SZ} |A2A321

Z = A]ZI, Zy > A A — 0 and Ay = 1

Step 3 As Ajz-productions and A,-productions are in proper form we
have to modify only the A;-productions using Lemma 6.1. So the
modified A;-productions are

A; — 0A,A3|0A3|04,4:7,|0A-Z,
Step 4 The productions Z; — A, and Z; — A;Z, are modified using
TLemma 6.1. They are:
Z; — 04,A5] 0A3] 0AA5Z; | 0ASZ,
Z; — 0A1AsZ) | 0AsZ | 0A1A:Z,Z, | 0A3Z,Z,
Thus the required equivalent grammar in GNF is
Gz = ({41, As As. Z4), {0, 1}, P3, Ay). where P; consists of
A1 — 04,A;] 043 04,A:Z,| 0A5Z,
A = 0, A3 - 1
Z, — 0A)A;]| 04z] 04 A:Z, | 0A5Z,
Z, — 04,A3Z,] 0A:Z; | 0A1ASZ,Z, | 0ASZ,Z,

400

2 Solutions (or Hints) to Chapter-end Exercises

(b) Step 1 Replace B — aSh by B — aSC and C — b. Rename S,
A, B and C by A, As, Az and A,. The resulting grammar is

GI = ({Al' A:‘ A}: A-l}v {a' b}* Pl? AI)
where P, consists of A} — A-A;, Ay — AzA;
Aj_ — A3A1A3, A: e b, A3 —> (lA:A4, A:; — a and A4 — b.

Steps 2, 3 and 4 Step 2 construction is not necessary for Gj.
The only As-production, A; — b, is in proper form. So we go to step
4. The modified A,-productions are:

Az — GA:A4A3 (lA3 HA2A4A1A3 l (lAlAgl b.

The modified A;-productions are:
Al = aArAAA: | aAsAs | aALALA AR | aAAsA;s | BAs.

Step 5 is not necessary since there is no new variable in the form in
Z;,. So an equivalent grammar in GNF is

G, = ({Ay. Ay As Ay {a. b)Y, Pa A
where P~ consists of
AL = aAsA Az | aAiAs | aAALA AsAs | aAiAsAs | DA,
Ar = aA-AAs | aAs | aAA A AL A AL | D
Az > aA-Ayla Ay > b.

6.15 The grammar given in Exercise 6.7 has the following productions:

S—>aB. S — ab, A = aAB. A = a. B — ABb and B — b. Of these,
S — aB. A - aAB. A — a and B — b are in the required form. So
we replace the terminals which appear in the second and subsequent
places of the RH.S. of S — ab and B — ABb by a new variable C
and add a production C — b. Renaming S, B, A and C as Ay, Ay, A3
and A,. the modified productions turn out to be A; — ad,, A} = aAy,
A3 nd aA;A:, Ag — d, A: — A3A3A4, A: — b and A4 — b.

This completes the first three steps:

Step 4 A, — A3A-A4 is replaced by A, — aAsA-A>Ay | aAsA,. The
other productions are in the proper form. The resulting grammar in
GNF has the productions

Al - aA:laA_;. A;» - aA3A3A3A4laA3A41 b, A3 — aA:,A:Ia, A4 — b.

The grammar in Exercise 6.10 has unit productions. Eliminating unit
productions, we get an equivalent grammar G, where

G =(S. A B. C.D, E}, {a. b}, P. S

where P consists of S - AB,A > a. B —> alb,C 5 a, D > a
and £ — a. Rename S. A, B, C, D and E as A, A,, Az, Ay, A5 and
As.

Solutions (or Hints) to Chapter-end Exercises = 401

Thus P consists of A; — AAx, Ay > a, Ay > a|b, Ay > a, As—>a
and A4 — «a. :

We have to modify only A, —» A->A; using Lemma 6.1.

Thus an equivalent grammar in GNF has the following productions:

A1%aA3,A3—>a.A3—>a|b,A4—>a.A5—)aandA6—>a.

6.16. (a) The given language is generated by a grammar whose productions
are S — aSa|bSb|c.

Step 2 (1)) § —» cisin Py
(i) S — aSa and S — bShb give rise to

S —> ASA, S > BSB,A > a. B —> bin P

Thus G; = ({S. A, B}, {a. b. ¢}, P,. S), where P; consists of
S — ASA|BSBlc, A - a and B — b.

Step 3 The equivalent grammar G- in CNF is defined by
G-» = ({S, A. B. A, B}, {a. b. c}. P>, S), where P, consists of

S — AA, A, > SA, S > BB,,B, > SB.A—>a, B—>b S —>ec

(b) The grammar generating the given set is having the productions
S — bA|aB. A — bAA|aS|a. B — aBB|bS|b.

Step 2 The productions obtained in this step are:
S-)BIA,BI‘—)b,S—)A1B,A1—‘)a,A—)BlAA,AﬁAXS,
A —>a B —> ABB, B— BS,B— b

Step 3 The equivalent grammar in CNF is given by
G-» = (V%, {a, b}, P-, S), where P- consists of

i) S > BA, B, > b, S > AB A = a A - AS A - a,
B — BS,B = b

(ii) A - BCy, C; > AA, B - AC,, C, — BB (corresponding to
A — BAA and B — ABB).

6.17 (a) The grammar generating the given language has the productions
S — aSa, S - bSh, S — c. The first two productions will be in GNF
if the last symbols on R.H.S. are variables. Hence § — aSa, S — bSh
can be replaced by S — aSA. A — a, S — bSB. B — b. Hence
G = ({S. A. B}, {a, b}. P’ S). where P’ consists of § — aSA|bSB,
S —>¢. A > a B — bisin GNF and is generating the given
language.

(b) The given language is generated by

G = ({S, A, B}, {a, b}, P, S), where P consists of

S — bA|aB, A — bAA|aS|a. B — aBB|bS|b. This itself is in GNF.
(c) The given language is generated by a grammar whose productions
are S > aAb, S > aA, A > aA,A > a,S—>a, S >bB,B—>b
and § — b. Of these productions we have to modify only one
production namely, S — aSh. This is done by replacing this

402 S Solutions (or Hints) to Chapter-end Exercises

production by § — aSB;, B, — b. (Note: In this problem we can also
replace § — aSh by § — aSB alone. B — b is already in the grammar
and there are no other B-productions.)

(d) The given language is generated by a grammar whose productions
are S — aSh, S — ¢5. § — c. The equivalent grammar in GNF is

G = ({S, B}, {a, b, c}, P, S),
where P consists of § — aSB, B > b, § > ¢S, S — ¢

6.18 (i) Let w € L(G) and |w| = k. In the Chomsky normal form, each

production yields one terminal or two variables but nothing else. For
getting the terminals in w, we have to apply production of the form
A — a (k times). The corresponding string of variables, which is of
length k, can be obtained by k — 1 steps. (Each production A — BC
increases the number of variables by one.) So the total number of
steps is 2k — 1. (The reader is advised to prove this result by induction
on |w|.)
(i) When G is in GNF, the number of steps in the derivation of w
is k(k = |w|). The number of terminals increases by 1 for each
application of a production to a sentential form. Hence the number of
steps in the derivation of w is k.

