SOFTWARE
TESTING

Yogesh Singh

more information - www.cambridge.org/@781107012967

www.cambridge.org/9781107012967

SOFTWARE TESTING

Yogesh Singh

B2 CAMBRIDGE

55 1?; UNIVERSITY PRESS

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, Sao Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press
4381/4, Ansari Road, Daryaganj, Delhi 110002, India

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9781107012967

© Yogesh Singh 2012

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2012
Printed in India at...........
A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Singh, Yogesh, 1966-
Software testing / Yogesh Singh.
. cm.
Includes bibliographical references.
Summary: “Discusses the concept of Software Testing with real-life case studies and solved
examples”-- Provided by publisher.
ISBN 978-1-107-01296-7 (hardback)
1. Computer software--Testing. 2. Computer software--Quality control. I. Title
QA76.76.T48S56 2011
005.1'4--dc22 2011012053

ISBN 978-1-107-01296-7 Hardback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLSs for external or third-party internet websites referred to in
this publication, and does not guarantee that any content on such websites is,
or will remain, accurate or appropriate.

Contents

List of Figures Xi
List of Tables xv
Preface xxi
Acknowledgements XXIii
1. Introduction 1
1.1 Some Software Failures 1

1.1.1 The Explosion of the Ariane 5 Rocket 1

1.1.2 The Y2K Problem 2

1.1.3 The USA Star-Wars Program 3

1.1.4 Failure of London Ambulance System 3

1.1.5 USS Yorktown Incident 3

1.1.6 Accounting Software Failures 3

1.1.7 Experience of Windows XP 4

1.2 Testing Process 4

1.2.1 What is Software Testing? 5

1.2.2 Why Should We Test? 14

1.2.3 Who Should We Do the Testing? 15

1.2.4 What Should We Test? 16

1.3 Some Terminologies 19

1.3.1 Program and Software 19

1.3.2 Verification and Validation 20

1.3.3 Fault, Error, Bug and Failure 21

1.3.4 Test, Test Case and Test Suite 21

1.3.5 Deliverables and Milestones 22

1.3.6 Alpha, Beta and Acceptance Testing 22

1.3.7 Quality and Reliability 23

iv Contents

1.3.8 Testing, Quality Assurance and Quality Control
1.3.9 Static and Dynamic Testing
1.3.10 Testing and Debugging
1.4 Limitations of Testing
1.4.1 Errors in the Software Requirement and Specification Document
1.4.2 Logical Bugs
1.4.3 Difficult to Measure the Progress of Testing
1.5 The V Shaped Software Life Cycle Model
1.5.1 Graphical Representation
1.5.2 Relationship of Development and Testing Parts

Multiple Choice Questions
Exercises

Further Reading

2. Functional Testing

2.1 Boundary Value Analysis
2.1.1 Robustness Testing
2.1.2 Worst-Case Testing
2.1.3 Robust Worst-Case Testing
2.1.4 Applicability
2.2 Equivalence Class Testing
2.2.1 Creation of Equivalence Classes
2.2.2 Applicability
2.3 Decision Table Based Testing
2.3.1 Parts of the Decision Table
2.3.2 Limited Entry and Extended Entry Decision Tables
2.3.3 ‘Do Not Care’ Conditions and Rule Count
2.3.4 Impossible Conditions
2.3.5 Applicability
2.4 Cause-Effect Graphing Technique
2.4.1 Identification of Causes and Effects
2.4.2 Design of Cause-Effect Graph
2.4.3 Use of Constraints in Cause-Effect Graph
2.4.4 Design of Limited Entry Decision Table
2.4.5 Writing of Test Cases
2.4.6 Applicability

Multiple Choice Questions
Exercises

Further Reading

3. Essentials of Graph Theory

3.1 What is a Graph?
3.1.1 Degree of a Node
3.1.2 Regular Graph

23
23
24
24
24
24
26
26
27
27

28
34
35

37

38
43
44
46
48
63
63
65
81
81
82
82
83
83
96
97
97
97
99
99
99

102
105
108

110

110
112
113

Contents v

3.2 Matrix Representation of Graphs 113
3.2.1 Incidence Matrix 114
3.2.2 Adjacency Matrix 114
3.3 Paths and Independent Paths 116
3.3.1 Cycles 117
3.3.2 Connectedness of a Graph 117
3.4 Generation of a Graph from Program 123
3.4.1 Program Graphs 124
3.4.2 DD Path Graphs 127
3.5 Identification of Independent Paths 144
3.5.1 Cyclomatic Complexity 144
3.5.2 Graph Matrices 150
Multiple Choice Questions 159
Exercises 161
Further Reading 163
Structural Testing 165
4.1 Control Flow Testing 165
4.1.1 Statement Coverage 166
4.1.2 Branch Coverage 167
4.1.3 Condition Coverage 167
4.1.4 Path Coverage 167
4.2 Data Flow Testing 173
4.2.1 Define/Reference Anomalies 174
4.2.2 Definitions 174
4.2.3 Identification of du and dc Paths 175
4.2.4 Testing Strategies Using du-Paths 175
4.2.5 Generation of Test Cases 176
4.3 Slice Based Testing 197
4.3.1 Guidelines for Slicing 197
4.3.2 Creation of Program Slices 198
4.3.3 Generation of Test Cases 202
4.4 Mutation Testing 212
4.4.1 Mutation and Mutants 212
4.4.2 Mutation Operators 216
4.4.3 Mutation Score 216
Multiple Choice Questions 223
Exercises 226
Further Reading 228
Software Verification 230
5.1 Verification Methods 230

5.1.1 Peer Reviews 231

Vi

Contents

5.2

5.3

5.4

5.5

5.6

5.7

5.1.2 Walkthroughs

5.1.3 Inspections

5.1.4 Applications

Software Requirements Specification (SRS) Document Verification
5.2.1 Nature of the SRS Document

5.2.2 Characteristics and Organization of the SRS Document
5.2.3 SRS Document Checklist

Software Design Description (SDD) Document Verification
5.3.1 Organization of the SDD Document

5.3.2 The SDD Document Checklist

Source Code Reviews

5.4.1 Issues Related to Source Code Reviews

5.4.2 Checklist of Source Code Reviews

User Documentation Verification

5.5.1 Review Process Issues

5.5.2 User Documentation Checklist

Software Project Audit

5.6.1 Relevance Scale

5.6.2 Theory and Practice Scale

5.6.3 Project Audit and Review Checklist

Case Study

Multiple Choice Questions

Exercises

Further Reading

Creating Test Cases from Requirements and Use Cases

6.1

6.2

6.3

6.4

Use Case Diagram and Use Cases

6.1.1 Identification of Actors

6.1.2 Identification of Use Cases

6.1.3 Drawing of Use Case Diagram

6.1.4 Writing of Use Case Description
Generation of Test Cases from Use Cases

6.2.1 Generation of Scenario Diagrams

6.2.2 Creation of Use Case Scenario Matrix
6.2.3 Identification of Variables in a Use Case
6.2.4 Identification of Different Input States of a Variable
6.2.5 Design of Test Case Matrix

6.2.6 Assigning Actual Values to Variables
Guidelines for generating validity checks

6.3.1 Data Type

6.3.2 Data Range

6.3.3 Special Data Conditions

6.3.4 Mandatory Data Inputs

6.3.5 Domain Specific Checks

Strategies for Data Validity

6.4.1 Accept Only Known Valid Data

231
231
232
233
233
233
235
238
239
239
241
241
242
243
244
244
245
246
246
246
257
279

282
283

285

285
286
287
288
290
292
293
294
295
296
296
296
316
316
316
316
316
316
317
317

Contents vii

6.4.2 Reject Known Bad Data 322
6.4.3 Sanitize All Data 322
6.5 Database Testing 326
Multiple Choice Questions 331
Exercises 333
Further Reading 334

Selection, Minimization and Prioritization of Test Cases for

Regression Testing 335
7.1 What is Regression Testing? 335
7.1.1 Regression Testing Process 336
7.1.2 Selection of Test Cases 337
7.2 Regression Test Cases Selection 339
7.2.1 Select All Test Cases 339
7.2.2 Select Test Cases Randomly 339
7.2.3 Select Modification Traversing Test Cases 339
7.3 Reducing the Number of Test Cases 340
7.3.1 Minimization of Test Cases 340
7.3.2 Prioritization of Test Cases 341
7.4 Risk Analysis 342
7.4.1 What is Risk? 342
7.4.2 Risk Matrix 343
7.5 Code Coverage Prioritization Technique 346
7.5.1 Test Cases Selection Criteria 347
7.5.2 Modification Algorithm 347
7.5.3 Deletion Algorithm 352
Multiple Choice Questions 363
Exercises 364
Further Reading 365
Software Testing Activities 368
8.1 Levels of Testing 368
8.1.1 Unit Testing 369
8.1.2 Integration Testing 370
8.1.3 System Testing 373
8.1.4 Acceptance Testing 373
8.2 Debugging 374
8.2.1 Why Debugging is so Difficult? 374
8.2.2 Debugging Process 375
8.2.3 Debugging Approaches 377
8.2.4 Debugging Tools 378
8.3 Software Testing Tools 379

8.3.1 Static Software Testing Tools 379

viii

10.

Contents

8.3.2 Dynamic Software Testing Tools
8.3.3 Process Management Tools
8.4 Software Test Plan

Multiple Choice Questions
Exercises

Further Reading

Object Oriented Testing

9.1 What is Object Orientation?
9.1.1 Classes and Objects
9.1.2 Inheritance
9.1.3 Messages, Methods, Responsibility, Abstraction
9.1.4 Polymorphism
9.1.5 Encapsulation

9.2 What is Object Oriented Testing?
9.2.1 What is a Unit?
9.2.2 Levels of Testing

9.3 Path Testing
9.3.1 Activity Diagram
9.3.2 Calculation of Cyclomatic Complexity
9.3.3 Generation of Test Cases

9.4 State Based Testing
9.4.1 What is a State Machine?
9.4.2 State Chart Diagram
9.4.3 State Transition Tables
9.4.4 Generation of Test Cases

9.5 Class Testing
9.5.1 How Should We Test a Class?
9.5.2 Issues Related to Class Testing
9.5.3 Generating Test Cases

Multiple Choice Questions
Exercises

Further Reading

Metrics and Models in Software Testing

10.1 Software Metrics
10.1.1 Measure, Measurement and Metrics
10.1.2 Applications
10.2 Categories of Metrics
10.2.1 Product Metrics for Testing
10.2.2 Process Metrics for Testing
10.3 Object Oriented Metrics Used in Testing

381
382
382

383
386
387

389

389
390
391
393
394
394
395
395
395
396
396
400
401
404
404
406
407
408
411
412
412
412

415
417
418

420

420
420
421
422
422
423
423

11.

10.4

10.5

10.3.1 Coupling Metrics

10.3.2 Cohesion Metrics

10.3.3 Inheritance Metrics

10.3.4 Size Metrics

What Should We Measure During Testing?
10.4.1 Time

10.4.2 Quality of Source Code

10.4.3 Source Code Coverage

10.4.4 Test Case Defect Density

10.4.5 Review Efficiency

Software Quality Attributes Prediction Models
10.5.1 Reliability Models

10.5.2 An Example of Fault Prediction Model in Practice
10.5.3 Maintenance Effort Prediction Model

Multiple Choice Questions

Exercises

Further Reading

Testing Web Applications

11.1

11.2
11.3

11.4

11.5

11.6
11.7

11.8
11.9

What is Web Testing?

11.1.1 Web Application versus Client Server Application
11.1.2 Key Areas in Testing Web Applications
Functional Testing

User Interface Testing

11.3.1 Navigation Testing

11.3.2 Form Based Testing

11.3.3 User Interface Testing Checklist

Usability Testing

11.4.1 What is Usability and Usability Testing?

11.4.2 Identification of Participants

11.4.3 Development of Usability Testing Questionnaire
11.4.4 Setting up Environment for Conducting Test
11.4.5 Conducting the Test

11.4.6 Analyze the Results and Observations
Configuration and Compatibility Testing

11.5.1 Browser Testing

Contents ix

424
424
425
426
427
427
428
429
429
429
430
430
437
442

446
449
451

453

453
453
455
456
458
458
459
461
463
463
464
465
468
469
469
469
470

11.5.2 Guidelines and Checklist for Configuration and Compatibility Testing 470

Security Testing

Performance Testing

11.7.1 Load Testing

11.7.2 Stress Testing

11.7.3 Performance Testing Checklist
Database Testing

Post-Deployment Testing

471
476
476
479
479
480
482

x Contents

12.

11.10 Web Metrics
Multiple Choice Questions
Exercises

Further Reading

Automated Test Data Generation

12.1 What is Automated Test Data Generation?
12.1.1 Test Adequacy Criteria
12.1.2 Static and Dynamic Test Data Generation
12.2 Approaches to Test Data Generation
12.2.1 Random Testing
12.2.2 Symbolic Execution
12.2.3 Dynamic Test Data Generation
12.3 Test Data Generation using Genetic Algorithm
12.3.1 Initial Population
12.3.2 Crossover and Mutation
12.3.3 Fitness Function
12.3.4 Selection
12.3.5 Algorithm for Generating Test Data
12.4 Test Data Generation Tools

Multiple Choice Questions
Exercises

Further Reading

Appendix |

Appendix 11

Appendix 111

References

Answers to Multiple Choice Questions
Index

485
486
490
492

494

494
495
495
496
496
496
501
502
503
503
504
505
505
511

512
513
514

517
541
594
612
617
621

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
2.1
2.2
23
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
3.1
32
3.3
3.4
3.5
3.6
3.7
3.8

Program ‘Minimum’ to find the smallest integer out of a set of integers
Modified program ‘Minimum’ to find the smallest integer out of a set of integers
Final program ‘Minimum’ to find the smallest integer out of a set of integers
Phase wise cost of fixing an error

Control flow graph of a 10 to 20 statement program [MYER04]
Components of the software

Documentation manuals

Operating system manuals

A typical example

V shaped software development life cycle model

Functional (Black Box) testing

Five values for input ‘x’ of ‘Square’ program

Selected values for input values x and y

Valid input domain for the program ‘Addition’

Graphical representation of inputs

Graphical representation of inputs

Graphical representation of inputs

Graphical representation of inputs

Graphical representation of inputs

Equivalence classes of input domain

Steps for the generation of test cases

Basic notations used in cause-effect graph

Constraint symbols for any cause-effect graph

Example of cause-effect graph with exclusive (constraint) and requires constraint
Cause-effect graph of rental car problem

Cause-effect graph of triangle classification problem

Undirected and directed graphs

Graphs with loop and parallel edges

Types of graphs

Regular graphs

Cyclic graph

Disconnected graphs

Strongly connected graph

Weakly connected graph

5
11
13
15
18
19
19
20
25
27
37
38
39
39
40
44
45
46
64
65
96
97
98
99

100

101

111

111

112

113

117

118

118

119

xii List of Figures

3.9

3.10
3.11
3.12

3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
4.1
4.2
43
4.4
4.5
4.6
4.7
4.8
4.9
6.1
6.2
6.3
6.4
6.5

6.6

Basic constructs of a program graph
Program ‘Square’ and its program graph
Program to find the largest among three numbers

Program graph to find the largest number amongst three numbers as given

in Figure 3.11
DD path graph and mapping table of program graph in Figure 3.10

DD path graph of the program to find the largest among three numbers

Source code of determination of division of a student problem
Program graph

DD path graph of program to find division of a student
Source code for classification of triangle problem

Program graph of classification of triangle problem

DD path graph of the program to classify a triangle

Source code for determination of day of the week

Program graph for determination of day of the week

DD path graph for determination of day of the week

Program graph

Program graph with 3 connected components

Program graphs and graph matrices

Connection matrix for program graph shown in Figure 3.26(b)
Various paths of program graph given in Figure 3.26(a)
Program graph

DD path graph for determination of division problem

Graph matrix for determination of division problem
Connection matrix for determination of division problem

DD path graph for classification of triangle problem

Graph matrix for classification of triangle problem
Connection matrix for classification of triangle problem
Source code with program graph

Portion of a program

Two slices for variable ‘c’

Example program

Some slices of program in Figure 3.11

Slices of program for determination of division of a student
Mutant, (M) of program to find the largest among three numbers
Mutant, (M,) of program to find the largest among three numbers
Mutant, (M,) of program to find the largest among three numbers
Components of use case diagram

Use case diagram of the URS

Basic and alternative flows with pre-and post-conditions

Basic and alternative flows for login use case (a) Login (b) Change password
Basic and alternative flows for ‘maintain school’, ‘programme’, ‘scheme’,
‘paper’, or ‘student details’ use cases (a) Add details (b) Edit details (c¢) Delete

details (d) View details
Login form
6.7 Change password form

124
125
126

126
127
128
130
130
132
134
134
136
139
140
143
145
146
151
152
153
154
155
156
156
157
158
158
166
198
199
199
202
207
214
214
215
288
289
293
294

301
318
320

6.8
6.9
7.1
7.2
7.3
7.4
7.5
7.6
7.7
8.1
8.2
8.3
8.4
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
10.1
10.2
10.3
10.4

10.5
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

List of Figures xiii

Maintain school details form

Maintain program details form

Steps of regression testing process

Program for printing value of z

Threshold by quadrant

Alternate threshold by quadrant

Threshold by diagonal quadrant

Threshold based on high ‘Impact of Problem’ value
Threshold based on high ‘probability of occurrence of problem’ value
Levels of testing

Unit under test with stubs and driver

Coupling amongst units

Integration approaches

Class and its objects

Class courier

The categories around fast track courier

A class hierarchy

An example of an activity diagram

Program to determine division of a student
Activity diagram of function validate()

Activity diagram of function calculate()

Program to determine largest among three numbers
Activity diagram for function validate()

Activity diagram for function maximum()

A typical state machine diagram

Typical life cycle of a process

State chart diagram for class stack

State chart diagram of withdrawal from ATM
Specification for the class stack

Class ATM withdrawal

A as a function of u

Relationship between 7 and u

Relationship between A and 7

ROC curve for (a) Model I (b) Model II (¢) Model I1I (d) Model IV using
LR method

Comparison between actual and predicted values for maintenance effort
Two-tier architecture of client-server application
Three-tier architecture of web based applications
Web application process

Homepage of online shopping web application
Sample online registration form

Usability testing steps

Participant characteristics for online shopping website
Usability testing questionnaire

Sample questions for online shopping website

322
324
337
338
343
344
345
345
346
369
370
371
372
390
391
392
393
397
399
400
400
403
403
404
405
406
407
410
413
414
431
431
432

442
446
454
454
455
456
460
464
464
468
468

xiv List of Figures

11.10 Security threats 472
11.11 Working of a firewall 473
11.12 Post deployment testing questionnaire 484
11.13 Typical post deployment testing procedure of a web application 484
12.1 Program for determination of nature of roots of a quadratic equation 497
12.2 Program graph of program given in Figure 12.1 498
12.3 A typical program 501
12.4 Flow chart of various steps of genetic algorithm 506
12.5 Program to divide two numbers 507
II-1 Basic and alternative flows for maintain faculty details use case (a) Add a faculty

(b) Edit a faculty (c) Delete a faculty (d) View a faculty 577
II-2 Basic and alternative flows for maintain registration details use case

(a) Add student registration details (b) Edit student registration details 587
II-1 Validity checks for scheme form 595
III-2 Test case with actual data values for the scheme form 597
I11-3 Validity checks for paper form 598
I11-4 Test case with actual data values for paper form 600
1I-5 Validity checks for student form 601
1II-6 Test case with actual data values for the student form 603
III-7 Validity checks for faculty form 604
I1-8 Test case with actual data values for the faculty form 605
III-9 Validity checks for maintain registration details 607

II-10 Test case with actual data values for the student registration form 611

List of Tables

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.1
2.2
23
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25

Inputs and outputs of the program ‘Minimum’

Some critical/typical situations of the program ‘Minimum’

Possible reasons of failures for all nine cases

Reasons for observed output

Results of the modified program ‘Minimum’

Persons and their roles during development and testing

Test case template

Test cases for function of Figure 1.9

Typical test cases where outputs are different

Test cases for the ‘Square’ program

Test cases for the program ‘Addition’

Boundary value test cases to find the largest among three numbers
Boundary value test cases for the program determining the division of a student
Boundary value test cases for triangle classification program

Boundary value test cases for the program determining the day of the week
Robustness test cases for two input values x and y

Worst test cases for the program ‘Addition’

Robust worst test cases for the program ‘Addition’

Robust test cases for the program to find the largest among three numbers
Worst case test cases for the program to find the largest among three numbers
Robust test cases for the program determining the division of a student
Worst case test cases for the program for determining the division of a student
Robust test cases for the triangle classification program

Worst case test cases for the triangle classification program

Robust test cases for program for determining the day of the week

Worst case test cases for the program determining day of the week

Test cases for program ‘Square’ based on input domain

Test cases for the program ‘Addition’

Test cases for program ‘Square’ based on output domain

Test cases for program ‘Addition’ based on output domain

Output domain test cases to find the largest among three numbers

Input domain test case

Output domain test cases

Input domain test cases

[C BN B e

16
21
25
26
38
40
41
41
42
43
44
45
47
48
48
51
52
55
55
59
59
63
64
65
65
66
67
68
70

xvi

2.26
2.27
2.28
2.29
2.30
231
2.32
2.33
2.34
2.35
2.36
2.37
2.38
2.39
2.40
241
242
243
2.44
2.45
2.46
2.47
3.1
3.2
3.3
3.4
3.5
3.6
4.1
4.2
43
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

List of Tables

Output domain test cases for triangle classification program
Input domain test cases

Output domain equivalence class test cases

Input domain equivalence class test cases

Decision table

Typical structure of a decision table

Decision table for triangle problem

Decision table

Test cases of the given problem

Limited entry decision table

Test cases of the given problem

Extended entry decision table

Test cases of the problem

Decision table

Test cases

Modified decision table

Test cases of the decision table given in table 2.41
Decision table

Test cases of the program day of the week

Decision table of rental car problem

Test cases of the given decision table

Decision table

Paths of undirected graph in Figure 3.1(a)

Paths of directed graph in Figure 3.1(b)

Mapping of program graph nodes and DD graph nodes
Mapping of program graph nodes and DD graph nodes
Mapping of program graph nodes and DD graph nodes
Mapping of program graph nodes to DD graph nodes
Test cases

Test cases for statement coverage

Test cases for path coverage

Test cases for statement coverage

Test cases for path coverage

Test cases for all du-paths and all uses

Test cases for all definitions

All du-paths

Test cases for all du-paths

All uses paths for triangle classification problem

Test cases for all uses paths

All definitions paths for triangle classification problem
Test cases for all definitions paths

All uses paths for determination of the day of week problem
Test cases for all uses

All-definitions paths for determination of the day of week problem

Test cases for all-definitions

71
73
74
78
81
82
82
84
84
85
86
87
88
89
90
90
92
94
95
100
100
101
116
117
127
131
135
141
168
170
171
172
173
180
180
182
183
184
185
185
186
189
192
195
196

4.18

4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
431
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45
5.1
52
5.3
5.4
5.5
5.6
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

List of Tables xvii

Test cases using program slices of program to find the largest among
three numbers

Test cases using program slices

Test cases using program slices

Test cases using program slices

Mutated statements
Actual output of mutant M
Actual output of mutant M
Actual output of mutant M
Actual output of mutant M
Actual output of mutant M
Additional test case
Output of added test case
Revised test suite

Test suite A

Test suite B

Mutated lines

Actual output of M, (A)
Actual output of M (A)
Actual output of M,(A)
Actual output of M,(A)
Actual output of M (A)
Actual output of M, (B)
Actual output of M,(B)
Actual output of M,(B)
Actual output of M,(B)
Actual output of M (B)
Additional test case
Revised test suite B
Comparison of verification methods

Organization of the SRS [IEEE98a]

Checklist for the SRS document

Checklist for the SDD Document

Source code reviews checklist

User Documentation checklist

Jacobson’s use case template

Alternative use case template

Scenario matrix for the flow of events shown in Figure 6.3

Scenario matrix for the login use case

A typical test case matrix

Test case matrix for the login use case

Test case matrix with actual data values for the login use case

Scenario matrix for the ‘maintain school details’ use case

Test case matrix for the ‘maintain school details’ use case

Test case matrix with actual data values for the ‘maintain school’ use case
Scenario matrix for the ‘maintain programme details’ use case

1
2
3
4
5

203
207
209
211
217
217
217
218
218
218
218
218
219
219
219
219
220
220
220
220
221
221
221
222
222
222
222
223
232
234
236
239
242
244
290
291
294
295
296
297
298
302
303
305
308

xviii

6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
10.1

List of Tables

Test case matrix for the ‘maintain programme details’ use case

Test case matrix with actual data values for the programme use case
Validity checks for login form

Test case with actual data values for the login form

Validity checks for change password form

Test case with actual data values for the ‘Change Password’ form
Validity checks for school form

Test case with actual data values for the school form

Validity checks for program form

Test case with actual data values for the program form

Operations of ‘school details’ form

Comparison of regression and development testing

Test suite for program given in Figure 7.2

Risk analysis table

Risk analysis table of ‘University Registration System’

Variables used by ‘modification’ algorithm

Test cases with execution history

Test cases with number of matches found

Test cases in decreasing order of number of modified lines covered
Test cases in descending order of number of matches found (iteration 2)
Test cases in descending order of number of matches found (iteration 3)
Test cases in descending order of number of matches found (iteration 4)
Test cases in descending order of number of matches found (iteration 5)
Variables used by ‘deletion’ algorithm

Test cases with execution history

Modified execution history after deleting line numbers 4, 7 and 15
Redundant test cases

Modified table after removing T1 and T5

Test cases with modified lines

Test cases in descending order of number of modified lines covered
Test cases in descending order of number of modified lines

covered (iteration 2)

Symbols of an activity diagram

Test cases for validate function

Test cases for calculate function

Test cases of activity diagram in Figure 9.10

Test cases of activity diagram in Figure 9.11

Terminologies used in state chart diagram

State transition table for stack class

Test cases for class stack

Illegal test case for class stack

Test cases of withdrawal from ATM

Test cases of function push()

Test cases of function pop()

Test cases for function withdraw()

Coupling metrics

309
313
318
319
320
321
323
323
324
325
326
336
338
342
343
347
348
349
350
350
351
351
351
352
352
353
354
355
355
355

355
398
401
402
403
404
405
408
409
409
411
413
414
414
424

10.2
10.3
10.4
10.5
10.6
10.7

10.8

10.9

10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
10.18
10.19
11.1

11.2

11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13
12.1

12.2
12.3
12.4
12.5
II-1
II-2
11-3

11-4
I1-5

Cohesion metrics

Inheritance metrics

Size metrics

Time-based failure specification

Failure-based failure specification

Distribution of faults and faulty classes at high, medium and low
severity levels

Descriptive statistics for metrics

Correlations among metrics

High severity faults model statistics

Medium severity faults model statistics

Low severity faults model statistics

Ungraded severity faults model statistics

Confusion matrix

Results of 10-cross validation of models

ANN summary

Rotated principal components

Validation results of ANN model

Analysis of model evaluation accuracy

Comparison of client/server and web based applications
Sample functional test cases of order process of an online shopping
web application

Navigation testing test cases for online shopping website
Test cases of registration form of an online shopping web application
Checklist for testing user interfaces

Web application usability attributes

Browser’s compatibility matrix

Configuration and compatibility testing checklist
Security testing checklist

Load testing metrics

Performance testing checklist

Sample database test cases

Web metrics

List of Tables xix

425
425
426
427
428

438
438
439
439
440
440
440
440
441
443
444
445
445
454

457
459
460
461
463
470
471
474
477
479
481
485

Constraints and values of paths (feasible/not feasible) of program given

in Figure 12.1

Examples of one point crossover operator

Examples of two point crossover operator
Chromosomes with fitness values for initial population
Automated test data generation tools

Scenario matrix for the maintain scheme details use case
Test case matrix for the maintain scheme details use case

499
503
504
505
511
544
545

Test case matrix with actual data values for the maintain scheme details

use case
Scenario matrix for the maintain paper details use case
Test case matrix for the maintain paper details use case

549
555
556

xx List of Tables

I1-6

II-7
II-8
11-9

II-10
II-11
II-12

II-13
II-14
II-15

Test case matrix with actual data values for the maintain paper details
use case

Scenario matrix for the maintain student details use case

Test case matrix for the maintain student details use case

Test case matrix with actual data values for the maintain student details
use case

Scenario matrix for the maintain faculty details use case

Test case matrix for the maintain faculty details use case

Test case matrix with actual data values for the maintain faculty details
use case

Scenario matrix for the maintain registration details use case

Test case matrix for the maintain registration details use case

Test case matrix with actual data values for the maintain registration details
use case

560
566
567

571
578
579

582
587
588

591

Preface

There is a worldwide awareness of realizing the importance of software testing. Many
universities now offer a course in software testing for undergraduate and graduate studies in
Computer Science and Engineering, Computer Applications, Information Technology,
Software Engineering and Electronics and Communication Engineering.

The book discusses software testing in the context of testing concepts and methods that can
be implemented in practice. It has been designed as a main textbook for a course in software
testing and as a useful resource for teachers and software practitioners.

The main features of this book are:

It focuses on the importance, significance and limitations of software testing.

It presents functional testing techniques that may help to design test cases without
considering internal structure of the program.

It presents structural testing techniques and introduces some fundamental structural
testing techniques like control flow testing, dataflow testing, slice based testing and
mutation testing.

It promotes verification testing as an integral to modern software testing practices,
equally as important as validation testing. Verification activities such as walkthroughs
and inspections can be carried out at early phases of software development. Use case
testing has also been introduced.

It addresses important issues of selection, minimization and prioritization of test cases
for regression testing. Complementary approaches for achieving adequate number of test
cases during regression testing is also discussed in the book to show how to reduce
maintenance cost.

It presents software testing activities, debugging approaches and testing tools along with
their commercial applications.

It signifies the importance of object oriented testing. It also presents metrics used in
software testing with their practical application in predicting models using commercial
data sets.

It emphasizes on testing web applications covering key areas such as functional testing,
usability testing, user interface testing, security testing, performance testing, configuration
and compatibility testing.

It introduces the concepts of automated test data generation using static and dynamic test
data generation techniques. Genetic algorithm is used for the generation of test data
along with suitable examples.

xxii Preface

The work for this book was primarily collected from the author’s several years of teaching.
Therefore, the text has been thoroughly tested in classroom and revised accordingly in the form
of this textbook. The book contains numerous solved examples and each chapter ends with
multiple choice questions and self-assessment Exercises. The answers to multiple choice
questions have also been provided for verification. An Instructor Manual for teachers is also
available on the website to provide guidance in teaching software testing.

I do realize the importance of feedback of our readers for continuous improvement in the
contents of the book. I shall appreciate the constructive criticism about anything and also about
any omission due to my ignorance. It is expected that the book will be a useful addition in the
literature on software testing. Any suggestion about the book would gratefully be received.

Yogesh Singh

Acknowledgements

This book is the result of hardwork of Dr Ruchika Malhotra, Assistant Professor, Department
of Software Engineering, Delhi Technological University, Delhi. The book would not have
been completed without her kind support.

Thanks to my undergraduate and postgraduate students of the University School of
Information Technology, Guru Gobind Singh Indraprastha University for motivating me to
write this book. Their expectations, discussions and enthusiasm always become my strength
for continuous improvement in academic pursuit. I would also like to thank all researchers,
practitioners, software developers, testers and teachers whose views, ideas and techniques find
a place in this book. I am also grateful to Sandeep Kumar, Stenographer of Examination
Division of the University for typing the draft of the manuscript.

Lastly, I am thankful to Dr Pravin Chandra, Associate Professor, Delhi University, Dr
Jitendra Chabra, Associate Professor, National Institute of Technology, Kurukshetra, Dr
Arvinder Kaur, Associate Professor, Guru Gobind Singh Indraprastha University for their
valuable suggestions. My thanks are also due to Dr Chetna Tiwari, Assistant Professor,
University School of Humanities and Social Sciences, Guru Gobind Singh Indraprastha
University for reading a few chapters of the manuscript.

Introduction

What is software testing? Why do we need to test software? Can we live without testing? How
do we handle software bugs reported by the customers? Who should work hard to avoid
frustrations of software failures?

Such questions are endless. But we need to find answers to such burning questions. Software
organizations are regularly getting failure reports of their products and this number is increasing
day by day. All of us would appreciate that it is extremely disappointing for the developers to
receive such failure reports. The developers normally ask: how did these bugs escape unnoticed?
It is a fact that software developers are experiencing failures in testing their coded programs and
such situations are becoming threats to modern automated civilization. We cannot imagine a day
without using cell phones, logging on to the internet, sending e-mails, watching television and
so on. All these activities are dependent on software, and software is not reliable. The world has
seen many software failures and some were even fatal to human life.

1.1 SOME SOFTWARE FAILURES

A major problem of the software industry is its inability to develop error-free software. Had
software developers ever been asked to certify that the software developed is error-free, no
software would have ever been released. Hence ‘software crises’ has become a fixture of
everyday life with many well-publicized failures that have had not only major economic
impact but also have become the cause of loss of life. Some of the failures are discussed in
subsequent sections.

1.1.1 The Explosion of the Ariane 5 Rocket

The Ariane 5 rocket was designed by European Space Agency and it was launched on June 4,
1996. It was an unmanned rocket and unfortunately exploded only after 40 seconds of its take

2 Software Testing

off from Kourou, French Guiana. The design and development took ten long years with a cost
of $7 billion. An enquiry board was constituted to find the reasons of the explosion. The board
identified the cause and mentioned in its report that [LION96]: “The failure of the Ariane 5
was caused by the complete loss of guidance and altitude information, 37 seconds after start of
the main engine ignition sequence (30 seconds after lift-off). This loss of information was due
to specification and design errors in the software of the inertial reference system. The extensive
reviews and tests carried out during the Ariane 5 development programme did not include
adequate analysis and testing of the inertial reference system or of the complete flight control
system, which could have detected the potential failure”. A software fault in the inertial
reference system was identified as a reason for the explosion by the enquiry committee. The
inertial reference system of the rocket had tried to convert 64 bit floating point number of
horizontal velocity to a 16 bit signed integer. However, the number was greater than 32,767
(beyond the permissible limit of 16 bit machine) and the conversion process failed.

Unfortunately, the navigation system of Ariane 4 was used in Ariane 5 without proper
testing and analysis. The Ariane 5 was a high speed rocket with higher value of an internal
alignment function, known as horizontal bias. This value is for the calculation of horizontal
velocity. On the day of the explosion, this value was more than expectations due to different
trajectory of this rocket as compared to the Ariane 4. Therefore, the main technical reason was
the conversion problem at the time of converting the horizontal bias variable, and this resulted
into the shutdown of the computer of the inertial reference system. When the computer shut
down, it passed control to an identical, redundant unit, which was there to provide backup in
case of such a failure. But the second unit had failed in the identical manner before a few
milliseconds. Why wouldn’t it be? It was running the same software.

The designers never thought that the particular velocity value would ever be large enough
to cause trouble. After all, it never had been before. Unfortunately Ariane 5 was a faster rocket
than Ariane 4. Moreover, the calculation containing the error, which shut down the computer
system, actually served no purpose, once the rocket was in the air. Its only function was to
align the system before launch. So it should have been turned off. But designers chose long
ago, in an earlier version of the Ariane 4, to leave this function running for the first forty
seconds of flight — a ‘special feature’ meant to make the restart of the system easy in the event
of a brief hold in the countdown. Such design decisions and poor testing resulted in the
explosion of Ariane 5.

1.1.2 The Y2K Problem

The Y2K problem was the most critical problem of the last century. The whole world was
expecting something drastic on January 1, 2000. Significant sums of money were spent by
software companies to get rid of this problem. What was the problem? It was simply the case
of using two digits for the year instead of four digits. For instance, 1965 was considered as 65.
The developers could not imagine the problem of year 2000. What would happen on January
1, 2000? The last two digits i.e. 00 may belong to any century like 1800, 1900, 2000, 2100,
etc. The simple ignorance or a faulty design decision to use only the last two digits for the year
resulted into the serious Y2K problem. Most of the software was re-tested and modified or
discarded, depending on the situation.

Introduction 3

1.1.3 The USA Star-Wars Program

‘Patriot missile’ was the result of the USA ‘Star Wars’ program. This missile was used for the
first time in the Gulf war against the Scud missile of Iraq. Surprisingly, ‘Patriot missiles’ failed
many times to hit the targeted Scud missile. One of the failures killed 28 American soldiers in
Dhahran, Saudi Arabia. An investigation team was constituted to identify the cause of failure.
The team re-looked at every dimension of the product and found the reason for the failure. The
cause of the failure was a software fault. There was a slight timing error in the system’s clock
after 14 hours of its operation. Hence, the tracking system was not accurate after 14 hours of
operations and at the time of the Dhahran attack, the system had already operated for more than
100 hours.

1.1.4 Failure of London Ambulance System

The software controlling the ambulance dispatch system of London collapsed on October
26-27,1992 and also on November 4, 1992 due to software failures. The system was introduced
on October 26, 1992. The London Ambulance Service was a challenging task that used to
cover an area of 600 square miles and handled 1500 emergency calls per day. Due to such a
failure, there was a partial or no ambulance cover for many hours. The position of the vehicles
was incorrectly recorded and multiple vehicles were sent to the same location. Everywhere
people were searching for an ambulance and nobody knew the reason for non-arrival of
ambulances at the desired sites. The repair cost was estimated to be £9m, but it is believed that
twenty lives could have been saved if this failure had not occurred. The enquiry committee
clearly pointed out the administrative negligence and over-reliance on ‘cosy assurances’ of the
software company. The administration was allowed to use this system without proper
alternative systems in case of any failure. The committee also termed the possible cause of
failure as [ANDEO98, FINK93]: “When the system went live, it could not cope with the volume
of calls and broke under the strain. The transition to a back-up computer system had not been
properly rehearsed and also failed.”

1.1.5 USS Yorktown Incident

The USS Yorktown - a guided missile cruiser was in the water for several hours due to the
software failure in 1998. A user wrongly gave a zero value as an input which caused a division
by zero error. This fault further failed the propulsion system of the ship and it did not move in
the water for many hours. The reason behind this failure was that the program did not check
for any valid input.

1.1.6 Accounting Software Failures

Financial software is an essential part of any company’s IT infrastructure. However, many
companies have suffered failures in the accounting system due to errors in the financial software.
The failures range from producing the wrong information to the complete system failure. There

4 Software Testing

is widespread dissatisfaction over the quality of financial software. If a system gives information
in the incorrect format, it may have an adverse impact on customer satisfaction.

1.1.7 Experience of Windows XP

Charles C. Mann shared his views about Windows XP through his article in technology review
[MANNO2] as: “Microsoft released Windows XP on October 25, 2001. That same day, what
may be a record, the company posted 18 megabyte of patches on its website for bug fixes,
compatibility updates, and enhancements. Two patches fixed important security holes. Or
rather, one of them did; the other patch did not work. Microsoft advised (still advises) users to
back up critical files before installing patches.” This situation is quite embarrassing and clearly
explains the sad situation of the software companies. The developers were either too careless
or in a great hurry to fix such obvious faults.

We may endlessly continue discussing the history of software failures. Is there any light at
the end of the tunnel? Or will the same scenario continue for many years to come? When
automobile engineers give their views about cars, they do not say that the quality of today’s
cars is not better than the cars produced in the last decade. Similarly aeronautical engineers do
not say that Boeing or Airbus makes poor quality planes as compared to the planes manufactured
in the previous decade. Civil engineers also do not show their anxieties over the quality of
today’s structures over the structures of the last decade. Everyone feels that things are
improving day by day. But software, alas, seems different. Most of the software developers are
confused about the quality of their software products. If they are asked about the quality of
software being produced by companies, they generally say, “It is getting worse day by day.” It
is as if we say that Boeing’s planes produced in 2009 are less reliable than those produced in
1980. The blame for software bugs belongs to nearly everyone. It belongs to the software
companies that rush products to market without adequately testing them. It belongs to the
software developers who do not understand the importance of detecting and removing faults
before customers experience them as failures. It belongs to a legal system that has given the
software developers a free pass on error-related damages. The blame also belongs to universities
that stress more on software development than testing.

1.2 TESTING PROCESS

Testing is an important aspect of the software development life cycle. It is basically the
process of testing the newly developed software, prior to its actual use. The program is
executed with desired input(s) and the output(s) is/are observed accordingly. The observed
output(s) is/are compared with expected output(s). If both are same, then the program is said
to be correct as per specifications, otherwise there is something wrong somewhere in the
program. Testing is a very expensive process and consumes one-third to one-half of the cost
of a typical development project. It is largely a systematic process but partly intuitive too.
Hence, good testing process entails much more than just executing a program a few times to
see its correctness.

Introduction 5

1.2.1 What is Software Testing?

Good testing entails more than just executing a program with desired input(s). Let’s consider
a program termed as ‘Minimum’ (see Figure 1.1) that reads a set of integers and prints the
smallest integer. We may execute this program using Turbo C complier with a number of inputs
and compare the expected output with the observed output as given in Table 1.1.

LINE NUMBER /*SOURCE CODE*/
#include<stdio.h>
#include<limits.h>
#include<conio.h>

1. void Minimum();

2. void main()

3. {

4. Minimum();

5. }

6. void Minimum()

7. {

8. int array[100];

9. int Number;

10. int i;

11. int tmpData;

12. int Minimum=INT MAX;

13. clrscr();

14. "printf("Enter the size of the array:");
15. scanf("%d",&Number);

16. for(i=0;i<Number;i++) {

17. printf("Enter A[%d]=",i+1);
18. scanf("%d",&tmpData);

19. tmpData=(tmpData<0)?-tmpData:tmpData;
20. array[i]=tmpData;

21. }

22. i=1;

23. while(i<Number-1) {

24. if(Minimum>array[i])

25. {

26. Minimum=array[i];
27. }

28. i++;

29. }

30. printf("Minimum = %d\n", Minimum);
31. getch();

32. }

Figure 1.1. Program ‘Minimum’ to find the smallest integer out of a set of integers

6 Software Testing

Table 1.1. Inputs and outputs of the program ‘Minimum’
Test Case Inputs Expected Observed Match?
Size Set of Integers Output Output
1. 6,9, 2,16, 19 2 2 Yes
2. 7 96, 11, 32,9, 39, 99, 91 9 9 Yes
3. 7 31, 36, 42, 16, 65, 76, 81 16 16 Yes
4. 6 28, 21, 36, 31, 30, 38 21 21 Yes
5. 6 106, 109, 88, 111, 114,116 88 88 Yes
6. 6 61, 69, 99, 31, 21, 69 21 21 Yes
7. 4 6,2,9,5 2 2 Yes
8. 4 99,21,7,49 7 7 Yes

There are 8 sets of inputs in Table 1.1. We may feel that these 8 test cases are sufficient for
such a trivial program. In all these test cases, the observed output is the same as the expected
output. We may also design similar test cases to show that the observed output is matched with
the expected output. There are many definitions of testing. A few of them are given below:

(1) Testing is the process of demonstrating that errors are not present.

(i1) The purpose of testing is to show that a program performs its intended functions
correctly.

(ii1) Testing is the process of establishing confidence that a program does what it is supposed
to do.

The philosophy of all three definitions is to demonstrate that the given program behaves as
per specifications. We may write 100 sets of inputs for the program ‘Minimum’ and show that
this program behaves as per specifications. However, all three definitions are not correct. They
describe almost the opposite of what testing should be viewed as. Forgetting the definitions for
the moment, whenever we want to test a program, we want to establish confidence about the
correctness of the program. Hence, our objective should not be to show that the program works
as per specifications. But, we should do testing with the assumption that there are faults and
our aim should be to remove these faults at the earliest. Thus, a more appropriate definition is
[MYERO4]: “Testing is the process of executing a program with the intent of finding
faults.” Human beings are normally goal oriented. Thus, establishment of a proper objective
is essential for the success of any project. If our objective is to show that a program has no
errors, then we shall sub-consciously work towards this objective. We shall intend to choose
those inputs that have a low probability of making a program fail as we have seen in Table 1.1,
where all inputs are purposely selected to show that the program is absolutely correct. On the
contrary, if our objective is to show that a program has errors, we may select those test cases
which have a higher probability of finding errors. We shall focus on weak and critical portions
of the program to find more errors. This type of testing will be more useful and meaningful.

We again consider the program ‘Minimum’ (given in Figure 1.1) and concentrate on some
typical and critical situations as discussed below:

(i) A wvery short list (of inputs) with the size of 1, 2, or 3 elements.
(1) An empty list i.e. of size 0.

Introduction 7

(iii) A list where the minimum element is the first or last element.

(iv) A list where the minimum element is negative.

(v) Alist where all elements are negative.

(vi) A list where some elements are real numbers.

(vii) A list where some elements are alphabetic characters.

(viii) A list with duplicate elements.

(ix) A list where one element has a value greater than the maximum permissible limit of an
integer.

We may find many similar situations which may be very challenging and risky for this
program and each such situation should be tested separately. In Table 1.1, we have selected
elements in every list to cover essentially the same situation: a list of moderate length,
containing all positive integers, where the minimum is somewhere in the middle. Table 1.2
gives us another view of the same program ‘Minimum’ and the results are astonishing to
everyone. It is clear from the outputs that the program has many failures.

Table 1.2. Some critical/typical situations of the program ‘Minimum’

S. No. Inputs Expected Observed Output Match?
Size Set of Integers Output

Case 1

A very short list A 1 90 90 2147483647 No

with size 1, 2 or 3 B 2 12,10 10 2147483647 No
cC 2 10, 12 10 2147483647 No
D 3 12, 14, 36 12 14 No
E 3 36, 14, 12 12 14 No
F 3 14, 12, 36 12 12 Yes

Case 2

An empty list, i.e. A O - Error 2147483647 No

of size O message

Case 3

A list where the A b5 10, 23, 34,81,97 10 23 No

minimumelement B 5 97,81,34,23,10 10 23 No

is the first or last

element

Case 4

A list where the A 4 10, -2, 5, 23 -2 2 No

minimum element B 4 5, -25, 20, 36 -25 20 No

is negative

Case 5

A list where all A 5 -23, -31, -45, -78 31 No

elements are -56, -78

negative B 5 -6, -203, -56, -203 56 No

-78, -2

Case 6

Alistwheresome A 5 12, 34.56, 6.9, 6.9 34 (The program No

elements are real 62.14, 19 does not take values

numbers forindex 3,4 and 5)
B 54 23569 2 858993460 (The No

program does not
take any array value)

(Contd.)

8 Software Testing

(Contd.)
S. No. Inputs Expected Observed Output Match?
Size Set of Integers Output
Case 7
Alistwheresome A b5 23,21, 26, 6,9 6 2 (The program does No
elements are not take any other
characters index value for 3, 4
and 5)
B 1l 2,3,4,9,6,5, 2 2147483647 No
11, 12, 14, 21, 22 (Program does not
take any other index
value)
Case 8
A list with dupli- A b5 3,4,6,9,6 3 4 No
cate elements B 5 13,6,6,9, 15 6 6 Yes
Case 9
A list where one A b 530, 23 1 No
element has a 4294967297, 23,
value greater than 46, 59

the maximum
permissible limit
of an integer

What are the possible reasons for so many failures shown in Table 1.3? We should read our
program ‘Minimum’ (given in Figure 1.1) very carefully to find reasons for so many failures.
The possible reasons of failures for all nine cases discussed in Table 1.2 are given in Table 1.3.
It is clear from Table 1.3 that this program suffers from serious design problems. Many
important issues are not handled properly and therefore, we get strange observed outputs. The
causes of getting these particular values of observed outputs are given in Table 1.4.

Table 1.3. Possible reasons of failures for all nine cases

S. No. Possible Reasons
Case 1
A very short list with size 1, 2 or 3 While finding the minimum, the base value of the index

and/or end value of the index of the usable array has not
been handled properly (see line numbers 22 and 23).

Case 2

An empty list i.e. of size O The program proceeds without checking the size of the
array (see line numbers 15 and 16).

Case 3

A list where the minimum elementis Same as for Case 1.
the first or last element

Case 4

A list where the minimum elementis ~ The program converts all negative integers into positive
negative integers (see line number 19).

Case 5

A list where all elements are negative ~ Same as for Case 4.

(Contd.)

Introduction 9

(Contd.)

S. No. Possible Reasons

Case 6

A list where some elements are real The program uses scanf() function to read the values. The

numbers scanf() has unpredictable behaviour for inputs not accord-
ing to the specified format. (See line numbers 15 and 18).

Case 7

A list where some elements are Same as for Case 6.

alphabetic characters

Case 8

A list with duplicate elements (a) Same as for Case 1.
(b) We are getting the correct result because the minimum
value is in the middle of the list and all values are positive.

Case 9

A list with one value greater than This is a hardware dependent problem. This is the case

the maximum permissible limit of an of the overflow of maximum permissible value of the

integer integer. In this example, 32 bits integers are used.

Table 1.4. Reasons for observed output

Cases Observed Output Remarks

1(a) 2147483647 The program has ignored the first and last values of the list. This is
1 (b) 2147483647 the maximum value of a 32 bit integer to which a variable minimum
1(c) 2147483647 is initialized.

1 (d) 14 The program has ignored the first and last values of the list. The

1 (e) 14 middle value is 14.

1(f) 12 The program has ignored the first and last value of the list.
Fortunately, the middle value is the minimum value and thus the
result is correct.

2 (a) 2147483647 The maximum value of a 32 bit integer to which a variable minimum
is initialized.

3(a) 23 The program has ignored the first and last values of the list. The

3(b) 23 value 23 is the minimum value in the remaining list.

4 (a) 2 The program has ignored the first and last values. It has also

4 (b) 20 converted negative integer(s) to positive integer(s).

5 (a) 31 Same as Case 4.

5 (b) 56

6 (a) 34 After getting ‘. of 34.56, the program was terminated and 34 was
displayed. However, the program has also ignored 12, being the
first index value.

6 (b) 858993460 Garbage value.

7 (a) 2 After getting ‘I’ in the second index value ‘21", the program
terminated abruptly and displayed 2.

7 (b) 2147483647 The input has a non digit value. The program displays the value to
which variable ‘minimum’ is initialized.

8(a) 4 The program has ignored the first and last index values. 4 is the
minimum in the remaining list.

8 (b) 6 Fortunately the result is correct although the first and last index
values are ignored.

9 (a) 1 The program displays this value due to the overflow of the 32 bit

signed integer data type used in the program.

10 Software Testing

Modifications in the program ‘Minimum’

Table 1.4 has given many reasons for undesired outputs. These reasons help us to identify the
causes of such failures. Some important reasons are given below:

®

(i)

(iii)

The program has ignored the first and last values of the list

The program is not handling the first and last values of the list properly. If we see the
line numbers 22 and 23 of the program, we will identify the causes. There are two
faults. Line number 22 “i = 1;” should be changed to “i= 0;” in order to handle the first
value of the list. Line number 23 “while (i<Number -1)” should be changed to “while
(i<=Number-1)” in order to handle the last value of the list.

The program proceeds without checking the size of the array

If we see line numbers 14 and 15 of the program, we will come to know that the program
is not checking the size of the array / list before searching for the minimum value. A list
cannot be of zero or negative size. If the user enters a negative or zero value of size or value
greater than the size of the array, an appropriate message should be displayed. Hence after
line number 15, the value of the size should be checked as under:

if (Number < = 0||[Number>100)
{
printf ("Invalid size specified");

}

If the size is greater than zero and lesser than 101, then the program should proceed
further, otherwise it should be terminated.

Program has converted negative values to positive values

Line number 19 is converting all negative values to positive values. That is why the
program is not able to handle negative values. We should delete this line to remove
this fault.

The modified program, based on the above three points is given in Figure 1.2. The nine
cases of Table 1.2 are executed on this modified program and the results are given in
Table 1.5.

LINE NUMBER /*SOURCE CODE*/

O 00 N O UT N W N -

#include<stdio.h>
#include<limits.h>
#include<conio.h>
void Minimum();
void main()

{
Minimum();
}
void Minimum()
{

int array[100];
int Number;

(Contd.)

Introduction 11

(Contd.)
10. int i;
11. int tmpData;
12. int Minimum=INT MAX;
13. clrser();
14. printf("Enter the size of the array:");
15. scanf("%d",&Number);
16. if(Number<=0||Number>100) {
17. printf("Invalid size specified");
18. }
19. else {
20. for(i=0;i<Number;i++) {
21. printf("Enter A[%d]=",i+1);
22. scanf("%d",&tmpData);
23. /*tmpData=(tmpData<0)?-tmpData:tmpData;*/
24. array[i]=tmpData;
25. }
26. i=0;
27. while(i<=Number-1) {
28. if(Minimum>array[i])
29. {
30. Minimum=array[i];
31. }
32. i++;
33. }
34. printf("Minimum = %d\n", Minimum);
35. }
36. getch();
37. }

Figure 1.2. Modified program ‘Minimum’ to find the smallest integer out of a set of integers

Table 1.5 gives us some encouraging results. Out of 9 cases, only 3 cases are not matched.
Six cases have been handled successfully by the modified program given in Figure 1.2. The
cases 6 and 7 are failed due to the scanf() function parsing problem. There are many ways to
handle this problem. We may design a program without using scanf() function at all.
However, scanf() is a very common function and all of us use it frequently. Whenever any
value is given using scanf() which is not as per specified format, scanf() behaves very
notoriously and gives strange results. It is advisable to display a warning message for the user
before using the scanf() function. The warning message may compel the user to enter values
in the specified format only. If the user does not do so, he/she may have to suffer the
consequences accordingly. The case 9 problem is due to the fixed maximal size of the
integers in the machine and the language used. This also has to be handled through a warning
message to the user. The further modified program based on these observations is given in
the Figure 1.3.

12 Software Testing

Table 1.5. Results of the modified program ‘Minimum’

Sr. No. Inputs Expected Observed Match?
Size Set of Integers Output Output

Case 1

A very short list with A 1 90 90 90 Yes

size1,20r3 B 2 12,10 10 10 Yes
c 2 10, 12 10 10 Yes
D 3 12, 14, 36 12 12 Yes
E 3 36, 14, 12 12 12 Yes
F 3 14, 12, 36 12 12 Yes

Case 2

An empty list, i.e. of A O - Error Error Yes

size 0 message message

Case 3

A list where the mini- 10, 23, 34, 81, 97 10 10 Yes

mum element is the 97,81,34,23,10 10 10 Yes

first or last element

Case 4

A list where the A 4 10, -2, 5, 23 -2 -2 Yes

minimum elementis g 4 5, -25, 20, 36 -25 -25 Yes

negative

Case 5

A list where all A b5 -23, -31, -45, -78 -78 Yes

elements are -56, -78

negative B 5 -6, -203, -56, -203 -203 Yes

-78, -2

Case 6

A list where some A b5 12, 34.56, 6.9, 6.9 34 No

elements are real 62.14, 19

numbers B 5.4 2,3,5,6,9 2 858993460 No

Case 7

Alist where someele- A 5 23,2l,26,6,9 6 2 No

ments are alphabetic

characters B 1l 2,3,4,9,6,5, 11, 2 858993460 No

12, 14, 21, 22

Case 8

A list with duplicate A 5 3,4,6,9, 6 3 3 Yes

elements B 5 13,6, 6,9, 15 6 6 Yes

Case 9

A list where one A b 530, 42949672 23 1 No

element has a value
greater than the maxi-
mum permissible limit
of an integer

97, 23, 46, 59

Introduction 13

LINE NUMBER /*SOURCE CODE*/
#include<stdio.h>
#include<limits.h>
#include<conio.h>

1. void Minimum();

2. void main()

3. {

4. Minimum();

5. }

6. void Minimum()

7. {

8. int array[100];

9. int Number;

10. int i;

11. int tmpData;

12. int Minimum=INT MAX;

13. clrscr();

14. printf("Enter the size of the array:");

15. scanf("%d",&Number);

16. if(Number<=0||Number>100) {

17. printf("Invalid size specified");

18. }

19. else {

20. printf("Warning: The data entered must be a valid integer and
must be between %d to %d, INT_MIN, INT_MAX\n");

21. for(i=0;i<Number;i++) {

22. printf("Enter A[%d]=",i+1);

23. scanf("%d",&tmpData);

24. /*tmpData=(tmpData<0)?-tmpData:tmpData;*/

25. array[i]=tmpData;

26. }

27. i=0;

28. while(i<=Number-1) {

29. if(Minimum>array[i])

30. {

31. Minimum=array[i];

32. }

33. i++;

34, }

35. printf("Minimum = %d\n", Minimum);

36. }

37. getch();

38. }

Figure 1.3. Final program ‘Minimum’ to find the smallest integer out of a set of integers

14 Software Testing

Our goal is to find critical situations of any program. Test cases shall be designed for every
critical situation in order to make the program fail in such situations. If it is not possible to remove
a fault then proper warning messages shall be given at proper places in the program. The aim of
the best testing person should be to fix most of the faults. This is possible only if our intention is
to show that the program does not work as per specifications. Hence, as given earlier, the most
appropriate definition is “Testing is the process of executing a program with the intent of
finding faults.” Testing never shows the absence of faults, but it shows that the faults are present
in the program.

1.2.2 Why Should We Test?

Software testing is a very expensive and critical activity; but releasing the software without
testing is definitely more expensive and dangerous. No one would like to do it. It is like
running a car without brakes. Hence testing is essential; but how much testing is required? Do
we have methods to measure it? Do we have techniques to quantify it? The answer is not easy.
All projects are different in nature and functionalities and a single yardstick may not be helpful
in all situations. It is a unique area with altogether different problems.

The programs are growing in size and complexity. The most common approach is ‘code and
fix* which is against the fundamental principles of software engineering. Watts S. Humphrey,
of Carnegie Mellon University [HUMPO02] conducted a multiyear study of 13000 programs
and concluded that “On average professional coders make 100 to 150 errors in every thousand
lines of code they write.” The C. Mann [MANNO2] used Humphrey’s figures on the business
operating system Windows NT 4 and gave some interesting observations: “Windows NT 4
code size is of 16 million lines. Thus, this would have been written with about two million
mistakes. Most would have been too small to have any effect, but some thousands would have
caused serious problems. Naturally, Microsoft exhaustively tested Windows NT 4 before
release, but in almost any phase of tests, they would have found less than half the defects. If
Microsoft had gone through four rounds of testing, an expensive and time consuming
procedure, the company would have found at least 15 out of 16 bugs. This means five defects
per thousand lines of code are still remaining. This is very low. But the software would still
have (as per study) as many as 80,000 defects.”

The basic issue of this discussion is that we cannot release a software system without
adequate testing. The study results may not be universally applicable but, at least, they give us
some idea about the depth and seriousness of the problem. When to release the software is a
very important decision. Economics generally plays an important role. We shall try to find
more errors in the early phases of software development. The cost of removal of such errors
will be very reasonable as compared to those errors which we may find in the later phases of
software development. The cost to fix errors increases drastically from the specification phase
to the test phase and finally to the maintenance phase as shown in Figure 1.4.

If an error is found and fixed in the specification and analysis phase, it hardly costs anything.
We may term this as ‘1 unit of cost’ for fixing an error during specifications and analysis
phase. The same error, if propagated to design, may cost 10 units and if, further propagated to
coding, may cost 100 units. If it is detected and fixed during the testing phase, it may lead to
1000 units of cost. If it could not be detected even during testing and is found by the customer
after release, the cost becomes very high. We may not be able to predict the cost of failure for

Introduction 15

a life critical system’s software. The world has seen many failures and these failures have been
costly to the software companies.

The fact is that we are releasing software that is full of errors, even after doing sufficient
testing. No software would ever be released by its developers if they are asked to certify that
the software is free of errors. Testing, therefore, continues to the point where it is considered
that the cost of testing processes significantly outweighs the returns.

1000 units
cost

100 units
cost

10 units
cost

Cost to fix an error

1 units
cost

Specification Design ~ Coding Testing Release
and analysis

Time when error is detected ——

Figure 1.4. Phase wise cost of fixing an error

1.2.3 Who Should We Do the Testing?

Testing a software system may not be the responsibility of a single person. Actually, it is a
team work and the size of the team is dependent on the complexity, criticality and functionality
of the software under test. The software developers should have a reduced role in testing, if
possible. The concern here is that the developers are intimately involved with the development
of the software and thus it is very difficult for them to point out errors from their own creations.
Beizer [BE1790] explains this situation effectively when he states, “There is a myth that if we
were really good at programming, there would be no bugs to catch. If we could really
concentrate; if everyone used structured programming, top down design, decision figures; if
programs were written in SQUISH; if we had the right silver bullets, then there would be no
bugs. So goes the myth. There are bugs, the myth says because we are bad at what we do; and
if we are bad at it, we should feel guilty about it. Therefore, testing and test design amount to
an admission of failures, which instils a goodly dose of guilt. The tedium of testing is just
punishment for our errors. Punishment for what? For being human? Guilt for what? For not
achieving human perfection? For not being able to distinguish between what another developer
thinks and what he says? For not being telepathic? For not solving human communication
problems that have been kicked around by philosophers and theologians for 40 centuries.”

16 Software Testing

The testing persons must be cautious, curious, critical but non-judgmental and good
communicators. One part of their job is to ask questions that the developers might not be able
to ask themselves or are awkward, irritating, insulting or even threatening to the developers.
Some of the questions are [BENT04]:

(i) How is the software?

(i1) How good is it?

(ii1)) How do you know that it works? What evidence do you have?
(iv) What are the critical areas?

(v) What are the weak areas and why?

(vi) What are serious design issues?

(vii) What do you feel about the complexity of the source code?

The testing persons use the software as heavily as an expert user on the customer side. User
testing almost invariably recruits too many novice users because they are available and the
software must be usable by them. The problem is that the novices do not have domain
knowledge that the expert users have and may not recognize that something is wrong.

Many companies have made a distinction between development and testing phases by
making different people responsible for each phase. This has an additional advantage. Faced
with the opportunity of testing someone else’s software, our professional pride will demand
that we achieve success. Success in testing is finding errors. We will therefore strive to reveal
any errors present in the software. In other words, our ego would have been harnessed to the
testing process, in a very positive way, in a way, which would be virtually impossible, had we
been testing our own software [NORMS9]. Therefore, most of the times, the testing persons
are different from development persons for the overall benefit of the system. The developers
provide guidelines during testing; however, the overall responsibility is owned by the persons
who are involved in testing. Roles of the persons involved during development and testing are
given in Table 1.6.

Table 1.6. Persons and their roles during development and testing
S. No. Persons Roles

Provides funding, gives requirements, approves changes and
some test results.

2. Project Manager Plans and manages the project.
Designs, codes and builds the software; participates in source

1. Customer

3 Software Developer(s) code reviews and testing; fixes bugs, defects and shortcomings.

4. Testing co-ordinator(s) Creates test plang and test specllflcanns based on the require-
ments and functional and technical documents.

5. Testing person(s) Executes the tests and documents results.

1.2.4 What Should We Test?

Is it possible to test the program for all possible valid and invalid inputs? The answer is always
negative due to a large number of inputs. We consider a simple example where a program has
two 8 bit integers as inputs. Total combinations of inputs are 28 x 28 If only one second is

Introduction 17

required (possible only with automated testing) to execute one set of inputs, it may take 18
hours to test all possible combinations of inputs. Here, invalid test cases are not considered
which may also require a substantial amount of time. In practice, inputs are more than two and
the size is also more than 8 bits. What will happen when inputs are real and imaginary
numbers? We may wish to go for complete testing of the program, which is neither feasible
nor possible. This situation has made this area very challenging where the million dollar
question is, “How to choose a reasonable number of test cases out of a large pool of test
cases?” Researchers are working very hard to find the answer to this question. Many testing
techniques attempt to provide answers to this question in their own ways. However, we do not
have a standard yardstick for the selection of test cases.

We all know the importance of this area and expect some drastic solutions in the future. We
also know that every project is a new project with new expectations, conditions and constraints.
What is the bottom line for testing? At least, we may wish to touch this bottom line, which may
incorporate the following:

(i) Execute every statement of the program at least once.
(i) Execute all possible paths of the program at least once.
(iii) Execute every exit of the branch statement at least once.

This bottom line is also not easily achievable. Consider the following piece of source code:

1. if (x> 0)
2.4
3.a=a+b;
4.}

5. if (y>10)
6. {

7. c=c+d;
8.}

This code can be represented graphically as:

Line Numbers Symbol for representation
1 A
2,3,4 B
5 (¢
6,7,8 D
End E

18 Software Testing

The possible paths are: ACE, ABCE, ACDE and ABCDE. However, if we choose x =9 and
y = 15, all statements are covered. Hence only one test case is sufficient for 100% statement
coverage by traversing only one path ABCDE. Therefore, 100% statement coverage may not
be sufficient, even though that may be difficult to achieve in real life programs.

Myers [MYERO4] has given an example in his book entitled “The art of software testing”
which shows that the number of paths is too large to test. He considered a control flow graph
(as given in Figure 1.5) of a 10 to 20 statement program with ‘DO Loop’ that iterates up to 20
times. Within ‘DO Loop’ there are many nested ‘IF’ statements. The assumption is that all
decisions in the program are independent of each other. The number of unique paths is nothing
but the number of unique ways to move from point X to point Y. Myers further stated that
executing every statement of the program at least once may seem to be a reasonable goal.
However many portions of the program may be missed with this type of criteria.

Loop iterates Y
up to 20 times X

Figure 1.5. Control flow graph of a 10 to 20 statement program [MYERO4]

“The total number of paths is approximately 10 or 100 trillion. It is computed from
504+ 59+ . 5!, where 5 is the number of independent paths of the control flow graph.
If we write, execute and verify a test case every five minutes, it would take approximately one
billion years to try every path. If we are 300 times faster, completing a test case one per second,
we could complete the job in 3.2 million years.” This is an extreme situation; however, in
reality, all decisions are not independent. Hence, the total paths may be less than the calculated
paths. But real programs are much more complex and larger in size. Hence, ‘testing all paths’
is very difficult if not impossible to achieve.

We may like to test a program for all possible valid and invalid inputs and furthermore, we
may also like to execute all possible paths; but practically, it is quite difficult. Every exit
condition of a branch statement is similarly difficult to test due to a large number of such
conditions. We require effective planning, strategies and sufficient resources even to target the
minimum possible bottom line. We should also check the program for very large numbers,
very small numbers, numbers that are close to each other, negative numbers, some extreme
cases, characters, special letters, symbols and some strange cases.

Introduction 19

1.3 SOME TERMINOLOGIES

Some terminologies are discussed in this section, which are inter-related and confusing but
commonly used in the area of software testing.

1.3.1 Program and Software

Both terms are used interchangeably, although they are quite different. The software is the
superset of the program(s). It consists of one or many program(s), documentation manuals and
operating procedure manuals. These components are shown in Figure 1.6.

Program(s)

Software Documentation manuals

Operating procedure manuals
Software = Program(s) + Documentation + Operations

manuals procedure manuals

Figure 1.6. Components of the software

The program is a combination of source code and object code. Every phase of the software
development life cycle requires preparation of a few documentation manuals which are shown
in Figure 1.7. These are very helpful for development and maintenance activities.

Requirements ca.pturmg Design Implementation Testing
and analysis
Software requirement Software design Source Test suite
and specification document code listing
Context diagram ER diagrams Cross reference Test results
| | listing
Data flow diagrams Class diagrams

Use cases Sequence diagrams

Use case diagram

Figure 1.7. Documentation manuals

20 Software Testing

Operating procedure manuals consist of instructions to set up, install, use and to maintain
the software. The list of operating procedure manuals / documents is given in Figure 1.8.

User manuals Operational manuals
System overview Installation guide
Reference guide System administration

| guide

Beginner’s guide |
tutorial Maintenance guide

Terminology and
help manual

Figure 1.8. Operating system manuals

1.3.2 Verification and Validation

These terms are used interchangeably and some of us may also feel that both are synonyms.
The Institute of Electrical and Electronics Engineers (IEEE) has given definitions which are
largely accepted by the software testing community. Verification is related to static testing
which is performed manually. We only inspect and review the document. However, validation
is dynamic in nature and requires the execution of the program.

Verification: As per IEEE [IEEE01], “It is the process of evaluating the system or component
to determine whether the products of a given development phase satisfy the conditions imposed
at the start of that phase.” We apply verification activities from the early phases of the software
development and check / review the documents generated after the completion of each phase.
Hence, it is the process of reviewing the requirement document, design document, source code
and other related documents of the project. This is manual testing and involves only looking at
the documents in order to ensure what comes out is what we expected to get.

Validation: As per IEEE [IEEEO1], “It is the process of evaluating a system or component
during or at the end of development process to determine whether it satisfies the specified
requirements.” It requires the actual execution of the program. It is dynamic testing and
requires a computer for execution of the program. Here, we experience failures and identify
the causes of such failures.

Hence, testing includes both verification and validation. Thus

Testing = Verification + Validation
Both are essential and complementary activities of software testing. If effective verification is
carried out, it may minimize the need of validation and more number of errors may be detected
in the early phases of the software development. Unfortunately, testing is primarily validation
oriented.

Introduction 21
1.3.3 Fault, Error, Bug and Failure

All terms are used interchangeably although error, mistake and defect are synonyms in software
testing terminology. When we make an error during coding, we call this a ‘bug’. Hence, error /
mistake / defect in coding is called a bug.

A fault is the representation of an error where representation is the mode of expression such
as data flow diagrams, ER diagrams, source code, use cases, etc. If fault is in the source code,
we call it a bug.

A failure is the result of execution of a fault and is dynamic in nature. When the expected
output does not match with the observed output, we experience a failure. The program has to
execute for a failure to occur. A fault may lead to many failures. A particular fault may cause
different failures depending on the inputs to the program.

1.3.4 Test, Test Case and Test Suite

Test and test case terms are synonyms and may be used interchangeably. A test case consists
of inputs given to the program and its expected outputs. Inputs may also contain pre-
condition(s) (circumstances that hold prior to test case execution), if any, and actual inputs
identified by some testing methods. Expected output may contain post-condition(s)
(circumstances after the execution of a test case), if any, and outputs which may come as a
result when selected inputs are given to the software. Every test case will have a unique
identification number. When we do testing, we set desire pre-condition(s), if any, given
selected inputs to the program and note the observed output(s). We compare the observed
output(s) with the expected output(s) and if they are the same, the test case is successful. If
they are different, that is the failure condition with selected input(s) and this should be recorded
properly in order to find the cause of failure. A good test case has a high probability of showing
a failure condition. Hence, test case designers should identify weak areas of the program and
design test cases accordingly. The template for a typical test case is given in Table 1.7.

Table 1.7. Test case template

Test Case Identification Number:

Part | (Before Execution)
Purpose of test case:
Pre-condition(s):
(optional)
Input(s) :
Expected Output(s) :
Post-condition(s) :
Written by :
Date of design :

NoorwDbd R

Part Il (After Execution)
1. Output(s) :

Post-condition(s) :
(optional)

(Contd.)

22 Software Testing

(Contd.)
Part Il (After Execution)
3. Pass / fail :
4. If fails, any possible reason of failure (optional) :
5. Suggestions (optional)
6. Run by :
7. Date of suggestion :

The set of test cases is called a test suite. We may have a test suite of all test cases, test suite
of all successful test cases and test suite of all unsuccessful test cases. Any combination of test
cases will generate a test suite. All test suites should be preserved as we preserve source code
and other documents. They are equally valuable and useful for the purpose of maintenance of
the software. Sometimes test suite of unsuccessful test cases gives very important information
because these are the test cases which have made the program fail in the past.

1.3.5 Deliverables and Milestones

Different deliverables are generated during various phases of the software development. The
examples are source code, Software Requirements and Specification document (SRS),
Software Design Document (SDD), Installation guide, user reference manual, etc.

The milestones are the events that are used to ascertain the status of the project. For instance,
finalization of SRS is a milestone; completion of SDD is another milestone. The milestones
are essential for monitoring and planning the progress of the software development.

1.3.6 Alpha, Beta and Acceptance Testing

Customers may use the software in different and strange ways. Their involvement in testing
may help to understand their minds and may force developers to make necessary changes in
the software. These three terms are related to the customer’s involvement in testing with
different meanings.

Acceptance Testing: This term is used when the software is developed for a specific customer.
The customer is involved during acceptance testing. He/she may design adhoc test cases or
well-planned test cases and execute them to see the correctness of the software. This type of
testing is called acceptance testing and may be carried out for a few weeks or months. The
discovered errors are fixed and modified and then the software is delivered to the customer.

Alpha and Beta Testing: These terms are used when the software is developed as a product
for anonymous customers. Therefore, acceptance testing is not possible. Some potential
customers are identified to test the product. The alpha tests are conducted at the developer’s
site by the customer. These tests are conducted in a controlled environment and may start when
the formal testing process is near completion. The beta tests are conducted by potential
customers at their sites. Unlike alpha testing, the developer is not present here. It is carried out
in an uncontrolled real life environment by many potential customers. Customers are expected
to report failures, if any, to the company. These failure reports are studied by the developers
and appropriate changes are made in the software. Beta tests have shown their advantages in
the past and releasing a beta version of the software to the potential customer has become a

Introduction 23

common practice. The company gets the feedback of many potential customers without
making any payment. The other good thing is that the reputation of the company is not at stake
even if many failures are encountered.

1.3.7 Quality and Reliability

Software reliability is one of the important factors of software quality. Other factors are
understandability, completeness, portability, consistency, maintainability, usability, efficiency,
etc. These quality factors are known as non-functional requirements for a software system.

Software reliability is defined as “the probability of failure free operation for a specified time
in a specified environment” [ANSI91]. Although software reliability is defined as a probabilistic
function and comes with the notion of time, it is not a direct function of time. The software does
not wear out like hardware during the software development life cycle. There is no aging concept
in software and it will change only when we intentionally change or upgrade the software.

Software quality determines how well the software is designed (quality of design), and how
well the software conforms to that design (quality of conformance).

Some software practitioners also feel that quality and reliability is the same thing. If we are
testing a program till it is stable, reliable and dependable, we are assuring a high quality
product. Unfortunately, that is not necessarily true. Reliability is just one part of quality. To
produce a good quality product, a software tester must verify and validate throughout the
software development process.

1.3.8 Testing, Quality Assurance and Quality Control

Most of us feel that these terms are similar and may be used interchangeably. This creates
confusion about the purpose of the testing team and Quality Assurance (QA) team. As we have
seen in the previous section (1.2.1), the purpose of testing is to find faults and find them in the
early phases of software development. We remove faults and ensure the correctness of removal
and also minimize the effect of change on other parts of the software.

The purpose of QA activity is to enforce standards and techniques to improve the
development process and prevent the previous faults from ever occurring. A good QA activity
enforces good software engineering practices which help to produce good quality software.
The QA group monitors and guides throughout the software development life cycle. This is a
defect prevention technique and concentrates on the process of the software development.
Examples are reviews, audits, etc.

Quality control attempts to build a software system and test it thoroughly. If failures are
experienced, it removes the cause of failures and ensures the correctness of removal. It
concentrates on specific products rather than processes as in the case of QA. This is a defect
detection and correction activity which is usually done after the completion of the software
development. An example is software testing at various levels.

1.3.9 Static and Dynamic Testing

Static testing refers to testing activities without executing the source code. All verification
activities like inspections, walkthroughs, reviews, etc. come under this category of testing.

24 Software Testing

This, if started in the early phases of the software development, gives good results at a very
reasonable cost. Dynamic testing refers to executing the source code and seeing how it
performs with specific inputs. All validation activities come in this category where execution
of the program is essential.

1.3.10 Testing and Debugging

The purpose of testing is to find faults and find them as early as possible. When we find any
such fault, the process used to determine the cause of this fault and to remove it is known as
debugging. These are related activities and are carried out sequentially.

1.4 LIMITATIONS OF TESTING

We want to test everything before giving the software to the customers. This ‘everything’ is
very illusive and has many meanings. What do we understand when we say ‘everything’? We
may expect one, two or all of the following when we refer to ‘everything’:

(i) Execute every statement of the program
(i1)) Execute every true and false condition

(i) Execute every condition of a decision node
(iv) Execute every possible path

(v) Execute the program with all valid inputs
(vi) Execute the program with all invalid inputs

These six objectives are impossible to achieve due to time and resource constraints as
discussed in section 1.2.4. We may achieve a few of them. If we do any compromise, we may
miss a bug. Input domain is too large to test and there are too many paths in any program.
Hence ‘Everything’ is impossible and we have to settle for ‘less than everything’ in real life
situations. Some of the other issues which further make the situation more complex and
complicated are given in the subsequent sub-sections.

1.4.1 Errors in the Software Requirement and Specification Document

These issues are very difficult to identify. If 6+9=20 is written in the SRS document and our
program prints output as 20 when 6 and 9 are inputs, is it a bug? If the program prints output
as 15, when inputs are 6 and 9, how can we interpret? In this case, the actual output is so
obvious that interpretation may not require time to take a correct decision. But in most of the
situations, outputs are not so obvious. Some requirements may be misunderstood and some
may be missed. Ambiguities of natural languages (like English) may give more than one
meaning to a sentence and make life difficult for testers. Hence, problems in writing good SRS
have also become one of the problems of software testing.

1.4.2 Logical Bugs

How do we handle logical bugs? An interesting example is given in Figure 1.9. In this function,
statement “d = c++;” given in line number 4 is incorrect. As per requirements, it should have

Introduction 25

been “d =++c”; but due to a typographical mistake and ignorance, “d = c++;” has been written.
This is a logical error and cannot be detected by the compiler. Here, confusion is due to the use
of prefix and postfix operators. A prefix operator first adds 1 to the operand and then the result
is assigned to the variable on the left. On the other hand, a postfix operator first assigns the
value to the variable on the left and then increment the operand [BALAO7]. In this function the
postfix operator is used instead of the prefix operator. The function returns the integer value of
‘flag’. If this function is executed on a 16 bit computer, the valid integer range for input ‘c’ is
—32768 to 32767. Hence, there are 65536 possible inputs to this program. We may not like to
create 65536 test cases. After all, who will execute those cases, if at all created, one fine day?
Which input values are to be selected for the detection of this bug? Ten test cases have been
given in Table 1.8 and none of them could detect this bug. How many test cases out of possible
65536 test cases will find this bug? What are the chances that we will select all those test cases
or any one of them in order to find this bug? Only two test cases out of 65536 can detect this
bug and are given in Table 1.9. This example shows the impossibility of testing ‘everything’.
If a small function can create so many problems, we may appreciate the problems of real life
large and complex programs. Logical bugs are extremely difficult to handle and become one
of the serious concerns of testing.

Software testing has inherent difficulties which is making it impossible to completely test
the software. It can only show that bugs are in the software but it cannot show that bugs are
not in the software at all. With all the limitations, software testing still is mandatory and a very
useful filter to detect errors, which may further be removed. However we all know that good
testing cannot make the software better, only good coding with software engineering principles
makes the software better. However, good testing techniques may detect a good number of
errors and their removal may improve the quality of the software.

. int funct1 (int c)
{
. int d, flag;
. d=c ++;// should be d = ++ c; as per requirements
. if (d <20000)
flag=1;
else
flag = 0;
. return (flag);

}

SoO®NO O AN

—_

Figure 1.9. A typical example

Table 1.8. Test cases for function of Figure 1.9
Test case Input ¢ Expected output Actual output
1. 0 1 1
2. 1 1 1
3. 20000 0 0
4. 30000 0 0

(Contd.)

26 Software Testing

(Contd.)
Test case Input ¢ Expected output Actual output
5. -10000 1 1
6. -20000 1 1
7. -1 1 1
8. -16000 1 1
9. 27000 0 0
10. 32000 0 0

Table 1.9. Typical test cases where outputs are different

Input ¢ Expected output Actual output
19999 0 1
32767 Integer out of specified range 0

1.4.3 Difficult to Measure the Progress of Testing

How to measure the progress of testing? Normally we count various things to measure and
interpret these counts. Is experiencing more failures good news or bad news? The answer could
be either. A higher number of failures may indicate that testing was thorough and very few
faults remain in the software. Or, it may be treated as an indication of poor quality of the
software with lots of faults; even though many have been exposed, lots of them still remain.
These counts may be illusive and may not help us to measure the progress of testing.

This difficulty of measuring the progress of testing leads to another issue i.e. when to stop
testing and release the software to the customer(s)? This is a sensitive decision and should be
based on the status of testing. However, in the absence of testing standards, ‘economics’, ‘time
to market’ and ‘gut feeling’ have become important issues over technical considerations for the
release of any software. Many models are available with serious limitations and are not
universally acceptable.

Software companies are facing serious challenges in testing their products and these challenges
are growing bigger as the software grows more complex. Hence, we should recognize the
complex nature of testing and take it seriously. The gap between standards and practices should
be reduced in order to test the software effectively which may result in to good quality
software.

1.5 THE V SHAPED SOFTWARE LIFE CYCLE MODEL

The V shaped model is the modified form of the waterfall model with a special focus on testing
activities. The waterfall model allows us to start testing activities after the completion of the
implementation phase. This was popular when testing was primarily validation oriented. Now,
there is a shift in testing activities from validation to verification where we want to review /
inspect every activity of the software development life cycle. We want to involve the testing
persons from the requirement analysis and specification phase itself. They will review the SRS
document and identify the weak areas, critical areas, ambiguous areas and misrepresented
areas. This will improve the quality of the SRS document and may further minimize the errors.

Introduction 27

These verification activities are treated as error preventive exercises and are applied at
requirements analysis and specification phase, high level design phase, detailed design phase
and implementation phase. We not only want to improve the quality of the end products at all
phases by reviews, inspections and walkthroughs, but also want to design test cases and test
plans during these phases. The designing of test cases after requirement analysis and
specification phase, high level design phase, detailed design phase and implementation phase
may help us to improve the quality of the final product and also reduce the cost and development
time.

1.5.1 Graphical Representation

The shape of the model is like the English letter ‘V’ and it emphasizes testing activities in
every phase. There are two parts of the software development life cycle in this model i.e.
development and testing and are shown in Figure 1.10. We want to carry out development and
testing activities in parallel and this model helps us to do the same in order to reduce time and
cost.

Requirement analysis @ .| Acceptance

and specification Testing

N /

High level design f--------==--------- > System testing

4, \ /

S
0 ;
2 . . @ Unit and
0)00 Deicllzel clEarn | A > Integration testing X
@,
Y

Implementation

@ Acceptance test case design and planning
System test case design and planning

@ Unit and integration test case design and planning
Figure 1.10. V shaped software development life cycle model

1.5.2 Relationship of Development and Testing Parts

The development part consists of the first four phases (i.e. requirements analysis and specification,
high level design, detailed design and implementation) whereas the testing part has three phases
(i.e. unit and integration testing, system testing and acceptance testing). The model establishes
the relationship between the development and testing parts. The acceptance test case design and
planning activities should be conducted along with the software requirements and specifications

28 Software Testing

phase. Similarly the system test case design and planning activities should be carried out along with
high level design phase. Unit and integration test case design and planning activities should be
carried out along with the detailed design phase. The development work is to be done by the
development team and testing is to be done by the testing team simultaneously. After the completion
of implementation, we will have the required test cases for every phase of testing. The only
remaining work is to execute these test cases and observe the responses of the outcome of the
execution. This model brings the quality into the development of our products. The encouragement
of writing test cases and test plans in the earlier phases of the software development life cycle is the
real strength of this model. We require more resources to implement this model as compared to the
waterfall model. This model also suffers from many disadvantages of the waterfall model like non-
availability of a working version of the product until late in the life cycle, difficulty in accommodating
any change, etc. This model has also limited applications in today’s interactive software
processes.

MULTIPLE CHOICE QUESTIONS

Note: Select the most appropriate answer for the following questions.

1.1 What is software testing?
(a) Itis the process of demonstrating that errors are not present.
(b) TItis the process of establishing confidence that a program does what it is supposed
to do.
(c) It is the process of executing a program with the intent of finding errors.
(d) It is the process of showing the correctness of a program.
1.2 Why should testing be done?
(a) To ensure the correctness of a program
(b) To find errors in a program
(¢c) To establish the reliability of a program
(d) To certify the effectiveness of a program
1.3 Which phase consumes maximum effort to fix an error?
(a) Requirements analysis and specifications
(b) Design phase
(¢) Coding phase
(d) Feasibility study phase
1.4 Which objective is most difficult to achieve?
(a) Execute every statement of a program at least once
(b) Execute every branch statement of a program at least once
(¢) Execute every path of a program at least once
(d) Execute every condition of a branch statement of a program at least once
1.5 Software errors during coding are known as:
(a) Bugs
(b) Defects
(c) Failures
(d) Mistakes

Introduction 29

1.6 The cost of fixing an error is:
(a) More in requirements analysis and specification phase than coding phase
(b) More in coding phase than requirements analysis and specification phase
(c) Same in all phases of a software development life cycle
(d) Negligible in all phases
1.7 Beta testing is done by:
(a) Developers
(b) Testers
(c) Potential customers
(d) Requirements writers
1.8 Alpha testing is carried out at the:
(a) Developer’s site in a controlled environment
(b) Developer’s site in a free environment
(¢) Customer’s site in a controlled environment
(d) Customer’s site in a free environment
1.9 The purpose of acceptance testing is:
(a) To perform testing from the business perspective
(b) To find faults in the software
(c) To test the software with associated hardware
(d) To perform feasibility study
1.10 Acceptance testing is done by:
(a) Developers
(b) Customers
(c) Testers
(d) All of the above
1.11 Program is:
(a) Subset of software
(b) Superset of software
(c) Set of software
(d) Union of software
1.12 Which is not an infrastructure software?
(a) Compiler
(b) Operating system
(c) Testing tools
(d) Result Management Software
1.13 Software should have:
(a) Program + operating system + compiler
(b) Set of programs + operating system
(c¢) Programs + documentation + operating procedures
(d) None of the above
1.14 Concepts of software testing are applicable to:
(a) Procedural programming languages
(b) Object oriented programming languages
(¢) ‘C’, ‘C++’ and Java programming languages
(d) All of the above

30 Software Testing

1.15 CASE Tool is:
(a) Computer Aided Software Engineering Tool
(b) Component Aided Software Engineering Tool
(c) Constructive Aided Software Engineering Tool
(d) Complete Analysis Software Enterprise Tool
1.16 One fault may lead to:
(a) One failure
(b) Many failures
(¢) No failure
(d) All of the above
1.17 Test suite of a program is a:
(a) Set of test cases
(b) Set of inputs with pre-conditions
(¢) Set of outputs with post-conditions
(d) Set of testing strategies
1.18 Alpha and Beta testing techniques are related to:
(a) Unit testing
(b) Integration testing
(c) System testing
(d) Testing by Customer
1.19 Testing a software is primarily focused on:
(a) Verification activities only
(b) Validation activities only
(c) Verification and validation activities
(d) None of the above
1.20 Testing a software with real data in real environment is known as:
(a) Alpha testing
(b) Beta testing
(c) System testing
(d) Integration testing
1.21 Verification activities are:
(a) Performed manually
(b) Related to reviewing the documents and source code
(¢) Known as static testing
(d) All of the above
1.22 Validation activities are:
(a) Dynamic activities and require program execution
(b) Related to inspecting the source code
(c) Related to static testing
(d) Related to source code design and documentation
1.23 When the output of a program is different from the expected output, it is known as:
(a) A fault
(b) An error
(c) A failure
(d) A mistake

Introduction 31

1.24 Software testing activities should be started:
(a) After the completion of source code
(b) After the completion of design phase
(c) As early as possible in the software development life cycle
(d) After the completion of software requirements and analysis phase
1.25 Software testing activities are important in:
(a) Every phase of the software development life cycle
(b) The last few phases of the software development life cycle
(c) The software requirements and analysis phase
(d) All of the above
1.26 The focus of acceptance testing is:
(a) To find faults
(b) To ensure correctness of software
(c) To test integration related issues
(d) To test from the user’s perspective
1.27 A reliable software is one which is:
(a) Liked by its users
(b) Delivered on time and with budget
(c) Unlikely to cause failures
(d) Very easy to use
1.28 When to stop testing and release the software to customers should be decided on the basis
of:
(a) Market conditions
(b) Budget and availability of resources
(¢) Test metrics
(d) Capabilities of the testing persons
1.29 What are the good software testing practices?
(a) Involve testing persons as early as possible in the software development life
cycle
(b) Apply effective verification techniques
(c) Enforce inspections and reviews after every phase of the software development
life cycle
(d) All of the above
1.30 What is a test case?
(a) Input(s), expected output(s), pre-condition(s) and post-condition(s)
(b) Steps of execution
(c) A list of activities which can be tested
(d) None of the above
1.31 You cannot control what you cannot :
(a) Define
(b) Measure
(c) Improve
(d) Change
1.32 What is the major benefit of verifications in the early phases of the software development
life cycle?