6.19 Step 1 Let n be the natural number obtained by applying pumping
lemma.

Step 2 Let ; = @', Write £ = uvwxy where | < |vx| < n. (This is
possible since {vwx| < n by (ii) of pumping lemma.) Let |vx| = m,
m < n. By pumping lemma, wwx?y is in L. As |wwx®y| > n?,
22 > 22 2 2
lwvwxy| = k-, where k 2 n + 1. But jwwwxy| = n” + m <n” +
2n + 1. So \uvzwx“'y| strictly lies between n* and (n + 1)° which means
wwx’y ¢ L, a contradiction. Hence {a": n > 1} is not context-free.

6.20 (a) Take z = &"b"c" in L(G). Write £ = uvwxy, where 1 < |vx| < n.

So vx cannot contain all the three symbols a, b and ¢. So w wx?y
contain additional occurrences of two symbols (found in vx) and the
number of occurrences of the third symbol remains the same. This
means the number of occurrences of the three symbols in uv3wx2y are
not the same and so v wx-v ¢ L. This is a contradiction. Hence the
language is not context-free.
(b) As usual, n is the integer obtained from pumping lemma.
Let z = @"b'c™. Then z = uvwxy, where 1 < |vx] < n. So vx cannot
contain all the three symbols a. b and ¢. If vx contains only a’s and
b’s then we can choose i such that wv'wx'y has more than 2n
occurrences of a (or b) and exactly 2n occurrences of c¢. This means
wiwx'y ¢ L, a contradiction. In other cases too, we can get a
contradiction by proper choice of i. Thus the given language is not
context-free.

Solutions (or Hints) to Chapter-end Exercises 2 403

6.21

6.22

(a) Suppose G = (Vy, X, P, S) is right-linear. A production of the
form A - aa, ... a,B, m 2 2 can be replaced by A — a4,
Al > aAs .., A, o a,B.A > bby...b,, m22 can be
replaced by A — bBy, By = b:B,, ..., B,.o = b,_1By1s B, &
b,,. The required equivalent regular grammar G’ is defined by the new
productions constructed above.

If G = (Vy, X, P, 5) is left-linear, then an equivalent right-linear
grammar can be defined as G; = (V’, X, Py, S), where P, consists of
i) S—>wwhen S > wisin P and w € ¥,
(ii) S - wA when A - wisin P and w € X¥,
(i1i) A — wB when B — Aw is in P and w € X*,
(iv) A > w when § - Aw is in P and w € X*,

let we L(G). If S = w then § — w is in P. Therefore, § — w is
in Py (by (i)).

Assume S = AIW] = A2W2W1 = ... Am_lwm_l Lol Wy = W, W
... wi = wis a derivation in G. Then the productions applied in the
derivation are S — A;wy, Ay = Aws, ..., A,; = w,,. The induced

productions in G, are
Al - Wy, A2 — WZAIs A3 — WSAZv ot S - wmAm—l

(by (ii), (iii) and (iv) in the construction of P;).
Taking the productions in the reverse order we get a derivation of Gy
as follows:

S=S2W A= DWWl - W3AZ W, L WA D W, Wy

Thus L(G) ¢ L(G’). The other inclusion can be proved in a similar
way. So G is equivalent to a right-linear grammar G; which is
equivalent to a regular grammar.

(b) Let G = ({S, A}, {a, b, ¢}, P, §). where P consists of § —
SclAc, A — aAb|ab. G is linear (by the presence of A — aAb).

L(G) = {d"V"'¢"|m, n 2 1}

Using pumping lemma we prove that L(G) is not regular. Let n be the
number of states in a finite automaton accepting L(G).

Let w = @"b"c". By pumping lemma w = xyz, where |xy| < n and
[v|>0.If y = & then xz = a"*b"¢". This is not in L(G). By pumping
lemma. xz € L(G) a contradiction.

L = L(G), where G is a regular grammar. For every variable A in G.
A = o implies o = uB, where u € I* and B € V, Thus G is nonself-
embedding. To prove the sufficiency part, assume that G is a nonself-
embedding, context-free grammar. If G’ is reduced, in Greibach
normal form and equivalent to G, then G’ is also nonself-embedding.
(This can be proved.) Let |Z| = n and m be the maximum of the
lengths of right-hand sides of productions in G’. Let & be any

404 H

Solutions (or Hints) to Chapter-end Exercises

sentential form. By considering leftmost derivations, we can show that
the number of variables in ¢ is € mn. (Use the fact that G is in GNF).
Define:

G, = (Vin X, P, S) where
v = {[dlle} £ mn and a € Vi)
S =18
P, = {[AB] — bla Bl]|A — baisin P, B € Vi and |aff| < mn}
G, is regular. It can be verified that L(G;) = L(G).

—

Chapter 7

71

7.3

7.4

(qo. aacaa, Zy) |— (qo. acaa, aZy) |— (qq, caa, aaZy) |— (g, a, aaZo)
— (a1 @ aZy) | (gu. A Zo) 1= (@5 A, Zo).
(1) Yes, the final ID is (g5 A, Zg).
(ii) Yes, the final ID is (g, A, aZy).
(iii) No, the pda halts at (g, ba, aZy).
(iv) Yes, the final ID is (q,. A, abaZy)
(v) Yes. the final ID is (gy. A, babaZy).

@ (qi. A aZy.
(ii) Halts at (g, b, A).
(iil) (g, A. @Zp).

(iv) Does not move.

(v) Does not move.

(vi) Halts at (gq, ab. Zy).

(a) Example 7.9.
(b) The required pda A is defined as follows:

A= <{q05 q1: q,’l}’ {(l, b} {a, ZO}~ 55 4o, ZO’ ﬁ) 5 is defined by

8(qo. a. Zoy) = {(q1. aZp)}. 6(qy, a. @) = {(q\, aa)}
o(g- b. a) = {(g2. &)} 8(gs, b. @) = {(q1. M)}
0(qy- A, Zo) = {(q,. M}
(© A= (g0 g}, {a b, c}. {Zy, Zi}. O, qo- Zo, ©)
O is defined by
0(qo. a, Zy) = {(q0. Z\Z0)}. 8(qo. a. Z1) = {(qo- Z1ZD)}
&(qo. b. Z1) = {(q1. M}, 8(q1. b, Z)) = {(q. M)}
8(q1. ¢ Zy) = {(q1. Zo)}. o(q1, A, Zy) = {(q1, M)}
Note that, on reading a, we add Z;; on reading b we remove Z; and
the state is changed. If the input is completely read and the stack
symbol is Z,, then it is removed by a A-move.
(a) Example 7.9 gives a pda accepting {a"P"¢" | m, n 2 1} by null
store. Using Theorem 7.1, a pda B accepting the given language by
final state is constructed.

B = ({CIOs qi- (]/0, qf}e {a, b} {(l, ZQ., Z,O}’ 55 q,O* Z,Ov {qf})

Solutions (or Hints) to Chapter-end Exercises & 405

7.5

7.6

0 is defined by
8(q A Z9) = {(go. ZoZ)}
8(q0. A, Z%) = {(gp M} = 8(q0. A, Z7) “
0(q1» A, Z%) = {(gp N} = 6(q1, A, Z7) ;
8(qo. a. Zy) = {(q0. aZp)}, 8(qo, a. @) = {(qo, aa)} |
6(qo b, @) = {(gq1, @}, 6(q1, b, a) = {(q1, B}
o(q1, a, @) = {(gp N}, o(gr. A Zy) = (g, N}
(a) G = ({8, Si. S5}, {a, b}, P, §) generates the given language,
where P consists of § — S;, § — S5, S| = aS$h, §; > ab, S, =
aS-bb, S, — abb. The pda accepting L(G) by null store is
A = ({Q}s {av b}s {S' Sl’ S2’ a, b}, 5! C], Ss 0)
where & is defined by the following rules:
8(g, A,)= {(g. S», (g, S}
8(g. A S)) = {(g. aSy, b), (g, ab)}
0(g, A, S) = {(q. aS:bb). (q. abb)}
8(q, a, a)= 8(g, b, b) = {(g, N)}
(1) G = ({8}, {a, b}, P, §), where P consists of S — aSh, S — aS,
S — a, generates
{d"b"|n < m}. For § = a"Sb". m 2 0.
S=4d,n>1 and hence § = d"a"p" m=20,n 2 1.
So L(G) ¢ {a"V'|n < m}. The other inclusion can be proved
similarly.
(ii) The pda A accepting L(G) by null store is given by
A = ({g}, {a, b}, {S, a, b}, 6, q, S, ©)
where § is defined by the following rules: ‘
8@, A, S) = {(g, aSb), (g, af). (g. »)} |
6(q, a, a) = 8(g, b, b) = {(g. M)}
(iii) Define B = (Q’, X, I, 83, q%. Z7%, F), where
Q, = {‘.70, q,O’ qf}’ = (S, a, b, Z/()) {
F = {qs7. (We apply Theorem 7.1 to (ii)). ‘
&g is given by
S5(qo. A Z0) = {(a, ZoZD)}
6B(q! A’ S) = {(CI» aSb), (C], aS)’ (q' a)}
Op(q. a, a) = {(g. A)} = S(q, b, b)
85(q. A, Zp) = {(g N}

(Note: 83(q,a,S) = &g, a, S) = B and 8(q, b, S) = 6(q, b, S) = @)

406 &= Solutions (or Hints) to Chapter-end Exercises

7.7

7.8

79

7.10

(1) Define G = ({S}, {a, b}, P, S), where P consists of
S — SaSbSaS, S — SaSaSbS, S — SbSaSaS, S — A

(Refer to Exercise 4.10(e).) G is the required grammar. (i1) Apply
Theorem 7.3. (iii) Apply Theorem 7.1 to the pda obtained in (ii).

Let A = ({q0, q1}, {a, b}, {Zy, a. b}, 0. qo. Zy, B), where 6 is given
by

5(qo, a, Zp) = {(qos aZp)}. 6(qo. b. Zo) = {(qo. bZp)}

5(qo. @, b) = {(go. ab)}. 6(go. b. @) = {(qo. ba)}

8(go. a, @) = {(qo. aa)., (q:. A)}

6(q0. b, b) = {(q0, bb), (g, A)}

5(q0. A, Zo) = {(q1. M)}

8(q1. a. @) = {(q1. N}, gy, b. b) = {(g. M)}

8(q1, A, Zo) = {(q1, A}

A makes a guess whether it has reached the centre of the string. A
reaches the centre only when the input symbol and the topmost

symbol on PDS are the same. This explains the definition of
8(qy, a. a) and 8(qo. b, b). A accepts the given set by null store.

Example 7.6 gives a pda A accepting the given set by empty store.
The only problem is that it is not deterministic. We have 6(g, a. Z)
= {(q. aZp)} and 8(q. A. Zy) = {(g. A)}. So A is not deterministic
(refer to Definition 7.5). But the construction can be modified as
follows:

Ay = (q. q}, {a b} {Zy, a, b}, 6. q. Zy, B)
where 0 is defined by the following rules:
8(q. a. Zy) = {(qi aZy)}. 6(q. b. Zy) = {(q1, bZy)}
8(q1. a. @) = {(q1. aa)}, (g1, b. b) = {(q1, D)}
8(q1. a. b) = {(q1. N}. 6(qi. b, a) = {(q1. M)}
8(gi, A Zo) = {(qi. M}

A, is deterministic and accepts the given set by empty store.

The S-productions are

S = 40, Zo» q0l|lq0. Zo. a1)
O(gy. b, a) = {(q1. A}, (g1, A Zp) = {(q1, N}

and

E(Q& b* a‘) = {(511«, A)}

Now these induce [q;. a, g1} — b. [q1. Zy, q1] — A and {qo, a. gi]
— b, respectively. 6(qy. a. Zy) = {(qo, aZg)} induces

Solutions (or Hints) to Chapter-end Exercises = 407

7.13

718

[90. Zo, g0l — alqo. a, gollqo. Zo, 9ol
[g0: Zo. g0l — algo. a, q1llq1, Zo, ol
(90, Zo. q1] — alqo, a. qgollgo. Zo, 1]
(90, Zo- q1] — alqo, a. qllg1, Zy, q1]
6(qg, a, a) = {(gg, aa)} induces

g0, a. 5] = alqy, a. qollge. a. g0l
[90. ‘a. g0l — alqo, a, q\llq:1. @, g0l
90, a, gi1 — alqo, a, gollge. a. q;]

[QO, a, ql] - a[qu a, fh][CIh a, QI]

Let M = (0, L, &, go. F) be a DFA accepting a given regular set.
Define a pda A by A = (Q, I, {Z}. &, go, Zy, F). dis given by the
following rule:

8i(g, a, Zo) = {(q0. Zo)} if 8(g. @) = 4

It is easy to see that T(M) = T(A). Let w € T(M). Then &(qy, w) =
g € F.

6(qe, w, Zy) = {(g', Zg)}. So w € T(A), ie., T(M) < T(A). The
proof that T(A) ¢ T(M) is similar.
If 8(g, a, 7) contains (g, Z,Z, . .. Z,), n 2 3, we introduce new states
gis G2 - - - Gpo- We define new transitions involving new states as
follows:

(i) (qi, Z,.1Z,) is included in &g, a, Z)

(1) 8(g; A, Z) = {(Giets Zpoicy Zp} for i = 1,2, ..., n =3
(i) 6(gua A, Zy) = {(qs 2,2}

This construction is repeated for every transition given by (¢’, ¥) €
6(g. a, Z), |y| 2 3. Deleting such transitions and adding the new

transitions induced by them we get a pda which never adds more than
one symbol at a time.

Chapter 8

8.1

82

For a sentential form such as o™ !4", A — q is the production applied
in the last step only when a is followed by ab. So A — a is a handle
production if and only if the symbol to the right of a is scanned and
found to be b. Similarly, A — aAb is a handle production if and only
if the symbol to the right of aAb is b. Also, S — aAb is a handle
production if and only if the symbol to the right of aAb is A.
Therefore, the grammar is LR(1), but not LR(0).

We can actually show that the given grammar is not LR(%) for any
k 2 0. Suppose it is LR(k) for some k. Consider the rightmost

408 & Solutions (or Hints) to Chapter-end Exercises

83

8.4

derivations of 017°**'2 and 01°**2 given by:
§ = 0112 = 01%12 = afw (A8.1)
where o = 01%, B = a, w = 172,
S :R> OIFIAI12 = 0137 2 = a/Bw (A8.2)

where o = 01¥!, B = a, w’ = 1¥*12. As the strings formed by the
first 2k + 1 symbols (note |off| + k = 2k + 1) of ofjw and a’Bw” are
the same. o = o, i.e. 01 = 01**!, which is a contradiction. Thus the
given grammar is not LR(k) for any k.