32 Software Testing

(a) It identifies changes in the SRS
(b) It reduces defect multiplication
(c) It allows involvement of testing persons
(d) It improves discipline in the various development activities
1.33 Behavioural specifications are required for:
(a) Modelling
(b) Verification
(c) Validation
(d) Testing
1.34 Which, in general, is the least expected skill of a testing person?
(a) Diplomatic
(b) Reliable
(¢) Having good attention to detail
(d) Good developer
1.35 Debugging of a program is
(a) The process of executing the program
(b) The process of identifying a fault and removing it from the program
(c) The process of experiencing a failure
(d) The process of improving the quality of the program
1.36 All validation activities come under the category of:
(a) Dynamic testing
(b) Static testing
(¢c) Source code design
(d) None of the above
1.37 All verification activities come under the category of:
(a) Dynamic testing
(b) Static testing
(c) Source code design
(d) None of the above
1.38 Which is not a factor of software quality?
(a) Reliability
(b) Portability
(c) Efficiency
(d) Functionality
1.39 Which is the most important factor of software quality?
(a) Reliability
(b) Understandability
(c) Efficiency
(d) Consistency
1.40 Quality assurance activities concentrate on
(a) Software design
(b) Software performance
(c) Software products
(d) Software processes
1.41 Which is not the quality of a testing person?

Introduction 33

(a) Cautious
(b) Curious
(c) Judgmental
(d) Critical
1.42 What should be the best possible objective for testing?
(a) Execute every statement at least once
(b) Execute every path at least once
(c) Execute every branch statement at least once
(d) Execute every condition of a branch statement at least once
1.43 Which is not a user manual?
(a) Reference guide
(b) Beginner’s guide
(c) Sequence diagrams
(d) System overview
1.44 Which is not a documentation manual?
(a) SRS document
(b) SDD document
(c) Source code
(d) Installation guide
1.45 Which is not the limitation of testing?
(a) Difficult to measure the progress of testing
(b) Availability of testing tools
(¢) Input domain is too large to test
(d) Too many paths in the program
1.46 How much percentage of cost is generally consumed in software testing with reference
to software development cost?

(@) 10-20
(b) 40-50
(c) 80-90
(d) 70-80

1.47 How much testing is enough?
(a) Not easy to decide
(b) Depends on complexity and criticality
(c) Depends on abilities of testing persons
(d) Depends on maturity of developers
1.48 If an expected output is not specified then:
(a) We cannot execute the test case
(b) We may not be able to repeat the test
(c) We may not be able to decide if the test has passed or failed
(d) We may not be able to automate the testing activity
1.49 Which of the following is a reason for a software failure?
(a) Testing fault
(b) Software Fault
(c) Design Fault
(d) Requirement Fault

34 Software Testing

1.50 Why is it impossible to test a program completely?

1.1
1.2
1.3
1.4

1.5

1.6
1.7

1.8

1.9

(a) Input domain is too large to test

(b) Good testers are not available

(c) Efficient testing tools are not available
(d) None of the above

EXERCISES

What is software testing? Is it possible to do complete testing?

What are the limitations of testing? Discuss with the help of examples.

Describe some software failures. How can we minimize such failures?

Why should we test software? What are the associated risks, if we release it without
testing?

Who should do the testing of the software? Is there any international standard?

What should we test? Discuss the areas which should be focused on during testing.
There are two limitations in software testing:

(1) Input domain is too large to test

(i) Too many paths in the program

Justify these limitations with the help of suitable examples.

What are logical bugs? How are they different from syntax bugs? How can we handle
logical bugs effectively?

Write a program to add two digit integers. Can we test the program completely? If so,
how many test cases are required? Assume that each test case can be executed and
analyzed in one second; how long would it take to execute all test cases?

1.10 What is the testing process? How can it be implemented? What are its limitations?
1.11 Will exhaustive testing (even if possible for a very small program) guarantee that the

program is 100% correct?

1.12 What are the objectives of testing? Why is the psychology of the testing person impo-

rtant?

1.13 Software does not break or wear out with time (unlike hardware). Why does software

fail even after a good amount of testing?

1.14 What is the tester’s role in software development?
1.15 When to stop testing is a very crucial decision. What factors should be considered for

taking such a decision?

1.16 Differentiate between

(i) Alpha and Beta testing

(i1)) Development and regression testing

(iii) Fault, bug and failure

(iv) Verification and validation

(v) Static and dynamic testing

(vi) Program and software

(vii) Test, Test case and Test Suite

(viii)Deliverable and milestones

(ix) Quality and Reliability

(x) Testing, Quality Assurance and Quality Control

Introduction 35

1.17 Explain a typical test case template. What are the reasons for documenting test cases?

1.18 With the help of a suitable example, illustrate why exhaustive testing is not possible.

1.19 Define a test case. What are the objectives of test case design? Discuss the various
steps involved.

1.20 What is the role of Quality Assurance in software development? How is it different
from Quality Control?

1.21 What is software crisis? Was Y2K a software crisis?

1.22 What are the components of a software system? Discuss how a software differs from
a program.

1.23 Differentiate between generic and customized software products. Which one has a
large market share and why?

1.24 What is a software failure? Discuss the conditions of a failure. Mere presence of faults
may not lead to failures. Explain with the help of an example.

1.25 Verification and validation are used interchangeably many times. Define these terms
and establish their relationship with testing.

1.26 Testing is not a single phase in the software development life cycle. Explain and
comment.

1.27 Discuss the advantages of testing with reference to the software product.

1.28 Discuss the significance of the V-shaped software life cycle model and also establish
the relationship between its development and testing parts.

1.29 What is the relationship of the V-shaped software life cycle model with the waterfall
model? How is acceptance testing related to requirement analysis and specification
phase?

1.30 Differentiate between the V-shaped software life cycle model and the waterfall model.

FURTHER READING

The classic book on software testing which was the only book of note for years is:
G.J. Myers, “The Art of Software Testing”, John Wiley and Sons, Inc., 1977.
One of the first articles that describes the changes in growth of software testing is:
D. Gelperin, B. Hetzel, “The Growth of Software Testing”, Communications of
the ACM, vol. 31, no. 6, June 1988.
Read the record report of Prof. J.L. Lions, Chairman Inquiry Board and Director
General of ESA prepared on 19th July, 1996 for Identification of the Causes of Failure
of Ariane 5:
J.L. Lions, “Ariane 5 Flight 501 Failure”, http://esamultimedia.esa.int/docs/esa-
x-1819eng.pdf, July 19, Paris, 1996.
Many good books and articles have been written on the causes of software failure,
including:
S.A. Sherer, ‘Software Failure Risk”, Plenum, 1992.
P. Neumann, “Computer Related Risks”, Addison Wesley, 1995.
S. Flowers, “Software Failure: Management Failure”, John Wiley and Sons,
1996.

36 Software Testing

C. Jones, “Patterns of Software Systems Failure and Success”, International
Thomson Computer Press, 1996.
Ron Patton, “Software Testing”, Techmedia, Delhi, India, 2002.
K. Ewusi-Mensah’s, “Software Development Failures”, MIT Press, 2003.
R.N. Charette, “Why Software Fails?”, IEEE Spectrum, September 2005.
A very good article that shows why removing bugs is difficult and why testing is a
constant challenge may be found in:
J A. Whittaker, “What Is Software Testing? And Why Is It So Hard?”, IEEE
Software, January/February, 2000.
An interesting article of Mann about bugs of Windows XP may be found at:
Charles C. Mann, “Why Software is so bad”, Technology Review, www.techno-
logyreview.com, 2002.
The report presented by RTI for the U.S. Department of Commerce’s National Institute
of Standards and Technology (NIST) is a very good study that quantifies the problem
of software errors. The study states “Software errors cost U.S. economy $59.5 billion
annually.” The detailed report can be found at:
www.nist.gov/public_affairs/update/upd20020624.htm#Economics
M.P. Gallaher and B.M. Kropp, “Economic Impacts of Inadequate Infrastructure
for Software Testing”, NSIT Report, May 2002.
Some of the useful facts about software may be found in:
R. L. Glass, “Facts and Fallacies of Software Engineering”, Pearson Education,
2003.
Further list of software failures may be read from:
http://www.sereferences.com/software-failure-list.php
A concise list of 28 best practices for software testing arranged in order of implementation
is summarized in:
R. Chillarege, “Software Testing Best Practices”, IBM Research Technical Report,
1999.
Bret Pettichord’s Software testing hotlist can be checked from:
http://www.i0.com/~wazmo/qa/
The online Forum on “Risks to the Public in Computers and Related Systems” is
available at http://catless.ncl.ac.uk/risks.

Functional Testing

Software testing is very important but is an effort-consuming activity. A large number of test
cases are possible and some of them may make the software fail. As we all know, if observed
behaviour of the software is different from the expected behaviour, we treat this as a failure
condition. Failure is a dynamic condition that always occurs after the execution of the software.
Everyone is in search of such test cases which may make the software fail and every technique
attempts to find ways to design those test cases which have a higher probability of showing a
failure.

Functional testing techniques attempt to design those test cases which have a higher probability
of making a software fail. These techniques also attempt to test every possible functionality of
the software. Test cases are designed on the basis of functionality and the internal structure of the
program is completely ignored. Observed output(s) is (are) compared with expected output(s) for
selected input(s) with preconditions, if any. The software is treated as a black box and therefore,
it is also known as black box testing as shown in Figure 2.1.

N ° ° °
oo "o Software °
o under °
«*° test ® o
o
Input Domain Output Domain

Figure 2.1. Functional (Black Box) testing

Every dot in the input domain represents a set of inputs and every dot in the output domain
represents a set of outputs. Every set of input(s) will have a corresponding set of output(s). The
test cases are designed on the basis of user requirements without considering the internal
structure of the program. This black box knowledge is sufficient to design a good number of
test cases. Many activities are performed in real life with only black box knowledge like

38 Software Testing

driving a car, using a cell phone, operating a computer, etc. In functional testing techniques,
execution of a program is essential and hence these testing techniques come under the category
of ‘validation’. Here, both valid and invalid inputs are chosen to see the observed behaviour of
the program. These techniques can be used at all levels of software testing like unit, integration,
system and acceptance testing. They also help the tester to design efficient and effective test
cases to find faults in the software.

2.1 BOUNDARY VALUE ANALYSIS

This is a simple but popular functional testing technique. Here, we concentrate on input values
and design test cases with input values that are on or close to boundary values. Experience has
shown that such test cases have a higher probability of detecting a fault in the software.
Suppose there is a program ‘Square’ which takes ‘x’ as an input and prints the square of ‘x’as
output. The range of ‘x’ is from 1 to 100. One possibility is to give all values from 1 to 100
one by one to the program and see the observed behaviour. We have to execute this program
100 times to check every input value. In boundary value analysis, we select values on or close
to boundaries and all input values may have one of the following:

(1) Minimum value

(i) Just above minimum value
(ii1) Maximum value

(iv) Just below maximum value
(v) Nominal (Average) value

These values are shown in Figure 2.2 for the program ‘Square’.

oo . b

12 50 99 100

Figure 2.2. Five values for input ‘x’ of ‘Square’ program

These five values (1, 2, 50, 99 and 100) are selected on the basis of boundary value analysis
and give reasonable confidence about the correctness of the program. There is no need to select
all 100 inputs and execute the program one by one for all 100 inputs. The number of inputs
selected by this technique is 4n + 1 where ‘n’ is the number of inputs. One nominal value is
selected which may represent all values which are neither close to boundary nor on the
boundary. Test cases for ‘Square’ program are given in Table 2.1.

Table 2.1. Test cases for the ‘Square’ program

Test Case Input x Expected output
1. 1 1

2. 2 4

3. 50 2500

4. 99 9801

5. 100 10000

Functional Testing 39
Consider a program ‘Addition’ with two input values x and y and it gives the addition of x
and y as an output. The range of both input values are given as:
100 <x <300
200 <y <400

The selected values for x and y are given in Figure 2.3.

o S

100 101 200 299 300
+—. L '—F y
200 201 300 399 400

Figure 2.3. Selected values for input values x and y

The ‘x’ and ‘y’ inputs are required for the execution of the program. The input domain of
this program ‘Addition’ is shown in Figure 2.4. Any point within the inner rectangle is a
legitimate input to the program.

(0, 500)

(0, 400) -

(0, 300) -

Y (0, 200)—

(0, 100)

| | |
(0,00 (100,0) (200,0) (300,0) (400,0)

X

Figure 2.4. Valid input domain for the program ‘Addition’

We also consider ‘single fault’ assumption theory of reliability which says that failures are
rarely the result of the simultaneous occurrence of two (or more) faults. Normally, one fault is
responsible for one failure. With this theory in mind, we select one input value on boundary
(minimum), just above boundary (minimum *), just below boundary (maximum -), on boundary

40 Software Testing

(maximum), nominal (average) and other n-1 input values as nominal values. The inputs are
shown graphically in Figure 2.5 and the test cases for ‘Addition’ program are given in Table
2.2.

(0, 500)

(0, 400) —

(0, 300) o0

Y (0,200)

(0, 100) —

I I I
(0,0) (100,0) (200,0) (300,0) (400,0)

X

Figure 2.5. Graphical representation of inputs

Table 2.2. Test cases for the program ‘Addition’
Test Case X y Expected Output
1. 100 300 400
2. 101 300 401
3. 200 300 500
4., 299 300 599
5. 300 300 600
6. 200 200 400
7. 200 201 401
8. 200 300 500
9. 200 399 599
10. 200 400 600

In Table 2.2, two test cases are common (3 and 8), hence one must be selected. This
technique generates 9 test cases where all inputs have valid values. Each dot of the Figure 2.5
represents a test case and inner rectangle is the domain of legitimate input values. Thus, for a
program of ‘n’ variables, boundary value analysis yields 4n + 1 test cases.

Example 2.1: Consider a program for the determination of the largest amongst three numbers.
Its input is a triple of positive integers (say X,y and z) and values are from interval [1, 300].
Design the boundary value test cases.

Solution: The boundary value test cases are given in Table 2.3.

Functional Testing 41

Table 2.3. Boundary value test cases to find the largest among three numbers
Test Case X y z Expected output
1. 1 150 150 150
2. 2 150 150 150
3. 150 150 150 150
4. 299 150 150 299
5. 300 150 150 300
6. 150 1 150 150
7. 150 2 150 150
8. 150 299 150 299
9. 150 300 150 300
10. 150 150 1 150
11. 150 150 2 150
12. 150 150 299 299
13. 150 150 300 300

Example 2.2: Consider a program for the determination of division of a student based on the
marks in three subjects. Its input is a triple of positive integers (say mark1, mark2, and mark3)
and values are from interval [0, 100].

The division is calculated according to the following rules:

Marks Obtained
(Average)

75 - 100
60 - 74
50 - 59
40 - 49
0-39

Division

First Division with distinction
First division

Second division

Third division
Fail

Total marks obtained are the average of marks obtained in the three subjects i.e.

The program output may have one of the following words:

Average = (markl + mark 2 + mark3) /3

[Fail, Third Division, Second Division, First Division, First Division with Distinction]
Design the boundary value test cases.

Solution: The boundary value test cases are given in Table 2.4.

Table 2.4. Boundary value test cases for the program determining the division of a student

Test Case markl mark2 mark3 Expected Output
1. 0 50 50 Fail

2. 1 50 50 Fail

3. 50 50 50 Second Division
4. 99 50 50 First Division

5. 100 50 50 First Division

(Contd.)

42 Software Testing

(Contd.)

Test Case markl mark2 mark3 Expected Output
6. 50 0 50 Fail

7. 50 1 50 Fail

8. 50 99 50 First Division

9. 50 100 50 First Division

10. 50 50 0 Fail

11. 50 50 1 Fail

12. 50 50 99 First Division

13. 50 50 100 First Division

Example 2.3: Consider a program for classification of a triangle. Its input is a triple of
positive integers (say a, b, ¢) and the input parameters are greater than zero and less than or
equal to 100.

The triangle is classified according to the following rules:

Right angled triangle: ¢ = a? + b or a2 = b? + ¢? or b> = ¢? + a?
Obtuse angled triangle: ¢? > a? + b% or a> > b? + ¢? or b? > ¢ + a2
Acute angled triangle: ¢ < a? + b? and a> <b? + ¢? and b* < ¢* + a’
The program output may have one of the following words:

[Acute angled triangle, Obtuse angled triangle, Right angled triangle, Invalid triangle]
Design the boundary value test cases.

Solution: The boundary value analysis test cases are given in Table 2.5.

Table 2.5. Boundary value test cases for triangle classification program

Test Case a b c Expected Output

1. 1 50 50 Acute angled triangle
2. 2 50 50 Acute angled triangle
3. 50 50 50 Acute angled triangle
4, 99 50 50 Obtuse angled triangle
5. 100 50 50 Invalid triangle

6. 50 1 50 Acute angled triangle
7. 50 2 50 Acute angled triangle
8. 50 99 50 Obtuse angled triangle
9. 50 100 50 Invalid triangle

10. 50 50 1 Acute angled triangle
11. 50 50 2 Acute angled triangle
12. 50 50 99 Obtuse angled triangle
13. 50 50 100 Invalid triangle

Example 2.4: Consider a program for determining the day of the week. Its input is a triple of
day, month and year with the values in the range

1 < month <12
1 < day <31
1900 < year < 2058

Functional Testing 43

The possible outputs would be the day of the week or invalid date. Design the boundary

value test cases.

Solution: The boundary value test cases are given in Table 2.6.

Table 2.6. Boundary value test cases for the program determining the day of the week
Test Case month day year Expected Output
1. 1 15 1979 Monday

2. 2 15 1979 Thursday

3. 6 15 1979 Friday

4. 11 15 1979 Thursday

5. 12 15 1979 Saturday

6. 6 1 1979 Friday

7. 6 2 1979 Saturday

8. 6 30 1979 Saturday

9. 6 31 1979 Invalid Date
10. 6 15 1900 Friday

11. 6 15 1901 Saturday
12. 6 15 2057 Friday

13. 6 15 2058 Saturday

2.1.1 Robustness Testing

This is the extension of boundary value analysis. Here, we also select invalid values and see
the responses of the program. Invalid values are also important to check the behaviour of the
program. Hence, two additional states are added i.e. just below minimum value (minimum
value) and just above maximum value (maximum value *). We want to go beyond the
legitimate domain of input values. This extended form of boundary value analysis is known as
robustness testing. The inputs are shown graphically in Figure 2.6 and the test cases for the
program ‘Addition’ are given in Table 2.7. There are four additional test cases which are
outside the legitimate input domain. Thus, the total test cases in robustness testing are 6n + 1,
where ‘n’ is the number of input values. All input values may have one of the following

values:

(1) Minimum value

(i) Just above minimum value
(iii) Just below minimum value
(iv) Just above maximum value
(v) Just below maximum value
(vi) Maximum value

(vii) Nominal (Average) value

44 Software Testing

(0.500)
°
(0.400) — ®
°
(0.300) | YY) (Y Y3
°
Y (0.200) — .
°
(0.100)
I I I

(0,0) (100,0) (200,0) (300,0) (400,0)

X

Figure 2.6. Graphical representation of inputs

Table 2.7. Robustness test cases for two input values x and y

Test Case X y Expected Output
1. 99 300 Invalid Input
2. 100 300 400

3. 101 300 401

4. 200 300 500

5. 299 300 599

6. 300 300 600

7. 301 300 Invalid Input
8. 200 199 Invalid Input
9. 200 200 400

10. 200 201 401

11. 200 399 599

12. 200 400 600

13. 200 401 Invalid Input

2.1.2 Worst-Case Testing

This is a special form of boundary value analysis where we don’t consider the ‘single fault’
assumption theory of reliability. Now, failures are also due to occurrence of more than one
fault simultaneously. The implication of this concept in boundary value analysis is that all
input values may have one of the following:

(i) Minimum value
(i) Just above minimum value

Functional Testing 45

(iii) Just below maximum value
(iv) Maximum value
(v) Nominal (Average) value

The restriction of one input value at any of the above mentioned values and other input
values must be at nominal is not valid in worst-case testing. This will increase the number of
test cases from 4n + 1 test cases to 5" test cases, where ‘n’ is the number of input values. The
inputs for ‘Addition’ program are shown graphically in Figure 2.7. The program ‘Addition’
will have 52 = 25 test cases and these test cases are given in Table 2.8.

(0, 500)

(0, 400)

(0, 300) —

Y (0, 200)

(0, 100) —

I I I
(0,0) (100,0) (200,00 (300,0) (400,0)

X

Figure 2.7. Graphical representation of inputs

Table 2.8. Worst test cases for the program ‘Addition’
Test Case X y Expected Output
1. 100 200 300
2. 100 201 301
3. 100 300 400
4. 100 399 499
5. 100 400 500
6. 101 200 301
7. 101 201 302
8. 101 300 401
9. 101 399 500
10. 101 400 501
11. 200 200 400
12. 200 201 401
13. 200 300 500
14. 200 399 599

(Contd.)

46 Software Testing

(Contd.)
Test Case X y Expected Output
15. 200 400 600
16. 299 200 499
17. 299 201 500
18. 299 300 599
19. 299 399 698
20. 299 400 699
21. 300 200 500
22. 300 201 501
23. 300 300 600
24, 300 399 699
25. 300 400 700

This is a more comprehensive technique and boundary value test cases are proper sub-sets
of worst case test cases. This requires more effort and is recommended in situations where
failure of the program is extremely critical and costly [JORGO7].

2.1.3 Robust Worst-Case Testing

In robustness testing, we add two more states i.e. just below minimum value (minimum value")
and just above maximum value (maximum value®). We also give invalid inputs and observe
the behaviour of the program. A program should be able to handle invalid input values,
otherwise it may fail and give unexpected output values. There are seven states (minimum -,
minimum, minimum *, nominal, maximum -, maximum, maximum *) and a total of 7" test
cases will be generated. This will be the largest set of test cases and requires the maximum
effort to generate such test cases. The inputs for the program ‘Addition’ are graphically shown
in Figure 2.8. The program ‘Addition’ will have 7% = 49 test cases and these test cases are
shown in Table 2.9.

(0, 500)
(YY) ° 'YX,
(0, 400) ° °
° °
(0, 300) ° °
° °
Y (0,200) ° °
eoeo ° Y

(0, 100)

I I I

(0,0) (100,0) (200,0) (300,0) (400,0)

X

Figure 2.8. Graphical representation of inputs

Functional Testing 47

Table 2.9. Robust worst test cases for the program ‘Addition’

Test Case X y Expected Output
1. 99 199 Invalid input
2. 99 200 Invalid input
3. 99 201 Invalid input
4. 99 300 Invalid input
5. 99 399 Invalid input
6. 99 400 Invalid input
7. 99 401 Invalid input
8. 100 199 Invalid input
9. 100 200 300

10. 100 201 301

11. 100 300 400

12. 100 399 499

13. 100 400 500

14. 100 401 Invalid input
15. 101 199 Invalid input
16. 101 200 301

17. 101 201 302

18. 101 300 401

19. 101 399 500

20. 101 400 501

21. 101 401 Invalid input
22. 200 199 Invalid input
23. 200 200 400

24, 200 201 401

25. 200 300 500

26. 200 399 599

27. 200 400 600

28. 200 401 Invalid input
29. 299 199 Invalid input
30. 299 200 499

31. 299 201 500

32. 299 300 599

33. 299 399 698

34, 299 400 699

35. 299 401 Invalid input
36. 300 199 Invalid input
37. 300 200 500

38. 300 201 501

39. 300 300 600

40. 300 399 699

41. 300 400 700

42, 300 401 Invalid input
43. 301 199 Invalid input
44, 301 200 Invalid input
45, 301 201 Invalid input
46. 301 300 Invalid input
47. 301 399 Invalid input
48. 301 400 Invalid input
49, 301 401 Invalid input

48 Software Testing
2.1.4 Applicability

Boundary value analysis is a simple technique and may prove to be effective when used
correctly. Here, input values should be independent which restricts its applicability in many
programs. This technique does not make sense for Boolean variables where input values are
TRUE and FALSE only, and no choice is available for nominal values, just above boundary
values, just below boundary values, etc. This technique can significantly reduce the number of
test cases and is suited to programs in which input values are within ranges or within sets. This
is equally applicable at the unit, integration, system and acceptance test levels. All we want is
input values where boundaries can be identified from the requirements.

Example 2.5: Consider the program for the determination of the largest amongst three
numbers as explained in example 2.1. Design the robust test cases and worst case test cases for
this program.

Solution: The robust test cases and worst test cases are given in Table 2.10 and Table 2.11
respectively.

Table 2.10. Robust test cases for the program to find the largest among three numbers
Test Case X y z Expected output
1. 0 150 150 Invalid input
2. 1 150 150 150
3. 2 150 150 150
4. 150 150 150 150
5. 299 150 150 299
6. 300 150 150 300
7. 301 150 150 Invalid input
8. 150 0 150 Invalid input
9. 150 1 150 150
10. 150 2 150 150
11. 150 299 150 299
12. 150 300 150 300
13. 150 301 150 Invalid input
14. 150 150 0 Invalid input
15. 150 150 1 150
16. 150 150 2 150
17. 150 150 299 299
18. 150 150 300 300
19. 150 150 301 Invalid input

Table 2.11. Worst case test cases for the program to find the largest among three numbers
Test Case X y z Expected output
1. 1 1 1 1
2. 1 1 2 2
3. 1 1 150 150

(Contd.)

Functional Testing 49

(Contd.)

Test Case X y z Expected output
4, 1 1 299 299
5. 1 1 300 300
6. 1 2 1 2

7. 1 2 2 2

8. 1 2 150 150
9. 1 2 299 299
10. 1 2 300 300
11. 1 150 1 150
12. 1 150 2 150
13. 1 150 150 150
14. 1 150 299 299
15. 1 150 300 300
16. 1 299 1 299
17. 1 299 2 299
18. 1 299 150 299
19. 1 299 299 299
20. 1 299 300 300
21. 1 300 1 300
22. 1 300 2 300
23. 1 300 150 300
24, 1 300 299 300
25. 1 300 300 300
26. 2 1 1 2
27. 2 1 2 2
28. 2 1 150 150
29. 2 1 299 299
30. 2 1 300 300
31. 2 2 1 2
32. 2 2 2 2
33. 2 2 150 150
34. 2 2 299 299
35. 2 2 300 300
36. 2 150 1 150
37. 2 150 2 150
38. 2 150 150 150
39. 2 150 299 299
40. 2 150 300 300
41. 2 299 1 299
42, 2 299 2 299
43. 2 299 150 299
44, 2 299 299 299
45, 2 299 300 300
46. 2 300 1 300
47. 2 300 2 300
48. 2 300 150 300
49, 2 300 299 300

(Contd.)

50 Software Testing

(Contd.)
Test Case X y z Expected output
50. 2 300 300 300
51. 150 1 1 150
52. 150 1 2 150
53. 150 1 150 150
54, 150 1 299 299
55. 150 1 300 300
56. 150 2 1 150
57. 150 2 2 150
58. 150 2 150 150
59. 150 2 299 299
60. 150 2 300 300
61. 150 150 1 150
62. 150 150 2 150
63. 150 150 150 150
64. 150 150 299 299
65. 150 150 300 300
66. 150 299 1 299
67. 150 299 2 299
68. 150 299 150 299
69. 150 299 299 299
70. 150 299 300 300
71. 150 300 1 300
72. 150 300 2 300
73. 150 300 150 300
74. 150 300 299 300
75. 150 300 300 300
76. 299 1 1 299
77. 299 1 2 299
78. 299 1 150 299
79. 299 1 299 299
80. 299 1 300 300
81. 299 2 1 299
82. 299 2 2 299
83. 299 2 150 299
84. 299 2 299 299
85. 299 2 300 300
86. 299 150 1 299
87. 299 150 2 299
88. 299 150 150 299
89. 299 150 299 299
90. 299 150 300 300
91. 299 299 1 299
92. 299 299 2 299
93. 299 299 150 299
94. 299 299 299 299
95. 299 299 300 300

(Contd.)

Functional Testing 51

(Contd.)
Test Case X y z Expected output
96. 299 300 1 300
97. 299 300 2 300
98. 299 300 150 300
99. 299 300 299 300
100. 299 300 300 300
101. 300 1 1 300
102. 300 1 2 300
103. 300 1 150 300
104. 300 1 299 300
105. 300 1 300 300
106. 300 2 1 300
107. 300 2 2 300
108. 300 2 150 300
1009. 300 2 299 300
110. 300 2 300 300
111. 300 150 1 300
112. 300 150 2 300
113. 300 150 150 300
114. 300 150 299 300
115. 300 150 300 300
116. 300 299 1 300
117. 300 299 2 300
118. 300 299 150 300
1109. 300 299 299 300
120. 300 299 300 300
121. 300 300 1 300
122. 300 300 2 300
123. 300 300 150 300
124. 300 300 299 300
125. 300 300 300 300

Example 2.6: Consider the program for the determination of division of a student based on
marks obtained in three subjects as explained in example 2.2. Design the robust test cases and
worst case test cases for this program.

Solution: The robust test cases and worst test cases are given in Table 2.12 and Table 2.13

respectively.

Table 2.12. Robust test cases for the program determining the division of a student

Test Case markl mark2 mark3 Expected Output
1. -1 50 50 Invalid marks

2. 0 50 50 Fail

3. 1 50 50 Fail

4, 50 50 50 Second Division
5. 99 50 50 First Division

6. 100 50 50 First Division

(Contd.)

52 Software Testing

(Contd.)

Test Case markl mark2 mark3 Expected Output
7. 101 50 50 Invalid marks
8. 50 -1 50 Invalid marks
9. 50 0 50 Fail

10. 50 1 50 Fail

11. 50 99 50 First Division
12. 50 100 50 First Division
13. 50 101 50 Invalid marks
14. 50 50 -1 Invalid marks
15. 50 50 0 Fail

16. 50 50 1 Fail

17. 50 50 99 First Division
18. 50 50 100 First Division
19. 50 50 101 Invalid Marks

Table 2.13. Worst case test cases for the program for determining the division of a student

Test Case markl mark2 mark3 Expected Output
1 0 0 0 Fail

2. 0 0 1 Fail

3. 0 0 50 Fail

4, 0 0 99 Fail

5. 0 0 100 Fail

6. 0 1 0 Fail

7. 0 1 1 Fail

8. 0 1 50 Fail

9. 0 1 99 Fail

10. 0 1 100 Fail

11. 0 50 0 Fail

12. 0 50 1 Fail

13. 0 50 50 Fail

14. 0 50 99 Third division
15. 0 50 100 Second division
16. 0 99 0 Fail

17. 0 99 1 Fail

18. 0 99 50 Third division
19. 0 99 99 First division
20. 0 99 100 First division
21. 0 100 0 Fail

22. 0 100 1 Fail

23. 0 100 50 Second division
24. 0 100 99 First division
25. 0 100 100 First division
26. 1 0 0 Fail

27. 1 0 1 Fail

28. 1 0 50 Fail

29. 1 0 99 Fail

30. 1 0 100 Fail

31. 1 1 0 Fail

32. 1 1 1 Fail

(Contd.)

Functional Testing 53

(Contd.)
Test Case markl mark2 mark3 Expected Output
33. 1 1 50 Fail
34, 1 1 99 Fail
35. 1 1 100 Fail
36. 1 50 0 Fail
37. 1 50 1 Fail
38. 1 50 50 Fail
39. 1 50 99 Second division
40. 1 50 100 Second division
41. 1 99 0 Fail
42. 1 99 1 Fail
43. 1 99 50 Second division
44, 1 99 99 First division
45, 1 99 100 First division
46. 1 100 0 Fail
47. 1 100 1 Fail
48. 1 100 50 Second division
49, 1 100 99 First division
50. 1 100 100 First division
51. 50 0 0 Fail
52. 50 0 1 Fail
53. 50 0 50 Fail
54. 50 0 99 Third division
55. 50 0 100 Second division
56. 50 1 0 Fail
57. 50 1 1 Fail
58. 50 1 50 Fail
59. 50 1 99 Second division
60. 50 1 100 Second division
61. 50 50 0 Fail
62. 50 50 1 Fail
63. 50 50 50 Second division
64. 50 50 99 First division
65. 50 50 100 First division
66. 50 99 0 Third division
67. 50 99 1 Second division
68. 50 99 50 First division
69. 50 99 99 First division with distinction
70. 50 99 100 First division with distinction
71. 50 100 0 Second division
72. 50 100 1 Second division
73. 50 100 50 First division
74. 50 100 99 First division
75. 50 100 100 First division with distinction
76. 99 0 0 Fail
77. 99 0 1 Fail
78. 99 0 50 Third division
79. 99 0 99 First division
80. 99 0 100 First division
81. 99 1 0 Fail
82. 99 1 1 Fail

(Contd.)

54 Software Testing

(Contd.)
Test Case mark1 mark2 mark3 Expected Output
83. 99 1 50 Second division
84. 99 1 99 First division
85. 99 1 100 First division
86. 99 50 0 Third division
87. 99 50 1 Second division
88. 99 50 50 First division
89. 99 50 99 First division with distinction
90. 99 50 100 First division with distinction
91. 99 99 0 First division
92. 99 99 1 First division
93. 99 99 50 First division with distinction
94. 99 99 99 First division with distinction
95. 99 99 100 First division with distinction
96. 99 100 0 First division
97. 99 100 1 First division
98. 99 100 50 First division with distinction
99. 99 100 99 First division with distinction
100. 99 100 100 First division with distinction
101. 100 0 0 Fail
102. 100 0 1 Fail
103. 100 0 50 Second division
104. 100 0 99 First division
105. 100 0 100 First division
106. 100 1 0 Fail
107. 100 1 1 Fail
108. 100 1 50 Second division
109. 100 1 99 First division
110. 100 1 100 First division
111. 100 50 0 Second division
112. 100 50 1 Second division
113. 100 50 50 First division
114. 100 50 99 First division with distinction
115. 100 50 100 First division with distinction
116. 100 99 0 First division
117. 100 99 1 First division
118. 100 99 50 First division with distinction
119. 100 99 99 First division wit distinction
120. 100 99 100 First division with distinction
121. 100 100 0 First division
122. 100 100 1 First division
123. 100 100 50 First division with distinction
124. 100 100 99 First division with distinction
125. 100 100 100 First division with distinction

Example 2.7: Consider the program for classification of a triangle in example 2.3. Generate
robust and worst test cases for this program.

Solution: Robust test cases and worst test cases are given in Table 2.14 and Table 2.15
respectively.

Functional Testing 55

Table 2.14. Robust test cases for the triangle classification program

Test Case a b c Expected Output

1. 0 50 50 Input values out of range
2. 1 50 50 Acute angled triangle

3. 2 50 50 Acute angled triangle

4, 50 50 50 Acute angled triangle

5. 99 50 50 Obtuse angled triangle
6. 100 50 50 Invalid triangle

7. 101 50 50 Input values out of range
8. 50 0 50 Input values out of range
9. 50 1 50 Acute angled triangle

10. 50 2 50 Acute angled triangle

11. 50 99 50 Obtuse angled triangle
12. 50 100 50 Invalid triangle

13. 50 101 50 Input values out of range
14. 50 50 0 Input values out of range
15. 50 50 1 Acute angled triangle

16. 50 50 2 Acute angled triangle

17. 50 50 99 Obtuse angled triangle
18. 50 50 100 Invalid triangle

19. 50 50 101 Input values out of range

Table 2.15. Worst case test cases for the triangle classification program

Test Case a c Expected Output

1. 1 1 Acute angled triangle
2. 1 1 2 Invalid triangle

3. 1 1 50 Invalid triangle

4, 1 1 99 Invalid triangle

5. 1 1 100 Invalid triangle

6. 1 2 1 Invalid triangle

7. 1 2 2 Acute angled triangle
8. 1 2 50 Invalid triangle

9. 1 2 99 Invalid triangle

10. 1 2 100 Invalid triangle

11. 1 50 1 Invalid triangle

12. 1 50 2 Invalid triangle

13. 1 50 50 Acute angled triangle
14. 1 50 99 Invalid triangle

15. 1 50 100 Invalid triangle

16. 1 99 1 Invalid triangle

17. 1 99 2 Invalid triangle

(Contd.)

56 Software Testing

(Contd.)
Test Case a b c Expected Output
18. 1 99 50 Invalid triangle
19. 1 99 99 Acute angled triangle
20. 1 99 100 Invalid triangle
21. 1 100 1 Invalid triangle
22. 1 100 2 Invalid triangle
23. 1 100 50 Invalid triangle
24, 1 100 99 Invalid triangle
25. 1 100 100 Acute angled triangle
26. 2 1 1 Invalid triangle
27. 2 1 2 Acute angled triangle
28. 2 1 50 Invalid triangle
29. 2 1 99 Invalid triangle
30. 2 1 100 Invalid triangle
31. 2 2 1 Acute angled triangle
32. 2 2 2 Acute angled triangle
33. 2 2 50 Invalid triangle
34. 2 2 99 Invalid triangle
35. 2 2 100 Invalid triangle
36. 2 50 1 Invalid triangle
37. 2 50 2 Invalid triangle
38. 2 50 50 Acute angled triangle
39. 2 50 99 Invalid triangle
40. 2 50 100 Invalid triangle
41. 2 99 1 Invalid triangle
42. 2 99 2 Invalid triangle
43. 2 99 50 Invalid triangle
44, 2 99 99 Acute angled
45, 2 99 100 Obtuse angled triangle
46. 2 100 1 Invalid triangle
47. 2 100 2 Invalid triangle
48. 2 100 50 Invalid triangle
49. 2 100 99 Obtuse angled triangle
50. 2 100 100 Acute angled triangle
51. 50 1 1 Invalid triangle
52. 50 1 2 Invalid triangle
53. 50 1 50 Acute angled triangle
54, 50 1 99 Invalid triangle
55. 50 1 100 Invalid triangle
56. 50 2 1 Invalid triangle

(Contd.)

Functional Testing 57

(Contd.)
Test Case a b Expected Output
57. 50 2 2 Invalid triangle
58. 50 2 50 Acute angled triangle
59. 50 2 99 Invalid triangle
60. 50 2 100 Invalid triangle
61. 50 50 1 Acute angled triangle
62. 50 50 2 Acute angled triangle
63. 50 50 50 Acute angled triangle
64. 50 50 99 Obtuse angled triangle
65. 50 50 100 Invalid triangle
66. 50 99 1 Invalid triangle
67. 50 99 2 Invalid triangle
68. 50 99 50 Obtuse angled triangle
69. 50 99 99 Acute angled triangle
70. 50 99 100 Acute angled triangle
71. 50 100 1 Invalid triangle
72. 50 100 2 Invalid triangle
73. 50 100 50 Invalid triangle
74. 50 100 99 Acute angled triangle
75. 50 100 100 Acute angled triangle
76. 99 1 1 Invalid triangle
77. 99 1 2 Invalid triangle
78. 99 1 50 Invalid triangle
79. 99 1 99 Acute angled triangle
80. 99 1 100 Invalid triangle
81. 99 2 1 Invalid triangle
82. 99 2 2 Invalid triangle
83. 99 2 50 Invalid triangle
84. 99 2 99 Acute angled triangle
85. 99 2 100 Obtuse angled triangle
86. 99 50 1 Invalid triangle
87. 99 50 2 Invalid triangle
88. 99 50 50 Obtuse angled triangle
89. 99 50 99 Acute angled triangle
90. 99 50 100 Acute angled triangle
91. 99 99 1 Acute angled triangle
92. 99 99 2 Acute angled triangle
93. 99 99 50 Acute angled triangle
94. 99 99 99 Acute angled triangle
95. 99 99 100 Acute angled triangle

(Contd.)

58 Software Testing

(Contd.)
Test Case a b c Expected Output
96. 99 100 1 Invalid triangle
97. 99 100 2 Obtuse angled triangle
98. 99 100 50 Acute angled triangle
99. 99 100 99 Acute angled triangle
100. 99 100 100 Acute angled triangle
101. 100 1 1 Invalid triangle
102. 100 1 2 Invalid triangle
103. 100 1 50 Invalid triangle
104. 100 1 99 Invalid triangle
105. 100 1 100 Acute angled triangle
106. 100 2 1 Invalid triangle
107. 100 2 2 Invalid triangle
108. 100 2 50 Invalid triangle
109. 100 2 99 Obtuse angled triangle
110. 100 2 100 Acute angled triangle
111. 100 50 1 Invalid triangle
112. 100 50 2 Invalid triangle
113. 100 50 50 Invalid triangle
114. 100 50 99 Acute angled triangle
115. 100 50 100 Acute angled triangle
116. 100 99 1 Invalid triangle
117. 100 99 2 Obtuse angled triangle
118. 100 99 50 Acute angled triangle
119. 100 99 99 Acute angled triangle
120. 100 99 100 Acute angled triangle
121. 100 100 1 Acute angled triangle
122. 100 100 2 Acute angled triangle
123. 100 100 50 Acute angled triangle
124, 100 100 99 Acute angled triangle
125. 100 100 100 Acute angled triangle

Example 2.8: Consider the program for the determination of day of the week as explained in
example 2.4. Design the robust and worst test cases for this program.

Solution: Robust test cases and worst test cases are given in Table 2.16 and Table 2.17
respectively.

Functional Testing 59

Table 2.16. Robust test cases for program for determining the day of the week

Test Case month day year Expected Output

1. 0 15 1979 Invalid date

2. 1 15 1979 Monday

3. 2 15 1979 Thursday

4. 6 15 1979 Friday

5. 11 15 1979 Thursday

6. 12 15 1979 Saturday

7. 13 15 1979 Invalid date

8. 6 0 1979 Invalid date

9. 6 1 1979 Friday

10. 6 2 1979 Saturday

11. 6 30 1979 Saturday

12. 6 31 1979 Invalid date

13. 6 32 1979 Invalid date

14. 6 15 1899 Invalid date (out of range)
15. 6 15 1900 Friday

16. 6 15 1901 Saturday

17. 6 15 2057 Friday

18. 6 15 2058 Saturday

19. 6 15 2059 Invalid date (out of range)

Table 2.17. Worst case test cases for the program determining day of the week

Test Case month day year Expected Output
1. 1 1 1900 Monday

2. 1 1 1901 Tuesday

3. 1 1 1979 Monday

4, 1 1 2057 Monday

5. 1 1 2058 Tuesday

6. 1 2 1900 Tuesday

7. 1 2 1901 Wednesday
8. 1 2 1979 Tuesday

9. 1 2 2057 Tuesday
10. 1 2 2058 Wednesday
11. 1 15 1900 Monday
12. 1 15 1901 Tuesday
13. 1 15 1979 Monday
14. 1 15 2057 Monday
15. 1 15 2058 Tuesday

(Contd.)

60 Software Testing

(Contd.)
Test Case month day year Expected Output
16. 1 30 1900 Tuesday
17. 1 30 1901 Wednesday
18. 1 30 1979 Tuesday
19. 1 30 2057 Tuesday
20. 1 30 2058 Wednesday
21. 1 31 1900 Wednesday
22. 1 31 1901 Thursday
23. 1 31 1979 Wednesday
24, 1 31 2057 Wednesday
25. 1 31 2058 Thursday
26. 2 1 1900 Thursday
27. 2 1 1901 Friday
28. 2 1 1979 Thursday
29. 2 1 2057 Thursday
30. 2 1 2058 Friday
31. 2 2 1900 Friday
32. 2 2 1901 Saturday
33. 2 2 1979 Friday
34. 2 2 2057 Friday
35. 2 2 2058 Saturday
36. 2 15 1900 Thursday
37. 2 15 1901 Friday
38. 2 15 1979 Thursday
39. 2 15 2057 Thursday
40. 2 15 2058 Friday
41. 2 30 1900 Invalid date
42, 2 30 1901 Invalid date
43. 2 30 1979 Invalid date
44. 2 30 2057 Invalid date
45, 2 30 2058 Invalid date
46. 2 31 1900 Invalid date
47. 2 31 1901 Invalid date
48. 2 31 1979 Invalid date
49. 2 31 2057 Invalid date
50. 2 31 2058 Invalid date
51. 6 1900 Friday
52. 6 1901 Saturday

(Contd.)

Functional Testing 61

(Contd.)
Test Case month day year Expected Output
53. 6 1 1979 Friday
54. 6 1 2057 Friday
55. 6 1 2058 Saturday
56. 6 2 1900 Saturday
57. 6 2 1901 Sunday
58. 6 2 1979 Saturday
59. 6 2 2057 Saturday
60. 6 2 2058 Sunday
61. 6 15 1900 Friday
62. 6 15 1901 Saturday
63. 6 15 1979 Friday
64. 6 15 2057 Friday
65. 6 15 2058 Saturday
66. 6 30 1900 Saturday
67. 6 30 1901 Sunday
68. 6 30 1979 Saturday
69. 6 30 2057 Saturday
70. 6 30 2058 Sunday
71. 6 31 1900 Invalid date
72. 6 31 1901 Invalid date
73. 6 31 1979 Invalid date
74. 6 31 2057 Invalid date
75. 6 31 2058 Invalid date
76. 11 1 1900 Thursday
77. 11 1 1901 Friday
78. 11 1 1979 Thursday
79. 11 1 2057 Thursday
80. 11 1 2058 Friday
81. 11 2 1900 Friday
82. 11 2 1901 Saturday
83. 11 2 1979 Friday
84. 11 2 2057 Friday
85. 11 2 2058 Saturday
86. 11 15 1900 Thursday
87. 11 15 1901 Friday
88. 11 15 1979 Thursday
89. 11 15 2057 Thursday

(Contd.)

62 Software Testing

(Contd.)
Test Case month day year Expected Output
90. 11 15 2058 Friday
91. 11 30 1900 Friday
92. 11 30 1901 Saturday
93. 11 30 1979 Friday
94. 11 30 2057 Friday
95. 11 30 2058 Saturday
96. 11 31 1900 Invalid date
97. 11 31 1901 Invalid date
98. 11 31 1979 Invalid date
99. 11 31 2057 Invalid date
100. 11 31 2058 Invalid date
101. 12 1 1900 Saturday
102. 12 1 1901 Sunday
103. 12 1 1979 Saturday
104. 12 1 2057 Saturday
105. 12 1 2058 Sunday
106. 12 2 1900 Sunday
107. 12 2 1901 Monday
108. 12 2 1979 Sunday
109. 12 2 2057 Sunday
110. 12 2 2058 Monday
111. 12 15 1900 Saturday
112. 12 15 1901 Sunday
113. 12 15 1979 Saturday
114. 12 15 2057 Saturday
115. 12 15 2058 Sunday
116. 12 30 1900 Sunday
117. 12 30 1901 Monday
118. 12 30 1979 Sunday
119. 12 30 2057 Sunday
120. 12 30 2058 Monday
121. 12 31 1900 Monday
122. 12 31 1901 Tuesday
123. 12 31 1979 Monday
124. 12 31 2057 Monday
125. 12 31 2058 Tuesday

Functional Testing 63

2.2 EQUIVALENCE CLASS TESTING

As we have discussed earlier, a large number of test cases are generated for any program. It is
neither feasible nor desirable to execute all such test cases. We want to select a few test cases
and still wish to achieve a reasonable level of coverage. Many test cases do not test any new
thing and they just execute the same lines of source code again and again. We may divide input
domain into various categories with some relationship and expect that every test case from a
category exhibits the same behaviour. If categories are well selected, we may assume that if
one representative test case works correctly, others may also give the same results. This
assumption allows us to select exactly one test case from each category and if there are four
categories, four test cases may be selected. Each category is called an equivalence class and
this type of testing is known as equivalence class testing.

2.2.1 Creation of Equivalence Classes

The entire input domain can be divided into at least two equivalence classes: one containing
all valid inputs and the other containing all invalid inputs. Each equivalence class can further
be sub-divided into equivalence classes on which the program is required to behave differently.
The input domain equivalence classes for the program ‘Square’ which takes ‘X’ as an input
(range 1-100) and prints the square of ‘x’ (seen in Figure 2.2) are given as:

(i) I,={1<x<100 }(Valid input range from 1 to 100)
(i) I,={x<1} (Any invalid input where x is less than 1)
(iii)) I, ={x>100 } (Any invalid input where x is greater than 100)
Three test cases are generated covering every equivalence class and are given in Table 2.18.
Table 2.18. Test cases for program ‘Square’ based on input domain
Test Case Input x Expected Output
I 0 Invalid Input
1 50 2500
I 101 Invalid Input

The following equivalence classes can be generated for program ‘Addition’ for input
domain:

(i) I,={100<x<300and200<y<400} (Bothx andy are valid values)
(i) I,={100<x<300andy <200 } (xis valid and y is invalid)

(i) I,={100<x<300andy>400 } (xis valid and y is invalid)

(iv) I,={x<100and200<y<400 } (xisinvalid and y is valid)

(v) I,={x>300and 200 <y<400 } (xisinvalid and y is valid)

(vi) I,={x<100andy <200 } (Both inputs are invalid)

(vii) I, ={x<100andy > 400} (Both inputs are invalid)

(viii) I, = { x> 300 and y < 200 } (Both inputs are invalid)

(ix) I,={x>300andy>400 } (Both inputs are invalid)

64 Software Testing

The graphical representation of inputs is shown in Figure 2.9 and the test cases are given in
Table 2.19.

(0, 500)
° ° °
(0, 400)
(0, 300) — ® ®)
Y (0,200)
° ° °
(0, 100)
I I I

(0,0) (100,0) (200,0) (300,0) (400, 0)

X

Figure 2.9. Graphical representation of inputs

Table 2.19. Test cases for the program ‘Addition’

Test Case X y Expected Output
I 200 300 500

I, 200 199 Invalid input
I3 200 401 Invalid input
l, 99 300 Invalid input
I 301 300 Invalid input
I 99 199 Invalid input
I, 99 401 Invalid input
Ig 301 199 Invalid input
Iy 301 401 Invalid input

The equivalence classes of input domain may be mutually exclusive (as shown in Figure
2.10 (a)) and they may have overlapping regions (as shown in Figure 2.10 (b)).

We may also partition output domain for the design of equivalence classes. Every output
will lead to an equivalence class. Thus, for ‘Square’ program, the output domain equivalence
classes are given as:

O, = {square of the input number ‘x’}

@)

2

{Invalid input)

The test cases for output domain are shown in Table 2.20. Some of input and output domain
test cases may be the same.

Functional Testing 65

E3 E3
E4
E2
E2 E4
E1 E1
Input domain Input domain
(a) Four mutually exclusive equivalence classes (b) E3 and E4 have an overlapping region

Figure 2.10. Equivalence classes of input domain

Table 2.20. Test cases for program ‘Square’ based on output domain

Test Case Input x Expected Output
0, 50 2500
0, 0 Invalid Input

We may also design output domain equivalence classes for the program ‘Addition’ as given
below:

o

1

0O, = {Invalid Input}

2

{ Addition of two input numbers x and y }

The test cases are given in Table 2.21.

Table 2.21. Test cases for program ‘Addition’ based on output domain

Test Case X y Expected Output
0, 200 300 500
0, 99 300 Invalid Input

In the above two examples, valid input domain has only one equivalence class. We may
design more numbers of equivalence classes based on the type of problem and nature of inputs
and outputs. Here, the most important task is the creation of equivalence classes which require
domain knowledge and experience of testing. This technique reduces the number of test cases
that should be designed and executed.

2.2.2 Applicability

It is applicable at unit, integration, system and acceptance test levels. The basic requirement is
that inputs or outputs must be partitioned based on the requirements and every partition will
give a test case. The selected test case may test the same thing, as would have been tested by
another test case of the same equivalence class, and if one test case catches a bug, the other

66 Software Testing

probably will too. If one test case does not find a bug, the other test cases of the same
equivalence class may also not find any bug. We do not consider dependencies among different
variables while designing equivalence classes.

The design of equivalence classes is subjective and two testing persons may design two
different sets of partitions of input and output domains. This is understandable and correct as
long as the partitions are reviewed and all agree that they acceptably cover the program under
test.

Example 2.9: Consider the program for determination of the largest amongst three numbers
specified in example 2.1. Identify the equivalence class test cases for output and input domain.

Solution: Output domain equivalence classes are:
0= {<x,y, z>: Largest amongst three numbers x, y, z }
0,= {<x,y, z>: Input values(s) is /are out of range with sides x, y, z }

The test cases are given in Table 2.22.

Table 2.22. Output domain test cases to find the largest among three numbers

Test Case X y z Expected Output
0, 150 140 110 150
0 301 50 50 Input values are out of

2 range

Input domain based equivalence classes are:

[[= {1<x<300and 1 <y<300and1<z<300} (All inputs are valid)

= {x<land1<y<300and 1 £z<300} (xisinvalid,y is valid and z is valid)
{1<x<300andy<1and1<z<300} (xis valid, y is invalid and z is valid)
= {1<x<300and 1 £y<300and z<1 } (xis valid, y is valid and z is invalid)
= {x>300and 1 £y <300and 1 £z<300 } (xis invalid, y is valid and z is valid)
= {1<x<300andy>300and 1 £z<300 } (xis valid, y is invalid and z is valid)
{1<£x<300and 1 £y <300 andz>300 } (xis valid, y is valid and z is invalid)

= {x<landy<1land1<z<300} (xisinvalid, y is invalid and z is valid)

—_—
o0 ~ (=) W ES w S
Il

—
Il

©

= {1<x<300andy<1andz<1} (xisvalid, y is invalid and z is invalid)

= {x<land1<y<300and z<1 } (xisinvalid, y is valid and z is invalid)

= {x>300and y>300and 1 £z<300 } (xis invalid, y is invalid and z is valid)
= {1<x<300andy>300and z> 300 }(x is valid, y is invalid and z is invalid)
{x>300and 1 £y <300 and z> 300 } (xisinvalid, y is valid and z is invalid)
= {x<landy>300and 1 £z<300} (xisinvalid, y is invalid and z is valid)
= {x>300andy <1and 1£z<300 } (xisinvalid, y is invalid and z is valid)

= {1<x<300andy<1andz>300} (xisvalid, y is invalid and z is invalid)

) IS oy) = S

— b et e
I

=N

el el et e e e N e N e N e T e

N
=

Functional Testing 67

{1<x<300andy>300and z<1 } (xisvalid, y is invalid and z is invalid)
{x<1land1<y<300andz>300} (xisinvalid, y is valid and z is invalid)
{x>300and 1 £y<300andz<1 } (xis invalid, y is valid and z is invalid)
{x<landy<1andz<1} (All inputs are invalid)

{x>300.andy > 300 and z> 300 } (All inputs are invalid)
{x<1landy<1andz>300} (All inputs are invalid)
{x<landy>300andz<1} (All inputs are invalid)

{x>300and y <1 and z <1} (All inputs are invalid)

{x>300and y> 300 and z <1 } (All inputs are invalid)

{x>300andy <1 and z> 300 } (All inputs are invalid)
{x<1andy>300andz>300 } (All inputs are invalid)

The input domain test cases are given in Table 2.23.

Table 2.23. Input domain test case

Test Case X y z Expected Output

l, 150 40 50 150

l, 0 50 50 Input values are out of range
I 50 0 50 Input values are out of range
l, 50 50 0 Input values are out of range
I 101 50 50 Input values are out of range
g 50 101 50 Input values are out of range
I, 50 50 101 Input values are out of range
I 0 0 50 Input values are out of range
Iy 50 0 0 Input values are out of range
Lo 0 50 0 Input values are out of range
Iy 301 301 50 Input values are out of range
(I 50 301 301 Input values are out of range
lis 301 50 301 Input values are out of range
I 0 301 50 Input values are out of range
ls 301 0 50 Input values are out of range
ls 50 0 301 Input values are out of range
I 50 301 0 Input values are out of range
lis 0 50 301 Input values are out of range
Lo 301 50 0 Input values are out of range

(Contd.)

68 Software Testing

(Contd.)

Test Case X y z Expected Output

Ly 0 0 0 Input values are out of range
Iy 301 301 301 Input values are out of range
Iy, 0 0 301 Input values are out of range
s 0 301 0 Input values are out of range
Ly 301 0 0 Input values are out of range
s 301 301 0 Input values are out of range
Ly 301 0 301 Input values are out of range
| 0 301 301 Input values are out of range

27

Example 2.10: Consider the program for the determination of division of a student as
explained in example 2.2. Identify the equivalence class test cases for output and input
domains.

Solution: Output domain equivalence class test cases can be identified as follows:

O, = { <markl, mark2, mark3> :
O, = { <markl, mark2, mark3> :
O, = { <markl, mark2, mark3> :
O, = { <markl, mark2, mark3> :
O, = { <markl, mark2, mark3> :
O, = { <markl, mark2, mark3>

First Division with distinction if average > =75 }
First Division if 60 < average < 74}

Second Division if 50 < average < 59 }
Third Division if 40 < average <49 }
Fail if average <40 }

: Invalid marks if marks are not between 0 to 100 }

The test cases generated by output domain are given in Table 2.24.

Table 2.24. Output domain test cases
Test Case markl mark2 mark3 Expected Output
0, 75 80 85 First division with distinction
0, 68 68 68 First division
0, 55 55 55 Second division
0, 45 45 45 Third division
o 25 25 25 Fail
O, -1 50 50 Invalid marks

We may have another set of test cases based on input domain.

I, = {0 <markl <100 and 0 < mark2 < 100 and 0 < mark3 < 100 } (All inputs are

valid)

[,= {markl <0 and 0 < mark2 < 100 and 0 < mark3 < 100 } (mark1 is invalid, mark2

is valid and mark3 is valid)

Functional Testing 69

{ 0 < mark1 < 100 and mark2 < 0 and 0 < mark3 < 100 } (mark]1 is valid, mark?2 is
invalid and mark3 is valid)

{0 <markl £ 100 and 0 < mark2 < 100 and mark3 <0 } (mark1 is valid, mark?2 is
valid and mark3 is invalid)

{ markl > 100 and 0 < mark2 < 100 and 0 < mark3 < 100 } (markl is invalid,
mark?2 is valid and mark3 is valid)

(0 <markl <100 and mark2 > 100 and 0 < mark3 < 100 } (markl1 is valid, mark2
is invalid and mark3 is valid)

{ 0 <markl £ 100 and 0 < mark2 < 100 and mark3 > 100 } (mark 1 is valid, mark2
is valid and mark3 is invalid)

{ markl < 0 and mark2 < 0 and 0 < mark3 < 100 } (markl is invalid, mark2 is
invalid and mark3 is valid)

{ 0 <mark1 <100 and mark2 < 0 and mark3 <0 } (mark]1 is valid, mark?2 is invalid
and mark3 is invalid)

{ markl <0 and 0 < mark2 < 100 and mark3 <0 } (mark]1 is invalid, mark?2 is valid
and mark3 is invalid)

{ markl > 100 and mark2 > 100 and 0 < mark3 < 100 } (mark! is invalid, mark2
is invalid and mark3 is valid)

{ 0 < mark]l < 100 and mark2 > 100 and mark3 > 100 } (mark]1 is valid, mark?2 is
invalid and mark3 is invalid)

{ markl > 100 and 0 < mark2 < 100 and mark3 > 100 } (markl is invalid, mark2
is valid and mark3 is invalid)

{ markl < 0 and mark2 > 100 and 0 < mark3 < 100 } (markl is invalid, mark2 is
invalid and mark 3 is valid)

{ markl > 100 and mark2 < 0 and 0 < mark3 < 100 } { (mark]1 is invalid, mark?2 is
invalid and mark3 is valid)

{ 0 < markl < 100 and mark2 < 0 and mark3 > 100 } (markl is valid, mark? is
invalid and mark3 is invalid)

{ 0 < markl < 100 and mark2 > 100 and mark3 < 0 } (markl1 is valid, mark2 is
invalid and mark3 is invalid)

{ markl <0 and 0 < mark2 < 100 and mark3 > 100 } (mark1 is invalid, mark?2 is
valid and mark3 is invalid)

{ mark1l > 100 and 0 < mark2 < 100 and mark3 < 0 } (mark1 is invalid, mark?2 is
valid and mark3 is invalid)

{ markl < 0 and mark2 < 0 and mark3 < 0 } (All inputs are invalid)

{ markl > 100 and mark2 > 100 and mark3 > 100 } (All inputs are invalid)

{ markl < 0 and mark2 < 0 and mark3 > 100 } (All inputs are invalid)

{ markl < 0 and mark2 > 100 and mark3 < 0 } (All inputs are invalid)

{ mark1 > 100 and mark2 < 0 and mark3 < 0 } (All inputs are invalid)

{mark1 > 100 and mark2 > 100 and mark3 < 0 } (All inputs are invalid)

70 Software Testing

L, = { markl > 100 and mark2 < 0 and mark3 > 100 } (All inputs are invalid)
I,,= { markl <0 and mark2 > 100 and mark3 > 100 } (All inputs are invalid)

Thus, 27 test cases are generated on the basis of input domain and are given in Table 3.25.

Table 2.25. Input domain test cases

Test Case markl mark2 mark3 Expected Output
I 50 50 50 Second division
I, -1 50 50 Invalid marks
I 50 -1 50 Invalid marks
l, 50 50 -1 Invalid marks
I 101 50 50 Invalid marks
ls 50 101 50 Invalid marks
I, 50 50 101 Invalid marks
Ig -1 -1 50 Invalid marks
Iy 50 -1 -1 Invalid marks
Lo -1 50 -1 Invalid marks
Iy 101 101 50 Invalid marks
I, 50 101 101 Invalid marks
[101 50 101 Invalid marks
(A -1 101 50 Invalid marks
ls 101 -1 50 Invalid marks
(R 50 -1 101 Invalid marks
I, 50 101 -1 Invalid marks
Lg -1 50 101 Invalid marks
I 101 50 -1 Invalid marks
Ly -1 -1 -1 Invalid marks
I, 101 101 101 Invalid marks
l,, -1 -1 101 Invalid marks
s -1 101 -1 Invalid marks
Ly 101 -1 -1 Invalid marks
s 101 101 -1 Invalid marks
g 101 -1 101 Invalid marks
I, -1 101 101 Invalid marks

Hence, the total number of equivalence class test cases are 27 (input domain) + 6 (output
domain) which is equal to 33.

Example 2.11: Consider the program for classification of a triangle specified in example 2.3.
Identify the equivalence class test cases for output and input domain.

Solution: Output domain equivalence classes are:

Functional Testing 71

O= {<a,b, c>:Right angled triangle with sides a, b, ¢ }
O,= {<a, b, c>: Acute angled triangle with sides a, b, ¢ }
O,= {<a, b, c>: Obtuse angled triangle with sides a, b, c}
O,= {<a,b, c>:Invalid triangle with sides a, b, c, }

O= {<a,b, c>:Input values(s) is /are out of range with sides a, b, ¢ }

The test cases are given in Table 2.26.

Table 2.26. Output domain test cases for triangle classification program

Test Case a b c Expected Output

0, 50 40 30 Right angled triangle

0, 50 49 49 Acute angled triangle

0, 57 40 40 Obtuse angled triangle

0, 50 50 100 Invalid triangle

0, 101 50 50 Input values are out of range

Input domain based equivalence classes are:

{1<a<100and 1 £b<100and 1 <c <100 } (All inputs are valid)
{a<land1<b<100and 1 <c <100 } (aisinvalid, bis valid and c is
valid)

{1<a<100andb<1and1<c<100} (ais valid, b is invalid and c is
valid)

{1<a<100and 1 <b<100andc <1 } (ais valid, b is valid and c is
invalid)

{a>100and 1 <b<100and 1 £c <100 } (ais invalid, b is valid and c is
valid)

{1<a<100andb>100and 1 £c <100 } (ais valid, b is invalid and c is
valid)

{1<a<100and 1 <b<100andc> 100} (aisvalid, b is valid and c is
invalid)

{a<landb<1land1<c<100} (aisinvalid, b is invalid and c is
valid)

{1<a<100and b<1andc <1} (ais valid, b is invalid and ¢ is
invalid)

{a<land 1 £b<100and c <1 } (ais invalid, b is valid and c is
invalid)

{a>100and b> 100 and 1 <c <100 } (ais invalid, b is invalid and c is
valid)

{1<a<100andb> 100 and ¢ > 100 }(a is valid, b is invalid and ¢ is
invalid)

{a>100and 1 £b <100 and ¢ > 100 } (a is invalid, b is valid and c is
invalid)

72 Software Testing

I, ={a<landb>100and 1 <c <100 } (ais invalid, b is invalid and c is

valid)

[,= {a>100andb<1and1<c<100} (aisinvalid, b is invalid and c is
valid)

6~ 11 <a<100and b <1 and c> 100 } (ais valid, b is invalid and c is
invalid)

[,={1<a<100andb> 100 and c <1 } (ais valid, b is invalid and c is
invalid)

[,= {a<1and 1<b <100 and ¢ > 100 } (a is invalid, b is valid and c is
invalid)

[,= {a>100and 1 <b <100 and ¢ <1 } (ais invalid, b is valid and c is
invalid)

= {a<landb<1andc<1} (All inputs are invalid)

= {a>100and b > 100 and ¢ > 100 } (All inputs are invalid)
= {a<landb<1andc>100 } (All inputs are invalid)
{a<landb>100and ¢ <1} (All inputs are invalid)

= {a>100andb<1andc <1} (All inputs are invalid)

= {a>100and b> 100 and ¢ <1 } (All inputs are invalid)

= {a>100and b<1 and ¢ > 100 } (All inputs are invalid)

= {a<1land b> 100 and c> 100 } (All inputs are invalid)

[N] [N) [N I [~ [~}
=N [EN w [— =

—_— = = R e e
Il

N
2

Some input domain test cases can be obtained using the relationship amongst a, b and c.
— { a2 =b? + c2 }

— { b2 =2 + a2 }

— { c2=2a2+ b2 }

= {a’>b’+c?}

= {b*>c*+a’}

= {c?>a’+b*}

= {a2<b’+c’}

= {b*<c?+a’}

= {c?<a’+b?}

= {a=b+c}

= {a>b+c}

= {b=c+a}

={b>c+a}

= {c=a+b}

= {c>a+b}

= {a?<b?+ct&&b?P<c?+al&&c?<a’+b’}

N N N w w w [[[[[[w N []
) - S ° ®© [=N Y ~ @] _ S © 3

i i i e e T e e A e T e B e e e T e B e B)

N
@

The input domain test cases are given in Table 2.27.

Functional Testing 73

Table 2.27. Input domain test cases

Test Case a b c Expected Output

I 50 50 50 Acute angled triangle

l, 0 50 50 Input values are out of range
I 50 0 50 Input values are out of range
l, 50 50 0 Input values are out of range
I 101 50 50 Input values are out of range
g 50 101 50 Input values are out of range
I, 50 50 101 Input values are out of range
I 0 0 50 Input values are out of range
Iy 50 0 0 Input values are out of range
Lo 0 50 0 Input values are out of range
Iy 101 101 50 Input values are out of range
(I 50 101 101 Input values are out of range
ls 101 50 101 Input values are out of range
I 0 101 50 Input values are out of range
lis 101 0 50 Input values are out of range
lie 50 0 101 Input values are out of range
I, 50 101 0 Input values are out of range
ls 0 50 101 Input values are out of range
Lo 101 50 0 Input values are out of range
Ly 0 0 0 Input values are out of range
Iy 101 101 101 Input values are out of range
I, 0 0 101 Input values are out of range
s 0 101 0 Input values are out of range
Ly 101 0 0 Input values are out of range
ls 101 101 0 Input values are out of range
Lg 101 0 101 Input values are out of range
I, 0 101 101 Input values are out of range
lyg 50 40 30 Right angled triangle

Lo 40 50 30 Right angled triangle

(IS 40 30 50 Right angled triangle

Iy 57 40 40 Obtuse angled triangle

I 40 57 50 Obtuse angled triangle

(I8 40 40 57 Obtuse angled triangle

I, 50 49 49 Acute angled triangle

s 49 50 49 Acute angled triangle

L6 49 49 50 Acute angled triangle

I, 100 50 50 Invalid triangle

lg 100 40 40 Invalid triangle

[50 100 50 Invalid triangle

Lo 40 100 40 Invalid triangle

Iy 50 50 100 Invalid triangle

[40 40 100 Invalid triangle

L3 49 49 50 Acute angled triangle

74 Software Testing

Hence, total number of equivalence class test cases are 43 (input domain) and 5 (output
domain) which is equal to 48.

Example 2.12: Consider the program for determining the day of the week as explained in
example 2.4. Identify the equivalence class test cases for output and input domains.

Solution: Output domain equivalence classes are:

O, = { < Day, Month, Year > : Monday for all valid inputs }

O, = { < Day, Month, Year > :
O, = { < Day, Month, Year > :
O, = { < Day, Month, Year > :
O, = { < Day, Month, Year > :
O, = { < Day, Month, Year > :
O, = { < Day, Month, Year > :
O, = { < Day, Month, Year > :
O, = { < Day, Month, Year > :

Tuesday for all valid inputs }

Wednesday for all valid inputs}

Thursday for all valid inputs}

Friday for all valid inputs}

Saturday for all valid inputs}

Sunday for all valid inputs}

Invalid Date if any of the input is invalid}

Input out of range if any of the input is out of range}

The output domain test cases are given in Table 2.28.

Table 2.28. Output domain equivalence class test cases
Test Case month day year Expected Output
0, 6 11 1979 Monday
0, 6 12 1979 Tuesday
0, 6 13 1979 Wednesday
o, 6 14 1979 Thursday
0O, 6 15 1979 Friday
O 6 16 1979 Saturday
0, 6 17 1979 Sunday
O 6 31 1979 Invalid date
0, 6 32 1979 Inputs out of range

The input domain is partitioned as given below:

(i) Valid partitions

M1

M2 :
M3 :

D1

D2 :
D3:
D4 :
Y1:
Y2:

: Month has 30 Days
Month has 31 Days
Month is February

: Days of a month from 1 to 28

Day =29
Day =30
Day =31

(i) Invalid partitions
M4 : Month < 1

1900 < year < 2058 and is a common year
1900 < year <2058 and is a leap year.

M5 : Month > 12
D5:Day<1

D6 : Day > 31
Y3 : Year < 1900
Y4 : Year > 2058

Functional Testing 75

We may have following equivalence classes which are based on input domain:

(2)

(b)

Only for valid input domain

I,={Mland DIl and Y1 } (All inputs are valid)
[,={M2and D1l and Y1 } (All inputs are valid)
[,={M3and D1 and Y1 } (All inputs are valid)
I,={Mland D2 and Y1 } (All inputs are valid)
I, ={M2and D2 and Y1 } (All inputs are valid)
[,={M3and D2 and Y1 } (All inputs are valid)
[,={Mland D3 and Y1 } (All inputs are valid)
I,={M2and D3 and Y1 } (All inputs are valid)
[,={M3and D3 and Y1 } (All inputs are valid)
[,={Mland D4 and Y1 } (All inputs are valid)
I,,={M2and D4 and Y1 } (All inputs are valid)
[,={M3and D4 and Y1 } (All inputs are valid)
[,={Mland D1 and Y2 } (All Inputs are valid)
[,={M2and DIl and Y2 } (All inputs are valid)
[,={M3and D1 and Y2 } (All inputs are valid)
[,={MlandD2and Y2 } (All inputs are valid)
[,,={M2and D2 and Y2 } (All inputs are valid)
[,={M3and D2 and Y2 } (All inputs are valid)
[,={Mland D3 and Y2 } (All inputs are valid)
L,={M2and D3 and Y2 } (All inputs are valid)
I,,={M3and D3 and Y2 } (All inputs are valid)

L,={ Ml and D4 and Y2 } (All inputs are valid)
L,={M2and D4 and Y2 } (All inputs are valid)
L,={M3and D4 and Y2 } (All inputs are valid)

Only for Invalid input domain

I,,={M4and D1 and Y1 } (Month is invalid, Day is valid and Year is valid)
L,={M5and D1 and Y1 } (Month is invalid, Day is valid and Year is valid)
I,,={M4and D2 and Y1 } (Month is invalid, Day is valid and Year is valid)
L,={MS5and D2 and Y1 } (Month is invalid, Day is valid and Year is valid)
L,={M4and D3 and Y1 } (Month is invalid, Day is valid and Year is valid)
I,,={MS5and D3 and Y1 } (Month is invalid, Day is valid and Year is valid)

76 Software Testing

= { M4 and D4 and Y1 } (Month is invalid, Day is valid and Year is valid)
{ M5 and D4 and Y1 } (Month is invalid, Day is valid and year is valid)
{ M4 and D1 and Y2 } (Month is invalid, Day is valid and Year is valid)
{ M5 and D1 and Y2 } (Month is invalid, Day is valid and Year is valid)
{ M4 and D2 and Y2 } (Month is invalid, Day is valid and Year is valid)
{ M5 and D2 and Y2 } (Month is invalid, Day is valid and Year is valid)
{ M4 and D3 and Y2 } (Month is invalid, Day is valid and Year is valid)
{ M5 and D3 and Y2 } (Month is invalid, Day is valid and Year is valid)
{ M4 and D4 and Y2 } (Month is invalid, Day is valid and Year is valid)
{ M5 and D4 and Y2 } (Month is invalid, Day is valid and Year is valid)
{ M1 and D5 and Y1 } (Month is valid, Day is invalid and Year is valid)
{ M1 and D6 and Y1 } (Month is valid, Day is invalid and Year is valid)
{ M2 and D5 and Y1 } (Month is valid, Day is invalid and Year is valid)
{M2 and D6 and Y1 } (Month is valid, Day is invalid and Year is valid)
{M3 and D5 and Y1 } (Month is valid, Day is invalid and Year is valid)
{ M3 and D6 and Y1 } (Month is valid, Day is invalid and Year is valid)
{ M1 and D5 and Y2 } (Month is valid, Day is invalid and Year is valid)
{ M1 and D6 and Y2 } (Month is valid, Day is invalid and Year is valid)
{ M2 and D5 and Y2 } (Month is valid, Day is invalid and Year is valid)
{ M2 and D6 and Y2 } (Month is valid, Day is invalid and Year is valid)
= { M3 and D5 and Y2 } (Month is valid, Day is invalid and Year is valid)
= { M3 and D6 and Y2 } (Month is valid, Day is invalid and Year is valid)
= { M1 and D1 and Y3 } (Month is valid, Day is valid and Year is invalid)
= { Ml and D1 and Y4 } (Month is valid, Day is valid and Year is invalid)
= { M2 and D1 and Y3 } (Month is valid, Day is valid and Year is invalid)
{ M2 and D1 and Y4 } (Month is valid, Day is valid and Year is invalid)
{ M3 and D1 and Y3 } (Month is valid, Day is valid and Year is invalid)
= { M3 and D1 and Y4 } (Month is valid, Day is valid and Year is invalid)
= { Ml and D2 and Y3 } (Month is valid, Day is valid and Year is invalid)
{ M1 and D2 and Y4 } (Month is valid, Day is valid and Year is invalid)
{ M2 and D2 and Y3 } (Month is valid, Day is valid and Year is invalid)
{ M2 and D2 and Y4 } (Month is valid, Day is valid and Year is invalid)
{ M3 and D2 and Y3 } (Month is valid, Day is valid and Year is invalid)
{ M3 and D2 and Y4 } (Month is valid, Day is valid and Year is invalid)
{ M1 and D3 and Y3 } (Month is valid, Day is valid and Year is invalid)
{ M1 and D3 and Y3 } (Month is valid, Day is valid and Year is invalid)
= { M2 and D3 and Y3 } (Month is valid, Day is valid and Year is invalid)

I3 1
I32
133
L,
135
136
I37
138
139
I40
L,
I42
143
I44
I45
L
I47
I48
149
Iso
I51
I52
I53
I54
I55
155
I57
L
I59
I60
161
I62
163
I64
165
I(ys
I67

Functional Testing 77

I, = { M2 and D3 and Y4 } (Month is valid, Day is valid and Year is invalid)
I,,={M3and D3 and Y3 } (Month is valid, Day is valid and Year is invalid)
L,={ M3 and D3 and Y4 } (Month is valid, Day is valid and Year is invalid)
L, ={Ml and D4 and Y3 } (Month is valid, Day is valid and Year is invalid)
[, ={MIl and D4 and Y4 } (Month is valid, Day is valid and Year is invalid)
[, ={M2and D4 and Y3 } (Month is valid, Day is valid and Year is invalid)
L, ={M2and D4 and Y4 } (Month is valid, Day is valid and Year is invalid)
L,={M3 and D4 and Y3 } (Month is valid, Day is valid and Year is invalid)
L,={M3 and D4 and Y4 } (Month is valid, Day is valid and Year is invalid)
[,={M4and D5and Y1 } (Month is invalid, Day is invalid and Year is valid)
1., = { M4 and D5 and Y2 } (Month is invalid, Day is invalid and year is valid)
L,={M4and D6 and Y1 } (Month is invalid, Day is invalid and Year is valid)
I,,= { M4 and D6 and Y2 } (Month is invalid, Day is invalid and Year is valid)
I, = {M5and D5 and Y1 } (Month is invalid, Day is invalid and Year is valid)
I, = { M5 and D5 and Y2 } (Month is invalid, Day is invalid and Year is valid)
I.,={M5and D6 and Y1 } (Month is invalid, Day is invalid and Year is valid)
I, = { M5 and D6 and Y2 } (Month is invalid, Day is invalid and Year is valid)
I, = { M4 and D1 and Y3 } (Month is invalid, Day is valid and Year is invalid)
I, = { M4 and D1 and Y4 } (Month is invalid, Day is valid and Year is invalid)
I,,= { M4 and D2 and Y3 } (Month is invalid, Day is valid and Year is invalid)
I, = { M4 and D2 and Y4 } (Month is invalid, Day is valid and Year is invalid)
I, = { M4 and D3 and Y3 } (Month is invalid, Day is valid and Year is invalid)
I,,= { M4 and D3 and Y4 } (Month is invalid, day is valid and Year is invalid)
I,, = { M4 and D4 and Y3 } (Month is invalid, Day is valid and Year is invalid)
I,,= { M4 and D4 and Y4 } (Month is invalid, Day is valid and Year is invalid)
I,, = { M5 and D1 and Y3 } (Month is invalid, Day is valid and Year is invalid)

I,,= { M5 and D1 and Y4 } (Month is invalid, Day is valid and Year is invalid)
I, = { M5 and D2 and Y3 } (Month is invalid, Day is valid and year is invalid)

I, = { M5 and D2 and Y4 } (Month is invalid, Day is valid and Year is invalid)
I,,={ M5 and D3 and Y3 } (Month is invalid, Day is valid and Year is invalid)
I, = { M5 and D3 and Y4 } (Month is invalid, Day is valid and Year is invalid)
I,,= { M5 and D4 and Y3 } (Month is invalid, Day is valid and Year is invalid)
= { M5 and D4 and Y4 } (Month is invalid, Day is valid and Year is invalid)
= { M1 and D5 and Y3 } (Month is valid, Day is invalid and Year is invalid)
= { M1 and D5 and Y4 } (Month is valid, Day is invalid and Year is invalid)
= { M2 and D5 and Y3 } (Month is valid, Day is invalid and Year is invalid)
= { M2 and D5 and Y4 } (Month is valid, Day is invalid and Year is invalid)

I100
I101
I102
I]03
I104

78 Software Testing

1

IIOS
I106
I107
I108
I109
IIlO
I1 1
I112
I113
I114
IIIS
I116
IIl7
I118
I119
I120

The test cases generated on the basis of input domain are given in Table 2.29.

= { M3 and D5 and Y3 } (Month is valid, Day is invalid and Year is invalid)
= { M3 and D5 and Y4 } (Month is valid, Day is invalid and Year is invalid)
= { Ml and D6 and Y3 } (Month is valid, Day is invalid and Year is invalid)
= { M1 and D6 and Y4 } (Month is valid, Day is invalid and Year is invalid)
= { M2 and D6 and Y3 } (Month is valid, Day is invalid and Year is invalid)
= { M2 and D6 and Y4 } (Month is valid, Day is invalid and Year is invalid)
= { M3 and D6 and Y3 } (Month is valid, Day is invalid and Year is invalid)
= { M3 and D6 and Y4 } (Month is valid, Day is invalid and Year is invalid)
= (M4 and D5 and Y3 } (All inputs are invalid)
= { M4 and D5 and Y4 } (All inputs are invalid)
= { M4 and D6 and Y3 } (All inputs are invalid)
= { M4 and D6 and Y4 } (All inputs are invalid)
= { M5 and D5 and Y3 } (All inputs are invalid)
= { M5 and D5 and Y4 } (All inputs are invalid)
= { M5 and D6 and Y3 } (All inputs are invalid)
= { M5 and D6 and Y4 } (All inputs are invalid)

Table 2.29. Input domain equivalence class test cases

Test Case month day year Expected Output
I 6 15 1979 Friday

I, 5 15 1979 Tuesday

I 2 15 1979 Thursday

l, 6 29 1979 Friday

I 5 29 1979 Tuesday

I 2 29 1979 Invalid Date
I, 6 30 1979 Saturday

Ig 5 30 1979 Wednesday
Iy 2 30 1979 Invalid Date
Lo 6 31 1979 Invalid Date
Iy 5 31 1979 Thursday
I, 2 31 1979 Invalid Date
ls 6 15 2000 Thursday
(A 5 15 2000 Monday

Lis 2 15 2000 Tuesday

L 6 29 2000 Thursday
I, 5 29 2000 Monday

Le 2 29 2000 Tuesday

Lo 6 30 2000 Friday

Lo 5 30 2000 Tuesday

I, 2 30 2000 Invalid date
|, 6 31 2000 Invalid date

(Contd.)

Functional Testing 79

(Contd.)
Test Case month day year Expected Output
I 5 31 2000 Wednesday
L, 2 31 2000 Invalid date
lg 0 15 1979 Input(s) out of range
Lg 13 15 1979 Input(s) out of range
I, 0 29 1979 Inputs(s) out of range
g 13 29 1979 Input(s) out of range
Lo 0 30 1979 Input(s) out of range
(IS 13 30 1979 Input(s) out of range
[0 31 1979 Input(s) out of range
I, 13 31 1979 Input(s) out of range
(IS 0 15 2000 Input(s) out of range
I, 13 15 2000 Input(s) out of range
I 0 29 2000 Input(s) out of range
I 13 29 2000 Input(s) out of range
Iy, 0 30 2000 Input(s) out of range
lg 13 30 2000 Input(s) out of range
I 0 31 2000 Input(s) out of range
[13 31 2000 Input(s) out of range
Iy 6 0 1979 Input(s) out of range
Iy 6 32 1979 Input(s) out of range
l,s 5 0 1979 Input(s) out of range
L 5 32 1979 Input(s) out of range
ls 2 0 1979 Input(s) out of range
lis 2 32 1979 Input(s) out of range
l,; 6 0 2000 Input(s) out of range
ls 6 32 2000 Input(s) out of range
Lo 5 0 2000 Input(s) out of range
[5 32 2000 Input(s) out of range
(1 2 0 2000 Input(s) out of range
I, 2 32 2000 Input(s) out of range
I, 6 15 1899 Input(s) out of range
I, 6 15 2059 Input(s) out of range
I 5 15 1899 Input(s) out of range
I 5 15 2059 Input(s) out of range
I, 2 15 1899 Input(s) out of range
lg 2 15 2059 Input(s) out of range
I 6 29 1899 Input(s) out of range
leo 6 29 2059 Input(s) out of range
Iy 5 29 1899 Input(s) out of range
les 5 29 2059 Input(s) out of range
les 2 29 1899 Input(s) out of range
les 2 29 2059 Input(s) out of range
les 6 30 1899 Input(s) out of range
les 6 30 2059 Input(s) out of range
le, 5 30 1899 Input(s) out of range
les 5 30 2059 Input(s) out of range

(Contd.)

80 Software Testing

(Contd.)

Test Case month day year Expected Output

leo 2 30 1899 Input(s) out of range
[2 30 2059 Input(s) out of range
[6 31 1899 Input(s) out of range
I, 6 31 2059 Input(s) out of range
[5 31 1899 Input(s) out of range
I, 5 31 2059 Input(s) out of range
(. 2 31 1899 Input(s) out of range
le 2 31 2059 Input(s) out of range
I, 0 0 1979 Input(s) out of range
lg 0 0 2000 Input(s) out of range
[0 32 1979 Input(s) out of range
leo 0 32 2000 Input(s) out of range
Iy 13 0 1979 Input(s) out of range
g, 13 0 2000 Input(s) out of range
les 13 32 1979 Input(s) out of range
e, 13 32 2000 Input(s) out of range
les 0 15 1899 Input(s) out of range
leo 0 15 2059 Input(s) out of range
g, 0 20 1899 Input(s) out of range
log 0 29 2059 Input(s) out of range
leo 0 30 1899 Input(s) out of range
loo 0 30 2059 Input(s) out of range
loy 0 31 1899 Input(s) out of range
o, 0 31 2059 Input(s) out of range
los 13 15 1899 Input(s) out of range
lo, 13 15 2059 Input(s) out of range
los 13 29 1899 Input(s) out of range
log 13 29 2059 Input(s) out of range
los 13 30 1899 Input(s) out of range
log 13 30 2059 Input(s) out of range
log 13 31 1899 Input(s) out of range
Lioo 13 31 2059 Input(s) out of range
Lios 5 0 1899 Input(s) out of range
Lios 5 0 2059 Input(s) out of range
Lios 6 0 1899 Input(s) out of range
Lios 6 0 2059 Input(s) out of range
Lios 2 0 1899 Input(s) out of range
Lios 2 0 2059 Input(s) out of range
Lor 5 32 1899 Input(s) out of range
Los 5 32 2059 Input(s) out of range
Lioo 6 32 1899 Input(s) out of range
Lo 6 32 2059 Input(s) out of range
L 2 32 1899 Input(s) out of range
liss 2 32 2059 Input(s) out of range
liis 0 0 1899 Input(s) out of range
114 0 0 2059 Input(s) out of range

(Contd.)

Functional Testing 81

(Contd.)

Test Case month day year Expected Output

liis 0 32 1899 Input(s) out of range
L6 0 32 2059 Input(s) out of range
[13 0 1899 Input(s) out of range
lis 13 0 2059 Input(s) out of range
Lo 13 32 1899 Input(s) out of range
I 13 32 2059 Input(s) out of range

Hence, the total number of equivalence class test cases are 120 (input domain) + 9 (output
domain) which is equal to 129. However, most of the outputs are ‘Input out of range’ and may
not offer any value addition. This situation occurs when we choose more numbers of invalid
equivalence classes.