The given grammar is ambiguous and hence is not LR(k) for any %.
For example, there are two derivation trees for ab.

As @"b"c" appears in both the sets, it admits two different derivation
trees. So the set cannot be generated by an unambiguous grammar.

Chapter 9

92

93

94

9.6
9.8

The set of quintuples representing the TM consists of g,blLg,,
q100Rq,. q:bbRq;. q:00Lqs. g211Lgy, q30bRqy. q31bRgs. q4b0Rgs,
q400Rq4. q411Rqy. gsbOLg-.

The computation for the first symbol 1 is g,11211 }— bg,b11.
Afterwards it halts.

The computation sequence for the substring 12 of 1213 is
@11213 |— bq:213 }— bbg;13.

As 8(gs, 1) is not defined, the TM halts. For 2133 and 312 the T™M
does not start.

Modify the construction given in Example 9.7.

We have the following steps for processing the even-length
palindromes:

(a) The Turing machine M scans the first symbol of the input tape
(0 or 1), erases it and changes state (g; or g¢,).

(b) M scans the remaining part without changing the tape symbol
until it encounters b.

(c) The R/W head moves to the left. If the rightmost symboil tailies
with the leftmost symbol (which can be erased but remembered),
the rightmost symbol is erased. Otherwise M halts.

(d) The R/W head moves to the left until b is encountered.

Steps (a), (b). (c). (d) are repeated after changing the states suitably.
The transition table is defined by Table A9.1.

Solutions (or Hints) to Chapter-end Exercises 2 409

TABLE A9.1 Transition Table for Exercise 9.8

Present state Input symbol
0 1 b
- Go bRg, bRq; bRqy
9 0Rq, 1Rq; blLgs
92 0Rg; 1Rq, bLq,
gs bLgs
94 bLgs
gs 0Lgs 1Lgs bRy
9s 0Lgs 1Lgs bRgo

@

9.9 We have three states ¢, ¢, g where gy is the initial state used to
remember that even number of 1’s have been encountered so far. ¢ is
used to remember that odd number of 1’s have been encountered so far.
gy is the final state. The transition table is defined by Table A9.2.

TABLE A9.2 Transition Table for Exercise 9.9

Present state 0 1 b
- o O0Rgg 1Rqq bRgs
a1 ORgy 1Rqq

@

9.10 The construction given in Example 9.7 can be modified. As the number
of occurrences of ¢ is independent of that of « or b, after scanning the
rightmost ¢, the R/W head can move to the left and erase c.

9.11 Assume that the input tape has 010" where m ~ n is required. We
have the following steps:

(a) The leftmost O is replaced by & and the R/W head moves to the
right.

(b) The R/W head replaces the first O after 1 by 1 and moves to the
left. On reaching the blank at the left end the cycle is repeated.

(c) Once the 0’s to the left of 1's are exhausted, M replaces all 0’s and
1’'s by b’s. a = b is the number of 0’s left over in the input tape
and equal to 0.

(d) Once the 0’s to the right of 1's are exhausted, » 0’s have been
changed to 1I's and n + 1 of m O’s have been changed to b. M
replaces 1’s (there are n + 1 1’s) by one O and »n b’s. The number
of 0’s remaining gives the values of ¢ ~ b. The transition table is
defined by Table A9.3.

410 & Solutions (or Hints) to Chapter-end Exercises

TABLE A9.3 Transition Table for Exercise 9.11

Present state input symbol
0 1 b

Go bRq; bRgs

G1 ORaq, 1Rq,)

92 1Lqg, 1Rq; bLyg,
93 OLgs 1Lgs bRqy
94 OLq, bLg, O0Rge
gs bRys bRgs bRqs

Chapter 10

10.2

10.3

10.4

10.8
10.9

10.10

10.11

10.12

1. (B, w) is an input to M.

2. Convert B 1o an equivalent DFA A.

3. Run the Turing machine M, for Apgs on input (4, w)
4. If M, accepts, M accepts; otherwise M rejects

Construct a TM M as follows:

1. (A) is an input to M.

2. Mark the initial state of A (gy marked as g§, a new symbol).

3. Repeat until no new states are marked: a new state is marked if
there is a transition from a state already marked to the new state.

4. If a final state is marked, M accepts (A); otherwise it rejects.

Let L = (T(A}) - T(A»)) U (T(A>) — T(A})). L is regular and L = T(A").

Apply Epga to (A).

Use Examples 10.4 and 10.5.

Aty 18 regarding a given Turing machine accepting an input, that is,
reaching an accepting state after scanning w and halting HALTyy is
regarding a given TM halting on an input (or M need not accept w in
this case).

Represent a number between O and 1 as 0 - @ya» .. . where a, a», . ..
are binary digits. Assume the set to be a sequence, apply
diagonalization process and get a contradiction.

When a problem is undecidable, we can modify or take a particular case
of the problem and try for algorithms. Studying undecidable problems
may kindle an imagination to get beiter ideas on computation.

Suppose the problem is solvable. Then there is an algorithm to decide
whether a given terminal string w is in L. Let M be a TM. Then there
is a grammar G such that L(G) is the same as the set accepted by M.
Then w € L(G) if and only if M halts on w. This means that the halting
problem of TM is solvable, which is a contradiction. Hence the
recursiveness of a type 0 grammar is unsolvable.

Solutions (or Hints) to Chapter-end Exercises B 411

10.14

10.17

10.18

10.20

10.21

10.22
10.23

Suppose there exists a Turing Machine M over {0, 1} and a state g,,
such that the problem of determining whether or not M will enter g,
is unsolvable. Define a new Turing machine M’ which simulates M and
has the additional transition given by &(g,,, A) = (g,» 1, R). Then M
enters ¢,, when it starts with a given tape configuration if and only if
M’ prints 1 when it starts with a given tape configuration. Hence the
given problem is unsolvable.

According to Church’s thesis we can construct a Turing Machine which
can execute any given algorithm. Hence the given statement is false.
(Of course, the Church’s thesis is not proved. But there is enough
evidence to justify its acceptance.)

Let £ = {a}. Let x = (x|, x3, ..., x,) and y = (y{, Y2 - .., ¥,), where
x=di,i=12 ..,nandy =a% j=12, ... n Then (x))(xy)2
o) = (yl)kl(yz)kz ... (y)". Both are equal to a™ i Hence PCP is
solvable when |Z| = 1.

x; =01,y =011, x, =1, y, =10, x3 = 1, y; = 1. Hence |x;| < |y;|
for i=1,2, 3. Sox;x, ... %, # YV - Vi, for no choice of 7’s.
Note: |x;x; ... x| <!y - .-, | Hence the PCP with the given
lists has no solution.

x =0,y =10, x, = 110, y, = 000, x3 = 001, y; = 10. Here no pair
(x1, ¥1), (x2, ¥9) or (x3, y3) has common nonempty initial substring. So
XiyXiy «++ Xiy # YiViy - -+ Vi, fOr no choice of i;’s. Hence the PCP with
the given lists has solution.