It is clear that if the number of valid partitions of input domain increases, then the number
of test cases increases very significantly and is equal to the product of the number of partitions
of each input variable. In this example, there are 5 partitions of input variable ‘month’, 6
partitions of input variable ‘day’ and 4 partitions of input variable ‘year’ and thus leading to
5x6x4 = 120 equivalence classes of input domain.

2.3 DECISION TABLE BASED TESTING

Decision tables are used in many engineering disciplines to represent complex logical
relationships. An output may be dependent on many input conditions and decision tables give
a pictorial view of various combinations of input conditions. There are four portions of the
decision table and are shown in Table 2.30. The decision table provides a set of conditions and
their corresponding actions.

Table 2.30. Decision table

Stubs Entries Four Portions

c 1. Condition Stubs
Condition ci 2. Condition Entries

c, 3. Action Stubs

a 4. Action Entries

1
Action a,

a3

a,

2.3.1 Parts of the Decision Table

The four parts of the decision table are given as:

Condition Stubs: All the conditions are represented in this upper left section of the decision
table. These conditions are used to determine a particular action or set of actions.
Action Stubs: All possible actions are listed in this lower left portion of the decision table.

Condition Entries: In the condition entries portion of the decision table, we have a number
of columns and each column represents a rule. Values entered in this upper right portion of the
table are known as inputs.

82 Software Testing

Action Entries: Each entry in the action entries portion has some associated action or set of
actions in this lower right portion of the table. These values are known as outputs and are
dependent upon the functionality of the program.

2.3.2 Limited Entry and Extended Entry Decision Tables

Decision table testing technique is used to design a complete set of test cases without using the
internal structure of the program. Every column is associated with a rule and generates a test
case. A typical decision table is given in Table 2.31.

Table 2.31. Typical structure of a decision table

Stubs R, R, R, R,
c, F T T T
c, - F T T
C, - - F T
a, X X X
a, X

a, X

In Table 2.31, input values are only True (T) or False (F), which are binary conditions. The
decision tables which use only binary conditions are known as limited entry decision tables.
The decision tables which use multiple conditions where a condition may have many
possibilities instead of only ‘true’ and ‘false’ are known as extended entry decision tables
[COPEO4].

2.3.3 ‘Do Not Care’ Conditions and Rule Count

We consider the program for the classification of the triangle as explained in example 2.3. The
decision table of the program is given in Table 2.32, where inputs are depicted using binary
values.

Table 2.32. Decision table for triangle problem

csa<b+c? F T T T T T T T T T T
c,,b<c+a? - F T T T T T T T T T
cic<a+hb? - - F T T T T T T T T
Condition c,:a®=Db?+c>? - - - T T T T F F F F
c.:a’>b?+c?? - - - T T F F T T F F
Cer A, < bz +C,? - - - T F T F T F T F
Rule Count 32 16 8 1 1 1 1 17 1 1 1
a, ! Invalid triangle X X X
a, : Right angled triangle X
Action a,: Obtuse angled triangle X
a, : Acute angled triangle X
a5 : Impossible X X X X X

Functional Testing 83

The ‘do not care’ conditions are represented by the ‘-‘sign. A ‘do not care’ condition has no
effect on the output. If we refer to column 1 of the decision table, where condition ¢ : a <b +
c is false, then other entries become ‘do not care’ entries. If ¢, is false, the output will be
‘Invalid triangle’ irrespective of any state (true or false) of other conditions like ¢,, ¢,, ¢,, ¢,
and c,. These conditions become do not care conditions and are represented by ‘-‘sign. If we
do not do so and represent all true and false entries of every condition, the number of columns
in the decision table will unnecessarily increase. This is nothing but a representation facility in
the decision table to reduce the number of columns and avoid redundancy. Ideally, each
column has one rule and that leads to a test case. A column in the entry portion of the table is
known as a rule. In the Table 2.32, a term is used as ‘rule count’ and 32 is mentioned in column
1. The term ‘rule count’ is used with ‘do not care’ entries in the decision table and has a value
1, if “do not care’ conditions are not there, but it doubles for every ‘do not care’ entry. Hence
each ‘do not care’ condition counts for two rules. Rule count can be calculated as:

Rule count = 2 number of do not care conditions

However, this is applicable only for limited entry decision tables where only ‘true’ and
‘false’ conditions are considered. Hence, the actual number of columns in any decision table
is the sum of the rule counts of every column shown in the decision table. The triangle
classification decision table has 11 columns as shown in Table 2.32. However the actual
columns are a sum of rule counts and are equal to 64. Hence, this way of representation has
reduced the number of columns from 64 to 11 without compromising any information. If rule
count value of the decision table does not equal to the number of rules computed by the
program, then the decision table is incomplete and needs revision.

2.3.4 Impossible Conditions

Decision tables are very popular for the generation of test cases. Sometimes, we may have to
make a few attempts to reach the final solution. Some impossible conditions are also generated
due to combinations of various inputs and an ‘impossible’ action is incorporated in the ‘action
stub’ to show such a condition. We may have to redesign the input classes to reduce the
impossible actions. Redundancy and inconsistency may create problems but may be reduced
by proper designing of input classes depending upon the functionality of a program.

2.3.5 Applicability

Decision tables are popular in circumstances where an output is dependent on many conditions
and a large number of decisions are required to be taken. They may also incorporate complex
business rules and use them to design test cases. Every column of the decision table generates
a test case. As the size of the program increases, handling of decision tables becomes difficult
and cumbersome. In practice, they can be applied easily at unit level only. System testing and
integration testing may not find its effective applications.

Example 2.13: Consider the problem for determining of the largest amongst three numbers as
given in example 2.1. Identify the test cases using the decision table based testing.

Solution: The decision table is given in Table 2.33.

84 Software Testing

Table 2.33. Decision table

Cix>=1? F T T T T T T T T T 7T T T T
c,: x <= 3007 - F T T T T T T T T 7T T T T
ciy>=1? - - F T T T T T T T 7T T T T
c,:y <= 3007 - - - F T T T T T T 7T T T T
ciz>=1? - - - - F T T T T T 7T T T T
¢, z <= 3007 - - - - - F T T T T 7T T T T
Cix>y? - - - - - - T T T T F F F F
Cg y>2? - - - - - - T T F F T T F F
Co: 2>X? - - - - - - T F T F T F T F
Rule Count 256 128 64 32 16 8 1 1 1 1 1 1 1 1
a, tInvalid input X X X X X X
a,:xis largest X X
a,:yis largest X X
a,:zis largest X X
35 : Impossible X X
Table 2.34. Test cases of the given problem

Test Case X y z Expected Output

1. 0 50 50 Invalid marks

2. 301 50 50 Invalid marks

3. 50 0 50 Invalid marks

4. 50 301 50 Invalid marks

5. 50 50 0 Invalid marks

6. 50 50 301 Invalid marks

7. ? ? ? Impossible

8. 150 130 110 150

9. 150 130 170 170

10. 150 130 140 150

11. 110 150 140 150

12. 140 150 120 150

13. 120 140 150 150

14. ? ? ? Impossible

Example 2.14: Consider the problem for determining the division of the student in example
2.2. Identify the test cases using the decision table based testing.

Solution: This problem can be solved using either limited entry decision table or extended
entry decision table. The effectiveness of any solution is dependent upon the creation of
various conditions. The limited entry decision table is given in Table 2.35 and its associated
test cases are given in Table 2.36. The impossible inputs are shown by ‘?” as given in test cases
8,9,10, 12, 13, 14, 16, 17, 19 and 22. There are 11 impossible test cases out of 22 test cases

which is a very large number and compel us to look for other solutions.

Functional Testing 85

a|qissodu] : ‘e

9

lled:

UoISIAIP pAIyL :

14

UOISIAID puooas : e

uolIsIAIp 1814 : fe
uonodunsip

UUM UOISIAID ISi14 : e
syJew pijeau) : ‘e

ce

9

8¢T

9s¢

c1s

140}

UNoY 9Ny

1

E|

$GLz8ne: o
yLs8res9: o
¢ 6Gs8hes 0g: %
Lerssresop:®

i B6ESS8NeS Q!
00T = > iew :
0 =<oew:
¢ 00T = > ppew:
0 =<oew:
& 00T = > Tew:

L0 =<THew:

[44

14

(114

6T

8T

LT

9T

ST

143

€T

(41

T

oT

[4

T

suopipuog

a|qe} uolsIoap A1ua pauwir "GE°Z alqelL

86 Software Testing

There are 22 test cases corresponding to each column in the decision table. The test cases are
given in Table 2.36.

Table 2.36. Test cases of the given problem
Test Case markl mark2 mark3 Expected Output
1. -1 50 50 Invalid marks
2. 101 50 50 Invalid marks
3. 50 -1 50 Invalid marks
4. 50 101 50 Invalid marks
5. 50 50 -1 Invalid marks
6. 50 50 101 Invalid marks
7. ? ? ? Impossible
8. ? ? ? Impossible
9. ? ? ? Impossible
10 ? ? ? Impossible
11. 25 25 25 Fail
12. ? ? ? Impossible
13. ? ? ? Impossible
14. ? ? ? Impossible
15. 45 45 45 Third division
16. ? ? ? Impossible
17. ? ? ? Impossible
18. 55 55 55 Second division
19. ? ? ? Impossible
20. 65 65 65 First division
21. 80 80 80 First division with distinction
22. ? ? ? Impossible

The input domain may be partitioned into the following equivalence classes:
= {Al:0<markl <100}

= { A2 :markl <0}

= { A3 : markl > 100 }

= {B1:0<mark2 <100}

Functional Testing 87

I.= {B2:mark2 <0}

I = {B3:mark2 > 100}
L= {Cl:0<mark3 <100}
L= {C2:mark3 <0}

I, = {C3:mark3>100}

[= {Dl:0<avg<39}
= {D2:40<avg<49}
[,={D3:50<avg<59}
[,= {D4:60<avg<74}
{D5:avg>75}

laml
Il

The extended entry decision table is given in Table 2.37.

Table 2.37. Extended entry decision table
Conditions 1 2 3 4 5 6 7 8 9 10 11
c, - marklin A1l A1 A1 A1 A1 A1 A1 A1 A1 A2 A3
c,:mark 2in B1I B1 B1 B1 B1 Bl Bl B2 B3 - -
¢, : mark3in cT €1 c1 Cc1 Cc1 C2 C3 - - - -
c,ravgin D1 D2 D3 D4 D5 - - - - - -
Rule Count 1 1 1 1 1 5 5 15 15 45 45
a,: Invalid Marks X X X X X X
a,: First Division with X

Distinction

a,: First Division X
a,: Second Division X
a,: Third Division X
a,: Fail X

Here 2numbers of do not care conditions formy]a cannot be applied because this is an extended entry
decision table where multiple conditions are used. We have made equivalence classes for
mark1, mark2, mark3 and average value. In column 6, rule count is 5 because “average value”
is ‘do not care’ otherwise the following combinations should have been shown:

Al, B1, C2, D1

Al, B1, C2,D2
Al, B1, C2,D3

88 Software Testing

Al, B1, C2, D4
Al, B1,C2, D5

These five combinations have been replaced by a ‘do not care’ condition for average value
(D) and the result is shown as A1, B1, C2, —. Hence, rule count for extended decision table is
given as:

Rule count = Cartesian product of number of equivalence classes of entries having ‘do not
care’ conditions.
The test cases are given in Table 2.38. There are 11 test cases as compared to 22 test cases
given in Table 2.36.

Table 2.38. Test cases of the given problem
Test Case markl mark2 mark3 Expected Output
1. 25 25 25 Fail
2. 45 45 45 Third Division
3. 55 55 55 Second Division
4. 65 65 65 First Division
5. 80 80 80 First Division with Distinction
6. 50 50 - Invalid marks
7. 50 50 101 Invalid marks
8. 50 - 50 Invalid marks
9. 50 101 50 Invalid marks
10. - 50 50 Invalid marks
11. 101 50 50 Invalid marks

Example 2.15: Consider the program for classification of a triangle in example 2.3. Design
the test cases using decision table based testing.

Solution: We may also choose conditions which include an invalid range of input domain, but
this will increase the size of the decision table as shown in Table 2.39. We add an action to
show that the inputs are out of range.

The decision table is given in Table 2.39 and has the corresponding test cases that are given
in Table 2.40. The number of test cases is equal to the number of columns in the decision table.
Hence, 17 test cases can be generated.

In the decision table given in Table 2.39, we assumed that ‘a’ is the longest side. This time
we do not make this assumption and take all the possible conditions into consideration i.e. any
of the sides ‘a’, ‘b’ or ‘c’ can be longest. It has 31 rules as compared to the 17 given in Table
2.40. The full decision table is given in Table 2.41. The corresponding 55 test cases are given
in Table 2.42.

Functional Testing 89

X

X

o|qissodw : “e

9|3uel pajgue anoy : e
9|3ueu pajdue asnyqQ : e
9|3uel pajsue ysiy : e
a3uel Jo 1no (s)induj : ‘e

a|guel pijeau; : e

1

-l

<~

i

9T

9

8¢T

[4%°}

1449)"

80T

1uno) a|ny

H - F + F F F L LW

H - + F + F F L ouw |

H F F F F + + F L — W

H F F F + + + WL +— +|d

H F + + + + + L W

H - F F + F + F b |+

H - F F F F + + +— W

H - F + F + + + |+

$g9+:0 > ;& 7o
$0+.0 < &'
éd+0 =280
00T =>9:0
0<%
00T =>0Q:9
0<q:%
00T =>e:%
i0<e:’
ig+e>0:%
$e+0>q %

$o+g>e o

~
-l

©
L3

[T;]
L5

<
-

™
L

N
L

L)
L]

[=]
L2

ol - + + + +— W

Ol - + + F W

L I e i R o T

ol - - + +

Wl - - +— uw

|- - - w0

Ol - w

suopipuoy

a|qe} uoisioaq “6€°Z alqelL

90 Software Testing

Table 2.40. Test cases

Test Case a b c Expected Output
1. 90 40 40 Invalid Triangle
2. 40 90 40 Invalid Triangle
3. 40 40 90 Invalid Triangle
4. 0 50 50 Input(s) out of Range
5. 101 50 50 Input(s) out of Range
6. 50 0 50 Input(s) out of Range
1. 50 101 50 Input(s) out of Range
8. 50 50 0 Input(s) out of Range
9. 50 50 101 Input(s) out of Range
10. ? ? ? Impossible
11. ? ? ? Impossible
12. ? ? ? Impossible
13. 50 40 30 Right Angled Triangle
14. ? ? ? Impossible
15. 57 40 40 Obtuse Angled Triangle
16. 50 49 49 Acute Angled Triangle
17. ? ? ? Impossible
Table 2.41. Modified decision table

Conditions 1 2 3 4 5 6 7 8 9 10 11
c,:a < b+c? F T T T T T T T T T T
c, b <c+a? - F T T T T T T T T T
C,: C<a+b? - - F T T T T T T T T
¢, a>0? - - - F T T T T T T T
c,:a <=1007? - - - - F T T T T T T
Cg: b >0? - - - - - F T T T T T
¢ b <=100? - - - - - _ F T T T T
cg:c>07? - - - - - - - F T T T
C,: € <=1007? - - - - - - - F T T
C,, @ = b*+c?? - - - - - - - - - T T
c,,: b? = c*+a*? - - - - - - - . T F
C,,i €% = a2+b?? - - - - - - - - - - T
C,q: @° > b?+c?? - - - - - - - - - - -
C,,: b? > c*+a*? - - - - - - - - - - -
C,.: % > a+bh?? - - - - - - - - - -
Rule Count 16384 8192 4096 2048 1024 512 256 128 64 16 8
a, : Invalid triangle X X X
a, : Input(s) out of X X X X X X

range
a, : Right angled

triangle
a, : Obtuse angled

triangle
a, : Acute angled

triangle
a_ : Impossible X X

(Contd.)

Functional Testing 91

(Contd.)

Conditions 12 13 14 15 16 17 18 19 20 21 22 23 24
c,:a<b+c? T T T T T T T T T T T T T
c,: b <c+a? T T T T T T T T T T T T T
C,:C<ath? T T T T T T T T T T T T T
c,;a>0? T T T T T T T T T T T T T
c,: a <= 1007 T T T T T T T T T T T T T
Cs b >0? T T T T T T T T T T T T T
¢, b <=1007? T T T T T T T T T T T T T
Cg:C>07? T T T T T T T T T T T T T
C,: ¢ <=1007? T T T T T T T T T T T T T
c,,: @’ = b?+c*? T T T T F F F F F F F F F
c,,: b?=c*+a*? F F F F T T T T T F F F F
C,,: €% = a*+h*? F F F F T F F F F T T T T
C,.: @ > b*+c*? T F F F - T F F F T F F F
c,,: b? > c*+a®? - T F F - - T F T - T F F
C . C* > a*+bh?? - - T F - - - T F - - T F
Rule Count 4 2 1 1 8 4 2 1 1 4 2 1 1
a, : Invalid triangle
a, : Input(s) out of

range
a,: Rl.ght angled X X X

triangle
a, : Obtuse angled

triangle
a, : Acute angled

triangle
a, : Impossible X X X X X X X X X X
Conditions 25 26 27 28 29 30 31
c,:a<b+c? T T T T T T T
c,: b <c+a? T T T T T T T
C,: ¢ <atb? T T T T T T T
c,;a>0? T T T T T T T
c,:a <=1007? T T T T T T T
Cs: b >0? T T T T T T T
¢ b <=1007? T T T T T T T
Cg:C>07? T T T T T T T
¢, ¢ <=100? T T T T T T T
c,,: @’ = b?+c*? F F F F F F F
c,,: b? =c*+a*? F F F F F F F
C,, C* = a*+h*? F F F F F F F

(Contd.)

92 Software Testing

(Contd.)
Conditions 25 26 27 28 29 30 31
C g @° > b?+c?? T T T F F F F
c,,: b? > c?+a?? T F F T T F F
C,,: C* > a’+b?? - T F T F T F
Rule Count 2 1 1 1 1 1 1
a, : Invalid triangle
a, : Input(s) out of range
a, : Right angled triangle
a, : Obtuse angled triangle X X X
a, : Acute angled triangle X
a_ : Impossible X X X

The table has 31 columns (total = 32768)

Table 2.42. Test cases of the decision table given in table 2.41

Test Case a b c Expected Output

1. 90 40 40 Invalid Triangle

2. 40 90 40 Invalid Triangle

3. 40 40 90 Invalid Triangle

4. 0 50 50 Input(s) out of Range
5. 101 50 50 Input(s) out of Range
6. 50 0 50 Input(s) out of Range
7. 50 101 50 Input(s) out of Range
8. 50 50 0 Input(s) out of Range
9. 50 50 101 Input(s) out of Range
10. ? ? ? Impossible

11. ? ? ? Impossible

12 ? ? ? Impossible

13. ? ? ? Impossible

14. ? ? ? Impossible

15. 50 40 30 Right Angled Triangle
16. ? ? ? Impossible

17. ? ? ? Impossible

18. ? ? ? Impossible

19. ? ? ? Impossible

20. 40 50 30 Right Angled Triangle

(Contd.)

Functional Testing 93

(Contd.)
Test Case a b c Expected Output
21. ? ? ? Impossible
22. ? ? ? Impossible
23. ? ? ? Impossible
24. 40 30 50 Right Angled Triangle
25. ? ? ? Impossible
26. ? ? ? Impossible
27. 57 40 40 Obtuse Angled Triangle
28. ? ? ? Impossible
29. 40 57 40 Obtuse Angled Triangle
30. 40 40 57 Obtuse Angled Triangle
31. 50 49 49 Acute Angled Triangle

Example 2.16: Consider a program for the determination of day of the week specified in
example 2.4. Identify the test cases using decision table based testing.

Solution: The input domain can be divided into the following classes:
[, = { M1 : month has 30 days }

L= { M2 : month has 31 days }

I, = { M3 : month is February }

I[,= { M4 : month <1 }

I.= { M5 :month>12}

I = {Dl:1<Day<28}

L= {D2:Day=29}

I,= {D3:Day=30}

I[,= {D4:Day=31}

[= {D5:Day<1}

I = {D6:Day>31}

= {Y1:1900 < Year <2058 and is a common year }
I[,= {Y2:1900 < Year <2058 and is a leap year }

I,: {Y3:Year <1900 }

I.: {Y4:year>2058}

94 Software Testing

X X X X X X X X X X X X a8uel Jo o Induj : e

X X)oom ay) Jo Aeq : ‘e
X X X X X a1eq pijeau] :'e
144 144 T T T T T T T T T T T T T T T T T unod sIny
- - - - A €A CA TA A €A CA TA YA €A CA TA A €A CA Ul SJesA : %o
- - 9d @ ¥a v ¥4 vAd €ad ¢€ad ¢€a ¢€d cda cd [4d] cd TA TA T4 ursfeq : e
SN PIN €SN €N EN EN EN EN €N €SN €N EN €N EN €N €N €SN €N EN ul SYJuoA : "o
99 L1 T 2] €S ¢S TS 0s 6 8t vy 9% Sv v € ¢ TYr O 6€ 8€ ase) 1s9L
X X X X X X X X X X @8ues jonoindu: *e
X X X X X X X Yoam a3 Jo Aeq : ‘e
aleq pljeau] : ‘e
T 14 174 T T T T T T T T T T T T T T unog 9Ny
TA - - A €A CA TA A €A CA TA A €A CA TA A €A Ul SleaA : K
Td od aa 144 144 144 144 €d €da €d €da cd [44] cd [44] Td Td ur sfeq :)
€N CIN cN CIN cN CIN cN CIN cN CIN cN CIN cN CIN cN CIN cN ul SYJUOA - *o
LE 9¢€ g€ e €€ (4 T€ 0€ 6¢C 8¢ LC 9¢ 14 144 €¢C (44 TC ase) 1s9L
aduel
X X X X X X X X X X 4010 Indu : e
yoom
X X X X X X X X auy J0 feq : 2
X X aleq pljeau; : e
T T 174 174 T T T T T T T T T T T T T T T T unoy sny
CA TA - - YA €A CA TA YA €A CA TA YA €A CA TA A €A CA TA Ul SleaA ©)
Ta 7 90 <A v v v ¥ €ad €ad €a €ad ¢ad ¢ca ¢ca c¢ca Ta Ta Ta 1da ur skeq : %o
¢cN N TN TW TN TW TN TN TW TN TW TN TW TWN TN TW TN TW TN T ul SYIUoA)
0c 6T 8T LT 9T ST VT €T ¢t TT OT 6 8 L 9 S 4 € [4 T ase) s

d|qe) uolsidoaq "ev'e alqel

P17 9[qBL UI UDAIS 9Je S9sed 159} Surpuodsariod oy} pue ¢ ¢ 9[qe], Ul USAIS SI 9[qe)} UOISIOIP A,

Functional Testing 95

Table 2.44. Test cases of the program day of the week

Test Case month day year Expected Output
1. 6 15 1979 Friday

2. 6 15 2000 Thursday

3. 6 15 1899 Input out of range
4, 6 15 2059 Input out of range
5. 6 29 1979 Friday

6. 6 29 2000 Thursday

7. 6 29 1899 Input out of range
8. 6 29 2059 Input out of range
9. 6 30 1979 Saturday

10. 6 30 2000 Friday

11. 6 30 1899 Input out of range
12. 6 30 2059 Input out of range
13. 6 31 1979 Invalid date

14. 6 31 2000 Invalid date

15. 6 31 1899 Input out of range
16. 6 31 2059 Input out of range
17. 6 0 1979 Input out of range
18. 6 32 1979 Input out of range
19. 5 15 1979 Tuesday

20. 5 15 2000 Monday

21. 5 15 1899 Input out of range
22. 5 15 2059 Input out of range
23. 5 29 1979 Tuesday

24. 5 29 2000 Monday

25. 5 29 1899 Input out of range
26. 5 29 2059 Input out of range
27. 5 30 1979 Wednesday

28. 5 30 2000 Tuesday

29. 5 30 1899 Input out of range
30. 5 30 2059 Input out of range
31. 5 31 1979 Thursday

32. 5 31 2000 Wednesday

33. 5 31 1899 Input out of range
34. 5 31 2059 Input out of range
35. 5 0 1979 Input out of range
36. 5 32 1979 Input out of range
37. 2 15 1979 Thursday

38. 2 15 2000 Tuesday

39. 2 15 1899 Input out of range
40. 2 15 2059 Input out of range
41. 2 29 1979 Invalid date

42, 2 29 2000 Tuesday

43. 2 29 1899 Input out of range
44. 2 29 2059 Input out of range
45, 2 30 1979 Invalid date

(Contd.)

96 Software Testing

(Contd.)
Test Case month day year Expected Output
46. 2 30 2000 Invalid date
47. 2 30 1899 Input out of range
48. 2 30 2059 Input out of range
49. 2 31 1979 Invalid date
50. 2 31 2000 Invalid date
51. 2 31 1899 Input out of range
52. 2 31 2059 Input out of range
53. 2 0 1979 Input out of range
54, 2 32 1979 Input out of range
55. 0 0 1899 Input out of range
56. 13 32 1899 Input out of range

The product of number of partitions of each input variable (or equivalence classes) is 120.
The decision table has 56 columns and 56 corresponding test cases are shown in Table 2.44.

2.4 CAUSE-EFFECT GRAPHING TECHNIQUE

This technique is a popular technique for small programs and considers the combinations of
various inputs which were not available in earlier discussed techniques like boundary value
analysis and equivalence class testing. Such techniques do not allow combinations of inputs
and consider all inputs as independent inputs. Two new terms are used here and these are
causes and effects, which are nothing but inputs and outputs respectively. The steps for the
generation of test cases are given in Figure 2.11.

Identification of all
causes and effects

Design the
cause-effect graph

\ 4

Apply constraints, if any

\ 4

Design limited entry
decision table from graph

\ 4
Write test cases using
every column of the
decision table

Figure 2.11. Steps for the generation of test cases

Functional Testing 97
2.4.1 ldentification of Causes and Effects

The SRS document is used for the identification of causes and effects. Causes which are inputs
to the program and effects which are outputs of the program can easily be identified after
reading the SRS document. A list is prepared for all causes and effects.

2.4.2 Design of Cause-Effect Graph

The relationship amongst causes and effects are established using cause-effect graph. The basic
notations of the graph are shown in Figure 2.12.

() ()
. Identity ' A '9 ‘ 'T . v ’e
AND OR
() ()

Figure 2.12. Basic notations used in cause-effect graph

In Figure 2.12, each node represents either true (present) or false (absent) state and may be
assigned 1 and 0 value respectively. The purpose of four functions is given as:

(a) Identity: This function states that if ¢ is 1, then e is 1; else €, is 0.

(b) NOT: This function states that if ¢ is 1, then e is 0; else ¢ is 1.

(c) AND: This function states that if both ¢, and c, are 1, then e is 1; else e, is 0.
(d) OR: This function states that if either ¢ orc,is 1, then e, is I; else ¢, is 0.

The AND and OR functions are allowed to have any number of inputs.

2.4.3 Use of Constraints in Cause-Effect Graph

There may be a number of causes (inputs) in any program. We may like to explore the
relationships amongst the causes and this process may lead to some impossible combinations
of causes. Such impossible combinations or situations are represented by constraint symbols
which are given in Figure 2.13.

The purpose of all five constraint symbols is given as:

(a) Exclusive
The Exclusive (E) constraint states that at most one of ¢, or ¢, can be 1 (¢, or ¢, cannot
be 1 simultaneously). However, both ¢, and c, can be 0 simultaneously.

(b) Inclusive
The Inclusive (I) constraints states that at least one of ¢, or ¢, must always be 1. Hence,
both cannot be 0 simultaneously. However, both can be 1.

(¢) One and Only One
The one and only one (O) constraint states that one and only one of ¢, and ¢, must be 1.

98 Software Testing

Exclusive Inclusive

RO
©

Ri Y
ol
@ (OO
One and only one Requires Masks

Figure 2.13. Constraint symbols for any cause-effect graph

(d) Requires
The requires (R) constraint states that for ¢, to be 1, ¢, must be 1; it is impossible for
c,tobe lifc,isO.

(e) Mask
This constraint is applicable at the effect side of the cause-effect graph. This states that
if effect e, is 1, effect ¢, is forced to be 0.

These five constraint symbols can be applied to a cause-effect graph depending upon the
relationships amongst causes (a, b, ¢ and d) and effects (e). They help us to represent real life
situations in the cause-effect graph.

Consider the example of keeping the record of marital status and number of children of a
citizen. The value of marital status must be ‘U’ or ‘M’. The value of the number of children
must be digit or null in case a citizen is unmarried. If the information entered by the user is
correct then an update is made. If the value of marital status of the citizen is incorrect, then the
error message 1 is issued. Similarly, if the value of number of children is incorrect, then the
error message 2 is issued.

The causes are:

c,: marital status is ‘U’

c,: marital status is ‘M’
c,: number of children is a digit

and the effects are:
¢,: updation made

e, error message 1 is issued

e, error message 2 is issued

Functional Testing 99

The cause-effect graph is shown in Figure 2.14. There are two constraints exclusive
(between ¢, and c,) and requires (between ¢, and c,), which are placed at appropriate places in
the graph. Causes ¢, and c, cannot occur simultaneously and for cause c, to be true, cause c,
has to be true. However, there is no mask constraint in this graph.

Figure 2.14. Example of cause-effect graph with exclusive (constraint) and requires constraint

2.4.4 Design of Limited Entry Decision Table

The cause-effect graph represents the relationships amongst the causes and effects. This graph
may also help us to understand the various conditions/combinations amongst the causes and
effects. These conditions/combinations are converted into the limited entry decision table.
Each column of the table represents a test case.

2.4.5 Writing of Test Cases

Each column of the decision table represents a rule and gives us a test case. We may reduce
the number of columns with the proper selection of various conditions and expected actions.

2.4.6 Applicability

Cause-effect graphing is a systematic method for generating test cases. It considers dependency
of inputs using some constraints.

This technique is effective only for small programs because, as the size of the program
increases, the number of causes and effects also increases and thus complexity of the cause-
effect graph increases. For large-sized programs, a tool may help us to design the cause-effect
graph with the minimum possible complexity.

It has very limited applications in unit testing and hardly any application in integration
testing and system testing.

Example 2.17: A tourist of age greater than 21 years and having a clean driving record is
supplied a rental car. A premium amount is also charged if the tourist is on business, otherwise
it is not charged.

If the tourist is less than 21 year old, or does not have a clean driving record, the system will
display the following message:
“Car cannot be supplied”
Draw the cause-effect graph and generate test cases.

100 Software Testing

Solution: The causes are

c,: Ageis over 21
¢,: Driving record is clean

c,: Tourist is on business

and effects are

e,: Supply a rental car without premium charge.
¢,: Supply a rental car with premium charge

e,: Car cannot be supplied

The cause-effect graph is shown in Figure 2.15 and decision table is shown in Table 2.45. The
test cases for the problem are given in Table 2.46.

Figure 2.15. Cause-effect graph of rental car problem

Table 2.45. Decision table of rental car problem

Conditions 1 2 3 4
c,:Over21? F T T T
¢, : Driving record clean ? - F T T
¢, : On Business ? - - F T
e, : Supply a rental car without premium charge X
e, : Supply a rental car with premium charge X
e, : Car cannot be supplied X X

Table 2.46. Test cases of the given decision table
Test Case Age Driving_record_clean = On_business Expected Output
1. 20 Yes Yes Car cannot be supplied
2. 26 No Yes Car cannot be supplied

Supply a rental car without

3. 62 Yes No .
premium charge

Supply a rental car with pre-

4. 62 Yes Yes .
mium charge.

Example 2.18: Consider the triangle classification problem (‘a’ is the largest side) specified
in example 2.3. Draw the cause-effect graph and design decision table from it.

Solution:

Functional Testing 101

The causes are:

1

[

o o0 0O o0 0 0
(%

=N

W —

(AN CEN AN ¢ ¢
£

. side ‘a’ is less than the sum of sides ‘b’ and ‘c’.
, . side ‘b’ is less than the sum of sides ‘a’ and ‘c’.
: side ‘c’ is less than the sum of sides ‘a’ and ‘b’.
. square of side ‘a’ is equal to the sum of squares of sides ‘b’ and ‘c’.
: square of side ‘a’ is greater than the sum of squares of sides ‘b’ and ‘c’.

: square of side ‘a’ is less than the sum of squares of sides ‘b’ and ‘c’.

and effects are

: Invalid Triangle

: Right angle triangle

: Obtuse angled triangle
: Acute angled triangle

, - Impossible stage

The cause-effect graph is shown in Figure 2.16 and the decision table is shown in Table 2.47.

Table 2.47. Decision table
Conditions
c,:a<b+c 0 1 1 1 1 1 1 1 1 1 1
c,:b<atc X 0 1 1 1 1 1 1 1 1 1
c,:c<atb X X 0 1 1 1 1 1 1 1 1
¢, : a’=b+c? X X X 1 1 1 1 0 0 0 0
c, :a’>b+c? X X X 1 1 0 0 1 1 0 0
C, : a’<b?+c? X X X 1 0 1 0 1 0 1 0
e, : Invalid Triangle 1 1 1
e, : Right angled Triangle 1
e, : Obtuse angled triangle 1
e, : Acute angled triangle 1
€, : Impossible 1 1 1 1 1

Figure 2.16. Cause-effect graph of triangle classification problem

102 Software Testing

MULTIPLE CHOICE QUESTIONS

Note: Select the most appropriate answer for the following questions.

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

What is functional testing?

(f) Test cases are designed on the basis of internal structure of the source code.

(g) Test cases are designed on the basis of functionality, and internal structure of the
source code is completely ignored.

(h) Test cases are designed on the basis of functionality and internal structure of the
source code.

(1) Test cases are designed on the basis of pre-conditions and post-conditions.

Which of the following statement is correct?

(a) Functional testing is useful in every phase of the software development life cycle.

(b) Functional testing is more useful than static testing because execution of a program
gives more confidence.

(c) Reviews are one form of functional testing.

(d) Structural testing is more useful than functional testing.

Which of the following is not a form of functional testing?

(a) Boundary value analysis

(b) Equivalence class testing

(¢c) Data flow testing

(d) Decision table based testing

Functional testing is known as:

(a) Regression Testing

(b) Load Testing

(c) Behaviour Testing

(d) Structural Testing

For a function of ‘n’ variables, boundary value analysis generates:

(a) 8n+1 test cases

(b) 6n + 1 test cases

(¢) 2n+1 test cases

(d) 4n+1 test cases

For a function of 4 variables, boundary value analysis generates:

(a) 9 test cases

(b) 17 test cases

(c) 33 test cases

(d) 25 test cases

For a function of ‘n’ variables, robustness testing yields:

(a) 6n+ 1 test cases

(b) 8n+ 1 test cases

(¢) 2n+1 test cases

(d) 4n+1 test cases

For a function of ‘n’ variables, worst case testing generates:

(a) 6" test cases

(b) 4"+ 1 test cases

Functional Testing 103

(c) 5" test cases
(d) 6"+ 1 test cases
2.9 For a function of ‘n’ variables, robust worst case testing generates:
(a) 4" test cases
(b) 6" test cases
(c) 5" test cases
(d) 7" test cases
2.10 A software is designed to calculate taxes to be paid as per details given below:

(i) Upto Rs. 40,000 Tax free
(i) Next Rs. 15,000 : 10% tax
(ii1) Next Rs. 65,000 : 15% tax
(iv) Above this amount : 20% tax

Input to the software is the salary of an employee. Which of the following is a valid
boundary analysis test case?
(a) Rs. 40,000
(b) Rs. 65,000
(¢) Rs.1,20,000
(d) Rs. 80,000
2.11 ‘X’ is an input to a program to calculate the square of the given number. The range for
x” is from 1 to 100. In boundary value analysis, which are valid inputs?
(a) 1,2,50,100,101
(b) 1,2,99,100,101
() 1,2,50,99,100
(d) 0,1,2,99,100
2.12 ‘X’ is an input to a program to calculate the square of the given number. The range for
‘x” 1s from 1 to 100. In robustness testing, which are valid inputs?
(@ 0,1,2,50,99, 100, 101
(b) 0,1,2,3,99,100, 101
() 1,2,3,50,98,99, 100
(@ 1,2,50,99, 100
2.13 Functionality of a software is tested by:
(a) White box testing
(b) Black box testing
(c) Regression testing
(d) None of the above
2.14 One weakness of boundary value analysis is:
(a) It is not effective
(b) It does not explore combinations of inputs
(c) It explores combinations of inputs
(d) None of the above
2.15 Boundary value analysis technique is effective when inputs are:
(a) Dependent
(b) Independent
(c) Boolean
(d) None of the above

104 Software Testing

2.16 Equivalence class testing is related to:
(a) Mutation testing
(b) Data flow testing
(c) Functional testing
(d) Structural testing
2.17 In a room air-conditioner, when the temperature reaches 28°C, the cooling is switched
on. When the temperature falls to below 20°C, the cooling is switched off. What is the
minimum set of test input values (in degree centigrade) to cover all equivalence
classes?
(a) 20,22,26
(b) 19,22,24
(c) 19,24,26
(d) 19,24,29
2.18 If an input range is from 1 to 100, identify values from invalid equivalence classes.
(a) 0,101
(b) 10,101
(¢) 0,10
(d) None of the above
2.19 In an examination, the minimum passing marks is 50 out of 100 for each subject.
Identify valid equivalence class values, if a student clears the examination of all three
subjects.
(a) 40, 60,70
(b) 38,65,75
(c) 60,65, 100
(d) 49,50, 65
2.20 How many minimum test cases should be selected from an equivalence class?
(a) 2
(b) 3
(c) 1
(a 4
2.21 Decision tables are used in situations where:
(a) An action is initiated on the basis of a varying set of conditions
(b) No action is required under a varying set of conditions
(¢) A number of actions are taken under a varying set of conditions
(d) None of the above
2.22 How many portions are available in a decision table?
(a) 8
(b) 2
(c) 4
(@ 1
2.23 How many minimum test cases are generated by a column of a decision table?
(a 0
(b) 1
(c) 2
(d 3

Functional Testing 105

2.24 The decision table which uses only binary conditions is known as:
(a) Limited entry decision table
(b) Extended entry decision table
(c) Advance decision table
(d) None of the above
2.25 In cause-effect graphing technique, causes and effects are related to:
(a) Outputs and inputs
(b) Inputs and outputs
(c) Sources and destinations
(d) Destinations and sources
2.26 Cause-effect graphing is one form of:
(a) Structural testing
(b) Maintenance testing
(c) Regression testing
(d) Functional testing
2.27 Which is not a constraint applicable at the ‘causes’ side in the cause-effect graphing
technique?
(a) Exclusive
(b) Inclusive
(c) Masks
(d) Requires
2.28 Which is not a basic notation used in a cause-effect graph?
(a) NOT
(b) OR
(c) AND
(d) NAND
2.29 Which is the term used for functional testing?
(a) Black box testing
(b) Behavioural testing
(c) Functionality testing
(d) All of the above
2.30 Functional testing does not involve:
(a) Source code analysis
(b) Black box testing techniques
(¢) Boundary value analysis
(d) Robustness testing

EXERCISES

2.1 What is functional testing? How do we perform it in limited time and with limited
resources?

2.2 What are the various types of functional testing techniques? Discuss any one with the
help of an example.

2.3 Explain the boundary value analysis technique with a suitable example.

106 Software Testing

24

2.5

2.6

2.7

2.8

2.9

Why do we undertake robustness testing? What are the additional benefits? Show
additional test cases with the help of an example and justify the significance of these
test cases.

What is worst-case testing? How is it different from boundary value analysis? List the
advantages of using this technique.

Explain the usefulness of robust worst-case testing. Should we really opt for this
technique and select a large number of test cases? Discuss its applicability and
limitations.

Consider a program that determines the previous date. Its inputs are a triple of day,
month and year with its values in the range:

1 < month < 12

1 < day <31

1850 < year <2050

The possible outputs are ‘previous date’ or ‘invalid input’. Design boundary value
analysis test cases, robust test cases, worst-case test cases and robust worst-case test
cases.

Consider the program to find the median of three numbers. Its input is a triple of
positive integers (say X, y and z) and values are from interval [100,500]. Generate
boundary, robust and worst-case test cases.

Consider a program that takes three numbers as input and print the values of these
numbers in descending order. Its input is a triple of positive integers (say x, y and z)
and values are from interval [300,700]. Generate boundary value, robust and worst
case test cases.

2.10 Consider a three-input program to handle personal loans of a customer. Its input is a

triple of positive integers (say principal, rate and term).

1000<principal<40000

1<rate<18

1<term=<6

The program should calculate the interest for the whole term of the loan and the total
amount of the personal loan. The output is:

interest = principal * (rate/100) * term

total amount = principal + interest

Generate boundary value, robust and worst-case test cases

2.11 The BSE Electrical company charges its domestic consumers using the following

slab:
Consumption units Energy charges
0-150 2.00 per unit
151-300 Rs 200 + Rs. 3.00 per unit in excess of 150 units
301-400 Rs. 300 + Rs 3.90 per unit in excess of 300 units
>400 Rs. 350 + Rs 4.40 per unit in excess of 400 units

Identify the equivalence class test cases for output and input domain.

2.12 An telephone company charges its customer using the following calling rates:

Functional Testing 107

Call Rates

0-75 Rs. 500

76-200 Rs. 500 + Rs. 0.80 per call in excess of 75 calls
201-500 Rs. 500 + Rs. 1.00 per call in excess of 200 calls
>500 Rs. 500 + Rs 1.20 per unit in excess of 500 calls

Identify the equivalence class test cases for the output and input domain.

2.13 Consider an example of grading a student in a university. The grading is done as given

below:
Average marks Grade
90 - 100 Exemplary Performance
75 - 89 Distinction
60 - 74 First Division
50 - 59 Second Division
0-49 Fail

The marks of any three subjects are considered for the calculation of average marks.
Generate boundary value analysis test cases and robust test cases. Also create
equivalence classes and generate test cases.

2.14 Consider a program for the classification of a triangle. Its input is a triple of positive

integers (say, a, b and c) from the interval [1, 100]. The output may be one of the
following words [scalene, Isosceles, Equilateral, Not a triangle]. Design the boundary
value test cases and robust worst-case test cases. Create equivalence classes and design
test cases accordingly.

2.15 Consider a program that determines the next date. Given a month, day and year as

input, it determines the date of the next day. The month, day and year have integer

values subject to the following conditions:

C,:1<month <12

C,:1<day <31

C,: 1800 < year < 2025

We are allowed to add new conditions as per our requirements.

(a) Generate boundary value analysis test cases, robust test cases, worst-case test
cases and robust worst-case test cases

(b) Create equivalence classes and generate test cases

(c) Develop a decision table and generate test cases

2.16 Consider a program for the determination of the nature of roots of a quadratic equation.

Its input is a triple of positive integers (say a, b and c¢) and values may be from interval

[0, 100]. The output may have one of the following words:

[Not a quadratic equation, Real roots, Imaginary roots, Equal roots]

(a) Design boundary value analysis test cases, robust test cases, worst-case test cases
and robust worst-case test cases

(b) Create equivalence classes and generate test cases

(c) Develop a decision table and generate test cases

2.17 Explain the equivalence class testing technique. How is it different from boundary

value analysis technique?

108 Software Testing

2.18 Discuss the significance of decision tables in testing. What is the purpose of a rule
count? Explain the concept with the help of an example.

2.19 What is the cause-effect graphing technique? What are basic notations used in a cause-
effect graph? Why and how are constraints used in such a graph?

2.20 Consider a program to multiply and divide two numbers. The inputs may be two valid
integers (say a and b) in the range of [0, 100].
(a) Generate boundary value analysis test cases and robust test cases
(b) Create equivalence class and generate test cases
(c) Develop a decision table and generate test cases
(d) Design a cause-effect graph and write test cases accordingly

2.21 Consider the following points based on faculty appraisal and development system of a

university:
Points Earned University view
1-6 Work hard to improve
6-8 Satisfactory
8-10 Good
10 - 12 Very Good
12 - 15 Outstanding

Generate the test cases using equivalence class testing.

2.22 Consider a program to perform binary search and generate the test cases using
equivalence class testing and decision table based testing.

2.23 Write a program to count the number of digits in a number. Its input is any number
from interval [0, 9999]. Design the boundary value analysis test cases and robustness
test cases.

2.24 Why is functional testing also known as black box testing? Discuss with the help of
examples.

2.25 What are the limitations of boundary value analysis technique? Discuss the situations
in which it is not effective.

FURTHER READING

A resource for pre-1981 literature which contains a huge bibliography up to 1981:
E.F. Miller and W.E. Howden, “Tutorial: Software Testing and Validation
Techniques”, IEEE Computer Society, New York, 1981.

A hands-on guide to the black-box testing techniques:

B. Beizer, “Black-Box Testing: Techniques for Functional Testing of Software
and Systems”, John Wiley and Sons, 1995.

An introductory book on software testing with a special focus on functional testing is:
P. C. Jorgensen, “Software Testing: A Craftsman Approach”, 3rd ed., Auerbach
Publications, New York, 2007.

Other useful texts are:

W.R. Elmendorf, “Cause Effect Graphs in Functional Testing”, TR-00.2487,
IBM System Development Division, Poughkeepsie, New York, 1973.

Functional Testing 109

W.R. Elmendorf, “Functional analysis using cause-effect graphs”, Proceedings
of SHARE XLIII, SHARE, New York, pp. 567-577, 1974.

W.E. Howden, “Functional Program Testing”, IEEE Transactions on Software
Engineering, vol. 6, no. 2, March 1980.

W.E. Howden, “Validation of Scientific Programs”, ACM Computing Surveys
(CSUR), vol.14, no.2, pp.193-227, June 1982.

R.B. Hurley, “Decision Tables in Software Engineering”, Van Nostrand Reinhod,
New York, 1983.

V. Chvalovsky, “Decision tables”, Software Practice and. Experience, vol. 13,
pp. 423-429, 1983.

B. Korel and J. Laski, “A Tool for Data Flow Oriented Program Testing”, Second
Conference on Software Development Tools, Techniques, and Alternatives, San
Francisco, CA, December 25, 1985.

V.R. Basili and R.W. Selby, “Comparing the Effectiveness of Software Testing
Strategies”, vol. 13, pp. 1278-1296, 1987.

Essentials of Graph Theory

Graph theory has been used extensively in computer science, electrical engineering, communication
systems, operational research, economics, physics and many other areas. Any physical situation
involving discrete objects may be represented by a graph along with their relationships amongst
them. In practice, there are numerous applications of graphs in modern science and technology.
Graph theory has recently been used for representing the connectivity of the World Wide Web.
Global internet connectivity issues are studied using graphs like the number of links required to
move from one web page to another and the links which are used to establish this connectivity.
It has also provided many ways to test a program. Some testing techniques are available which
are based on the concepts of graph theory.

3.1 WHAT IS A GRAPH?

A graph has a set of nodes and a set of edges that connect these nodes. A graph G = (V, E)
consists of a non-empty finite set V of nodes and a set E of edges containing ordered or
unordered pairs of nodes.

V= (n,n,n,..... n)andE=(e,€,¢€,........ e

If an edge e, € E is associated with an ordered pair <n, n> or an unordered pair (n,, n),
where n, n. € V, then the ¢, is said to connect the nodes n. and n.. The edge e, that connects the
node n, and n, is called incident on each of the nodes. The pair of nodes that are connected by
an edge are called adjacent nodes. A node, which is not connected to any other node, is called
an isolated node. A graph with only isolated nodes is known as null graph.

If in graph G = (V, E), each edge ¢, € E is associated with an ordered pair of nodes, then
graph G is called a directed graph or digraph. If each edge is associated with an unordered pair
of nodes, then a graph G is called an undirected graph.

In diagrammatical representation of a graph, nodes are represented by circles and edges are
represented by lines joining the two nodes incident on it and the same is shown in Figure 3.1.

Essentials of Graph Theory 111

e [€1 €2
€3 €4 e3 €4
(a) Undirected graph with 6 (b) Directed graph with 6
nodes and 4 edges nodes and 4 edges

Figure 3.1. Undirected and directed graphs

In the Figure 3.1(a), the node and edge sets are given as:
V= (n,n,n,n,ng,n)
E= (e,e, ¢, ¢)=((n,n,), (n,n,), (n, n), (n, n,))
Similarly in Figure 3.1(b), the node and edge sets are
V= (n,n,n,n,n,n)
E= (e,e,€,¢)=(<n,n> <n,n> <n,n> <n, n>>)

The only difference is that edges are the ordered pairs of nodes represented by <n,, n>
rather than unordered pairs (n, n,). For any graph (directed or undirected), a set of nodes and
a set of edges between pairs of nodes are required for the construction of the graph.

An edge of a graph having the same node at its end points is called a loop. The direction of
the edge is not important because the initial and final nodes are one and the same. In Figure
3.2(a), edge ¢, is a loop with node n, and may be represented as ¢, = (n, n)).

(a) Graph with loop e (b) Graph with parallel
edges eq, e, and es, eg

Figure 3.2. Undirected graphs with loop and parallel edges

112 Software Testing

If certain pairs of nodes are connected by more than one edge in a directed or undirected
graph, then these edges are known as parallel edges. In Figure 3.2(b), e, and e, are parallel
edges connecting nodes n, and n,. Similarly e, and ¢, are also parallel edges connecting nodes
n, and n,. If a graph is a directed graph and parallel edges are in opposite directions, such edges
are considered as distinct edges. A graph that has neither loops nor parallel edges is called a
simple graph. A graph with one or more parallel edges is called a multigraph. These graphs are
shown in Figure 3.3.

(a) Simple graph (b) Undirected multigraph (c) Directed multigraph
with distinct edges

Figure 3.3. Types of graphs

A directed multigraph (see Figure 3.3 (¢)) may have distinct parallel edges (like e, and ¢,)
and parallel edges (like €, and ¢,). If numbers or weights are assigned to each edge of a graph,
then such a graph is called a weighted graph.

3.1.1 Degree of a Node

The degree of a node in an undirected graph is the number of edges incident on it. However, a
loop contributes twice to the degree of that node. The degree of a node ‘n’ is represented by
deg(n). The degrees of nodes in a graph shown in Figure 3.1 (a) are given as:

deg(n)) = 2, deg(n,) = 3, deg(n,) = 1, deg(n,) = 1, deg(n,) = 1, deg(n,) = 0

The degree of an isolated node is always 0. In case of directed graphs, the direction of edges
play an important role and indegree and outdegree of a node is calculated. Indegree of a node
in a directed graph is the number of edges that are using that node as a terminal node. The
indegree of a node ‘n’ is represented by indeg(n). The outdegree of a node in a directed graph
is the number of edges that are using that node as a start node. The outdegree of a node ‘n’ is
represented by outdeg(n). The indegrees and outdegrees of nodes in a graph shown in Figure
3.1(b) are given as:

indeg(n) =0 outdeg(n) = 2
indeg(n,) = 1 outdeg(n,) = 2
indeg(n,) = 1 outdeg(n,) = 0

Essentials of Graph Theory 113

indeg(n,) = 1 outdeg(n,) = 0
indeg(n,) = 1 outdeg(n,) = 0
indeg(n,) = 0 outdeg(n,) = 0

The degree of a node in a directed graph is the sum of indegree and outdegree of that node.
Hence, for node ‘n’ in a directed graph, the degree is given as:
deg(n) = indeg(n) + outdeg(n)
Few important characteristics of nodes are identified on the basis of indegree and outdegree

and are given as:

(i) Source node: A node with indegree = 0 and outdegree > 1
(i) Destination node: A node with outdegree = 0 and in degree > 1
(iii) Sequential node: A node with indegree = 1 and outdegree = 1
(iv) Predicate/decision node: A node with outdegree > 2
(v) Junction node: indegree > 2
In Figure 3.1(b), source nodes: n,
Destination nodes: n,, n,, n,
Sequential nodes: nil

Predicate nodes: n, n,

There is no junction node in this graph and n, is an isolated node.

3.1.2 Regular Graph
If every node of a simple graph has the same degree, then the graph is called a regular graph.

If the degree of a node is ‘n’, then it is called n-regular graph. Some of such graphs are shown
in Figure 3.4.

3-regular
graphs

2-regular graphs

Figure 3.4. Regular graphs

3.2 MATRIX REPRESENTATION OF GRAPHS

In computer science, matrix representation of graphs is very popular due to its direct applications
in programming. Each piece of information of a graph, which is shown diagrammatically, can be

114 Software Testing

converted into matrix form. Some useful matrix representations are given in the following sub-
sections which are used commonly in testing.

3.2.1 Incidence Matrix

Consider a graph G = (V, E) where
V= (n,n,n,...n)

E= (e,e,¢€,...... e)

In this graph, there are ‘m’ nodes and ‘k’ edges. An incidence matrix is a matrix with ‘m’
rows and ‘k’ columns whose elements are defined such that:

. 1ifj™ edge e; is incident on i"™ node n,
a(i, j) = ,
0 otherwise

The incidence matrix of a graph shown in Figure 3.1(a) is given as:

€ € € €
n |1 1 00
n, (I 0 1 1
ny [0 1 0 0
ngb ([0 0 1 0
ng (0 0 0 1
ng [0 0 0 O]

The sum of entries of any column of incidence matrix is always 2. This is because a column
represents an edge which has only two endpoints. If, any time, the sum is not two, then there
is some mistake in the transfer of information. If we add entries of a row, which is corresponding
to a node, we get the degree of that node. If all entries of a row are 0’s, then the corresponding
node is an isolated node. Incidence matrix of a graph may be used to calculate various
properties of a graph which can further be programmed, if so desired. The incidence matrix of
a directed graph is the same as the incidence matrix of an undirected graph.

3.2.2 Adjacency Matrix

It is also known as connection matrix because it represents connections in a graph. The
adjacency matrix of a graph G = (V, E) with ‘m’ nodes is a square matrix of size mxm whose
elements are defined such that:

o 1 if there is an edge from nodes n; and n;
a(i, j) =

0 otherwise

The adjacency matrix of a graph shown in Figure 3.1(a) is given as:

n, n, n; ny,

0 1
10
1 0
0 1
0 1

0 0

S O O O O

S O O O = O

N5 g

S O O O = O

S O O O O

Essentials of Graph Theory 115

If we add entries of any row, we get the degree of the node corresponding to that row. This
is similar to incidence matrix. The adjacency matrix of an undirected graph is symmetric where

a(i, j) = a(,).

If we represent connections with the name of edges, then the matrix is called graph matrix.
The size is the same as adjacent matrix i.e. number of nodes in a graph. The graph matrix of a
graph shown in Figure 3.1(a) is given as:

o,

n,

0 ¢
e O
e, O

s
€4
L0 0

€

S O O O O

0

€3

S o o O

€4

0

S o o O

S O o O o O

n, n, n; n, N5 ng

If connections are represented by 1, then it becomes the connection matrix.
The adjacency matrix of a directed graph G = (V, E) with ‘m’ nodes is a square matrix of
size mxm whose elements are such that:

a(i, j) = {

0 otherwise

1 if there is an edge from nodes n; and n;

The adjacency matrix of a directed graph may not be symmetric. If we add entries of a row,
it becomes outdegree of the node and if we add entries of a column, it becomes indegree of the
node. The adjacency matrix of a directed graph given in Figure 3.1(b) is given as:

n; n, ny n, ng ng

011

S O O O O
S O O O O
S O O O O

0

S O O O ==

0

S O O o

0

S O O O O

116 Software Testing

In directed graph, direction of an edge is considered, hence adjacency matrix of a directed

graph is different from the undirected graph.

3.3 PATHS AND INDEPENDENT PATHS

A path in a graph is a sequence of adjacent nodes where nodes in sequence share a common
edge or sequence of adjacent pair of edges where edges in sequence share a common node. The

paths in a graph shown in Figure 3.1(a) are given in Table 3.1.

Table 3.1. Paths of undirected graph in Figure 3.1(a)

S.No. Paths from initial node to Sequence of nodes Sequence of edges
final node

1. n,ton, n,n,n, €,e,
2. n, ton, n,, N, Ny e,e,
3. n,ton, n,n, e,
4. n,ton, n,n, e,
5. n,ton, n,n, e,
6. n,tong n,, Ny e,
7. n,ton, n,n, €,
8. n,ton, n,n, e,
9. n,ton, n,n, €,
10. n,ton, n, N, n, €€,
11. n ton, ng,n, e,
12. n ton, ng, N, N, €,e,
13. n,ton, n,n, n, e,e,
14. n,ton, n,n,n, €,e,
15. n,ton, n, N, n,n, e,€e,e
16. n,ton, N, N, N, n, €,€,e
17. n,ton, n,, N, Ny €, e,
18. n,ton, ng, N, N, €, €,
19. n,ton, ng, N, N, N, €,€,¢e,
20. n,tong N, N, N, Ng e,e,e,

A path represented by sequence of nodes is a more popular representation technique than

sequence of edges.

An independent path in a graph is a path that has at least one new node or edge in its

sequence from the initial node to its final node.

If there is no repetition of an edge in a path from the initial node to the final node, then the
path is called a simple path. The number of edges in a path is called the length of the path.

Essentials of Graph Theory 117

The direction of an edge provides more meaning to a path. Hence, paths of a directed graph
seem to be more practical and useful. They are also called chains. The paths in a directed graph
shown in Figure 3.1(b) are given in Table 3.2.

Table 3.2. Paths of directed graph in Figure 3.1(b)

S.No. ::;?i::: initial node to Sequence of nodes Sequence of edges
1. n,ton, n,n,n, €, €,

2. n, tong n,n,ng e,e,

3. n,ton, n,n, e,

4. n,ton, n,n, e,

5. n,ton, n,n, e,

6. n,tong n,, ng e,

3.3.1 Cycles

When the initial and final nodes of a path are the same and if length # 0, the path is called a
cycle. Consider the graph given in Figure 3.5 having 6 nodes and 6 edges with a cycle
constituted by a path n, n, n,, n,, n, of length 4.

Figure 3.5. Cyclic graph

3.3.2 Connectedness of a Graph

An undirected graph is said to be connected if there is a path between every pair of nodes of
the graph, otherwise it is said to be a disconnected graph. Two nodes are also said to be
connected if there is a path between them.

A graph shown in Figure 3.3 (a) is a connected graph and a graph shown in Figure 3.1 (a)
is a disconnected graph. The graph shown in Figure 3.6 is a disconnected graph with two
portions of the graph.

118 Software Testing

Figure 3.6. Disconnected graphs

A disconnected graph is the union of two or more disjoint portions of the graph. These
disjoint portions are called the connected components of the graph.

A directed graph is said to be strongly connected if there is a path from node n, to node n;
where node n, and n, are any pair of nodes of the graph.

Every node of the graph should have a path to every other node of the graph in the strongly
connected graphs. The directed graph shown in Figure 3.7 is a strongly connected graph.

ny n3

Figure 3.7. Strongly connected graph

The graph shown in Figure 3.7 has the following pair of nodes:
<n(ll, n>, <n, n>, <n, n>, <n, n>, <n, n,>, <n, n,>. We identify paths for every pair of
nodes.

(a) Pair<n,n>:Path=n,n,
Pair <n,,n>: Path=n_,n,n,

Essentials of Graph Theory 119

(b) Pair<n,n>:Path=n,n,

Pair <n,, n >: Path=n_, n, n,
(c) Pair<n,n>:Path=n,n,n,
Pair <n, n >: Path=n, n,
(d) Pa%r <n,, n,>: Path=n, n, n,n,
Pair <n,, n,>: Path=n,, n,
(¢) Pair<n,n>: Path=n,n,
Pair <n, n>: Path=n,n,n,

() Pair<n,n>: Path=n,n,
Pair <n,, n,>: Path=n,n, n,
Hence this graph is strongly connected.

4
2 4 1°
4
3

A directed graph is said to be weakly connected, if there is a path between every two nodes
when the directions of the edges are not considered. A strongly connected directed graph will
also be weakly connected when we do not consider the directions of edges. Consider the graph
shown in Figure 3.8 which is weakly connected.

nq

n2 n3

Ny

Figure 3.8. Weakly connected graph

When we do not consider the directions, it becomes an undirected graph where there is a
path between every two nodes of the graph. Hence, this graph is weakly connected but not
strongly connected.

Example 3.1: Consider the following undirected graph and find:

(a) The degree of all nodes
(b) The incidence matrix
(¢) Adjacency matrix

(d) Paths

120 Software Testing

Solution:
This graph is an undirected graph with seven nodes and six edges

(a) The degrees of nodes are given as:

deg(n) =2
deg(n,)) =3
deg(n,) =3
deg(n,) =1

deg(n)) =1
deg(n) =1
deg(n,) =1

(b) Incidence matrix of this graph has 7 x 6 size which is given as:

€ €, € € € €

n 11
n, 1 0
n, 0 1
n, 0 0
n; 00
ne 0 0
n, |0 O

0

1
0
1
0
0
0

000
1 00
01 1
000
1 00
010
00 1]

(¢) Adjacency matrix with size 7 x 7 is given as:

n; n, n; N, N5 Ngny

n, 0 1
n, 1 0
n, 1 0
ng |0 1
n; 0 1
ng 0 0
n, |0 0

1

—_ = O O O O

00 00]
1100
00 1 1
00 00
00 00
00 00
00 00]

(d) Paths of the graph are given as:

Essentials of Graph Theory 121

Sequence of nodes Sequence of edges

Paths from initial node to

final node

S. No.

ee ee

eeeeeeeeeeeeeeeeeeeeeeeeeeee

) © ~
c C c C
L I T R B B B B T}
Cc € € ©€ C© C C n n
I T T T R I
cC C C© C C C C
N < [fe] ™ © ~ ~ < 0
c € € € € € C© C C
O O O O O O O O O
P A~ A~ e~
el ~ ~ i 1 ~ N N N
cC € ¢ € € C C C C

daN S I0 6N 0o

n, to n,

10.
11.
12.
13.
14.
15.
16.
17.

n, to Ne
n,ton,
n,ton,

<
e

n4ton1

’

ng ton,
n,ton,
n,ton,

<
e

3

o

ng to n,

18.
19.

n,to n,

v © I S
ee eee
eeeeeeeee

e3, el, €, €,
63, el’ e2' eB
e4' ei’ e2
e4’ e3

© i~ © I~ < 10 <
c c c c c < c <
© ~ <+ 0 ™ R H ™ o NN N NN
nn nnn nnn nnnnn nnn
ﬂnnnnnnnnnnnnnnnnnnnnnn
nnnnﬂnnnﬂnnnﬂnnnﬂnnnﬂnn

nnnnnnnnnnnnnnnnnnnnnnn

- o © ~ N < 1O oMM O © ~ OO < ©O© ~ N < 0O 0~ &N ¢ 0 ©
c ¢ € € CcCcCc c Cc Cc c c c c cCc C
O O O O O OO OO OO OO0 OO0 oo oo o o o o
e e e e o e e s s s s s s s s s s s s s s s

~N NN NN Mmoo m Y S S Y 00 0 10 O O O O 9~ ~ N~ O~

Cc € € € € € € C € € € € Cc € € Cc Cc Cc Cc ©c c c C
O d AN O FWONDOOOSdTANMNMT IO ONOBOD O o N
AN A ANAANNNNNOOOOOOOHONOOO T S <

122 Software Testing

Example 3.2: Consider the following directed graph and find:

(a) The degree of all nodes
(b) The incidence matrix
(¢) Adjacency matrix

(d) Paths

(e) Connectedness

Solution:

This graph is a directed graph with seven nodes and six edges
(a) The degrees of all nodes are given as:

(b) Incidence matrix of this graph has 7 x 6 is given as:

€ € € € € €

n, [1 100 0 0]

n, 1 01 100

n, 01 00 11

n, {001 00O

ng 00 01O0O0

ng 000010

n, [0 0 0 0 0 1]

(¢) Adjacency matrix with size 7 x 7 is given as:

indeg(n,) = 0 outdeg(n) =2 deg(n) =2
indeg(n,) = 1 outdeg(n,) =2 deg(n,)) =3
indeg(n,) = 1 outdeg(n,) = 2 deg(n,) =3
indeg(n,) = 1 outdeg(n,) =0 deg(n,) =1
indeg(n,) = 1 outdeg(n,) = 0 deg(n)) =1
indeg(n,) = 1 outdeg(n,) =0 deg(n,) =1
indeg(n,) = 1 outdeg(n,) =0 deg(n) =1

Essentials of Graph Theory 123

n, n, n; n, ng ng n,

n, 01 1.0 0 00]

n, 1 0 0 1 0

n, 00 0 00 1 1

ny, 00 0 00 00O

ng 00 0 00 00O

ng 00 0 00 00O

n, (00 0 0O0 0 O]
(d) Paths of the graph are given as:
S. No. Paths from initial node to = Sequence of nodes Sequence of edges

final node

1. n,ton, n,n, e,
2. n,ton, n,n,n, e, e,
3. n, tong n, N, Ny e,e,
4. n,ton, n,n, e,
5. n,ton, n, N, N, e, e,
6. n,ton, n,n,n, €, €,
7. n,ton, n,n, e,
8. n,ton, N, Ny e,
9. n,tong N, Ng e,
10. n,ton, n, n, €,
(e) This graph is weakly connected because there is no path between several nodes; for

example, from node n, to n,, n, to n,, n, to n, n, to n, etc. however, if we do not
consider directions, there is a path from every node to every other node which is the
definition of a weakly connected graph.

3.4 GENERATION OF A GRAPH FROM PROGRAM

Graphs are extensively used in testing of computer programs. We may represent the flow of
data and flow of control of any program in terms of directed graphs. A graph representing the
flow of control of a program is called a program graph. The program graph may further be
transformed into the DD path graph. Both of these graphs may provide foundations to many
testing techniques.

124 Software Testing
3.4.1 Program Graphs

Program graph is a graphical representation of the source code of a program. The statements
of a program are represented by nodes and flow of control by edges in the program graph. The
definition of a program graph is [JORGO07]:

“A program graph is a directed graph in which nodes are either statements or fragments
of a statement and edges represent flow of control.”

The program graph helps us to understand the internal structure of the program which may
provide the basis for designing the testing techniques. The basic constructs of the program
graph are given in Figure 3.9.

o = L

node edge (Two outgoing (More than
edges) two outgoing edges)

Decision nodes

LoV

Sequence Junction node (where If-then-else statement
of Statements control flow joins) representation

O

(While loop) statement (Repeat-until) statement ~ Switch statement
representation representation representation

Figure 3.9. Basic constructs of a program graph

The basic constructs are used to convert a program in its program graph. We consider the
program ‘Square’ which takes a number as an input and generates the square of the number.
This program has 8 sequential statements which are represented by 8 nodes. All nodes are
arranged sequentially which may lead to only one path in this program graph. Every program
graph has one source node and one destination node.

Essentials of Graph Theory 125

We also consider a program given in Figure 3.11 that takes three numbers as input and prints
the largest amongst these three numbers as output. The program graph of the program is given
in Figure 3.12. There are 28 statements in the program which are represented by 28 nodes. All
nodes are not in a sequence which may lead to many paths in the program graph.

#include<stdio.h>

void main()

{

int num, result;

printf(“Enter the number:”);
scanf(“%d”, &num);
result=num*num;

printf(“The result is: %d”, result);

}

ONOOARWN -

(a) Program to find 'square’ of a number

(b) Program graph for 'Square' program

Figure 3.10. Program ‘Square’ and its program graph

#include<stdio.h>
#include<conio.h>

1. void main()
2. {
3. float A,B,C;
4. clrser();
5. printf("Enter number 1:\n");
6. scanf("%f", &A);
7. printf("Enter number 2:\n");
8. scanf("%f", &B);
9. printf("Enter number 3:\n");
10. scanf("%f", &C);
/*Check for greatest of three numbers*/
11. if(A>B) {
12. if(A>C) {
13. printf("The largest number is: %f\n",A);
14. }
15. else {
16. printf("The largest number is: %f\n",C);
17. }
18. }
19. else {
20. if(C>B) {
21. printf("The largest number is: %f\n",C);
22. }

(Contd.)

126 Software Testing

(Contd.)
23. else {
24. printf("The largest number is: %f\n",B);
25. }
26. }
27. getch();
28. }

Figure 3.11. Program to find the largest among three numbers

Figure 3.12. Program graph to find the largest number amongst three numbers as given in Figure 3.11.

Our example is simple, so it is easy to find all paths starting from the source node (node 1)
and ending at the destination node (node 28). There are four possible paths. Every program
graph may provide some interesting observations about the structure of the program. In our
program graph given in Figure 3.12, nodes 2 to 10 are in sequence and nodes 11, 12, and 20
have two outgoing edges (predicate nodes) and nodes 18, 26, 27 have two incoming edges are
(junction nodes).

We may also come to know whether the program is structured or not. A large program may
be a structured program whereas a small program may be unstructured due to a loop in a
program. If we have a loop in a program, large number of paths may be generated as shown in
figure 1.5 of chapter 1. Myers [MYERO04] has shown 10 paths in a very small program graph
due to a loop that iterates up to 20 times. This shows how an unstructured program may lead
to difficulties in even finding every possible path in a program graph. Hence, testing a
structured program is much easier as compared to any unstructured program.

Essentials of Graph Theory 127

3.4.2 DD Path Graphs

The Decision to Decision (DD) path graph is an extension of a program graph. It is widely
known as DD path graph. There may be many nodes in a program graph which are in a
sequence. When we enter into the first node of the sequence, we can exit only from the last
node of that sequence. In DD path graph, such nodes which are in a sequence are combined
into a block and are represented by a single node. Hence, the DD path graph is a directed graph
in which nodes are sequences of statements and edges are control flow amongst the nodes. All
programs have an entry and an exit and the corresponding program graph has a source node
and a destination node. Similarly, the DD path graph also has a source node and a destination
node.

We prepare a mapping table for the program graph and the DD path graph nodes. A mapping
table maps nodes of the program graph to the corresponding nodes of the DD path graph. This
may combine sequential nodes of the program graph into a block and that is represented by a
single node in the DD path graph. This process may reduce the size of the program graph and
convert it into a more meaningful DD path graph. We consider program ‘Square’ and its
program graph given in Figure 3.10. We prepare a mapping table and a DD path graph as
shown in Figure 3.13. All nodes are sequential nodes except node 1 and node 8 which are
source node and destination node respectively.

DD path graph e
Program graph .
corresponding Remarks
nodes
nodes @
1 S Source node
2-7 N1 Sequential flow
8 D Destination node Q
Mapping of program graph nodes and DD path graph nodes DD Path graph

Figure 3.13. DD path graph and mapping table of program graph in Figure 3.10

We consider a program to find the ‘largest amongst three numbers’ as given in Figure 3.11.
The program graph is also given in Figure 3.12. There are many sequential nodes, decision
nodes, junction nodes available in its program graph. Its mapping table and the DD path graph
are given in Table 3.3 and Figure 3.14 respectively.

Table 3.3. Mapping of program graph nodes and DD graph nodes
Program graph nodes DD path graph Remarks
corresponding node
1 S Source node
210 10 N1 Sequential nodes, there is a sequential flow from
node 2 to 10
11 N2 Decision node, if true goto 12, else goto 19
12 N3 Decision node, if true goto 13 else goto 15
13, 14 N4 Sequential nodes
15, 16, 17 N5 Sequential nodes

(Contd.)

128 Software Testing

(Contd.)

Program graph nodes

DD path graph
corresponding node

Remarks

18

19

20

21,22
23, 24,25
26

27

28

N6

N7
N8
N9
N10
N11

N12

Junction node, two edges 14 and 17 are termi-
nated here

Intermediate node terminated at node 20
Decision node, if true goto 21 else goto 23
Sequential nodes

Sequential nodes

Junction node, two edges 22 and 25 are termi-
nated here

Junction node, two edges 18 and 26 are termi-
nated here

Destination node

Figure 3.14. DD path graph of the program to find the largest among three numbers.

Essentials of Graph Theory 129

The DD path graphs are used to find paths of a program. We may like to test every identified
path during testing which may give us some level of confidence about the correctness of the

program.

Example 3.3: Consider the program for the determination of division of a student. Its input is
a triple of positive integers (mark1, mark2, mark3) and values are from interval [0, 100].

The program is given in Figure 3.15. The output may be one of the following words:

[First division with distinction, First division, Second division, Third division, Fail, Invalid
marks]. Draw the program graph and the DD path graph.

Solution:

The program graph is given in Figure 3.16. The mapping table of the DD path graph is given
in Table 3.4 and DD path graph is given in Figure 3.17.

O 00 N & U1 N W N -

T N T T T S T N S G S Y
U N W N P, O ©W 0 N O U1 N W RN L O

/*Program to output division of a student based on the marks in three subjects*/

#include<stdio.h>
#include<conio.h>
void main()
{
int mark1, mark?2,mark3,avg;
clrser();
printf("Enter marks of 3 subjects (between 0-100)\n");
printf("Enter marks of first subject:");
scanf("%d", &mark1);
printf("Enter marks of second subject:");
scanf("%d", &mark?);
printf("Enter marks of third subject:");
scanf("%d",&mark3);
if(mark1>100||mark1<0||mark2>100||mark2<0||mark3>100||mark3<0) {
printf("Invalid Marks! Please try again");
}
else {
avg=(mark1+mark2+mark3)/3;
if(avg<40) {
printf("Fail");
}
else if(avg>=40&8&avg<50) {
printf("Third Division");
}
else if(avg>=50&8&avg<60) {
printf("Second Division");

}

(Contd.)

130 Software Testing

(Contd.)
26. else if(avg>=608&8&avg<75) {
27. printf("First Division");
28. }
29. else {
30. printf("First Division with Distinction");
31. }
32. }
33. getch();
34. }

Figure 3.15. Source code of determination of division of a student problem

Figure 3.16. Program graph

Essentials of Graph Theory 131

Table 3.4. Mapping of program graph nodes and DD graph nodes

Program graph DD path grafph Remarks

nodes corresponding node

1 S Source node

2t0 11 N1 Sequential nodes, there is a sequential
flow from node 2 to 11

12 N2 Decision node, if true goto 13 else goto
15

13,14 N3 Sequential nodes

15, 16 N4 Sequential nodes

17 N5 Decision node, if true goto 18 else goto
20

18, 19 N6 Sequential nodes

20 N7 Decision node, if true goto 21 else goto
23

21,22 N8 Sequential nodes

23 N9 Decision node, if true goto 24 else goto
26

24,25 N10 Sequential nodes

26 N11 Decision node, if true goto 27 else goto
29

27,28 N12 Sequential nodes

29, 31 N13 Sequential nodes

32 N14 Junction node, five edges 19, 22, 25, 28
and 31 are terminated here

33 N15 Junction node, two edges 14 and 32 are
terminated here

34 D Destination node

Example 3.4: Consider the program for classification of a triangle. Its input is a triple of
positive integers (say a, b and c¢) and values from the interval [1, 100]. The output may be
[Right angled triangle, Acute angled triangle, Obtuse angled triangle, Invalid triangle, Input
values are out of Range]. The program is given in Figure 3.18. Draw the program graph and
the DD path graph.

Solution:
The program graph is shown in Figure 3.19. The mapping table is given in Table 3.5 and the
DD path graph is given in Figure 3.20.

132 Software Testing

Figure 3.17. DD path graph of program to find division of a student

/*Program to classify whether a triangle is acute, obtuse or right angled given the sides of
the triangle*/

//Header Files
#include<stdio.h>
#include<conio.h>
#include<math.h>
1. void main() //Main Begins
2. {

(Contd.)

Essentials of Graph Theory 133

(Contd.)
3. double a,b,c;
4. double al,a2,a3;
5. int valid=0;
6. clrscr();
7. printf("Enter first side of the triangle:"); /*Enter the sides of Triangle*/
8. scanf("%lf",&a);
9. printf("Enter second side of the triangle:");
10. scanf("%lf",&b);
11. printf("Enter third side of the triangle:");
12. scanf("%lf",&c);
/*Checks whether a triangle is valid or not*/
13. if(a>0&&a<=100&&b>0&&b<=100&&c>0&8&c<=100) {
14. if((a+b)>c&&(b+c)>a&&(c+a)>b) {
15. valid=1;
16. }
17. else {
18. valid=-1;
19. }
20. }
21. if(valid==1) {
22. al=(a*a+b*b)/(c*c);
23. a2=(b*b+c*c)/(a*a);
24. a3=(c*c+a*a)/(b*b);
25. if(al<1||a2<1|[a3<1) {
26. printf("Obtuse angled triangle");
27. }
28. else if(al==1||a2==1||a3==1) {
29. printf("Right angled triangle");
30. }
31. else {
32. printf("Acute angled triangle");
33. }
34. }
35. else if(valid==-1) {
36. printf("\nInvalid Triangle");
37. }
38. else {
39. printf("\nInput Values are Out of Range");

(Contd.)

134 Software Testing

(Contd.)
40. }
41. getch();
42, } //Main Ends

Figure: 3.18. Source code for classification of triangle problem

13

Figure 3.19. Program graph of classification of triangle problem

Essentials of Graph Theory 135

Table 3.5. Mapping of program graph nodes and DD graph nodes

Program graph nodes

DD path graph
corresponding node

Remarks

2to 12

13

14

15, 16
17,18, 19
20

21

22,23,24

25

26, 27
28

29,30
31, 32,33
34

35

36, 37
38, 39, 40
41

42

S
N1

N2

N3

N4
N5
N6

N7

N8

N9

N10
N11

N12
N13
N14

N15

N16
N17
N18

Source node

Sequential nodes, there is a sequential
flow from node 2 to 12

Decision node, if true goto 14 else goto
21

Decision node, if true goto 15 else goto
17

Sequential nodes
Sequential nodes

Junction node, two edges 16 and 19
are terminated here

Junction node, two edges 13 and 20
are terminated here. Also a decision
node, if true goto 22, else goto 35

Sequential nodes

Decision node, if true goto 26 else goto
28

Sequential nodes

Decision node, if true goto 29 else goto
31

Sequential nodes
Sequential nodes

Junction node, three edges 27, 30 and
33 are terminated here

Decision node, if true goto 36 else goto
38

Sequential nodes
Sequential nodes

Three edges 34, 37 and 40 are termi-
nated here.

Destination node.

136 Software Testing

Figure 3.20. DD path graph of the program to classify a triangle

Example 3.5: Consider the program for determining the day of the week. Its input is a triple
of day, month and year with the values in the range

I <month <12
1 <day <31
1900 < year < 2058

The possible values of the output may be [Sunday, Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Invalid date]. The program is given in Figure 3.21.

Essentials of Graph Theory 137
Draw the program graph and the DD path graph.

/*Program to compute day of the week*/
/*Header Files*/

#include<stdio.h>

#include<conio.h>

1. void main()
2. {
3. int day,month,year,century,Y,y1,M,date, validDate=0,leap=0;
4. clrser();
5. printf("Enter day:");
6. scanf("%d",&day);
7. printf("Enter month:");
8. scanf("%d",&month);
9. printf("Enter year (between 1900 and 2058):");
10. scanf("%d",&year);
/*Check whether the date is valid or not*/
11. if(year>=1900&&year<=2058) {
12. if(year%4==0) { /*Check for leap year*/
13. leap=1;
14. if((vear%100)==0&&(year%400)!=0) {
15. leap=0;
16. }
17. }
18. if(month==4||month==6||month==9||month==11){
19. if(day>=1&&day<=30) {
20. validDate=1;
21. }
22. else {
23. validDate=0;
24. }
25. }
26. else if(month==2){
27. if(leap==1&&(day>=1&&day<=29)) {
28. validDate=1;
29. }
30. else if(day>=18&&day<=28) {
31. validDate=1;
32. }
33. else {
34. validDate=0;
35. }
36. }
37. else if((month>=1&&month<=12)&&(day>=18&&day<=31)){

(Contd.)

138 Software Testing

(Contd.)
38.
39.
40.
41,
42.
43.
44,
45,
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.

validDate=1;

}

else {
validDate=0;
}

}

if(validDate) { /*Calculation of Day in the week*/
if(year>=1900&&year<2000){
century=0;
yl=year-1900;
}
else {
century=6;
yl=year-2000;
}
Y=y1+(y1/4);
if(month==1) {
if(leap==0) {
M=0; /*for non-leap year*/

}

else {
M=6; /*for leap year*/
}

}

else if(month==2){
if(leap==0) {
M=3; /*for non-leap year*/
}
else {
M=2; //for leap year
}

}
else if((month==3)||(month==11)) {

M=3;
}
else if((month==4)||(month==7)) {
M=6;
}
else if(month==>5) {
M=1;
}
else if(month==6) {
M=4;

(Contd.)

(Contd.)

81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.

Essentials of Graph Theory 139

}
else if(month==8) {
M=2;
}
else if((month==9)||(month==12)) {
M=5;
}
else {
M=0;
}
date=(century+Y+M+day)%7;
if(date==0) { /*Determine the day of the week*/
printf("Day of the week for [%d:%d:%d] is Sunday",day,month,year);
}
else if(date==1) {
printf("Day of the week for [%d:%d:%d] is Monday",day, month,year);
}
else if(date==2) {
printf("Day of the week for [%d:%d:%d] is Tuesday",day,month,year);
}
else if(date==3) {
printf("Day of the week for [%d:%d:%d] is Wednesday",day,month,year);
}
else if(date==4) {
printf("Day of the week for [%d:%d:%d] is Thursday",day,month,year);
}
else if(date==5) {
printf("Day of the week for [%d:%d:%d] is Friday",day,month,year);

}
else {
printf("Day of the week for [%d:%d:%d] is Saturday",day,month,year);
}
}
else {
printf("The date entered [%d:%d:%d] is invalid",day,month,year);
}
getch();
}

Figure 3.21. Source code for determination of day of the week

Solution:

The program graph is shown in Figure 3.22. The mapping table is given in Table 3.6 and the
DD path graph is given in Figure 3.23.

140 Software Testing

S

Figure 3.22. Program graph for determination of day of the week

Essentials of Graph Theory 141

Table 3.6. Mapping of program graph nodes to DD graph nodes

Program graph DD path graph Remarks

nodes corresponding node

1 S Source node

210 10 N1 Sequential nodes, there is a sequential flow
from node 2 to 10

11 N2 Decision node, if true goto 12, else goto 44

12 N3 Decision node, if true goto 13, else goto 18

13 N4 Intermediate node terminated at node 14

14 N5 Decision node, if true goto 15, else goto 17

15, 16 N6 Sequential nodes

17 N7 Junction node, two edges 14 and 16 are
terminated here

18 N8 Junction node, two edges 12 and 17 are
terminated here. Also a decision node, if true
goto 19, else goto 26

19 N9 Decision node, if true goto 20, else goto 22

20,21 N10 Sequential nodes

22,23,24 N11 Sequential nodes

25 N12 Junction node, two edges 21 and 24 are
terminated here

26 N13 Decision node, if true goto 27, else goto 37

27 N14 Decision node, if true goto 28, else goto 30

28, 29 N15 Sequential nodes

30 N16 Decision node, if true goto 31, else goto 33

31, 32 N17 Sequential nodes

33,34,35 N18 Sequential nodes

36 N19 Junction node, three edges 29, 32, and 35
are terminated here

37 N20 Decision node, if true goto 38, else goto 40

38, 39 N21 Sequential nodes

40, 41, 42 N22 Sequential nodes

43 N23 Four edges 25, 36, 39, and 42 are termi-
nated here

44 N24 Junction node, two edges 11 and 43 are
terminated here and also a decision node. If
true goto 45, else goto 114

45 N25 Decision node, if true goto 46, else goto 49

46, 47,48 N26 Sequential nodes

49, 50, 51, 52 N27 Sequential nodes

53 N28 Junction node, two edges 48 and 52 are
terminated here

54 N29 Decision node, if true goto 55, else goto 62

55 N30 Decision node, if true goto 56, else goto 58

56, 57 N31 Sequential nodes

58, 59, 60 N32 Sequential nodes

(Contd.)

142 Software Testing

(Contd.)

Program graph DD path graph Remarks

nodes corresponding node

61 N33 Junction node, two edges 57 and 60 are
terminated here

62 N34 Decision node, if true goto 63, else goto 70

63 N35 Decision node, if true goto 64, else goto 66

64, 65 N36 Sequential nodes

66, 67,68 N37 Sequential nodes

69 N38 Junction node, two edges 65 and 68 are
terminated here

70 N39 Decision node, if true goto 71 else goto 73

71,72 N40 Sequential nodes

73 N41 Decision node, if true goto 74 else goto 76

74,75 N42 Sequential nodes

76 N43 Decision node, if true goto 77 else goto 79

77,78 N44 Sequential nodes

79 N45 Decision node, if true goto 80 else goto 82

80, 81 N46 Sequential nodes

82 N47 Decision node, if true goto 83, else goto 85

83,84 N48 Sequential nodes

85 N49 Decision node, if true goto 86, else goto 88

86, 87 N50 Sequential nodes

88, 89, 90 N51 Sequential nodes

91 N52 Junction node, nine edges 61, 69, 72, 75,
78, 81, 84, 87 and 90 are terminated here

92 N53 Decision node, if true goto 93, else goto 95

93,94 N54 Sequential nodes

95 N55 Decision node, if true goto 96, else goto 98

96, 97 N56 Sequential nodes

98 N57 Decision node, if true goto 99, else goto 101

99, 100 N58 Sequential nodes

101 N59 Decision node, if true goto 102, else goto
104

102, 103 N60 Sequential nodes

104 N61 Decision node, if true goto 105, else goto 107

105, 106 N62 Sequential nodes

107 N63 Decision node, if true goto 108, else goto 110

108, 109 N64 Sequential nodes

110, 111, 112 NG5 Sequential nodes

113 N66 Seven edges 94, 97, 100, 103, 106, 109 and
112 are terminated here

114, 115, 116 N67 Sequential nodes

117 N68 Junction node, two edges 116 and 113 are
terminated here

118 D Destination node

Essentials of Graph Theory 143

Figure 3.23. DD path graph for determination of day of the week

144 Software Testing

3.5 IDENTIFICATION OF INDEPENDENT PATHS

There are many paths in any program. If there are loops in a program, the number of paths
increases drastically. In such situations, we may be traversing the same nodes and edges again
and again. However, as defined earlier, an independent path should have at least one new node
or edge which is to be traversed. We should identify every independent path of a program and
pay special attention to these paths during testing. A few concepts of graph theory are used in
testing techniques which may help us to identify independent paths.

3.5.1 Cyclomatic Complexity

This concept involves using cyclomatic number of graph theory which has been redefined as
cyclomatic complexity. This is nothing but the number of independent paths through a
program. McCabe [MCCA76] introduced this concept and gave three methods to calculate
cyclomatic complexity.

i V(G)=e—-n+2P
where V(G) = Cyclomatic complexity

G : program graph
n : number of nodes
e : number of edges

P : number of connected components

The program graph (G) is a directed graph with single entry node and single exit node. A
connected graph is a program graph where all nodes are reachable from entry node, and exit
node is also reachable from all nodes. Such a program graph will have connected component
(P) value equal to one. If there are parts of the program graph, the value will be the number of
parts of the program graph where one part may represent the main program and other parts may
represent sub-programs.

(i) Cyclomatic complexity is equal to the number of regions of the program graph.

(i) Cyclomatic complexity

V(G) = T+ 1

where IT is the number of predicate nodes contained in the program graph (G).

The only restriction is that every predicate node should have two outgoing edges i.e. one for
‘true’ condition and another for ‘false’ condition. If there are more than two outgoing edges,
the structure is required to be changed in order to have only two outgoing edges. If it is not
possible, then this method (IT + 1) is not applicable.

Properties of cyclomatic complexity:

1. V(G) > 1

2. V(G) is the maximum number of independent paths in program graph G.

3. Addition or deletion of functional statements to program graph G does not affect V(G).
4. G has only one path if V(G)=1

5. V(G) depends only on the decision structure of G.

Essentials of Graph Theory 145

We consider the program graph given in Figure 3.24.

Figure 3.24. Program graph

The value of cyclomatic complexity can be calculated as:
i V(G)=e-n+2P
=7-5+2
=4
(i) V(G) = No. of regions of the graph

Hence, V(G) =4
Three regions (1, 2 and 3) are inside and 4" is the outside region of the graph
(i) V(G)=II+1
=3+1=4

There are three predicate nodes namely node a, node ¢ and node d.
These four independent paths are given as:

Path 1 : ace
Path 2 : ade
Path 3 : adce
Path 4 acbe

We consider another program graph given in Figure 3.25 with three parts of the program
graph.

146 Software Testing

Part | (Main Program)

Part Il (Sub program)

Part Il (Sub program)
Figure 3.25. Program graph with 3 connected components

V(G)= e—n+2P

(4+7+8) — (4+6+7) + 2x3
19-17+6

= 8

We calculate the cyclomatic complexity of each part of the graph independently.
V(G-Part])=4-4+2=2
V(G-Partll)=7-6+2=3
V(G-Partlll)= 8-7+2=3
Hence, V (G — Part 1 U G —Part I1 U G — Part III)
= V(G -Partl) +V (G- Part II) + V (G — Part III)

In general, the cyclomatic complexity of a program graph with P connected components is
equal to the summation of their individual cyclomatic complexities. To understand this,
consider graph G, where 1< i <P denote the P connected components of a graph, and e, and n,
are the number of edges and nodes in the i connected component of the graph. Then, we may
have the following equation:

Essentials of Graph Theory 147

P P
V(G) = e-n+2P= X & —),n; +2P

i=1 i=1

P P
= 2(61 -n;+2)= ZV(Gi)

i=1 i=1
The cyclomatic complexity is a popular measure to know the complexity of any program.
It is easy to calculate and immediately provides an insight to the implementation of the
program. McCabe suggested an upper limit for this cyclomatic complexity i.e. 10 [MACC76].
If this exceeds, developers have to redesign the program to reduce the cyclomatic complexity.
The purpose is to keep the size of the program manageable and compel the testers to execute
all independent paths. This technique is more popular at module level and forces everyone to
minimize its value for the overall success of the program. There may be situations where this
limit seems unreasonable; e.g. when a large number of independent cases follow a selection

function like switch or case statement.

Example 3.6: Consider the following DD path graph (as given in Figure 3.14) and calculate
the cyclomatic complexity. Also find independent paths.

Solution:

(i) V(G)=e-n+2P
16 —14+2
4

148 Software Testing

(i1)) 'V (G) = Number of Regions
=4

(i) V(G)=I1+1

3 (N2, N3,N8) + 1

=4

There are 4 independent paths as given below:

(i) S,NI,N2,N3, N4, N6, N12, D
(i) S, NI, N2, N3,N5,N6,N12, D

(i) S, N1,N2,N7, N8, N9, N11,N12, D
(iv) S,NI,N2,N8,N10,N11,N12, D

Example 3.7: Consider the problem for determination of division of a student with the DD
path graph given in Figure 3.17. Find cyclomatic complexity and also find independent
paths.

Solution:
Number of edges (e) = 21
Number of nodes (n) = 17

i) V(G)=e-n+2P=21-17+2=6
(i) VG)=II+1=5+1=6
(iii)) V(G) = Number of regions = 6

Hence cyclomatic complexity is 6 meaning there are six independent paths in the DD path
graph.
The independent paths are:

(@) S,NI,N2,N3,N15,D

(i) S, NI, N2, N4, N5, N6, N14, N15, D

(iii) S, N1, N2, N4, N5, N7, N8, N14, N15, D

(iv) S,N1,N2, N4, N5, N7, N9, N10, N14, N15, D

(v) S,N1,N2,N4,N5,N7, N9, N11, N12, N14, N15, D
(vi) S,N1,N2, N4, N5, N7, N9, N11, N13, N14, N15, D

Example 3.8: Consider the classification of triangle problem given in Example 3.2 with its
DD path graph given in Figure 3.20. Find the cyclomatic complexity and also find independent
paths.

Solution:
Number of edges (e) = 25
Number of nodes (n) = 20

1) V(G)=e-n+2P=25-20+2=7
(i) V@Q)=II+1=6+1=7
(iii)) V(G) = Number of regions = 7

Essentials of Graph Theory 149

Hence cyclomatic complexity is 7. There are seven independent paths as given below:

(i) S,N1,N2,N7,N15,N17,N18, D
(i) S,N1,N2,N7,N15,N16,N18, D

(iii) S, N1,N2,N7,N8, N9, N11, N13, N14,N18, D

(iv) S,N1,N2,N7,N8, N9, N11, N12, N14,N18, D

(v) S,NI1,N2,N7,N8&, N9, N10, N14, N18§, D

(vi) S,NI1, N2, N3, N5,N6, N7, N§, N9, N10, N14, N1§, D

(vil) S, N2, N3, N4, N6, N7, N8, N9, N10, N14, N1§, D

Example 3.9: Consider the DD path graph given in Figure 3.23 for determination of the day
problem. Calculate the cyclomatic complexity and also find independent paths.

Solution:
Number of edges (e) = 96
Number of nodes (n) = 70

(i) V(G)=e-n+2P
— 96-70+2=28

(i) V(G) = Number of regions = 28
(i) V(G)=TI1+1

= 27+1=28

Hence, there are 28 independent paths.
The independent paths are:

(i) S, NI, N2, N24, N25, N27, N28, N29, N34, N39, N41, N43, N45, N47, N49, N51,
N52, N53, N54, N66, N68, D

(i) S, NI, N2, N24, N25, N27, N28, N29, N34, N39, N41, N43, N45, N47, N49, N50,
N52, N53, N54, N66, N68, D

(iii) S, N1, N2, N24, N25, N27, N28, N29, N34, N39, N41, N43, N45, N47, N48, N52,
N53, N54, N66, N68, D

(iv) S, N1, N2, N24, N25, N27, N28, N29, N34, N39, N41, N43, N45, N46, N52, N53,
N54, N66, N68, D

(v) S, N1, N2, N24, N25, N27, N28, N29, N34, N39, N41, N43, N44, N52, N53, N54,
N66, N68, D

(vi) S, N1, N2, N24, N25, N27, N28, N29, N34, N39, N41, N42, N52, N53, N54, N66,
N68, D

(vii) S, N1, N2, N24, N25, N27, N28, N29, N34, N39, N40, N52, N53, N54, N66, N68, D

(viii) S, N1, N2, N24, N25, N27, N28, N29, N34, N35, N37, N38, N52, N53, N54, N66,
N68, D

(ix) S, NI, N2, N24, N25, N27, N28, N29, N34, N35, N36, N38, N52, N53, N54, N66,
N68, D

(x) S,NI, N2, N24, N25, N27, N28, N29, N30, N32, N33, N52, N53, N54, N66, N68, D

(xi) S, NI, N2, N24, N25, N27, N28, N29, N30, N31, N33, N52, N53, N54, N66, N68, D

(xii) S, NI, N2, N24, N25, N26, N28, N29, N30, N31, N33, N52, N53, N54, N66, N68, D

(xiii) S, N1, N2, N24, N67, N68, D

150 Software Testing

(xiv) S, N1, N2, N3, N§, N13, N20, N22, N23, N24, N67, N68, D
(xv) S,NI1,N2, N3, N8, N13,N20, N21, N23, N24, N67, N68, D
(xvi) S,NI1, N2, N3, N8, N13,N14, N16, N18, N19, N23, N24, N67, N68, D

(xvii) S, N1, N2, N3, N8, N13,N14, N16, N17, N19, N23, N24, N67, N68, D
(xviil) S, N1, N2, N3, N8, N13,N14, N15, N19, N23, N24, N67, N68, D
(xix) S, N1, N2, N3, N8, N9, N11, N12, N23, N24, N67, N68, D

(xx) S, NI, N2, N3, N§, N9, N10, N12, N23, N24, N67, N68, D

(xxi) S, N1, N2, N3, N§, N9, N10, N12, N23, N24, N67, N68, D

(xxii) S, N1, N2, N3, N4, N5, N6, N7, N§, N9, N10, N12, N23, N24, N67, N68, D

(xxiii) S, N1, N2, N24, N25, N26, N28, N29, N30, N31, N52, N53, N55, N57, N59, N61,
N63, N65, N66, N68, D

(xxiv) S, N1, N2, N24, N25, N26, N28, N29, N30N N31, N52, N53, N55, N57, N59, N61,
N63, N64, N66, N68, D

(xxv) S, NI, N2, N24, N25, N26, N28, N29, N30, N31, N52, N53, N55, N57, N59, N61,
N62, N66, N68, D

(xxvi) S, N1, N2, N24, N25, N26, N28, N29, N30, N31, N52, N53, N55, N57, N59, N60,
N66, N68, D

(xxvii) S, N1, N2, N24, N25, N26, N28, N29, N30, N31, N52, N53, N55, N57, N58, N66,
N68, D

(xxviii) S, N1, N2, N24, N25, N26, N28, N29, N30, N31, N52, N53, N55, N56, N66, N68,
D

3.5.2 Graph Matrices

The graphs are commonly used in testing to find independent paths. Cyclomatic complexity
also gives us the number of independent paths in any graph. When the size of the graph
increases, it becomes difficult to identify those paths manually. We may do so with the help of
a software tool and graph matrices may become the basis for designing such a tool.

A graph matrix is a square matrix with one row and one column for every node of the graph.
The size of the matrix (number of rows and number of columns) is the number of nodes of the
graph. Some examples of program graphs and their graph matrices are given in Figure 3.26.

1 2 3 4 5
1 a b
2 e
3 d f
4 c g
5
(a)

Cyclomatic Complexity = 4

Essentials of Graph Theory 151

S N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 D

N1 b
N2 c h
N3 d e
N4 f
N5 g
N6 n
N7 i
N8 j k
N9 |

N10 m
N11 o
N12 p

(b)

Figure 3.26. Program graphs and graph matrices

Graph matrix is the tabular representation of a program graph. If we assign weight for every
entry in the table, then this may be used for the identification of independent paths. The
simplest weight is 1, if there is a connection and 0 if there is no connection. A matrix with such
weights is known as connection matrix. A connection matrix for Figure 3.26 (b) is obtained by
replacing each entry with 1, if there is a link and 0 if there is no link.

152 Software Testing

We do not show 0 entries for simplicity and blank space is treated as 0 entry as shown in
Figure 3.27.

S N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 D

S 1 1-1
N1 1 11
N2 1 1 21
N3 1 1 2-1
N4 1 11
N5 1 1-1
N6 1 1-1
11

21

1-1

11

1-1

1-1

N7 1
N8 1 1
N9 1
N10 1
N1 1
N12 1

1 1 1 1 1 | | g
OO0 ~~0000-~ 00

Figure 3.27. Connection matrix for program graph shown in Figure 3.26(b)

The connection matrix can also be used to find cyclomatic complexity as shown in Figure
3.27. Each row with more than one entry represents a predicate node and cyclomatic complexity
is predicate nodes plus one (IT+1).

As we know, each graph matrix expresses a direct link between nodes. If we take the square
of the matrix, it shows 2-links relationships via one intermediate node. Hence, square matrix
represents all paths of two links long. The K™ power of matrix represents all paths of K links
long. We consider the graph matrix of the program graph given in Figure 3.26 (a) and find its
square as shown below:

1 2 3 4 5 1 2 3 4 5
1 b 1 ad bc af+bg
2 e 2
3 d f 3 de
4 [g 4 cd cf
5 5
[Al [AF

There are two paths af and bg of two links between node 1 and node 5. There is no one link
path from node 1 to node 5. We will get three links paths after taking the cube of this matrix
as given below:

1 2 3 4 5
1 bcd ade+bcf
2
3
4 cde
5

[AP

There are two 3-links paths from node 1 to node 5 which are ade and bcf. If we want to find
four links paths, we extend this and find [A]* as given below:

Essentials of Graph Theory 153

bcde

a B~ ON -~

(A

There is only one four links path — bede, which is from node 1 to node 5. Our main objective is
to use the graph matrix to find all paths between all nodes. This can be obtained by summing A, A%,
A3....A™!. Hence, for the above examples, many paths are found and are given in Figure 3.28.

One link paths : a,b,cdefg

Two links paths : ad, be, af, bg, de, cd, cf
Three links paths : bcd, ade, bcf, cde

Four links paths . bcde

node 1 to node 2 : ad, bed

node 1 to node 3 : a, bc

node 1 to node 4 : b

node 1 to node 5 . af, bg, ade, bcf, bcde

node 2 to node 1 -
node 2 to node 3 -
node 2 to node 4
node 2 to node 5
node 3 to node 1
node 3 to node 2
node 3 to node 4
node 3 to node 5 :
node 4 to node 1 -
node 4 to node 2 . cd

node 4 to node 3 TC

node 4 to node 5 . g, cf cde

node 5 to all other nodes : -

a '|lo ¢

—h 1

, de

Figure 3.28. Various paths of program graph given in Figure 3.26(a)

As the cyclomatic complexity of this graph is 4, there should be 4 independent paths from
node 1 (source node) to node 5 (destination node) given as:

Path 1 : af
Path 2 : bg
Path 3 : ade
Path 4 : bef

Although 5 paths are shown, bede does not contain any new edge or node. Thus, it cannot
be treated as an independent path in this set of paths. This technique is easy to program and
can be used easily for designing a testing tool for the calculation of cyclomatic complexity and
generation of independent paths.

154 Software Testing

Example 3.10: Consider the program graph shown in Figure 3.29 and draw the graph and
connection matrices. Find out the cyclomatic complexity and two/three link paths from a node
to any other node.

Figure 3.29. Program graph

Solution:
1 2 3 4 5 1 2 3 4 5

1 a 1 1 1-1=0
2 e 2 1 1-1=0
3 c d b 3 1 1 1 3-1=2
4 f 4 1 1-1=0
5 5

2+1=3

Graph Matrix (A) Connection Matrix
The graph and connection matrices are given below:
Cyclomatic complexity = e-n+2P = 6-5+2=3
There are 3 regions in the program graph. The formula predicate node+1 (IT+1) is not
applicable because predicate node 3 has three outgoing edges.
We generate square and cube matrices for [A]

1 2 3 4 5
1 ac ad ab
2
3 C d ce+df
4
5

(A7

1 2 3 4 5
1 ace+adf
2
3
4
5

A%

Essentials of Graph Theory 155

This indicates that there are the following two and three link paths:

Two links paths ac, ad, ab, ce, df

Three links paths ace, adf

The independent paths are:

1. ab
2. adf
3. ace

Example 3.11: Consider the DD path graph for determination of division problem shown in
Figure 3.30 and draw the graph and connection matrices.

Solution: The graph and connection matrices are given in Figure 3.31 and Figure 3.32
respectively.

Figure 3.30. DD path graph for determination of division problem

156 Software Testing

S N1 N2 N3 N4 N5 N6 N7 N8 N9 N10O N11 N12 N13 N14 N15 D

S 1

N1 2

N2 3 4

N3 19

N4 5

N5 6 7

N6 14

N7 8 9

N8 15

N9 10 11

N10 16

N11 12 13

N12 17

N13 18

N14 20

N15 21

Figure 3.31. Graph matrix for determination of division problem

S N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 D

s 1 1-1=0
N1 1 1-1=0
N2 K 2-1=1
N3 1 1-1=0
N4 1 1-1=0
N5 K 2-1=1
N6 1 1-1=0
N7 1 [2-1=1
N8 1 1-1=0
N9 1 |1 2-1=1
N10 1 1-1=0
N11 K 2-1=1
N12 1 1-1=0
N13 1 1-1=0
N14 1 1-1=0
N15 1 | 1-1=0
[D 5+1=6

Figure 3.32. Connection matrix for determination of division problem

Example 3.12: Consider the DD path graph shown in Figure 3.33 for classification of triangle
problem and draw the graph and connection matrices.

Essentials of Graph Theory 157

Figure 3.33. DD path graph for classification of triangle problem

Solution:
The graph and connection matrices are shown in Figure 3.34 and Figure 3.35 respectively.

S N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 N17 N18 D
S 1
N1 2
N2 3 8
N3 415
N4 6
N5 7
N6 9

N7 10 19

(Contd.)

158 Software Testing

(Contd.)

S N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 N17 N18 D
N8 1"
N9 12 13
N10 16
N11 14 15
N12 17
N13 18
N14 22
N15 20 | 21
N16 23
N17 24
N18 25
D
Figure 3.34. Graph matrix for classification of triangle problem

S N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 N17 N18 D
s 1 1-1=0
N1 1 1-1=0
N2 1 1 2-1=1
N3 1 |1 2-1=1
N4 1 1-1=0
N5 1 1-1=0
N6 1 1-1=0
N7 1 1 2-1=1
N8 1 1-1=0
N9 1 1 2-1=1
N10 1 1-1=0
N11 1 1 2-1=1
N12 1 1-1=0
N13 1 1-1=0
N14 1 1-1=0
N15 1 1 2-1=1
N16 1 1-1=0
N17 1 1-1=0
N18 1-1=0
D

6+1=7

Figure 3.35 Connection matrix for classification of triangle problem

Essentials of Graph Theory 159

MULTIPLE CHOICE QUESTIONS

Note: Select the most appropriate answer for the following questions.

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Cyclomatic complexity is designed by:

(a) T.J. McCabe

(b) B.W. Boehm

(c) Victor Basili

(d) Bev. Littlewood

Cyclomatic complexity can be calculated by:

(a) V(G)=e-nt2P

(b) V(G)=II+1

(¢) V(G)=number of regions of the graph

(d) All of the above

The cyclomatic complexity equation V(G)= I1+1 is applicable only if every predicate
node has:

(a) Two outgoing edges

(b) Three or more outgoing edges

(c¢) No outgoing edge

(d) One outgoing edge

Cyclomatic complexity is equal to:

(a) Number of paths in a graph

(b) Number of independent paths in a graph

(c) Number of edges in a graph

(d) Number of nodes in a graph

A node with indegree #0 and outdegree =0 is called:
(a) Source node

(b) Destination node

(c) Predicate node

(d) None of the above

A node with indegree =0 and outdegree #0 is called:
(a) Source node

(b) Destination node

(¢c) Predicate node

(d) Transfer node

An independent path is:

(a) Any path that has at least one new set of processing statements or new condition
(b) Any path that has at most one new set of processing statements or new condition
(c) Any path that has a few set of processing statements and few conditions
(d) Any path that has feedback connection

DD path graph is called:

(a) Defect to defect path graph

(b) Design to defect path graph

(c) Decision to decision path graph

(d) Destination to decision path graph

160 Software Testing

3.9 Every node in the graph matrix is represented by:
(a) One row and one column
(b) Two rows and two columns
(¢) One row and two columns
(d) Two rows and one column
3.10 The size of graph matrix is:
(a) Number of edges in the flow graph
(b) Number of nodes in the flow graph
(c) Number of paths in the flow graph
(d) Number of independent paths in the flow graph
3.11 A program with high cyclomatic complexity is:
(a) Large in size
(b) Small in size
(c) Difficult to test
(d) Easy to test
3.12 Developers may have to take some tough decisions when the cyclomatic complexity
is:
(a) 1
(b) 5
() 15
(d 75
3.13 Every node of a regular graph has:
(a) Different degrees
(b) Same degree
(¢) No degree
(d) None of the above
3.14 The sum of entries of any column of incidence matrix is:
(a) 2
(b) 3
(c) 1
(d 4
3.15 The sum of entries of any row of adjacency matrix gives:
(a) Degree of a node
(b) Paths in a graph
(¢) Connections in a graph
(d) None of the above
3.16 The adjacency matrix of a directed graph:
(a) May have diagonal entries equal to 1
(b) May be symmetric
(¢) May not be symmetric
(d) May be difficult to understand
3.17 Length of a path is equal to:
(a) The number of edges in a graph
(b) The number of nodes in a graph
(c¢) The number of nodes in a path
(d) The number of edges in a path

Essentials of Graph Theory 161

3.18 Strongly connected graph will always be:

(a) Weakly connected
(b) Large in size
(¢) Small in size
(d) Loosely connected

3.19 A simple graph has:

(a) Loops and parallel edges
(b) No loop and a parallel edge
(c) At least one loop

(d) At most one loop

3.20 In a directed graph:

3.1
3.2
3.3

3.4

3.5

3.6

(a) Edges are the un-ordered pairs of nodes
(b) Edges are the ordered pairs of nodes
(c) Edges and nodes are always equal

(d) Edges and nodes are always same

EXERCISES

What is a graph? Define a simple graph, multigraph and regular graph with examples.
How do we calculate degree of a node? What is the degree of an isolated node?

What is the degree of a node in a directed graph? Explain the significance of indegree
and outdegree of a node.

Consider the following graph and find the degree of every node. Is it a regular graph?
Identify source nodes, destination nodes, sequential nodes, predicate nodes and junction

nodes in this graph.

Consider the graph given in exercise 3.4 and find the following:

(1) Incidence matrix

(i) Adjacency matrix

(iii) Paths

(iv) Connectedness

(v) Cycles

Define incidence matrix and explain why the sum of entries of any column is always 2.
What are various applications of incidence matrix in testing?

162 Software Testing

3.7 What is the relationship of an adjacency matrix with connection matrix?

3.8 What is a graph matrix? How is it related to a connection matrix?

3.9 Why is adjacency matrix not symmetric in a directed graph? How can we calculate
indegree and outdegree of all nodes from the adjacency matrix?

3.10 What is a path? How is it different from an independent path?

3.11 Define the following in a graph:
(i) Cycles
(i1) Connectedness

3.12 Consider the following graph:

(o))

(1) Calculate the degree of every node and identify the cycles.
(i1) Is this graph strongly connected?
(iii)) Draw the incidence matrix and adjacency matrix.
(iv) Find all paths.
3.13 What is cyclomatic complexity? Discuss different ways to compute it with examples.
3.14 Explain program graph notations. Use these notations to represent a program graph
from a given program.
3.15 Consider the following program segment:
/* sort takes an integer array and sorts it in ascending order*/

1. void sort (int a [], int n) {

2. inti, j;

3. for(i=0;i<n-1;i++)
4. for(i=i+1;j<n;j++)

5. if(alil=al[j])

6 {

7 temp=ali];

8. afi]=afjl;

9. a[j]=temp;

10. }

1. 3}
(a) Draw the program graph for this program segment.
(b) Determine the cyclomatic complexity for this program (show the intermediate

steps of your computation).

(c) How is the cyclomatic complexity metric useful?

Essentials of Graph Theory 163

3.16 Consider the following program segment:

1. int find-maximum (int i, int j, int k)
2. |

3 int max;

4 if(i>j) then

5 if (i<k) then max=i;

6. else max=k;

7 else if (j>k) max=j

8 else max=k

9 return (max);

10. }

(a) Draw the control flow graph for this program segment.
(b) Determine the cyclomatic complexity for this program (show the intermediate
steps of your computation).

(c) How is the cyclomatic complexity metric useful?

3.17 Write a program to determine whether a number is even or odd. Draw the program
graph and DD path graph. Find the independent paths.

3.18 Consider the following program and draw the program path graph and DD path graph.
Also find out cyclomatic complexity and independent paths.

void main ()
{
intx, y;
scanf (“%d \n", &x);
scanf (“%d \n”, &y);
while (x ! =y)
{
if (x>y)
X=X-Y;
elsey=y-x;
}
printf (“x = %d”, x);
}
3.19 What are differences between a directed graph and un-directed graph? Which one is
more relevant in software testing and why?
3.20 How do we define the connectedness of a graph? Why every strongly connected graph
is also called weakly connected graph?

FURTHER READING

An early work on graph models of programs can be found in:
C.V. Ramamoorthy, “Analysis of Graphs by Connectivity Considerations”,
Journal of the ACM, vol. 13, pp. 211-222, 1966.

The book by Veerarajan is an excellent text with an exhaustive number of examples:
T. Veerarajan, “Discrete Mathematics with Graph Theory and Combinatorics”,
McGraw Hill, 2007.

164 Software Testing

Other similar books include:
F. Harary, “Graph Theory”, Addison-Wesley, 1969.
W. Mayeda, “Graph Theory”, John Wiley and Sons, New York, 1972.
F. Harary, P. Frank; M. Edgar, “Graphical Enumeration”, Academic Press, New
York, 1973.
M. Golumbic, “Algorithmic Graph Theory and Perfect Graphs”, Academic
Press, 1980.
G. Chartrand, “Introductory Graph Theory”, Dover, 1985.
A. Gibbons, “Algorithmic Graph Theory”, Cambridge University Press, 1985.
N. Biggs, E. Lloyd, R. Wilson, “Graph Theory”, Oxford University Press,

1986.

Jonathan L Gross, and Jay Yellen, “Graph Theory and Its Applications”, CRC
Press, 1999.

Jonathan L Gross, and Jay Yellen, “Handbook of Graph Theory”, CRC Press,
2003.

J.A. Bondy, U.S.R Murty,.“Graph Theory”, Springer, 2008.
The following paper gives a method for constructing a flow graph of a given function
and determining the set of basis paths:
Joseph Poole, “A Method to Determine a Basis Set of Paths to Perform Program
Testing”, NIST, 1991.
A classic paper that describes a graph-based complexity measure and illustrates how
this measure can be used to compute program complexity is:
T. McCabe, “A Complexity Measure”, IEEE Transactions on Software
Engineering, vol. 2, no. 4, pp. 308-320, December 1976.
Myers discussed several anomalies of the complexity measure where a program with
low complexity gives high values of complexity measure:
G. Myers, “An Extension to the Cyclomatic Measure of Program Complexity”,
SIGPLAN Notices, October 1977.
This excellent NIST report describes basis path testing using McCabe’s cyclomatic
complexity measure:
Arthur H. Watson and Thomas J. McCabe, “Structured Testing: A Testing
Methodology using the Cyclomatic Complexity Metric”, NIST, September
1996.
For an introduction on graph matrix one may consult:
B. Beizer, “Software Testing Techniques”, The Coriolis Group, Inc, 1990.

Structural Testing

Structural testing is considered more technical than functional testing. It attempts to design test
cases from the source code and not from the specifications. The source code becomes the base
document which is examined thoroughly in order to understand the internal structure and other
implementation details. It also gives insight in to the source code which may be used as an
essential knowledge for the design of test cases. Structural testing techniques are also known as
white box testing techniques due to consideration of internal structure and other implementation
details of the program. Many structural testing techniques are available and some of them are
given in this chapter like control flow testing, data flow testing, slice based testing and mutation
testing.

4.1 CONTROL FLOW TESTING

This technique is very popular due to its simplicity and effectiveness. We identify paths of the
program and write test cases to execute those paths. As we all know, path is a sequence of
statements that begins at an entry and ends at an exit. As shown in chapter 1, there may be too
many paths in a program and it may not be feasible to execute all of them. As the number of
decisions increase in the program, the number of paths also increase accordingly.

Every path covers a portion of the program. We define ‘coverage’ as a ‘percentage of source
code that has been tested with respect to the total source code available for testing’. We may
like to achieve a reasonable level of coverage using control flow testing. The most reasonable
level may be to test every statement of a program at least once before the completion of testing.
Hence, we may write test cases that ensure the execution of every statement. If we do so, we
have some satisfaction about reasonable level of coverage. If we stop testing without achieving
this level (every statement execution), we do unacceptable and intolerable activity which may
lead to dangerous results in future. Testing techniques based on program coverage criterion
may provide an insight about the effectiveness of test cases. Some of such techniques are
discussed which are part of control flow testing.

166 Software Testing

4.1.1 Statement Coverage

We want to execute every statement of the program in order to achieve 100% statement
coverage. Consider the following portion of a source code along with its program graph given
in Figure 4.1.

#include<stdio.h> o e o ° o o
#include<conio.h>

1. void main()

2. A °

3. int a,b,c,x=0,y=0;

4, clrser(); o

5. printf("Enter three numbers:");

6. scanf("%d %d %d",&a,&b,&c); o

7. if((a>b)&&(a>c)){

8. x=a*a+b*b; 0
9. }

10. if(b>c){ o

11. y=a*a-b*b;

12. }

13. printf("x= %d y= %d".x,y);

14. getch(); e
15. }

Figure 4.1. Source code with program graph

If, we select inputs like:
a=9, b=8, c=7, all statements are executed and we have achieved 100% statement coverage
by only one test case. The total paths of this program graph are given as:

i 1-7,10,13-15

(i) 1-7,10-15

(iii) 1-10, 13-15

(iv) 1-15

The cyclomatic complexity of this graph is:
V(G)=e-n+2P=16-15+2=3
V(G) = no. of regions =3
VG =II+1=2+1=3

Hence, independent paths are three and are given as:

1 1-7,10,13-15

(i) 1-7,10-15

(iii) 1-10, 13-15

Only one test case may cover all statements but will not execute all possible four paths and
not even cover all independent paths (three in this case).

Structural Testing 167

The objective of achieving 100% statement coverage is difficult in practice. A portion of the
program may execute in exceptional circumstances and some conditions are rarely possible,
and the affected portion of the program due to such conditions may not execute at all.

4.1.2 Branch Coverage

We want to test every branch of the program. Hence, we wish to test every ‘True’ and ‘False’
condition of the program. We consider the program given in Figure 4.1. If we selecta=9,b =
8, ¢ = 7, we achieve 100% statement coverage and the path followed is given as (all true
conditions):

Path = 1-15

We also want to select all false conditions with the following inputs:
a=7,b=8, ¢ =09, the path followed is
Path = 1-7, 10, 13-15

These two test cases out of four are sufficient to guarantee 100% branch coverage. The
branch coverage does not guarantee 100% path coverage but it does guarantee 100% statement
coverage.

4.1.3 Condition Coverage

Condition coverage is better than branch coverage because we want to test every condition at
least once. However, branch coverage can be achieved without testing every condition.

Consider the seventh statement of the program given in Figure 4.1. The statement number
7 has two conditions (a>b) and (a>c). There are four possibilities namely:

(i) Both are true

(i1) Firstis true, second is false
(iii) First is false, second is true
(iv) Both are false

If a> b and a > c, then the statement number 7 will be true (first possibility). However, if a
< b, then second condition (a > ¢) would not be tested and statement number 7 will be false
(third and fourth possibilities). If a > b and a < c, statement number 7 will be false (second
possibility). Hence, we should write test cases for every true and false condition. Selected inputs
may be given as:

(1) a=9,b=38, c="7 (first possibility when both are true)

(i) a=9,b=38, c=10 (second possibility — first is true, second is false)

(i) a=7,b =28, ¢ =9 (third and fourth possibilities- first is false, statement number 7 is
false)

Hence, these three test cases out of four are sufficient to ensure the execution of every
condition of the program.

4.1.4 Path Coverage

In this coverage criteria, we want to test every path of the program. There are too many paths
in any program due to loops and feedback connections. It may not be possible to achieve this

168 Software Testing

goal of executing all paths in many programs. If we do so, we may be confident about the
correctness of the program. If it is unachievable, at least all independent paths should be
executed. The program given in Figure 4.1 has four paths as given as:

(i) 1-7,10,13-15
(i) 1-7,10-15

(i) 1-10, 13-15
(iv) 1-15

Execution of all these paths increases confidence about the correctness of the program.
Inputs for test cases are given as:

S. No. Paths Id. Paths a In:: uts c Expected Output
1. Path-1 1-7,10, 13-15 7 8 9 x=0y=0

2. Path-2 1-7,10-15 7 8 6 x=0y=-15

3. Path-3 1-10, 13-15 9 7 8 x=130 y=0

4. Path-4 1-15 9 8 7 x=145 y=17

Some paths are possible from the program graph, but become impossible when we give inputs
as per logic of the program. Hence, some combinations may be found to be impossible to create.

Path testing guarantee statement coverage, branch coverage and condition coverage. However,
there are many paths in any program and it may not be possible to execute all the paths. We
should do enough testing to achieve a reasonable level of coverage. We should execute at least
(minimum level) all independent paths which are also referred to as basis paths to achieve
reasonable coverage. These paths can be found using any method of cyclomatic complexity.

We have to decide our own coverage level before starting control flow testing. As we go up
(statement coverage to path coverage) in the ladder, more resources and time may be required.

Example 4.1: Consider the program for the determination of the division of a student. The
program and its program graph are given in Figure 3.15 and 3.16 of chapter 3 respectively.
Derive test cases so that 100% path coverage is achieved.

Solution:
The test cases are given in Table 4.1.

Table 4.1. Test cases

S.No. markl mark2 mark3 Expected output Paths

1. 30 -1 20 Invalid marks 1-14,33, 34

2. 40 20 45 Fail 1-12, 15-19, 32, 33,34

3. 45 47 50 Third division 1-13, 15-17,20-22, 32-34

4. 55 60 57 Second division 1-12, 15-17, 20, 23, 26-28, 32-34
5. 65 70 75 First division 1-12,15-17, 20, 23, 26-28,32-34
6. 80 85 90 First division with 1-12,15-17, 20, 23, 26, 29-34

distinction

Structural Testing 169

Example 4.2: Consider the program and program graph given below. Derive test cases so that
100% statement coverage and path coverage is achieved.

/*Program to validate input data*/
#include<stdio.h>
#include<string.h>
#include<conio.h>

1. void main()

2. {

3. char fname[30],address[100],Email[100];

4, int valid=1,flag=1;

5. clrscr();

6. printf("Enter first name:");

7. scanf("%s", fname);

8. printf("\nEnter address:");

9. scanf("%s",address);

10. printf("\nEnter Email:");

11. scanf("%s",Email);

12. if(strlen(fname)<4||strlen(fname)>30){

13. printf("\nInvalid first name");

14, valid=0;

15, }

16. if(strlen(address)<4||strlen(address)>100){
17. printf("\nInvalid address length");
18. valid=0;

19. }

20. if(strlen(Email)<8||strlen(Email)>100){

21. printf("\nInvalid Email length");
22. flag=0;

23. valid=0;

24. }

25. if(flag==1){

26. if(strchr(Email,".")==0||strchr(Email,'@")==0){
27. printf("\nEmail must contain . and @ characters");
28. valid=0;

29. }

30. }

31, if(valid) {

32. printf("\nFirst name: %s \t Address: %s \t Email:

%s",fname,address,Email);
33, }
34. getch();
35, }

170 Software Testing

12

3

&/

N AN AN

(@~(=) ¢

N

®
Solution:

The test cases to guarantee 100% statement and branch coverage are given in Table 4.2.

Table 4.2. Test cases for statement coverage

S.No. Firstname Address Email Expected output Paths
1. ashok E-29, east- abc@yahoo.com First name: ashok 1-12, 16, 20,
ofkailash Address: E-29, east- 25, 31-35

ofkailash Email: abc@
yahoo.com

2. ruc E29 abc Invalid first name 1-25, 30, 31,
Invalid address length 34,35
Invalid email length

3. ruc E-29 abc@yahoocom Invalid first name 1-20, 25-31,
Invalid address length 34, 35

Email must contain . and
@ character

(Contd.)

Total paths of the program graph are given in Table 4.3.

Structural Testing 171

Table 4.3. Test cases for path coverage
First .
S. No. Address Email Expected output Paths
name
1. - - - - 1-35
2 - - - - 1-30, 34,35
3. - - - - 1-25, 30-35
4 ruc E29 abc Invalid first name 1-25, 30, 31, 34,
Invalid address length 35
Invalid email length
5. - - - - 1-20, 25-35
ruc E-29 abc@yahoocom Invalid first name 1-20, 25-31, 34,
Invalid address length 35
Email must contain . and
@ character
- - - - 1-20, 25, 30-35
ruc E-29 Abs@yahoo.com Invalid first name 1-20, 25, 30, 31,
Invalid address length 34, 35
o. - - - - 1-16, 20-35
10. - - - - 1-16, 20-31, 34,
35
11. - - - - 1-16, 20-25,
30-35
12. ruc E-29, east- Abs Invalid first name 1-16, 20-25, 30,
ofkailash Invalid email length 31, 34,35
13. - - - - 1-16, 20, 25-35
14. ruc E-29, east- abc@yahoocom Invalid first name 1-16, 20, 25-31,
ofkailash Email must contain.and 34, 35
@ character
15. - - - - 1-16, 20, 25,
31-35
16. ruc E-29, east- abc@yahoo.com Invalid first name 1-16, 20, 25, 30,
ofkailash 31, 34,35
17. - - - - 1-12,16-35
18. - - - - 1-12, 16-31,
34,35
19. - - - - 1-12, 16-25,
30-35
20. ashok E29 Abc Invalid address length 1-12, 16-25, 30,
Invalid email length 31, 34,35
21. - - - - 1-12, 16-20,
25-35

(Contd.)

172 Software Testing

(Contd.)
First .
S. No. Address Email Expected output Paths
name
22. ashok E29 abc@yahoocom Invalid address length 1-12, 16-20,
Email must contain . and 25-31, 34,35
@ character
23. - - - - 1-12, 16-20, 25,
30-35
24. ashok E29 abc@yahoo.com Invalid address length 1-12, 16-20, 25,
30, 31, 34, 35
25. - - - - 1-12, 16, 20-35
26. - - - - 1-12, 16, 20-31,
34,35
27. - - - - 1-12, 16, 20-25,
30-35
28. ashok E-29, east- Abs Invalid email length 1-12, 16, 20-25,
ofkailash 30, 31, 34, 35
29. - - - - 1-12, 16, 20,
25-35
30. ashok E-29, east- Abcyahoo.com Email must contain . and 1-12, 16, 20,
ofkailash @ character 25-31, 34, 35
31. ashok E-29, east- abc@yahoo.com First name: ashok 1-12, 16, 20, 25,
ofkailash Address: E-29, east- 31-35
ofkailash Email: abc@
yahoo.com
32. - - - - 1-12, 16, 20, 25,
30, 31, 34,35

Example 4.3: Consider the program for classification of a triangle given in Figure 3.10.

Derive test cases so that 100% statement coverage and path coverage is achieved.

Solution:

The test cases to guarantee 100% statement and branch coverage are given in Table 4.4.

Table 4.4. Test cases for statement coverage

S. No. a b c Expected output Paths

1. 30 20 40 Obtuse angled triangle 1-16,20-27,34,41,42

2. 30 40 50 Right angled triangle 1-16,20-25,28-30,34,41,42
3. 40 50 60 Acute angled triangle 1-6,20-25,28,31-34,41,42
4, 30 10 15 Invalid triangle 1-14,17-21,35-37,41,42

5. 102 50 60 Input values out of range 1-13,21,35,38,39,40-42

Total paths of the program graph are given in Table 4.5.

Structural Testing 173

Table 4.5. Test cases for path coverage

S.No. a b c Expected output Paths

1. 102 -1 6 Input values out of range 1-13,21,35,38,39,40-42

2. - - - - 1-14,17-19,20,21,35,38,39,40-42
3. - - - - 1-16,20,21,35,38,39,40-42
4. 3 i _ - 1-13,21,35,36,37,41,42

5. 30 10 15 Invalid triangle 1-14,17-21,35-37,41,42

6. - . - - 1-16,20,21,35-37,41,42

7 _ B - - 1-13,21-25,28,31-34,41,42
8. - - - - 1-14,17-25,28,31-34,41,42
9. 40 50 60 Acute angled triangle 1-16,20-25,28,31-34,41,42
10. - - - - 1-13,21-25,28-30,34,41,42
11. - - - - 1-14,17-25,28-30,34,41,42
12 30 40 50 Right angled triangle 1-16,20-25,28-30,34,41,42
13. - - - - 1-13,21-27,34,41,42

14. - - - - 1-14,17-27,34,41,42

15. 30 20 40 Obtuse angled triangle 1-16,20-27,34,41,42

Thus, there are 15 paths, out of which 10 paths are not possible to be executed as per the logic
of the program.

4.2 DATA FLOW TESTING

In control flow testing, we find various paths of a program and design test cases to execute
those paths. We may like to execute every statement of the program at least once before the
completion of testing. Consider the following program:

include < stdio.h>
void main ()

{

inta, b, c;
a=b+c;

printf (“%d”, a);
}

What will be the output? The value of ‘a’ may be the previous value stored in the memory
location assigned to variable ‘a’ or a garbage value. If we execute the program, we may get an
unexpected value (garbage value). The mistake is in the usage (reference) of this variable
without first assigning a value to it. We may assume that all variables are automatically
assigned to zero initially. This does not happen always. If we define at line number 4, ‘static
int a, b, ¢’, then all variables are given zero value initially. However, this is a language and
compiler dependent feature and may not be generalized.

N O U N WD

174 Software Testing

Data flow testing may help us to minimize such mistakes. It has nothing to do with data-
flow diagrams. It is based on variables, their usage and their definition(s) (assignment) in the
program. The main points of concern are:

(i) Statements where variables receive values (definition).
(i) Statements where these values are used (referenced).

Data flow testing focuses on variable definition and variable usage. In line number 5 of the
above program, variable ‘a’ is defined and variables ‘b’ and ‘c’ are used. The variables are
defined and used (referenced) throughout the program. Hence, this technique concentrates on
how a variable is defined and used at different places of the program.

4.2.1 Define/Reference Anomalies

Some of the define / reference anomalies are given as:

(i) Avariable is defined but never used / referenced.
(i1) A variable is used but never defined.

(i) A variable is defined twice before it is used.

(iv) A variable is used before even first-definition.

We may define a variable, use a variable and redefine a variable. So, a variable must be first
defined before any type of its usage. Define / reference anomalies may be identified by static
analysis of the program i.e. analyzing program without executing it. This technique uses the
program graphs to understand the ‘define / use’ conditions of all variables. Some terms are
used frequently in data flow testing and such terms are discussed in the next sub-section.

4.2.2 Definitions

A program is first converted into a program graph. As we all know, every statement of a
program is replaced by a node and flow of control by an edge to prepare a program graph.
There may be many paths in the program graph.

(i) Defining node
A node of a program graph is a defining node for a variable v, if and only if, the
value of the variable v is defined in the statement corresponding to that node. It is
represented as DEF (v, n) where v is the variable and n is the node corresponding to
the statement in which v is defined.

(ii) Usage node
A node of a program graph is a usage node for a variable v, if and only if, the value of
the variable v is used in the statement corresponding to that node. It is represented as
USE (v, n), where ‘v’ is the variable and ‘n’ in the node corresponding to the statement
in which ‘v’ is used.
A usage node USE (v, n) is a predicate use node (denoted as P-use), if and only if, the
statement corresponding to node ‘n’ is a predicate statement otherwise USE (v, n) is a
computation use node (denoted as C-use).

Structural Testing 175

(iii) Definition use Path
A definition use path (denoted as du-path) for a variable ‘v’ is a path between two
nodes ‘m’ and ‘n’ where ‘m’ is the initial node in the path but the defining node for
variable ‘v’ (denoted as DEF (v, m)) and ‘n’ is the final node in the path but usage node
for variable “v’ (denoted as USE (v, n)).

(iv) Definition clear path
A definition clear path (denoted as dc-path) for a variable ‘v’ is a definition use path
with initial and final nodes DEF (v, m) and USE (v, n) such that no other node in the
path is a defining node of variable “v’.

The du-paths and dc-paths describe the flow of data across program statements from
statements where values are defined to statements where the values are used. A du-path for a
variable ‘0’ may have many redefinitions of variable ‘v’ between initial node (DEF (v, m)) and
final node (USE (v, n)). A dc-path for a variable ‘v’ will not have any definition of variable ‘v’
between initial node (DEF (v, m)) and final node (USE (v, n)). The du-paths that are not
definition clear paths are potential troublesome paths. They should be identified and tested on
topmost priority.

4.2.3 ldentification of du and dc Paths

The various steps for the identification of du and dc paths are given as:

(1) Draw the program graph of the program.
(i) Find all variables of the program and prepare a table for define / use status of all
variables using the following format:

S. No. Variable(s) Defined at node Used at node

(iii) Generate all du-paths from define/use variable table of step (iii) using the following
format:

S. No. Variable du-path(begin, end)

(iv) Identify those du-paths which are not dc-paths.

4.2.4 Testing Strategies Using du-Paths

We want to generate test cases which trace every definition to each of its use and every use is
traced to each of its definition. Some of the testing strategies are given as:

(i) Test all du-paths
All du-paths generated for all variables are tested. This is the strongest data flow testing
strategy covering all possible du-paths.

176 Software Testing

(i)

(iii)

Test all uses

Find at least one path from every definition of every variable to every use of that
variable which can be reached by that definition.

For every use of a variable, there is a path from the definition of that variable to the
use of that variable.

Test all definitions

Find paths from every definition of every variable to at least one use of that variable;
we may choose any strategy for testing. As we go from ‘test all du-paths’ (no. (i)) to
‘test all definitions’ (no.(iii)), the number of paths are reduced. However, it is best to
test all du-paths (no. (i)) and give priority to those du-paths which are not definition
clear paths. The first requires that each definition reaches all possible uses through all
possible du-paths, the second requires that each definition reaches all possible uses,
and the third requires that each definition reaches at least one use.

4.2.5 Generation of Test Cases

After finding paths, test cases are generated by giving values to the input parameter. We get
different test suites for each variable.

Consider the program given in Figure 3.11 to find the largest number amongst three
numbers. Its program graph is given in Figure 3.12. There are three variables in the program
namely A, B and C. Define /use nodes for all these variables are given below:

S. No. Variable Defined at node Used at node
1. A 6 11,12, 13
2. B 8 11, 20, 24
3. C 10 12, 16, 20, 21

The du-paths with beginning node and end node are given as:

Variable du-path (Begin, end)

6,11
6,12
6, 13

8,11
8,20
8,24

10, 12
10, 16
10, 20
10,21

The first strategy (best) is to test all du-paths, the second is to test all uses and the third is to
test all definitions. The du-paths as per these three strategies are given as:

Structural Testing 177

Paths Definition clear?
All 6-11 Yes
du paths 6-12 Yes
and 6-13 Yes
all uses 8-11 Yes
(Both are same in this 8-11, 19, 20 Yes
example) 8-11, 19, 20, 23, 24 Yes
10-12 Yes
10-12, 15, 16 Yes
10, 11, 19, 20 Yes
10, 11, 19-21 Yes
All definitions 6-11 Yes
8-11 Yes
10-12 Yes

Here all du-paths and all-uses paths are the same (10 du-paths). But in the 3™ case, for all
definitions, there are three paths.
Test cases are given below:

Test all du-paths

S. No. A Blnputs c gz't);:::ed Remarks

1 9 8 7 9 6-11

2 9 8 7 9 6-12

3 9 8 7 9 6-13

4 7 9 8 9 8-11

5 7 9 8 9 8-11, 19, 20

6 7 9 8 9 8-11, 19, 20, 23, 24

7 8 7 9 9 10-12

8 8 7 9 9 10-12, ,15, 16

9 7 8 9 9 10, 11, 19, 20

10. 7 8 9 9 10, 11, 19-21
Test All definitions

S. No. A Blnputs c Expected Output Remarks

1. 9 8 7 9 6-11

2. 7 9 8 9 8-11

3. 8 7 9 9 10-12

In this example all du-paths and all uses yield the same number of paths. This may not
always be true. If we consider the following graph and find du paths with all three strategies,
we will get a different number of all-du paths and all-uses paths.

178 Software Testing

o Def (a, 1), Def (b, 1)

Def/Use nodes table

S. No. Variables Defined at node Used at node
1. 1 7,10
2. 1 8,9

The du paths are identified as:

S. No. Variables

du-paths (Begin, end)

1. a

1,7

B R R

0

4

© 00 =

The du-paths are identified as per three testing strategies:

v
Q0
-+
-
(7]

Definition clear?

All du paths
(8 paths)

o

0w QO
=
o

D ©Oo~ND O~

©

P N = Y =N Sy N
NEANBENENDS
Oo0oO0o 0o

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

(Contd.)

Structural Testing 179

(Contd.)
Paths Definition clear?
All uses 1-4,6,7 Yes
(4 paths) 1-4,6,9, 10 Yes
1-4,6-8 Yes
1-4,6,9 Yes
All definitions 1-4,6,7 Yes
(2 paths) 1-4,6-8 Yes

Hence the number of paths is different in all testing strategies. When we find all du-paths,
some paths may become impossible paths. We show them in order to show all combinations.

Example 4.4: Consider the program for the determination of the division problem. Its input is
a triple of positive integers (mark1, mark2, mark3) and values for each of these may be from
interval [0, 100]. The program is given in Figure 3.15. The output may have one of the options
given below:

(i) Fail

(1) Third division

(iii) Second division

(iv) First division

(v) First division with distinction
(vi) Invalid marks

Find all du-paths and identify those du-paths that are definition clear. Also find all du-paths,
all-uses and all-definitions and generate test cases for these paths.

Solution:

(i) The program graph is given in Figure 3.16. The variables used in the program are
mark1, mark2, mark3, avg.
(i) The define/ use nodes for all variables are given below:

S. No. Variable Defined at node Used at node
1. markl 7 12,16
2 mark2 9 12, 16
3. mark3 11 12,16
4 avg 16 17, 20, 23, 26

(i) The du-paths with beginning and ending nodes are given as:

S. No. Variable Du-path (begin, end)
1. markl 7,12
7,16
2. mark?2 9,12
9, 16
3. mark3 11, 12
11, 16

(Contd.)

180 Software Testing

(Contd.)
S. No. Variable Du-path (begin, end)
4, Avg 16, 17
16, 20
16, 23
16, 26

(iv) All du-paths, all-uses and all-definitions are given below:

Paths Definition clear?
All du-paths and all-uses 7-12 Yes
7-12, 15, 16 Yes
9-12 Yes
9-12, 15, 16 Yes
11,12 Yes
11, 12, 15, 16 Yes
16, 17 Yes
16, 17, 20 Yes
16, 17, 20, 23 Yes
16, 17, 20, 23, 26 Yes
All definitions 7-12 Yes
9-12 Yes
11, 12 Yes
16, 17 Yes

Test cases for all du-paths and all-uses are given in Table 4.6 and test cases for all definitions
are given in Table 4.7.

Table 4.6. Test cases for all du-paths and all-uses
S. No. markl mark2 mark3 Expected Output Remarks
1. 101 50 50 Invalid marks 7-12
2. 60 50 40 Second division 7-12, 15, 16
3. 50 101 50 Invalid marks 9-12
4. 60 70 80 First division 9-12, 15, 16
5. 50 50 101 Invalid marks 11,12
6. 60 75 80 First division 11, 12, 15, 16
7. 30 40 30 Fail 16, 17
8. 45 50 50 Third division 16, 17, 20
9. 55 60 50 Second division 16, 17, 20, 23
10. 65 70 70 First division 16, 17, 20, 23, 26
Table 4.7. Test cases for all definitions
S. No. markl mark2 mark3 Expected Output Remarks
1. 101 50 50 Invalid marks 7-12
2. 50 101 50 Invalid marks 9-12
3. 50 50 101 Invalid marks 11, 12
4 30 40 30 Fail 16, 17

Structural Testing 181

Example 4.5: Consider the program of classification of a triangle. Its input is a triple of
positive integers (a, b and c¢) and values for each of these may be from interval [0, 100]. The
program is given in Figure 3.18. The output may have one of the options given below:

(1) Obtuse angled triangle
(i) Acute angled triangle
(iii)) Right angled triangle
(iv) Invalid triangle

(v) Input values out of range

Find all du-paths and identify those du-paths that are definition clear. Also find all du-paths,
all-uses and all definitions and generate test cases from them.

Solution:

(i) The program graph is given in Figure 3.19. The variables used are a, b, c, al, a2, a3,
valid.
(i) Define / use nodes for all variables are given below:

S. No. Variable Defined at node Used at node

1. a 8 13, 14,22, 23,24
2. b 10 13, 14,22, 23,24
3. c 12 13, 14, 22-24

4. al 22 25.28

5. a2 23 25,28

6. a3 24 25,28

7. valid 5,15, 18 21,35

(ii1) The du-paths with beginning and ending nodes are given as:

S. No. Variable du-path (Begin, end)

1. a 8,13
8,14
8,22
8,23
8,24
2. b 10, 13
10, 14
10, 22
10, 23
10, 24
3. c 12,13
12,14
12,22
12,23
12,24
4. al 22.25
22,28

(Contd.)

182 Software Testing

(Contd.)

S. No. Variable du-path (Begin, end)

5. a2 23,25
23,28

6. a3 24,25
24,28

7. Valid 5,21
5,35
15,21
15, 35
18,21
18, 35

All du-paths are given in Table 4.8 and the test cases for all du-paths are given in Table 4.9.

Table 4.8. All du-paths

All du-paths Definition clear? All du paths Definition clear?
8-13 Yes 12-14,17-22 Yes
8-14 Yes 12, 13,21, 22 Yes
8-16, 20-22 Yes 12-16, 20-23 Yes
8-14, 17-22 Yes 12-14,17-23 Yes
8-13, 21,22 Yes 12,13,21-23 Yes
8-16, 20-23 Yes 12-16, 20-24 Yes
8-14, 17-23 Yes 12-14,17-24 Yes
8-13,21-23 Yes 12,13,21-24 Yes
8-16,20-24 Yes 22-25 Yes
8-14,17-24 Yes 22-25,28 Yes
8-13,21-24 Yes 23-25 Yes
10-13 Yes 23-25, 28 Yes
10-14 Yes 24,25 Yes
10-16, 20-22 Yes 24, 25,28 Yes
10-14, 17-22 Yes 5-16, 20, 21 No
10-13, 21,22 Yes 5-14,17-21 No
10-16, 20-23 Yes 5-13,21 Yes
10-14, 17-23 Yes 5-16, 20, 21, 35 No
10-13,21-23 Yes 5-14,17-21, 35 No
10-16, 20-24 Yes 5-13,21,35 Yes
10-14, 17-24 Yes 15, 16, 20, 21 Yes
10-13,21-24 Yes 15, 16, 20, 21, 35 Yes
12,13 Yes 18-21 Yes
12-14 Yes 18-21, 35 Yes
12-16, 20-22 Yes

Structural Testing 183

We consider all combinations for the design of du-paths. In this process, test cases
corresponding to some paths are not possible, but these paths are shown in the list of ‘all

du-paths’. They may be considered only for completion purpose.

Table 4.9. Test cases for all du-paths
S. No. A b c Expected output Remarks
1. 30 20 40 Obtuse angled triangle 8-13
2. 30 20 40 Obtuse angled triangle 8-14
3. 30 20 40 Obtuse angled triangle 8-16, 20-22
4. - - - - 8-14, 17-22
5. - - - - 8-13,21,22
6. 30 20 40 Obtuse angled triangle 8-16, 20-23
7. - - - - 8-14,17-23
8. - - - - 8-13,21-23
9. 30 20 40 Obtuse angled triangle 8-16, 20-24
10. - - - - 8-14, 17-24
11. - - - - 8-13,21-24
12. 30 20 40 Obtuse angled triangle 10-13
13. 30 20 40 Obtuse angled triangle 10-14
14. 30 20 40 Obtuse angled triangle 10-16, 20-22
15. - - - - 10-14, 17-22
16. - - - - 10-13, 21,22
17. 30 20 40 Obtuse angled triangle 10-16, 20-23
18. - - - - 10-14, 17-23
19. - - - - 10-13,21-23
20. 30 20 40 Obtuse angled triangle 10-16, 20-24
21. - - - - 10-14, 17-24
22. - - - - 10-13,21-24
23. 30 20 40 Obtuse angled triangle 12,13
24, 30 20 40 Obtuse angled triangle 12-14
25. 30 20 40 Obtuse angled triangle 12-16, 20-22
26. - - - - 12-14,17-22
27. - - - - 12, 13,21, 22
28. 30 20 40 Obtuse angled triangle 12-16, 20-23
29. - - - - 12-14,17-23
30. - - - - 12,13,21-23
31. 30 20 40 Obtuse angled triangle 12-16, 20-24
32. - - - - 12-14,17-24
33. - - - - 12,13,21-24
34. 30 20 40 Obtuse angled triangle 22-25

(Contd.)

184 Software Testing

(Contd.)
S. No. A b c Expected output Remarks
35. 30 40 50 Right angled triangle 22-25,28
36. 30 20 40 Obtuse angled triangle 23-25
37. 30 40 50 Right angled triangle 23-25, 28
38. 30 20 40 Obtuse angled triangle 24,25
39. 30 40 50 Right angled triangle 24, 25,28
40. 30 20 40 Obtuse angled triangle 5-16, 20,21
41. 30 10 15 Invalid triangle 5-14,17-21
42. 102 -1 6 Input values out of range 5-13,21
43. - - - - 5-16, 20, 21, 35
44, 30 10 15 Invalid triangle 5-14,17-21, 35
45, 102 -1 6 Input values out of range 5-13,21, 35
46. 30 20 40 Obtuse angled triangle 15, 16, 20, 21
47. - - - - 15, 16, 20, 21, 35
48. 30 10 15 Invalid triangle 18-21
49. 30 10 15 Invalid triangle 18-21, 35

The ‘all-uses’ paths are given in Table 4.10 and the test cases for all du-paths are given in
Table 4.11. The ‘all-definitions’ paths and the test cases are given in Tables 4.12 and 4.13

respectively.
Table 4.10. All uses paths for triangle classification problem

All uses Definition clear? All uses Definition clear?
8-13 Yes 12-16, 20-24 Yes
8-14 Yes 22-25 Yes
8-16, 20-22 Yes 22-25, 28 Yes
8-16, 20-23 Yes 23-25 Yes
8-16, 20-24 Yes 23-25,28 Yes
10-13 Yes 24,25 Yes
10-14 Yes 24, 25,28 Yes
10-16, 20-22 Yes 5-16, 20, 21 No
10-13,21-23 Yes 5-14,17-21, 35 No
10-16, 20-24 Yes 15, 16, 20, 21 Yes
12,13 Yes 15, 16, 20, 21, 35 Yes
12-14 Yes 18-21 Yes
12-16, 20, 21, 22 Yes 18-21, 35 Yes
12-16, 20-23 Yes

Structural Testing 185

Table 4.11. Test cases for all uses paths

S. No. a b c Expected output Remarks

1. 30 20 40 Obtuse angled triangle 8-13

2. 30 20 40 Obtuse angled triangle 8-14

3. 30 20 40 Obtuse angled triangle 8-16, 20-22

4, 30 20 40 Obtuse angled triangle 8-16, 20-23

5. 30 20 40 Obtuse angled triangle 8-16, 20-24

6. 30 20 40 Obtuse angled triangle 10-13

7. 30 20 40 Obtuse angled triangle 10-14

8. 30 20 40 Obtuse angled triangle 10-16, 20-22
9. 30 20 40 Obtuse angled triangle 10-13, 21-23
10. 30 20 40 Obtuse angled triangle 10-16, 20-24
11. 30 20 40 Obtuse angled triangle 12,13

12. 30 20 40 Obtuse angled triangle 12-14

13. 30 20 40 Obtuse angled triangle 12-16, 20, 21, 22
14. 30 20 40 Obtuse angled triangle 12-16, 20-23
15. 30 20 40 Obtuse angled triangle 12-16, 20-24
16. 30 20 40 Obtuse angled triangle 22-25

17. 30 40 50 Right angled triangle 22-25, 28

18. 30 20 40 Obtuse angled triangle 23-25

19. 30 40 50 Right angled triangle 23-25, 28

20. 30 20 40 Obtuse angled triangle 24,25

21. 30 40 50 Right angled triangle 24, 25,28

22. 30 20 40 Obtuse angled triangle 5-16, 20,21
23. 30 10 15 Invalid triangle 5-14,17-21, 35
24. 30 20 40 Obtuse angled triangle 15, 16, 20, 21
25. - - - - 15, 16, 20, 21, 35
26. 30 10 15 Invalid triangle 18-21

27. 30 10 15 Invalid triangle 18-21, 35

Table 4.12. All definitions paths for triangle classification problem

All definitions

Definition clear?

8-13
10-13
12,13
22-25
23-25
24,25
5-16, 20, 21
15, 16, 20, 21
18-21

Yes
Yes
Yes
Yes
Yes
Yes
No

Yes
Yes

186 Software Testing

Table 4.13. Test cases for all definitions paths
S. No. a b c Expected output Remarks
1. 30 20 40 Obtuse angled triangle 8-13
2. 30 20 40 Obtuse angled triangle 10-13
3. 30 20 40 Obtuse angled triangle 12,13
4, 30 20 40 Obtuse angled triangle 22-25
5. 30 20 40 Obtuse angled triangle 23-25
6. 30 20 40 Obtuse angled triangle 24,25
7. 30 20 40 Obtuse angled triangle 5-16, 20, 21
8. 30 20 40 Obtuse angled triangle 15, 16, 20, 21
9. 30 10 15 Invalid triangle 18-21

Example 4.6: Consider the program given in Figure 3.21 for the determination of day of the
week. Its input is at triple of positive integers (day, month, year) from the interval

1 < day <31
1 <month <12
1900 < year < 2058

The output may be:

[Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday]

Find all du-paths and identify those du-paths that are definition clear. Also find all du-paths,
all-uses and all-definitions and generate test cases for these paths.

Solution:

(i) The program graph is given in Figure 3.22. The variables used in the program are day,
month, year, century, Y, Y1, M, date, validDate, leap.
(i) Define / use nodes for all variables are given below:

S. No. Variable Defined at node Used at node
1. Day 6 19, 27, 30, 37,91
93, 96, 99, 102
105, 108, 111, 115
2. Month 8 18, 26, 37, 54
62,70,73,76,79
82, 85, 93, 96, 99
102, 105, 108, 111, 115
3. Year 10 11, 12, 14, 45, 47
51, 93, 96, 99, 102
105, 108, 111, 115
Century 46, 50 91
Y 53 91
Y1 47,51 53

(Contd.)

Structural Testing 187

(Contd.)
S. No. Variable Defined at node Used at node
7. M 56, 59, 64 91
67,71, 74
77,80, 83
86, 89
Date 91 92, 95, 98, 101, 104, 107
ValidDate 3, 20,23 44
28, 31, 34,
38,41
10. Leap 3,13,15 27,55, 63

(iii) The du-paths with beginning and ending nodes are given as:

S. No.

Variable

du-path (begin, end)

1.

Day

Month

w

()

©

N

= 00 1 N

00 00 00 00 00 00 00 00 00 00 00 00 00
PR EERE©OOOMON= N~

PP OOO 0O WO

o1

(Contd.)

188 Software Testing

(Contd.)

S. No.

Variable

du-path (begin, end)

3.

o

Year

Century

Y
Y1

Date

ValidDate

10, 11
10, 12
10, 14
10, 45
10, 47
10, 51
10, 93
10, 96
10, 99
10, 102
10, 105
10, 108
10, 111
10, 115
46,91
50, 91
53,91
47,53
51,53
56, 91
59, 91
64,91
67,91
71,91
74,91
77,91
80,91
83,91
86,91
89,91
91,92
91,95
91,98
91, 101
91, 104
91, 107
3,44
20, 44
23, 44
28, 44
31, 44
34,44
38, 44
41, 44

(Contd.)

Structural Testing 189

(Contd.)
S. No. Variable du-path (begin, end)

10. Leap 3,27
3,55
3,63
13,27
13,55
13,63
15, 27
15, 55
15, 63

There are more than 10,000 du-paths and it is neither possible nor desirable to show all of
them. The all uses paths and their respective test cases are shown in Table 4.14 and Table 4.15
respectively. The ‘all definitions’ paths are shown in Table 4.16 and their corresponding test
cases are given in Table 4.17.

Table 4.14. All uses paths for determination of the day of week problem

All uses ([:)sz::;tion
6-19 Yes
6-18, 26, 27 Yes
6-18, 26, 27, 30 Yes
6-18, 26, 37 Yes
6-21, 25,43-48, 53, 54,62, 70, 73, 76, 79-81, 91 Yes
6-21, 25,43-48, 53,54, 62,70, 73, 76, 79-81, 91-93 Yes
6-21, 25,43-48, 53,54, 62,70, 73, 76, 79-81, 91, 92, 95, 96 Yes
6-21, 25,43-48, 53,54, 62,70, 73, 76, 79-81, 91, 92, 95, 98, 99 Yes
6-21, 25,43-48, 53, 54, 62, 70, 73, 76, 79-81, 91, 92, 95, 98, 101, 102 Yes
6-21,43-48, 53,54, 62,70, 73, 76, 79-81, 91, 92, 95, 98, 101, 104, 105 Yes
6-21, 25,43-48, 53,54, 62,70, 73, 76, 79-81, 91, 92, 95, 98, 101,104, 107, 108 Yes
6-21, 25,43-48, 53,54, 62,70, 73, 76, 79-81, 91, 92, 95, 98, 101, 104, 107, Yes
110, 111

6-11, 44, 114, 115 Yes
8-18 Yes
8-18, 26 Yes
8-18, 26, 37 Yes
8-21, 25,43-48, 53,54 Yes
8-21, 25,43-48, 53, 54, 62 Yes
8-25,43-48,53,54,62,70 Yes
8-21, 25,43-48, 53,54, 62,70, 73 Yes
8-21, 25,43-48, 53,54, 62,70, 73, 76 Yes

(Contd.)

190 Software Testing

(Contd.)

All uses Definition
clear?

8-21, 25,43-48,53,54,62,70,73,76, 79 Yes
8-21, 25,43-48,53,54,62,70,73,76, 79, 82 Yes
8-21, 25,43-48,53,54,62,70, 73,76, 79, 82,85 Yes
8-21, 25,43-48,53, 54,62, 70, 73, 76, 79-81, 91, 92, 93 Yes
8-21, 25,43-48,53, 54,62, 70, 73, 76, 79-81, 91, 92, 95, 96 Yes
8-21, 25,43-48,53, 54,62, 70, 73, 76, 79-81, 91, 92, 95, 98, 99 Yes
8-21, 25,43-48,53, 54,62, 70, 73, 76, 79-81, 91, 92, 95, 98, 101, 102 Yes
8-21, 25,43-48,53, 54,62, 70, 73, 76, 79-81, 91, 92, 95, 98, 101, 104, 105 Yes
8-21, 25,43-48,53, 54,62, 70, 73, 76, 79-81, 91, 92, 95, 98, 101, 104, 107, 108 Yes
8-21, 25,43-48,53, 54,62, 70, 73, 76, 79-81, 91, 92, 95, 98, 101, 104, 107, Yes
110, 111
8-11, 44, 114, 115 Yes
10, 11 Yes
10-12 Yes
10-14 Yes
10-21, 25, 43-45 Yes
10-21, 25, 43-47 Yes
10-21, 25, 43-45, 49-51 Yes
10-21, 25, 43-48, 53, 54, 62, 70, 73, 76, 79-81, 91-93 Yes
10-21, 25, 43-48, 53, 54, 62, 70, 73, 76, 79-81, 91, 92, 95, 96 Yes
10-21, 25, 43-48, 53, 54, 62, 70, 73, 76, 79-81, 91, 92, 95, 98, 99 Yes
10-21, 25, 43-48, 53, 54, 62, 70, 73, 76, 79-81, 91, 92, 95, 98, 101, 102 Yes
10-21, 25, 43-48, 53, 54, 62, 70, 73, 76, 79-81, 91, 92, 95, 98, 101, 104, 105 Yes
10-21, 25, 43-48, 53, 54, 62, 70, 73, 76, 79-81, 91, 92, 95, 98, 101, 104, 107, Yes
108
10-21, 25, 43-48, 53, 54, 62, 70, 73, 76, 79-81, 91, 92, 95, 98, 101, 104, 107, Yes
110, 111
10, 11, 44, 114, 115 Yes
46-48,53-57, 61, 91 Yes
50-57, 61, 91 Yes
53-61, 91 Yes
47,48, 53 Yes
51-53 Yes
56, 57, 61, 91 Yes
59-61, 91 Yes

(Contd.)

Structural Testing 191

(Contd.)
All uses Definition
clear?
64, 65, 69, 91 Yes
67-69, 91 Yes
71,72,91 Yes
74,75,91 Yes
77,78,91 Yes
80, 81,91 Yes
83, 84,91 Yes
86, 87,91 Yes
89, 90, 91 Yes
91, 92 Yes
91, 92,95 Yes
91, 92, 95, 98 Yes
91, 92, 95, 98, 101 Yes
91, 92, 95, 98, 101, 104 Yes
91, 92, 95, 98, 101, 104, 107 Yes
3-11, 44 No
20, 21, 25, 43, 44 Yes
23-25,43,44 Yes
28,29, 36, 43, 44 Yes
31,32,36,43,44 Yes
34-36, 43, 44 Yes
38,39, 43,44 Yes
41-44 Yes
3-18, 26, 27 No
3-18, 26, 37-39, 43-48, 53-55 No
3-18, 26, 27, 30-32, 36, 43-48, 53, 54, 62, 63 No
13-18, 26, 27 No
13-18, 26, 37-39, 43-48, 53-55 No
13-18, 26, 27, 30-32, 36, 43-48, 53, 54, 62, 63 No
15-18, 26, 27 Yes
15-18, 26, 37-39, 43-48, 53-55 Yes

15-18, 26, 27, 30-32, 36, 43-48, 53, 54, 62, 63 Yes

192 Software Testing

Table 4.15. Test cases for all uses

S.No. Month Day Year Expected output Remarks

1. 6 15 1900 Friday 6-19

2. 2 15 1900 Thursday 6-18, 26, 27

3. 2 15 1900 Thursday 6-18, 26, 27, 30

4. 7 15 1900 Sunday 6-18, 26, 37

5. 6 15 1900 Friday 6-21, 25,43-48, 53, 54,62, 70, 73, 76,
79-81,91

6. 6 10 1900 Sunday 6-21, 25,43-48, 53, 54,62, 70, 73, 76,
79-81,91-93

7. 6 11 1900 Monday 6-21, 25,43-48, 53, 54,62, 70, 73, 76,
79-81, 91, 92, 95, 96

8. 6 12 1900 Tuesday 6-21, 25,43-48, 53, 54,62, 70, 73, 76,
79-81, 91, 92, 95, 98, 99

9. 6 13 1900 Wednesday 6-21, 25,43-48, 53, 54,62, 70, 73, 76,
79-81, 91, 92, 95, 98, 101, 102

10. 6 14 1900 Thursday 6-21,43-48, 53,54, 62,70, 73, 76,
79-81, 91, 92, 95, 98, 101, 104, 105

11. 6 15 1900 Friday 6-21, 25,43-48, 53, 54,62, 70, 73, 76,
79-81, 91, 92, 95, 98, 101,104, 107, 108

12. 6 16 1900 Saturday 6-21, 25,43-48, 53, 54,62, 70, 73, 76,
79-81, 91, 92, 95, 98, 101, 104, 107, 110,
111

13. 6 15 2059 Invalid Date 6-11, 44, 114, 115

14. 6 15 1900 Friday 8-18

15. 2 15 1900 Thursday 8-18, 26

16. 1 15 1900 Monday 8-18, 26, 37

17. 6 15 1900 Friday 8-21, 25,43-48, 53,54

18. 6 15 1900 Friday 8-21, 25,43-48, 53, 54, 62

19. 6 15 1900 Friday 8-25,43-48, 53, 54,62, 70

20. 4 15 1900 Sunday 8-21, 25,43-48,53,54,62,70,73

21. 6 15 1900 Friday 8-21, 25,43-48, 53, 54,62, 70,73, 76

22. 6 15 1900 Friday 8-21, 25,43-48, 53, 54,62, 70, 73, 76,
79

23. 9 15 1900 Saturday 8-21, 25,43-48, 53, 54,62, 70,73, 76,
79, 82

(Contd.)

Structural Testing 193

(Contd.)

S.No. Month Day Year Expected output Remarks

24. 9 15 1900 Saturday 8-21, 25,43-48, 53, 54,62, 70, 73, 76,
79, 82,85

25. 6 10 1900 Sunday 8-21, 25,43-48, 53, 54,62, 70, 73, 76,
79-81, 91, 92,93

26. 6 11 1900 Monday 8-21, 25,43-48, 53,54, 62,70, 73, 76,
79-81, 91, 92, 95, 96

27. 6 12 1900 Tuesday 8-21, 25,43-48, 53, 54,62, 70, 73, 76,
79-81, 91, 92, 95, 98, 99

28. 6 13 1900 Wednesday 8-21, 25,43-48, 53,54, 62,70, 73, 76,
79,80, 81, 91, 92, 95, 98, 101, 102

29. 6 14 1900 Thursday 8-21, 25,43-48, 53, 54,62, 70, 73, 76,
79,80, 81, 91, 92, 95, 98, 101, 104, 105

30. 6 15 1900 Friday 8-21, 25,43-48, 53, 54,62, 70, 73, 76,
79, 80, 81, 91, 92, 95, 98, 101, 104, 107,
108

31. 6 16 1900 Saturday 8-21, 25,43-48, 53, 54, 62, 70, 73, 76,
79, 80, 81,91, 92, 95, 98§, 101, 104, 107,
110, 111

32. 6 15 2059 Invalid Date 8-11, 44,114, 115

33. 6 15 1900 Friday 10, 11

34. 6 15 1900 Friday 10-12

35. 6 15 1900 Friday 10-14

36. 6 15 1900 Friday 10-21, 25, 43-45

37. 6 15 1900 Friday 10-21, 25, 43-47

38. 6 15 2009 Monday 10-21, 25, 43-45, 49-51

39. 6 10 1900 Sunday 10-21, 25, 43-48, 53,54, 62, 70, 73, 76,
79-81,91-93

40. 6 11 1900 Monday 10-21, 25, 43-48, 53, 54,62, 70, 73, 76,
79-81, 91, 92, 95, 96

41. 6 12 1900 Tuesday 10-21, 25, 43-48, 53, 54,62, 70, 73, 76,
79-81, 91, 92, 95, 98, 99

42. 6 13 1900 Wednesday 10-21, 25, 43-48, 53, 54,62, 70, 73, 76,
79-81, 91, 92, 95, 98, 101, 102

43. 6 14 1900 Thursday 10-21, 25, 43-48, 53, 54,62, 70, 73, 76,
79-81, 91, 92, 95, 98, 101, 104, 105

44, 6 15 1900 Friday 10-21, 25, 43-48, 53, 54,62, 70, 73, 76,

79-81, 91, 92, 95, 98, 101, 104, 107, 108

(Contd.)

194 Software Testing

(Contd.)

S.No. Month Day Year Expected output Remarks

45. 6 16 1900 Saturday 10-21, 25, 43-48, 53, 54, 62, 70, 73, 76,
79-81, 91, 92, 95, 98, 101, 104, 107, 110,
111

46. 6 15 2059 Invalid Date 10, 11, 44, 114, 115

47. 1 15 1900 Monday 46-48,53-57, 61,91

48. 1 15 2009 Thursday 50-57, 61, 91

49. 1 15 2009 Thursday 53-61,91

50. 6 15 1900 Friday 47,48, 53

51. 6 15 2009 Monday 51-53

52. 1 15 2009 Thursday 56, 57, 61, 91

53. 1 15 2000 Saturday 59-61, 91

54. 1 15 2009 Thursday 64, 65, 69, 91

55. 2 15 2000 Tuesday 67-69, 91

56. 3 15 2009 Sunday 71,72,91

B7. 4 15 2009 Wednesday 74,75,91

58. 5 15 2009 Friday 77,78,91

59. 6 15 2009 Monday 80, 81,91

60. 8 15 2009 Saturday 83, 84,91

61. 9 15 2009 Tuesday 86, 87,91

62. 7 15 2009 Wednesday 89, 90,91

63. 5 7 2009 Sunday 91, 92

64. 6 7 2009 Monday 91, 92,95

65. 7 7 2009 Tuesday 91, 92, 95, 98

66. 8 7 2009 Wednesday 91, 92, 95, 98, 101

67. 9 7 2009 Thursday 91, 92, 95, 98, 101, 104

68. 10 7 2009 Friday 91, 92, 95, 98, 101, 104, 107

69. 6 15 1900 Friday 3-11,44

70. 6 15 1900 Friday 20, 21, 25, 43, 44

71. 6 31 2009 Invalid Date 23-25,43, 44

(Contd.)

Structural Testing 195

(Contd.)

S.No. Month Day Year Expected output Remarks

72. 2 15 2000 Tuesday 28, 29, 36, 43, 44

73. 2 15 2009 Sunday 31,32,36,43,44

74. 2 30 2009 Invalid Date 34-36, 43, 44

75. 8 15 2009 Saturday 38,39, 43,44

76. 13 1 2009 Invalid Date 41-44

7. 2 15 1900 Thursday 3-18, 26, 27

78. 1 15 1900 Monday 3-18, 26, 37-39, 43-48, 53-55

79. 2 15 1900 Thursday 3-18, 26, 27, 30-32, 36, 43-48, 53, 54,
62, 63

80. 2 15 1900 Thursday 13-18, 26, 27

81. 1 15 1900 Monday 13-18, 26, 37-39, 43-48, 53-55

82. 2 15 1900 Thursday 13-18, 26, 27, 30-32, 36, 43-48, 53, 54,
62, 63

83. 2 15 1900 Thursday 15-18, 26, 27

84, 1 15 1900 Monday 15-18, 26, 37-39, 43-48, 53-55

85. 2 15 1900 Thursday 15-18, 26, 27, 30-32, 36, 43-48, 53, 54,

62,63

All definitions

Table 4.16. All definitions paths for determination of the day of week problem

Definition clear?

6-19
8-18
10,11

50-57, 61, 91
53-57,61,91
47,48, 53
51-53

56, 57, 61, 91
59, 60, 61, 91
64, 65, 69, 91
67-69, 91
71,72,91
74,75,91

46-48,53-57,61,91

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

(Contd.)

196 Software Testing

(Contd.)

All definitions

Definition clear?

77,78,91
80, 81, 91

83, 84, 91

86, 87,91

89-91

91,92

3-11,44

20, 21, 25, 43, 44
23-25, 43, 44
28, 29, 36, 43, 44
31,32, 36, 43, 44
34-36, 43, 44
38, 39, 43, 44
41-44

3-18, 26,27
13-18, 26, 27
15-18, 26, 27

Yes
Yes
Yes
Yes
Yes
Yes
No

Yes
Yes
Yes
Yes
Yes
Yes
Yes
No

No

Yes

Table 4.17. Test cases for all definitions

S. No. Month Day Year Expected output Remarks

1. 6 15 1900 Friday 6-19

2. 6 15 1900 Friday 8-18

3. 6 15 1900 Friday 10,11

4. 1 15 1900 Monday 46-48, 53-57,61, 91
5. 1 15 2009 Thursday 50-57, 61,91
6. 1 15 2009 Thursday 53-57,61,91
7. 6 15 1900 Friday 47, 48,53

8. 6 15 2009 Monday 51-53

9. 1 15 2009 Thursday 56, 57,61, 91
10. 1 15 2000 Saturday 59, 60, 61, 91
11. 1 15 2009 Thursday 64, 65, 69, 91
12. 2 15 2000 Tuesday 67-69, 91
13. 3 15 2009 Sunday 71,72,91

14. 4 15 2009 Wednesday 74, 75,91

15. 5 15 2009 Friday 77,78,91

16. 6 15 2009 Monday 80, 81,91

17. 8 15 2009 Saturday 83, 84,91

(Contd.)

Structural Testing 197

(Contd.)
S. No. Month Day Year Expected output Remarks
18. 9 15 2009 Tuesday 86, 87,91
19. 7 15 2009 Wednesday 89-91
20. 6 15 2009 Monday 91,92
21. 6 15 2059 Invalid Date 3-11,44
22. 6 15 1900 Friday 20, 21, 25, 43, 44
23. 6 31 2009 Invalid Date 23-25,43, 44
24. 2 15 2000 Tuesday 28, 29, 36, 43, 44
25. 2 15 2009 Sunday 31,32,36,43,44
26. 2 30 2009 Invalid Date 34-36, 43,44
27. 8 15 2009 Saturday 38, 39,43,44
28. 13 1 2009 Invalid Date 41-44
29. 2 15 1900 Thursday 3-18, 26, 27
30. 2 15 1900 Thursday 13-18, 26, 27
31. 2 15 1900 Thursday 15-18, 26, 27

4.3 SLICE BASED TESTING

Program slicing was introduced by Mark Weiser [WEIS84] where we prepare various subsets
(called slices) of a program with respect to its variables and their selected locations in the
program. Each variable with one of its location will give us a program slice. A large program
may have many smaller programs (its slices), each constructed for different variable subsets.
The slices are typically simpler than the original program, thereby simplifying the process of
testing of the program. Keith and James [KEIT91] have explained this concept as:

“Program slicing is a technique for restricting the behaviour of a program to some
specified subset of interest. A slice S(v, n) of program P on variable v, or set of variables,
at statement n yields the portions of the program that contributed to the value of v just
before statement n is executed. S (v, n) is called a slicing criteria. Slices can be computed
automatically on source programs by analyzing data flow. A program slice has the added
advantage of being an executable program.”

Hence, slices are smaller than the original program and may be executed independently.
Only two things are important here, variable and its selected location in the program.

4.3.1 Guidelines for Slicing

There are many variables in the program but their usage may be different in different statements.
The following guidelines may be used for the creation of program slices.

1. All statements where variables are defined and redefined should be considered. Consider
the program for classification of a triangle (given in Figure 3.18) where variable ‘valid’ is
defined at line number 5 and redefined at line number 15 and line number 18.

198

Software Testing

5 intvalid=0

15 valid=1

18 valid=-1

Hence, we may create S(valid, 5), S(valid, 15) and S(valid, 18) slices for variable ‘valid’
of the program.

. All statements where variables receive values externally should be considered. Consider

the triangle problem (given in Figure 3.18) where variables ‘a’, ‘b’ and ‘c’ receive values
externally at line number 8, line number 10 and line number 12 respectively as shown
below:

8 scanf (“%lf”, &a);

10 scanf (“%If”, &b);

12 scanf (“%If”, &c);

Hence, we may create S(a, 8), S(b, 10) and S(c, 12) slices for these variables.

. All statements where output of a variable is printed should be considered. Consider the

program to find the largest amongst three numbers (given in Figure 3.11) where variable
‘C’ is printed at line number 16 and 21 as given below:

16 printf (“The largest number is: % f\n”, C);

21 printf (“The largest number is: % f\n”, C)

Hence, we may create S(C, 16) and S(C, 21) as slices for ‘C’ variable

. All statements where some relevant output is printed should be considered. Consider

the triangle classification program where line number 26, 29, 32, 36 and 39 are used for
printing the classification of the triangle (given in Figure 3.18) which is very relevant as
per logic of the program. The statements are given as:
26 printf (“Obtuse angled triangle”);
29 printf (“Right angled triangle”);
32 printf (“Acute angled triangle”);
36 printf (“\nlnvalid triangle™);
39 printf (“\nlnput Values out of Range”);

We may create S(al, 26), S(al, 29), S(al, 32), S(valid, 36) and S(valid, 39) as slices.
These are important slices for the purpose of testing.

. The status of all variables may be considered at the last statement of the program. We

consider the triangle classification program (given in figure 3.18) where line number 42 is
the last statement of the program. We may create S(al, 42), S(a2, 42), S(a3, 42), S(valid,
42), S(a, 42), S(b,42) and S(c, 42) as slices.

4.3.2 Creation of Program Slices

Consider the portion of a program given in Figure 4.2 for the identification of its slices.

1. a=3;
2. b=6;
3. c=Db%
4. d=a?+b?
5. c=a+b;

Figure 4.2. Portion of a program

Structural Testing 199

We identify two slices for variable ‘c’ at statement number 3 and statement number 5 as
given in Figure 4.3.

= 3 2. b = 6
b = 6 3. c = b?
c = a+b;
S(c, 5) S(c, 3)
Variable ‘c’ at statement 5 Variable ‘c’ at statement 5

Figure 4.3. Two slices for variable ‘c’

Consider the program given in Figure 4.4.

1. void main ()

2. {

3. inta,bc d e

4. printf (“Enter the values of a, b and ¢ \ n”);
5. scanf (“%d %d %d”, & a, &b, &c);

6. d=a+h;

7. e=b+c

8. printf (“%d”, d);

9. printf (“%d”, e);

10. }

Figure 4.4. Example program

Many slices may be created as per criterion (mentioned in section 4.3.1) of the program
given in the Figure 4.4. Some of these slices are shown below:

main ()

{

inta, b, c d,e;

scanf (“%d %d %d”, &a, &b, &c);

1
2
3
4. printf (“Enter the values of a, b and ¢ \ n");
5
7. e=b+c

9

printf (“%d”, e);

10.}

Slice on criterion S (e, 10)=(1, 2, 3,4, 5, 7,9, 10)

200 Software Testing

0 o0 U1 NN W N

main ()

{

inta, b, c, d, e

printf (“Enter the values of a, b and ¢ \ n");
scanf (“%d %d %d”, &a, &b, &c);

d=a+b;

printf (“%d”, d);

10.}

Slice on criterion S (d,10) =(1, 2, 3, 4, 5, 6, 8, 10)

1. main ()

2. {

3.inta, b, c d, e

4. printf (“Enter the values of a, b and ¢ \ n”);
5. scanf (“%d %d %d”, &a, &b, &c);

7. e=b+c

10. }

Slice on criterion S (e,7) = (1, 2, 3, 4, 5, 7,10)

10.}

1
2
3.
4.
5
6

main ()

{

inta, b, c d, e

printf (“Enter the values of a, b and c \ n");
scanf (“%d %d %d", &a, &b, &c);

d=a+b;

Slice on criterion S (d,6) = (1, 2, 3, 4, 5, 6, 10)

1
2
3.
4
5

main ()

{

inta, b, c d, e;

printf (“Enter the values of a, b and ¢ \ n");
scanf (“%d %d %d”, &a, &b, &c);

10.}

Slice on criterion S (a, 5) = (1, 2, 3, 4, 5, 10)

Structural Testing 201

We also consider the program to find the largest number amongst three numbers as given in
Figure 3.11. There are three variables A, B and C in the program. We may create many slices
like S (A, 28), S (B, 28), S (C, 28) which are given in Figure 4.8.

Some other slices and the portions of the program covered by these slices are given as:

S (A, 6) = {1- 6,28}

S (A, 13) = {1-14, 18,27, 28}
S(B,8)={1-4,7,8,28}

S (B, 24) = {1-11, 18-20, 22-28}
S (C, 10)= {1- 4,9, 10, 28}

S (C, 16) = {1-12, 14-18, 27, 28}
S (C,21) = {1-11, 18-22, 26-28}

It is a good programming practice to create a block even for a single statement. If we
consider C++/C/Java programming languages, every single statement should be covered with
curly braces { }. However, if we do not do so, the compiler will not show any warning / error
message. In the process of generating slices we delete many statements (which are not required
in the slice). It is essential to keep the starting and ending brackets of the block of the deleted
statements. It is also advisable to give a comment ‘do nothing’ in order to improve the
readability of the source code.

#include<stdio.h> #include<stdio.h>
#include<conio.h> #include<conio.h>
1. void main() 1. void main()
2. { 2. {
3. float A,B,C; 3. float A,B,C;
4. clrscr(); 4. clrscr();
5. printf("Enter number 1:\n"); 5. printf("Enter number 1:\n");
6. scanf("%f", &A); 6. scanf("%f", &A);
7. printf("Enter number 2:\n"); 7. printf("Enter number 2:\n");
8. scanf("%f", &B); 8. scanf("%f", &B);
9. printf("Enter number 3:\n"); 9. printf("Enter number 3:\n");
10. scanf("%f", &C); 10. scanf("%f", &C);
11. if(A>B) { 11. if(A>B) { /*do nothing*/
12. if(A>C) { 18. '}
13. printf("The largest number is: %f\n",A); 19. else{
14. } 20. if(C>B) { /*do nothing*/
18. '} 22. }
27. getch(); 23. else {
28. } 24. printf("The largest number is: %f\n",B);
25. }
26. }
27. getch();
28. }
(@) S(A, 28) ={1-14, 18, 27, 28} (b) S(B, 28) ={1-11, 18-20, 22-28}

(Contd.)