As x; =y, the PCP with the given lists has a solution.

In this problem, x; = 1, x, = 10, x5 = 1011, y; = 111, v, = O,
v¥3 = 10. Then, x3x1x3%0 = y3y1vv» = 101111110, Hence the PCP with
the given lists has a solution. Repeating the sequence 3, 1, 1, 2, we can
get more solutions.

10.24 Both (a) and (b) are possible. One of them is possible by Church’s
thesis. Find out which one?

Chapter 11

11.1 (a) The function is defined for all natural numbers divisible by 3.

112

b) x=2
(c) x=22
(d) all natural numbers
(e) all natural numbers

(@ %00 = 1, xyi00x + D = x0880(p(x)
®) fx+ 1) =x+2x+ 1
So. fx + 1) = f(x) + S(SZx)) = U)(x) + S(Z(x))

412 E Solutions (or Hints) to Chapter-end Exercises

11.3

Hence f is obtained by recursion and addition of primitive recursive
functions

© fi,y)=y+& =)
(d) Define parity function P,(y) by

PO =P(2)=---=0, P(LHy=P3B)y=---=1
P, is primitive recursive since P, (0) = 0, P(x + 1) = x{o}(Uzz(x),
P,(x)). Define f by l0) = 0, fix + 1) = f(x) + Px).
(e) sgn(0) = Z(0), sgn(x + 1) = S(Z(WU5 (x. sgn (x)))
(f) Lix, y) = sgn(x = y)
(&) Ex, y) = o)lx = y) + (v = X))
All the functions (a)—(g) are obtained by applying composition and

recursion to known primitive functions and hence primitive recursive
functions.

A(l,y) = A1 + 0,y -1+ 1) = A, A1, y — 1)) using (11.10) of
Example 11.11. Using (11.8), we get

A, y) = 1 + A(L, y — 1),

Repeating the argument, we have

A, yy=y - 1+A(l,)=y + 2 By Example 11.12, A(1, 1) = 3).

This result is used in evaluating A(3, 1).

A2, 3) = A1 + 1, 2 + 1) = A(1l, A2, 2)) = A(l, 7) using

Example 11.12. Using A(1, y) =y + 2, we get A(2,3) =2 +7 =09.

Then using (11.10), A(B, 1) = A2 + 1, 0 + 1) = A(2, AGG, 0)

By Example 11.12, A2, 1) = 5. Also, A(3, 0) = A2, 1) by (11.9).

Hence A3, 1) = A2, 5) = A(1 + 1, 4 + 1) = A(l, A(2, 4)). Since

AL y) =y + 2, A3, 1) = 2 + A2, 4). Applying (11.10), we have

A2, 4) = A1 AC, 3) =2+A2,3)=2+9 =11

Hence, A(3, 1) = 2 + 11 = 13,

AQ3, 2) = A2, A3, 1)) = A(2, 13) = A(1, A2, 12)) = 2 + A(2, 12)

=2+ A0LAG 1) =2+ A1, 13) =2 +2 + 13 = 17.

To evaluate A(3, 3), we prove A(2, y + 1) = 2y + A(2, 1). Now,
AQ,y+ D =A0 + 1, y+ 1) = A1, AQ, y) =2 + A2, y).

Repeating this argument, A2, v + 1) = 2y + A(2, 1). Now,

AG,3) =A2 + 1,2 + 1) = A2, AG, 2)) = A2, 17) = 2(16) +

A2, 1) =32+ 5 =137

Solutions (or Hints) to Chapter-end Exercises B 413

11.4

115

11.8

119

11.11

11.12

11.13

11.14

(b) It is clear that r(x, 0) = 0. Also, r(x, y) increases by 1 when vy is
increased by 1 and r(x, y) = O when y = x. Using these observations we
see that r(x, y + 1) = S(r (x, y)) = sgnlx =~ S(r (x, y))). Hence
r(x, ¥) is 1 defined by

rix, 0) =0
Hx, y + 1) = S(r(x, y)) = sgn(x = S(r(x, y)))

f(x) is the smallest value of v for which (y + 1)*> > x. Therefore,
fx) = 1oy + 1)* = x)), fis partial recursive since it is obtained
from primitive recursive functions by application of minimization.

The constant function fix) = 1 is primitive recursive for f(0) = 1 and
fix + 1) = UXx, fx)). Now Xae, Xa~s and x4 _p are recursive for
Xae =1 = Yu, Xarg = Xa * Xp @0d Xaup = Xa + XB = Xars
(Addition and proper subtraction are primitive recursive functions and
the given functions are obtained from recursive functions using
composition.)

Let E denote the set of all even numbers. Jz(0) = 0, ye(n + 1) =
1 + sgn(Us*(n, xg(n)). The sign function and proper subtraction
function are primitive recursive. Thus £ is obtained from primitive
recursive functions using recursion. Hence) is primitive recursive and
hence recursive. To prove the other part use Exercise 11.8.

Define f by f0) = k, An + 1) = U#(n, fin)). Hence f is primitive
recursive.

Xiaran...ay) = Xia) + Xia) * -+ X} AS Xiqpy 18 primitive
recursive. (Refer to Exercise 11.2(a)) and the sum of primitive
recursive functions is primitive Tecursive, Xy, a, ... q,) IS primitive
recursive.

Represent x and y in tally notation. Using Example 9.6 we can compute
concatenation of strings representing x and y which is precisely x + y
in tally notation.

Let M in the Post notation have {¢y, ¢, - . ., ¢,} and {a;, as, .. ., a,}
as Q and I respectively. Let O = {q1, - - -» ¢y Gnsls - - - Gonts Where
Gns1 - - - G2, are new states. Let a quadruple of the form g;a;Rq; induce

the quintuple g;aq;Rq,;. Let a quadruple of the form ga;Lq; induce the
quintuple gqaa;Lq,. Finally, let qaa;q, induce qauRq,.. We
introduce quintuples g,,;aalq; for i =1, 2, .., nand t = 1, 2, 3,
.., m. The required TM has Q" as the set of states and the set of
quintuples represent O.

414 & Solutions (or Hints) to Chapter-end Exercises

1115 gol11lx,by = 11llgexiby |— 1111g,xby. As b lies between x; and y,
Z(4) = 0 (given by b).

11.16 In Section 11.4.5 we obtained golxby [~ gslx;,bly. Similarly,
qolllxby = gslllxbly p— 1gollx;bly. Proceeding further,
lgollebly = lgsllxblly }— 1lgolyblly P~ 1llgex;111ly (as in
Section 11.4.5). Hence S(3) = 4.

11.18 Represent the argument x in tally notation. fix) = S(S(x)). Using the
construction given in Section 11.4.7, we can construct a TM which
gives the value S(S(x)).

11.19 fix;, x») = S(S(UA(x,, x»))). Use the construction in Section 11.4.7.

11.20 Represent (x;, x») by 1%b1*2. By taking the input as $1961'%($ is
representing the left-end) and suitably modifying the TM given in
Example 9.6, we get the value of x; + x, to the right of $.

Chapter 12

12.1 Denote fin) = ZU an' and g(n) = X b/, where a; b;, are positive
= =" ,
k .

integers. Assume k = [. Then fin) + gn) = ;0 (a; + b)n', where b; =0

tor i > [. filn) + g(n) is a polynomial of degree k. Hence fin)g(n) =
0(71“1).