202 Software Testing

(Contd.)

#include<stdio.h>
#include<conio.h>

1. void main()

2. {

3. float A,B,C;

4. clrscr();

5. printf("Enter number 1:\n");
6. scanf("%f", &A);

7. printf("Enter number 2:\n");
8. scanf("%f", &B);

9. printf("Enter number 3:\n");
10. scanf("%f", &C);

11. if(A>B) { /*do nothing*/
18. }

19. else {

20. if(C>B) {

21. printf("The largest number is: %f\n",C);
22. }

26. }

27. getch();

28. }

(c) S(C, 28)=(1-11, 18-22, 26-28}

Figure 4.5. Some slices of program in Figure 3.11

A statement may have many variables. However, only one variable should be used to
generate a slice at a time. Different variables in the same statement will generate a different
program slice. Hence, there may be a number of slices of a program depending upon the slicing
criteria. Every slice is smaller than the original program and can be executed independently.
Each slice may have one or more test cases and may help us to focus on the definition,
redefinition, last statement of the program, and printing/reading of a variable in the slice.
Program slicing has many applications in testing, debugging, program comprehension and
software measurement. A statement may have many variables. We should use only one variable
of a statement for generating a slice.

4.3.3 Generation of Test Cases

Every slice should be independently executable and may cover some lines of source code of
the program as shown in previous examples. The test cases for the slices of the program given
in Figure 3.3 (to find the largest number amongst three numbers) are shown in Table 4.18. The
generated slices are S(A, 6), S(A, 13), S(A, 28), S(B, 8), S(B, 24), S(B, 28), S(C, 10), S(C, 16),
S(C, 21), S(C, 28) as discussed in previous section 4.3.1.

Structural Testing 203

Table 4.18. Test cases using program slices of program to find the largest among three numbers
S.No. Slice Lines covered A B C Expected output
1 S(A, 6) 1-6, 28 9 No output
2 S(A, 13) 1-14, 18, 27, 28 9 8 7 9
3 S(A, 28) 1-14, 18, 27, 28 8 8 7 9
4 S(B, 8) 1-4,7,8,28 9 No output
5 S(B, 24) 1-11, 18-20, 22-28 7 9 8 9
6 S(B, 28) 1-11,19,20,23-28 7 9 8 9
7 S(C, 10) 1-4,9,10, 28 9 No output
8 S(C, 16) 1-12,14-18, 27, 28 8 7 9 9
9 S(C, 21) 1-11, 18-22,26-28 9 9
10 S(C, 28) 1-11, 18-22,26-28 7 9 9

Slice based testing is a popular structural testing technique and focuses on a portion of the
program with respect to a variable location in any statement of the program. Hence slicing
simplifies the way of testing a program’s behaviour with respect to a particular subset of its
variables. But slicing cannot test a behaviour which is not represented by a set of variables or
a variable of the program.

Example 4.7: Consider the program for determination of division of a student. Consider all
variables and generate possible program slices. Design at least one test case from every slice.

Solution:

There are four variables — mark1, mark2, mark3 and avg in the program. We may create many

slices as given below:

S (markl, 7)

= {1-7, 34}

S (markl, 13) = {1-14, 33, 34}

S (mark2, 9)

= {1-5, 8,9, 34}

S (mark2, 13) = {1-14, 33, 34}
S (mark3, 11) = {1-5, 10, 11, 34}
S (mark3, 13) = {1-14, 33, 34}

S (avg, 16)
S (avg, 18)
S (avg, 21)
S (avg, 24)
S (avg, 27)
S (avg, 30)

= {1-12, 14-16, 32, 34}
= {1-12, 14-19, 32-34}
= {1-12, 14-17, 19-22, 29, 31-34}
= {1-12, 14-17, 19, 20, 22-25, 29, 31-34}

= {1-12, 14-17, 19, 20, 22, 23, 25-29, 31-34}
= {1-12, 14-17, 19, 20, 22, 23, 25, 26, 28-34}

204 Software Testing

The program slices are given in Figure 4.6 and their corresponding test cases are given in
Table 4.19.

oo NN W N -

34.

N W N -

10.
11.
34.

#include<stdio.h>

#include<conio.h>

void main()

{

int mark1, mark?2,mark3,avg;

clrser();

printf("Enter marks of 3 subjects

(between 0-100)\n");
printf("Enter marks of first

subject:");
scanf("%d", &mark1);
}

(a) S(markd,7)/S(mark1,34)

#include<stdio.h>

#include<conio.h>

void main()

{

int mark1, mark2,mark3,avg;

clrser();

printf("Enter marks of 3 subjects

(between 0-100)\n");

printf("Enter marks of third subject:");

scanf("%d",&mark3);

}

(c) S(mark3,11)/S(mark3,34)

g RN W NN -

34.

HNoWoN -

(S,

O 00 N o

11.

12.

13.
14.
33.
34.

#include<stdio.h>
#include<conio.h>
void main()

{

int mark1, mark2,mark3,avg;
clrscr();

printf("Enter marks of 3 subjects (between
0-100)\n");

printf("Enter marks of second subject:");

scanf("%d", &mark?);

}
(b) S(mark2,9)/S(mark2,34)

#include<stdio.h>
#include<conio.h>

void main()

{

int mark1, mark?2,mark3,avg;
clrscr();

printf("Enter marks of 3 subjects (between
0-100)\n");

printf("Enter marks of first subject:");
scanf("%d", &mark1);

printf("Enter marks of second subject:");
scanf("%d", &mark?);

printf("Enter marks of third subject:");
scanf("%d",&mark3);

if(mark1>100||mark1<0||mark2>100||mark2<0||
mark3>100||mark3<0){

printf("Invalid Marks! Please try again");
}
getch();

}
(d) S(mark1,13)/S(mark2,13)/S(mark3,13)
(Contd.)

(Contd.)

g9 NN W NN

© o N o

11.
12.

14.
15.
16.
17.
18.
19.
32.
33.
34.

g9 NN W NN

#include<stdio.h>

#include<conio.h>

void main()

{

int mark1, mark?2,mark3,avg;

clrscr();

printf("Enter marks of 3 subjects (between
0-100)\n");

printf("Enter marks of first subject:");
scanf("%d", &mark1);

printf("Enter marks of second subject:");
scanf("%d", &mark?);

printf("Enter marks of third subject:");
scanf("%d",&mark3);

if(mark1>100]||mark1<0||mark2>100||mark2
<0||mark3>100||mark3<0){ /* do nothing*/

}
else {
avg=(mark1+mark2+mark3)/3;
if(avg<40){
printf("Fail");

getch();

(e) S(avg,18)

#include<stdio.h>
#include<conio.h>

void main()

{

int mark1, mark2,mark3,avg;
clrscr();

printf("Enter marks of 3 subjects (between
0-100)\n");

g9 NN W NN

O 00 N o

11.
12.

14.
15.
16.
17.
19.
20.
21.
22.
29.
31.
32.
33.
34.

g RN W NN -

Structural Testing 205

#include<stdio.h>
#include<conio.h>

void main()

{

int mark1, mark?2,mark3,avg;
clrscr();

printf("Enter marks of 3 subjects
(between 0-100)\n");

printf("Enter marks of first subject:");
scanf("%d", &mark1);

printf("Enter marks of second subject:");
scanf("%d", &mark?);

printf("Enter marks of third subject:");
scanf("%d",&mark3);

if(mark1>100||mark1<0||mark2>100| |mark2
<0||mark3>100||mark3<0){

} /* do nothing*/
else {
avg=(mark1+mark2+mark3)/3;
if(avg<40){ /* do nothing*/
}
else if(avg>=40&8&avg<50) {
printf("Third Division");
}
else { /* do nothing*/
}
}
getch();

}
(f) S(avg,21)

#include<stdio.h>
#include<conio.h>

void main()

{

int mark1, mark2,mark3,avg;
clrser();

printf("Enter marks of 3 subjects
(between 0-100)\n");
(Contd.)

206 Software Testing

(Contd.)
6.
7.
8.
9.
10.
11.
12.

14.
15.
16.
17.
19.
20.

22.
23.
24.
25.
29.
31.
32.
33.
34.

00 N o U1~ W NN

printf("Enter marks of first subject:");
scanf("%d", &mark1);

printf("Enter marks of second subject:");
scanf("%d", &mark?);

printf("Enter marks of third subject:");
scanf("%d",&mark3);

if(mark1>100||mark1<0||mark2>100||mark2
<0||mark3>100||mark3<0) {
/* do nothing*/

}
else {
avg=(mark1+mark2+mark3)/3;
if(avg<40) { /* do nothing*/
}

else if(avg>=40&&avg<50) {
/* do nothing*/

}
else if(avg>=50&8&avg<60) {
printf("Second Division");
}
{/* do nothing*/
}

else

getch();

(g) S(avg,24)

#include<stdio.h>
#include<conio.h>

void main()

{

int mark1, mark2,mark3,avg;

clrser();

14.
15.
16.
17.
19.
20.

22.
23.
25.
26.
27.
28.
29.
31.
32.
33.
34.

printf("Enter marks of first subject:");
scanf("%d", &mark1);

printf("Enter marks of second subject:");
scanf("%d", &mark?);

printf("Enter marks of third subject:");
scanf("%d",&mark3);

if(mark1>100||mark1<0||mark2>100||mar
k2<0||mark3>100||mark3<0) {
/* do nothing*/

}
else {
avg=(markl+mark2+mark3)/3;
if(avg<40) { /* do nothing*/
}

else if(avg>=40&&avg<50) {
/* do nothing*/

}
else if(avg>=50&8&avg<60) {

}
else if(avg>=608&&avg<75) {

printf("First Division");

}

else {/* do nothing*/
}

}

getch();

}

(h) S(avg,27)

printf("Enter marks of 3 subjects (between 0-100)\n");

printf("Enter marks of first subject:");
scanf("%d", &mark1);

printf("Enter marks of second subject:");

(Contd.)

Structural Testing 207

(Contd.)
9. scanf("%d", &mark?);
10. printf("Enter marks of third subject:");
11. scanf("%d",&mark3);

12. if(mark1>100||mark1<0||mark2>100||mark2<0||mark3>100||mark3<0) { /* do nothing*/

14. }

15. else {

16. avg=(markl+mark2+mark3)/3;
17. if(avg<40) { /* do nothing*/

19. }

20. else if(avg>=40&&avg<50) {/* do nothing*/
22. }

23. else if(avg>=50&&avg<60) {/* do nothing*/
25. }

26. else if(avg>=60&&avg<75) {/* do nothing*/
28. }

29. else {

30. printf("First Division with Distinction");
31. }

32. }

33. getch();

34. }

(i) S(avg,30)/S(avg,34)

Figure 4.6. Slices of program for determination of division of a student

Table 4.19. Test cases using program slices

:.o. Slice Line covered markl mark2 mark3 Expected output
1. S(mark1, 7) 1-7,34 65 No output

2. S(mark1, 13) 1-14, 33, 34 101 40 50 Invalid marks

3. S(markl1,34) 1-7,34 65 No output

4. S(mark2, 9) 1-5,8,9, 34 65 No output

5. S(mark2, 13) 1-14, 33,34 40 101 50 Invalid marks

6. S(mark2, 34) 1-5,8,9, 34 65 No output

7. S(mark3, 11) 1-5,10, 11, 34 65 No output

8. S(mark3, 13) 1-14, 33,34 40 50 101 Invalid marks

(Contd.)

208 Software Testing

(Contd.)

:’o Slice Line covered markl mark2 mark3 Expected output

9. S(mark3, 34) 1-5, 10, 11, 34 65 No output

10. S(avg, 16) 1-12, 14-16, 32, 34 45 50 45 No output

11. S(avg, 18) 1-12,14-19,32-34 40 30 20 Fail

12. S(avg, 21) 1-12,14-17,19-22, 45 50 45 Third division
29,32-34

13. S(avg, 24) 1-12,14-17,19,20, 55 60 57 Second division
22-25,29,31-34

14. S(avg, 27) 1-12,14-17,19,20, 65 67 65 First division
22,23,25-29,31-34

15. S(avg, 30) 1-12,14-17,19,20, 79 80 85 First division with
22,23, 25, 26, 28-34 distinction

16. S(avg, 34) 1-12, 14-17, 19, 20, 79 80 85 First division with
22,23, 25, 26, 28-34 distinction

17. S(avg, 16) 1-12, 14-16, 32, 34 45 50 45 No output

Example 4.8: Consider the program for classification of a triangle. Consider all variables and
generate possible program slices. Design at least one test case from every slice.

Solution:
There are seven variables ‘a’, ‘b’, ‘c’, ‘al’, ‘a2’, ‘a3’ and ‘valid’ in the program. We may create
many slices as given below:

i S (a, 8) ={1-8,42}

ii. S(b,10) ={1-6,9,10,42}

iii. S(c, 12) ={1-6, 11, 12,42}

iv. S(al,22) ={1-16,20-22, 34,42}

v. S(al,26) ={l1-16,20-22,25-27,34,41,42}

vi. S(al,29) ={1-16,20-22,25,27-31, 33, 34, 41, 42}
vii. S(al,32) ={l1-16,20-22,25,27,28,30-34, 41, 42}
viii. S (a2, 23) {1-16, 20, 21,23, 34, 42}

ix. S(a2,26) ={1-16,20,21,23,25-27, 34,41, 42)

x. S(a2,29) ={1-16,20,21,23,25,27-31, 33, 34,41, 42}
xi. S(a2,32) ={1-16,20,21,23,25,27,28,30-34, 41, 42}
xii. S(a3,26) ={1-16,20,21,24-27,34,41,42}

xiii. S (a3,29) ={1-16, 20,21, 24, 25,27-31, 33, 34, 41,42}
xiv. S(a3,32) ={1-16,20,21,24,25,27,28,30-34, 41, 42}
xv. S(valid, 5) ={1-5,42}

xvi. S (valid, 15) = {1-16, 20, 42}

xvii. S (valid, 18) = {1-14, 16-20, 42}

xviii. S (valid, 36) = {1-14, 16-20, 21, 34-38, 4042}

xix. S (valid, 39) = {1-13, 20, 21, 34, 35, 3742}

The test cases of the above slices are given in Table 4.20.

Structural Testing 209

Table 4.20. Test cases using program slices
:'0 Slice Path a b c Expected output
1. S(a, 8)/S(a,42) 1-8,42 20 No output
2. S(b, 10)/S(b,42) 1-6,9, 10,42 20 No output
3. S(c, 12)/S(c,42) 1-6,11,12,42 20 No output
4, S(al, 22) 1-16, 20-22, 34,42 30 20 40 Nooutput
5. S(al, 26) 1-16, 20-22, 25-27, 34, 30 20 40 Obtuse angled
41, 42 triangle
6. S(al, 29) 1-16, 20-22, 25, 27-31, 30 40 50 Right angled triangle
33,34,41,42
7. S(al, 32) 1-16, 20-22, 25, 27, 28, 50 60 40 Acute angled tri-
30-34,41, 42 angle
8. S(al, 42) 1-16, 20-22, 34,42 30 20 40 Nooutput
S(a2, 23) 1-16, 20, 21, 23, 34, 42 30 20 40 Nooutput
10. S(a2, 26) 1-16, 20, 21, 23, 25-27, 40 30 20 Obtuse angled
34,41,42 triangle
11. S(a2, 29) 1-16, 20, 21, 23, 25, 50 40 30 Rightangled triangle
27-31, 33, 34,41, 42
12. S(a2, 32) 1-16, 20, 21, 23, 25, 27,28, 40 50 60 Acute angled tri-
30-34,41, 42 angle
13. S(a2,42) 1-16, 20, 21, 23, 34,42 30 20 40 Nooutput
14. S(a3, 24) 1-16, 20, 21, 24, 34, 42 30 20 40 Nooutput
15. S(a3, 26) 1-16, 20, 21, 24-27, 34, 20 40 30 Obtuse angled
41, 42 triangle
16. S(a3, 29) 1-16, 20, 21, 24, 25,27-31, 40 50 30 Right angled triangle
33,34,41, 42
17. S(a3, 32) 1-16, 20, 21, 24, 25, 27,28, 50 40 60 Acute angled tri-
30-34,41, 42 angle
18. S(a3, 42) 1-16, 20, 21, 24, 34, 42 30 20 40 Nooutput
19. S(valid,5) 1-2,5,42 No output
20. S(valid,15) 1-16, 20, 42 20 40 30 No output
21. S(valid,18) 1-14, 16-20, 42 30 10 15 No output
22. S(valid,36) 1-14, 16-20, 21, 34-38, 30 10 15 Invalid triangle
40-42
23. S(valid,39) 1-13,20,21,34,35,37-42 102 -1 6 Input values out of
range
24. S(valid,42) 1-14, 16-20, 42 30 10 15 No output

210 Software Testing

Example 4.9. Consider the program for determination of day of the week given in Figure 3.13.
Consider variables day, validDate, leap and generate possible program slices. Design at least
one test case from each slice.

Solution:
There are ten variables — day, month, year, century Y, Y1, M, date, valid date, and leap. We
may create many slices for variables day, validDate and leap as given below:

10.
11.
12.
13.
14.
15.
16.
17..
18.
19.
20.
21.
22.
23.

S(day, 6)
S(day, 93)

S(day, 96)
S(day, 99)

S(day, 102)
S(day, 105)
S(day, 108)
S(day, 111)

S(day, 115)
S(day, 118)
S(validDate,3)
S(validDate,20)
S(validDate,23)
S(validDate,28)
S(validDate,31)
S(validDate,34)
S(validDate,38)

S(validDate,41)

S(validDate,118)
S(leap,3)
S(leap,13)
S(leap,15)
S(leap,118)

{1-6, 118}

{1-11, 18-21, 25, 43-48, 53, 54, 61, 62,69, 70, 72, 73, 75, 76,
78-81, 88, 90-94, 113, 117, 118}

{1-11, 18-21, 25, 43-48, 53, 54, 61, 62, 69, 70, 72, 73, 75, 76,
78-81, 88, 90-92, 94-97, 110, 112, 113, 117, 118}

{1-11, 18-21, 25, 43-48, 53, 54, 61, 62, 69, 70, 72, 73, 75, 76,
78-81, 88, 90-92, 94, 95, 97-100, 110, 112, 113, 117, 118}

{1-11, 18-21, 25, 43-48, 53, 54, 61, 62, 69, 70, 72, 73, 75, 76,
78-81, 88, 90-92, 94, 95, 97, 98, 100-103, 110, 112, 113, 117,
118}

{1-11, 18-21, 25, 43-48, 53, 54, 61, 62,69, 70, 72, 73, 75, 76,
78-81, 88, 90-92, 94, 95, 97, 98, 100, 101, 103-106, 110, 112,
113, 117, 118}

{1-11, 18-21, 25, 43-48, 53, 54, 61, 62, 69, 70, 72, 73, 75, 76,
78-81, 88, 90-92, 94, 95, 97, 98, 100, 101, 103, 104, 106-110,
112,113, 117, 118}

{1-11, 18-21, 25, 43-48, 53, 54, 61, 62, 69, 70, 72, 73, 75, 76,
78-81, 88, 90-92, 94, 95, 97, 98, 100, 101, 103, 104, 106, 107,
109-113, 117, 118}

{1-11, 43, 44, 113-118}

{1-6, 118}

{1-3, 118}

{1-11, 18-21, 25, 43, 118}

{1-11, 18, 19, 21-25, 43, 118}

{1-13, 17, 18, 25, 26-29, 36, 40, 42, 43, 118}

{1-11, 18, 25, 26, 27, 29-33, 35, 36, 40, 42, 43, 118}
{1-11, 18, 25, 26, 27, 29, 30, 32-36, 40, 42, 43, 118}
{1-11, 18, 25, 26, 36-40, 42, 43, 118}

{1-11, 18, 25, 26, 36, 37, 39-43, 118}

{1-11, 18, 25, 26, 36, 37, 39-43, 118}

{1-3, 118}

{1-13, 17, 43, 118}

{1-17, 43, 118}

{1-17, 43, 118}

The test cases for the above slices are given in Table 4.21.

Structural Testing 211

S.

No.

Slice

Table 4.21. Test cases using program slices

Lines covered

Month

Day

Year

Expected
output

1.
2.

10.
11.
12.
13.
14.

S(day, 6)
S(day, 93)

S(day, 96)

S(day, 99)

S(day, 102)

S(day, 105)

S(day, 108)

S(day, 111)

S(day, 115)
S(day, 118)
S(validDate,3)
S(validDate,20)
S(validDate,23)
S(validDate,28)

1-6, 118

1-11, 18-21, 25, 43-48, 53,
54,61, 62,69, 70,72,73, 75,
76, 78-81, 88, 90-94, 113,
117, 118

1-11, 18-21, 25, 43-48, 53,
54,61, 62,69, 70,72, 73, 75,
76, 78-81, 88, 90-92, 94-97,
110, 112, 113, 117, 118

1-11, 18-21, 25, 43-48, 53,
54,61,62,69,70,72,73,75,
76, 78-81, 88, 90-92, 94, 95,
97-100, 110, 112, 113, 117,
118

1-11, 18-21, 25, 43-48, 53,
54,61, 62,69, 70,72, 73, 75,
76, 78-81, 88, 90-92, 94, 95,
97, 98, 100-103, 110, 112,
113,117, 118

1-11, 18-21, 25, 43-48, 53,
54,61, 62,69,70,72,73,75
76, 78-81, 88, 90-92, 94, 95
97, 98, 100, 101, 103-106
110, 112, 113, 117, 118
1-11, 18-21, 25, 43-48, 53,
54,61, 62,69, 70,72,73,75
76, 78-81, 88, 90-92, 94, 95
97, 98, 100, 101, 103, 104,
106-110, 112, 113, 117, 118
1-11, 18-21, 25, 43-48, 53,
54,61, 62,69,70,72,73,75
76, 78-81, 88, 90-92, 94, 95
97, 98, 100, 101, 103, 104,
106, 107, 109-113, 117, 118
1-11, 43, 44, 113-118

1-6, 118

1-3, 118

1-11, 18-21, 25, 43, 118
1-11, 18, 19, 21-25, 43, 118

1-13, 17, 18, 25, 26-29, 36,
40,42, 43,118

6
6

13

14

15

16

17

18

19

31
19

15
31
15

1999

1999

1999

1999

1999

1999

1999

2059
1999

2009
2009
2000

No output
Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Invalid Date
Saturday
No output
No output
No output
No output

(Contd.)

212 Software Testing

(Contd.)

S. Slice Lines covered Month Day Year Expected

No. output

15. S(validDate,31) 1-11, 18, 25, 26, 27, 29-33, 2 15 2009 No output
35, 36, 40, 42, 43, 118

16. S(validDate,34) 1-11, 18, 25, 26, 27, 29, 30, 2 29 2009 No output
32-36,40,42,43,118

17. S(validDate,38) 1-11, 18, 25, 26, 36-40, 42, 8 15 2009 No output
43,118

18. S(validDate,41) 1-11, 18, 25, 26, 36, 37, 13 15 2009 No output
39-43, 118

19. S(validDate,118) 1-11, 18, 25, 26, 36, 37, 13 15 2009 No output
39-43, 118

20. S(leap,3) 1-3,118 - - - No output

21. S(leap,13) 1-13, 17,43, 118 8 15 2000 No output

22. S(leap,15) 1-17,43, 118 8 15 1900 No output

23. S(leap,118) 1-17,43, 118 8 15 1900 No output

4.4 MUTATION TESTING

It is a popular technique to assess the effectiveness of a test suite. We may have a large number
of test cases for any program. We neither have time nor resources to execute all of them. We
may select a few test cases using any testing technique and prepare a test suite. How do we
assess the effectiveness of a selected test suite? Is this test suite adequate for the program? If
the test suite is not able to make the program fail, there may be one of the following reasons:

(i) The test suite is effective but hardly any errors are there in the program. How will a test
suite detect errors when they are not there?

(i1) The test suite is not effective and could not find any errors. Although there may be
errors, they could not be detected due to poor selection of test suite. How will errors be
detected when the test suite is not effective?

In both the cases, we are not able to find errors, but the reasons are different. In the first
case, the program quality is good and the test suite is effective and in the second case, the
program quality is not that good and the test suite is also not that effective. When the test suite
is not able to detect errors, how do we know whether the test suite is not effective or the
program quality is good? Hence, assessing the effectiveness and quality of a test suite is very
important. Mutation testing may help us to assess the effectiveness of a test suite and may also
enhance the test suite, if it is not adequate for a program.

4.4.1 Mutation and Mutants

The process of changing a program is known as mutation. This change may be limited to one,
two or very few changes in the program. We prepare a copy of the program under test and make
a change in a statement of the program. This changed version of the program is known as a

Structural Testing 213

mutant of the original program. The behaviour of the mutant may be different from the original
program due to the introduction of a change. However, the original program and mutant are
syntactically correct and should compile correctly. To mutate a program means to change a
program. We generally make only one or two changes in order to assess the effectiveness of
the selected test suite. We may make many mutants of a program by making small changes in
the program. Every mutant will have a different change in a program. Consider a program to
find the largest amongst three numbers as given in Figure 3.11 and its two mutants are given
in Figure 4.7 and Figure 4.8. Every change of a program may give a different output as
compared to the original program.

Many changes can be made in the program given in Figure 3.11 till it is syntactically
correct. Mutant M, is obtained by replacing the operator >’ of line number 11 by the operator
¢ =’. Mutant M, is obtained by changing the operator >’ of line number 20 to operator ‘<’.
These changes are simple changes. Only one change has been made in the original program to
obtain mutant M, and mutant M.

#include<stdio.h>
#include<conio.h>

void main()

{

float A,B,C;

clrscr();

printf("Enter number 1:\n");
scanf("%f", &A);
printf("Enter number 2:\n");
scanf("%f", &B);
printf("Enter number 3:\n");
scanf("%f", &C);

/*Check for greatest of three numbers*/

11. if(A>B){ | « if(A=B) { mutated statement (‘>’ is replaced by ‘=")

O 00 N O U1 N W N -

Juny
o

12. if(A>C) {

13. printf("The largest number is: %f\n",A);
14, }

15. else {

16. printf("The largest number is: %f\n",C);
17. }

18. }

19. else {

20. if(C>B) {

21. printf("The largest number is: %f\n",C);
22. }

23. else {

24. printf("The largest number is: %f\n",B);
25. }

26. }

(Contd.)

214 Software Testing

(Contd.)
27. getch();
28. }

M, : First order mutant

Figure 4.7. Mutant, (M,) of program to find the largest among three numbers

#include<stdio.h>
#include<conio.h>

1. void main()
2. {
3. float A,B,C;
4. clrscr();
5. printf("Enter number 1:\n");
6. scanf("%f", &A);
7. printf("Enter number 2:\n");
8. scanf("%f", &B);
9. printf("Enter number 3:\n");
10. scanf("%f", &C);
/*Check for greatest of three numbers*/
11. if(A>B) {
12. if(A>C) {
13. printf("The largest number is: %f\n",A);
14. }
15. else {
16. printf("The largest number is: %f\n",C);
17. }
18. }
19. else {
20. if(C>B) { | « if(C<B) { mutated statement ('>’ is replaced by ‘<’
21. printf("The largest number is: %f\n",C);
22. }
23. else {
24, printf("The largest number is: %f\n",B);
25. }
26. }
27. getch();
28. }

M, : First order mutant

Figure 4.8. Mutant, (M,) of program to find the largest among three numbers

Structural Testing 215

The mutants generated by making only one change are known as first order mutants. We may
obtain second order mutants by making two simple changes in the program and third order mutants
by making three simple changes, and so on. The second order mutant (M,) of the program given in
Figure 3.11 is obtained by making two changes in the program and thus changing operator >’ of
line number 11 to operator ‘<’ and operator >’ of line number 20 to ‘>’ as given in Figure 4.9. The
second order mutants and above are called higher order mutants. Generally, in practice, we prefer
to use only first order mutants in order to simplify the process of mutation.

#include<stdio.h>

#include<conio.h>

void main()

{

float A,B,C;

clrscr();

printf("Enter number 1:\n");

scanf("%f", &A);

printf("Enter number 2:\n");

scanf("%f", &B);

printf("Enter number 3:\n");

scanf("%f", &C);

/*Check for greatest of three numbers*/
11. « if(A<B) { mutated statement (replacing ‘>’ by ‘<’

OW 00 N O U1 N W N -

=y
o

12. if(A>C) {

13. printf("The largest number is: %f\n",A);
14. }

15. else {

16. printf("The largest number is: %f\n",C);
17. }

18. }

19. else {

20. « if(C>B) { mutated statement (replacing ‘>'by >")
21. printf("The largest number is: %f\n",C);
22. }

23. else {

24. printf("The largest number is: %f\n",B);
25. }

26. }

27. getch();

28. }

M, : Second order mutant

Figure 4.9. Mutant, (M,) of program to find the largest among three numbers

216 Software Testing
4.4.2 Mutation Operators

Mutants are produced by applying mutant operators. An operator is essentially a grammatical
rule that changes a single expression to another expression. The changed expression should be
grammatically correct as per the used language. If one or more mutant operators are applied to
all expressions of a program, we may be able to generate a large set of mutants. We should
measure the degree to which the program is changed. If the original expression is x + 1, and
the mutant for that expression is X + 2, that is considered as a lesser change as compared to a
mutant where the changed expression is (y * 2) by changing both operands and the operator.
We may have a ranking scheme, where a first order mutant is a single change to an expression,
a second order mutant is a mutation to a first order mutant, and so on. Higher order mutants
become difficult to manage, control and trace. They are not popular in practice and first order
mutants are recommended to be used. To kill a mutant, we should be able to execute the
changed statement of the program. If we are not able to do so, the fault will not be detected. If
x —y is changed to x — 5 to make a mutant, then we should not use the value of y to be equal
to 5. If we do so, the fault will not be revealed. Some of the mutant operators for object
oriented languages like Java, C++ are given as:

(i) Changing the access modifier, like public to private.
(i) Static modifier change

(iii)) Argument order change

(iv) Super Keyword change

(v) Operator change

(vi) Any operand change by a numeric value.

4.4.3 Mutation Score

When we execute a mutant using a test suite, we may have any of the following outcomes:

(i) The results of the program are affected by the change and any test case of the test suite
detects it. If this happens, then the mutant is called a killed mutant.

(i1)) The results of the program are not affected by the change and any test case of the test
suite does not detect the mutation. The mutant is called a live mutant.
The mutation score associated with a test suite and its mutants is calculated as:

Number of mutants killed

Mutation Score =
Total number of mutants

The total number of mutants is equal to the number of killed mutants plus the number of
live mutants. The mutation score measures how sensitive the program is to the changes and
how accurate the test suite is. A mutation score is always between 0 and 1. A higher value of
mutation score indicates the effectiveness of the test suite although effectiveness also depends
on the types of faults that the mutation operators are designed to represent.

The live mutants are important for us and should be analyzed thoroughly. Why is it that any
test case of the test suite not able to detect the changed behaviour of the program? One of the
reasons may be that the changed statement was not executed by these test cases. If executed,

Structural Testing 217

then also it has no effect on the behaviour of the program. We should write new test cases for
live mutants and kill all these mutants. The test cases that identify the changed behaviour
should be preserved and transferred to the original test suite in order to enhance the capability
of the test suite. Hence, the purpose of mutation testing is not only to assess the capability of
a test suite but also to enhance the test suite. Some mutation testing tools are also available in
the market like Insure++, Jester for Java (open source) and Nester for C++ (open source).

Example 4.10: Consider the program to find the largest of three numbers as given in figure

3.11. The test suite selected by a testing technique is given as:

S. No. A B C Expected Output
1. 6 10 2 10
2. 10 6 2 10
3. 6 2 10 10
4 6 10 20 20

Generate five mutants (M, to M) and calculate the mutation score of this test suite.

Solution:

The mutated line numbers and changed lines are shown in Table 4.22.

Table 4.22. Mutated statements

Mutant No. Line no. Original line Modified Line

M, 11 if(A>B) if (A<B)

M, 11 if(A>B) if(A>(B+C))

M, 12 if(A>C) if(A<C)

M, 20 if(C>B) if(C=B)

M, 16 printf(“The Largest number printf(“The Largest number
is:%f\n”,C); is:%f\n”,B);

The actual output obtained by executing the mutants M,-M; is shown in Tables 4.23-4.27.

Table 4.23. Actual output of mutant M,

Test case A B C Expected output Actual output
1. 6 10 2 10 6

2. 10 6 2 10 6

3. 6 2 10 10 10

4 6 10 20 20 20

Table 4.24. Actual output of mutant M,

Test case A B Expected output Actual output
1. 6 10 10 10
2 10 10 10
3. 10 10 10
4 10 20 20 20

218 Software Testing

Table 4.25. Actual output of mutant M,
Test case A B C Expected output Actual output
1. 6 10 2 10 10
2. 10 6 2 10 2
3. 6 2 10 10 6
4 6 10 20 20 20

Table 4.26. Actual output of mutant M,

Testcase A B C Expected output Actual output
1. 6 10 2 10 10
2. 10 6 2 10 10
3. 6 2 10 10 10
4 6 10 20 20 10

Table 4.27. Actual output of mutant M,

Test case A B C Expected output Actual output
1. 6 10 2 10 10

2. 10 6 2 10 10

3. 6 2 10 10 2

4 6 10 20 20 20

. Number of mutants killed
Mutation Score =

Total number of mutants

4
5
=0.8

Higher the mutant score, better is the effectiveness of the test suite. The mutant M, is live
in the example. We may have to write a specific test case to kill this mutant. The additional test
case is given in Table 4.28.

Table 4.28. Additional test case

Test case A B C Expected output
5. 10 5 6 10

Now when we execute the test case 5, the actual output will be different from the expected
output (see Table 4.29), hence the mutant will be killed.

Table 4.29. Output of added test case

Test case A B C Expected output Actual output
5. 10 5 6 10 6

Structural Testing 219

This test case is very important and should be added to the given test suite. Therefore, the
revised test suite is given in Table 4.30.

Table 4.30. Revised test suite

Test case A B (o Expected output
1. 6 10 2 10
2. 10 6 2 10
3. 6 2 10 10
4, 6 10 20 20
5. 10 5 6 10

Example 4.11: Consider the program for classification of triangle given in Figure 3.18. The
test suite A and B are selected by two different testing techniques and are given in Table 4.31
and Table 4.32, respectively. The five first order mutants and the modified lines are given in
Table 4.33. Calculate the mutation score of each test suite and compare their effectiveness.
Also, add any additional test case, if required.

Table 4.31. Test suite A

Test case a b c Expected output

1. 30 40 90 Invalid triangle

2. 30 20 40 Obtuse angled triangle

3. 50 40 60 Acute angled triangle

4. 30 40 50 Right angled triangle

5. -1 50 40 Input values are out of range
6. 50 150 90 Input values are out of range
7. 50 40 -1 Input values are out of range

Table 4.32. Test suite B

Test case a b c Expected output

1. 40 90 20 Invalid triangle

2. 40 30 60 Obtuse angled triangle

3. 40 50 60 Acute angled triangle

4, 30 40 50 Right angled triangle

5. -1 50 40 Input values are out of range
6. 30 101 90 Input values are out of range
7. 30 90 0 Input values are out of range

Table 4.33. Mutated lines
Mutant Line

No. no. Original line Modified Line

M, 13 if(@>0&&a<=100&&b>0&&b<=10 if(a>0||a<=100&&b>0&&b<=100&
0&&c>0&&c<=100) { &c>0&8&c<=100) {

M, 14 if((@+b)>c&&(b+c)>a&&(cta)>b) { if((@a+tb)>c&&(b+c)>a&&(b+a)>b) {

M, 21 if(valid==1) { if(valid>1) {

M, 23 a2=(b*b+c*c)/(a*a); a2=(b*b+c*c)*(a*a);

M, 25 iflal<l]||a2<1]||a3<1){ ifal>1| |a2<1| |a3<1) {

220 Software Testing

Solution:

(a) Test cases for Test Suite A
The actual outputs of mutants M -M, on test suite A are shown in Tables 4.34-4.38.

Table 4.34. Actual output of M_(A)

Testcase a b c Expected output Actual output

1. 30 40 90 Invalid triangle Invalid triangle

2. 30 20 40 Obtuse angled triangle Obtuse angled triangle
3. 50 40 60 Acute angled triangle Acute angled triangle
4, 30 40 50 Right angled triangle Right angled triangle
5. -1 50 40 Input values are out of range Invalid triangle

6. 50 150 90 Input values are out of range Invalid triangle

7. 50 40 -1 Input values are out of range Invalid triangle

Table 4.35. Actual output of M_(A)

Testcase a b c Expected output Actual output

1. 30 40 90 Invalid triangle Invalid triangle

2. 30 20 40 Obtuse angled triangle Obtuse angled triangle

3. 50 40 60 Acute angled triangle Acute angled triangle

4. 30 40 50 Right angled triangle Right angled triangle

5. -1 50 40 Input values are out of range Input values are out of range
6. 50 150 90 Input values are out of range Input values are out of range
7. 50 40 -1 Input values are out of range Input values are out of range

Table 4.36. Actual output of M_(A)

Testcase a b c Expected output Actual output

1. 30 40 90 Invalid triangle Invalid triangle

2. 30 20 40 Obtuse angled triangle Input values are out of range
3. 50 40 60 Acute angled triangle Input values are out of range
4. 30 40 50 Right angled triangle Input values are out of range
5. -1 50 40 Input values are out of range Input values are out of range
6. 50 150 90 Input values are out of range Input values are out of range
7. 50 40 -1 Input values are out of range Input values are out of range

Table 4.37. Actual output of M (A)

Testcase a b c Expected output Actual output

1. 30 40 90 Invalid triangle Invalid triangle

2. 30 20 40 Obtuse angled triangle Obtuse angled triangle

3. 50 40 60 Acute angled triangle Acute angled triangle

4. 30 40 50 Right angled triangle Right angled triangle

5. -1 50 40 Input values are out of range Input values are out of range
6. 50 150 90 Input values are out of range Input values are out of range
7. 50 40 -1 Input values are out of range Input values are out of range

Structural Testing 221

Table 4.38. Actual output of M_(A)

Testcase a b c Expected output Actual output

1. 30 40 90 Invalid triangle Invalid triangle

2. 30 20 40 Obtuse angled triangle Acute angled triangle

3. 50 40 60 Acute angled triangle Obtuse angled triangle

4, 30 40 50 Right angled triangle Right angled triangle

5. -1 50 40 Input values are out of range Input values are out of range
6. 50 150 90 Input values are out of range Input values are out of range
7. 50 40 -1 Inputvalues are out of range Input values are out of range

Two mutants are M, and M, are live. Thus, the mutation score using test suite A is 0.6.

Mutation Score =

(b) Test cases for Test Suite B
The actual outputs of mutants M -M; on test suite B are shown in Tables 4.39-4.43.

Number of mutants killed

Total number of mutants

1l
S w»nw

Table 4.39. Actual output of M, (B)

Testcase a b c Expected output Actual output

1. 40 90 20 Invalid triangle Invalid triangle

2. 40 30 60 Obtuse angled triangle Obtuse angled triangle
3. 40 50 60 Acute angled triangle Acute angled triangle
4, 30 40 50 Right angled triangle Right angled triangle
5. -1 50 40 Input values are out of range Invalid triangle

6. 30 101 90 Input values are out of range Obtuse angled triangle
7. 30 90 0 Input values are out of range Invalid triangle

Table 4.40. Actual output of M_(B)

Testcase a b c Expected output Actual output

1. 40 90 20 Invalid triangle Obtuse angled triangle

2. 40 30 60 Obtuse angled triangle Obtuse angled triangle

3. 40 50 60 Acute angled triangle Acute angled triangle

4, 30 40 50 Right angled triangle Right angled triangle

5. -1 50 40 Input values are out of range Input values are out of range
6. 30 101 90 Input values are out of range Input values are out of range
7. 30 90 0 Input values are out of range Input values are out of range

222 Software Testing

Table 4.41. Actual output of M (B)

Test case a b c Expected output Actual output

1. 40 90 20 Invalid triangle Invalid triangle

2. 40 30 60 Obtuse angled triangle Input values are out of range
3. 40 50 60 Acute angled triangle Input values are out of range
4, 30 40 50 Right angled triangle Input values are out of range
5. -1 50 40 Input values are out of range Input values are out of range
6. 30 101 90 Input values are out of range Input values are out of range
7. 30 90 0 Input values are out of range Input values are out of range

Table 4.42. Actual output of M (B)

Testcase a b c Expected output Actual output

1. 40 90 20 Invalid triangle Invalid triangle

2. 40 30 60 Obtuse angled triangle Obtuse angled triangle

3. 40 50 60 Acute angled triangle Acute angled triangle

4, 30 40 50 Right angled triangle Right angled triangle

5. -1 50 40 Input values are out of range Input values are out of range
6. 30 101 90 Inputvalues are out of range Input values are out of range
7. 30 90 0 Input values are out of range Input values are out of range

Table 4.43. Actual output of M (B)

Testcase a b c Expected output Actual output

1. 40 90 20 Invalid triangle Invalid triangle

2. 40 30 60 Obtuse angled triangle Acute angled triangle

3. 40 50 60 Acute angled triangle Obtuse angled triangle

4. 30 40 50 Right angled triangle Right angled triangle

5. -1 50 40 Input values are out of range Input values are out of range
6. 30 101 90 Input values are out of range Input values are out of range
7. 30 90 0 Input values are out of range Input values are out of range

Number of mutants killed

Mutation Score =
Total number of mutants

S ws

=0.8

The mutation score of Test suite B is higher as compared to the mutation score of test suite
A, hence test suite B is more effective in comparison to test suite A. In order to kill the live
mutant (M,), an additional test case should be added to test suite B as shown in Table 4.44.

Table 4.44. Additional test case
Test case a b c
8. 40

Expected output

Obtuse angled triangle

Structural Testing

The revised test suite B is given in Table 4.45.

223

Table 4.45. Revised test suite B

Test case a b c Expected output

1. 40 90 20 Invalid triangle

2. 40 30 60 Obtuse angled triangle

3. 40 50 60 Acute angled triangle

4, 30 40 50 Right angled triangle

5. -1 50 40 Input values are out of range
6. 30 101 90 Input values are out of range
7. 30 90 0 Input values are out of range
8. 40 30 20 Obtuse angled triangle

MULTIPLE CHOICE QUESTIONS

Note: Select the most appropriate answer for the following questions.

4.1 Which is not a structural testing technique?
(a) Mutation testing
(b) Data flow testing
(c) Slice based testing
(d) Decision table based testing
4.2 Which is a structural testing technique?
(a) Data flow testing
(b) Control flow testing
(c) Mutation testing
(d) All of the above
4.3 Data flow testing is related to:
(a) ER diagrams
(b) Data flow diagrams
(¢) Data dictionaries
(d) None of the above
4.4 Mutation testing is related to:
(a) Fault seeding
(b) Fault severity
(c) Fault impact analysis
(d) None of the above
4.5 Mutation score does not indicate anything about:
(a) Size of a test suite
(b) Effectiveness of a test suite
(c) Performance of a test suite
(d) Usefulness of a test suite

224 Software Testing

4.6

4.7

4.8

4.9

100% statement coverage and branch coverage means:

(a) Every statement has been tested

(b) Every outcome of a branch statement has been tested

(c) Every statement and every branch has been tested

(d) Every condition has been tested

How many test cases are required for 100% statement and branch coverage of the
following source code?

void main ()
{
int a, b;
scanf (“%d”, &a);
scanf (“%d", &b);
if (a>b) {
printf (“a is large”);
}
else {
printf (“b is large”);
}
}

(a) 1 test case for statement coverage, 2 for branch coverage.

(b) 2 test case for statement coverage, 1 for branch coverage.

(c) 2 test case for statement coverage, 2 for branch coverage.

(d) 1 test case for statement coverage, 3 for branch coverage.

Which of the following statements about the relationship of statement coverage and
decision coverage is correct?

(a) 100% statement coverage means 100% decision coverage.

(b) 100% decision coverage means 100% statement coverage.

(c) 90% statement coverage means 90% decision coverage.

(d) 90% decision coverage means 90% statement coverage.

In data flow testing, which criterion generates the maximum number of test cases?
(a) Test all du-paths

(b) Test all uses

(c) Test all definitions

(d) All of the above generates the same number of test cases

4.10 Statements coverage will not check for :

(a) Missing statements
(b) Extra statements
(c) Dead statements
(d) Unused statements

4.11 Statement coverage is commonly used to measure:

(a) Test effectiveness
(b) Number of faults
(c) Testing time

(d) Complexity of code

Structural Testing

4.12 Structural testing techniques may help us to:
(a) Understand the source code
(b) Generate test cases using various paths
(¢) Comprehend the program
(d) All of the above
4.13 A program slice is:
(a) More complex than the original program
(b) Larger than the original program
(c) Smaller than the original program
(d) More critical than the original program
4.14 Which mutants are more popular in practice?
(a) First order mutant
(b) Second order mutant
(¢) Third order mutant
(d) Zero order mutant
4.15 Source code coverage measurement is :
(a) A partial measure of test effectiveness
(b) Not related to testing
(c) Easily achievable in practice
(d) None of the above
4.16 Which of the following is not related?
(a) White box
(b) Black box
(c) Glass box
(d) Structural
4.17 Mutation score is related to:
(a) Effectiveness of a test suite
(b) Size of a test suite
(¢) Complexity of a test suite
(d) Criticality of a test suite
4.18 Which is a mutation testing tool?
(a) Insuret++
(b) Jester for Java
(c) Nester for c++
(d) All of the above
4.19 Which is difficult to achieve?
(a) 100% statement coverage
(b) 100% branch coverage
(c) 100% condition coverage
(d) 100% path coverage
4.20 Program slicing was introduced by:
(a) Mark Weiser
(b) Victor Basili
(c) L. Briand
(d) Mc Cabe

225

226 Software Testing

4.1
4.2

43
44

4.5

4.6

4.7

4.8

4.9

EXERCISES

What is structural testing? How is it different from functional testing?

What are different types of structural testing techniques? Discuss any two techniques

with the help of examples.

Discuss the significance of path testing. How can we make it more effective?

Show with the help of an example that a very high level of statement coverage does

not mean that the program is defect-free.

Write a program to find roots of a quadratic equation.

(a) Draw program graph, DD path graph. Also find independent paths and generate
test cases.

(b) Find all du-paths and identify those du-paths that are not dc paths. Write test cases
for every du-path.

Explain define/use testing. Consider the NextDate function and write a program in ‘C’

language. Find all du paths and dc paths. Design test cases for every definition to every

usage.

Consider a program for classification of a triangle. Its input is a triple of positive integers

(say a, b and c) from interval [1, 100]. The output may be one of the following:

[Scalene, Isosceles, Equilateral, Not a triangle, invalid inputs]

(a) Draw a program graph, DD path graph and write test cases for every independent
path.

(b) Find all du-paths and identify those du-paths that are not dc paths. Write test cases
for every du-path.

What is slice based testing? How can it improve testing? Explain the concept with the

help of an example and write test cases accordingly.

What is mutation testing? What is the purpose of mutation score? Why are higher order

mutants not preferred?

4.10 Differentiate between black box and white box testing. Consider a program to find the

largest number amongst three numbers. Generate test cases using one black box testing
and one white box testing technique.

4.11 How is data flow testing performed? Is it possible to design data flow test cases

manually? Justify your answer.

4.12 What do you mean by a program graph? What is its use? How can we use it in the

design of du-paths?

4.13 Write a program to print the grade of a student according to the following criteria:

(i) marks > 80 A+ Grade

(i) 70 <marks < 80 A Grade

(ii1) 60 < marks <70 B Grade

(iv) 50 < marks < 60 C Grade

(v) 40 <marks <50 D Grade

Generate all du-paths and write test cases for all du-paths.

4.14 Consider the program given below. Find all du-paths and identify those du-paths that

are definition clear. Also find all du-paths, all-uses and all-definitions and generate test
cases for these paths.

O© 00 N O U1 N W N K

W W W W W WM NN DN NN NN NN R R R R R R R R R
U9 N W NN P O W OO NO UL WD EFPR O VW OO N O U XN WM L O

36.

Structural Testing 227

/* Program to calculate total telephone bill amount to be paid by an customer*/

#include<stdio.h>
#include<conio.h>
void main()
{
int custnum,numecalls,valid=0;
float netamount;
clrscr();
printf("Enter customer number & number of calls:");
scanf("%d %d",&custnum,&numcalls);
if(custnum>108&&custnum<20000){
valid=1;
if(numcalls<0){
valid=-1;
}
}
if(valid==1){
if(numcalls<76){
netamount=500;
}
else if(numcalls>75&8&numcalls<201){
netamount=500+0.80* (numcalls-75);
}
else if(numcalls>200&&numcalls<501){
netamount=500+1.00* (numcalls-200);
}
else{
netamount=500+1.20*(numcalls-500);

}

printf("\nCustomer number: %d\t Total Charges:%.3f" custnum,netamount);
}
else if(valid==0){
printf("Invalid customer number");
}
else{
printf("Invalid number of calls");
}
getch();
}

4.15 Consider the program for determination of the total telephone bill amount to be paid
by a customer given in exercise 4.14. Consider all variables and generate possible
program slices. Design at least one test case from every slice.

228 Software Testing

4.16 Consider the program for determination of the total telephone bill amount to be paid
by a customer given in exercise 4.14. Generate two first order mutants and one second
order mutant. Design a test suite of five test cases and calculate the mutation score of
the test suite.

4.17 Consider a program to input two numbers and print them in ascending order given
below. Find all du-paths and identify those du-paths that are definition clear. Also find
all du-paths, all-uses and all-definitions and generate test cases for these paths.

#include<stdio.h>
#include<conio.h>

void main()

{

int a,b,t;

clrscr();

printf("Enter first number:");
scanf("%d",&a);

printf("Enter second number:");
scanf("%d",&b);

if(a<b){

t=a;

O 00 N O U1 N W NN -

[Y
N)

a=b;

b=t;

}

printf("%d %d",a,b);
getch();

16. }

[EE S G
UN W

4.18 Consider a program to input two numbers and print them in ascending order given in
exercise 4.17. Consider all variables and generate possible program slices. Design at
least one test case from every slice.

4.19 Establish the relationship between data flow testing and slice based testing.

4.20 What is the importance of mutation testing? Why is it becoming popular?

FURTHER READING

Copeland’s book provides introduction to levels of converge:
Lee Copeland, “A Practitioner’s Guide to Software Test Design”, Artech House,
2004.

Key concepts and definitions for structural data flow testing are given by Weyuker:
Weyuker, Elaine J. “Data Flow Testing”, In MARC94, pp. 247-249.

The research paper explains the basic concepts of data flow testing with an example:
J. Badlaney R. Ghatol R. Jadhwani, “An Introduction to Data-Flow Testing”,
TR-2006-22, 2006.

Structural Testing 229

An edited tutorial on testing and collection of important publications may be found

in:

T.J. McCabe, “Structured Testing”, Silver Spring, M.D, IEEE Computer Society
Press, 1982.

Path covering changes and issues are found in:

S.C. Ntafos, “A Graph Theoretic Approach to Program Testing”, Ph.D Dissertation,
Northwestern University, 1978.

Some important issues of complexity of data flow testing are discussed in:

E.J. Weyuker, “An Empirical Study of the Complexity of Data Flow Testing”,
Second Workshop on Software Testing, Verification and Analysis, Banff, Canada,
pp. 19-21, July 1988.

A comparison of du-paths and branch coverage metrics can be found in:

M.D. Weiser, J.D. Gannon and P.R. McMullin, “Comparison of Structural Test
Coverage Metrics,” IEEE Software, vol. 2, pp. 80-85, March 1985.

Weiser was probably the first one to introduce program slicing:

M. Weiser, “Program Slicing”, Proceedings of the Fifth International Conference
on Software Engineering pp. 439—449, March 1981.

M. Weiser, “Programmers use Slices when Debugging”, Communications of ACM,

vol. 25, no. 7, pp. 446452, 1982.

M. Weiser, “Program Slicing”, IEEE Transactions on Software Engineering,
SE-10, pp. 352-357, 1984.

Dasso provides an introduction to mutation testing in Chapter 7 of the book:
Aristides Dasso, Ana Funes, “Verification, Validation and Testing in Software
Engineering”, Idea Group Inc, 2007.

The following research paper provides a comprehensive analysis and survey on

mutation testing:

Yue Jia, Mark Harman, “An Analysis and Survey of the Development of Mutation
Testing”, CREST Centre, King’s College London, Technical Report TR-09-06.
http://www.dcs.kcl.ac.uk/pg/jiayue/repository/ TR-09-06.pdf, September 2009.

A publicly available repository that provides complete literature on mutation testing

can accessed from:
http://www.dcs.kcl.ac.uk/pg/jiayue/repository/

Other useful research papers may be:

S. Rapps and E.J. Weyuker, “Selecting Software Test Data Using Data Flow
Information”, IEEE Transactions on Software Engineering, vol. 11, no. 4, pp.
367-375, 1985.

K.C. Tai, “What to do beyond Branch Testing,” ACM SIGSOFT Software
Engineering Notes, vol. 14, no. 2, pp. 58-61, April 1989.

A.J. Offutt and D. Lee Stephen, “An Empirical Evaluation of Weak Mutation”, IEEE
Transactions on Software Engineering, vol. 20, no. 5, pp. 337-344, May 1994.

A. Watson, T.J. McCabe, “Structured Testing: A Testing Methodology Using the
Cyclomatic Complexity Metric”, NIST, 1996.

A. J. Offutt and J. Pan, “Detecting Equivalent Mutants and the Feasible Path
Problem”, Software Testing, Verification, and Reliability, vol. 7, no. 3, pp.
165-192, September 1997.

Software Verification

Software verification has proved its effectiveness in the software world and its usage is
increasing day by day. The most important aspect of software verification is its implementation
in the early phases of the software development life cycle. There was a time when people used
to say that “testing is a post-mortem activity where testers are only finding the damages already
been done and making changes in the program to get rid of these damages.” Testing primarily
used to be validation oriented where the program was required for execution and was available
only in the later phases of software development. Any testing activity which requires program
execution comes under the ‘validation’ category. In short, whenever we execute the program
with its input(s) and get output(s), that type of testing is known as software validation.

What is software verification? How can we apply this in the early phases of software
development? If we review any document for the purpose of finding faults, it is called verification.
Reviewing a document is possible from the first phase of software development i.e. software
requirement and analysis phase where the end product is the SRS document.

Verification is the process of manually examining / reviewing a document. The document may
be SRS, SDD, the program itself or any document prepared during any phase of software
development. We may call this as static testing because the execution of the program is not
required. We evaluate, review and inspect documents which are generated after the completion
of every phase of software development. As per IEEE, “verification is the process of evaluating
the system or component to determine whether the products of a given development phase satisfy
the conditions imposed at the start of that phase” [IEEEO1]. Testing includes both verification and
validation activities and they are complementary to each other. If effective verification is carried
out, we may detect a number of faults in the early phases of the software development life cycle
and ultimately may be able to produce a quality product within time and budget.

5.1 VERIFICATION METHODS

The objective of any verification method is to review the documents with the purpose of finding
faults. Many methods are commonly used in practice like peer reviews, walkthroughs, inspections,
etc. Verification helps in prevention of potential faults, which may lead to failure of software.

Software Verification 231

After the completion of the implementation phase, we start testing the program by executing it.
We may carry out verification also by reviewing the program manually and examining the critical
areas carefully. Verification and validation activities may be performed after the implementation
phase. However, only verification is possible in the phases prior to implementation like the
requirement phase, the design phase and even most of the implementation phase.

5.1.1 Peer Reviews

Any type of testing (verification or validation), even adhoc and undisciplined, is better than no
testing if it is carried out by person(s) other than the developers / writers of the document with
the purpose of finding faults. This is the simplest way of reviewing the documents / programs
to find out faults during verification. We give the document(s) / program(s) to someone else
and ask to review the document(s) / program(s). We expect views about the quality of the
document(s) and also expect to find faults. This type of informal activity may give very good
results without spending any significant resources. Many studies have shown the importance
of peer review due to its efficiency and significance. Our thrust should be to find faults in the
document(s) / program(s) and not in the persons who have developed them. The activities
involved may be SRS document verification, SDD verification and program verification. The
reviewer may prepare a report of observations and findings or may inform verbally during
discussions. This is an informal activity to be carried out by peers and may be very effective if
reviewers have domain knowledge, good programming skills and proper involvement.

5.1.2 Walkthroughs

Walkthroughs are more formal and systematic than peer reviews. In a walkthrough, the author
of the document presents the document to a small group of two to seven persons. Participants
are not expected to prepare anything. Only the presenter, who is the author, prepares for the
meeting. The document(s) is / are distributed to all participants. During the meeting, the author
introduces the material in order to make them familiar with it. All participants are free to ask
questions. All participants may write their observations on any display mechanism like boards,
sheets, projection systems, etc. so that every one may see and give views. After the review, the
author writes a report about findings and any faults pointed out in the meeting.

The disadvantages of this system are the non-preparation of participants and incompleteness
of the document(s) presented by the author(s). The author may hide some critical areas and
unnecessarily emphasize on some specific areas of his / her interest. The participants may not
be able to ask many penetrating questions. Walkthroughs may help us to find potential faults
and may also be used for sharing the documents with others.

5.1.3 Inspections

Many names are used for this verification method like formal reviews, technical reviews,
inspections, formal technical reviews, etc. This is the most structured and most formal type of
verification method and is commonly known as inspections. These are different from peer
reviews and walkthroughs. The presenter is not the author but some other person who prepares
and understands the document being presented. This forces that person to learn and review that
document prior to the meeting. The document(s) is / are distributed to all participants in
advance in order to give them sufficient time for preparation. Rules for such meetings are fixed

232 Software Testing

and communicated to all participants. A team of three to six participants are constituted which
is led by an impartial moderator. A presenter and a recorder are also added to this team to
assure that the rules are followed and views are documented properly.

Every person in the group participates openly, actively and follows the rules about how such
areview is to be conducted. Everyone may get time to express their views, potential faults and
critical areas. Important points are displayed by some display mechanism so that everyone can
see them. The moderator, preferably a senior person, conducts such meetings and respects
everyone’s views. The idea is not to criticize anyone but to understand their views in order to
improve the quality of the document being presented. Sometimes a checklist is also used to
review the document.

After the meeting, a report is prepared by the moderator and circulated to all participants. They
may give their views again, if any, or discuss with the moderator. A final report is prepared after
incorporating necessary suggestions by the moderator. Inspections are very effective to find
potential faults and problems in the document like SRS, SDD, source code, etc. Critical
inspections always help find many faults and improve these documents, and prevent the
propagation of a fault from one phase to another phase of the software development life cycle.

5.1.4 Applications

All three verification methods are popular and have their own strengths and weaknesses. These
methods are compared on specific issues and this comparison is given in Table 5.1.

Table 5.1. Comparison of verification methods

S. Number of Prior
Method Presenter . . . Report Strengths Weaknesses
No. Participants preparation
1. Peer reviews No one lor2 Not required Optional Inexpensive Output is depen-
but find dent on the ability
some faults of the reviewer
2. Walkthrough Author 2 to 7 partici- Only presenter Prepared Knowledge Find few faults and
pants is required to by pre- sharing not very expensive

be prepared senter

3. Inspections Someone 3to 6 partici- All participants Prepared Effective Expensive and
other than pants are required to by mod- and find requires very
author be prepared erator many faults skilled participants

The SRS verification offers the biggest potential saving to the software development effort.
Inspections must be carried out at this level. For any reasonably sized project, the SRS
document becomes critical and the source of many faults. Inspections shall improve this
document and faults are removed at this stage itself without much impact and cost. For small
sized projects, peer reviews may be useful but results are heavily dependent on the ability and
involvement of the reviewer. Walkthroughs are normally used to sensitize participants about
the new initiative of the organization. Their views may add new functionality or may identify
weak areas of the project.

Verification is always more effective than validation. It may find faults that are nearly impossible
to detect during validation. Most importantly, it allows us to find faults at the earliest possible time
and in the early phases of software development. However, in most organizations the distribution
of verification / validation is 20/80, or even less for verification.

Software Verification 233

5.2 SOFTWARE REQUIREMENTS SPECIFICATION (SRS) DOCUMENT
VERIFICATION

The outcome of the first phase of the software development life cycle is the SRS document.
This describes ‘What do we expect from the system?’ However, it does not carry any details
about ‘How do we achieve these expectations?’ After the finalization of the SRS, the developer
knows what to develop and the customer knows what to expect. The SRS also becomes a legal
document to resolve any conflict between the customer and the developer.

The SRS document should cover both functional requirements and non-functional requirements.
Functional requirements are the expectations from the proposed software. They explain what the
software has to do. They are also known as product features. Non-functional requirements are
quality requirements that stipulate how well the software does what it has to do. Some of the
non-functional requirements are reliability, usability, portability, maintainability and testability.

5.2.1 Nature of the SRS Document

The SRS should include the following:

(1) Expectations from the software: The SRS document should clearly specify ‘what do
we expect from the software?’ and broadly describe functions of the software.

(i1) Interfaces of the software: The software will interact with many persons, hardware,
other devices and external software. These interfaces should be written and ‘forms’ for
interaction may also be provided.

(ii1)) Non-functional requirements: These requirements are very important for the success
of the software. They may help us to design a performance criterion in terms of the
requirements — response time, speed, availability, recovery time of various software
functions, etc. Some non-functional requirements become attributes of the software like
portability, correctness, maintainability, reliability, security, etc. These non-functional
requirements should also be properly placed in the SRS document.

(iv) Implementation difficulties and limitations: There may be some limitations of the pro-
gramming language, database integration, etc. All constraints of project implementa-
tion including resource limitations and operating environment should also be speci-
fied.

The SRS writer(s) should not include design and implementation details. It should be written
in simple, clear and unambiguous language which may be understandable to all developers and
customers.

5.2.2 Characteristics and Organization of the SRS Document

The SRS document acts as a contract between the developer and customer. This document should
have the following characteristics as given in IEEE recommended practice for software
requirements specifications (IEEE std. 830 — 1998) [IEEE98a]: “Correct, unambiguous, complete,
consistent and ranked for importance and / or stability, verifiable, modifiable, traceable.” These
characteristics should be checked and a good SRS document should address these issues.

The IEEE has published guidelines and standards to organize an SRS document (IEEE93,
IEEE98a). It provides different ways to organize the SRS document depending upon the nature
of the project. The first two sections of the SRS document are the same for all projects. The

234 Software Testing

specific tailoring occurs in section 3 entitled ‘specific requirements’. The general organization
of the SRS document is given in Table 5.2.

Table 5.2. Organization of the SRS [IEEE98a]

1. Introduction
1.1 PurposeO
1.2 Scope
1.3 Definitions, Acronyms and Abbreviations
1.4 References
1.5 Overview
2. The Overall Description
2.1 Product Perspective
2.1.1 System Interfaces
2.1.2 Interfaces
2.1.3 Hardware Interfaces
2.1.4 Software Interfaces
2.1.5 Communications interfaces
2.1.6 Memory Constraints
2.1.7 Operations
2.1.8 Site Adaptation Requirements
2.2 Product Functions
2.3 User Characteristics
2.4 Constraints
2.5 Assumptions and Dependencies
2.6 Apportioning of Requirements

3. Specific Requirements
3.1 External interfaces
3.2 Functions
3.3 Performance Requirements
3.4 Logical Database Requirements
3.5 Design Constraints
3.5.1 Standards Compliance
3.6 Software System Attributes
3.6.1 Reliability
3.6.2 Availability
3.6.3 Security
3.6.4 Maintainability
3.6.5 Portability
3.7 Organizing the Specific Requirements
3.7.1 System Mode
3.7.2 User Class
3.7.3 Objects
3.7.4 Feature
3.7.5 Stimulus
3.7.6 Response
3.7.7 Functional Hierarchy
3.8 Additional Comments

4. Change Management Process
5 Document Approvals
6. Supporting Information

IEEE Std 830-1998 Recommended Practice for Software Requirements Specifications —
reprinted with permission from IEEE, 3 Park Avenue, New York, NY 10016 — 5997 USA,
Copyright 1998, by IEEE.

Software Verification 235
5.2.3 SRS Document Checklist

The SRS document is reviewed by the testing person(s) by using any verification method (like
peer reviews, walkthroughs, inspections, etc.). We may use inspections due to their effectiveness
and capability to produce good results. We may conduct reviews twice or even more often.
Every review will improve the quality of the document but may consume resources and
increase the cost of the software development.

A checklist is a popular verification tool which consists of a list of critical information content
that a deliverable should contain. A checklist may also look for duplicate information, missing
information, unclear information, wrong information, etc. Checklists are used during reviewing
and may make reviews more structured and effective. An SRS document checklist should
address the following issues:

(i) Correctness
Every requirement stated in the SRS should correctly represent an expectation from
the proposed software. We do not have standards, guidelines or tools to ensure the
correctness of the software. If the expectation is that the software should respond to all
button presses within 2 seconds, but the SRS states that ‘the software shall respond to all
buttons presses within 20 seconds’, then that requirement is incorrectly documented.

(i) Ambiguity
There may be an ambiguity in a stated requirement. If a requirement conveys more than
one meaning, itis a serious problem. Every requirement must have a single interpretation
only. We give a portion of the SRS document (having one or two requirements) to 10
persons and ask their interpretations. If we get more than one interpretation, then there
may be an ambiguity in the requirement(s). Hence, requirement statement should be
short, explicit, precise and clear. However, it is difficult to achieve this due to the
usage of natural languages (like English), which are inherently ambiguous. A checklist
should focus on ambiguous words and should have potential ambiguity indicators.

(iii) Completeness
The SRS document should contain all significant functional requirements and non-
functional requirements. It should also have forms (external interfaces) with validity
checks, constraints, attributes and full labels and references of all figures, tables, diagrams,
etc. The completeness of the SRS document must be checked thoroughly by a checklist.

(iv) Consistency
Consistency of the document may be maintained if the stated requirements do not differ
with other stated requirements within the SRS document. For example, in the overall
description of the SRS document, it may be stated that the passing percentage is 50 in
‘result management software’ and elsewhere, the passing percentage is mentioned as
40. In one section, it is written that the semester mark sheet will be issued to colleges
and elsewhere it is mentioned that the semester mark sheet will be issued directly to
students. These are examples of inconsistencies and should be avoided. The checklist
should highlight such issues and should be designed to find inconsistencies.

(v) Verifiability
The SRS document is said to be verifiable, if and only if, every requirement stated therein
is verifiable. Non-verifiable requirements include statements like ‘good interfaces’,
‘excellent response time’, ‘usually’, ‘well’, etc. These statements should not be used.

236 Software Testing

(vi)

(vii)

(viii)

Section

An example of a verifiable statement is ‘semester mark sheet shall be displayed on the
screen within 10 seconds’. We should use measurable terms and avoid vague terms. The
checklist should check the non-verifiable requirements.
Modifiability
The SRS document should incorporate modifications without disturbing its structure
and style. Thus, changes may be made easily, completely and consistently while
retaining the framework. Modifiability is a very important characteristic due to
frequent changes in the requirements. What is constant in life? It is change and if we
can handle it properly, then it may have a very positive impact on the quality of the
SRS document.
Traceability
The SRS document is traceable if the origin of each requirement is clear and may
also help for future development. Traceability may help to structure the document and
should find place in the design of the checklist.
Feasibility
Some of the requirements may not be feasible to implement due to technical reasons
or lack of resources. Such requirements should be identified and accordingly removed
from the SRS document. A checklist may also help to find non-feasible requirements.
The SRS document is the source of all future problems. It must be reviewed
effectively to improve its quality. Every review process will add to the improvement of
its quality which is dependent on the characteristics discussed above. A checklist should
be designed to address the above-mentioned issues. A well-designed and meaningful
checklist may help the objective of producing good quality maintainable software,
delivered on time and within budget. There may be many ways to design a checklist. A
good checklist must address the above-mentioned characteristics. A generic checklist
is given in Table 5.3, which may be tailored as per the need of a project.

-1

Date of

Name of reviewer
Organization
Group Number

Project Title

review

Section

-1I

Table 5.3. Checklist for the SRS document

S.No. Description Yes/No/NA Remarks
Introduction
1. Is the purpose of the project clearly defined?
2. Is the scope clearly defined?
3. Is document format as per standard / guidelines (e.g. IEEE
830-1998)
4. Is the project formally approved by the customer?
5. Are all requirements, interfaces, constraints, definitions, etc.

listed in the appropriate sections?

(Contd.)

Software Verification 237

(Contd.)
S. No. Description Yes/No/NA Remarks
6. Is the expected response time from the user’s point of view,
specified for all operations?
7. Do all stated requirements express the expectations of the
customer?
8. Are there areas not addressed in the SRS document that
need to be?
9. Are non-functional requirements stated?
10. Are validity checks properly defined for every input condition?
Ambiguity
11 Are functional requirements separated from non-functional
requirements?
12. Is any requirement conveying more than one interpretation?
13. Are all requirements clearly understandable?
14. Does any requirement conflict with or duplicate with other
requirements?
15. Are there ambiguous or implied requirements?
Completeness
16. Are all functional and non-functional requirements stated?
17. Are forms available with validity checks?
18. Are all reports available in the specified format?
19. Are all references, constraints, assumptions, terms and unit
of measures clearly stated?
20. Has analysis been performed to identify missing requirements?
Consistency
21. Are the requirements specified at a consistent level of detail?
22. Should any requirement be specified in more detail?
23. Should any requirement be specified in less detail?
24. Are the requirements consistent with other documents of the
project?
25. Is there any difference in the stated requirement at two places?
Verifiability
26. Are all stated requirements verifiable?
27. Are requirements written in a language and vocabulary that
the stakeholders can understand?
28. Are there any non-verifiable words?
29. Are all paths of a use case verifiable?
30. Is each requirement testable?
Modifiability
31. Are all stated requirements modifiable?
32. Have redundant requirements been consolidated?
33. Has the document been designed to incorporate changes?

(Contd.)

238 Software Testing

(Contd.)

S.No. Description Yes/No/NA Remarks

34. Is the format structure and style of the document standard?

35. Is there any procedure to document a change?

Traceability

36. Can any requirement be traced back to its origin or source?

37. Is every requirement uniquely identifiable?

38. Are all requirements clearly understandable for implementation?

39. Has each requirement been cross referenced to require-
ments in previous project documents that are relevant?

40. Is each requirement identified such that it facilitates referenc-
ing of each requirement in future development and enhance-
ment efforts?

Feasibility

41. Is every stated requirement feasible?

42. Is any requirement non-feasible due to technical reasons?

43. Is any requirement non-feasible due to lack of resources?

44, Is any requirement feasible but very difficult to implement?

45, Is any requirement very complex?

General

46. Is the document concise and easy to follow?

47. Are requirements stated clearly and consistently without
contradicting themselves or other requirements?

48. Are all forms, figures and tables uniquely numbered?

49, Are hardware and other communication requirements stated
clearly?

50. Are all stated requirements necessary?

5.3 SOFTWARE DESIGN DESCRIPTION (SDD) DOCUMENT VERIFICATION

We prepare the SDD document from the SRS document. Every requirement stated therein is
translated into design information required for planning and implementation of a software
system. It represents the system as a combination of design entities and also describes the
important properties and relationship among those entities. A design entity is an element (unit)
of a design that is structurally and functionally distinct from other elements and that is
separately named and referenced. Our objective is to partition the system into separate units
that can be considered, implemented and changed independently.

The design entities may have different nature, but may also have common characteristics.
Each entity shall have a purpose, function and a name. There is a common relationship among
entities such as interfaces or shared data. The common characteristics are described by
attributes of entities. Attributes are the questions about entities. The answer to these questions
is the values of the attributes. The collection of answers provides a complete description of an
entity. The SDD should address all design entities along with their attributes.

Software Verification 239
5.3.1 Organization of the SDD Document

We may have different views about the essential aspects of software design. However, we have
the IEEE recommended practice for software design description (IEEE STD 1016-1998),
which is a popular way to organize an SDD document [[EEE98Db]. The organization of SDD is
given in as per IEEE STD 1016-1998. The entity / attribute information may be organized in
several ways to reveal all the essential aspects of a design. Hence, there may be a number of
ways to view the design. Each design view gives a separate concern about the system. These
views provide a comprehensive description of the design in a concise and usable form that
simplifies information access and assimilation. Two popular design techniques are function
oriented design and object oriented design. We may use any approach depending on the nature
and complexity of the project. Our purpose is to prepare a quality document that translates all
requirements into design entities along with its attributes. The verification process may be
carried out many times in order to improve the quality of the SDD. The SDD provides a bridge
between software requirements and implementation. Hence, strength of the bridge is the
strength of the final software system.

5.3.2 The SDD Document Checklist

The SDD document verification checklist may provide opportunities to reviewers for focusing
on important areas of the design. The software design starts as a process for translating
requirements stated in the SRS document in a user-oriented functional design. The system
developers, customers and project team may finalise this design and use it as a basis for a more
technical system design. A checklist may help to structure the design review process. There are
many ways to design a checklist which may vary with the nature, scope, size and complexity
of the project. One form of checklist is given in Table 5.4. However, organizations may modify
this checklist depending on software engineering practices and type of the project.

Section — 1

Name of reviewer
Organization
Group Number
Date of review
Project title

Section — 11

Table 5.4. Checklist for the SDD Document

S. No. Description Yes/No/NA Remarks
General Issues

1. Is the document easy to read?

2. Is the document easy to understand?

(Contd.)

240 Software Testing

(Contd.)

S. No. Description Yes/No/NA Remarks

3. Is the document format as per IEEE std. 1016-19987?

4. Does the document look professional?

5. Is system architecture (including hardware, software, data-
base and data communication structures) specified?

System Architecture

6. Is the architecture understandable?

7. Are figures used to show the architecture of the system?

8. Are all essentials described clearly and consistently?
(Essentials may be software component(s), networks, hard-
ware, databases, operating system, etc).

9. Is the software architecture consistent with existing policies,
guidelines and standards?

10. Is the architecture complete with essential details?

Software Design

11. Is the design as per standards?

12. Are all design entities described?

13. Are all attributes defined clearly?

14. Are all interfaces shown amongst the design entities?

15. Are all stated objectives addressed?

16. Is the data dictionary specified in tabular form?

Data Design

17. Are all definitions of data elements included in the data
dictionary?

18. Are all appropriate attributes that describe each data element
included in the data dictionary?

19. Is interface data design described?

20. Is data design consistent with existing policies, procedures,
guidelines, standards and technological directives?

Interface Design

21. Is the user interface for every application described?

22. Are all fields available on every screen?

23. Is the quality of screen acceptable?

24, Are all major functions supporting each interface addressed?

25. Are all validity checks for every field specified?

Traceability

26. Is every requirement stated in the SRS addressed in design?

27. Does every design entity address at least one requirement?

28. Is there any missing requirement?

29. Is the Requirement Traceability Matrix (RTM) prepared?

30. Does the RTM indicate that every requirement has been

addressed clearly?

Software Verification 241

5.4 SOURCE CODE REVIEWS

A source code review involves one or more reviewers examining the source code and providing
feedback to the developers, both positive and negative. Reviewers should not be from the
development team. Robert Bogue [BOGUO09] has given his views about source code reviews
as:

“Code reviews in most organizations are a painful experience for everyone
involved. The developer often feels like it’s a bashing session designed to
beat out their will. The development leads are often confused as to what is
important to point out and what is not. And other developers that may be
involved often use this as a chance to show how much better they can be by
pointing out possible issues in someone else’s code. ”

We may review the source code for syntax, standards defined, readability and maintainability.
Typically, reviews will have a standard checklist as a guide for finding common mistakes and
to validate the source code against established coding standards. The source code reviews
always improve the quality and find all types of faults. The faults may be due to poor structure,
violation of business rules, simple omissions, etc. Reviewing the source code has proved to be
an effective way to find faults and is considered as a good practice for software development.

5.4.1 Issues Related to Source Code Reviews

We should follow good software engineering practices to produce good quality maintainable
software within time at a reasonable cost. Source code reviews help us to achieve this objective.
Some of the recommended software engineering practices are given as:

1. Always use meaningful variables.
Avoid confusing words in names. Do not abbreviate ‘Number’ to ‘No’; ‘Num’ is a better
choice.

3. Declare local variables and avoid global variables to the extent possible. Thus, minimize
the scope of variables.

4. Minimize the visibility of variables.

5. Do not overload variables with multiple meanings.

6. Define all variables with meaningful, consistent and clear names.

7. Do not unnecessarily declare variables.

8. Use comments to increase the readability of the source code.

9. Generally, comments should describe what the source code does and not how the source
code works.

10. Always update comments while changing the source code.

11. Use spaces and not TABS.

12. All divisors should be tested for zero or garbage value.

13. Always remove unused lines of the source code.

14. Minimize the module coupling and maximize the module strength.

15. File names should only contain A-Z, a-z, 0-9, ¢ "and °.".

16. The source code file names should be all lower case.

17. All loops, branches and logic constructs should be complete, correct and properly nested
and also avoid deep nesting.

242 Software Testing

18.
19.
20.
21.
22.
23.

24.

Complex algorithms should be thoroughly explained.
The reasons for declaring static variables should be given.

Always ensure that loops iterate the correct number of times.
When memory is not required, it is essential to make it free.
Release all allocated memory and resources after the usage.

Stack space should be available for running a recursive function. Generally, it is better

to write iterative functions.

Do not reinvent the wheel. Use existing source code as much as possible. However, do not
over-rely on this source code during testing. This portion should also be tested thoroughly.

We may add many such issues which are to be addressed during reviewing. A good checklist
may help the reviewers to organize and structure the review process of the source code.

5.4.2 Checklist of Source Code Reviews

A checklist should at least address the above-mentioned issues. However, other issues may also
be added depending on the nature and complexity of the project. A generic checklist is given
in Table 5.5. We may also prepare a programming language specific checklist which may also
consider the specific language issues.

Section — I

Name of reviewer
Organization
Group Number
Date of review
Project title

Section — 11

Table 5.5. Source code reviews checklist

S. No. Description

Yes/No/NA

Remarks

1.

0N O WD

10.

Structure

Does the source code correctly and completely implement the

design?

Is there any coding standard being followed?

Has the developer tested the source code?

Does the source code execute as expected?

Is the source code clear and easy to understand?
Are all functions in the design coded?

Is the source code properly structured?

Are there any blocks of repeated source code that can be com-

bined to form a single module?

Is any module very complex and should be decomposed into
two or more modules?

Is the source code fault tolerant?

(Contd.)

Software Verification 243

(Contd.)
Variables
11. Are all variables clearly defined with appropriate names?
12. Are there any redundant and unused variables?
13. Is there unnecessary usage of global variables?
14. Are variable declarations properly commented?
15. Are all variables properly initialized?
16. Is the scope of every variable minimized?
17. Is any variable name ambiguous?
18. Are all variable names spelt correctly and consistently?
Comments

19. Is readability of the source code acceptable?
20. Is the source code well commented and documented properly?
21. Are all given comments necessary?
22. Is there any requirement of additional comments?
23. Are all comments consistent with the source code?

Loop and Branches
24, Are all loops, logic constructs and branches correct, complete

and appropriately nested?
25. Does the source code make use of an infinite loop?
26. Does the loop execute the number of times specified?
27. Are loop exit conditions accurate?
28. Does every case statement have a default?
General

29. Is every allocated memory de-allocated?
30. Does the source code make use of exception handling?
31. Does the source code appear to pose a security concern?
32. Does the source code avoid deadlocks?
33. Does the implementation match the documentation?
34. Is there any identifier that conflicts with the keyword?
35. Is the source code maintainable?

5.5 USER DOCUMENTATION VERIFICATION

We prepare many documents during the software development life cycle. Some are for the
users like installation guide, beginner’s guide / tutorial, system administration guide, etc. and
these are known as user manuals. Some are prepared for internal purposes like SRS, SDD,
program listing, cross-reference listing, test suite, etc., and are known as documentation
manuals. Verification of the internal documents is essential for the success of implementation
and quality of the final product and the same has been discussed in sections 5.2, 5.3 and 5.4.
The documents which are given to the customer are also important for the overall success of
the project. These are part of the software supplied along with other deliverables. User

244 Software Testing

documentation may be provided as a user manual in electronic form, as a printed booklet, or
in the form of online help.

5.5.1 Review Process Issues

These documents should be reviewed thoroughly and proper consistency should be maintained
in all documents. The documents should be written in simple, clear and short sentences.
Installation procedure of the software must be explained step by step with proper justifications.
All tables, figures and graphs should be numbered properly. Explanations, if possible, should
be supported by suitable examples. A checklist may help to structure the review process and
must highlight these issues.

5.5.2 User Documentation Checklist

A checklist always helps the review process. A generic checklist for user documentation is
given in Table 5.6. However, this may be modified depending on the nature, complexity and
applicability of the project.

Section — 1

Name of reviewer
Organization
Group Number
Date of review
Project title

Section — I1

Table 5.6. User documentation checklist

S.No. Description Yes/No/NA Remarks
General Issues

1. Is the document easy to read?
2. Is the document easy to understand?
3. Is the document well organized? Are things easy to find?
4. Does the document look professional?
5. Are spellings and grammar correct?
6. Are all references properly placed in text?
7. Is consistency maintained?
8. Are all abbreviations and assumptions properly written at
proper places?
Installation Issues
9. Is everything operated as stated in the document?
10. Is there any step omitted?

(Contd.)

Software Verification 245

(Contd.)

S. No. Description Yes/No/NA Remarks

11. Does it specify a minimum system configuration require-
ment?

12. Does it specify reasons for failure of a particular activity?

Operational Issues

13. Does it clearly describe all toolbars, menus, commands and
options?

14. Do toolbars, menus and commands options operate as
stated?

15. Are examples documented correctly?

16. Are all steps explained?

17. Does the document specify all steps as accepted to operate
a Graphical User Interface (GUI)?

18. Does it include sample screenshots identical to GUI?

Issues of tables, graphs and figures

19. Are all tables, graphs and figures properly numbered?

20. Are they identical to actual GUI?

21. Are they properly referenced in the text?

22. Are they properly placed?

23. Are they consistent with previous tables, graphs and figures?

24. Are all given tables, graphs and figures necessary?

25. Are there any requirements of new figures, graphs or tables?

5.6 SOFTWARE PROJECT AUDIT

Audit of a software project is a very important activity and may be carried out at any time during
the software development life cycle. Generally, auditors are appointed by the top management to
review the progress of the project. The auditors are different from the developers and testers and
may not have any involvement in the project. They may examine the progress of the project and
quality of the processes with respect to many attributes like project planning, management,
quality management, resourcing, users, development approaches, testing, application architecture,
data architecture and technical architecture. The auditing process is a continuous activity and may
be carried out many times during the software development life cycle. We may audit the SRS,
SDD and other relevant documents including the source code. The audit process is a verification
activity and the auditor prepares an audited report after examining the relevant records and
documents. This report may help the management to initiate timely action, if required. The
management may get to know about delays, if any, in the development, involvement of users,
implementation of software engineering practices and standards, status of risk assessment
activities, etc. A project audit and review checklist has been developed by Hetty Baiz and Nancy
Costa at Princeton University [HETTO1] which is an excellent work for auditing any software
project. The same checklist is given in section 5.6.3 and it is recommended to use the same for
auditing a software project.

246 Software Testing
5.6.1 Relevance Scale

A relevance scale has been given in project audit and review checklist to measure the relevance
of any attribute at the time of auditing the project. Many attributes have been identified in the
checklist. We have to find their relevance to the project at the state when the audit is being
conducted. The relevance scale is given as:

1 3 5
[| J

Little/None Moderate Critical

Relevance (at the point) scale when the audit is conducted

5.6.2 Theory and Practice Scale

We may have to further indicate the strengths and weaknesses of the attributes given in project
audit and review checklist, in theory and practice on the scale as given below:

1 3 5
[| J

Not addressed Adequate Well covered

Theory and Practice Scale

An attribute may be relevant moderately at one point of time and may not be relevant at
another point of time. The theory and practice scale is very useful and indicates the
implementation status of any attribute. The checklist also provides a column for assessment
where auditors may give their views, if required, about the attribute in addition to relevance
and practice columns.

This type of quantification is very useful to monitor the progress of the software project.
Auditors should always be non-judgmental and should have good communication skills. They
also need to behave in a positive way in order to get the clear and correct picture of the project.
Project audits must be carried out many times during development. They will definitely
improve the performance, quality and progress of the project.

5.6.3 Project Audit and Review Checklist

This checklist has been designed by Hetty Baiz and Nancy Costa at Princeton University, New
Jersey, USA [HETTO1] which has been used by many organizations. All activities are reviewed
on the basis of its relevance and strength/weakness at any point of time. Relevance scale and
theory and practice scale may help us to understand the status of various attributes. This may
also indicate the health of the project during its design implementation. An audit checklist is
given below which is to be filled using relevance scale and theory and practice scale.

Software Verification 247

Project Audit and Review Checklist (Reproduced with permission of authors and special thanks to
Princetion University, NJ, USA.)

Item

Attribute Relevance Practice Assessment

1
11
1.2

1.3
1.4

15

1.6

1.7

1.8

1.9

1.10

111

112

1.13

1.14
1.15

Project Planning

Does the project have a formal Project Plan?
Are the following key elements of a Project Plan
present?

a. Project Definition and Scope

b. Project Objectives

c. Cost / Benefit Analysis

d. Staffing Requirements

e. Time Line

f. Risk Analysis

g. Critical Success Criteria (if we meet these,
we've met our goals)

Have all stakeholders been identified?

Is a Stakeholder Management plan in place?
Have project accountabilities and responsibilities
been clearly defined?

Have the scope, objectives, costs, benefits and
impacts been communicated to all involved
and/or impacted stakeholders and work
groups?

a) Have all involved stakeholders and work
groups committed to the project?

b) Have all necessary approvals been obtained?
Has a project Communications Plan been
developed?

Are funding and staffing resource estimates
sufficiently detailed and documented for use in
planning and tracking the project?

Does a documented project organizational
policy and plan (i.e. governance model) exist?
Have adequate resources been provided by the
management to ensure project success?

Is the current scope of the project substantially
different from that originally defined in the
approved project plan?

Has the approach and development strategy
of the project been defined, documented and
accepted by the appropriate stakeholders?
Have project management standards and proce-
dures been established and documented?

Is there a Steering Committee in place?

Is the Steering Committee active in project
oversight?

(Contd.)

248 Software Testing

(Contd.)

Item

Attribute Relevance Practice

Assessment

1.16

2.2
221

222

223

224

225

2.2.6

2.2.7

2.2.8

2.29

2.2.10

2211

2212

2213

Are there procedures in place to effectively
manage interdependencies with other projects
/ systems?

Project Management

Have the key elements of a coherent project
management strategy been established?

a. Project tracking plan and methodology

b. Project status reporting structure and pro-
cess

¢. Change Management plan and tracking

d. Issues Management process and tracking
plan

e. Risk Management Plan

f. Software Quality Assurance

g. Software Configuration Management

Project Scheduling and Tracking

Has a structured approach been used to break
work effort into manageable components?

Are team members involved in the development
of activity and task decomposition?

Are individual tasks of reasonable duration
(8-40 hours)?

Are milestone deliverables effectively tracked
and compared to the project plan?

Does the detailed project plan identify individual
responsibilities for the next 4-6 weeks?

Have activity relationships and interdependen-
cies within tasks been adequately identified?
Are target dates established for each milestone
deliverable?

Are corrective actions taken when actual results
are substantially different from the detailed
project plan? Describe.

Are changes in deliverable commitments agreed
to by all affected groups and individuals?

Is the organization structure for both tracking
and controlling project activities work, products
and costs (effort, schedule and budget) well
defined and assigned to a specific individual?
Are measurements and feedback mechanisms
incorporated in tracking work effort and refining
work estimating techniques?

Have procedures for identifying variances from
estimates and adjusting the detailed work pro-
gram been established?

Is project work proceeding in accordance with
the original project schedule?

(Contd.)

(Contd.)

Software Verification 249

Item

Attribute Relevance

Practice

Assessment

2214

2.2.15

2.2.16

2.2.17

2.2.18

23
231

2.3.2

2.3.3

234

2.35

24
241

24.2

243

24.4

If not, have all project delays been adequately
accounted for, communicated to all stakehold-
ers and adjustments made in overall project
schedule?

Is there general agreement and acceptance of
the current status and progress of the project?
Is PERT / Critical Path or equivalent methodol-
ogy being used? Can you see the critical path
on the plan?

Is an industry recognized mechanized support
tool(s) being used for project scheduling and
tracking?

Is it possible to track all classes of project work (e.g.
scheduled, un-scheduled, defect repair, etc.)? Can
you compare work done to the baseline?

Project Status Reporting

Is the project status reviewed with senior
management at appropriate intervals? What are
they?

a. Overall status

b. Project performance (achievements and
milestones)

c. Open issues

d. Risks

e. Action items

f. Cost and time performance against plan

g. Quality metrics

h. Client involvement

Are internal project status meetings held at
reasonable intervals?

Are sub-project reviews held at reasonable
intervals?

Have adequate procedures been put in place for
project co-ordination and status reporting across
project boundaries (i.e. interdependent software
development among interfacing systems)?

Do project teams and team members report on
status / activities / progress?

Project Estimating

Are multiple estimation methods being
employed?

Are current project time and resource estimates
reasonable based on the current project stage?
Are actuals compared against estimates to
analyze and correct variances?

Are software metrics formally captured,
analyzed and used as a basis for other project
estimates?

(Contd.)

250 Software Testing

(Contd.)

Item Attribute Relevance Practice Assessment

245 Is the PPO estimating methodology being used
and followed?

2.4.6 Do the estimating techniques include any of the
following features?

a. Ranged estimates

b. Sensitivity analysis

c. Risk rating

d. Quality Assurance overheads
e. Contingency

2.4.7 Are project team members involved in detailed
estimating and scheduling?

2.4.8 Are stakeholders aware and supportive of the
principles and practices of modern software
estimation?

2.5 Risk Management

251 Was an original risk assessment completed?

2.5.2 Is there a process in place to monitor project
risks?

2.5.3 Has provision been made to reassess project
risks at various project stages?

254 Have all unresolved risks been documented?
Have all unimplemented risk strategies been
escalated to an issues log?

3 Quality Management

3.1 Does the project have a ‘Quality Culture’?

3.2 Is there a Quality Plan covering all Policies,
Guidelines and Procedures?

3.3 Quality Assurance

3.31 Has an overall Quality Assurance Plan been
developed for the project?

3.3.2 Does the plan address key project elements?

a. Project Planning
b. Project Management
c. Software Quality Assurance (SQA)

3.3.3 Does the SQA process provide objective verifica-
tion of adherence to applicable standards,
procedures and requirements?

3.34 Are all key components of an SQA plan present?

a. SQA Plan

b. Software Configuration Management (SCM)

c. Software development standards and meth-
ods

d. Methodology

e. Testing Standards and Methodology

f. Data Architecture Standards

g. Data Naming Conventions

h. Technology Architecture

i. Software Metrics

(Contd.)

Software Verification 251

(Contd.)

Item Attribute Relevance Practice Assessment

3.35 Are the results of SQA reviews provided to
affected groups and individuals?

3.3.6 Are adequate resources provided for the SQA
function? Are SQA resources experienced?

3.3.7 Are the SQA processes in place and being effec-
tively used?

3.4 Is there a set of procedures defining the scope,
procedures and deliverables defining Quality
Control?

3.5 Are quality metrics defined?

3.6 Is there a set of procedures to capture, analyze
and act on quality metrics?

3.7 Software Configuration Management (SCM)

3.71 Has SCM been implemented for this project?

3.7.2 Has an industry recognized SCM software
version management and control tool been
implemented?

3.7.3 Is SCM version management and control effec-
tively linked with the testing function to ensure
that integration and regression testing have
been performed?

3.74 Has an automated Change Management tool
been implemented?

3.7.5 Is the SCM function adequately staffed?

3.7.6 Is the Testing Co-ordination function separate
from the development staff?

4.0 Management Procedures

4.1 Vendor Management

4.1.1 Is there a formal set of procedures (for status
reporting, contract negotiation and review,
time/invoice reconciliation, etc.) supporting
Vendor Management?

4.2 Issues Management

421 Is there a formal set of procedures supporting
Issues Management?

4.2.2 Is there any form of automated support for
Issues Management?

4.2.3 Are issues raised, assessed, actioned and
resolved in a timely and efficient manner?

4.3 Stakeholder Management

4.3.1 Is there a formal set of procedures supporting
Stakeholder Management?

4.3.2 Is it standard practice to formally commit stake-
holders to the project via agreements?

4.3.3 Does a comprehensive set of Stakeholder
Agreements exist? Do we have statements delin-
eating what each stakeholder has agreed to do?

5.0 Resourcing

(Contd.)

252 Software Testing

(Contd.)

Item

Attribute Relevance Practice

Assessment

51
5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

511

5.12

5.13

5.14

5.15

Are all resource assumptions documented?
Does the project team have the skills necessary
to successfully complete current project(s) and
support the application?

Have arrangements been made to obtain spe-
cial expertise or competence by consulting or
referencing:

a. Similar projects?

b. Published materials?

c. Personnel with expertise?

d. Outside experts?

Have the personnel with the necessary skills and
competence been identified and has an agree-
ment for their participation in the project been
reached with the appropriate management?

Is there a project organization chart showing
the reporting relationships and responsibilities
for each position?

Has a proper project work location been estab-
lished that will allow the team to work together
with user personnel?

Does the detailed work plan match the complex-
ity of tasks with the capabilities of personnel?
Has allowance been made for vacations,
holidays, training (learning time for each team
member), staff promotions and staff turnovers?
Has adequate time for orientation and training
of project staff been provided for in relation to
the technical nature of the Application and the
experience levels of the project personnel?
Has appropriate allowance been made for the
effect of the learning curve on all personnel join-
ing the project who do not have the required prior
industry, functional and technical expertise?

Are the appropriate IT resources adequate to
meet planned commitments?

Are enough systems and user personnel
assigned to the project?

Are the people assigned to the project suffi-
ciently qualified?

Do project managers participating in the project
adequately know its true status first-hand?

a. Is a qualified person sufficiently involved in
each critical area?

b. Are communication lines working?

Is a senior systems department representative
allocated to each user department to provide
liaison and support?

Does the project have both a business team
leader and a technical team leader?

(Contd.)

Software Verification 253

(Contd.)

Item Attribute Relevance Practice Assessment

5.16 Does the project team have a good understand-
ing of the existing and/or proposed hardware /
software environments?

5.17 Are project leaders committed to this project full
time?

5.18 Are project team members committed full-time?

5.19 Is the Production Support function adequately
resourced? Is the Production Support function
resourced full-time?

5.20 Is there a production support plan with a plan
for transition from development to production?

6.0 Users

6.1 Is user involvement adequate?

6.2 Are the people assigned to the project suffi-
ciently qualified?

6.3 Is there a formal Service Level Agreement (SLA)
with the appropriate client departments?

6.4 Does the SLA define:

a. The Project/Application Scope?

b. The objectives of the Agreement?

c¢. The business areas to be supported?

d. The systems / applications to be supported?
e. The basis for costs and charges?

f. The extent of user participation?

g. The frequency of progress reporting - i.e.
weekly, bi-weekly, monthly, etc.?

h. The form of the final report?

i. The work plan(s)?

6.5 Are the project team members located locally to
the users?

6.6 Has provision been made for training the staff,
including;:

a. Formal training related to the project?

b. On the job training?

c¢. Formal training not related to the project?
d. Vendor training?

6.7 Are users adequately trained and are all training
requirements fulfilled?

7.0 Development Approach

7.1 Methodologies

71.1 Is a recognized development method(s) been
followed?

71.2 If more than one method has been implemented,
does a documented process exist for effective
integration between / among methods?

71.3 Is the selected method appropriate for the
Application, Technical and Data Architectures?

7.2 CASE

721 Are CASE tools being used?

(Contd.)

254 Software Testing

(Contd.)

Item Attribute Relevance Practice Assessment

7.2.2 Does the CASE ‘integration strategy’ include a
process for reverse integration (i.e. updating the
analysis tool if a change is made at the design
level)?

7.3 Are structured requirements and design reviews
and/or walkthroughs in use?

7.4 Are detailed design and code inspections in use?

7.5 Analysis and Design

751 Are requirements and design standards in
place?

75.2 Are specifications clearly traceable from physi-
cal design to logical requirements?

75.3 Are the requirements and design methods
suitable for the type of application and environ-
ment?

75.4 Do the design specification documents refer-
ence:

a. Purpose / scope?

b. Glossary of terms?

¢. Requirements specifications?

d. Modular decomposition diagrams?

e. Technical environment specification?
f. Constraints?

g. Testing and Data Conversion strategy?

7.6 Development/Construction

7.6.1 Are coding standards in place?

7.6.2 Is there a clearly documented relationship
between logical (conceptual) design and techni-
cal design?

7.6.3 Is design and code re-use supported?

7.6.4 Are program control procedures in place?

7.6.5 Are there procedures to govern unit test cases,
conditions, expected results, logs and sign-offs?

7.6.6 Do adequate development and test environ-
ments exist?

7.7 Testing

7.7.1 Which of the following test phases are covered
by the methodology:

a. Unit Testing?

b. System Testing?

c. Integration Testing?

d. User Acceptance Testing?

1.7.2 Is a test strategy in place?

7.7.3 Do detailed test plans/cases exist?

174 Are all necessary Quality Control procedures in
place?

7.7.5 Is there an audit trail of all tests and results?

7.7.6 Are effective testing tools incorporated?

(Contd.)

Software Verification 255

(Contd.)

Item Attribute Relevance Practice Assessment

1.7.7 Is adequate allowance made for regression
testing?

71.7.8 Is adequate allowance made for defect repair
both before and after implementation?

7.79 Will the following components of systems test-
ing be carried out?

a. Communications

b. Volume

c. Stress

d. Recovery

e. Usability

f. Operations

g. Environment

h. Security

i. Efficiency/performance

8.0 Application Architecture

8.1 Are object-based designs and layered architec-
ture principles being employed?

8.2 Does the application conform to recognized
industry architecture standards?

8.3 Is the application being implemented using cli-
ent / server architecture?

8.4 Is business process re-engineering being
undertaken in parallel with and/or as part of
this project?

8.5 Are there limitations to business opera-
tion flexibility due to the chosen Application
Architecture?

8.6 Are application interfaces designed in such a
way as to facilitate maintenance and change?

8.7 Does the Application Architecture support infor-
mation needs at all levels of user operations
(Strategic/Tactical/Operational)?

8.8 Client/Server

8.8.1 Are there design limitations which are impacting
service delivery and/or performance?

8.8.2 Is the current architecture scalable?

9.0 Data Architecture and Standards

9.1 Is the project operating under a formal set of
data architecture standards?

9.2 Does a formal data architecture and model exist
for the application?

9.3 Has a fully attributed data model been devel-
oped for the application?

9.4 Has the data model been integrated with the
other users and system views of the data?

9.5 Is an industry recognized mechanized tool being
used to support the data modelling area?

9.6 Has a set of data naming conventions and/or
standards been established?

9.7 Is an active data dictionary in place?

(Contd.)

256 Software Testing

(Contd.)

Item Attribute Relevance Practice Assessment

9.8 Is the data dictionary fully integrated with the
development method?

9.9 Has the DBMS been optimized to support any of
the following:

a. OLTP?
b. Decision Support/EIS?
c. Data Warehousing?

9.10 Is the DBMS cost effective against expectations
as defined in the Business Case?

9.11 Is the DBMS portable across target platforms?

9.12 Does DBMS vendor support meet formal agree-
ments and/or expectations?

9.13 Is there (or has there been) significant interrup-
tions to development or support activities due
to DBMS behaviour?

9.14 Does or will the DBMS support extensibility appro-
priate for current and future business needs?

9.15 Is there a clear upgrade path to future Phases
of the DBMS?

9.16 If an alternative DBMS is being considered, is
there a proven conversion path?

9.17 Is the DBMS consistent with SOE?

9.18 Is the DBMS regarded as ‘State-of-the-Art’?

10.0 Technical Architecture

10.1 Is the choice of hardware platform consistent
with the Standard Operating Environment (SOE)?

10.2 Is the software environment consistent with SOE?

10.3 Is the development language platform-indepen-
dent?

10.4 Is the mixture of technologies proven, stable
and easily supportable?

10.5 Is TCP/IP or other industry recognized applica-
tion interface standard being employed?

10.6 Does the user interface employ GUI representa-
tion?

10.7 Is the application software cost effective against
expectations as defined in the Business Case?

10.8 Is the application software portable across
target platforms?

10.9 Does the application software vendor(s) support
meet formal agreements and/or expectations?

10.10 Is there (or has there been) significant interrup-
tions to development or support activities due
to application software behaviour?

10.11 Does or will the application software support
extensibility appropriate for current and future
business needs?

10.12 Is there a clear upgrade path to future phases
of the application software?

10.13 Is the software regarded as ‘State-of-the-Art’?

Software Verification 257

5.7 CASE STUDY

Consider the problem statement of a university registration system. Prepare the software
requirement checklist with the details of faults in the given SRS.

Problem Statement

A university is organized in different teaching schools and each school conducts a variety of
programmes. Admissions to the various programmes offered by each school are done through
counselling. Admission slips are issued to the admitted students giving their Roll Numbers,
Name of the School and Name of the Programme. Students are registered in various schools
manually based on the admission slips. Students are assigned papers (compulsory, elective and
practical) depending upon the scheme of the selected programme. Every school is responsible
for its registration process and the following records are prepared and maintained manually:

. List of students registered in a programme.

. List of students registered for a particular paper.
. List of papers offered in a particular semester.

. List of faculty in a school.

. Personal details of the students.

. Registration card for every registered student.

AN N AW =

The university decides to automate the manual registration process in order to improve the
existing system. The proposed system should perform the following functions:

(i) Issue of login Id and password to the members i.e. student and faculty.
(il) Maintain the personal details of the students.
(iii) Maintain the details of the faculty.
(iv) Maintain the details of the various papers - Theory (compulsory and elective) and
practical as per the scheme of the programme.
(v) Issue of registration card to the student in every semester.
(vi) List of registered students
e Roll number wise
e Programme wise
e Semester wise
e Paper wise
(vii) List of programmes offered by the university.
(viii) List of papers offered in a particular semester for a particular programme.
(ix) List of faculty in a school.

Contents

1. Introduction
1.1. Purpose
1.2. Scope

258 Software Testing

1.3.

1.4
1.5

Definitions, Acronyms, and Abbreviations
References
Overview

2. Overall Description

2.1

22
23
24
2.5
2.6

Product Perspective

2.1.1 System Interfaces

2.1.2 User Interfaces

2.1.3 Hardware Interfaces

2.1.4 Software Interfaces

2.1.5 Communication Interfaces
2.1.6 Memory Constraints

2.1.7 Operations

2.1.8 Site Adaptation Requirements
Product Functions

User Characteristics

Constraints

Assumptions and Dependencies
Apportioning of Requirements

3. Specific Requirements

3.1

3.2

33
34
35
3.6
3.7

External Interface Requirements
3.1.1 User Interfaces

3.1.2 Hardware Interfaces

3.1.3 Software Interfaces

3.1.4 Communication Interfaces
Functional Requirements

3.2.1 Login

3.2.2 Maintain School Details
3.2.3 Maintain Programme Details
3.2.4 Maintain Scheme Details
3.2.5 Maintain Paper Details
3.2.6 Maintain Student Details
3.2.7 Maintain Faculty Details
3.2.8 Maintain Student Registration Form
3.2.9 Generate Reports

3.2.10 Generate Registration Card
Performance Requirements
Design Constraints

Software System Attributes
Logical Database Requirements
Other Requirements

Software Verification 259

Software Requirements Specification (SRS) Document for University
Registration System

1. Introduction

A university is organized in different teaching schools and each school conducts a variety of
programmes. Admissions to the various programmes offered by each school are done through
counselling. Admission slips are issued to the admitted students giving their Roll Numbers,
Name of the School and the Name of the Programme.

After admission, every student has to register in the University Registration System (URS)
which is open for a specific period at the beginning of the academic session. Every student has
to obtain a login Id and password from the ‘System Administrator’. After successfully logging
on to the system, a student needs to enter his/her personal details in the system. The student
also needs to select elective papers of his/her choice as per the programme scheme. Compulsory
papers (theory and practical) offered in that semester are then assigned automatically. On
submitting the requisite details, a Registration Card giving the personal information and list of
the papers to be studied during the semester is issued to the student.

Faculty members can also access the URS by obtaining login Id and password from the
system administrator. They can view the details of the students who have been registered for
various programmes in a school.

1.1 Purpose

The University Registration System (URS) maintains the information regarding various papers
to be studied by a student in a particular programme. A paper may be a theory paper. A theory
paper may be of two types: compulsory paper and elective paper. Compulsory papers are
assigned automatically whereas a student has to select the elective papers of his/her choice in
a particular semester.

1.2 Scope

The proposed ‘University Registration System’ shall perform the following functions:

(i) Issue of login Id and password to the members i.e. student and faculty.
(il)) Maintain the personal details of the students.
(iil)) Maintain the details of the various papers - Theory (compulsory and elective) and
practical as per the scheme of the programme.
(iv) Issue of registration card to the student in every semester.
(v) List of registered students
e Roll number wise
e Programme wise
e Semester wise
e Paper wise
» List of programmes offered by the university.

260 Software Testing

» List of papers offered in a particular semester for a particular programme.
» List of faculty in a school.

1.3 Definitions, Acronyms, and Abbreviations

URS: University Registration System

User: Any user (Student, Faculty or Administrator)

RAM: Random Access Memory

Student: Any candidate admitted in a programme (UG or PG) offered by a school.
Status: Status of the Student — Registered or Unregistered in URS.

System Administrator/Administrator: User having all the privileges to operate the URS.
Faculty: Teaching Staff of the University — Professor, Reader, Lecturer

School: Academic Unit that offers various Programmes

Programme: Degree Programme (UG or PG) as offered by a School

Semester: Duration for which a student has to study (normally 20 weeks) before appearing in

the university examinations. There are two semesters in a year.

Scheme: Details of compulsory and elective papers (including practicals) offered in a semester

for a programme.

1.4 References

(a) ‘A Practitioner’s Guide to Software Test Design’ by Lee Copeland, Artech House,

2004.

(b) ‘Software Engineering’ by K.K. Aggarwal and Yogesh Singh, New Age Publishing

House, 2™ Ed.

(¢) IEEE Recommended Practice for Software Requirements Specifications — IEEE Std

830-1998.
(d) IEEE Standard for Software Test Documentation — IEEE Std. 829-1998.

1.5 Overview

The rest of the SRS document describes various system requirements, interfaces, features and

functionalities in detail.

Software Verification 261

2. Overall Description

The URS registers a student for a semester to a programme offered by a school of a university.
It is assumed that the student has already been admitted in the university, for a specific
programme. The system administrator will receive lists of the admitted students (school-wise
and programme-wise) from the academic section responsible for counselling. The establishment
section will provide the list of the faculty members appointed in the school. Based on this
information, the system administrator will generate the login Id and password for the faculty
and the students.

The user can access URS on the University’s LAN. Students are permitted to Add, Modify
and View their information only after successfully logging on to the system. After registration,
students can print their registration card. Faculty members can make the query about the
registered students and view/print the information of the registered students, papers offered in
the various programmes, etc. The system administrator is the master user of the URS and will
maintain the records of the students, faculty and generate their login Id and password.

The user will have to maintain the following information:

(i) Login details

(i) School details

(i) Programme details
(iv) Scheme details
(v) Paper details

(vi) Student details
(vii) Faculty details

The user requires the following reports from the proposed system:

(i) Registration card
(i) List of registered students
e Roll number wise
e Programme wise
e Semester wise
e Paper wise
» List of programmes offered by the university.
(iii) List of papers offered in a particular semester of a particular programme.
(iv) List of faculty in a school.

2.1.1 Product Perspective

The proposed system shall be developed using client/server architecture and be compatible
with Microsoft Windows Operating System. The front end of the system will be developed
using Visual Basic 6.0 and the backend will be developed using MS SQL Server 2000.

Front End Client
Application (with
data entry/
update/delete/)

Backend
Database

262 Software Testing
2.1.2 System Interfaces

None

2.1.3 User Interfaces

The URS will have the following user-friendly and menu driven interfaces:

(i) Login: to allow the entry of only authorized users through valid login Id and password.

(i1) School Details: to maintain school details.

(i) Programme Details: to maintain programme details.

(iv) Scheme Details: to maintain scheme details of a programme.

(v) Paper Details: to maintain paper details of a scheme for a particular programme.

(vi) Student Details: to maintain student’s details that will include personal information
and papers to be studied in the current semester.

(vii) Faculty Details: to maintain the faculty details.

The software should generate the following viewable and printable reports:

(i) Registration Card: It will contain the roll number, name of the student, school, programme,
semester and the papers in which the student is registered. The registration card will be
generated after filling the necessary information in the student registration form.

(i1) List of Students: It will be generated roll number wise, programme wise, semester wise
and paper wise.

(iii)List of Programmes: It will give the details of programmes offered by various schools
of the university.

(iv)List of Papers: It will give the list of papers offered in a particular semester for a
particular programme.

2.1.4 Hardware Interfaces
(i) Screen resolution of at least 640 x 480 or above.

(i) Support for printer (dot matrix, DeskJet, LaserJet)
(iii)) Computer systems will be in the networked environment as it is a multi-user system.

2.1.5 Software Interfaces
(i) MS-Windows Operating System

(i) Microsoft Visual Basic 6.0 for designing front-end
(1i1) MS SQL Server 2000 for backend

2.1.6 Communication Interfaces

None

Software Verification 263
2.1.7 Memory Constraints

At least 512 MB RAM and 500 MB space of hard disk will be required to run the software.

2.1.8 Operations

None

2.1.9 Site Adaptation Requirements

The terminal at the client site will have to support the hardware and software interfaces
specified in the section 2.1.3 and 2.1.4 respectively.

2.2 Product Functions

The URS will allow access only to authorized users with specific roles (System administrator,
Faculty and Student). Depending upon the user’s role, he/she will be able to access only
specific modules of the system.

A summary of major functions that the URS will perform include:

(i) A login facility for enabling only authorized access to the system.

(i1) The system administrator will be able to add, modify or delete programmes, schools,
schemes, papers and login information.

(ii1) Students will be able to add/modify his/her details and register for papers to be studied
in the current semester.

(iv) The system administrator/student will be able to generate the student registration card
of a particular semester for a particular programme.

(v) The system administrator/faculty will be able to generate reports.

2.3 User Characteristics

(1) Qualification: At least matriculation and comfortable with English.

(i1) Experience: Should be well versed/informed about the registration process of the
university.

(ii1) Technical Experience: Elementary knowledge of computers.

2.4 Constraints

(i) There will be only one administrator.

(i1) The delete operation is available only to the administrator. To reduce the complexity of
the system, there is no check on the delete operation. Hence, the administrator should
be very careful before deletion of any record and he/she will be responsible for data
consistency.

264 Software Testing

2.5 Assumptions and Dependencies

(i) The login Id and password must be created by the system administrator and
communicated to the concerned user confidentially to avoid unauthorized access to the
system.

(i1) It is assumed that a student registering for the subsequent semester has been promoted
to that semester by the university as per rules and has paid the requisite university fee.

2.6 Apportioning of Requirements
Not Required

Specific Requirements

This section contains the software requirements in detail along with the various screens to be
developed.

3.1 External Interface Requirements

3.1.1 User Interfaces

The following user interfaces (or screens) will be provided by the system.

(i) Login Form
This will be the first form, which will be displayed. It will allow the user to access the
different forms based on his/her role.

= Login Form

&

University Registration System

Log In
Login
Password

ok | Esxt | Change Passwoed

Various fields available on this form will be:

B Login Id: Alphanumeric of 11 characters in length and digits from 0 to 9 only are
allowed. Alphabets, special characters and blank spaces are not allowed.

B Password: Alphanumeric in the range of 4 to 15 characters in length. Blank spaces
are not allowed. However, special characters are allowed.

Software Verification 265

(ii) Change Password
The ‘change password’ form facilitates the user to change the password. Various fields
available on this form will be:

B Login Id: Alphanumeric of 11 characters in length and digits from 0 to 9 only are
allowed. Special characters and blank spaces are not allowed.

B Old Password: Alphanumeric in the range of 4 to 15 characters in length. Blank
spaces are not allowed. However, special characters are allowed.

B New Password: Alphanumeric in the range of 4 to 15 characters in length. Blank
spaces are not allowed. However, special characters are allowed.

B Confirm Password: Alphanumeric in the range of 4 to 15 characters in length. Blank
spaces are not allowed. However, special characters are allowed. The contents of this
field must match with the contents of the new password field.

Login details
0ld password I—
New password I—
Conlirm password I—

(iii) School Details
This form will allow the user to add/edit/delete/view information about new/existing
school(s).

w School Details @
School

School name I Exil

Add] Edi | Delete‘

Various fields available on this form will be:

B School Name: Alphanumeric of 10 to 50 characters in length. Digits and special
characters are not allowed. Blank spaces between characters are allowed.
B School Code: Numeric and will have a value from 101 to 199.

266 Software Testing

@iv)

Programme Details
This form will allow the user to add/edit/delete/view information about new/existing
programme(s) of the school that was selected in the ‘Programme Details’ form.

= Programme Details El

Programme

School

(s | Ext I

Duration -
View |

MNo. of semester]

Programme Id e
Ak | ek | e |

Various fields available on this form will be:

\)

School: This will display the name of all the schools.

Programme: Alphanumeric of 3 to 50 characters in length. Special characters (except
brackets) are not allowed. Numeric data will not be allowed.

Duration: Numeric and can have a value from 1 to 7 years.

Number of Semesters: This field will display the total number of semesters in a
programme. Numeric can have a value from 2 to 14.

Programme Id: Numeric and can have a value from 01 to 99.
Scheme Details
This form will allow the user to add/edit/delete/view information about new/existing
scheme(s) for the schools and programmes that were selected in the ‘Scheme Details’
form. The list of schools and programmes available in that particular school will be
displayed. The list of semesters available in that particular programme will also be
displayed.

= Scheme Details E'

Scheme

Exit
Semester [—]
_ View_|

Software Verification 267

Various fields available on this form will be:

School: This will display the name of all the schools.

Programme: This will display the name of all the programmes of the selected school.
Semester: This will display the current semester of the selected programme. Numeric
and can have a value from 1 to 14.

Number of Theory (Core) Papers: Numeric and will have a value from 0 to 10. Core
papers in the semester may be ‘zero’ depending upon the scheme of the programme.
Number of Elective Papers: Numeric and will have a value from 0 to 10. Elective papers
in the semester may be ‘zero’ depending upon the scheme of the programme.

Number of Practical Papers: Numeric and will have a value from 0 to 10. Practical papers
in the semester may be ‘zero’ depending upon the scheme of the programme.

Total Credits: This will display total credits of the current semester. Numeric and will
have a value from 5 to 99.

(vi) Paper Details

This form will allow the user to add/edit/delete/view information about new/existing
paper(s) for the school, the programme and the semester that were selected in the
‘Paper Details’ form.

= Paper Details rgl
Paper

Shod | =l

Pogamme [<] Pawecode [

Papername |

L —

Credts r s [=

add | R | Dee| £ |

Various fields available on this form will be:

B School: This will display all the schools.
B Programme: This will display all the programmes available in the selected school.
B Semester: This will display the number of all the semesters available in the selected

programme.

B Paper Code: Alphanumeric with length of 5 to 7 characters. Special characters and blank

spaces are not allowed.

B Paper Name: Alphanumeric with length of 3 to 30 characters. This field can have only

alphabetic letters. Special characters are allowed. However blank spaces are not
allowed.

B Paper Type: Compulsory/Elective/Practical.
B Credits: Numeric and will have a value from 1 to 30.

268

Software Testing

(vii) Student Details
This form will allow the user to add/edit/delete/view information about new/existing

student(s) for a particular year.

= Student Details EJ

Student

Pogamme |3 Ext

View

Various fields available on this form will be:

School: This will display all the schools.
Programme: This will display all the programmes available in the selected school.
Roll number: Alphanumeric of 11 characters in length and only digits from 0 to 9 are

allowed. Alphabets, special characters

and blank spaces are not allowed.

Name: Alphanumeric with length of 3 to 50 characters. Blank spaces are allowed.

Special characters are not allowed.
Year of admission: Numeric of length

up to 4 digits.

Login Id: This will be displayed (same as Roll number of the student).
Password: Alphanumeric with length of 4 to 15 characters. Blank spaces are not allowed.
However, special characters are allowed. It initially contains 8 digits of a randomly

generated number.

(viii) Faculty Details
This form will allow the user to add/edit/delete/view information about new/existing

faculty(ies) in a particular school.

= Faculty Details

School =] Ext I
Emplopee |d ,7

Name

Oesrain [<]

lognld [Paswed [o]

Add ea | M

x]

Vari

Software Verification 269

ous fields available on this form will be:

School: This will display the name of all the schools.

Employee Id: Alphanumeric of 11 characters in length and only digits from 0 to 9 are
allowed. Alphabets, special characters and blank spaces are not allowed.

Name: This will have only alphabetic letters and length of 3 to 50 characters. Blank
spaces are allowed.

Designation: This will have values: Professor, Reader or Lecturer.

Login Id: Same as employee Id.

Password: Alphanumeric with length of 4 to 15 characters. Blank spaces are not allowed.
However, special characters are allowed. Initially it contains 8 digits of a randomly
generated number.

(ix) Student Registration Details

This form will be available to the user only when registration for a semester is open. It
will be filled by the student in order to register himself/herself for the current semester.
Every student will be permitted to fill only his/her form.

= Student Hegistration Form a

e

Personal infomation

zm-‘ ﬂ‘
l=o

School I

Progamme [
RollNe. [
Name —

Father's name*

sues_| £a |

Various fields available on this form will be:

B Father’s Name: Alphanumeric with length of 3 to 50 characters. Alphabetic letters and

blank spaces are allowed. Special characters are not allowed (except’.’Character).

B Address: Alphanumeric with length of 10 to 200 characters. Blank spaces are allowed.
B (City: Alphanumeric with length of 3 to 20 characters. Alphabetic letters and blank spaces

are allowed. Special characters are not allowed.

B State: Alphanumeric with length of 3 to 20 characters. Alphabetic letters and blank

spaces are allowed. Special characters are not allowed.

B Zip: Numeric and can have length of 6 digits.

Phone: Numeric and can have length up to 11 digits.

B FEmail: Alphanumeric and can have length up to 50 characters. The email must have one

‘@’ and ‘.’ symbol.

270 Software Testing

B Semester: This will display the number of all the semesters available in the selected
programme.

B Core: This will display all the core papers in the semester selected by the user.

B FElective: This will display all the elective papers available in the semester selected by
the user.

3.1.2 Hardware Interfaces

As stated in Section 2.1.3

3.1.3 Software Interfaces

As stated in Section 2.1.4

3.1.4 Communication Interfaces

None

3.2 Functional Requirements

3.2.1 Login
A. Validity Checks

(i) Every user will have a unique login Id.

(i1)) The Login Id cannot be blank.

(iii)) The Login Id will not accept alphabetic, special and blank spaces.

(iv) The Password cannot be blank.

(v) Alphabets, digits, hyphen and underscore characters are allowed in the password
field.

(vi) The Password will not accept blank spaces.

B. Sequencing information
None
C. Error Handling/Response to Abnormal Situations

If the flow of any of the validations does not hold true, an appropriate error message will be
prompted to the user for doing the needful.

3.2.2 School Details
A. Validity Checks

(i) Every school will have a unique school name.
(i1)) The school code cannot be blank.

Software Verification 271

(iii)) The school code will have only 3 digits.

(iv) The school name cannot be blank.

(v) The school name will only accept alphabetic characters and blank spaces.
(vi) The school name cannot accept special characters and numeric digits.

B. Sequencing information
None
D. Error Handling/Response to Abnormal Situations

If the flow of any of the validations does not hold true, an appropriate error message will be
prompted to the user for doing the needful.

3.2.3 Programme Details

A. Validity Checks

(i) Every programme will have a unique programme code and name.

(i1)) The programme name cannot be blank.

(iii)) The programme name can be of length of 3 to 50 characters.

(iv) The programme name can only have alphabets and brackets.

(v) The programme name cannot have special characters, digits and blank spaces.
(vi) The duration cannot be blank.

(vii) The duration can have a value from 1 to 7.

(viii) The number of semesters cannot be blank.

(ix) The number of semesters can have a value from 2 to 14.

(x) The programme code cannot be blank.

(xi) The programme code cannot have special characters, digits and blank spaces.
(xii) The programme code can have only 2 digits.

B. Sequencing information

The school details will have to be entered into the system before any programme details can
be entered into the system.

C. Error Handling/Response to Abnormal Situations

If any of the validations/sequencing flow does not hold true, an appropriate error message will
be prompted to the user for doing the needful.

3.2.4 Scheme Details

A. Validity Checks

(i) Every scheme will have a unique semester.
(i1)) The school name cannot be blank.

(iii) The programme name cannot be blank.

(iv) The number of theory papers cannot be blank.

272 Software Testing

(v) The number of theory papers can have a value between 0 and 10.
(vi) The number of elective papers cannot be blank.

(vii) The number of elective papers can have a value between 0 and 10.
(viii) The number of practical papers cannot be blank.

(ix) The number of practical papers can have a value between 0 and 10.
(x) The semester cannot be blank.
(xi) The semester can have a value between 1 and 14.
(xii) The total credit cannot be blank.
(xiii) The total credit can have a value between 5 and 99.

B. Sequencing information

The school and programme details will have to be entered into the system before any scheme
details can be entered into the system.

C. Error Handling/Response to Abnormal Situations

If the flow of any of the validations/sequencing does not hold true, an appropriate error
message will be prompted to the user for doing the needful.

3.2.5 Paper Details

A. Validity Checks

(i) A scheme will have more than one paper.

(il)) No two semesters will have the same paper i.e. a paper will be offered only in a
particular semester for a given programme.

(iii)) The school name cannot be blank.

(iv) The programme name cannot be blank.

(v) The semester cannot be blank.

(vi) The semester can have a value only between 1 and 14.

(vii) The paper code cannot be blank.

(viii) The paper code cannot accept special characters.

(ix) The paper code can have both alphabetic and numeric characters.

(x) The paper code can include blank spaces.

(xi) The paper code can have length of 5 to 7 characters.

(xii) The paper name cannot be blank.

(xiii) The paper name can only have alphanumeric (alphabets and digits) or blank space
characters.

(xiv) The paper name cannot have special characters.

(xv) The paper type may be compulsory, elective or practical.

(xvi) The credit cannot be blank.

(xvii) The credit can have a value only between 1 and 30.

B. Sequencing information

The school, programme and scheme details will have to be entered into the system before any
paper details can be entered into the system.

Software Verification 273

C. Error Handling/Response to Abnormal Situations

If the flow of any of the validations/sequencing does not hold true, an appropriate error
message will be prompted to the user for doing the needful.

3.2.6 Student Details

A. Validity Checks

(i) Every student will have a unique roll number.

(i) The programme name cannot be blank.

(iii) The roll number cannot be blank.

(iv) The length of the roll number for any user can only be equal to 11 digits.

(v) The roll number cannot contain alphabets, special characters and blank spaces.
(vi) The student name cannot be blank.

(vii) The length of the student name can be of 3 to 50 characters.

(viii) The student name will only accept alphabetic characters and blank spaces.

(ix) The year of admission cannot be blank.

(x) The year of admission can have only 4 digits.

(xi) The password cannot be blank (this is initially auto-generated with 8 digits).
(xii) The password can have length from 4 to 15 characters.

(xiii) Alphabets, digits, hyphen and underscore characters are allowed in the password field.
(xiv) However blank spaces are not allowed.

(xv) The roll number and login Id are the same.

B. Sequencing information

The school and programme details will have to be entered into the system before any student
details can be entered into the system.

C. Error Handling/Response to Abnormal Situations

If the flow of any of the validations/sequencing does not hold true, an appropriate error
message will be prompted to the user for doing the needful.

3.2.7 Faculty Details

A. Validity Checks

(i) Every faculty will have a unique Employee Id.

(i) The Employee Id cannot be blank.

(iii) The length of the Employee Id will be equal to 11 digits only.

(iv) The Employee Id cannot contain alphabets, special characters and blank spaces.

(v) The faculty name cannot be blank.

(vi) The faculty name will only accept alphabetic characters and blank spaces and will not
accept special characters.

(vii) The designation cannot be blank.

(viii) The password cannot be blank (initially auto-generated with 8 digits).

274 Software Testing

(ix) The password can have a length from 4 to 15 characters.
(x) Alphabets, digits, hyphen and underscore characters are allowed in the password field.
However blank spaces are not allowed.

B. Sequencing information
School details should be available in the system.
C. Error Handling/Response to Abnormal Situations

If the flow of any of the validations/sequencing does not hold true, an appropriate error
message will be prompted to the user for doing the needful.

3.2.8 Registration Form

A. Validity Checks

(i) The father’s name cannot be blank.

(i) The address cannot be blank.

(iii) The address can have a length from 10 to 200 characters.

(iv) The city cannot be blank.

(v) The city can have a length of up to 20 characters.

(vi) The city cannot include special characters and numeric digits, but blank spaces are
allowed.

(vii) The state cannot be blank.

(viii) The state can have a length of up to 20 characters.

(ix) The state cannot include special characters and numeric digits, but blank spaces are
allowed.

(x) The zip code cannot be blank.

(xi) The zip code cannot include alphabets, special characters and blank spaces.

(xii) The zip code can have a length of 6 digits.

(xiii) The phone number cannot be blank.

(xiv) The phone number cannot include alphabets, special characters and blank spaces.

(xv) The phone number can be of up to 11 digits.

(xvi) The email address cannot be blank.

(xvii) The email address can have a length of up to 50 characters (including @ and . character).

(xviii) The semester should not be blank.

(xix) A semester may or may not have an elective paper.

(xx) The student cannot select more than the required number elective papers.

(xxi) The student is required to register within the given registration time.

B. Sequencing information

Student details will have to be entered into the system before any student registration details
can be entered into the system.

C. Error Handling/Response to Abnormal Situations

If the flow of any of the validations/sequencing does not hold true, an appropriate error
message will be prompted to the user for doing the needful.

Software Verification 275
3.2.9 Generate Report

A. Validity Checks
(i) Only an authorized user will be allowed to access the ‘Generate Reports’ module.
B. Sequencing information

Reports can be generated only after the school, programme, scheme, paper and student
registration details have been entered into the system.

C. Error Handling/Response to Abnormal Situations

If the flow of any of the validations/sequencing does not hold true, an appropriate error
message will be prompted to the user for doing the needful.

3.2.10 Generate Registration Card

A. Validity Checks

(i) Only an authorized user will be allowed to access the ‘Generate Registration Card’
module.

B. Sequencing information

The registration card can be generated only after school, programme, scheme, paper and
student registration details have been entered into the system for that student for the given
semester.

3.3 Performance Requirements

(a) Should run on 500 MHz, 512 MB RAM machine.
(b) Responses should be within 2 seconds.

3.4 Design Constraints

None

3.5 Software System Attributes

Security

The application will be password protected. Users will have to enter the correct login Id and
password to access the application.

Maintainability

The application will be designed in a maintainable manner. It will be easy to incorporate new
requirements in the individual modules.

276 Software Testing

Portability

The application will be easily portable on any windows-based system that has SQL Server

installed.

3.6 Logical Database Requirements

The following information will be placed in a database:

Table Name Description

Login
School

Records the login details of the user.

Records the details of the various Schools in the University
Programme Records programmes offered in a school.

tion. If the registration closes, he cannot register. The student may not be
permitted to register more than one time in a semester.

Scheme Stores the details of the Scheme of a Programme such as number of
compulsory (core) papers, number of elective papers in a semester and the
total number of theory and practical papers offered.

Paper Stores details of Papers offered in a Programme.

Student Records the student details.

Faculty Records faculty details.

StudentPaperList Records semester wise Papers selected by a student.

RegistrationOpen A student can register only in a semester that is open for a specific dura-

Results after Verification

The SRS document is reviewed on the basis of the checklist and results are given below:

S. No. Description Yes/No/NA Remarks
Introduction

1. Is the purpose of the project clearly defined? No Refer A

2. Is the scope clearly defined? No Refer B

3. Is the document format as per standard/guidelines (Ex. IEEE Yes -
830-1993)?

4. Is the project formally approved by the customer? NA -

5. Are all requirements, interfaces, constraints, definitions etc. Yes -
listed in the appropriate sections?

Correctness

6. Is the expected response time from the user’s point of view Yes -
specified for all operations?

1. Are all stated requirements expressing the functionality? Yes -

8. Are there areas not addressed in the SRS document that Yes Refer C
need to be covered?

9. Are non-functional requirements stated? No Refer D

10. Are validity checks properly defined for every input condition? No Refer E

Ambiguity

11. Are functional requirements separated from non-functional Yes -

requirements?

(Contd.)

Software Verification 277

(Contd.)
S. No. Description Yes/No/NA Remarks
12. Does any requirement convey more than one interpretation? No -
13. Are all requirements clearly understandable? Yes -
14. Does any requirement conflict with or duplicate with other No -
requirements?
15. Are there ambiguous or implied requirements? No -
Completeness
16. Are all functional and non-functional requirements stated? No Refer D
17. Are forms available with validity checks? Yes -
18. Are all reports available in the specified format? No Refer F
19. Are all references, constraints, assumptions, terms and unit No Refer G
of measures clearly stated?
20. Has analysis been performed to identify missing requirements? No Refer H
Consistency
21. Are the requirements specified at a consistent level of detail? No Refer |
22. Should any requirements be specified in more detail? Yes Refer |
23. Should any requirements be specified in less detail? No -
24. Are the requirements consistent with other documents of the NA -
project?
25. Is there any difference in the stated requirements at two places? No -
Verifiability
26. Are all stated requirements verifiable? Yes -
27. Are requirements written in a language and vocabulary that No Refer J
the stakeholders understand?
28. Are there any non-verifiable words? Yes Refer K
29. Are all paths of a use case verifiable? NA -
30. Is each requirement testable? Yes -
Modifiability
31. Are all stated requirements modifiable? Yes -
32. Have redundant requirements been consolidated? Yes -
33. Has the document been designed to incorporate changes? Yes -
34. Are the format structures and styles of the document standard? Yes -
35. Is there any procedure to document a change? No -
Traceability
36. Can any requirement be traced to its origin or source? Yes -
37. Is every requirement uniquely identifiable? No -
38. Are all requirements clearly understandable for implementa- Yes -
tion?
39. Has each requirement been cross-referenced to requirements NA -
in the documents of comparable previous projects?
40. Is each requirement identified such that it facilitates referenc- Yes -
ing of each requirement in future development and enhance-
ment efforts?
41. Is every stated requirement feasible? Yes -

(Contd.)

278 Software Testing

(Contd.)
S.No. Description Yes/No/NA Remarks
42. Is any requirement non-feasible due to technical reasons? No -
43. Is any requirement non-feasible due to lack of resources? No -
44, Is any requirement feasible but very difficult to implement? No -
45, Is any requirement very complex? No -
General
46. Is the document concise and easy to follow? Yes -
47. Are requirements stated clearly and consistently without con- Yes -
tradicting themselves or other requirements?
48. Are all forms, figures and tables uniquely numbered? No -
49. Are hardware and other communication requirements stated No Refer L
clearly?
50. Are all stated requirements necessary? Yes -
Remarks
A. Section 1.1: A paper can either be a theory paper or a practical paper.
B. Insection 1.2, it is not stated that the faculty details will be maintained.
C. The layout of the student registration card and reports that the system will generate has not
been given.
D. All functional requirements have not been stated. In section 3.5, the non-functional
requirements — usability and reliability have not been mentioned.
E. (i) Insection 3.2.1, the range of values of login id and password have not been defined.

(i) In section 3.2.2, it is not mentioned that a school code cannot contain alphanumeric,
special characters and blank spaces.

(iii) In section 3.2.2, the range of values of the school name has not been defined.

(iv) In section 3.2.3, it is not mentioned that a school name cannot be blank.

(v) Insection 3.2.6, it is not mentioned that a school name cannot be blank.

(vi) Insection 3.2.7, it is not mentioned that a school name cannot be blank.

(vii) Insection 3.2.8, a range of values of the father’s name is not mentioned. It is also not
mentioned that a father’s name cannot contain digits and special characters, but can
contain blank spaces.

(viii) In section 3.2.8, the minimum length of the city and state field has not mentioned.

(ix) Insection 3.2.8, the validity check that an email address cannot contain blank spaces
has not been stated.

(x) Insection 3.2.8, there should be a separate validity check to verify that an email should
contain ‘@’ and ’.’ characters.

F. In section 3.1.1, neither is there any snapshot of the student registration card and output
reports nor have the contents been mentioned.
G. (i) Insection 1.3, the abbreviation of LAN has not been given.

(i) In section 2.5, the assumption that the registration process will be open only for a
specific duration is not stated.

(ii1) In section 2.5, the dependencies that the list of students will be obtained from the
academic section and the list of faculty will be obtained from the establishment
section have not been stated.

H. (i) Adataentry operator will be needed in order to add/modify/delete student and faculty

details.

Software Verification 279

(i1) Insection 2.2, product functions do not specify a major function that the URS would
perform i.e. add/modify/delete faculty details.

I. In section 3.1.1, the details about format/layout of registration card and reports have not
been provided.

J. Anambiguous word ‘User’ has been used throughout the SRS without specifying that the specified
user under question is either an administrator, data entry operator, student or a faculty.

K. The word ‘user’ is non verifiable.

L. In section 3.1.4, the communication interfaces have not been stated.

The corrected SRS is provided in Appendix A.

MULTIPLE CHOICE QUESTIONS

Note: Select the most appropriate answer for the following questions.

5.1 Software verification includes:
(a) Reviews
(b) Inspections
(c) Walkthroughs
(d) All of the above.
5.2 Which of the following is not true?
(a) Verification is the process of executing a program.
(b) \Verification is the process of examining a program.
(c) Verification is the process of inspecting a program.
(d) Verification is the process of understanding a program.
5.3 Which of the following is not a verification method?
(a) Peer reviews
(b) Cause effect graphing
(¢) Walkthroughs
(d) Inspections
5.4 In walkthroughs, who presents the document to the members?
(a) Author
(b) Moderator
(c¢) Customer
(d) Developer
5.5 Which of the following is not a weakness of walkthroughs?
(a) The presenter may hide critical areas.
(b) Participants may not ask penetrating questions.
(¢) Documents are shown to all participants.
(d) None of the above.
5.6 Which of the following is not used as a term for inspections?
(a) Formal technical reviews
(b) Peer reviews
(c) Technical reviews
(d) Reviews

280 Software Testing

5.7 In inspections, who presents the document to the members?
(a) Author
(b) Developer
(c) Specialized person
(d) Customer
5.8 Which verification method requires maximum participants?
(a) Peer reviews
(b) Walkthroughs
(c) Inspections
(d) None of the above.
5.9 What is the IEEE standard for SRS document?
(a) IEEE std. 830 — 1998
(b) IEEE std. 829 — 1993
(c) IEEE std. 860 — 1998
(d) IEEE std. 863 — 1998
5.10 What is the IEEE standard for SDD document?
(a) IEEE std. 830 — 1998
(b) IEEE std. 1016 — 1998
(c) IEEE std. 829 — 1998
(d) IEEE std. 831 — 1998
5.11 SRS stands for:
(a) Software Requirements specifications
(b) System Requirements Specifications
(c) Systematic Requirements Specifications
(d) Sequential Requirements Specifications
5.12 Verification of the SRS documents is carried out to:
(a) Document the requirements
(b) Improve the quality
(¢c) Capture the requirements
(d) Notify the requirements
5.13 Which is not a characteristic of a good SRS?
(a) Correct
(b) Complete
(c) Consistent
(d) Brief
5.14 Software verification activities are most useful at the level of:
(a) SRS document
(b) SDD document
(¢) Source code
(d) Documentations
5.15 Source code should be examined to check:
(a) Syntax errors
(b) Semantics errors
(c) Standards
(d) All of the above

Software Verification 281

5.16 What is the advantage of source code inspections?
(a) Examine the source code before the execution environment is ready.
(b) It can be performed by inexperienced persons.
(c) It is not expensive.
(d) Source code writers can do it.
5.17 Peer reviews are also known as:
(a) Inspections
(b) Walkthroughs
(c) Informal reviews
(d) Formal reviews
5.18 What is not included in the cost of performing inspections?
(a) Setting up forms and databases
(b) Statistical analysis of various metrics
(c) Time spent on documenting outside meeting
(d) Writing the documents to be inspected
5.19 Reviews, inspections and dynamic testing have the same objective of:
(a) Identifying faults
(b) Fixing faults
(¢) Removing faults
(d) All of the above
5.20 Quality assurance methods are usually considered as:
(a) Defective
(b) Preventive
(c) Corrective
(d) Perfective
5.21 What is the basic difference between a walkthrough and an inspection?
(a) An inspection is led by the author, while a walkthrough is led by the moderator.
(b) An inspection is led by the moderator, while a walkthrough is led by the author.
(¢c) Authors are not present during inspections while they handle every aspect of the
walkthrough.
(d) None of the above.
5.22 Software quality is determined by:
(a) The number of bugs only
(b) The sales level of the software
(c) How well the software meets the needs of the business
(d) None of the above
5.23 Typical defects that are easier to find in reviews than in dynamic testing are:
(a) Deviations from standards
(b) Requirement defects
(¢) Design defects
(d) All of the above
5.24 Which should not be included as a success factor for a review?
(a) Management supports a good review process
(b) Defects found are discussed openly
(c) Each review does not have a predefined objective
(d) None of the above

282 Software Testing

5.25 The later in the development life cycle a fault is discovered, the more expensive it is
to fix. Why?
(a) Due to poor documentation, it takes longer to find out what the software is doing.
(b) Wages are rising.
(¢) The fault has already resulted in many faults in documentation, generated faulty
source code, etc
(d) None of the above
5.26 Inspections can find all of the following except:
(a) Variables not defined in the source code
(b) Omission of requirements
(c) Errors in documents and the source code
(d) How much of the source code has been covered
5.27 During software development, when should we start testing activities?
(a) After the completion of code
(b) After the completion of design
(c) After the completion of requirements capturing
(d) After the completion of feasibility study
5.28 In reviews, the moderator’s job is to:
(a) Prepare minutes of the meeting
(b) Prepare documents for review
(¢) Mediate between participants
(d) Guide the users about quality
5.29 What can static analysis not identify?
(a) Memory leaks
(b) Data of defined variables but which are not used
(c) Data of variables used but not defined
(d) Array bound violations
5.30 Which of the following statements are not true?
(a) Inspections are very important for fault identifications.
(b) Inspections should be led by a senior trained person.
(c) Inspections are carried out using documents.
(d) Inspections may often not require documents.

EXERCISES

5.1 Differentiate between verification and validation. Describe various verification
methods.

5.2 Which verification method is most popular and why?

5.3 Describe the following verification methods:
(a) Peer views
(b) Walkthroughs
(c) Inspections

5.4 Explain the issues which must be addressed by the SRS document checklist.

5.5 Discuss the areas which must be included in a good SDD design checklist. How is it
useful to improve the quality of the document?

5.6

5.7
5.8

59

Software Verification 283

Discuss some of the issues related to source code reviews. How can we incorporate
these issues in the source code review checklist?

Design a checklist for user documentation verification.

Why do we opt for software project audit? What are the requirements of a relevance
scale and theory and practice scale? Discuss some of the issues which must be
addressed in project audit and review checklist.

Establish a relationship between verification, validation and testing. Which is most
important and why?

5.10 Discuss some characteristics which the SRS document must address. How can these be

incorporated in a checklist?

5.11 What is the purpose of preparing a checklist? Discuss with the help of a checklist.
5.12 What types of reviews are conducted throughout the software development life

cycle?

5.13 With the help of an example, explain how you will review an SRS document to ensure

that the software development has been correctly carried out.

5.14 What are the differences between inspections and walkthroughs? Compare the relative

merits of both.

5.15 Could review and inspections be considered as part of testing? If yes, why? Give

suitable examples.

FURTHER READING

Horch presents reviews as one of the elements of software quality system. Chapter 3

of the book gives a full account on reviews:

John W. Horch, “Practical Guide to Software Quality Management”, Artech
House, 2003.

The books by Rakitin and Hollocker provide a full account on how to start a review.
Charles P. Hollocker, “Software Reviews and Audits Handbook”, New York:
John Wiley & Sons, 1990.

Steve Rakitin, “Software Verification and Validation for Practitioners and
Managers”, Second Edition, Norwood, MA: Artech House, 2001.

The book by Tom provides an excellent introduction on software inspection and is full

of a large number of real-life case studies.

Gilb, Tom and D. Graham, “Software Inspections”, MA: Addison-Wesley,
1993.

Fagan shows that by using inspection, cost of errors may be reduced significantly in

the initial phases of software development.

Fagan, M. E., “Design and Code Inspections to Reduce Errors in Program
Development”, IBM Systems Journal, vol. 15, no. 3, 1976.

Strauss provides a comprehensive guide to software inspections method that may

reduce program defects in the early phases of software design and development:

S.H Strauss, Susan H., and Robert G. Ebenau, “Software Inspection Process”,
New York: McGraw-Hill, 1994.

284 Software Testing

Wheeler provides a summary of a number of papers on software inspections. The book
traces the software industry’s experiences on software inspections and it can be seen
from the best papers published on this topic:
David A.Wheeler, “Software Inspection: An Industry Best Practice”, Los
Alamitos, CA: IEEE Computer Society Press, 1996.
Wiegers book is an important contribution in the area of peer reviews. The author
provides a good description on how to create work culture within a software
organization:
Wiegers, Karl Eugene, “Peer Reviews in Software: A Practical Guide”, MA:
Addison-Wesley, 2001.
The following book may provide a useful guidance to practitioners and programmers
on group walkthroughs:
E. Yourdon, “Structured Walk-throughs”, Englewood Cliffs, NJ: Prentice Hall,
1989.
The IEEE standard for Software Requirements Specifications presents content and
qualities of a good requirement and provides an outline and description of a Software
Requirements Specifications document:
IEEE, “IEEE Recommended Practice for Software Requirements Specifications
(IEEE Std 830-1998)”, 1998.
The IEEE standard on software design provides recommendations on the organization
of software design description document:
IEEE, “IEEE Recommended Practice for Software Design Description (IEEE
Std 1016-1998)”, 1998.
Baiz and Costa have designed an excellent audit checklist which is based on relevance
scale and theory and practice scale:
Hatty Baiz and Nancy Costa, “Project Audit and Review Checklist”, Princeton
Project Office, Princeton University, New Jersey, USA, hetty@princeton.edu,
ncosta@princeton.edu, 2001.

Creating Test Cases from Requirements
and Use Cases

We prepare ‘Software requirements and specifications’ document to define and specify user
requirements. In the initial years of software development, requirement writers used to write
stories to explain the expected behaviour of the system and its interactions with the external
world. Ivar Jacobson and his team [JACO99] gave a new dimension and direction to this area
and developed a Unified Modeling Language (UML) for software development. They
introduced use case approach for requirements elicitation and modeling. This is a more formal
way to write requirements. The customer knows what to expect, the developer understands
what to code, the technical writer comprehends what to document and the tester gets what to
test. The use cases address primarily the functional requirements, meaning thereby, the
perspective of the users sitting outside the system. Use cases capture the expectations in terms
of achieving goals and interactions of the users with the system.

The IEEE Std 830-1998 requires us to follow a systematic approach which may include the
design of use cases, various forms for interaction with the user, data validations, reports, error
handling and response to unexpected situations. This is an important document designed in the
initial phases of the software development. In this chapter, techniques have been discussed to
design test cases from requirements. Database testing has also been introduced to design test
cases using interface forms.

6.1 USE CASE DIAGRAM AND USE CASES

Use case diagram is also used along with use cases to explain the functionality of the system.
This is a graphical representation and gives the top view of the system along with its users and
use cases. Use case diagram may be decomposed into a further level of abstraction. Use cases
and use case diagrams are normally used together to define the behaviour of a system.

286 Software Testing

A use case diagram visually explains what happens when an actor interacts with the system.
Actor represents the role of a user that interacts with the system. They are outsiders to the
system and can be human beings, other systems, devices, etc. We should not confuse the actors
with the devices they use. Devices are mechanisms that actors use to communicate with the
system, but they are not actors themselves. We use the computer keyboard for interaction; in
such a case, we are the actors, and not the keyboard that helps us to interact with the computer.
We use the printer to generate a report; in such case, the printer does not become an actor
because it is only used to convey the information. However, if we want to take information
from an external database, then, this database becomes an actor for our system.

A use case is started by a user for a specific purpose and completes when that purpose is
satisfied. It describes a sequence of actions a system performs to produce an observable output
for the interacting user (actor). The importance of a use case is effectively given by Greg
Fournier [FOURO09] as:

“The real value of a use case is the dynamic relationship between the actor
and the system. A well written use case clarifies how a system is used by the
actor for a given goal or reason. If there are any questions about what a
system does to provide some specific value to someone or something outside
the system, including conditional behaviour and handling conditions of when
something goes wrong, the use case is the place to find the answers.”

A use case describes who (any user) does what (interaction) with the system, for what goal,
without considering the internal details of the system. A complete set of use cases explains the
various ways to use the system. Hence, use cases define expected behaviours of the system and
helps us to define the scope of the system.

6.1.1 Identification of Actors

An actor represents the role of a user that interacts with the system. An actor may be a
human being or a system that may interact with a use case keeping in view a particular
goal in mind. Some of the examples of the actors used in the case study of ‘University
registration system’ (discussed in Section 5.7) are given as:

(i) Administrator

(i) Student

(ii) Faculty

(iv) Data entry operator

The URS will allow the above actors to interact with the system with their specific roles.
Depending upon the role, an actor will be able to access only the defined information from the
system. We may define the role of every actor as:

(i) Administrator: Able to add, modify or delete a programme, school, scheme, paper,
student, faculty and login information. Able to generate student registration card and
other reports.

(i1) Student: Able to add and modify his/her details and register for papers to be studied in
the current semester. Able to generate student registration card.

Creating Test Cases from Requirements and Use Cases 287

(i) Faculty: Able to generate desired reports.
(iv) Data entry operator: Able to add, modify or delete student and faculty information.

The identification of actors with their specified roles may define the scope for every actor
and its expected actions. Every actor may interact with one or more use cases designed for the
specified purpose.

6.1.2 ldentification of Use Cases

Whenever we design a system, we expect some functionalities from the system. To achieve
such functionalities, many actors interact with the system with some specified expectations.
The actor acts from the outside and may provide some inputs to the system and expect some
outputs from the system. After the finalization of requirements, we expect to create use cases
for the system. Some guidelines for the creation of use cases are given as:

(1)
(i1)
(iif)
(iv)
(v)

Every use case should have a specified functionality.

Every use case will have a name. Every name should be unique, meaningful and
purposeful to avoid confusion in the system.

One or more actors will interact with a use case.

An actor will initiate a use case.
The role of actors should always be clearly defined for every use case. Who will initiate
the use case and under which conditions, should be clearly specified.

We should always remember that use cases describe who (actor) does what (interaction)
with the system, for what goal, without considering the internal details of the system.
In the URS, we may identify the following use cases for each of the actors.

S.No. Use Case Actors Description
1. Login Administrator, student, Login
faculty, DEO Change password
2. Maintain School Administrator Add School
Details Edit School
Delete School
View School
3. Maintain Programme Administrator Add Programme
Details Edit Programme
Delete Programme
View Programme
4. Maintain Scheme Administrator Add Scheme
Details Edit Scheme
Delete Scheme
View Scheme

(Contd.)

288 Software Testing

(Contd.)
S.No. Use Case Actors Description
5. Maintain Paper Administrator Add Paper
Details Edit Paper
Delete Paper
View Paper
6. Maintain Student Administrator, DEO Add Student
Details Edit Student
Delete Student
View Student
7. Maintain Faculty Administrator, DEO Add Faculty
Details Edit Faculty
Delete Faculty
View Faculty
8. Maintain Student Administrator, student Add Student Information
Registration Details Select Papers offered by the
programme
9. Generate Report Administrator, faculty Roll number wise
Programme wise
Semester wise
Paper wise
10. Generate Registration Administrator, student Printing of Registration card
Card

We should identify use cases very carefully, because it has serious implications on the
overall design of the system. Use cases should not be too small or too big. The basic flow and
all alternative flows should also be specified. Identifying and writing good use cases means

providing better foundations for the intended system.

6.1.3 Drawing of Use Case Diagram

The use case diagram shows actors, use cases and the relationship between them. It gives the
pictorial view of the system. In use case diagram, actors are represented as stick figures and use
cases are represented as ovals. The relationship between an actor and a use case is represented by

a solid arrow. The components of the use case diagram are given in Figure 6.1.

Actor

>

Use case

/

Relationship between

actor and use case

Figure 6.1. Components of use case diagram

Creating Test Cases from Requirements and Use Cases 289

Actors appear outside of a system. A relationship is shown by an arrow and is between the
actor and a use case and vice versa. A relationship between a ‘user’ (actor) and ‘login’ use case

is shown as:

Login

User

If the system is small, one diagram may be sufficient to represent the whole system, but for
large systems, we may require to represent the whole system in many diagrams. The use case
diagram of the URS is given in Figure 6.2. There are ten use cases and four actors. The
administrator interacts with all use cases, whereas a student may interact only with ‘Login’,
‘Maintain student registration’ details and ‘Generate registration card’ use cases.

C D

Maintain school details

C D

Maintain programme details

C D

Maintain scheme details

C D

Maintain paper details

-

Maintain student details

C D

Maintain faculty details

~

Data entry
operator

X

Student

Administrator

A

Faculty

Maintain student
registration details

Generate registration card

Generate reports

Figure 6.2. Use case diagram of the URS

290 Software Testing
6.1.4 Writing of Use Case Description

Actors interact with the use cases for predefined purposes. Hence, each actor does something
with the system and the system responds accordingly. Each step is considered as a sequence of
events and is called a flow. There are two types of flows:

(i) Basic Flow: It is the main flow and describes the sequence of events that takes place
most of the time between the actor and the system to achieve the purpose of the use
case.

(ii) Alternative Flows: If the basic flow is not successful due to any condition, the
system takes an alternative flow. An alternative flow may occur due to failure of an
expected service because of occurrence of exceptions/errors. There may be more
than one alternative flow of a use case, but may not occur most of the time. Any
alternative flow takes place under certain conditions in order to fulfil the purpose of
a use case.

There is no standard method for writing use cases. Jacobson et al. [JACO99] has given a
use case template which is given in Table 6.1. This captures the requirements effectively and
has become a popular template. Another similar template is given in Table 6.2 which is also
used by many companies [COCKO01, QUATO03]. All pre-conditions that are required for the use
case to perform should be identified. Post conditions, which will emerge after the execution of
a use case, should also be defined. The pre-condition is necessary for the use case to start but
is not sufficient to start the use case. The use case must be started by an actor when the pre-
condition is true. A post-condition describes the state of the system after the ending of the use
case. A post-condition for a use case should be true regardless of which flow (basic or any
alternative flows) is executed.

Table 6.1. Jacobson’s use case template
1. Brief Description. Describe a quick background of the use case.
2. Actors. List the actors that interact and participate in this use case.

3. Flow of Events.
3.1. Basic flow. List the primary events that will occur when this use case is executed.
3.2. Alternative flows. Any subsidiary events that can occur in the use case should be
separately listed. List each such event as an alternative flow. A use case can have as many
alternative flows as required.

4. Special Requirements. Business rules for the basic and alternative flow should be listed as
special requirements in the use case narration. These business rules will also be used for
writing test cases. Both success and failure scenarios should be described here.

5. Pre-conditions. Pre-conditions that need to be satisfied for the use case to perform should
be listed.

6. Post-conditions. Define the different states in which we expect the system to be in, after the
use case executes.

7. Extension Points. List of related use cases, if any.

Creating Test Cases from Requirements and Use Cases 291

Table 6.2. Alternative use case template

Eal S

6.

7.

Introduction. Describe the brief purpose of the use case.

Actors. List the actors that interact and participate in this use case.

Pre-condition. Define the condition that needs to be satisfied for the use case to execute.
Post-condition. After the execution of the use case, different states of the systems are

defined here.

Flow of Events.

5.1. Basic flow. List the primary events that will occur when this use case is executed.

5.2. Alternative flow. Any other possible flow in this use case should be separately listed. A
use case may have many alternative flows.

Special Requirements. Business rules for the basic and alternative flows should be listed
as special requirements. Both success and failure scenarios should be described.
Associated use cases. List the related use cases, if any.

We may write a ‘Login’ use case description of the URS using the template given in Table
6.2 and the same is given below:

Use Case Description of login use case

1

2

Introduction

This use case documents the steps that must be followed in order to log into the URS

Actors

B Administrator

B Student

B Faculty

B Data Entry Operator

Pre-Condition

The user must have a valid login Id and password.

Post-Condition

If the use case is successful, the actor is logged into the system. If not, the system state

remains unchanged.

Basic Flow

It starts when the actor wishes to login to the URS.

(v) The system requests that the actor specify the function he/she would like to perform
(either Login, Change Password).

(vi) Once the actor provides the requested information, one of the flows is executed.
B |f the actor selects ‘Login’, the Login flow is executed.
B |f the actor selects ‘Change Password’, the Change Password flow is executed.

Basic Flow 1: Login

(i) The system requests that the actor enters his/her login Id and password information.

(if) The actor enters his/her login Id and password.

(iii) The actor enters into the system.

Basic Flow 2: Change Password

(i) The system requests that the actor enter his/her login Id, old password, new password
and confirm the new password information.

(ii) The actor enters login Id, old password and new password, and confirms the new pass-
word information.

(iii) The system validates the new password entered and the password change is confirmed.

(Contd.)

292 Software Testing

Use Case Description of login use case

6 Alternative flows
Alternative Flow 1: Invalid login Id/password
If in the Login basic flow, the actor enters an invalid login Id and/or password or leaves the
login Id and /or password empty, the system displays an error message. The actor returns to
the beginning of the basic flow.
Alternative Flow 2: Invalid Entry
If in the Change Password basic flow, the actor enters an invalid login Id, old password, new
password or the new password does not match with the confirmed password, the system dis-
plays an error message. The actor returns to the beginning of the basic flow.
Alternative Flow 3: User Exits
This allows the user to exit during the use case. The use case ends.

7 Special Requirement
None

8 Associated use cases
None

The use cases describe the flow of events which include the basic flow and alternative flows
and this description should be long enough to clearly explain its various steps. The basic flow
and alternative flows are written in simple and clear sentences in order to satisfy all the
stakeholders. A login use case, which allows entering the correct login Id and password, has
two basic flows (the user is allowed to enter after giving the correct login Id and password and
change password) and many alternative flows (incorrect login Id and/or password, invalid
entry and user Exits). If an alternative flow has other alternative flows, the use case may have
a longer description of the flows and may become a complex use case.

We should write the basic flow independently of the alternative flows and no knowledge of
alternative flows is considered. The basic flow must be complete in itself without reference to
the alternative flows. The alternative flow knows the details of when and where it is applicable
which is opposite to the basic flow. It inserts into the basic flow when a particular condition is
true [BITTO3].

6.2 GENERATION OF TEST CASES FROM USE CASES

We may start writing the test cases as soon as use cases are available. This may happen well
before any source code is written. It is always advisable to follow a systematic approach for
the generation of test cases. These test cases may give us better coverage of the source code
during testing. Any adhoc way may generate many duplicate test cases that may result in to
poor coverage of the source code. A systematic approach may include the following steps:

(i) Generation of scenario diagrams

(il)) Creation of use case scenario matrix

(i) Identification of variables in a use case

(iv) Identification of different input states of available variables
(v) Design of test case matrix

(vi) Assigning actual values to variables

Creating Test Cases from Requirements and Use Cases 293

If all steps are followed in the above mentioned sequence, we may have a good number of
planned and systematic test cases which will result in an efficient and effective testing
process.

6.2.1 Generation of Scenario Diagrams

A use case scenario is an instance of a use case or a complete path through the use case
[HEUMOL1]. The basic flow is one scenario and every alternative path gives another scenario.
Use case scenarios may also be generated due to various combinations of alternative flows.
The basic and alternative flows for a use case are shown in Figure 6.3.

Precondition of basic flow Starting of use case

Basic Flow
Alternative

Alternative Flow 4
Alternative Flow 1

Ending of use case

. Alternative Flow 2
Alternative

Flow 5

@ Ending of use case
Post
condition

Alternative Flow 6

Ending of use case o Post condition
Ending of use case

Figure 6.3. Basic and alternative flows with pre- and post-conditions

The basic flow is represented by a straight arrow and the alternative flows by the curves.
Some alternative flows return to the basic flow, while others end the use case. At the end of the
basic flow, a post-condition is generated while at the starting of the basic flow, a pre-condition
is required to be set.

There are the following basic and alternative flows in login use case:

Basic flow:

(i) Login

(i) Change password
Alternative flows:

(i) Invalid Login Id/password
(i1) Invalid entry
(i11) User exits

294 Software Testing

The basic and alternative flows for login use case are given in Figure 6.4. In Figure 6.4 (a),
there is one basic flow which will be executed when the correct login Id and password are
given. This basic flow is expected to be executed most of the time. If any input (Login Id or
password) is invalid, then the alternative flow will be executed and the actor will return to the
beginning of the basic flow. If at any time, the user decides to exit, then alternative flow 3 will
be executed.

Basic Flow 1 Basic Flow 2

Alternative
Flow 2

Alternative
Flow 1

Alternative Flow 3 Alternative Flow 3

b Use case ends b Use case ends

(a) (b)

Figure 6.4. Basic and alternative flows for login use case (a) Login (b) Change password
Alternative Flow 1: Invalid login Id/password

Alternative Flow 2: Invalid Entry

Alternative Flow 3: User exits

6.2.2 Creation of Use Case Scenario Matrix

Use case scenario diagrams generate many scenarios due to the basic flow, every alternative
flow along with the basic flow and various combinations of the basic and alternative flows. A
scenario matrix gives all possible scenarios of the use case scenario diagram. The scenario
matrix given in Table 6.3 gives all possible scenarios for the diagram given in Figure 6.3.

Table 6.3. Scenario matrix for the flow of events shown in Figure 6.3
Scenario 1 Basic Flow
Scenario 2 Basic Flow Alternative Flow 1
Scenario 3 Basic Flow Alternative Flow 1 Alternative Flow 2
Scenario 4 Basic Flow Alternative Flow 3
Scenario 5 Basic Flow Alternative Flow 3 Alternative Flow 4
Scenario 6 Basic Flow Alternative Flow 3 Alternative Flow1l
Scenario 7 Basic Flow Alternative Flow 3 Alternative Flow 1 Alternative Flow 2
Scenario 8 Basic Flow Alternative Flow 5

(Contd.)

Creating Test Cases from Requirements and Use Cases 295

(Contd.)
Scenario 9 Basic Flow Alternative Flow 5 Alternative Flow 6
Scenario 10 Basic Flow Alternative Flow 3 Alternative Flow 5
Scenario 11 Basic Flow Alternative Flow 3 Alternative Flow 5 Alternative Flow 6

In the basic and alternative flows scenario diagram of the login use case, there are six
possible paths (see Figure 6.4). These six paths become six scenarios of login use case and are
given in Table 6.4. Moreover, the path ‘Basic Flow 1, Alternative Flow 1 and Alternative Flow
3’ is impossible as per the use case description, because after giving incorrect login 1D/
password, the actor returns to the beginning of the basic flow 1. Similarly, both ‘Basic Flow 2,
Alternative Flow 2 and Alternative Flow 3’ are also impossible. All valid combinations of the
basic flow and the alternative flows may be generated as per given use case description.

Table 6.4. Scenario matrix for the login use case

Scenario 1- Login Basic Flow 1

Scenario 2- Login alternative flow: Invalid login Id/password Basic Flow 1 Alternative Flow 1
Scenario 3- Login alternative flow: User Exits Basic Flow 1 Alternative Flow 3
Scenario 4- Change Password Basic Flow 2

Scenario 5- Change password alternative flow: Invalid Entry Basic Flow 2 Alternative Flow 2

Scenario 6- Change password alternative flow: User Exits Basic Flow 2 Alternative Flow 3

6.2.3 ldentification of Variables in a Use Case

We have to identify all input variables which have been used in every use case. For a login use
case, we use ‘login Id” and ‘password’ as inputs for entering into the use case. These are two
input variables for the ‘Login’ use case. A variable may also be used as a selection variable
where many options are available for a variable. A selection variable may be values of buttons
available which provide input to the use case at some intermediate step of the use case. For
example, ‘Updation confirmed?’ will provide two options to an actor ‘Yes/No’ and thus based
on this selection input, the decision on whether updation is to be made or not, is made. We may
select a semester from a drop down menu. The following variables are used in the login use
case:

(1) LoginlId

(i) Password

(iii)) Old password

(iv) New password

(v) Confirm password

These variables are inputs to the system and when an input or combination of specified
inputs is given, a particular behaviour (output) is expected from the system. Hence,
identification of these variables is important and helps in designing the test cases.

296 Software Testing
6.2.4 Identification of Different Input States of a Variable

An input variable may have different states and the behaviour of the system may change if the
state of a variable is changed. Any variable may have at least two states i.e. valid state and
invalid state. If we consider the ‘Login Id’ variable of the login use case, it is expected that the
“Login Id should be alphanumeric of length 11 characters and only digits from 0 to 9 are
allowed. Alphabets, special characters and blank spaces are not allowed.” Hence, one state is
the valid login Id as per the given directions and another state is the invalid login Id which is
different from the given directions. There may be many different states of invalid variable. If
a variable is in an invalid state, then a different process flow is executed (different alternative
flow) or the system gives an unexpected output. The invalid variable should be given different
inputs and appropriate values should be given at the time of designing the test cases.

6.2.5 Design of Test Case Matrix

We identify all variables and their different states for the purpose of designing test cases. One
way to do so is to create a test case matrix where rows of the matrix contain test cases and the
first column contains the scenario name and description and the remaining columns may
contain the various input variables including the selection variables. The last column contains
the expected output when these inputs are given to the system. A typical test case matrix is
given in Table 6.5.

Table 6.5. A typical test case matrix

Test Scenario Name and Input 1 Input 2 Input 3 Expected Output
Case Id Description (selection
variable)

TC1
TC2
TC3
TC4

The test case matrix for login use case is given in Table 6.6.

6.2.6 Assigning Actual Values to Variables

In test case matrix, we have written only ‘valid input’, ‘invalid input’ and ‘not applicable (n/a)’
in the input value columns of various variables. Now, we want to assign actual values in these
columns in order to use them at the time of execution to get the actual output. We may also add
two additional columns with titles ‘Actual output’ and ‘Pass/fail’ which will be used at the time
of executing these test cases. There should be at least one test case for each scenario, but more
test cases may be designed, depending upon availability, time and resources. These test cases
may be very useful, effective and are also designed at an early stage of the software development
life cycle. The test cases for the ‘Login’ use case are given in Table 6.7.

Creating Test Cases from Requirements and Use Cases 297

UX3 Mol
U9al90s UI30| 0} SuINnlal nduy nduy nduy nduy aAneulaye piomssed
~ pue Uxa 0} pamoj[e sl Josn plleAul/ plleA plieAul/ plleA plleAul/ piieA e/u pljeaul/ pljep a8ueyy -g oUeuULdS ETOL
ualapip
ale salud piomssed piomssed mau ydew Jou
WILUOD pue maN soop pJomssed wayuo) Indul piiea ndui pljea ndul pijea e/u ndul pijea ZToL
1ewo) payloads ndul
9y} Ul Jou s| plomssed pijeAul piomssed maN plieaul/ plieA ndui pijeaul ndui piiea e/u ndui piiea TTOL
EEIIUE]
,21e2 10U Op, BWO029q
SOLI1US JBY10 ‘pIjeA ndul ndul
jou si piomssed pjo 4| pileaul piomssed pI0 plleAul/ plleA plleAu]/ pijeA ndul pijeaul e/u ndul pijeA Anua piieau; OTOL
ndui ndul ndul :MOJ} dAl}eUIBY e pJomssed
8y} urjou si p| uigo pileAul piomssed pI0 plleAul/ plleA plleaul/ pijeA pieAul/ plieA e/u indui pijeau| 93ueyp -G oeusds IL
aseqejep sy} ul piomssed piomssed
pagueyo s| piomssed a3ueyod 0} pamoj|e st iesn Indul piea ndui pijea ndui prjea e/u ndul pijea aguey) -y oueuads 8J1
wolsAs ndul ndul X3 MO} dAI}RUIBY R
- 9y} JO INO SBWO0D Jas e/u e/u e/u plleau|/ plleA plleAul/ pllea uigoq -g oeuads /ol
jew.Joy
payoads ay3 Ul Jou ale pileaul
piomssed pue pi uigoq piomssed pue pi uigo e/u e/u e/u Indul pijeaul 1ndui pijeau| 901
aseqelep ul 1sIxe
10U S90p pIlomssed plleAul piomssed e/u e/u e/u ndul pijea ndul pijea GOl
1ewo) payloads
By} Ul 10U S| pJomssed plleAul piomssed e/u e/u e/u 1ndul pijeau| ndul pijea oLl
aseqejep ul
1SIXd J0U S90P P! UIBOT pijeaut pi uigo e/u e/u e/u ndutl pijep ndut pijep Aiu3 pijeau €01
JewJoy payloads IMOJ} OAleUIB) e
8y} urjou si p| ugo pljeaul pi uigon e/u e/u e/u ndui piieA indui pijeau| uigo7 -z oleusds gol
- uio| 01 pamoj|e si Jasn e/u e/u e/u ndul pijea ndul pijea uigoq -T oleuads TOL
piomssed
wiyuod promssed moN piomssed p|o piomssed p1 uigo oI
uonduosap ases
(Aue y1) syjleway ndino pajoadx3y G nduj { Induj € indu| Z induj T nduj pue aweN oueuddS 3s9L

aseo ash uigo| ay} 10} XLjew ased 1sa) '9°9 ajqel

298 Software Testing

011eUB2S BAI}0adsal J0) |ge|leA. 10U (S)uondo :e/u :(sindul pijeAul/pljeA) SUOIIPUOD ,84eD J0U 0P, iy

ux3
u9249s UI0| IMOJ} DAIIRUIBY R
0} SuJnjal pue 1xa piomssed aguey)
— 0Ol pamojje sl iasn * * * e/u * -9 olleusds €T0L
piomssed mau
yolew 1ou saop
— plomssed wiyuoy GCToqY YCToav €CToqY e/u JG9TTZSY9ITTO [4%e1%
*, 9182 J0U 0P, BW029(q (pJomssed WiU02)
S9111UD JBY)Q "SI810eIRYD $ UYL SS9 S| YdIyM pljeaul
1ewJoy payloads sy} ul Jou si piomssed MaN piomssed maN * cTd €cToav e/u JG9TCSY9ITTO TTOL
*,8J80 10U 0P, BWO023(
(pJomssed wlpuod pue pJomssed mau) Saljud A1ue pieau|
Jayi0 -eseqelep oy ul piomssed guipuods plieaul IMOJ} 9AljRUISY) B
-91102 83 Yydlew Jou saop piomssed p|o piomssed p|O * * Toqvy e/U [G9TTSYITTO piomssed sfuey) 0ToL
"Jewo) pay1oads 8y ul 1ou st p| uigo pijeAul p| uigo * * * e/u G9TTO -G olleusds 60L
pJomssed a3ueyo piomssed aguey)
— 01 pamojje sl iasn ¥ZToqv YCToaY €CToaqy e/u JG9TZSY9ITTO -t olleusds 80L
Ux3
waysAs ayy IMOJ} dAIIRUIBY R
- JO 1IN0 SBWO02 JasN e/u e/u e/u * » UI807 - oeuads 101
'sJ910RIBYD {7 URY) SSO| SI pJomssed pue SIa)
-oeJeyd TT UeY) SS9 S| pI UI0T Jew.o) paly pljeaul
-198ds 2y} ul J0u aJe piomssed pue pi uigo] piomssed/pl uigo] e/u e/u e/u €Y vETT 901
aseqelep ul 1sIxe J0u S80p plomssed pijeAul pi uigo e/u e/u e/u ¥CToqvy LG9TCSY91T10 GoL
sJajoeIeyD 7 UBY) SS9
SI YOIYM Jewo) paljIoads Ul Jou S| piomssed pljeAul piomssed e/u e/u e/u ved LS9TCSY9110 7oL
aseqelep Ul }SIxe Jou Se0p pi uIgoT plleAul pi uigon e/u e/u e/u €CTo0V 8G9TZSYITTO Anu3 pijeau) €01
sJaj0eIRYD TT URY) SS9| IMOJ} DAIIRUIBY R
SI YdIyM 1ewo} payIoads Ul jou st pi uigon plleAul pi uigon e/u e/u e/u €2Toay ¥ECT UIB07 -g olieusds 2oL
uigo|
~ 0} pamoj|e st Jasn e/u e/u e/u €2To0V /G9TCGY9TTO UIS0T -T OLBuUSdS TOL
piomssed piomssed piomssed uondiiasap pue pjased
(Aue 1) syieway 3indino pajoadx3y wayuod MAN PIO piomssed pj uiSo1 awep oleudds)sal
sk ash uIgo] ay} 10} SaNjeA Blep [en)oe Y}M XleW ased 1sa] "2°9 d|qeL

Creating Test Cases from Requirements and Use Cases 299

The use cases are available after finalizing the SRS document. If we start writing test cases
in the beginning, we may be able to identify defects at the early phases of the software
development. This will help to ensure complete test coverage as a complete test suite will be
designed directly from the use cases. This technique is becoming popular due to its applicability
in the early phases of software development. The technique is simple and directly applicable
from the use cases that are part of the SRS which is designed as per IEEE standard 830-1998.

Example 6.1: Consider the problem statement of the URS as given in chapter 5. Write the use
case description of use cases and generate test cases from these use cases.

Solution:

The use case description of ‘maintain school details’ use case is given below:

1 Introduction
Allow the administrator to maintain details of schools in the university. This includes adding, updat-
ing, deleting and viewing school information.

2 Actors
Administrator

3 Pre-Conditions
The administrator must be logged onto the system before this use case begins.

4 Post-Conditions
If the use case is successful, the school information is added/updated/deleted/viewed from the
system. Otherwise, the system state is unchanged.

5 Basic Flow
This use case starts when the administrator wishes to add/edit/delete/view school information.
(i) The system requests that the administrator specify the function he/she would like to perform
(either Add a school, Edit a school, Delete a school or View a school).
(ii) Once the administrator provides the requested information, one of the flows is executed.
B |f the administrator selects ‘Add a School’, the Add a School flow is executed.
B If the administrator selects ‘Edit a School’, the Edit a School flow is executed.
B [f the administrator selects ‘Delete a School’, the Delete a School flow is executed.
B [f the administrator selects ‘View a School’, the View a School flow is executed.

Basic Flow 1: Add a School
The system requests that the administrator enter the school information. This includes:
(i) The system requests the administrator to enter the:
1. School name
2. School code
(i) Once the administrator provides the requested information, the school is added to the system.

Basic Flow 2: Edit a School

(i) The system requests the administrator to enter the school code.

(i) The administrator enters the code of the school. The system retrieves and displays the school
name information.

(iii) The administrator makes the desired changes to the school information. This includes any of the
information specified in the ‘Add a School’ flow.

(iv) The system prompts the administrator to confirm the updation of the school.

(v) After confirming the changes, the system updates the school record with the updated informa-
tion.

(Contd.)

300 Software Testing

(Contd.)

Basic Flow 3: Delete a School
(iy The system requests the administrator to specify the code of the school.

(i) The administrator enters the code of the school. The system retrieves and displays the school
information.

(iii) The system prompts the administrator to confirm the deletion of the school.
(iv) The administrator confirms the deletion.

(v) The system deletes the school record.

Basic Flow 4: View a School

(i) The system requests that the administrator specify the school code.

(ii) The system retrieves and displays the school information.

6 Alternative Flows
Alternative Flow 1: Invalid Entry

If in the Add a School or Edit a School flows, the actor enters an invalid school name/code or the
actor leaves the school name/code blank, the system displays an error message. The actor returns to
the basic flow and may re-enter the invalid entry.

Alternative Flow 2: School Code Already Exists

If in the Add a School flow, a specified school code already exists, the system displays an error mes-
sage. The administrator returns to the basic flow and may re-enter the school code.

Alternative Flow 3: School Not Found

If in the Edit a School or Delete a School or View a School flows, a school with the specified school
code does not exist, the system displays an error message. The administrator returns to the basic
flow and may re-enter the school code.

Alternative Flow 4: Edit Cancelled

If in the Edit a School flow, the administrator decides not to edit the school, the edit is cancelled and
the Basic Flow is re-started at the beginning.

Alternative Flow 5: Delete Cancelled

If in the Delete a School flow, the administrator decides not to delete the school, the delete is can-
celled and the Basic Flow is re-started at the beginning.

Alternative Flow 6: Deletion not allowed

If in the Delete a School flow, a programme detail of the school code exists then the system displays
an error message. The administrator returns to the basic flow.

Alternative Flow 7: User Exits
This allows the user to exit during the use case. The use case ends.

7 Special Requirements
None.

8 Associated Use cases
Login

The Use Case Scenario diagram of ‘Maintain school details’ use case is given in Figure 6.5
and the scenario matrix is given in Table 6.8. The test case matrix is given in Table 6.9 and
corresponding matrix with actual data values is given in Table 6.10.

Creating Test Cases from Requirements and Use Cases 301

Basic Flow 1 Basic Flow 2
o (4
Alternative Alternative Alternative
Flow 2 Flow 4 Flow 3
Alternative Alternative
Flow 1 Flow 1
Alternative Flow 7 Alternative Flow 7
‘ Use case ends ‘ Use case ends
(a) (b)
Basic Flow 3 Basic Flow 4
o o
Alternative Alternative Alternative
Flow 5 Flow 3 Flow 3
Alternative
Flow 6
Alternative Flow 7 Alternative Flow 7

‘ Use case ends

(c)

Figure 6.5. Basic and alternative flows for ‘maintain school’, ‘programme’, ‘scheme’, ‘paper’, or

‘ Use case ends

(d)

‘student details’ use cases (a) Add details (b) Edit details (c) Delete details (d) View details

The scenario diagram is the same for Maintain Programme details, ‘Maintain Scheme
details’, ‘Maintain Paper details’, and ‘Maintain Student details’.