12.2 As n° dominates n log n and n*log n dominates n’, the growth rate of
h(n) > growth rate of g(n). Note in) = g(n) = O(nz).

n n

123 As Zi=nn+ D2, X # = n(n + H(2n + 1)/6 and z £ = (n + 12,

the answers for (i) and (i) are O(n’) and O(n?). (iii) a(l — 7)1 — r=
00"t = 0("™). (iv) 5[2a + (n=1)d] = O().

12.4 As log,n, logsn, log.n, differ by a constant factor, f{n) = O’ logn)

12.5 ged = 3.

12.6 The principal disjunctive normal form of the boolean expression has
5 terms (refer to Example 1.13). P A Q A R is one such term. So

(T, T, T) satisfies the given expression. Similar assignments for the
other four terms.

12.7 No.
12.8 (7, T, F, F) makes the given expression satisfiable.
12.9 Only if: Take an NP-complete problem L. Then L is in CO-NP = NP.

Solutions (or Hints) to Chapter-end Exercises EH 415

if: Let P be NP-complete and P € NP. Let L be any language in NP.
We get a polynomial reduction ¢ of L to P and hence a polynomial
reduction w of L to P. We prove NP ¢ CO-NP. Combine y and
nondeterministic polynomial-time algorithms for P o get a
nondeterministic polynomial-time algorithm for L. So L € NP or L
€ CO-NP. This proves NP < CO-NP. The other inclusion is similar.

[—

Further Reading

Chandrasekaran, N., Automata and Computers, Proceedings of the KMA
National Seminar on Discrete Mathematics and Applications, St. Thomas
College, Kozhencherry, January, 9-11, 2003.

Davis, M.D. and E.J. Weyuker, Computability, Complexity and Languages,
Fundamentals of Theoretical Computer Science, Academic Press,
New York, 19683.

Deo. N.. Graph Theory with Applications to Engineering and Computer
Science, Prentice-Hall of India, New Delhi, 2001.

Ginsburg, S., The Mathematical Theory of Context-Free Languages,
McGraw-Hill, New York, 1966.

Glorioso. RM., Engineering Cvbernetics, Prentice-Hall, Englewood Cliffs,
New Jersey. 1975.

Gries. D., The Science of Programming, Narosa Publishing House, New Delhi,
1981.

Harrison, MLA., Introduction to Formal Language Theory, Addison-Wesley,
Reading (Mass.), 1978.

Hein, J.L.. Discrete Structures, Logic and Compurabiliry, Narosa Publishing
House, New Delhi, 2004.

Hopcroft, J.E. and J.D. Ullman, Formal Languages and Their Relation to
Automata, Addison-Welsey, Reading (Mass.), 1969.

Hopcroft J.E., and J.D. Ullman, Introdiction to Automata Theory, Languages
and Compuration, Narosa Publishing House, New Delhi, 1987.

Hopcroft, J.E.. J. Motwani. and J.D. Ullman, Introduction to Automata
Theory, Languages and Computation, Pearson Education, Asia, 2002.

417

418 K Further Reading

Kain, R.Y., Auromata Theorv: Machines and Languages, McGraw-Hill,
New York, 1972.

Kohavi, ZVIL. Switching and Finite Automata Theory, Tata McGraw-Hill,
New Delhi, 1986.

Korfhage. R.R.. Discrete Compurational Structures, Academic Press
New York, 1984.

Krishnamurthy, E.V., Introductory Theory of Computer Science, Affiliated
Fast-West Press, New Delhi, 1984,

Levy, L.S.. Discrete Structures of Computer Science. Wiley FEastern,
New Defhi, 1988.

Lewis, H.R. and C.1. Papadimitrou, Elements of the Theory of Computation,
2nd ed., Prentice-Hall of India, New Delhi. 2003.

Linz, P.. An Introduction to Formal Languages and Automata, Narosa
Publishing House, New Delhi. 1997.

Mandelson, E.. Mmtroduction to Mathematical Logic, D. Van Nostrand,
New York, 1964.

Manna, Z.. Mathematical Theorv of Computatiorn, McGraw-Hill Kogakusha,
Tokyo. 1974.

Martin, I.H.. Introduction to Languages and the Theory of Computation,
McGraw-Hill International Edition. New York, 1991.

Minsky, M., Computation: Finite and Infinite Machines, Prentice-Hall,
Englewood Cliffs, New Jersey, 1967.

Nelson, R.J.. Introduction to Auromata, Wiley, New York, 1968.

Preparata. F.P. and R.T. Yeh, Introduction to Discrete Structures,
Addison-Wesley, Reading (Mass.), 1973.

Rani Siromoney. Formal Languages and Automata, The Chiristian Literature
Society, Madras, 1979.

Revesz. G.E.. Introduction to Formal Languages, McGraw-Hill, New York,
1986.

Sahni, D.F. and D.F. McAllister, Discrete Mathematics in Computer Science,
Prentice-Hall, Englewood Cliffs. New Jersey, 1977.

Sipser, M., Introduction to the Theorv of Computation, Brooks/Cole, Thomson
Learning, London. 2003.

Tremblay. J.P. and R. Monohar, Discrete Mathematical Structuyves with
Applications to Computer Science, McGraw-Hill, New York, 1975.

Ullman. 1.D., Fundamental Concepts of Progranuming Systems,
Addison-Wesley, Reading (Mass.), 1976.

Abelian group. 38
Acceptance
by finite automaton. 77
by NDFA, 79
by pda by final state, 233-240
by pda by null store, 234-240
by Turing machine. 284
Accepting state (see Final state)
Ackermann’s function, 330
Algebraic system, 39
Algorithm, 124, 309, 310
Alphabet, 54
Ambiguous grammar, 188
Ancestor of a vertex, 51
Arden’s theorem. 139
Associativity, 38
A-tree, 183
Automaton, 71, 72
minimization of, 91-97

Bijection, 45

Binary operation, 38
Binary trees, 51

Boolean expressions, 353
Bottom-up parsing, 258

Chain production (see Unit production)
Characteristic function, 344
Chomsky classification, 220

Chomsky normal form (see Normal form)
Church~Turing thesis, 362
Circuit, 49
Closure, 37
properties, 126-128, 165-167, 272
of relations, 43
Commutativity, 38, 39
Comparison method, 152
Complexity, 346-371
Composition of functions, 324
Concatenation, 54
Congruence relation, 41
Conjunction (AND), 2
Conjunctive normal form. 14
Connectives, 2-6
Construction of reduced grammar, 190-196
Context-free grammar (language), 122,
180-218
decision algorithms for, 217
normal forms for, 201-213
and pda, 240-251
simplification of, 189-201
Context-sensitive grammar (language), 120,
299
Contradiction, 8
Cook’s theorem, 354
CSAT. 359

Decidability, 310
Decidable languages, 311

419

od

420 EH Index

Decision algorithms (see Context-free grammar)
Derivation, 110, 111
leftmost, 187
rightmost, 187
Derivation tree (parse tree), 181, 184
definition of, 181
subtree of, 182
yield of, 182
Descendant, 51
Deterministic
finite automaton, 73
pda, 236
Directed graph (or digraph), 47
Dirichlet drawer principle, 46
Disjunction (OR), 3
Disjunctive normal form, 11
Distributivity, 39