Maintain School Details

Maintain Programme Details

Alternative Flow 1: Invalid Entry
Alternative Flow 2: School already exists
Alternative Flow 3: School not found
Alternative Flow 4: Edit cancelled
Alternative Flow 5: Delete cancelled
Alternative Flow 6: Deletion not allowed

Alternative Flow 7: User exits

Maintain Scheme Details

Alternative Flow 1: Invalid Entry

Alternative Flow 2: Programme already exists

Alternative Flow 3: Programme not found
Alternative Flow 4: Edit cancelled
Alternative Flow 5: Delete cancelled
Alternative Flow 6: Deletion not allowed

Alternative Flow 7: User exits

Maintain Paper Details

Alternative Flow 1: Invalid Entry

Alternative Flow 2: Scheme already exists

Alternative Flow 1: Invalid Entry

Alternative Flow 2: Paper already exists

(Contd.)

302 Software Testing

(Contd.)

Maintain Scheme Details

Maintain Paper Details

Alternative Flow 3: Scheme not found
Alternative Flow 4: Edit cancelled
Alternative Flow 5: Delete cancelled
Alternative Flow 6: Deletion not allowed

Alternative Flow 7: User exits

Alternative Flow 3: Paper not found

Alternative Flow 4: Edit cancelled

Alternative Flow 5: Delete cancelled

Alternative Flow 6: Deletion not allowed

Alternative Flow 7: User exits

Maintain Student Details

Alternative Flow 1: Invalid Entry

Alternative Flow 3: Student not found
Alternative Flow 4: Edit cancelled
Alternative Flow 5: Delete cancelled
Alternative Flow 6: Deletion not allowed

Alternative Flow 7: User exits

Alternative Flow 2: Roll number already exists

Scenario 1- Add a school
Scenario 2- Add a school alternative flow

Scenario 3- Add a school alternative flow
exists
Scenario 4- Add a school alternative flow

Scenario 5- Edit a school

Scenario 6- Edit a school alternative flow.
Scenario 7- Edit a school alternative flow
Scenario 8- Edit a school alternative flow
Scenario 9- Edit a school alternative flow
Scenario 10- Delete a school

allowed

Scenario 15- View a school

: Invalid Entry

: School code already

: User exits

: Invalid Entry

: School not found
: Edit cancelled

: User exits

Scenario 11- Delete a school alternative flow: School not found
Scenario 12- Delete a school alternative flow: Delete cancelled
Scenario 13- Delete a school alternative flow: Delete not

Scenario 14- Delete a school alternative flow: User exits

Scenario 16- View a school alternative flow: School not found
Scenario 17- View a school alternative flow: User exits

Table 6.8. Scenario matrix for the ‘maintain school details’ use case

Basic Flow 1
Basic Flow 1
Basic Flow 1

Basic Flow 1
Basic Flow 2
Basic Flow 2
Basic Flow 2
Basic Flow 2
Basic Flow 2
Basic Flow 3
Basic Flow 3
Basic Flow 3
Basic Flow 3

Basic Flow 3
Basic Flow 4
Basic Flow 4
Basic Flow 4

Alternative Flow 1
Alternative Flow 2

Alternative Flow 7

Alternative Flow 1
Alternative Flow 3
Alternative Flow 4
Alternative Flow 7

Alternative Flow 3
Alternative Flow 5
Alternative Flow 6

Alternative Flow 7

Alternative Flow 3
Alternative Flow 7

As shown in Table 6.8, there are 17 scenarios for ‘Maintain School Details’ use case. For
‘Maintain School Details’ use case, we identify four input variables for various basic flows in
the use case. There are two input variables (school code, school name) and two selection
variables (edit confirmed, delete confirmed) in this use case. These inputs will be available for

the respective flows as specified in the use case.

Creating Test Cases from Requirements and Use Cases 303

("‘pau0Y)
nuaw ndu SHXD 19S) :MO}}
UIBAl 0} SuJn3al pue ndui pieau| aAjeulalje jooyos
-~ 1IX3 0} pamojje sI Jasn e/u e/u plleaul/ piiea / Pllep €)p3 -6 olleudds (1oL
sieadde |ooyos pajI92
- JO UB3I0S Ule e/u ON ndul pileA indul pileA -ued Jp3 -8 0UeUddS G)I
punoyj Jou jOOYIS :MO}}
aseqelep ay} Ul 1SIXd 10U S80p aAjeulalje jooyos
9p02 Paldads dY} YiMm |00YdS punojou jooyds e/u e/u e/u ndul piiep e)p3 -, oleudads QoL
A13ua pijeau] :moyy
1ewJoy ndul ndul aAljeula}je [00Yyos
pay1oads ay} Ul Jou S| 89P0 [00YOS 9P0J |00Y3s pljeAu] e/u e/u pljeaul/pljiep piieau] e)p3 -9 oleudds /Ol
AjInysso2ons |jooyas
- paiepdn s| [0ooyos e/u SOA ndul piieA indul pijea e)p3 -G olleudds Q0L
nuaw ndul SHXD 19S) :MO}}
UIBA 0} SuJnial pue nduy pljeau| aAljeuid)je |00Yos
— 1X8 0} pamojje si Jesn e/u e/u plleaul/ pilea / plep e ppy - oueuads Gol
S)SIXa Apeasje
9po09 |00YIS :MOJ}
aseqelep ay} ul juasald Apealje 1SIX9 aA3euld}je [00YoSs
S| 9p09 DWES dY) YUM [00YdS 8yl Apeadje 9pod |00YydS e/u e/u indui piiepn indul pijea e ppy -€ oueudds Il
A13ua pijeauj :moyy
1eWI0) aAjeulad}je jooyos
pay10ads ay) Ul 10U S| dWeU [00YdS dWeu |00Yds pljeAu| e/u e/u indul pieaul Indul pijea e ppy -g oMeudds €91
"aJed jou A13ua pijeauj :moyy
Op SOW099Q dWeU |00YdS "1ew.lo}) ndui ndu aAjeulalje jooyos
pay1oads 8y} Ul Jou s 8p0d [00YOS 9P0J |00Y3s pljeAu] e/u e/u pljeaul/piiea piieAu] e ppy -g oleuads ol
AlInjssad |jooyas
- -0NS p3appe sI |00YdoS e/u e/u ndul piiep ndul pijep € ppy -7 oleudds TOl
apod Pl
pawiyuod pauwuuod dweu jooyds looyds uonduosap ased
(Aue J1) syjaeway })nsai pajoadxy uonsjaq Hup3 Z Induj T nduj pue olleuads 31s9)

ased ash s|iejop [00YIS UjejuIeW, 8y} 10 XIi}ew ased 1sa] *6'9 alqeL

(01°9 91qeL J9j91) s[re} Jo sassed ased 1593
oy} Joyaym AJ110A pue Indino [emoe 93eIousT 03 IOPIO U SO[qBLIBA 9} [[€ 0} USAIS a1t sanjea indur [emjoe ‘sased 1s9) 9say) SunONISU0d
Io)Y "7 OLIBUADS JOJ PauSISap oIk SIsed 1S9) OM] "¢'9 9[qBL Ul UMOYS Se SOLIBUIOS /| UJAIS 9y} JOJ PIJeaId SISO 1S9) § dIB 1Y],

304 Software Testing

0l1euddsS aAll0adsal 10} a|ge|ieAe 1ou (s)uondo :e/u

nuaw ndui SHXD 19sN
UlBA 01 SuJnial pue ndu pllEAU| :MO}) dAI}RUID)E |[00YDS
~ 1x® 0} pamoj|e si Jas e/u e/u plieaul/ pliea / plep € MIIA -LT OMeUsdS QTOL
punoy jou jooyas
aseqelep ay} Ul 1SIXd 10U SB0p IMO}j dAIjRUIR) B |00YIS
8p09 PaII0ads syl yum [00Yos ayl punoj jou |00YydSs e/u e/u e/u 1ndul pijea B M3IA -OT oueudds /TII1
U9319sS ay1 Uo pake|dsip sl 9pod Alinjssaoons |ooyos
pauoads ayl yum aweu |ooyos ay pake|dsip sI |00YydS e/u e/u e/u 1ndul pljea B M3IA -GT OlleUdds 970l
nuaw ndui SHXD 19sN
Ule\ 01 SuJnial pue ndu pllEAU| :MO}) dAI}RUID)E |[00YIS
~ 1xd 0} pamoj|e si Jas e/u e/u plleaul/ pliea /pllepn e d1918@ -y T OMeudds GTOL
pamojje Jou uonaladg
IMOJj dAIjUIB) B |00YDS
S1SIXd |00YJS 8y} JO dwwel30id Pamo||e 10U uonalagd e/u e/u e/u Indul pilep e a)9]eQ -ET o1eudds 1oL
paj|eoued a)a19q
uonesado sieadde IMOJ} dA}UID) B [00YIS
919[9P 9Y} WIILUOD J0U S90P JBS |00YIS JO UDDIIS UIBI\ ON e/u e/u 1ndul pllep e 9)3]9d -gT 0l1euUddS £TIL
punoy Jou jooyds
aseqelep ay} ul 1SIXd 10U IMOJ} 9AljeUI) . [00YIS
S90p 9p09 paloads syl Yim |00ydS punoj 10U |00YOS e/u e/u e/u 1ndul pllep e 9)a9jad -ET 01eUddS ZTOL
AlInssao |ooyos
- -0NS pa1dlop SI |00YdS SOA e/u e/u 1ndul pljeA e 8)9]19Q -0T oMeuads TTOL
apod pI
pawliuod pawdyuod suleu jooyas looyas uonduosap ases
(Aue j1) syjaeway }nsai pajoadxy uonsjaq Hup3 Z Induj T nduj pue olleuads 31s9)
("pau0Q)

Creating Test Cases from Requirements and Use Cases 305

Table 6.10. Test case matrix with actual data values for the ‘maintain school details’ use case

Test Scenarioand School School Edit Deletion Expected Remarks (if
case description ID Name confirmed confirmed result any)
Id
TC1 Scenario 1- 101 University n/a n/a School is -
Add a school School of added suc-
Information cessfully
technology
TC2 Scenario 2- 1001 * n/a n/a Invalid school School code
Add a school code is not of
alternative specified
flow: Invalid length
entry
TC3 Scenario 2- 101 12univ n/a n/a Invalid school School
Add a school name name is
alternative not in the
flow : Invalid specified
entry format i.e.
it contains
digits in the
beginning
TC4 Scenario 3- 102 University n/a n/a School code Entry with
Add a school School of already exists the same
alternative Management school code
flow: School Studies already
code already exists in the
exists database
TC5 Scenario 4- * * n/a n/a User is -
Add a school allowed to exit
alternative and returns to
flow: User Main menu
exits
TC6 Scenario 5- 102 University Yes n/a School is -
Edit a school School of updated suc-
Management cessfully
Studies
TC7 Scenario 6- 101 univ n/a n/a Invalid school School
Edit a school name name is not
alternative in the speci-
flow: Invalid fied format
entry which is
less than 10
characters
TC8 Scenario 7- 103 n/a n/a n/a School not School code
Edit a school found does not
alternative exist in the
flow: School database
not found
TCO Scenario 8- 101 University No n/a Main screen User does
Edit cancelled School of of school not confirm
Information appears the edit
technology operation

(Contd.)

306 Software Testing

(Contd.)

Test Scenarioand School School Edit Deletion Expected Remarks (if

case description ID Name confirmed confirmed result any)

Id

TC10 Scenario 9- * * n/a n/a User is -
Edit a school allowed to exit
alternative and returns to
flow: User Main menu
exits

TC11 Scenario 101 n/a n/a Yes School is -
10- Delete a deleted suc-
school cessfully

TC12 Scenario 103 n/a n/a n/a School not School code
11- Delete a found does not
school alter- exist in the
native flow: database
School not
found

TC13 Scenario 102 n/a n/a No Main screen -
12- Delete of school
a school appears
alternative
flow: Delete
cancelled

TC14 Scenario 102 n/a n/a n/a Deletion not Programme
13- Delete a allowed of the
school alter- school
native flow: exists
Deletion not
allowed

TC15 Scenario * * n/a n/a User is -
14- Delete a allowed to exit
school alter- and returns to
native flow: Main menu
User exits

TC16 Scenario15- 101 n/a n/a n/a School is -
View a school displayed suc-

cessfully

TC17 Scenario 16- 103 n/a n/a n/a School not School code
View a school found does not
alternative exist in the
flow: School database
not found

TC18 Scenario 17- * * n/a n/a User is -
View a school allowed to exit
alternative and returns to
flow: User Main menu
exits

*: ‘do not care’ conditions (valid/invalid inputs)

n/a: option(s) that are not available for respective scenario

Creating Test Cases from Requirements and Use Cases 307

The use case description of ‘Maintain programme details’ use case is given below:

1.

Introduction

Allow the administrator to maintain details of the programme in the school. This includes adding,

updating, deleting and viewing programme information.

Actors

Administrator

Pre-Conditions

The administrator must be logged onto the system and school details for which the programme

details are to be added/updated/deleted/viewed must be available in the system before this

use case begins.

Post-Conditions

If the use case is successful, the programme information is added/updated/deleted/viewed

from the system. Otherwise, the system state is unchanged.

Basic Flow

This use case starts when the administrator wishes to add/edit/delete/view programme information

(i) The system requests that the administrator specify the function he/she would like to perform
(either ‘Add a programme’, ‘Edit a programme’, ‘Delete a programme’ or ‘View a programme’)

(ii) Once the administrator provides the requested information, one of the flows is executed.
B |f the administrator selects ‘Add a Programme’, the Add a Programme flow is executed.
B |f the administrator selects ‘Edit a Programme’, the Edit a Programme flow is executed.
B [f the administrator selects ‘Delete a Programme’, the Delete a Programme flow is executed.
B |f the administrator selects ‘View a Programme’, the View a Programme flow is executed.

Basic Flow 1: Add a Programme

The system requests that the administrator enters the programme information. This includes:

(i) The system requests the administrator to select an already existing school and also enter:
1. Programme name
2. Duration (select through drop down menu)
3. Number of semesters
4. Programme code

(i) Once the administrator provides the requested information, the programme is added to the
system.

Basic Flow 2: Edit a Programme

(i) The system requests that the administrator enters the programme code.

(i) The administrator enters the programme code. The system retrieves and displays the pro-
gramme information.

(iii) The administrator makes the desired changes to the programme information. This includes
any of the information specified in the Add a Programme flow.

(iv) The system prompts the administrator to confirm the updation of the programme.

(v) After confirming the changes, the system updates the programme record with the updated
information.

Basic Flow 3: Delete a Programme

(i) The system requests that the administrator specify the programme code.

(ii) The administrator enters the programme code. The system retrieves and displays the pro-
gramme information.

(iii) The system prompts the administrator to confirm the deletion of the programme.

(iv) The administrator confirms the deletion.

(v) The system deletes the programme record.

Basic Flow 4: View a Programme

(i) The system requests that the administrator specify the programme code.

(i) The system retrieves and displays the programme information.

(Contd.)

308 Software Testing

(Contd.)

6.

Alternative Flows

Alternative Flow 1: Invalid Entry

If in the ‘Add a Programme’ or ‘Edit a Programme’ flows, the actor enters invalid programme/
duration/number of semesters/programme code or the actor leaves the programme/duration/
number of semesters/programme code empty, the system displays an error message. The actor
returns to the basic flow and may re-enter the invalid entry.

Alternative Flow 2: Programme code already exists

If in the ‘Add a Programme’ flow, a programme with a specified programme code already
exists, the system displays an error message. The administrator returns to the basic flow and
may renter the programme code.

Alternative Flow 3: Programme not found

If in the ‘Edit a Programme’ or ‘Delete a Programme’ or ‘View a Programme’ flows, a programme
with the specified programme code does not exist, the system displays an error message. The
administrator returns to the basic flow and may re-enter the programme code.

Alternative Flow 4: Edit cancelled

If in the ‘Edit a Programme’ flow, the administrator decides not to edit the programme, the edit
is cancelled and the Basic Flow is re-started at the beginning.

Alternative Flow 5: Delete cancelled

If in the ‘Delete a Programme’ flow, the administrator decides not to delete the programme, the
delete is cancelled and the Basic Flow is re-started at the beginning.

Alternative Flow 6: Deletion not allowed

If in the ‘Delete a Programme’ flow, a scheme detail of the programme code exists then the
system displays an error message. The administrator returns to the basic flow.

Alternative Flow 7: User exits

This allows the user to exit during the use case. The use case ends.

Special Requirements

None.

Associated use cases

Login, Maintain School Details, Maintain Scheme Details.

The Use Case Scenario of ‘Maintain programme details’ use case is given in Figure 6.5 and
the scenario matrix is given in Table 6.11.

Table 6.11. Scenario matrix for the ‘maintain programme details’ use case

Scenario 1- Add a programme Basic Flow 1

Scenario 2- Add a programme alternative flow: Invalid entry Basic Flow 1 Alternative Flow 1
Scenario 3- Add a programme alternative flow: Programme code Basic Flow 1 Alternative Flow 2
already exists

Scenario 4- Add a programme alternative flow: User exits Basic Flow 1 Alternative Flow 7
Scenario 5- Edit a programme alternative flow: Edit a programme Basic Flow 2

Scenario 6- Edit a programme alternative flow: Invalid entry Basic Flow 2 Alternative Flow 1
Scenario 7- Edit a programme alternative flow: Programme not found Basic Flow 2 Alternative Flow 3
Scenario 8- Edit a programme alternative flow: Edit cancelled Basic Flow 2 Alternative Flow 4
Scenario 9- Edit a programme alternative flow: User exits Basic Flow 2 Alternative Flow 7
Scenario 10- Delete a programme Basic Flow 3

Scenario 11- Delete a programme alternative flow: Programme not Basic Flow 3 Alternative Flow 3
found

Scenario 12- Delete a programme alternative flow: Deletion cancelled Basic Flow 3 Alternative Flow 5
Scenario 13- Delete a programme alternative flow: Deletion not Basic Flow 3 Alternative Flow 6

allowed

Scenario 14- Delete a programme alternative flow: User exits Basic Flow 3 Alternative Flow 7
Scenario 15-View a programme Basic Flow 4

Scenario 16- View a programme alternative flow: Programme not Basic Flow 4 Alternative Flow 3
found

Scenario 17- View a programme alternative flow: User exits Basic Flow 4 Alternative Flow 7

Creating Test Cases from Requirements and Use Cases 309

(*prU0Q)

1SIX9
Apealje apoo
aseqeiep ayy ul awweigold
S1SIXe Apead|e apod S1SIX9 IMOJ} OAIlRUIB) R
awuweJgoid swes Apealje apod ndul awuweigoid e
ayl yum Anug swwessold e/u e/u ndulpiien ndul pijeA pieA indui pijep SSA ppVy-g oueusads /Ol
1ewlo}
pau1oads ay) ul J0U pljeAul 9p0D ndul
S| 9p0d dwwelgold swwesgoid e/u e/u ndui pijeau] indui pijea plleA indul pijep SOA —op— 990l
piieaul
SIEICEINES ndul pijeau| ndul
= JoJsquinN e/u e/u /PlleA indul pijeau] plieA ndul pijep SBA —Oop— GOl
po109|9s pljeaul 1ndul 1ndul 1ndul
lou s| uoneing uoneinqg e/u e/u pijeau| /plleA plieau| /plieA plleau] indul pijea SBA —0p— 0l
1ewuoy paly ndul
-109ds 9y} Ul 10U S| pljeAUl dWeU ndu indui plleAu|
aweu sawweigold awweigdold e/u e/u pieau| /pliea plieaul /piiea /plleA 1ndul pijeAu| SOA —op— €01
A1ua pijeau|
IMOJ} OAIlRUIB) e
ndul swuwelJgoud
jooyos e [EILETEN ndul prjeau ndul pileau] indul pijeau| e ppy -¢
108[8s 10U pIp Jesn 10U |o0YdS e/u e/u /PleA plieau] /plieA /PIeA /PlleA ON oleusds ol
awwes3
-04d e ppe
0} pamoj|e ndul swweJsdoid e
- Sl Jasn e/u e/u ndul pilep Indul pijeA plleA ndul pijep SOA PPy -7 OLeuadS TOlL
9pod SI9)SaWIS aweu pajodlas uonduosap Pl
ndino pawiyuod pawiuod swuweidold joJaquny uoneing swweigoid jooyas pue awepN ased
(Aue j1) syjaeway pajoadx3 uonsjaq Hp3 G ynduj {Indu; g Induj Zindu; T Induj oleudds 3sal
ased ash ,s|iejap sawweigoad ulejuiew, ay) 10j Xulew ased 1sa) "¢T'9 alqel

"€1°9 9[qeL Ul USAIS SI sanjeA Bjep [enoe Yim Xinew Surpuodsaliod 9y} pue g[°9 9[qe], Ul USAIS SI XIIJeUl 9Sed }$9) Y[, ‘POWLIIFU0D
Q19[Op pPUEB PAWILUOD P ‘UOLBIND ‘QUIBU [0OYDS IPN[OUI SI[QELIBA UONI[AS Y], "Op0d durueidord pue SIAISOWAS JO IdqUINU ‘UOTRIND
‘owreu swwel3olrd are sajqeriea ndur oy I, "S9[qRLIBA UOIO[AS dJB INOJ YOIYM JO JNO ‘sojqeLiea Indul UdAIS AJIIUSPI 9M ‘9SO asn) WO

310 Software Testing

("pau0Q)

sieadde pajjeoued Up3
uonelsado awuwel3 IMOJ} OAIlRUIBY R
HPd Byl WJIIU0d -oid jJo ndul awuweigoid e
Jou ssop Jesn husw gns e/u ON IndulplleA Indul pijeA pieA indui pijea e/u 1p3-g oueusds oL
aseqgelep ayl punoy
Ul 1SIX0 10U Sa0p 10U dwwesgold
9poo swwelgoid IMOJ} SAIjRUISY e
pauloads ay) punoj 1ou awuweigoid e
UM swwesgold swwesgoid e/u e/u Indul piea e/u e/u e/u e/u 1p3 -/ 0UeuddS E£TIOL
pijeaul
SEICEINES 1ndui pijeau| ndui
~ Jousqunn e/u e/u /PlleA indul pijeaul plieA andul piiea e/u —op— ZTOL
pa109|9s pieaul 1ndui pijeau] indui pijeau| ndul
Jou si uoneing uoneinqg e/u e/u /Pllea /PlleA pleaul indui pijea e/u —Oop— TTO0L
A1ua pijeau|
1ewJo) pay pieaul ndul IMOJ} OAIlRUIB) R
-109ds 8y} ul 10U S| sweu indui prieau) indul pijeau| pljeau| awuweigoid e
aweu sawweigold swweigdold e/u e/u /PleA /PlEeA /PlleA 1ndul pijeau| e/u 1p3-9 0UeuddS (OTIL
payepdn
AlInyssao MOJ} dAIjRUISY .
-ons si ndul swuweJgoud e
~ dwuweigold e/u S9A Induipiep Indul piiep pleA indui pijep e/u up3-Goueusds Il
nuaw uiep
0} suJnyal S1IXd J19S)
pue 1xe ndul IMOJ} dAIlRUIBY R
0} pamojje ndul prieau| 1ndui prjeau pileau] 1ndul pijeau| awuweigoud e
- SRS e/u e/u / pllep / PleA / plep / plep SSA PPV -7 OLeusds 801
9pod S19)saWas auweu pajod|9s :c_u.n_‘_omw_u pI
indino pawayuod paswiyuoo dwweigold Jo ldqunN uopeing swweigold |ooYydss pue aweN ased
(Aue J1) syjaeway pajoadx3 uons|aqg np3 G nduj findu; ¢ nduj Z2indu; T nduj oleuad’s 1sal
(‘pau0Y)

Creating Test Cases from Requirements and Use Cases 311

(‘pauoQ)

nuaw ulen S1Xd 1asN
0} suinlal IMOJ} 9AIlRUIB) e
pue 1xe awuweigoud
0] pamojje ndul pijeau] ee’leg -1
- S| Jasn e/u e/u / pPllea e/u e/u e/u e/u oueusdS 0zoL
pamoje
10U UONBIAQ
IMOJ} 9AIlRUIBY e
awuweJsgoud
s]sixe sawwelsdoud pamoje e o1919q €T
9y} JO sWaYdS 10U uonalag e/u e/u Indui pijea e/u e/u e/u e/u oLeuUddS GTOL
pa||ooued
uonalaQ Moy
aAleUId) e
uonesado swweJdoud
uonalap ayy wuy pa||ooued e avleq -¢T
-U0J 10U S90p JasN uonsjeqg ON e/u Indui pijea e/u e/u e/u e/u oLReUSIS 8TIL
punoy
aseqgelep ayy 10U dwweldoid
Ul 1SIXe 10U SB0p IMOJ} 9AIlRUIB) e
9p0oo swwelsdoud awweJdoud
pauioads ay) punoj jou e a9101e9q -TT
Uum awwelgold owweigoid e/u e/u ndul pijea e/u e/u e/u e/u oueusds JTIOL
paiolap Ajny swweJdoud
-$$900NS S| e 91919q -0T
- awuweigoid SOA e/u Indui pijea e/u e/u e/u e/u oueusds 9TolL
nuaw ulen
0} suinlal S1Xd 489S
pue 1xo ndul IMOJ} 9AIleUIB) e
0] pamojje 1ndul pijeau] indui pijeau pileau] indui pijeau) awuwesgoid e
- Sl Jasn e/u e/u / PlleA / PlleA / PleA / Pllep e/U)p3-6 0Leudds GTIL
9pod SI9)SaWaS aweu pajodlas uonduosap Pl
ndino pawiuod pawiuod awuweisold jo JaquinN uoneing awuweigoid |ooyos pue aweyN ased
(Aue J1) syjaeway pajoadxy uonsjaq Hp3 G ynduj fIndu; g Induj Zinduj T Induj oleudds 3sal

(*p2U0D)

011BUSIS BAI0adsal 10 9|ge|ieAe Jou (s)uondo :e/u

nuaw uien S1IXd J9SN
0} suinjal IMOJ} 9AIlRUIBY R
pue 1xe awuweJsgoud
0] pamojje 1ndul pijeau| e MOIA -/T
- S| Jasn e/u e/u / pllen e/u e/u e/u e/u 0oueUdIS €201
punoy
aseqelep ayl 10U dwweldoid
Ul 1SIXe 10U Sa0p IMOJ} BAIlRUIBY e
9poo swwelgoid awuweigoud
payloads ay) punoj jou e MaIA -9T
yum swwesdold swuweigoid e/u e/u ndul pijea e/u e/u e/u e/u oueuUddS ZZol
pake|dsip awuwelsgoud
ale s|ieyep e MOIN-GT
- awuweigoid e/u e/u 1ndul pijea e/u e/u e/u e/u oueuddS TZOL
9pod S19)saWas aweu pajod|des :O_un_homw—u pI
Indino pawuyuod poswiyuoo dwwelgold Jo ldqunN uopeing swwelgold |0oYydss pue saweN ased
(Aue J1) syjieway pajoadx3 uonsleqg up3 G ynduj fndu; € nduj Zcindu] T nduj oleuads 1sal

312 Software Testing

("pauoQ)

Creating Test Cases from Requirements and Use Cases 313

(*p1U0Y)

nusw Ulep
01 suinjai pue
13 0] pamoj|e

S1IX8 Jasn
IMOJJ @AlRUISY R
swweJsdoid e

- Sl Jesn e/u e/u * * * * SOA PPV -7 Olleusds 801
aseqgelep s1sIxe Apealje
ay} Ul sisIxe 9p02 swweidoid
9poo swwelsdoid sisIxe IMOJ} 9ARRUIS) R
awes ayl yum Apealje apod awuweigoid e
awuweJsgoid awuweJgoid e/u e/u €T 8 v (LNyoalg SOA pPpPY-Eoueusds /oI
syogeydie uiey
-u09 J0UURd pue
play ouswWNU B'S| pIj_AUl 9POD
9p02 swwelsdoid awwesgoid e/u e/u pPZT 9 € YOW SOA —op— 901
€ sl
swuwelJgoud sy} jo
uoneinp se 9 aq pljeaul
pINoOYs S191SaWas S191SoWas
10 JaquinN 10 JaquinN e/u e/u * T € VOW SOA —O0p— G0l
pa109|9s pijeAul
J0U uoneIng uoneing e/u e/u M * VOW SOA —op— 0L
SHSBIP SulL0D
} "9°1 Jewo) pay
-199dS QY1 Ul 10U S| pljeAul dweu
aweu awweJgoid awuweJgoid e/u e/u % % % eOCTIN SOA —op— €91
AIjua pljeau|
IMOJ} 8AllRUIBY R
|00yos e 109|9s po109|es swuwelJgoid e
10U pIp J8sn 10U [00Y2S e/u e/u % * % % ON PpY-Z 0ueusds oL
awuweJgoid e
ppe 01 pamoje swwelgoid
- s1Jasn e/u e/u ZT 9 € YOW SOA E ppy-T oLeusds Ol
Pl
ndino pawlyuod pawliyuod 9poo SI9)SaWIS aweu payosas uondiasap pue ases
(Aue J1) syjieway pajoadx3 uonslad HP3 swuweiSoid jJoJaquinN uopeing swweiSoild |00YdS SWeu oleUdIS)ISI]

aseo ash awiwelgoid ay) 104 SanjeA ejep [enjoe yum Xujew ased 3sa] "€T°9 dlqel

314 Software Testing

("pau0Q)

punoj

aseqeiep sy} 10U dwwesgold
Ul 1SIX8 10U Se0p IMOJJ 8AllRUIBY R
9p0oo swwesgoid awuweigoud
palloads ayy punoy 1o0u e 919190 -TT
yum swiwesgoid awuweJdoid e/u e/u or e/u e/u e/u e/u oleuddS /TOL
palsjop awuwel3d
AlInysseoons -0.d e @1919Q
- sl awwesdoid SOA e/u T e/u e/u e/u e/u -0T oleusdsS 9Tl
nuaw uie SNEPEN)
0] suinjal pue MO} 8AljRUIBY R
11X 01 pamojje swuweJgoud e
- sl Jasn e/u e/u * * * * e/u 1p3 -6 OlIBUdIS GTOL
paj|sdoued 1p3
uonesado IMOJ} dAIlRUIBY R
1pd 8yl WIILU0D sieadde swweJsdoid e
10U S0P JasN wuoy vuelg e/u ON €T 8 ¥ (L)yoalg e/u up3-goueusdS HTIL
aseqeiep ayi punoy
Ul 1SIXS 10U Se0p 10U swwesdoid
2pod swweligoud IMOJ} BAIlRUIBY R
payioads ayy punoy jou swuwelJgoid e
yum swwesgoid awuweigoid e/u e/u vT e/u e/u e/u e/u 1p3 -, oLeusds €TIL
¥ Sl uoneinp se
8 9q p|noys sJa) sla)sowas
-S8Wss JO JaquunN 10 JaquinN e/u e/u * €T 14 (LDuoalg e/u —Op— CTOL
pa109|9s pljeAul
Jou uoneing uoneing e/u e/u * ¥ (1hyoa1g e/u —Op— TTOL
SUSIP SUIBIUOD MOJ) Dwweld AIlud pijeau|
puejewJo) paly -oid eup3, ul :MOJ} 8AllRUIBY R
-109ds @yl Ul 10U S| pljeAUl Bweu awuweigoid e
aweu swweidoid awweigoid e/u e/u % % % €ZTeoN e/u 1Up3-90LeUSIS OTIL
paupa MOJ} SAIjRUIBY R
AlInyssaoons awuweigoid e
-~ S| dwwes3oid e/u SOA €T 8 14 (11yoa1g e/u 1p3 -G oueUddS BIL
Pl
ndino pawiuod pawlPuod 9poo sId)SaWAS aweu pajosas uopdiasap pue ases
(Aue j1) syjieway pajoadx3 uonslag HpP3 swuweiSold jolaquinN uopeing swweiSoid |OOYdS dweu OUeuddS 3IS3a|
(‘prU0Q)

Creating Test Cases from Requirements and Use Cases 315

0LIBUBIS dAIl0adsal 10} d|ge|ieAe Jou (s)uondo :e/u
(sandul pijeAul/pljeA) SUORIPUOD ,84eD 10U 0P,

nuaw urepy
0} suinjas pue
1X3 0] pamo||e

STEFERD
IMOJ} 9AIjRUIB) .
swwesgoid e

- sI Jasn e/u e/u % e/u e/u e/u /U M3IA -)T OLBUdIS £2I1
aseqelep ay} punoy
Ul 1SIXS 10U S0P 10U dwwesgold
9poo swweJgoid IMOJ} OAIleUIB) e
pauoads ayy punojiou awuweigoid e
yum swwelsgoid awweigoid e/u e/u o7 e/u e/u e/u /U M3IA -OT 0LBUdIS ZZIOL
pake|dsip
ale s|ielop awuweigoid e
- awweJgdold e/u e/u €T e/u e/u e/u e/U MOIA-GT OLeUdIS TZIL
SIE]
nuaw uiejp J9SM :MOJ} DAL
0] suJnlaJ pue -euJale swwesd
1X8 0} pamoy|e -04d e 91919Q
- [SPER] e/u e/u % e/u e/u e/u e/u -yT 0UBUdIS 0TIl
palo|ap 8q J0uued
9p0d pauyloads ayy pamojje 1ou
yum swweigoud uod|a(Q :MOJ} dAIL
3y} 9ouUdy ‘SisIxe -euJaye swweld
Apealje plooal pamojje -0id e @1919Q
a3yl Jo dWBYdS 10U uondI_vQ e/u e/u €T e/u e/u e/u e/u -€T OUBUBIS BTIL
pa||ooued
uoI18|9(Q :MOJ} dAI}
uonesado sieadde -euJaye swweid
919|9p 9yl WJu0d awuwelgoid -0id e @1919Q
10U S90p J9SN JO hudw gng ON e/u €T e/u e/u e/u e/u -¢T oueusds |TIL
Pl
ndino pawiuod pawayuod 9pod SI9)SOWas aweu pajodjes uondiasap pue ased
(Aue j1) syieway pajyoadx3 uonaldq }Np3 swuweiSoid joi1aquinN uopeing sawweisoild |O0YdS dWeU OLBUdIS }SI

(*prU0D)

316 Software Testing

The test cases for other use cases of the URS case study are given in Appendix II.

6.3 GUIDELINES FOR GENERATING VALIDITY CHECKS

We want to have guidelines for generating validity checks for input data. We may have to give
many inputs to a program via forms, data files and / or input statement(s). Ideally, we want to
enter correct data and for this purpose we should test various conditions with invalid inputs to
the program. Some of the guidelines are given in the following sub-sections.

6.3.1 Data Type

If input x is defined as an integer, then x should also be checked for float, char, double, etc.
values. We should clearly state what can be accepted as an input. In the login form, (please
refer to Figure 6.7), we should clearly state the type of both the inputs i.e. Login Id and
password. For example, the Login Id input should be numeric and should not accept alphabets,
special characters and blank spaces. Similarly, the password input will accept alphabets, digits,
hyphen and underscore but will not accept blank spaces. We should generate validity checks
for every ‘do’ and every ‘do not’ case.

6.3.2 Data Range

The range of inputs should also be clearly specified. If x is defined as an integer, its range, (say 1<
x < 100) should also be defined. Validity checks may be written for conditions when x < 1 and x >
100. For example, in login form, length of the login-id is defined as 11 digits and the password as
4 to 15 digits. We should generate validity checks for both valid and invalid range of inputs.

6.3.3 Special Data Conditions

Some special conditions may need to be checked for specified inputs. For example, in the
e-mail address, ‘@’ and ‘.’symbols are essential and must be checked. We should write validity
checks for such special symbols which are essential for any specific input.

6.3.4 Mandatory Data Inputs

Some inputs are compulsory for the execution of a program. These mandatory fields should be
identified and validity checks be written accordingly. In the login form, both inputs (login Id
and password) are mandatory. Some fields (data inputs) may not be mandatory like telephone
number in a student registration form. We should provide validity checks to verify that
mandatory fields are entered by the user.

6.3.5 Domain Specific Checks

Some validity checks should be written on the basis of the expected functionality. In the
URS, no two semesters should have a common paper. The roll number should be used as a

Creating Test Cases from Requirements and Use Cases 317

login Id. A student cannot select more than the required number of elective papers in a
semester. These domain specific issues should be written as validity checks in order to verify
their correctness.

6.4 STRATEGIES FOR DATA VALIDITY

What are data validity checks? Are they required to be tested? Why should data validation be
given focus in testing? Why do we expect valid data? These questions are important and their
answers may motivate us to generate test cases using data validity checks.

Valid data means correct data which is expected in every software. The software should
provide checks for validating data entered into the system. Whenever and wherever we attempt
to enter invalid data, an appropriate message should be displayed. Ideally, the software should
only allow the entry of valid data into the system. If we are able to do so with a good design,
we may be able to minimize many problems. In order to give proper focus on data validations,
there is a provision of writing data validity checks for every form / screen in the SRS document.
These data validity checks may become the basis for the generation of test cases.

Data validity strategies are often influenced by the design of the software. Three popular
strategies for data validation are discussed which may be applied at the early phases of the
software development life cycle.

6.4.1 Accept Only Known Valid Data

We all want to enter valid data into the system. If our software accepts only correct data, our
design is a successful design. If it does not happen, we may enter invalid data into the system,
which may further complicate many issues. Invalid data may force the software to behave
unexpectedly and may lead to a failure. Hence, software should accept only input(s) that is /
are known to be safe and expected.

Consider the SRS document of the URS (refer Appendix I). The login form is given in
Figure 6.6 that allows users to enter into the system using a valid login Id and a valid
password. Some data validity checks are also given in Table 6.14. Our login form should
only accept valid login Id and valid password and allow the user to enter into the system. If
we give valid entries for both login ID and password, we should enter into the system,
otherwise proper error message(s) should be displayed. In order to ensure validity of data,
we should generate test cases to check the validity of the data and to also check the conditions
when we enter invalid data. Both valid and invalid data inputs will generate test cases that
may check the entry of data into the software. We have identified 8 validity checks shown
in Table 6.14 and may generate test cases as given in Table 6.15. If the first input is invalid,
the second input automatically becomes ‘do not care’ and an appropriate error message is
displayed. Every validity check condition at least generates a test case. In Table 6.15, two
test cases (TC1, TC10) accept only valid data. We have identified three test cases for VC4
and two test cases for VC6.

318 Software Testing

= Login Form (X
4
University Registration System
Log In % v N
a Login I '_ Lt : | L)
oK B¢ | ChangePassword| - -
Figure 6.6. Login form
Table 6.14. Validity checks for login form
Validity check Number Description
VC1 Every user will have a unique login Id.
VC2 Login Id cannot be blank.
VC3 Login Id can only have 11 digits.
VC4 Login Id will not accept alphabetic, special and blank spaces.
VC5 Password cannot be blank.
VC6 Length of password can only be 4 to 15 digits.
VC7 Alphabets, digits, hyphen and underscore characters are allowed in

password field.

VC8 Password will not accept blank spaces.

Creating Test Cases from Requirements and Use Cases 319

Table 6.15. Test case with actual data values for the login form

Test Validity Loginid Password Expected output Remarks
case check
Id Number
TC1 VvC1 10234567899 Rkhj7689 User successfully logs -
into the system
TC2 VC2 * Please Enter Login Id Login id cannot
be blank
TC3 VC3 1234 * Invalid login id Login id should

have 11 digits

TC4 VC4 Aed55678521 * Invalid login id Login id cannot
have alphanu-
meric characters

TC5 VC4 123%$4567867 * Invalid login id Login id cannot
have special
characters

TC6 vC4 123 45667897 * Invalid login id Login id cannot
have blank spaces

TC7 VC5 10234567899 Please Enter Password Password cannot
be blank

TC8 VC6 10234567899 Ruc Invalid password Password cannot

be less than 4
characters in
length

TC9 VC6 10234567899 Rtyuiopkill23678 Invalid password Password cannot
be greater than
15 characters in

length
TC10 VC7 10234567899 Rty_uyo User successfully logs Password can
into the system have underscore
character
TC11 VC8 10234567899 Rt yuii Invalid password Password cannot

have blank spaces

*: ‘do not care’ conditions (valid/invalid inputs)

Additional validity checks are designed in order to validate various inputs in the ‘Change
password’ form. The ‘Change password’ form is given in Figure 6.7 and the validity checks are
given in Table 6.16. The corresponding test cases for each validity check are given in Table
6.17.

320 Software Testing

= Change Password E]

Login details

Login

Old password

New password

Confirm password

Change | Exit

Figure 6.7. Change password form

Validity check Number

Table 6.16. Validity checks for change password form

Description

VC9

VC10
VC11
VC12
VC13
VC14

VC15
VC16
VC17
VC18

VC19
VC20
vC21

Login Id cannot be blank.

Login Id can only have 11 digits.

Login Id will not accept alphabetic, special and blank spaces.
Old password cannot be blank.

Length of old password can only be 4 to 15 digits.

Alphabets, digits, hyphen and underscore characters are allowed in
old password field.
Old password will not accept blank spaces.

New password cannot be blank.
Length of new password can only be 4 to 15 digits.

Alphabets, digits, hyphen and underscore characters are allowed in
new password field.

New password will not accept blank spaces.
‘Confirm password’ cannot be blank.

‘Confirm password’ should match with new password.

Creating Test Cases from Requirements and Use Cases 321

(syndul pijeAul/pljeA) SUORIPUOD 848D 10U 0P,

piomssed mau

UUM yolew pinoys ,pIomssed WUILU0Y,
Mue|q 8¢ J0UURD ,pPIOMSSEY WILUOY,
saoeds yue|q aAeYy Jouued piomssed maN

Jar0e12YD
9100SJ9pUN BARY URD plomssed MaN
y18us| Ul si10eIRYD

GT Ueyl Ja1eald aq Jouued pIomssed
3uo| si91

-oeJBYD {7 UBY] SS3| 8¢ 10UURD plomssed

jue|q 8g J0UURD PIOMSSEd
sa0eds yue|q aA_Y J0UURD plomssed
J810BJIRYD B100SIBPUN BABY UBD PIOMSSE(
y18ua| ul si10eIRYd

GT Ueyl Ja1eai3 aqg J0uuRd pIoMSSed
3uo| si91

-oeJBYD 4 UBY] SS8| 8¢ 10UURD plomssed

yue|q aq 1J0uued plomssed

sooeds yue|q aAeY J0UUR) pI UIS0T
sJa1oelieyd [eloads aAey J0uuR) piI UIgoT
siayoeleyd

o_._mF_:cmr_Q_m 9AeY Jouued pi c_mo|_
SNBIP TT 9AeY pInoys pi ui3o7]

yue|q 8q jouued pi uigo

plomssed
WYUOY, pleAu|

piomssed mau pijeau|
piomssed mau pijeau|
piomssed mau pijeau|

piomssed mau pijeAu|

plomssed pjo pijeau]

piomssed p|o pljeAu|

piomssed p|o pljeAu|

piomssed
P10 191u3 ased|d
p1 uigo| pieau]
p! uIgo| pijeAu|

p1 uido| pieau]
p1 uI80| pIjeAu|

p| uigo Joju3g aseald

syieway

Indino payoadxg

0An"A1y oAn~Ary INToNY 668.9S¥€C0T TCOA LTOL
0An"Ary INToNY 668.9S7€C0T OCOA 9TOL

* oAn A1y IN7oNY 668.9GY€C0T 6TOA GTOL

* oAn~Ary IN7oNY 668.9G¥€C0T 8TOA ¥T0L

% 8/9€CTTMdoINAY IN7oNY 668.9GY€C0T LTOA €T0L

* s INTonY 668.9G¥€C0T LTOA TTOL

* INToNY 668.9SG7€C0T 9TOA TTOL

¥ * A1 668.9G7€Z0T STOA OTOL

* * 0An"Ad 668.9SY€C0T ¥TOA 601

* % 8/9€CTTMdOINAYYY 668.9G7EC0T ¥TOA 801

* * ony 668.957€C0T E€TOA LOL

* * 668.957€C0T CTOA 90l

* * x 168199GY €CT TTOA GOl

¥ * + L98/9SY$ECT TTOA 0L

¥ * x TCG8.9GGT9Y TTOA €01

* * * ¥€CT OTOA <Ol

M % * 60A TOL

'ON |

piomssed)}oayo aseo
wJiyuo) piomssed MaN piomssed p|o p1 uiSo AMpllepn 31s9L

w0 piomssed agueys, ay} 10} SanjeA elep [enioe Yjm ased 1sa] LT 9 alqel

322 Software Testing
6.4.2 Reject Known Bad Data

We should be able to identify the correctness of the data. If the input data is not as expected,
the software should reject it and an appropriate error message should be displayed. We should
check the data type from the form itself. If the integer type x is the input and we enter x as a
float, an error should immediately be displayed. The software should accept values in the
specified range. If the input is beyond range, it should not be accepted at all. Many test cases
of Table 6.15 check this concept and reject known bad data (refer TC3, TC4, TCS, TC6, TCS,
TC9, and TC11) by giving appropriate error messages.

6.4.3 Sanitize All Data

Data sanitization is the process of purifying (filtering) undesirable data in order to make it
harmless and safe for the system. We may sanitize data at the input stage where data is entered
by the user. We may also sanitize the data at the output stage where data is displayed to the
user in such a way that it becomes more useful and meaningful. For example, when an integer
variable is used, its lower and upper permissible limits must be specified and provisions should
be made in the program to prevent the entry of any value outside the permissible limit. These
limits are hardware dependent and may change, if not earlier specified. In case of Boolean
variable, provision should be made in the program to reject any value which is not from the
following list:
List = (true, false, 0, 1, yes, no)

Hence, we should attempt to make undesired data harmless, especially when dealing with
rejecting bad inputs. This may be easy to write but extremely difficult to do in practice. It is
advisable to reject undesired data if we want to play safe and secure.

Example 6.2: Consider the ‘Maintain School detail” form of the URS as given in Figure 6.8.
The validity checks for the ‘Maintain school details’ form are given in Table 6.18. Generate
test cases from these validity checks.

School name || Exit |
School code ﬁ =
iew

Add | Edit | Ddetel

Figure 6.8. Maintain school details form

Creating Test Cases from Requirements and Use Cases 323

Table 6.18. Validity checks for school form

Validity check Description

Number

VC1 Only Administrator will be authorized to access the ‘Maintain School Details’
module. Test case of this validity check cannot be generated as access to the
module is provided to the actor at the time of login.

VC2 Every school will have a unique school name.

VC3 School code cannot be blank.

VC4 School code cannot contain alphanumeric, special and blank characters.

VC5 School code will have only 3 digits.

VC6 School name cannot be blank.

VC7 School name will only accept alphabetic characters and blank spaces.

VC8 School name cannot accept special characters and numeric digits.

VC9 School name can have from 10 to 50 characters.

Solution:

Test cases based on validity checks for ‘Maintain school details’ form are given in Table 6.19.

Table 6.19. Test case with actual data values for the school form

Test Validity School School Name Expected result Remarks (if any)
case check ID
Id No.
TC1 VC2 101 University School of User successfully -
Information Technology adds the school
record
TC2 VC3 * Please enter school School code cannot be blank
code
TC3 VC4 drr * Invalid school code School code cannot contain
alphanumeric characters
TC3 VC4 1_* * Invalid school code School code cannot contain
special characters
TC3 VC4 13 * Invalid school code School code cannot contain
blank characters
TC4 VC5 1012 * Invalid school code School code can have length
of 3 digits
TC5 VC6 102 Invalid school name School name cannot be blank
TC6 VC7 102 University School of User successfully -
Management Studies adds the school
record
TC7 VC8 103 University 434 Invalid school name School name cannot contain
digits
TC8 VC8 104 University_school_of _ Invalid school name School name cannot contain
basic_applied_science special characters
TC9 VC9 105 univer Invalid school name School name cannot contain
less than 10 characters
TC10 VC9 106 >50 Invalid school name School name cannot contain

more than 50 characters

*: ‘do not care’ conditions (valid/invalid inputs)

324 Software Testing

Example 6.3: Consider the ‘Maintain programme detail’ form of the URS as given in Figure 6.9.
This form will be accessible only to the system administrator. It will allow him/her to add/edit/
delete/view information about new/existing programme(s) for the school that was selected in the
‘Programme Details’ form. Generate the test cases using validity checks given in Table 6.20.

= Programme Details @

Programme:
Schod | =]
Programme | =
N
_ Vou_|

No. of semester |

Figure 6.9. Maintain program details form

Table 6.20. Validity checks for program form

Validity check No. Description

VC1 Only Administrator will be authorized to access the ‘Maintain Programme
Details’ module.
VC2 Every programme will have a unique programme code and name.
VC3 School name cannot be blank.
VC4 Programme name cannot be blank.
VC5 Programme name can be of length 3 to 50 characters.
VC6 Programme name can only have alphabets and brackets.
VC7 Programme name cannot have special characters, digits and blank spaces.
VC8 Duration cannot be blank.
VC9 Duration can have a value from 1 to 7.
VC10 Number of semesters cannot be blank.
VC11 Number of semesters can have a value from 2 to 14.
VC12 Programme code cannot be blank.
VC13 Programme code cannot have special characters, digits and blank spaces.
vCi14 Programme code can have only 2 digits.
Solution:

The test cases based on validity checks of the ‘Maintain Programme Detail” form are given in
Table 6.21.

Creating Test Cases from Requirements and Use Cases 325

TI1 xtpuaddy ur udAIg are Apmys ased SN Y} JO SWIOJ IAYI0 I0J SYOYD AIpIeA oYL,
(syndul pijeAul/pljeA) SUORIPUOD ,84eD 10U 0P, iy

Sugip g utey
-u09 AJUO ued Bp0d swweldoid 9poo swwelgoid pijeau| €ZT 9 < YON SOA YTOA JTOl
saoeds yue|q
UIB1U0D JoUURD 9p0o dwweldoid 9po2 swweidoid pijeau) ZT 9 € VO SOA STOAN 9TOL
sJajoeieyo |eoads
uIB1U0d JouURd 9p0J dwweldoid 9p02 swweidoid pijeau| 0T 9 € YO SOA €IOA GTOL
sJo1oeleyd ouswnueydie
UIB1u0d JoUURD BP0J dwwel3oid 9poo swweigoid pijeau| ezt 9 € VO SOA STON ¥TOL
apood
awweJsgold Jeyus ases|d 9 € VO SOA CIOA €TOL
T 0} ¢ U9daM1aQ anjeA SIE!
9ABY URD SJ9)SOWAS JO JoqWINN -S8Was JO Jaquinu pijeAu] ¥ GT € VO SOA TTIOAN CIOL
yuelq SJ9)SOWaS
90 10UURD SJ81SBWAS JO JoquinNN 1O JaquInu Ja1ud ases|d % € VO SOA OTOA TTOL
J 0} T usamiaq
anjeA aAey ued uoneing uoneinp pljeau| * * 8 VO SOA 60A OTOL
yue|q g Jouued uoneing uoneinp Ja1ua ases|d % £ VO SOA 8OA 621
S13Ip UIBlU0D JoUURD BWwWeI30.id aweu swweigoid pijeau| % % % YECTON SOA 10N 801
sJa1oeieyo |elo
-ads u1eu09 J0uURd Buwwelgold aweu swweJgoid pijeau| % % % (9S)V OIN SOA JOA yie]l
aweu swwelgoid pijep - * * * (3SIVO SOA 90A 901
sJa10eJRYD OG URY)
Ja1eas3d aq Jouued swwesgold aweu swuwelgoid pijeau| % £ % 0G< SOA GOA GOl
sJajoeleyd €
ueyl SS9| 8¢ J0UURd dWWeI30id aweu swweigoid pijeau| % % % N SOA GOA il
uelq aweu
90 J0UURD BWeU swwel30id awuweJsgoud Ja1ud ases|d % % % SOA POA €01
|00YIS e 199|9S PINoYS 49sn |00Y9sS 109|9S asea|d M % * % EOA colL
awuweigoud
- € ppe 0] pemoj|e s! JesN cT 9 € VO SOA COA TOL
9pod SI9)1SOWIS aweu pajodIds "ON }I9Yd pj ased
(Aue J1) syjaeway ndino pajoadxy swuweigold josdaqunN uolneing swweiSold |ooyss AMpijep)3so)

wJoy weigoid ay) 10 SANjBA BIEP [BNJOR Y}IM 9SO)S9] “TZ'9 dlqeL

326 Software Testing

6.5 DATABASE TESTING

In many software applications, we create and maintain databases. Items are added, viewed,
edited and deleted regularly as per requirements of the users. These operations are generally
performed using the interface forms where special provisions are provided for such operations.
These interface forms provide graphical interface to the users so that the user can add/edit/
delete/view information to and from the database easily, efficiently and in a user-friendly
manner. When a user wants to add an item, he/she is expected to be connected to the database.
Similar types of actions are required for other operations like ‘delete an item’, ‘edit an item’ or
‘view an item’. As a tester, we may like to verify the following:

(i) Isanitem added in the database after the execution of ‘Add’ operation?

(i1) Is an operation deleted from the database after the execution of ‘Delete’ operation?

(i) Is an item edited as desired in the database after the execution of ‘Edit’ operation?

(iv) Is an item viewed as expected after correctly retrieving from the database after the
execution of ‘View’ operation?

We consider the ‘School details’ form of the URS for the purpose of verifying various
available operations. This form allows the user to add/delete/edit/view information about new/
existing school(s). The ‘School detail’ form is given in Figure 6.7 with the following fields:

(i) School Name: Alphanumeric of length of 10 to 50 characters. Digits and special
characters are not allowed. Blank spaces between characters are allowed.
(i1) School Code: Numeric and will have a value from 101 to 199.

There are five buttons i.e. Add, Edit, Delete, View and Exit, for various operations. All
operations except ‘Exit’ require the involvement of the database to get the desired output.

The test cases for all the four operations of the ‘School details’ form are given in Table 6.22
and testers are expected to verify every step very carefully.

Table 6.22. Operations of ‘school details’ form
‘ADD’ OPERATION

Test Input Expected Output Actual Status Comments
Case Output (Pass/
1D Fail)

1. Pre-requisites: The administrator should be logged into the system.
Objective: To add the details of a new school to the system and confirm the operation from

the database.
Open the ‘School Details’ The school details main window

form from the admin menu opens

Select ‘Add’ from the drop The current form changes into ‘Add’
down menu mode

Enter a school name, press Name of the school is displayed in
the ‘Tab’ button the field and focus comes on the
school code field

Enter the school code, The school is added in the database

press the ‘Add’ button
Click ‘View’ from the drop The drop down menu appears with

down menu option all existing school codes in the
database

Select the code just added, All details entered for the new school

Click the ‘View’ button are displayed in the window

(Contd.)

Creating Test Cases from Requirements and Use Cases 327

(Contd.)
‘EDIT’ OPERATION
Test Input Expected Output Actual Status Comments
Case Output (Pass/
ID Fail)
2. Pre-requisites: The administrator should be logged into the system and some school
details should have been entered.
Objective: To edit the details of a school and confirm the operation from the data-
base.
Open the ‘School The school details main
Details’ form from window opens
the admin menu
Select ‘Edit’ from The current form comes
the drop down into edit mode.
menu List of all school codes
appears in the drop down
list
Select a school Details for the school are
code from the displayed in the window
drop down list in
the corresponding
field
Change the Confirmation message
school name, window appears
click the ‘Edit’
button
Click the ‘Yes’ Confirmation window
button in the closes and database status
confirmation mes- updated, focus returns to
sage window the school details window
Click the ‘No’ Edit operation is cancelled
button in the and database status does
confirmation mes- not change
sage window
Click ‘View’ from A drop down list appears
the menu
Choose the same Check that all the details
school code that are changed
was edited
3. Pre-requisites: The administrator should be logged into the system and some school

details should have been entered.

Objective: Cancel the ‘edit’ operation and confirm that the record is not deleted.

Open the ‘School
Details’ form from
the admin menu

The school details main
window opens

(Contd.)

328 Software Testing

(Contd.)
Test Input Expected Output Actual Status Comments
Case ID Output (Pass/ Fail)
Select ‘Edit’ from The current form comes into
the drop down edit mode.
menu List of all school codes
appears in the drop down
list
Select a school Details for the school are
code from the drop displayed in the window
down list in the cor-
responding field
Change the school Confirmation message win-
name, click the dow appears
‘Edit’ button
Click the ‘No’ but- Edit operation is cancelled
ton in the confir- and database status does
mation message not change
window
Click ‘View’ from A drop down list appears
the menu
Choose the same The information of the
school code that selected school code should
was edited not have been updated
‘DELETE’ OPERATION
Test Input Expected Output Actual Status Comments
Case ID Output (Pass/ Fail)
4. Pre-requisites: The administrator should be logged into the system and some school

details should have been entered.

Objective: To delete the details of a school from the system and confirm the operation

from the database.
Open the ‘School
Details’ form from
the admin menu
Select ‘Delete’

from the drop down
menu

Select ‘Delete’
from the drop down
menu

Select a ‘School
Code’ from the
drop down list in
the corresponding
field

The ‘School Details’ main
window opens

The current form comes into
delete mode.

List of all school codes
appears in the drop down
list

All the details of the school
are displayed

(Contd.)

(Contd.)

Creating Test Cases from Requirements and Use Cases 329

Test
Case
ID

Input

Expected Output Actual Status Comments
Output (Pass/
Fail)

Click the ‘Delete’ button

Click the ‘Yes’ button

Click the ‘Ok’ button

Click ‘View’ from the menu

Click on the ‘School Code’
field

Confirmation
message window
appears

If no programme of
the school exists
then deletion is
performed and a
message window
appears ‘Record
has been deleted
successfully’

The current form
changes into view
mode

List of the exist-
ing school codes
appears. It should
not contain the
code of the deleted
school.

Objective: To delete the details of a school when the scheme of the school already

exists.

Open the ‘School Details’
form from admin menu
Select ‘Delete’ from the
drop down menu

Select a 'School Code’ from
the drop down list in the
corresponding field

Click the ‘Delete’ button

Click the ‘Yes’ button

The ‘School Details’
main window opens
The current form
comes into delete
mode.

List of all school
codes appear in the
drop down list

All the details of the
school are dis-
played

Confirmation
message window
appears

If the programme
of the school exists
then deletion is not
performed and a
message window
appears ‘Deletion
not allowed’

(Contd.)

330 Software Testing

(Contd.)
Test Input Expected Output Actual Status Comments
Case Output (Pass/
ID Fail)
Click the ‘Ok’ button
Click 'View’ from the menu The current form
changes into view
mode
Click on the ‘School Code’ List of the existing
field 'School codes
appear. It should
contain the code
of school which
could not be
deleted.
6 Objective: Cancel the ‘Delete’ operation and confirm that the record is not deleted.
Open the ‘School Details’ The ‘School
screen Details’ main
window opens
Select ‘Delete’ from menu List of all school
codes appear in
the drop down list
Select a ‘School Code’ All the details of
from the drop down list the school are
displayed
Click the ‘Delete’ button Confirmation
message window
appears
Click the ‘No’ button Deletion opera-
tion is cancelled
and main window
appears
Click ‘View’ from the drop The current form
down menu comes into view
mode
Click on the ‘School Code’ List of the exist-
field ing school codes
appear. It should
contain the code
of the school
which was not
deleted.
‘VIEW’ OPERATION
Test Input Expected Output Actual Status Comments
Case Output (Pass/
ID Fail)
7 Pre-requisites: The administrator should be logged into the system and some pro-
gramme details should have been entered.

(Contd.)

Creating Test Cases from Requirements and Use Cases 331

(Contd.)
Test Case ID Input Expected Output Actual Status Comments
Output (Pass/
Fail)

Objective: To View the details of a school.

Open the school The ‘School Details’ main

details form window opens

Click ‘View’ from The current form changes
the menu into view mode

Select school All the details of the school
code click ‘View’ are displayed

button

Database testing is very popular in applications where huge databases are maintained and
items are regularly searched, added, deleted, updated and viewed. Many queries are generated
by various users simultaneously and the database should be able to handle them in a reasonable
time frame, for example, web testing, inventory management and other large database
applications. Testing of stress level for a database is a real challenge for the testers. Some
commercially available tools make tall claims about stress testing; however their applicability
is not universally acceptable.

MULTIPLE CHOICE QUESTIONS

Note: Select the most appropriate answer for the following questions.

6.1 Which is not a component of a use case diagram?
(a) Actor
(b) Use case
(c) Relationship between actor and use case
(d) Test case
6.2 Which is not included in a use case template?
(a) Actors
(b) Pre-conditions and post-conditions
(c) Test cases
(d) Flow of events
6.3 UML stands for any one of the following:
(a) Unified Modeling Language
(b) Unified Machine Language
(¢) United Modeling Language
(d) United Machine Language
6.4 Which of the following is not correct
(a) An actor initiates a use case.
(b) Every use case has a specified functionality.
(c) One or more actors may interact with a use case.
(d) Two use cases may have the same name.

332 Software Testing

6.5 Use case scenario is:
(a) An input of a use case
(b) An instance of a use case
(¢) An output of a use case
(d) An information of a use case
6.6 Which is not an accepted strategy for data validity?
(a) Accept only known valid data
(b) Reject known bad data
(c) Sanitize all data
(d) Reject non-effective data
6.7 Guidelines for generating validity checks should include the following:
(a) Mandatory data inputs
(b) Blank data inputs
(c) Data range
(d) All of the above
6.8 The most popular area of database testing is:
(a) Websites
(b) Networks
(c) Scientific applications
(d) Operating systems
6.9 Which is not an actor in use cases?
(a) External data base
(b) Administrator
(¢) Keyboard
(d) Data entry operator
6.10 Every use case may have:
(a) At least one actor
(b) At most one actor
(c) No actor
(d) None of the above
6.11 A use case scenario may generate:
(a) At most one test case
(b) At least one test case
(c) No test case
(d) None of the above
6.12 Use cases and use case diagrams are used to define:
(a) Complexity of a system
(b) Criticality of a system
(c) Stability of a system
(d) Behaviour of a system
6.13 Special requirements in a use case template define:
(a) Business rules
(b) Reliability requirements
(c) Expectations of the users
(d) Associated use cases

Creating Test Cases from Requirements and Use Cases 333

6.14 Any variable in a use case has:

(a) At least one valid value and one invalid value
(b) At most one valid value

(c) At most one invalid value

(d) At most one valid value and one invalid value

6.15 A selection variable in a form:

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8
6.9

(a) Has one option
(b) Has many options
(c) Has no option

(d) None of the above

EXERCISES

What is a use case? How is it different from a use case diagram? What are the
components of a use case diagram?

How do we write use cases? Describe the basic and alternative flows in a use case.
Discuss any popular template for writing a use case.

Explain the various steps for the generation of test cases from the use cases. Why do
we identify variables in a use case?

Design a problem statement for library management system and generate the
following:

(1) Use cases

(i) Use case diagram

(iii) Basic and alternative flows in use cases

(iv) Test cases from use cases.

Consider the problem of railway reservation system and design the following:

(1) Use cases

(i1) Use case diagram

(iii) Test cases from use cases

What is the role of an actor in use case diagram? Discuss with the help of a suitable
example.

Discuss the guidelines for the creation of use cases for designing of any system. Is
there any limit for the number of use cases in any system?

Consider the problem statement of a university registration system as given in Chapter
5. Write the ‘maintain scheme detail’ use case description and also generate test cases
accordingly.

What are various strategies for data validity? Discuss with the help of an example.
Consider the scheme detail form given in chapter 5 of a university registration system.
Write the validity checks and generate test cases from the validity checks.

6.10 What are the guidelines for generating the validity checks? Explain with the help of an

example.

6.11 Why should we do database testing? Write some advantages and applications of data

base testing.

334 Software Testing

6.12 Write the problem statement for library management system. Design test cases for
various operations using database testing.

6.13 Design the test cases for all operations of ‘maintain scheme detail’ form of university
registration system using database testing.

6.14 Why do we consider domain specific checks very important for generating validity
checks? How are they related with the functionality of the system?

6.15 Why should data validation be given focus in testing? Why do we expect valid data?
How do we prevent the entry of invalid data in a system?

FURTHER READING

Jacobson provides a classic introduction to use case approach:

LV. Jacobson, “Object Oriented Software Engineering: A Use Case Driven

Approach”, Pearson Education, 1999.

Cockburn provides guidance for writing and managing use cases. This may help to
reduce common problems associated with use cases:

A. Cockburn, “Writing Effective Use Cases”, Pearson Education, 2001.
Hurlbut’s paper provides a survey on approaches for formalizing and writing use
cases:

R. Hurlbut, “A Survey of Approaches for Describing and Formalizing Use-

Cases,” Technical Report 97-03, Department of Computer Science, Illinois

Institute of Technology, USA, 1997.

Fournier has discussed the relationship between actor and system in:
G. Fournier, “Essential Software Testing-A Use Case Approach”, CRC Press,
2009.

Other useful texts are available at:

G. Booch, J. Rumbaugh and I.V. Jacobson, “The Unified Modeling Language

User Guide”, Addison-Wesley, Boston, 1999.

Rational Requisite Pro, “User’s Guide”, Rational Software Corporation, 2003.

“Rational Rose User’s Guide”, IBM Corporation, 2003.

N.R. Tague, “The Quality Toolbox,” ASQ Quality Press, 2004.

The most current information about UML can be found at:
http://www.rational.com

http://www.omg.org

Selection, Minimization and Prioritization of Test
Cases for Regression Testing

Software maintenance is becoming important and expensive day by day. Development of
software may take a few years (2 to 4 years), but the same may have to be maintained for
several years (10 to 15 years). Software maintenance accounts for as much as two-thirds of the
cost of software production [BEIZ90].

Software inevitably changes, whatever well-written and designed initially it may be. There
are many reasons for such changes:

(1) Some errors may have been discovered during the actual use of the software.

(i) The user may have requested for additional functionality.

(i) Software may have to be modified due to change in some external policies and
principles. When European countries had decided to go for a single European currency,
this change affected all banking system software.

(iv) Somerestructuring work may have to be done to improve the efficiency and performance
of the software.

(v) Software may have to be modified due to change in existing technologies.

(vi) Some obsolete capabilities may have to be deleted.

This list is endless but the message is loud and clear i.e. ‘change is inevitable’. Hence,
software always changes in order to address the above mentioned issues. This changed
software is required to be re-tested in order to ensure that changes work correctly and these
changes have not adversely affected other parts of the software. This is necessary because
small changes in one part of the software program may have subtle undesired effects in other
seemingly unrelated parts of the software.

7.1 WHAT IS REGRESSION TESTING?

When we develop software, we use development testing to obtain confidence in the correctness
of the software. Development testing involves constructing a test plan that describes how we
should test the software and then, designing and running a suite of test cases that satisfy the

336 Software Testing

requirements of the test plan. When we modify software, we typically re-test it. This process
of re-testing is called regression testing.

Hence, regression testing is the process of re-testing the modified parts of the software and
ensuring that no new errors have been introduced into previously tested source code due to
these modifications. Therefore, regression testing tests both the modified source code and other
parts of the source code that may be affected by the change. It serves several purposes like:

B Increases confidence in the correctness of the modified program.
B [ocates errors in the modified program.

B Preserves the quality and reliability of the software.

B Ensures the software’s continued operation.

We typically think of regression testing as a software maintenance activity; however, we
also perform regression testing during the latter stage of software development. This latter
stage starts after we have developed test plans and test suites and used them initially to test the
software. During this stage of development, we fine-tune the source code and correct errors in
it, hence these activities resemble maintenance activities. The comparison of development
testing and regression testing is given in Table 7.1.

Table 7.1. Compatrison of regression and development testing

S.No. Development Testing Regression Testing

1. We write test cases. We may use already available test cases.

2. We want to test all portions of the We want to test only modified portion of the
source code. source code and the portion affected by the

modifications.

3. We do development testing just We may have to do regression testing many
once in the lifetime of the software. times in the lifetime of the software.

4. We do development testing to obtain ~ We do regression testing to obtain confidence
confidence about the correctness of about the correctness of the modified portion of
the software. the software.

5. Performed under the pressure of Performed in crisis situations, under greater time
release date. constraints.

6. Separate allocation of budget and Practically no time and generally no separate
time. budget allocation.

7. Focus is on the whole software with Focus is only on the modified portion and other
the objective of finding faults. affected portions with the objective of ensuring

the correctness of the modifications.

8. Time and effort consuming activity Not much time and effort is consumed as com-
(40% to 70%). pared to development testing.

7.1.1 Regression Testing Process

Regression testing is a very costly process and consumes a significant amount of resources.
The question is “how to reduce this cost?”” Whenever a failure is experienced, it is reported to
the software team. The team may like to debug the source code to know the reason(s) for this

Selection, Minimization and Prioritization of Test Cases for Regression Testing 337

failure. After identification of the reason(s), the source code is modified and we generally do
not expect the same failure again. In order to ensure this correctness, we re-test the source code
with a focus on modified portion(s) of the source code and also on affected portion(s) of the
source code due to modifications. We need test cases that target the modified and affected
portions of the source code. We may write new test cases, which may be a ‘time and effort
consuming’ activity. We neither have enough time nor reasonable resources to write new test
cases for every failure. Another option is to use the existing test cases which were designed for
development testing and some of them might have been used during development testing. The
existing test suite may be useful and may reduce the cost of regression testing. As we all know,
the size of the existing test suite may be very large and it may not be possible to execute all
tests. The greatest challenge is to reduce the size of the existing test suite for a particular
failure. The various steps are shown in Figure 7.1. Hence, test case selection for a failure is the
main key for regression testing.

Fault Identification

Failure of the program Debugging of Identification of fault(s)
and generation of the source code in the source code
failure report

o Source code modification (new
Modification | and old programs will be different)

Execution based on selected test cases and new test cases, if any

i | Selection of test cases " Perform re-testing to |
' | from existing test suite Addition of new test ensure correctness !
™| to ensure the correctness || cases, if required —> using selected test :
i | of modification(s) cases and new test i
i cases, if any :

Figure 7.1. Steps of regression testing process

7.1.2 Selection of Test Cases

We want to use the existing test suite for regression testing. How should we select an appropriate
number of test cases for a failure? The range is from “one test case” to “all test cases”. A ‘regression
test cases’ selection technique may help us to do this selection process. The effectiveness of the
selection technique may decide the selection of the most appropriate test cases from the test suite.
Many techniques have been developed for procedural and object oriented programming languages.
Testing professionals are, however, reluctant to omit any test case from a test suite that might expose

338 Software Testing

a fault in the modified program. We consider a program given in Figure 7.2 along with its modified
version where the modification is in line 6 (replacing operator “*’ by ‘-°). A test suite is also given
in Table 7.2.

1. main() 1. main ()

2. { 2. {

3. inta, b, x,y,z 3. inta, b, XY,z

4. scanf (“%d, %d”, &a, &b); 4. scanf (“%d, %d”, &a, &b);
5. x=a+b; 5 x=a+hb;

6. y=a*b; 6. y=a-b;

7. if(x2y){ 7. if(x=y){

8. z=Xx/Yy; 8. z=x/y;

9.} 9.}

10. else { 10. else {

11.z=x*y; 11.z=x*y;

12.} 12.}

13. printf (“z=%d \n", z); 13. printf (“z = %d \ n“, z);
14.} 14.}

(a) Original program with faultin line 6. (b) Modified program with modification in line 6.

Figure 7.2. Program for printing value of z

Table 7.2. Test suite for program given in Figure 7.2
Set of Test Cases
S. No. Inputs Execution History
a b
1 2 1 1,2,3,4,5,6,7,8,9,13,14
2 1 1 1,2,3,4,5,6,7,8,9,13,14
3 3 2 1,2,3,4,5,6,7,10, 11, 12,13, 14
4 3 3 1,2,3,4,5,6,7,10, 11, 12,13, 14

In this case, the modified line is line number 6 where ‘a*b’ is replaced by ‘a-b’. All four test
cases of the test suite execute this modified line 6. We may decide to execute all four tests for
the modified program. If we do so, test case 2 with inputs a = 1 and b = 1 will experience a
‘divide by zero’ problem, whereas others will not. However, we may like to reduce the number
of test cases for the modified program. We may select all test cases which are executing the
modified line. Here, line number 6 is modified. All four test cases are executing the modified
line (line number 6) and hence are selected. There is no reduction in terms of the number of
test cases. If we see the execution history, we find that test case 1 and test case 2 have the same
execution history. Similarly, test case 3 and test case 4 have the same execution history. We
choose any one test case of the same execution history to avoid repetition. For execution
history 1 (i.e. 1, 2, 3, 4, 5, 6, 7, 8, 10, 11), if we select test case 1, the program will execute
well, but if we select test case 2, the program will experience ‘divide by zero’ problem. If
several test cases execute a particular modified line, and all of these test cases reach a particular

Selection, Minimization and Prioritization of Test Cases for Regression Testing 339

affected source code segment, minimization methods require selection of only one such test
case, unless they select the others for coverage elsewhere. Therefore, either test case 1 or test
case 2 may have to be selected. If we select test case 1, we miss the opportunity to detect the
fault that test case 2 detects. Minimization techniques may omit some test cases that might
expose fault(s) in the modified program. Hence, we should be very careful in the process of
minimization of test cases and always try to use safe regression test selection technique (if at
all it is possible). A safe regression test selection technique should select all test cases that can
expose faults in the modified program.

7.2 REGRESSION TEST CASES SELECTION

Test suite design is an expensive process and its size can grow quite large. Most of the times,
running an entire test suite is not possible as it requires a significant amount of time to run all
test cases. Many techniques are available for the selection of test cases for the purpose of
regression testing.

7.2.1 Select All Test Cases

This is the simplest technique where we do not want to take any risk. We want to run all test
cases for any change in the program. This is the safest technique, without any risk. A program
may fail many times and every time we will execute the entire test suite. This technique is
practical only when the size of the test suite is small. For any reasonable or large sized test
suite, it becomes impractical to execute all test cases.

7.2.2 Select Test Cases Randomly

We may select test cases randomly to reduce the size of the test suite. We decide how many
test cases are required to be selected depending upon time and available resources. When we
decide the number, the same number of test cases is selected randomly. If the number is large,
we may get a good number of test cases for execution and testing may be of some use. But, if
the number is small, testing may not be useful at all. In this technique, our assumption is that
all test cases are equally good in their fault detection ability. However, in most of the situations,
this assumption may not be true. We want to re-test the source code for the purpose of checking
the correctness of the modified portion of the program. Many randomly selected test cases may
not have any relationship with the modified portion of the program. However, random selection
may be better than no regression testing at all.

7.2.3 Select Modification Traversing Test Cases

We select only those test cases that execute the modified portion of the program and the portion
which is affected by the modification(s). Other test cases of the test suite are discarded.
Actually, we want to select all those test cases that reveal faults in the modified program.
These test cases are known as fault revealing test cases. There is no effective technique by
which we can find fault revealing test cases for the modified program. This is the best selection
approach, which we want, but we do not have techniques for the same. Another lower objective

340 Software Testing

may be to select those test cases that reveal the difference in the output of the original program
and the modified program. These test cases are known as modification revealing test cases.
These test cases target that portion of the source code which makes the output of the original
program and the modified program differ. Unfortunately, we do not have any effective
technique to do this. Therefore, it is difficult to find fault revealing test cases and modification
revealing test cases.

The reasonable objective is to select all those test cases that traverse the modified source
code and the source code affected by modification(s). These test cases are known as
modification traversing test cases. It is easy to develop techniques for modification traversing
test cases and some are available too. Out of all modification traversing test cases, some may
be modification revealing test cases and out of some modification revealing test cases, some
may be fault revealing test cases. Many modification traversing techniques are available but
their applications are limited due to the varied nature of software projects. Aditya Mathur has
rightly mentioned that [MATHOS]:

“The sophistication of techniques to select modification traversing tests
requires automation. It is impractical to apply these techniques to large
commercial systems unless a tool is available that incorporates at least one safe
test minimization technique. Further, while test selection appears attractive
from the test effort point of view, it might not be a practical technique when tests
are dependent on each other in complex ways and that this dependency cannot
be incorporated in the test selection tool”.

We may effectively implement any test case selection technique with the help of a testing
tool. The modified source code and source code affected by modification(s) may have to be
identified systematically and this selected area of the source code becomes the concern of test
case selection. As the size of the source code increases, the complexity also increases, and need
for an efficient technique also increases accordingly.

7.3 REDUCING THE NUMBER OF TEST CASES

Test case reduction is an essential activity and we may select those test cases that execute the
modification(s) and the portion of the program that is affected by the modification(s). We may
minimize the test suite or prioritize the test suite in order to execute the selected number of test
cases.

7.3.1 Minimization of Test Cases

We select all those test cases that traverse the modified portion of the program and the portion
that is affected by the modification(s). If we find the selected number very large, we may still
reduce this using any test case minimization technique. These test case minimization techniques
attempt to find redundant test cases. A redundant test case is one which achieves an objective
which has already been achieved by another test case. The objective may be source code
coverage, requirement coverage, variables coverage, branch coverage, specific lines of source

Selection, Minimization and Prioritization of Test Cases for Regression Testing 3441

code coverage, etc. A minimization technique may further reduce the size of the selected test
cases based on some criteria. We should always remember that any type of minimization is
risky and may omit some fault revealing test cases.

7.3.2 Prioritization of Test Cases

We may indicate the order with which a test case may be addressed. This process is known as
prioritization of test cases. A test case with the highest rank has the highest priority and the test
case with the second highest rank has the second highest priority and as so on. Prioritization
does not discard any test case. The efficiency of the regression testing is dependent upon the
criteria of prioritization. There are two varieties of test case prioritization i.e. general test case
prioritization and version specific test case prioritization. In general test case prioritization, for
a given program with its test suite, we prioritize the test cases that will be useful over a
succession of subsequent modified versions of the original program without any knowledge of
modification(s). In the version specific test case prioritization, we prioritize the test cases,
when the original program is changed to the modified program, with the knowledge of the
changes that have been made in the original program.

Prioritization guidelines should address two fundamental issues like:

(1) What functions of the software must be tested?
(i) What are the consequences if some functions are not tested?

Every reduction activity has an associated risk. All prioritization guidelines should be
designed on the basis of risk analysis. All risky functions should be tested on higher priority.
The risk analysis may be based on complexity, criticality, impact of failure, etc. The most
important is the ‘impact of failure’ which may range from ‘no impact’ to ‘loss of human life’
and must be studied very carefully.

The simplest priority category scheme is to assign a priority code to every test case. The
priority code may be based on the assumption that “test case of priority code 1 is more
important than test case of priority code 2.” We may have priority codes as follows:

Priority code 1 : Essential test case
Priority code 2 : Important test case
Priority code 3 : Execute, if time permits
Priority code 4 : Not important test case
Priority code 5 : Redundant test case

There may be other ways for assigning priorities based on customer requirements or market
conditions like:

Priority code 1 : Important for the customer
Priority code 2 : Required to increase customer satisfaction
Priority code 3 : Help to increase market share of the product

We may design any priority category scheme, but a scheme based on technical considerations
always improves the quality of the product and should always be encouraged.

342 Software Testing

7.4 RISK ANALYSIS

Unexpected behaviours of a software programme always carry huge information and most of
the time they disturb every associate person. No one likes such unexpected behaviour and
everyone prays that they never face these situations in their professional career. In practice, the
situation is entirely different and developers do face such unexpected situations frequently and,
moreover, work hard to find the solutions of the problems highlighted by these unexpected
behaviours.

We may be able to minimize these situations, if we are able to minimize the risky areas of
the software. Hence, risk analysis has become an important area and in most of the projects we
are doing it to minimize the risk.

7.4.1 What is Risk?

Tomorrow’s problems are today’s risks. Therefore, a simple definition of risk is a problem that
may cause some loss or threaten the success of the project, but, which has not happened yet.
Risk is defined as the “probability of occurrence of an undesirable event and the impact of
occurrence of that event.” To understand whether an event is really risky needs an understanding
of the potential consequences of the occurrences / non-occurrences of that event. Risks may
delay and over-budget a project. Risky projects may also not meet specified quality levels.
Hence, there are two things associated with risk as given below:

(i) Probability of occurrence of a problem (i.e. an event)
(i1)) Impact of that problem

Risk analysis is a process of identifying the potential problems and then assigning a
‘probability of occurrence of the problem’ value and ‘impact of that problem’ value for each
identified problem. Both of these values are assigned on a scale of 1 (low) to 10 (high). A factor
‘risk exposure’ is calculated for every problem which is the product of ‘probability of
occurrence of the problem’ value and ‘impact of that problem’ value. The risks may be ranked
on the basis of its risk exposure. A risk analysis table may be prepared as given in Table 7.3.
These values may be calculated on the basis of historical data, past experience, intuition and
criticality of the problem. We should not confuse with the mathematical scale of probability
values which is from 0 to 1. Here, the scale of 1 to 10 is used for assigning values to both the
components of the risk exposure.

Table 7.3. Risk analysis table

S. No. Potential Problem Probability of Impact of that Risk Exposure
occurrence of problem Problem

call S

The case study of ‘University Registration System’ given in chapter 5 is considered and its
potential problems are identified. Risk exposure factor for every problem is calculated on the

Selection, Minimization and Prioritization of Test Cases for Regression Testing 343

basis of ‘probability of occurrence of the problem’ and ‘impact of that problem’. The risk
analysis is given in Table 7.4.

Table 7.4. Risk analysis table of ‘University Registration System’

S. No. Potential Problems Probability of Impact of Risk
occurrence of that Problem Exposure
problem

1. Issued password not available 2 3 6

2. Wrong entry in students detail form 6 2 12

3. Wrong entry in scheme detail form 3 3 9

4, Printing mistake in registration card 2 2

5. Unauthorised access 1 10 10

6. Database corrupted 2 9 18

7. Ambiguous documentation 8 1 8

8. Lists not in proper format 3 2 6

9. Issued login-id is not in specified format 2 1 2

10. School not available in the database 2 4 8

The potential problems ranked by risk exposure are 6, 2, 5, 3,7, 10, 1, 8, 4 and 9.

7.4.2 Risk Matrix

Risk matrix is used to capture identified problems, estimate their probability of occurrence
with impact and rank the risks based on this information. We may use the risk matrix to assign
thresholds that group the potential problems into priority categories. The risk matrix is shown
in Figure 7.3 with four quadrants. Each quadrant represents a priority category.

5

10 ——®
‘ 9 — oG

8%
5 7 PC-3 PC-1
Q0
[e]
8 6 —
o
5
[e]
5 4 — ®10 PC-4
g
£ — ®1 [)

3 3 PC-2

2 — o/ @38 P

1 — ®9 o7

0 T T 1 T T 1

1 2 3 4 5 6 7 8 9 10

Probability of occurrence of the problem ——

Figure 7.3. Threshold by quadrant

344 Software Testing

The priority category in defined as:

Priority category 1 (PC-1) = High probability value and high impact value
Priority category 2 (PC-2) = High probability value and low impact value
Priority category 3 (PC-3) = Low probability value and high impact value
Priority category 4 (PC-4) = Low probability value and low impact value

In this case, a risk with high probability value is given more importance than a problem with
high impact value. We may change this and may decide to give more importance to high impact
value over the high probability value and is shown in Figure 7.4. Hence, PC-2 and PC-3 will
swap, but PC-1 and PC-4 will remain the same.

5
10 ——®
9 — 05
8_
5 74 PC-2 PC- 1
o)
o
S 6
o
Z 5
(o]
B4 @10 PC-4
g
£ 3 — o1 @3
PC-3
2 — o4 @38 2
1 — ®9 o7
0 T T 1 T T

1 2 3 4 5 6 7 8 9 10

Probability of occurrence of the problem ——
Figure 7.4. Alternative threshold by quadrant

There may be situations where we do not want to give importance to any value and assign
equal importance. In this case, the diagonal band prioritization scheme may be more suitable
as shown in Figure 7.5. This scheme is more appropriate in situations where we have difficulty
in assigning importance to either ‘probability of occurrence of the problem’ value or ‘impact
of that problem’ value.

We may also feel that high impact value must be given highest priority irrespective of the
‘probability of occurrence’ value. A high impact problem should be addressed first, irrespective
of its probability of occurrence value. This prioritization scheme is given in Figure 7.6. Here,
the highest priority (PC-1) is assigned to high impact value and for the other four quadrants;
any prioritization scheme may be selected. We may also assign high priority to high ‘probability
of occurrence’ values irrespective of the impact value as shown in Figure 7.7. This scheme may
not be popular in practice. Generally, we are afraid of the impact of the problem. If the impact
value is low, we are not much concerned. In the risk analysis table (see Table 7.4), ambiguous
documentations (S. No. 7) have high ‘probability of occurrence of problem’ value (8), but

Selection, Minimization and Prioritization of Test Cases for Regression Testing 345

impact value is very low (1). Hence, these faults are not considered risky faults as compared
to ‘unauthorized access’ (S. No. 5) where ‘probability of occurrence’ value is very low (1) and
impact value is very high (10).

-

N W R OO N © © O

PC-1

PC-2

PC-3

Impact of the problem —

N

[O O e
0 1 2 3 4 5 6 7 8 9 10

—— Probability of occurrence of the problem ——

Figure 7.5. Threshold by diagonal quadrant

-

N W A O OO N © © O

7 PC-3 PC-2

Impact of the problem —

PC-5 PC- 4

N

I I
o 1 2 3 4 5 6 7 8 9 10

—— Probability of occurrence of the problem ——

Figure 7.6. Threshold based on high ‘Impact of Problem’ value

346 Software Testing

-
o

PC-4 PC-2

PC-1

Impact of the problem —

PC-5 PC-3

N W R OO N 0 ©
I

N

T T I
o 1 2 3 4 5 6 7 8 9 10

—— Probability of occurrence of the problem ——
Figure 7.7. Threshold based on high ‘probability of occurrence of problem’ value

After the risks are ranked, the high priority risks are identified. These risks are required to
be managed first and then other priority risks in descending order. These risks should be
discussed in a team and proper action should be recommended to manage these risks. A risk
matrix has become a powerful tool for designing prioritization schemes. Estimating the
probability of occurrence of a problem may be difficult in practice. Fortunately, all that matters
when using a risk matrix is the relative order of the probability estimates (which risks are more
likely to occur) on the scale of 1 to 10. The impact of the problem may be critical, serious,
moderate, minor or negligible. These two values are essential for risk exposure which is used
to prioritize the risks.

7.5 CODE COVERAGE PRIORITIZATION TECHNIQUE

We consider a program P with its modified program P’ and its test suite T created to test P.
When we modify P to P/, we would like to execute modified portion(s) of the source code and
the portion(s) affected by the modification(s) to see the correctness of modification(s). We
neither have time nor resources to execute all test cases of T. Our objective is to reduce the size
of T to T’ using some selection criteria, which may help us to execute the modified portion of
the source code and the portion(s) affected by modification(s).

A code coverage based technique [KAUR06, AGGAO04] has been developed which is based
on version specific test case prioritization and selects T’ from T which is a subset of T. The
technique also prioritizes test cases of T” and recommends use of high priority test cases first
and then low priority test cases in descending order till time and resources are available or a
reasonable level of confidence is achieved.

Selection, Minimization and Prioritization of Test Cases for Regression Testing 347
7.5.1 Test Cases Selection Criteria

The technique is based on version specific test case prioritization where information about
changes in the program is known. Hence, prioritization is focused around the changes in the
modified program. We may like to execute all modified lines of source code with a minimum
number of selected test cases. This technique identifies those test cases that:

(i) Execute the modified lines of source code at least once
(i) Execute the lines of source code after deletion of deleted lines from the execution
history of the test case and are not redundant.

The technique uses two algorithms — one for ‘modification’ and the other for ‘deletion’. The
following information is available with us and has been used to design the technique:

(i) Program P with its modified program P’.

(i1) Test suite T with test cases t1, 2, t3,.....tn.