Elementary product, 11
Equivalence
class, 42
of DFA and NDFA, 80-84
of finite automata, 157, 158
of regular expressions, 160
relation, 41
of states, 91
of well-formed formulas, 9
Euclidean algorithm, 349

Fibonacci numbers, 69
Field, 39
Final state, 73, 74, 77
Finite automaton
deterministic, 73
minimization of, 91-97
nondeterministic, 78
and regular expression, 153
Function (or map), 45
by minimization, 330
partial, 322
by recursion, 328
total, 322

Godel, Kurt, 332

Grammar, 109
monotonic, 121
self-embedding. 226

Graph, 47
connected, 49
representation, 47
Greibach normal form (see Normal form)
Group, 38
Growth rate of functions, 346

Halting problem of Turing machine,
314-313

Hamiltonian circuit problem, 359

Handle production, 268

Hierarchy of languages, 120-122

ID (Instantaneous description)
of pushdown automaton, 229
of Turing machine, 279
Identities
logical, 10
for regular expressions, 138
Identity element, 38, 55
If and only if, 4
Implication (IF...THEN...), 4
Inclusion relation, 123
Initial function, 323
Induction, 57, 58, 60
Initial state, 73-74, 78, 228, 278
Internal vertex. 50
Inverse, 38

Kleene's theorem, 142
A-move, 140
elimination of, 141

Language(s)
and automaton, 128
classification of, 120
generated by a grammar, 110
Leaf of a tree, 50

Length
of path, 51
of string, 55

Levi's theorem, 56
Linear bounded automaton (LBA), 297-299,
301-303
and languages, 299-301
Logical connectives (see Connectives)
LR(k) grammar, 267

Index H 421

Map, 45, 46
bijection (one-to-one correspondence). 45
one-to-one (injective). 45
onto (surjective), 45
Maxterm, 14
Mealy machine, 84
transformation
85-87
Minimization of automata, 91-97
Minterm, 12
Modus ponens, 16
Modus tollens, 16
Monoid, 38
Moore machine, 84
transformation into Mealy machine. 87-
89
Move relation
in pda, 230
in Turing machine, 280

into Moore machine,

NAND, 33
Negation (NOT), 2
Nondeterministic finite automaton, 78
conversion to DFA, 80
Nondeterministic Turing machine, 295-297
NOR, 33
Normal form
Chomsky, 201-203
Greibach. 206-213
of well-formed formulas, 11
NP-complete problem, 352
importance of, 352
Null productions, 196
elimination of, 196-199

One-to-one correspondence also
Bijection), 45
Operations on languages. 126-128

Ordered directed tree, S50

(see

Palindrome. 55, 113

Parse tree (see Derivation tree)

Parsing and pda, 251-260

F:rtial recursive function, 330
and Turing machine, 332-340

Partition, 37

Path, 48

acceptance by, 231-240

pda, 230
Phrase structure grammar (see Grammar)
Pigeonhole principle, 46
Post correspondence

315-317

Power set. 37
Predecessor, 48
Predicate, 19
Prefix of a string, 55
Primitive recursive function, 323-329
Principal conjunctive normal form, 15

construction to obtain, 15
Principle of induction, 57
Production (or production rule), 109
Proof

by contradiction, 61

by induction, 57

by modified method, 58

by simultaneous induction, 60
Proposition (or Statement), 1
Propositional vanable, 6
Pumping lemma

for context-free languages and appli-

cations, 213, 216

for regular sets and applications, 162-163
Push-down automaton, 227-251, 254

and context-free languages, 240-251

problem (PCP),

Quantum computation, 360
Quantum computers, 361
Quantum bit (qubit), 361
Quantifier
existential, 20
universal, 20

Recursion, 37
Recursive definition of a set, 37
Recursive function, 329
Recursive set, 124
Recursively enumerable set, 124, 310
Reduction technique, 351
Reflexive-transitive closure, 43
Regular expressions, 136

finite automata and, 140

identities for, 138

422 B Index

Regular grammar, 122
Regular sets. 137
closure properties of, 165-167
and regular grammar, 167
Relations
reflexive, 41
symmetric, 41
transitive, 41
Right-linear grammar, 226
Ring, 39
Root, 50
Russels paradox, 320

SAT problem (satisfiability problem), 353
Self-embedding grammar, 226
Semigroup. 38
Sentence, 110
Sentential form. 110
Sets, 36. 37, 38, 39, 40
complement of, 37
intersection of. 37
union of, 37
Simple graph. 70
Start symbol, 109
Statement (see Proposition)
String
empty, 54
length of, 55
operations on, 54
prefix of. 55
suffix of, 55
Strong Church-Turing thesis, 363
Subroutines, 290
Successor, 48
Symmetric difference, 68

Tautology, 8
Time complexity, 294, 349
Top-down parsing, 252
Top-down parsing. using deterministic pda’s
256
Transition function. 73. 78, 228
properties of, 75-76
Transition system. 74
containing A-moves, 140
and regular grammar, 169
Transitive closure, 43
Transpose, 55
Travelling salesman problem, 359

Tree, 49
height of, 51
properties of, 49-50
Turing-computable functions, 333
Turing machine, 277
construction of, to compute the projection
function, 336
construction of, to compute the successor
function, 335
construction of, to compute the zero
function, 334
construction of, to pertorm composition,
338
construction of, to perform minimization.
340
construction of, to perform recursion, 339
description of, 289
design of, 284
multiple track, 290
multitape, 292
nondeterministic, 295
representation by 1D, 279
representation by transition diagram, 281
representation by transition table, 280
and type 0 grammar, 299-301
Type 0 grammar (see Grammar)
Type 1 grammar (see Context-sensitive
grammar)
Type 2 grammar (see Context-free grammar)
Type 3 grammar (see Regular grammar)

Unambiguous grammar, 271

Undecidable language, 313

Unit production. 199
elimination of, 199-201

Valid
argument, 15
predicate formula, 22

Variable, 109

Vertex, 47
ancestor of, 51
degree of, 48
descendant of, 51
son of, 51

Well-formed formula, 6
or predicate calculus, 21

T e m 2 lﬂ;?m-ii

Theory of Computer Science Third Edition
Automata, Languages and Computation

K.L.P. Mishra ® N. Chandrasekaran

This Third Edition, in response to the enthusiastic reception given by academia and students to
the previous edition, offers a cohesive presentation of all aspects of theoretical computer science,
namely automata, formal languages, computability, and complexity. Besides, it includes
coverage of mathematical preliminaries.
New to this Fdition
e Expanded sections on pigeonhole principle and the principle of induction (both in Chapter 2)
e A rigorous proof of Kleene’s theorem (Chapter 5)
e Major changes in the chapter on Turing machines (TMs)

— A new section on high-level description of TMs

— Techniques for the construction of TMs

— Multitape TM and nondeterministic TM
e A new chapter (Chapter 10) on decidability and recursively enumerable languages
e A new chapter (Chapter 12) on complexity theory and NP-complete problems
e A section on quantum computation in Chapter 12.

Key Features

2 Objective-type questions in each chapter—with answers provided at the end of the book.

1 Eighty-three additional solved examples—added as Supplementary Examples in each chapter.
_t Detailed solutions at the end of the book to chapter-end exercises.

The book is designed to meet the needs of the undergraduate and postgraduate students of
computer science and engineering as well as those of the students offering courses in computer
applications.

About the Authors

K.L.P. MISHRA (Ph.D., Leningrad), had a distinguished career as Professor of Electrical and
Electronics Engineering, and Principal, Regional Engineering College, Tiruchirapalli.

N. CHANDRASEKARAN, Ph.D., is Professor of Mathematics at St. Joseph’s College, Tiruchirapalli
{an autonomous college, nationally accredited with five stars and a college selected for potential
for excellence). He is a regular faculty at Bharathidasan Institute of Management, Tiruchirapalli
and formerly served as a visiting professor at National Institute of Technology, Tiruchirapalli.

976-81-203-2968-3

Rs. 225.00 mll' ”Hl ‘m H H.

www.phindia.com

	scan0001
	Binder1
	scan0001
	scan0002
	scan0003
	scan0004
	scan0005
	scan0006
	scan0007
	scan0008
	scan0009
	scan0010
	scan0011
	scan0012
	scan0013
	scan0014
	scan0015
	scan0016
	scan0017
	scan0018
	scan0019
	scan0020
	scan0021
	scan0022
	scan0023
	scan0024
	scan0025
	scan0026
	scan0027
	scan0028
	scan0029
	scan0030
	scan0031
	scan0032
	scan0033
	scan0034
	scan0035
	scan0036
	scan0037
	scan0038
	scan0039
	scan0040
	scan0041
	scan0042
	scan0043
	scan0044
	scan0045
	scan0046
	scan0047
	scan0048
	scan0049
	scan0050
	scan0051
	scan0052
	scan0053
	scan0054
	scan0055
	scan0056
	scan0057
	scan0058
	scan0059
	scan0060
	scan0061
	scan0062
	scan0063
	scan0064
	scan0065
	scan0066
	scan0067
	scan0068
	scan0069
	scan0070
	scan0071
	scan0072
	scan0073
	scan0074
	scan0075
	scan0076
	scan0077
	scan0078
	scan0079
	scan0080
	scan0081
	scan0082
	scan0083
	scan0084
	scan0085
	scan0086
	scan0087
	scan0088
	scan0089
	scan0090
	scan0091
	scan0092
	scan0093
	scan0094
	scan0095
	scan0096
	scan0097
	scan0098
	scan0099
	scan0100
	scan0101
	scan0102
	scan0103
	scan0104
	scan0105
	scan0106
	scan0107
	scan0108
	scan0109
	scan0110
	scan0111
	scan0112
	scan0113
	scan0114
	scan0115
	scan0116
	scan0117
	scan0118
	scan0119
	scan0120
	scan0121
	scan0122
	scan0123
	scan0124
	scan0125
	scan0126
	scan0127
	scan0128
	scan0129
	scan0130
	scan0131
	scan0132
	scan0133
	scan0134
	scan0135
	scan0136
	scan0137
	scan0138
	scan0139
	scan0140
	scan0141
	scan0142
	scan0143
	scan0144
	scan0145
	scan0146
	scan0147
	scan0148
	scan0149
	scan0150
	scan0151
	scan0152
	scan0153
	scan0154
	scan0155
	scan0156
	scan0157
	scan0158
	scan0159
	scan0160
	scan0161
	scan0162
	scan0163
	scan0164
	scan0165
	scan0166
	scan0167
	scan0168
	scan0169
	scan0170
	scan0171
	scan0172
	scan0173
	scan0174
	scan0175
	scan0176
	scan0177
	scan0178
	scan0179
	scan0180
	scan0181
	scan0182
	scan0183
	scan0184
	scan0185
	scan0186
	scan0187
	scan0188
	scan0189
	scan0190
	scan0191
	scan0192
	scan0193
	scan0194
	scan0195
	scan0196
	scan0197
	scan0198
	scan0199
	scan0200
	scan0201
	scan0202
	scan0203
	scan0204
	scan0205
	scan0206
	scan0207
	scan0208
	scan0209
	scan0210
	scan0211
	scan0212
	scan0213
	scan0214
	scan0215
	scan0216
	scan0217
	scan0218
	scan0219
	scan0220
	scan0221
	scan0222
	scan0223
	scan0224
	scan0225
	scan0226
	scan0227
	scan0228
	scan0229
	scan0230
	scan0231
	scan0232
	scan0233
	scan0234
	scan0235
	scan0236
	scan0237
	scan0238
	scan0239
	scan0240
	scan0241
	scan0242
	scan0243
	scan0244
	scan0245
	scan0246
	scan0247
	scan0248
	scan0249
	scan0250
	scan0251
	scan0252
	scan0253
	scan0254
	scan0255
	scan0256
	scan0257
	scan0258
	scan0259
	scan0260
	scan0261
	scan0262
	scan0263
	scan0264
	scan0265
	scan0266
	scan0267
	scan0268
	scan0269
	scan0270
	scan0271
	scan0272
	scan0273
	scan0274
	scan0275
	scan0276
	scan0277
	scan0278
	scan0279
	scan0280
	scan0281
	scan0282
	scan0283
	scan0284
	scan0285
	scan0286
	scan0287
	scan0288
	scan0289
	scan0290
	scan0291
	scan0292
	scan0293
	scan0294
	scan0295
	scan0296
	scan0297
	scan0298
	scan0299
	scan0300
	scan0301
	scan0302
	scan0303
	scan0304
	scan0305
	scan0306
	scan0307
	scan0308
	scan0309
	scan0310
	scan0311
	scan0312
	scan0313
	scan0314
	scan0315
	scan0316
	scan0317
	scan0318
	scan0319
	scan0320
	scan0321
	scan0322
	scan0323
	scan0324
	scan0325
	scan0326
	scan0327
	scan0328
	scan0329
	scan0330
	scan0331
	scan0332
	scan0333
	scan0334
	scan0335
	scan0336
	scan0337
	scan0338
	scan0339
	scan0340
	scan0341
	scan0342
	scan0343
	scan0344
	scan0345
	scan0346
	scan0347
	scan0348
	scan0349
	scan0350
	scan0351
	scan0352
	scan0353
	scan0354
	scan0355
	scan0356
	scan0357
	scan0358
	scan0359
	scan0360
	scan0361
	scan0362
	scan0363
	scan0364
	scan0365
	scan0366
	scan0367
	scan0368
	scan0369
	scan0370
	scan0371
	scan0372
	scan0373
	scan0374
	scan0375
	scan0376
	scan0377
	scan0378
	scan0379
	scan0380
	scan0381
	scan0382
	scan0383
	scan0384
	scan0385
	scan0386
	scan0387
	scan0388
	scan0389
	scan0390
	scan0391
	scan0392
	scan0393
	scan0394
	scan0395
	scan0396
	scan0397
	scan0398
	scan0399
	scan0400
	scan0401
	scan0402
	scan0403
	scan0404
	scan0405
	scan0406
	scan0407
	scan0408
	scan0409
	scan0410
	scan0411
	scan0412
	scan0413
	scan0414
	scan0415
	scan0416
	scan0417
	scan0418
	scan0419
	scan0420
	scan0421
	scan0422
	scan0423
	scan0424
	scan0425
	scan0426
	scan0427
	scan0428
	scan0429
	scan0430
	scan0431
	scan0432

	scan0002