(iii) Execution history (number of lines of source code covered by a test case) of each test
case of test suite T.

(iv) Line numbers of lines of source code covered by each test case are stored in a two
dimensional array (t,, t, t ,...... tij).

7.5.2 Modification Algorithm

The ‘modification’ portion of the technique is used to minimize and prioritize test cases based
on the modified lines of source code. The ‘modification’ algorithm uses the following
information given in Table 7.5.

Table 7.5. Variables used by ‘modification’ algorithm
S. No. Variable name Description
1. T1 It is a two dimensional array and is used to store line numbers of lines of
source code covered by each test case.
modloc It is used to store the total number of modified lines of source code.
mod_locode It is a one-dimensional array and is used to store line numbers of modi-
fied lines of source code.
4, nfound It is a one-dimensional array and is used to store the number of lines of
source code matched with modified lines of each test case.
5. pos It is a one-dimensional array and is used to set the position of each test
case when nfound is sorted.
6. candidate It is a one-dimensional array. It sets the bit to 1 corresponding to the
position of the test case to be removed.
7. priority It is a one-dimensional array and is used to set the priority of the selected
test case.

The following steps have been followed in order to select and prioritize test cases from test
suite T based on the modification in the program P.

348 Software Testing
Step I: Initialization of variables
Consider a hypothetical program of 60 lines of code with a test suite of 10 test cases. The

execution history is given in Table 7.6. We assume that lines 1, 2, 5, 15, 35, 45, 55 are
modified.

Table 7.6. Test cases with execution history
Test case Id Execution history
T1 1, 2, 20, 30, 40, 50
T2 1,3,4,21,31,41,51
T3 5,6,7,8,22,32,42,52
T4 6,9, 10, 23, 24, 33, 43, 54
5 5,9, 11, 12, 13, 14, 15, 20, 29, 37, 38, 39
T6 15, 16, 17, 18, 19, 23, 24, 25, 34, 35, 36
T7 26, 27,28,40,41, 44, 45, 46
T8 46, 47, 48, 49, 50, 53, 55
19 55, 56, 57, 58, 59
T10 3,4,60

The first portion of the ‘modification’ algorithm is used to initialize and read values of
variables T1, modloc and mod_locode.

First portion of the ‘modification’ algorithm

1. Repeat for i=1 to number of test cases
(a) Repeat for j=1 to number of test cases
(i) Initialize array T1[i][j] to zero
2. Repeat for i=1 to number of test cases
(a) Repeat for j=1 to number of test cases
(i) Store line numbers of line of source code covered by each test case.
3. Repeat for i=1 to number of modified lines of source code
(a) Store line numbers of modified lines of source code in array mod_locode.

Step II: Selection and prioritization of test cases

The second portion of the algorithm counts the number of modified lines of source code
covered by each test case (nfound).

Second portion of the ‘modification’ algorithm

2. Repeat for all true cases
(a) Repeat for i=1 to number of test cases
(i) Initialize array nfound[i] to zeroes
(ii) Set pos[i] =i
(b) Repeat for i=1 to number of test cases
(i) Initialize 1 to zero

Selection, Minimization and Prioritization of Test Cases for Regression Testing 349

(ii) Repeat for j=1 to length of the test case
If candidate[i] # 1 then
Repeat for k=1 to modified lines of source code
If t1[i][j]=mod_locode[k] then
Increment nfound[i] by one
Increment | by one

The status of test cases covering modified lines of source code is given in Table 7.7.

Table 7.7. Test cases with number of matches found
Test Cases Numbers of lines matched Number of Matches (nfound)
T1 1,2 2
T2 1 1
T3 5 1
T4 - 0
5 5,15 2
16 15, 35 2
T7 45 1
T8 55 1
T9 55 1
T10 - 0

Consider the third portion of ‘modification’ algorithm. In this portion, we sort the nfound
array and select the test case with the highest value of nfound as a candidate for selection. The
test cases are arranged in increasing order of priority.

Third portion of the ‘“modification’ algorithm

(c) Initialize | to zero
(d) Repeat for i=0 to number of test cases
(i) Repeat for j=1 to number of test cases
If nfound[i]>0 then
t=nfound[i]
nfound[i]=nfound[j]
nfound[j]=t
t=posJi]
pos[i]=pos[j]
pos[j]=t
(e) Repeat for i=1 to number of test cases
(i) If nfound[i]=1 then
Increment count
(f) If count = 0 then
(i) Goto end of the algorithm
(9) Initialize candidate[pos[0]] =1
(h) Initialize priority[pos[0]]= m+1

The test cases with less value have higher priority than the test cases with higher value.
Hence, the test cases are sorted on the basis of number of modified lines covered as shown in
Table 7.8.

350 Software Testing

Table 7.8. Test cases in decreasing order of number of modified lines covered
Test Cases Numbers of lines Number of Matches Candidate Priority
matched (nfound)
T1 1,2 2 1 1
5 5,15 2 0 0
16 15, 35 2 0 0
T2 1 1 0 0
T3 5 1 0 0
T7 45 1 0 0
8 55 1 0 0
T9 55 1 0 0
T4 - 0 0 0
T10 - 0 0 0

The test case with candidate=1 is selected in each iteration. In the fourth portion of the
algorithm, the modified lines of source code included in the selected test case are removed
from the mod_locode array. This process continues until there are no remaining modified lines
of source code covered by any test case.

Fourth portion of the ‘modification’ algorithm

(a) Repeat for i=1 to length of selected test cases
(i) Repeat for j=1 to modified lines of source code
If t1[pos[0]][i] = mod[j] then
mod[j] =0

Since test case T1 is selected and it covers 1 and 2 lines of source code, these lines will be
removed from the mod _locode array.

mod _locode = [1, 2, 5, 15, 35, 45, 55] - [1, 2] =[5, 15, 35, 45, 55]

The remaining iterations of the ‘modification’ algorithm are shown in tables 7.9-7.12.

Table 7.9. Test cases in descending order of number of matches found (iteration 2)
Test Cases Number of matches (nfound) Matches found Candidate Priority
5 2 5,15 1 2
16 2 15, 35 0 0
T3 1 5 0 0
T7 1 45 0] 0]
8 1 55 0 0
T9 1 55 0 0
T2 0 - 0 0
T4 0 - 0 0
T10 0 - 0 0

mod locode = [5, 15, 35, 45, 55] - [5, 15] = [35, 45, 55]

Selection, Minimization and Prioritization of Test Cases for Regression Testing 351

Table 7.10. Test cases in descending order of number of matches found (iteration 3)

Test Cases Number of matches (nfound) Matches found Candidate Priority
T6 1 35 1 3
T7 1 45 0] 0]
T8 1 55 0] 0]
T9 1 55 0] 0]
T2 0] - 0] 0]
T3 0] - 0] 0]
T4 0] - 0 0
T10 0] - 0] 0]

mod_locode = [35, 45, 55] — [35] = [45, 55]

Table 7.11. Test cases in descending order of number of matches found (iteration 4)

Test Cases Number of matches (nfound) Matches found Candidate Priority
T7 1 45 1 4
T8 1 55 0] 0
T9 1 55 0 0
T2 0 - (0] 0
T3 0] - 0 0
T4 0 - 0 0
T10 0] - 0 0

mod_locode = [45, 55] — [45] = [55]

Table 7.12. Test cases in descending order of number of matches found (iteration 5)
Test Cases Number of matches (nfound) Matches found Candidate Priority
T8 1 55 1 5
T9 1 55 0] 0
T2 0 - 0] 0
T3 0 - 0] 0
T4 0 - 0] 0
T10 0 - 0 0

mod _locode = [55] — [55] = [Nil]

352 Software Testing

Hence test cases T1, TS5, T6, T7 and T8 need to be executed on the basis of their
corresponding priority. Out of ten test cases, we need to run only 5 test cases for 100% code
coverage of modified lines of source code. This is 50% reduction of test cases.

7.5.3 Deletion Algorithm

The “deletion’ portion of the technique is used to (i) update the execution history of test cases
by removing the deleted lines of source code (ii) identify and remove those test cases that cover
only those lines which are covered by other test cases of the program. The information used in
the algorithm is given in Table 7.13.

Table 7.13. Variables used by ‘deletion’ algorithm

Description

S. No. Variable
1. T1

2. deloc

3. del_locode
4. count

5. match

6. deleted

It is a two-dimensional array. It keeps the number of lines of source code
covered by each test case i.

It is used to store the total number of lines of source code deleted.

It is a one-dimensional array and is used to store line numbers of deleted
lines of source code.

It is a two-dimensional array. It sets the position corresponding to every
matched line of source code of each test case to 1.

It is a one-dimensional array. It stores the total count of the number of 1's
in the count array for each test case.

It is a one-dimensional array. It keeps the record of redundant test cases.
If the value corresponding to test case i is 1 in deleted array, then that test
case is redundant and should be removed.

Step I: Initialization of variables

We consider a hypothetical program of 20 lines with a test suite of 5 test cases. The execution
history is given in Table 7.14.

Table 7.14. Test cases with execution history
Test case Id Execution history
T1 1,5,7, 15,20
T2 2,3,4,5,8,16,20
T3 6,8,9, 10,11, 12,13, 14, 17, 18
T4 1,2,5,8,17,19
5 1,2,6,8,9,13

We assume that line numbers 6, 13, 17 and 20 are modified, and line numbers 4, 7 and 15
are deleted from the source code. The information is stored as:

Selection, Minimization and Prioritization of Test Cases for Regression Testing 353

delloc= 3
del locode = [4, 7, 15]
modloc = 4

mod locode = [6, 13, 17, 20]

First portion of the “deletion” algorithm

1. Repeat for i=1 to number of test cases
(a) Repeat for j=1 to length of test case i
(i) Repeat for 1 to number of deleted lines of source code

If T1[i][j]=del_locode then

Repeat for k=j to length of test case i
T1[i][k]=T1[i] [k+1]

Initialize T1[i][k] to zero
Decrement c[i] by one

After deleting line numbers 4, 7, and 15, the modified execution history is given in Table 7.15.

Table 7.15. Modified execution history after deleting line numbers 4, 7 and 15

Test case Id Execution history

T1 1, 5,20

T2 2,3,5,8, 16, 20

T3 6,8,9, 10,11, 12, 13, 14, 17, 18
T4 1,2,5,8,17,19

5 1,2,6,8,9,13

Step IlI: Identification of redundant test cases

We want to find redundant test cases. A test case is a redundant test case, if it covers only those
lines which are covered by other test cases of the program. This situation may arise due to
deletion of a few lines of the program.

Consider the second portion of the ‘deletion’ algorithm. In this portion, the test case array
is initialized with line numbers of lines of source code covered by each test case.

Second portion of the ‘deletion’ algorithm

2. Repeat for i=1 to number of test cases
(a) Repeat for j=1 to number of test cases
(i) Initialize array t1[i][j] to zero
(ii) Initialize array count[i][j] to zero
3. Repeat for i=1 to number of test cases
(a) Initialize deleted[i] and match [i] to zero
4. Repeat for i=1 to number of test cases
(a) Initialize c[i] to number of line numbers in each test case i
(b) Repeat for j=1 to c[i]
(c) Initialize t1[i][j] to line numbers of line of source code covered by each test case

354 Software Testing

The third portion of the algorithm compares lines covered by each test case with lines
covered by other test cases. A two-dimensional array count is used to keep the record of line
number matched in each test case. If all the lines covered by a test case are being covered
by some other test case, then that test case is redundant and should not be selected for
execution.

Third portion of the ‘deletion’ algorithm

5. Repeat for i=1 to number of test cases
(a) Repeat for j=1 to number of test cases
(i) If i#j and deleted[j]#1 then
Repeat for k=1 to until t1[i][k]=0
Repeat for 1=1 until t1[j][l]=0
If t1[i][k]=t1[j][l] then
Initialize count [i][k]=1
(b) Repeat for m=1 to c[i]
(i) If count[i][m]=1 then
Increment match[i] with 1
(c) If match[i]=c[i] then
(i) Initialize deleted[i] to 1
6. Repeat for i=1 to number of test cases
(a) If deleted[i] =1 then
Remove test case i (as it is a redundant test case)

On comparing all values in each test case with all values of other test cases, we found that
test case 1 and test case 5 are redundant test cases. These two test cases do not cover any line
which is not covered by other test cases as shown in Table 7.16.

Table 7.16. Redundant test cases

Test Case Line Number of LOC Found In Test Case Redundant Y/N

T1 1 T4 Y
5 T2 Y
20 T2 Y

15 6 T3 Y
8 T3 Y
9 T3 Y
1 T4 Y
2 T2 Y
13 T3 Y

Selection, Minimization and Prioritization of Test Cases for Regression Testing 355

The remaining test cases are = [T2, T3, T4] and are given in Table 7.17.

Table 7.17. Modified table after removing T1 and T5
Test case Id Execution history
T2 2,3,5,8,16,20
T3 6,8,9, 10, 11, 12, 13, 14, 17, 18
T4 1,2,5,8,17,19

Now we will minimize and prioritize test cases using ‘modification’ algorithm given in
section 7.5.2. The status of test cases covering the modified lines is given in Table 7.18.

Table 7.18. Test cases with modified lines
Test Cases Number of lines matched (found) Number of matches (nfound)
T2 20 1
T3 6,13, 17 3
T4 17 1

Test cases are sorted on the basis of number of modified lines covered as shown in tables 7.19-7.20.

Table 7.19. Test cases in descending order of number of modified lines covered
Test Cases Number of matches Numbers of lines matched Candidate Priority
(nfound)
T3 3 6, 13, 17
T2 1 20 0 0
T4 1 17 0 0

mod._locode = [6, 13, 17, 20] — [6, 13, 17] = [20]

Table 7.20. Test cases in descending order of number of modified lines covered (iteration 2)

Test Cases Number of matches Numbers of lines matched Candidate Priority

(nfound)
T2 1 20 1 2
T4 0 - 0 0

Hence, test cases T2 and T3 are needed to be executed and redundant test cases are T1 and T5.

Out of the five test cases, we need to run only 2 test cases for 100% code coverage of
modified code coverage. This is a 60% reduction. If we run only those test cases that cover any
modified lines, then T2, T3 and T4 are selected. This technique not only selects test cases, but
also prioritizes test cases.

356 Software Testing

Example 7.1: Consider the algorithm for deletion and modification of lines of source code in
test cases. Write a program in C to implement, minimize and prioritize test cases using the
above technique.

Solution:

#include<stdio.h>
#include<conio.h>
void main()

{

int t1[50][50]={0};

int count[50][50]={0};
int deleted[50],deloc,del_loc[50],k,c[50],l,num,m,n,match[50],i,j;
clrser();
for(i=0;i<50;i++){
deleted[i]=0;
match[i]=0;

}

printf("Enter the number of test cases\n");
scanf("%d",&num);
for(i=0;i<num;i++){
printf("Enter the length of test case %d\n",i+1);
scanf("%d",&c[i]);
printf("Enter the values of test case\n");
for(j=0;j<c[i];j++){
scanf("%d", &t1[i][j]);
}
}

printf("\nEnter the deleted lines of code:");
scanf("%d",&deloc);

for(i=0;i<deloc;i++)
{
scanf("%d",&del_loc[i]);
}
for(i=0;i<num;i++){
for(j=0;j<c[i];j++){
for(1=0;1<deloc;l++){
if(t1[i][j]==del_loc[1]){
for(k=j;k<c[i];k++){
ta[i][k]=t1[i][k+1];
}
t1[i][k]=0;
cfi]--;

Selection, Minimization and Prioritization of Test Cases for Regression Testing 357

}
}

printf("Test case execution history after deletion:\n");
for(i=0;i<num;i++){
printf("T%d\t",i+1);
for(j=0;j<c[i];j++){
printf("%d ",t1[i][i]);
}
printf("\n");
}
for(i=0;i<num;i++){
for(j=0;j<num;j++){
if(i'=j&&deleted[j]!=1){
for(k=0;t1[i][k]'=0;k++){
for(1=0;t1[j1[1]'=0;1++){
if(t1[i] [k]==t1[5][L])
count[i][k]=1;
}
}
}
}
for(m=0;m<c[i];m++)
if(count[i][m]==1)
match[i]++;
if(match[i]==c[i])
deleted[i]=1;
}
for(i=0;i<num;i++)
if(deleted[i]==1)
printf("Remove Test case %d\n",i+1);
getch();
}

OUTPUT

Enter the number of test cases
5

Enter the length of test case 1
5

Enter the values of test case
1571520

Enter the length of test case 2
7

Enter the values of test case
234581620

Enter the length of test case 3
10

358 Software Testing

Enter the values of test case
689101112 131417 18
Enter the length of test case 4

6

Enter the values of test case
12581719

Enter the length of test case 5

6

Enter the values of test case
1268913

Enter the deleted lines of code:3
4715

Test case execution history after deletion:
T1 1520

T2 23581620

T3 689101112 131417 18
T4 12581719

T5 1268913

Remove Test case 1

Remove Test case 5

/*Program for test case selection for modified lines using regression test case selection algorithm*/

#include<stdio.h>
#include<conio.h>

void main()
{
int t1[50][50];
int count=0;
int candidate[50]={0},priority[50]={0},m=0,pos[50],found[50][50],k,t,c[50],l,num,n,index[50],i,j,modnu
m,nfound[50],mod[50];
clrser();
printf("Enter the number of test cases:");
scanf("%d",&num);
for(i=0;i<num;i++){
printf("\nEnter the length of test case%d:",i+1);
scanf("%d",&c[i]);
}

for(i=0;i<50;i++)
for(j=0;j<50;j++)
found[i][j]=0;
for(i=0;i<num;i++)
for(j=0;j<c[i];j++){
t1[i][j]=0;
}
for(i=0;i<num;i++){
printf("Enter the values of test case %d\n",i+1);
for(j=0;j<c[i];j++){

Selection, Minimization and Prioritization of Test Cases for Regression Testing 359

scanf("%d", &t1[i][j]);
}
pos[i]=i;
}
printf("\nEnter number of modified lines of code:");
scanf("%d",&modnum);
printf("Enter the lines of code modified:");
for(i=0;i<modnum;i++)
scanf("%d",&mod[i]);
while(1)
{
count=0;
for(i=0;i<num;i++) {
nfound[i]=0;
pos[i]=i;
}
for(i=0;i<num;i++){
1=0;
for(j=0;j<c[il;j++){
if(candidate[i]!=1){
for(k=0;k<modnum;k++) {
if(t1[i] [j]==mod[k]){

nfound[i]++;
found[i][l]=mod[k];
l++;
}
}
}
}
}
1=0;

for(i=0;i<num;i++)
for(j=0;j<num-1;j++)
if(nfound[i]>nfound[j]){
t=nfound[i];
nfound[i]=nfound[j];
nfound[j]=t;
t=pos[i];
pos[i]=pos[j];
pos[j]=t;
}

for(i=0;i<num;i++)
if(nfound[i]>0)
count++;
if(count==0)

360 Software Testing

break;

candidate[pos[0]]=1;
priority[pos[0]]=++m;

printf("\nTestcase\tMatches");
for(i=0;i<num;i++) {
printf("\n%d\t\t%d",pos[i]+1,nfound[i]);
getch();
}

for(i=0;i<c[pos[0]];i++)
for(j=0;j<modnum;j++)
if(t1[pos[0]][i]==mod[j]){
mod[j]=0;
}

printf("\nModified Array:");
for(i=0;i<modnum;i++){
if(mod[i]==0){

continue;
}
else {
printf("%d\t",mod[i]);
}
}
}
count=0;

printf("\nTest case selected.....\n");
for(i=0;i<num;i++)
if(candidate[i]==1){
printf("\nT%d\t Priority%d\n ",i+1,priority[i]);
count++;
}
if(count==0){
printf("\nNone");
}
getch();
}

OUTPUT

Enter the number of test cases:10
Enter the length of test casel:6
Enter the length of test case2:7
Enter the length of test case3:8
Enter the length of test case4:8

Selection, Minimization and Prioritization of Test Cases for Regression Testing 361

Enter the length of test case5:12
Enter the length of test case6:11
Enter the length of test case7:8
Enter the length of test case8:7
Enter the length of test case9:5
Enter the length of test case10:3
Enter the values of test case 1
1220304050

Enter the values of test case 2
13421314151

Enter the values of test case 3
567822324252

Enter the values of test case 4

69 1023 24 33 43 54

Enter the values of test case 5
59111213 14152029 37 38 39
Enter the values of test case 6

15 16 17 18 19 23 24 25 34 35 36
Enter the values of test case 7

26 27 28 40 41 44 45 46

Enter the values of test case 8

46 47 48 49 50 53 55

Enter the values of test case 9

55 56 57 58 59

Enter the values of test case 10
3460

Enter the number of modified lines of code:7
Enter the lines of code modified:1 2 5 15 35 45 55
Test case Matches

N OO ~NN WO U
O R P P P P, NN

10 0
Modified Array:5 15 35 45 55
Test case Matches

© 0N WwWo U,
[NI N

362 Software Testing

4 0
2 0
1 0
10 0

Modified Array:35 45 55
Test case Matches

N LW MNDEFL UTO 0N O
O O O O O » KL 1 =

10 0
Modified Array:45 55
Test case Matches

w NN =L OO 00N
O O O O O O - 1 -

10 0
Modified Array:55
Test case Matches

N P, N O U NW O
O O O O O © O - -

10 0

Modified Array:

Test case selected.....
T1 Priorityl

T5 Priority2

T6 Priority3

T7 Priority4

T8 Priority5

Selection, Minimization and Prioritization of Test Cases for Regression Testing

MULTIPLE CHOICE QUESTIONS

Note: Select the most appropriate answer for the following questions.

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

Regression testing should be performed:

(a) After every month of release of software

(b) After the changes in the software

(c) After the release of the software

(d) After the completion of development of software
Regression testing is primarily related to:

(a) Functional testing

(b) Data flow testing

(c) Maintenance testing

(d) Development testing

Which test cases are easy to identify?

(a) Fault revealing

(b) Modification revealing

(¢) Modification traversing

(d) Bug revealing

Which of the following is not achieved by regression testing?
(a) Locate errors in the modified program

(b) Increase confidence in the correctness of the modified program
(c) Ensure the continued operation of the program

(d) Increase the functionality of the program

363

Which activity is performed in crisis situations and under greater time constraints?

(a) Regression testing

(b) Development testing

(c) Verification

(d) Validation

Regression testing process may include:

(a) Fault Identification

(b) Code modification

(c) Test cases selection

(d) All of the above

Which regression test cases selection technique is more useful?
(a) Select all test cases

(b) Select test cases randomly

(c) Select modification traversing test cases
(d) Select 50% of available test cases

Risk should include:

(a) Probability of occurrence of a problem
(b) Impact of that problem

(c) Test cases

(d) (a) and (b) both

364 Software Testing

7.9 Which is not the way to organize a risk matrix?
(a) Threshold by quadrant
(b) Threshold by diagonal quadrant
(¢c) Threshold by available test cases
(d) Threshold based on high impact of the problem
7.10 Which prioritization technique is used when we assign equal importance to ‘probability
of occurrence’ and ‘Impact of problem’ in risk matrix?
(a) Threshold by quadrant
(b) Threshold by diagonal quadrant
(c) Threshold based on high impact of the problem
(d) Threshold based on high probability of occurrence of problem
7.11 In prioritizing what to test, the most important objective is to:
(a) Find as many faults as possible
(b) Test high risk areas
(c) Obtain good test coverage
(d) Test easy areas
7.12 Test cases are prioritized so that:
(a) We shorten the time of testing
(b) We do the best testing in the time available
(c) We do more effective testing
(d) We find more faults
7.13 A regression test:
(a) Will always be automated
(b) Will help to ensure that unchanged areas have not been affected
(c) Will help to ensure that changed areas have not been affected
(d) Will run during acceptance testing
7.14 Which of the following uses impact analysis most?
(a) Acceptance testing
(b) System testing
(¢) Regression testing
(d) Unit testing
7.15 Which of the following is most benefited when a tool is used with test capture and
replay facility?
(a) Regression testing
(b) Integration testing
(c) System testing
(d) Acceptance testing

EXERCISES

7.1 (a) What is regression testing? Discuss various categories of selective re-test problem.
(b) Discuss an algorithm for the prioritization of test cases.

7.2 What are the factors responsible for requirement changes? How are the requirements
traced?

Selection, Minimization and Prioritization of Test Cases for Regression Testing 365

7.3 Identify the reasons which are responsible for changes in the software. Comment on
the statement “change is inevitable.”

7.4 Compare regression testing with development testing. Do we perform regression
testing before the release of the software?

7.5 s it necessary to perform regression testing? Highlight some issues and difficulties of
regression testing.

7.6 Explain the various steps of the regression testing process. Which step is the most
important and why?

7.7 Discuss techniques for selection of test cases during regression testing. Why do we rely
on the selection of test cases based on modification traversing?

7.8 What are selective re-test techniques? How are they different from the ‘retest all’
technique?

7.9 What are the categories to evaluate regression test selection technique? Why do we use
such categorization?

7.10 (a) Discuss the priority category schemes for the prioritization of test cases.
(b) What is the role of risk matrix for the reduction of test cases?

7.11 How is risk analysis used in testing? How can we prioritize test cases using risk
factor?

7.12 What is a risk matrix? How do we assign thresholds that group the potential problems
into priority categories?

7.13 Explain the following:
(a) Modification traversing test cases
(b) Modification revealing test cases

7.14 What is the difference between general test case prioritization and version specific test
case prioritization? Discuss any prioritization technique with the help of an example.

7.15 Explain the ‘code coverage prioritization’ technique. What are the test cases selection
criteria? Write the modification algorithm which is used to minimize and prioritize test
cases.

FURTHER READING

Many test cases may be generated using test design techniques. Applying risk analysis
may help the software tester to select the most important test cases that address the
most significant features. Tamres describes risk analysis in order to prioritize test
cases:
L. Tamres, “Introduction to Software Testing”, Pearson Education, 2005.
The following article provides a full account on design and maintenance of behavioural
regression test suites that may help to change code with confidence:
Nada daVeiga, “Change Code without Fear: Utilize a Regression Safety Net”,
DDJ, February 2008.
Useful recommendations x on regression testing by Microsoft can be obtained from:
Microsoft regression testing recommendations, http://msdn.microsoft.com/en-us/
library/aa292167(VS.71).aspx

366 Software Testing

Fischer proposed a minimisation based regression test selection technique. This
technique uses linear equations in order to represent relationships between basic block
and test cases. A safe regression test selection algorithm was proposed by Rothermal
and Harrold. They use control flow graphs for a program or procedure and these
graphs were used to select test cases that execute modified source code from the given
test suite. Harrold and Soffa present a data flow coverage based regression test
selection technique. An empirical study is conducted by Graves in order to examine
the costs and benefits of various regression test selection techniques:
K. Fischer, F. Raji, and A. Chruscicki, “A Methodology for Retesting Modified
Software”, Proceedings of the National Telecommunications Conference B-6-3,
Nov: 1-6, 1981.
G. Rothermel and M. Harrold, “A Safe, Efficient Algorithm for Regression Test
Selection”, Proceedings of International Conference on Software Maintenance
pp- 358-367, 1993.
T. Graves, M.J. Harrold, J.M. Kim, A. Porter, and G. Rothermel, “An Empirical
Study of Regression Test Selection Techniques”, Proceedings of 20th International
Conference on Software Engineering, Kyoto, Japan. IEEE Computer Society
Press: Los Alamitos, CA, pp.188—197, 1998.
M.J Harrold, and M.L Soffa, “An Incremental Approach to Unit Testing during
Maintenance”, Proceedings of the Conference on Software Maintenance (Oct.).
pp. 362-367, 1998.
Other similar studies include:
Kim, J. M., and A. Porter, “A History-Based Test Prioritization Technique for
Regression Testing in Resource Constrained Environments”, Proceedings of the
24th International Conference on Software Engineering, pp. 119—129, 2002.
J. Laski and W. Szermer, “Identification of Program Modifications and Its
Applications in Software Maintenance”, Proceedings of the 1992 Conference on
Software Maintenance (Nov.), pp. 282-290, 1992.
Z. Li, M. Harman, and R. M. Hierons “Search Algorithms for Regression Test
Case Prioritization”, IEEE Trans. on Software Engineering, vol. 33, no. 4, April
2007.
W. E. Wong, J. R. Horgan, S. London and H. Aggarwal, “A Study of Effective
Regression in Practice”, Proceedings of the 8th International Symposium on
software reliability Engineering, pp. 230-238, Nov. 1994.
A useful introduction to regression testing performed in a real-life environment is
given by Onomo:
A.K. Onomo, Wei-Tek Tsai, M. Poonawala, H. Suganuma, “Regression Testing
in an Industrial Environment,” Communications of the ACM, vol. 45, no. 5,
pp- 81-86, May 1998.
Some other good survey papers on regression testing include:
Emelie Engstrom, Per Runeson and Mats Skoglund, “A Systematic Review on
Regression Test Selection Techniques”, Information and Software Technology,
vol. 52, no. 1, pp. 14-30, January 2010.
S. Yoo and M. Harman, “Regression Testing Minimization, Selection and
Prioritization: A Survey”, March 2010, DOI: 10.1002/stvr.430.

Selection, Minimization and Prioritization of Test Cases for Regression Testing 367

The following research paper provides an excellent comparison in order to analyze the

costs and benefits of several regression test selection algorithms:
T.L. Graves, M.J. Harrold, J.M. Kim, A. Porter, G. Rothermel, “An Empirical
Study: Regression Test Selection Techniques”, ACM Transactions on Software
Engineering and Methodology, vol. 10 , no. 2, pp. 180-208, April 2001.

Other similar study includes:
Gregg Rothermel, Mary Jean Harrold, Jeffery von Ronne, Christie Hong,
“Empirical Studies of Test-suite Reduction”, Software Testing, Verification and
Reliability, vol. 12, no. 4, pp. 219-249, 2002.

Software Testing Activities

We start testing activities from the first phase of the software development life cycle. We may
generate test cases from the SRS and SDD documents and use them during system and
acceptance testing. Hence, development and testing activities are carried out simultaneously in
order to produce good quality maintainable software in time and within budget. We may carry
out testing at many levels and may also take help of a software testing tool. Whenever we
experience a failure, we debug the source code to find reasons for such a failure. Finding the
reasons for a failure is a very significant testing activity and consumes a huge amount of
resources and may also delay the release of the software.

8.1 LEVELS OF TESTING

Software testing is generally carried out at different levels. There are four such levels namely
unit testing, integration testing, system testing and acceptance testing as shown in Figure 8.1.
The first three levels of testing activities are done by the testers and the last level of testing
(acceptance) is done by the customer(s)/user(s). Each level has specific testing objectives. For
example, at the unit testing level, independent units are tested using functional and/or structural
testing techniques. At the integration testing level, two or more units are combined and testing
is carried out to test the integration related issues of various units. At the system testing level,
the system is tested as a whole and primarily functional testing techniques are used to test the
system. Non-functional requirements like performance, reliability, usability, testability, etc. are
also tested at this level. Load/stress testing is also performed at this level. The last level i.e.
acceptance testing, is done by the customer(s)/user(s) for the purpose of accepting the final
product.

Software Testing Activities 369

Unit Integration System
Testing Testing Testing

Acceptance
Testing

Testing is
done by
the customer

Software is
ready for the
customer

Any testing technique
(verification plus
validation) is applicable.
Testing is done by
testers only.

Figure 8.1. Levels of testing

8.1.1 Unit Testing

We develop software in parts / units and every unit is expected to have a defined functionality.
We may call it a component, module, procedure, function, etc., which will have a purpose and
may be developed independently and simultaneously. A. Bertolino and E. Marchetti have
defined a unit as [BERTO07]:

“Aunit is the smallest testable piece of software, which may consist of hundreds
or even just few lines of source code, and generally represents the result of the
work of one or few developers. The unit test cases’ purpose is to ensure that the
unit satisfies its functional specification and / or that its implemented structure
matches the intended design structure. [BEIZ90, PFLEO1].”

There are also problems with unit testing. How can we run a unit independently? A unit may
not be completely independent. It may be calling a few units and also be called by one or more
units. We may have to write additional source code to execute a unit. A unit X may call a unit
Y and a unit Y may call a unit A and a unit B as shown in Figure 8.2(a). To execute a unit Y
independently, we may have to write additional source code in a unit Y which may handle the
activities of a unit X and the activities of a unit A and a unit B. The additional source code to
handle the activities of a unit X is called ‘driver’ and the additional source code to handle the
activities of a unit A and a unit B is called ‘stub’. The complete additional source code which
is written for the design of stub and driver is called scaffolding.

The scaffolding should be removed after the completion of unit testing. This may help us to
locate an error easily due to small size of a unit. Many white box testing techniques may be
effectively applicable at unit level. We should keep stubs and drivers simple and small in size to
reduce the cost of testing. If we design units in such a way that they can be tested without writing
stubs and drivers, we may be very efficient and lucky. Generally, in practice, it may be difficult
and thus the requirement of stubs and drivers may not be eliminated. We may only minimize the
requirement of scaffolding depending upon the functionality and its division in various units.

370 Software Testing

Unit under

Replacing
unit X

User interface for
input(s) and output(s)

e AN

Replacing Replacing
unit A (b) unit B

Figure 8.2. Unit under test with stubs and driver

8.1.2 Integration Testing

A software program may have many units. We test units independently during unit testing after
writing the required stubs and drivers. When we combine two units, we may like to test the
interfaces amongst these units. We combine two or more units because they share some
relationship. This relationship is represented by an interface and is known as coupling. The
coupling is the measure of the degree of interdependence between units. Two units with high
coupling are strongly connected and thus, dependent on each other. Two units with low
coupling are weakly connected and thus have low dependency on each other. Hence, highly
coupled units are heavily dependent on other units and loosely coupled units are comparatively
less dependent on other units as shown in Figure 8.3.

Software Testing Activities 371

» © O
& © O

(a) Uncoupled: No dependencies (b) Loosely coupled units:

Few dependencies

(c) Highly coupled units:
Many dependencies

Figure 8.3. Coupling amongst units

Coupling increases as the number of calls amongst units increases or the amount of shared data
increases. A design with high coupling may have more errors. Loose coupling minimizes the
interdependence, and some of the steps to minimize coupling are given as:

(1) Pass only data, not the control information.

(i) Avoid passing undesired data.

(ii1) Minimize parent/child relationship between calling and called units.
(iv) Minimize the number of parameters to be passed between two units.
(v) Avoid passing complete data structure.

(vi) Do not declare global variables.

(vil) Minimize the scope of variables.

Different types of coupling are data (best), stamp, control, external, common and content (worst).
When we design test cases for interfaces, we should be very clear about the coupling amongst units
and if it is high, a large number of test cases should be designed to test that particular interface.

A good design should have low coupling and thus interfaces become very important. When
interfaces are important, their testing will also be important. In integration testing, we focus on
the issues related to interfaces amongst units. There are several integration strategies that really
have little basis in a rational methodology and are given in Figure 8.4. Top down integration
starts from the main unit and keeps on adding all called units of the next level. This portion
should be tested thoroughly by focusing on interface issues. After completion of integration
testing at this level, add the next level of units and so on till we reach the lowest level units
(leaf units). There will not be any requirement of drivers and only stubs will be designed. In
bottom-up integration, we start from the bottom, (i.e. from leaf units) and keep on adding upper
level units till we reach the top (i.e. root node). There will not be any need of stubs. A sandwich

372 Software Testing

strategy runs from top and bottom concurrently, depending upon the availability of units and
may meet somewhere in the middle.

(c) Sandwich integration (focus starts from a, b, i, j and so on)

Figure 8.4. Integration approaches

Software Testing Activities 373

Each approach has its own advantages and disadvantages. In practice, sandwich integration
approach is more popular. This can be started as and when two related units are available. We
may use any functional or structural testing techniques to design test cases.

Functional testing techniques are easy to implement with a particular focus on the interfaces
and some structural testing techniques may also be used. When a new unit is added as a part
of integration testing, then the software is considered as a changed software. New paths are
designed and new input(s) and output(s) conditions may emerge and new control logic may be
invoked. These changes may also cause problems with units that previously worked
flawlessly.

8.1.3 System Testing

We perform system testing after the completion of unit and integration testing. We test
complete software along with its expected environment. We generally use functional testing
techniques, although a few structural testing techniques may also be used.

A system is defined as a combination of the software, hardware and other associated parts
that together provide product features and solutions. System testing ensures that each system
function works as expected and it also tests for non-functional requirements like performance,
security, reliability, stress, load, etc. This is the only phase of testing which tests both functional
and non-functional requirements of the system. A team of the testing persons does the system
testing under the supervision of a test team leader. We also review all associated documents
and manuals of the software. This verification activity is equally important and may improve
the quality of the final product.

Utmost care should be taken for the defects found during the system testing phase. A proper
impact analysis should be done before fixing the defect. Sometimes, if the system permits,
instead of fixing the defects, they are just documented and mentioned as the known limitations.
This may happen in a situation when fixing is very time consuming or technically it is not
possible in the present design, etc. Progress of system testing also builds confidence in the
development team as this is the first phase in which the complete product is tested with a
specific focus on the customer’s expectations. After the completion of this phase, customers
are invited to test the software.

8.1.4 Acceptance Testing

This is the extension of system testing. When the testing team feels that the product is ready
for the customer(s), they invite the customer(s) for demonstration. After demonstration of the
product, customer(s) may like to use the product to assess their satisfaction and confidence.
This may range from adhoc usage to systematic well-planned usage of the product. This type
of usage is essential before accepting the final product. The testing done for the purpose of
accepting a product is known as acceptance testing. This may be carried out by the customer(s)
or persons authorized by the customer(s). The venue may be the developer’s site or the
customer’s site depending on mutual agreement. Generally, acceptance testing is carried out at
the customer’s site. Acceptance testing is carried out only when the software is developed for
a particular customer(s). If we develop ‘standardised’ software for anonymous users at large

374 Software Testing

(like operating systems, compilers, case tools, etc.), then acceptance testing is not feasible. In
such cases, potential customers are identified to test the software and this type of testing is
called alpha / beta testing. Beta testing is done by many potential customers at their sites
without any involvement of developers / testers. However, alpha testing is done by some
potential customers at the developer’s site under the direction and supervision of developers
testers.

8.2 DEBUGGING

Whenever a software fails, we would like to understand the reason(s) for such a failure. After
knowing the reason(s), we may attempt to find the solution and may make necessary changes
in the source code accordingly. These changes will hopefully remove the reason(s) for that
software failure. The process of identifying and correcting a software error is known as
debugging. It starts after receiving a failure report and completes after ensuring that all
corrections have been rightly placed and the software does not fail with the same set of
input(s). The debugging is quite a difficult phase and may become one of the reasons for the
software delays.

Every bug detection process is different and it is difficult to know how long it will take to
detect and fix a bug. Sometimes, it may not be possible to detect a bug or if a bug is detected,
it may not be feasible to correct it at all. These situations should be handled very carefully. In
order to remove bugs, developers should understand that a problem prevails and then he/she
should do the classification of the bug. The next step is to identify the location of the bug in
the source code and finally take the corrective action to remove the bug.

8.2.1 Why Debugging is so Difficult?

Debugging is a difficult process. This is probably due to human involvement and their
psychology. Developers become uncomfortable after receiving any request of debugging. It is
taken against their professional pride. Shneiderman [SHNES80] has rightly commented on the
human aspect of debugging as:

“It is one of the most frustrating parts of programming. It has elements of
problem solving or brain teasers, coupled with the annoying recognition that we
have made a mistake. Heightened anxiety and the unwillingness to accept the
possibility of errors, increase the task difficulty. Fortunately, there is a great sigh
of relief and a lessening of tension when the bug is ultimately corrected.”

These comments explain the difficulty of debugging. Pressman [PRES97] has given some
clues about the characteristics of bugs as:

“The debugging process attempts to match symptom with cause, thereby
leading to error correction. The symptom and the cause may be geographically
remote. That is, symptom may appear in one part of program, while the cause
may actually be located in other part. Highly coupled program structures may
further complicate this situation. Symptom may also disappear temporarily

Software Testing Activities 375

when another error is corrected. In real time applications, it may be difficult
to accurately reproduce the input conditions. In some cases, symptom may be
due to causes that are distributed across a number of tasks running on different
processors.”

There may be many reasons which may make the debugging process difficult and time
consuming. However, psychological reasons are more prevalent over technical reasons. Over
the years, debugging techniques have substantially improved and they will continue to develop
significantly in the near future. Some debugging tools are available and they minimize the
human involvement in the debugging process. However, it is still a difficult area and consumes
a significant amount of time and resources.

8.2.2 Debugging Process

Debugging means detecting and removing bugs from the programs. Whenever a program
generates an unexpected behaviour, it is known as a failure of the program. This failure may
be mild, annoying, disturbing, serious, extreme, catastrophic or infectious. Depending on the
type of failure, actions are required to be taken. The debugging process starts after receiving a
failure report either from the testing team or from users. The steps of the debugging process
are replication of the bug, understanding the bug, locating the bug, fixing the bug and retesting
the program. These steps are explained below:

(i) Replication of the bug: The first step in fixing a bug is to replicate it. This means
to recreate the undesired behaviour under controlled conditions. The same set of
input(s) should be given under similar conditions to the program and the program after
execution, should produce a similar unexpected behaviour. If this happens, we are
able to replicate a bug. In many cases, this is simple and straight forward. We execute
the program on a particular input(s) or we press a particular button on a particular
dialog, and the bug occurs. In other cases, replication may be very difficult. It may
require many steps or in an interactive program such as a game, it may require precise
timing. In worst cases, replication may be nearly impossible. If we do not replicate the
bug, how will we verify the fix? Hence, failure to replicate a bug is a real problem.
If we cannot do it, any action, which cannot be verified, has no meaning, howsoever
important it may be. Some of the reasons for non-replication of a bug are:

B The user incorrectly reported the problem.

B The program has failed due to hardware problems like memory overflow, poor
network connectivity, network congestion, non-availability of system buses,
deadlock conditions, etc.

B The program has failed due to system software problems. The reason may be the
usage of a different type of operating system, compilers, device drivers, etc. There
may be any of the above-mentioned reasons for the failure of the program,
although there is no inherent bug in the program for this particular failure.

Our effort should be to replicate the bug. If we cannot do so, it is advisable to keep
the matter pending till we are able to replicate it. There is no point in playing with the
source code for a situation which is not reproducible.

376 Software Testing

(i)

(iii)

Understanding the bug

After replicating the bug, we may like to understand the bug. This means, we want to
find the reason(s) for this failure. There may be one or more reasons and is generally
the most time consuming activity. We should understand the program very clearly for
understanding a bug. If we are the designers and source code writers, there may not
be any problem for understanding the bug. If not, then we may have serious problems.
If readability of the program is good and associated documents are available, we may
be able to manage the problem. If readability is not that good, (which happens in
many situations) and associated documents are not proper and complete, the situation
becomes very difficult and complex. We may call the designers; if we are lucky, they
may be available with the company and we may get them. In case of the designers not
being available, the situation becomes challenging and in practice many times, we have
to face this and struggle with the source code and documents written by the persons
not available with the company. We may have to put effort in order to understand the
program. We may start from the first statement of the source code to the last statement
with a special focus on critical and complex areas of the source code. We should be
able to know where to look in the source code for any particular activity. The source
code should also tell us the general way in which the program acts.

The worst cases are large programs written by many persons over many years. These
programs may not have consistency and may become poorly readable over time due to
various maintenance activities. We should simply do the best and try to avoid making
the mess worse. We may also take the help of source code analysis tools for examining
large programs. A debugger may also be helpful for understanding the program. A
debugger inspects a program statement-wise and may be able to show the dynamic
behaviour of the program using a breakpoint. The breakpoints are used to pause the
program at any time needed. At every breakpoint, we may look at values of variables,
contents of relevant memory locations, registers, etc. The main point is that in order to
understand a bug, program understanding is essential. We should put the desired effort
before finding the reasons for the software failure. If we fail to do so, unnecessarily,
we may waste our effort, which is neither required nor desired.

Locate the bug

There are two portions of the source code which need to be considered for locating
a bug. The first portion of the source code is one which causes the visible incorrect
behaviour and the second portion of the source code is one which is actually incorrect.
In most of the situations, both portions may overlap and sometimes, both portions
may be in different parts of the program. We should first find the source code which
causes the incorrect behaviour. After knowing the incorrect behaviour and its related
portion of the source code, we may find the portion of the source code which is at fault.
Sometimes, it may be very easy to identify the problematic source code (the second
portion of the source code) with manual inspection. Otherwise, we may have to take
the help of a debugger. If we have ‘core dumps’, a debugger can immediately identify
the line which fails. A ‘core dumps’ is the printout of all registers and relevant memory
locations. We should document them and also retain them for possible future use. We
may provide breakpoints while replicating the bug and this process may also help us
to locate the bug.

@iv)

Software Testing Activities 377

Sometimes simple print statements may help us to locate the sources of the bad
behaviour. This simple way provides us the status of various variables at different
locations of the program with a specific set of inputs. A sequence of print statements
may also portray the dynamics of variable changes. However, it is cumbersome to use
in large programs. They may also generate superfluous data which may be difficult to
analyze and manage.

We may add check routines in the source code to verify the correctness of the data
structures. This may help us to know the problematic areas of the source code. If
execution of these check routines is not very time consuming, then we may always add
them. If it is time consuming, we may design a mechanism to make them operational,
whenever required.

The most useful and powerful way is to inspect the source code. This may help
us to understand the program, understand the bug and finally locate the bug. A clear
understanding of the program is an absolute requirement of any debugging activity.
Sometimes, the bug may not be in the program at all. It may be in a library routine
or in the operating system, or in the compiler. These cases are very rare, but there are
chances and if everything fails, we may have to look for such options.

Fix the bug and re-test the program

After locating the bug, we may like to fix the bug. The fixing of a bug is a programming
exercise rather than a debugging activity. After making necessary changes in the source
code, we may have to re-test the source code in order to ensure that the corrections
have been rightly done at right place. Every change may affect other portions of the
source code too. Hence an impact analysis is required to identify the affected portion
and that portion should also be re-tested thoroughly. This re-testing activity is called
regression testing which is a very important activity of any debugging process.

8.2.3 Debugging Approaches

There are many popular debugging approaches, but success of any approach is dependent upon
the understanding of the program. If the persons involved in debugging understand the program
correctly, they may be able to detect and remove the bugs.

®

(i)

Trial and Error Method

This approach is dependent on the ability and experience of the debugging persons. After
getting a failure report, it is analyzed and the program is inspected. Based on experience
and intelligence, and also using the ‘hit and trial’ technique, the bug is located and a
solution is found. This is a slow approach and becomes impractical in large programs.
Backtracking

This can be used successfully in small programs. We start at the point where the
program gives an incorrect result such as an unexpected output is printed. After
analyzing the output, we trace backward the source code manually until a cause of the
failure is found. The source code, from the statement where symptoms of the failure is
found, to the statement where the cause of failure is found, is analyzed properly. This
technique brackets the locations of the bug in the program. Subsequent careful study

378 Software Testing

(iii)

@iv)

of the bracketed location may help us to rectify the bug. Another obvious variation
of backtracking is forward tracking, where we use print statements or other means to
examine a succession of intermediate results to determine at what point the result first
became wrong. These approaches (backtracking and forward tracking) may be useful
only when the size of the program is small. As the program size increases, it becomes
difficult to manage these approaches.

Brute Force

This is probably the most common and efficient approach to identify the cause of
a software failure. In this approach, memory dumps are taken, run time traces are
invoked and the program is loaded with print statements. When this is done, we may
find a clue by the information produced which leads to identification of cause of a
bug. Memory traces are similar to memory dumps, except that the printout contains
only certain memory and register contents and printing is conditional on some event
occurring. Typically conditional events are entry, exit or use of one of the following:

A particular subroutine, statement or database

Communication with I/O devices

Value of a variable

Timed actions (periodic or random) in certain real time system.

A special problem with trace programs is that the conditions are entered in the source
code and any changes require a recompilation. A huge amount of data is generated,
which, although may help to identify the cause, but may be difficult to manage and
analyze.

Cause Elimination

Cause elimination is manifested by induction or deduction and also introduces the
concept of binary partitioning. Data related to error occurrence are organized to isolate
potential causes. Alternatively, a list of all possible causes is developed and tests are
conducted to eliminate each. Therefore, we may rule out causes one by one until a
single one remains for validation. The cause is identified, properly fixed and re-tested
accordingly.

8.2.4 Debugging Tools

Many debugging tools are available to support the debugging process. Some of the manual
activities can also be automated using a tool. We may need a tool that may execute every
statement of a program at a time and print values of any variable after executing every
statement of the program. We will be free from inserting print statements in the program
manually. Thus, run time debuggers are designed. Fundamentally, a run time debugger is
similar to an automatic print statement generator. It helps us to trace the program path and the
defined variables without having to put print statements in the source code. Every compiler
available in the market comes with run time debugger. It allows us to compile and run the
program with a single compilation, rather than modifying the source code and recompiling as
we try to narrow down the bug.

Software Testing Activities 379

Run time debuggers may detect bugs in the program, but may fail to find the causes of
failures. We may need a special tool to find causes of failures and correct the bug. Some errors
like memory corruption and memory leaks may be detected automatically. The automation was
the modification in the debugging process because it automated the process of finding the bug.
A tool may detect an error and our job is to simply fix it. These tools are known as ‘automatic
debugger’ and are available in different varieties. One variety may be a library of functions that
may be connected into the program. During execution of the program, these functions are
called and the debugger looks for memory corruption and other similar issues. If anything is
found, it is reported accordingly.

Compilers are also used for finding bugs. Of course, they check only syntax errors and
particular types of run time errors. Compilers should give proper and detailed messages of
errors that will be of great help to the debugging process. Compilers may give all such
information in the attribute table, which is printed along with the listing. The attribute table
contains various levels of warnings which have been picked up by the compiler scan and which
are noted. Hence, compilers come with an error detection feature and there is no excuse to
design compilers without meaningful error messages.

We may apply a wide variety of tools like run time debugger, automatic debugger, automatic
test case generators, memory dumps, cross reference maps, compilers, etc. during the
debugging process. However, tools are not the substitute for careful examination of the source
code after thorough understanding.

8.3 SOFTWARE TESTING TOOLS

The most important effort-consuming task in software testing is to design the test cases. The
execution of these test cases may not require much time and resources. Hence, the designing
part is more significant than the execution part. Both parts are normally handled manually. Do
we really need a tool? If yes, where and when can we use it — in the first part (designing of test
cases) or second part (execution of test cases) or both? Software testing tools may be used to
reduce the time of testing and to make testing as easy and pleasant as possible. Automated
testing may be carried out without human involvement. This may help us in the areas where a
similar dataset is to be given as input to the program again and again. A tool may undertake
repeated testing, unattended (and without human intervention), during nights or on weekends.

Many non-functional requirements may be tested with the help of a tool. We want to test the
performance of a software under load, which may require many computers, manpower and
other resources. A tool may simulate multiple users on one computer and also a situation when
many users are accessing a database simultaneously.

There are three broad categories of software testing tools i.e. static, dynamic and process
management. Most of the tools fall clearly into one of these categories but there are a few
exceptions like mutation analysis system which falls in more than one category. A wide variety
of tools are available with different scope and quality and they assist us in many ways.

8.3.1 Static Software Testing Tools

Static software testing tools are those that perform analysis of the programs without executing
them at all. They may also find the source code which will be hard to test and maintain. As we

380 Software Testing

all know, static testing is about prevention and dynamic testing is about cure. We should use
both the tools but prevention is always better than cure. These tools will find more bugs as
compared to dynamic testing tools (where we execute the program). There are many areas for
which effective static testing tools are available, and they have shown their results for the
improvement of the quality of the software.

®

(i)

(iii)

@iv)

(\)

Complexity analysis tools

Complexity of a program plays a very important role while determining its quality. A
popular measure of complexity is the cyclomatic complexity as discussed in chapter
4. This gives us the idea about the number of independent paths in the program and is
dependent upon the number of decisions in the program. A higher value of cyclomatic
complexity may indicate poor design and risky implementation. This may also be
applied at the module level, and higher cyclomatic complexity value modules may
either be redesigned or may be tested very thoroughly. There are other complexity
measures also which are used in practice like Halstead software size measures, knot
complexity measure, etc. Tools are available which are based on any of the complexity
measures. These tools may take the program as an input, process it and produce a
complexity value as output. This value may be an indicator of the quality of design
and implementation.

Syntax and semantic analysis tools

These tools find syntax and semantic errors. Although the compiler may detect all
syntax errors during compilation, early detection of such errors may help to minimize
other associated errors. Semantic errors are very significant and compilers are helpless
in finding such errors. There are tools in the market that may analyze the program and
find errors. Non-declaration of a variable, double declaration of a variable, ‘divide by
zero’ issue, unspecified inputs and non-initialization of a variable are some of the issues
which may be detected by semantic analysis tools. These tools are language dependent
and may parse the source code, maintain a list of errors and provide implementation
information. The parser may find semantic errors as well as make an inference as to
what is syntactically correct.

Flow graph generator tools

These tools are language dependent and take the program as an input and convert it
to its flow graph. The flow graph may be used for many purposes like complexity
calculation, paths identification, generation of definition use paths, program slicing,
etc. These tools assist us to understand the risky and poorly designed areas of the
source code.

Code comprehension tools

These tools may help us to understand unfamiliar source code. They may also identify
dead source code, duplicate source code and areas that may require special attention
and should be reviewed seriously.

Code inspectors

Source code inspectors do the simple job of enforcing standards in a uniform way for
many programs. They inspect the programs and force us to implement the guidelines
of good programming practices. Although they are language dependent, most of the
guidelines of good programming practices are similar in many languages. These tools

Software Testing Activities 381

are simple and may find many critical and weak areas of the program. They may also
suggest possible changes in the source code for improvement.

8.3.2 Dynamic Software Testing Tools

Dynamic software testing tools select test cases and execute the program to get the results.
They also analyze the results and find reasons for failures (if any) of the program. They will
be used after the implementation of the program and may also test non-functional requirements
like efficiency, performance, reliability, etc.

®

(vi)

Coverage analysis tools

These tools are used to find the level of coverage of the program after executing the
selected test cases. They give us an idea about the effectiveness of the selected test
cases. They highlight the unexecuted portion of the source code and force us to design
special test cases for that portion of the source code. There are many levels of coverage
like statement coverage, branch coverage, condition coverage, multiple condition
coverage, path coverage, etc. We may like to ensure that at least every statement
must be executed once and every outcome of the branch statement must be executed
once. This minimum level of coverage may be shown by a tool after executing an
appropriate set of test cases. There are tools available for checking statement coverage,
branch coverage, condition coverage, multiple conditions coverage and path coverage.
The profiler displays the number of times each statement is executed. We may study
the output to know which portion of the source code is not executed. We may design
test cases for those portions of the source code in order to achieve the desired level
of coverage. Some tools are also available to check whether the source code is as per
standards or not and also generate a number of commented lines, non-commented
lines, local variables, global variables, duplicate declaration of variables, etc. Some
tools check the portability of the source code. A source code is not portable if some
operating system dependent features are used. Some tools are Automated QA’s time,
Parasoft’s Insure++ and Telelogic’s Logicscope.

Performance testing tools

We may like to test the performance of the software under stress / load. For example, if
we are testing a result management software, we may observe the performance when 10
users are entering the data and also when 100 users are entering the data simultaneously.
Similarly, we may like to test a website with 10 users, 100 users, 1000 users, etc.
working simultaneously. This may require huge resources and sometimes, it may not
be possible to create such real life environment for testing in the company. A tool may
help us to simulate such situations and test these situations in various stress conditions.
This is the most popular area for the usage of any tool and many popular tools are
available in the market. These tools simulate multiple users on a single computer. We
may also see the response time for a database when 10 users access the database, when
100 users access the database and when 1000 users access the data base simultaneously.
Will the response time be 10 seconds or 100 seconds or even 1000 seconds? No user
may like to tolerate the response time in minutes. Performance testing includes load

382 Software Testing

and stress testing. Some of the popular tools are Mercury Interactive’s Load Runner,
Apache’s J Meter, Segue Software’s Silk Performer, IBM Rational’s Performance
Tester, Comuware’s QALOAD and AutoTester’s AutoController.
(vii) Functional / Regression Testing Tools

These tools are used to test the software on the basis of its functionality without
considering the implementation details. They may also generate test cases automatically
and execute them without human intervention. Many combinations of inputs may be
considered for generating test cases automatically and these test cases may be executed,
thus, relieving us from repeated testing activities. Some of the popular available tools
are IBM Rational’s Robot, Mercury Interactive’s Win Runner, Comuware’s QA Centre
and Segue Software’s Silktest.

8.3.3 Process Management Tools

These tools help us to manage and improve the software testing process. We may create a test
plan, allocate resources and prepare a schedule for unattended testing for tracking the status of a
bug using such tools. They improve many aspects of testing and make it a disciplined process.
Some of the tools are IBM Rational Test Manager, Mercury Interactive’s Test Director, Segue
Software’s Silk Plan Pro and Compuware’s QA Director. Some configuration management tools
are also available which may help bug tracking, its management and correctness like IBM
Rational Software’s Clear DDTs, Bugzilla and Samba’s Jitterbug.

Selection of any tool is dependent upon the application, expectations, quality requirements
and available trained manpower in the organization. Tools assist us to make testing effective,
efficient and performance oriented.

8.4 SOFTWARE TEST PLAN

It is a document to specify the systematic approach to plan the testing activities of the software.
If we carry out testing as per a well-designed systematic test plan document, the effectiveness
of testing will improve and that may further help to produce a good quality product. The test
plan document may force us to maintain a certain level of standards and disciplined approach
to testing. Many software test plan documents are available, but the most popular document is
the IEEE standard for Software Test Documentation (Std 829 — 1998). This document addresses
the scope, schedule, milestones and purpose of various testing activities. It also specifies the
items and features to be tested and features which are not to be tested. Pass/fail criteria, roles
and responsibilities of persons involved, associated risks and constraints are also described in
this document. The structure of the IEEE Std 829 — 1998 test plan document is given in
[IEEE98c]. All ten sections have a specific purpose. Some changes may be made as per
requirement of the project. A test plan document is prepared after the completion of the SRS
document and may be modified along with the progress of the project. We should clearly
specify the test coverage criteria and testing techniques to achieve the criteria. We should also
describe who will perform testing, at what level and when. Roles and responsibilities of testers
must be clearly documented.

Software Testing Activities

MULTIPLE CHOICE QUESTIONS

Note: Select the most appropriate answer for the following questions.

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

The purpose of acceptance testing is:

(a) To find faults in the system

(b) To ensure the correctness of the system

(c) To test the system from the business perspective

(d) To demonstrate the effectiveness of the system

Which of the following is not part of system testing?

(a) Performance, load and stress testing

(b) Bottom up integration testing

(c) Usability testing

(d) Business perspective testing

Which of the following is not the integration testing strategy?
(a) Top down

(b) Bottom up

(c) Sandwich

(d) Design based

Which is not covered under the category of static testing tools?
(a) Complexity analysis tools

(b) Coverage analysis tools

(¢) Syntax and semantic analysis tools

(d) Code Inspectors

Which is not covered under the category of dynamic testing tools?
(a) Flow graph generator tools

(b) Performance testing tools

(c) Regression testing tools

(d) Coverage analysis tools

Which is not a performance testing tool?

(a) Mercury Interactive’s Load Runner

(b) Apache’s J Meter,

(c) IBM Rational’s Performance tester

(d) Parasoft’s Insure ++

Select a functional / regression testing tool out of the following:
(a) IBM Rational’s Robot

(b) Comuware’s QALOAD

(c) Automated QA’s time

(d) Telelogic’s Logic scope

Find a process management tool out of the following:

(a) IBM Rational Test Manager

(b) Mercury Interactive’s Test Director

383

384 Software Testing

(c) Segue Software’s Silk Plan Pro
(d) All of the above
8.9 Which is not a coverage analysis tool?
(a) Automated QA’s time
(b) Parasoft’s Insure ++
(c) Telelogic’s Logic Scope
(d) Apache’s J Meter
8.10 Which is not a functional / regression testing tool?
(a) Mercury Interactive Win Runner
(b) IBM Rational’s Robot
(c) Bugzilla
(d) Segue Software’s Silk test
8.11 Which is not the specified testing level?
(a) Integration testing
(b) Acceptance testing
(c) Regression testing
(d) System testing
8.12 Which type of testing is done by the customers?
(a) Unit testing
(b) Integration testing
(¢c) System testing
(d) Acceptance testing
8.13 Which one is not a step to minimize the coupling?
(a) Pass only control information, not data
(b) Avoid passing undesired data
(¢) Do not declare global variables
(d) Minimize the scope of variables
8.14 Choose the most desirable type of coupling:
(a) Data coupling
(b) Stamp coupling
(c) Control coupling
(d) Common coupling
8.15 Choose the worst type of coupling
(a) Stamp coupling
(b) Content coupling
(¢) Common coupling
(d) Control coupling
8.16 Which is the most popular integration testing approach?
(a) Bottom up integration
(b) Top down integration
(c) Sandwich integration
(d) None of the above

Software Testing Activities

8.17 Which is not covered in the debugging process?
(a) Replication of the bug
(b) Understanding of the bug
(c) Selection of the bug tracking tool
(d) Fix the bug and re-test the program
8.18 Which is not a debugging approach?
(a) Brute force
(b) Backtracking
(¢) Cause elimination
(d) Bug multiplication
8.19 Binary partitioning is related to:
(a) Cause elimination
(b) Brute force
(c) Backtracking
(d) Trial and Error method
8.20 Which is not a popular debugging tool?
(a) Run time debugger
(b) Compiler
(c) Memory dumps
(d) Samba’s Jitterbug
8.21 Finding reasons for a failure is known as:
(a) Debugging
(b) Testing
(c) Verification
(d) Validation
8.22 Which of the following terms is not used for a unit?
(a) Component
(b) Module
(c) Function
(d) Documentation
8.23 Non-functional requirements testing is performed at the level of:
(a) System testing
(b) Acceptance testing
(c) Unit testing
(d) (a) and (b) both
8.24 The debugging process attempts to match:
(a) Symptom with cause
(b) Cause with inputs
(¢) Symptoms with outputs
(d) Inputs with outputs

385

386 Software Testing

8.25 Static testing tools perform the analysis of programs:
(a) After their execution
(b) Without their execution
(c) During their execution
(d) None of the above

EXERCISES

8.1 What are the various levels of testing? Explain the objectives of every level. Who
should do testing at every level and why?

8.2 Is unit testing possible or even desirable in all circumstances? Justify your answer with
examples.

8.3 What is scaffolding? Why do we use stubs and drivers during unit testing?

8.4 What are the various steps to minimize the coupling amongst various units? Discuss
different types of coupling from the best coupling to the worst coupling.

8.5 Compare the top down and bottom up integration testing approaches to test a
program.

8.6 What is debugging? Discuss two debugging techniques. Write features of these
techniques and compare the important features.

8.7 Why is debugging so difficult? What are the various steps of a debugging process?

8.8 What are the popular debugging approaches? Which one is more popular and why?

8.9 Explain the significance of debugging tools. List some commercially available
debugging tools.

8.10 (a) Discuss the static and dynamic testing tools with the help of examples.
(b) Discuss some of the areas where testing cannot be performed effectively without

the help of a testing tool.

8.11 Write short notes on:
(i) Coverage analysis tools
(i) Performance testing tools
(ii) Functional / Regression testing tools

8.12 What are non-functional requirements? How can we use software tools to test these
requirements? Discuss some popular tools along with their areas of applications.

8.13 Explain stress, load and performance testing.

8.14 Differentiate between the following:
(a) Integration testing and system testing
(b) System testing and acceptance testing
(¢) Unit testing and integration testing
(d) Testing and debugging

8.15 What are the objectives of process management tools? Describe the process of selection
of such a tool. List some commercially available process management tools.

Software Testing Activities 387

8.16 What is the use of a software test plan document in testing? Is there any standard

available?

8.17 Discuss the outline of a test plan document as per IEEE Std 829-1998.
8.18 Consider the problem of the URS given in chapter 5, and design a software test plan

document.

8.19 Which is the most popular level of testing a software in practice and why?
8.20 Which is the most popular integration testing approach? Discuss with suitable

examples.

FURTHER READING

The IEEE standard on software unit testing presents a standard approach to unit testing
that can be used as sound software engineering practice. It also provides guidelines for
a software practitioner for implementation and usage of software unit testing:
IEEE Standards Board, “IEEE Standard for Software Unit Testing: An American
National Standard”, ANSI/IEEE Std 1008-1987.
For a comprehensive set of 27 guidelines on unit testing refer to:
“Unit Testing Guidelines”, Geotechnical Software Services, http://geosoft.no/
development/unittesting.html, 2007.
An excellent book on “The Art of Unit Testing” was written by Osherove:
R. Osherove, “The Art of Unit Testing”, Manning Publications.
The following survey paper defines a number of practices that may be followed during
unit testing:
Per Runeson, “A Survey of Unit Testing Practices”, IEEE Software, vol. 23, no.
4, pp. 22-29, July/Aug. 2006, doi:10.1109/MS.2006.91.
Agans provides nine main debugging rules and several sub-debugging rules. These
sub-rules are derived from common sense and several years of experience:
David J. Agans, “Debugging: The Nine Indispensable Rules for Finding Even the
Most Elusive Software and Hardware Problems”, AMACOM, 2002.
An introduction to debugging approaches may be found in Chapter 7 in Myers’ book:
G.J Myers, “The Art of Software Testing,” John Wiley & Sons, 2004.
A software practitioner spends lots of time in identifying and fixing bugs. The essay
written by Taylor provides a good discussion on debugging:
Ian Lance Taylor, “Debugging”, http://www.airs.com/ian/, 2003.
Other similar books include:
John Robbins, “Debugging Applications”, Microsoft Press, 2000.
Matthew A. Telles, Yuan Hsieh, “The Science of Debugging”, The Coriolis
Group, 2001.
Dmitry Vostokov, “Memory Dump Analysis Anthology”, vol. 1, OpenTask,
2008.

388 Software Testing

A comprehensive list of software testing tools can be obtained from:
http://www.dmoz.org/Computers/Programming/Software Testing/Products
and_Tools/
http://www.aptest.com/resources.html#app-func

The IEEE standard for test documentation (IEEE, 1998) provides a comprehensive set

of documents for test planning:

IEEE, “IEEE Standard for Test Documentation (IEEE Std 829 —1998)”, 1998.

A good survey on dynamic analysis may be found in:

W.E. Howden, “A Survey of Dynamic Analysis Methods”, In tutorial: Program
Testing and Validation Techniques, IEEE Computer Society Press, 1981.

Object Oriented Testing

What is object orientation? Why is it becoming important and relevant in software development?
How is it improving the life of software developers? Is it a buzzword? Many such questions
come into our mind whenever we think about object orientation of software engineering.
Companies are releasing the object oriented versions of existing software products. Customers
are also expecting object oriented software solutions. Many developers are of the view that
structural programming, modular design concepts and conventional development approaches
are old fashioned activities and may not be able to handle today’s challenges. They may also
feel that real world situations are effectively handled by object oriented concepts using
modeling in order to understand them clearly. Object oriented modeling may improve the
quality of the SRS document, the SDD document and may help us to produce good quality
maintainable software. The software developed using object orientation may require a different
set of testing techniques, although few existing concepts may also be applicable with some
modifications.

9.1 WHAT IS OBJECT ORIENTATION?

We may model real world situations using object oriented concepts. Suppose we want to send
a book to our teacher who does not stay in the same city, we cannot go to his house for delivery
of the book because he stays in a city which is 500 km away from our city. As we all know,
sending a book is not a difficult task. We may go to a nearby courier agent (say Fast Track
Courier) and ask to deliver the book to our teacher on his address. After this, we are sure that
the book will be delivered automatically and also within the specified time (say two days). The
agents of Fast Track Courier will perform the job without disturbing us at all.

Our objective is that we want to send a book to our teacher who does not stay in our city. This
objective may be simply achieved, when we identify a proper ‘agent’ (say Fast Track Courier)
and give a ‘message’ to send the book on an address of the teacher. It is the ‘responsibility’ of the
identified agent (Fast Track Agent) to send the book. There are many ‘methods’ or ways to

390 Software Testing

perform this task. We are not required to know the details of the operations to be performed to
complete this task. Our interest is very limited and focused. If we investigate further, we may
come to know that there are many ways to send a book like using train network, bus network, air
network or combinations of two or more available networks. The selection of any method is the
prerogative of our agent (say, agent of Fast Track Company). The agent may transfer the book to
another agent with the delivery address and a message to transfer to the next agent and so on. Our
task may be done by a sequence of requests from one agent to another.

In object orientation, an action is initiated by sending a message (request) to an agent who is
responsible for that action. An agent acts as a receiver and if it accepts a message (request), it
becomes its responsibility to initiate the desired action using some method to complete the task.

In real world situations, we do not need to know all operations of our agents to complete the
assigned task. This concept of ‘information hiding’ with respect to message passing has
become very popular in object oriented modeling. Another dimension is the interpretation of
the message by the receiver. All actions are dependent upon the interpretation of the received
message. Different receivers may interpret the same message differently. They may decide to
use different methods for the same message. Fast Track Agency may use air network while
another agency may use train network and so on. If we request our tailor to send the book, he
may not have any solution for our problem. The tailor will only deny such requests. Hence, a
message should be issued to a proper agent (receiver) in order to complete the task. Object
orientation is centered around a few basic concepts like objects, classes, messages, interfaces,
inheritance and polymorphism. These concepts help us to model a real world situation which
provides the foundation for object oriented software engineering.

9.1.1 Classes and Objects

We consider the same example of sending a book to a teacher. The selection of the courier
company is based on its reputation and proximity to our house. A courier management system
is required in order to send a book to a teacher. All courier types (such as book, pen, etc.) may
be combined to form a group and this group is known as a class. All objects are instances of a
class. The class describes the structure of the instances which include behaviour and
information. In our example, courier (containing courier details) is a class and all courier types
are its objects as shown in Figure 9.1.

Courier
Object Object Object

Figure 9.1. Class and its objects

Object Oriented Testing 391

All objects have unique identification and are distinguishable. There may be four horses
having same attributes colour, breed and size but all are distinguishable due to their colour. The
term identity means that objects are distinguished by their inherent existence and not by
descriptive properties [JOSHO3].

What types of things become objects? Anything and everything may become an object. In
our example, customer, courier and tracking are nothing but objects. The class of an object
provides the structure for the object i.e. its state and operations. A courier class is shown in
Figure 9.2 with eight attributes and four operations.

Courier Name
Description)
Weight

Length

Width

Height

Cost
DeliveryStatus
Address)
addcourierdetail()
deletecourier()
updatecourier()
viewstatus()

Attributes / State / Information

Operations / Behaviour

Figure 9.2. Class courier

An attribute (or information / state) is a data value held by the object of a class. The courier
may have different height, weight, width, length, description and it may be delivered or not.
The attributes are shown as the second part of the class courier as given in Figure 9.2.
Operations (or behaviour) are the functions which may be applied on a class. All objects of a
class have the same operations. A class courier shown in Figure 9.2 has four operations namely
‘addcourierdetail’, ‘deletecourier’, “‘updatecourier’ and ‘viewstatus’. These four operations are
defined for a Class Courier in the Figure 9.2. In short, every object has a list of functions
(operation part) and data values required to store information (Attribute part).

I. Jacobson has defined a class as [JACO98]:

“A class represents a template for several objects and describes how these
objects are structured internally. Objects of the same class have the same
definition both for their operations and for their information structures.”

In an object oriented system, every object has a class and the object is called an instance of
that class. We use object and instance as synonyms and an object is defined as [JACO98]:

“An instance is an object created from a class. The class describes the
(behaviour and information) structure of the instance, while the current state
of the instance is defined by the operations performed on the instance.”

9.1.2 Inheritance

We may have more information about Fast Track Courier Company not necessarily because it
is a courier company but because it is a company. As a company, it will have employees,
balance sheet, profit / loss account and a chief executive officer. It will also charge for its

392 Software Testing

services and products from the customers. These things are also true for transport companies,
automobile companies, aircraft companies, etc. Since the category ‘courier company’ is a more
specialized form of the category ‘company’ and any knowledge of a company is also true for
a courier company and subsequently also true for Fast Track Courier Company.

We may organize our knowledge in terms of hierarchy of categories as shown in Figure
9.3.

Globe

Nation

Company

Courier Company

Fast Track
Courier

Figure 9.3. The categories around fast track courier

Fast Track Courier is a specialized category of a courier company; however, ‘courier
company’ is a specialized category of a company. Moreover, a nation may have many
companies and around the globe, we have many nations; all knowledge gathered so far, may
not be directly applicable to Fast Track Company. Knowledge of a more general category,
which is also applicable to a specialized category, is called inheritance. We may say that Fast
Track Courier will inherit attributes of the category ‘courier company’ and ‘courier company’
will inherit the attributes of the category ‘company’. This category is nothing but the class in
the object oriented system. There is another tree-like structure used to represent a hierarchy of
classes and is shown in Figure 9.4.

Information of a courier company is available to Fast Track Company because it is a sub-
class of the class ‘courier company’. The same information of a courier company is also
applicable to Air World Courier and Express Courier because they are also sub-classes of the
class ‘courier company’. All classes inherit information from the upper classes. Hence
information from a base class is common to all the derived classes; however, each derived class
also has some additional information of its own. Each derived class inherits the attributes of its
base class and this process is known as inheritance. In general, low level classes (known as
sub-classes or derived classes) inherit state and behaviour from their high level class (known
as a super class or base class).

Object Oriented Testing 393

Globe
Nation Sea
Company Roads States
Transport Courier Automobile Aircraft

Company Company Company Company

Fast Track Air World Express
Courier Courier Courier

Figure 9.4. A class hierarchy

9.1.3 Messages, Methods, Responsibility, Abstraction

Objects communicate through passing messages. A message is a request for performing an
operation by some object in the system. A message may consist of the identification of the
target object, name of the requested operation and other relevant information for processing the
request. An object which originates a message is called the sender and the object which
receives a message is called the receiver. An object may send a message to another object or
even to itself to perform designed functions. A ‘method’ is the sequence of steps (or set of
operations) to be performed to fulfil the assigned task. There may be many methods available
for any task. It is the responsibility of the receiver of the message to choose an appropriate
method to complete a task effectively and efficiently. In Figure 9.2, four methods,
‘addcourierdetail’, ‘deletecourier’, ‘updatecourier’ and ‘viewstatus’ are available for courier
class. In order to retrieve the delivery status of the courier, the ‘viewstatus’ method must be
invoked.

Responsibility is an important concept of an object oriented system. Behaviour of an object
is described in terms of responsibilities. Fast Track Courier is free to use any method to send
the book without our involvement and interference. This type of independence increases the
level of abstraction. This improves the independence amongst the objects which is very
important for solving any complex problem. The complexity of a problem is managed using
the right level of abstraction which is the elimination of the irrelevant and the amplification of
the essentials. We learn driving a car by knowing driving essentials like steering wheel,

394 Software Testing

ignition, clutch, break, gear system without knowing any details of the type of engine, batteries,
control system, etc. These details may not be required for a learner and may create unnecessary
confusion. Hence, abstraction concept provides independence and improves the clarity of the
system.

9.1.4 Polymorphism

The dictionary meaning of polymorphism is ‘many forms’. In the real world, the same
operations may have different meanings in different situations. For example, ‘Human’ is a sub-
class of ‘Mammal’. Similarly ‘Dog’, ‘Bird’, ‘Horse’ are also sub-classes of ‘Mammal’. If a
message ‘come fast’ is issued to all mammals, all may not behave in the same way. The horse
and dog may run, the bird may fly and the human may take an aircraft. The behaviour of
mammals is different on the same message. This concept is known as polymorphism, where
the same message is sent to different objects irrespective of their class, but the responses of
objects may be different. When we abstract the interface of an operation and leave the
implementation details to sub-classes, this activity is called polymorphism. This operation is
called polymorphic operation. We may create a super class by pulling out important states,
behaviours and interfaces of the classes. This may further simplify the complexity of a
problem. An object may not need to know the class of another object to whom it wishes to send
a message, when we have polymorphism. This may be defined as [JACO98]:

“Polymorphism means that the sender of a stimulus (message) does not need
to know the receiving instance’s class. The receiving instance can belong to
an arbitrary class.”

Polymorphism is considered to be an important concept of any object oriented programming
language. As we all know, arithmetic operators such as +, =, - are used to operate on primary
data types such as int, float, etc. We may overload these operators so that they may operate in
the same way on objects (user defined data types) as they operate on primary data types. Thus,
the same operators will have multiple forms.

9.1.5 Encapsulation

Encapsulation is also known as information hiding concept. It is a way in which both data and
functions (or operations) that operate on data are combined into a single unit. The only way to
access the data is through functions, which operate on the data. The data is hidden from the
external world. Hence, it is safe from outside (external) and accidental modifications. For
example, any object will have attributes (data) and operations which operate on the specified
data only.

If data of any object needs to be modified, it may be done through the specified functions
only. The process of encapsulating the data and functions into a single unit simplifies the
activities of writing, modifying, debugging and maintaining the program.

In a university, every school may access and maintain its data on its own. One school is not
allowed to access the data of another school directly. This is possible only by sending a request
to the other school for the data. Hence, the data and functions that operate on the data are

Object Oriented Testing 395

specific to each school and are encapsulated into a single unit that is the school of a
university.

9.2 WHAT IS OBJECT ORIENTED TESTING?

Object oriented programming concepts are different from conventional programming and have
become the preferred choice for a large scale system design. The fundamental entity is the class
that provides an excellent structuring mechanism. It allows us to divide a system into well-
defined units which may then be implemented separately. We still do unit testing although the
meaning of unit has changed. We also do integration and system testing to test the correctness
of implementation. We also do regression testing in order to ensure that changes have been
implemented correctly. However, many concepts and techniques are different from conventional
testing.

9.2.1 What is a Unit?

In conventional programming, a unit is the smallest portion of the program that can be
compiled and executed. We may call it a module, component, function or procedure. In object
oriented system, we have two options for a unit. We may treat each class as a unit or may treat
each method within a class as a unit. If a class is tested thoroughly, it can be reused without
being unit tested again. Unit testing of a class with a super class may be impossible to do
without the super classes’ methods/variables. One of the solutions is to merge the super class
and the class under test so that all methods and variables are available. This may solve the
immediate testing problem and is called flattening of classes. But classes would not be flattened
in the final product, so potential issues may still prevail. We may have to redo flattening after
completion when dealing with multiple inheritance. If we decide to choose method as a unit,
then these issues will be more complicated and difficult to implement. Generally, classes are
selected as a unit for the purpose of unit testing.

9.2.2 Levels of Testing

We may have 3 or 4 levels of testing depending on our approach. The various testing levels
are:

(i) Method testing (Unit testing)

(i1) Class testing (Unit testing)

(ii1) Inter-class testing (Integration testing)
(iv) System testing

In order to test a class, we may create an instance of the class i.e. object, and pass the
appropriate parameters to the constructor. We may further call the methods of the object
passing parameters and receive the results. We should also examine the internal data of the
object. The encapsulation plays an important role in class testing because data and function
(operations) are combined in a class. We concentrate on each encapsulated class during unit
testing but each function may be difficult to test independently. Inter-class testing considers the

396 Software Testing

parameter passing issues between two classes and is similar to integration testing. System
testing considers the whole system and test cases are generated using functional testing
techniques.

Integration testing in object oriented system is also called inter-class testing. We do not have
hierarchical control structure in object orientation and thus conventional integration testing
techniques like top down, bottom up and sandwich integration cannot be applied. There are
three popular techniques for inter-class testing in object oriented systems. The first is the thread
based testing where we integrate classes that are needed to respond to an input given to the
system. Whenever we give input to a system, one or more classes are required to be executed
that respond to that input to get the result. We combine such classes which execute together for
a particular input or set of inputs and this is treated as a thread. We may have many threads in
a system, depending on various inputs. Thread based testing is easy to implement and has
proved as an effective testing technique. The second is the use case based testing where we
combine classes that are required by one use case.

The third is the cluster testing where we combine classes that are required to demonstrate
one collaboration. In all three approaches, we combine classes on the basis of a concept and
execute them to see the outcome. Thread based testing is more popular due to its simplicity and
easy implementability.

The advantage of object oriented system is that the test cases can be generated earlier in the
process, even when the SRS document is being designed. Early generation of test cases may
help the designers to better understand and express requirements and to ensure that specified
requirements are testable. Use cases are used to generate a good number of test cases. This
process is very effective and also saves time and effort. Developers and testers understand
requirements clearly and may design an effective and stable system. We may also generate test
cases from the SDD document. Both the teams (testers and developers) may review the SRS
and the SDD documents thoroughly in order to detect many errors before coding. However,
testing of source code is still a very important part of testing and all generated test cases will
be used to show their usefulness and effectiveness. We may also generate test cases on the basis
of the availability of the source code.

Path testing, state based testing and class testing are popular object oriented testing
techniques and are discussed in subsequent sections.

9.3 PATH TESTING

As discussed earlier, path testing is a structural testing technique where the source code is
required for the generation of test cases. In object oriented testing, we also identify paths from
the source code and write test cases for the execution of such paths. Most of the concepts of
conventional testing such as generating test cases from independent paths are also applicable
in object oriented testing.

9.3.1 Activity Diagram

The first step of path testing is to convert source code into its activity diagram. In Unified
Modeling Language (UML), activity diagram is used to represent sequences in which all

Object Oriented Testing 397

activities are performed. This is similar to a flow graph which is the basis of conventional path
testing. Activity diagram may be generated from a use case or from a class. It may represent
basic flow and also possible alternative flows. As shown in Figure 9.5, the start state is
represented by a solid circle and the end state is represented by a solid circle inside a circle.
The activities are represented by rectangles with rounded corners along with their descriptions.
Activities are nothing but the set of operations. After execution of these set of activities, a
transition takes place to another activity. Transitions are represented by an arrow. When
multiple activities are performed simultaneously, the situation is represented by a symbol
‘fork’. The parallel activities are combined after the completion of such activities by a symbol
‘join’. The number of fork and join in an activity diagram are the same. The branches are used
to describe what activities are performed after evaluating a set of conditions. Branches may
also be represented as diamonds with multiple labelled exit arrows. A guard condition is a
boolean expression and is also written along with branches. An activity diagram consisting of
seven activities is shown in Figure 9.5.

Start state ———

Activity 1

Fork
Activity 2 Activity 3
~— Join
Activity 4

Branch [Guard condition]

Activity 5 Activity 6

Activity 7

End state — (@)

Figure 9.5. An example of an activity diagram

In the activity diagram given in Figure 9.5, Activity 2 and Activity 3 are performed
simultaneously and combined by a join symbol. After Activity 4, a decision is represented by
a diamond symbol and if the guard condition is true, Activity 5 is performed, otherwise
Activity 6 is performed. The fork has one incoming transition (Activity 1 is split into sub-
activities) and two outgoing transitions. Similarly join has two incoming transitions and one
outgoing transition. The symbols of an activity diagram are given in Table 9.1.

398 Software Testing

Table 9.1. Symbols of an activity diagram

S. No. Symbol Notation Remarks

1. Fork To represent multiple parallel
activities i.e. an activity is split
into two or more activities.

2. Join To represent the combination
of two or more parallel activi-
ties after completion of respec-

_ To represent transfer of flow
of control from one activity to

tive activities.
3. Transition
another.

4. Activity

To represent a set of opera-
tions known as an activity.

5. Start To represent start state of an

activity diagram.
6. End To represent end state of an

activity diagram.

7. Branch [Guard condition] To represent thfa transfer of.
flow on the basis of evaluation
l l of boolean expression known

as guard condition.

An activity diagram represents the flow of activities through the class. We may read the
diagram from top to bottom i.e. from start symbol to end symbol. It provides the basis for the
path testing where we may like to execute each independent path of the activity diagram at
least once.

We consider the program given in Figure 9.6 for determination of division of a student. We
give marks in three subjects as input to calculate the division of a student. There are three
methods in this program — getdata, validate and calculate. The activity diagram for validate and
calculate functions is given in Figure 9.7 and Figure 9.8.

#include<iostream.h>
#include<conio.h>

class student

{

int mark1;

int mark?;

int mark3;

public:

void getdata()

{

cout<<"Enter marks of 3 subjects (between 0-100)\n";
cout<<"Enter marks of first subject:";

cin>>mark1;
(Contd.)

Object Oriented Testing 399

(Contd.)

cout<<"Enter marks of second subject:";

cin>>mark?;

cout<<"Enter marks of third subject:";

cin>>mark3;

}

void validate()

{

if(mark1>100||mark1<0||mark2>100||mark2<0||mark3>100||mark3<0){
cout<<"Invalid Marks! Please try again";
}

else{
calculate();

}

}

void calculate();

5

void student::calculate()

{

int avg;

avg=(markl+mark2+mark3)/3;

if(avg<40) {
cout<<"Fail";

}

else if(avg>=408&8&avg<50){
cout<<"Third Division";

}

else if(avg>=50&&avg<60){
cout<<"Second Division";

}

else if(avg>=608&&avg<75){
cout<<"First Division";

}

else{
cout<<"First Division with Distinction";

}

}

void main()

{

clrscr();

student s1;

sl.getdata();

sl.validate();

getch();

}

Figure 9.6. Program to determine division of a student

400 Software Testing

[mark1>100]|mark1<0]|
mark2>100||mark2<0||
mark3>100||mark3<0]

[Invalid Marks! Please try again]

atel) |

calculate() J

Figure 9.7. Activity diagram of function validate()

avg=(mark1+mark2+mark3)/3;

int avg; ’

[avg<40]

[avg>=40&&avg<50]

[Third division]—
[avg>=50&&avg<60] (
L Second division]—
[avg>=60&&avg<75] (
L First division]
First division | /l\<—
\J

with distinction I

Figure 9.8. Activity diagram of function calculate()

9.3.2 Calculation of Cyclomatic Complexity

As defined earlier in chapter 4, cyclomatic complexity of a graph is given as:

V(G)=e-n+2P

Object Oriented Testing 401

Where e: number of edges of a graph G
n: number of nodes of a graph G
P: number of connected components

The same concepts of a flow graph are applicable to an activity diagram, for the calculation
of cyclomatic complexity. Nodes of a flow graph are represented as branches, activities, initial
state and end state in an activity diagram. The edges of a flow graph are represented as
transitions in the activity diagram. We may calculate the cyclomatic complexity in the same
way and cyclomatic complexity of an activity diagram given in Figure 9.5 is 2. Hence, there
are two independent paths in the activity diagram.

We consider the activity diagram given in Figure 9.7 for validate function and cyclomatic
complexity is calculated as

Cyclomatic complexity = e-n+2P =transitions — activities/branches +2P

5-5+42
=2
Similarly, for activity diagram for calculate function given in Figure 9.8, cyclomatic
complexity is:
Cyclomatic complexity = e-n+2P
15-12+2
=35
Hence, there are two and five independent paths of validate and calculate functions,
respectively.

9.3.3 Generation of Test Cases

After the identification of independent paths, we may generate test cases that traverse all
independent paths at the time of executing the program. This process will ensure that each
transition of the activity diagram is traversed at least once.

In general, path testing may detect only errors that result from executing a path in the
program. It may not be able to detect the errors due to omissions of some important
characteristics of the program. It is heavily dependent on the control structure of the program
and if we execute all paths (if possible), an effective coverage is achieved. This effective
coverage may contribute to the delivery of good quality maintainable software.

Test cases from activity diagrams of validate and calculate functions (refer to figures 9.7 and
9.8) are shown in Table 9.2 and Table 9.3.

Path testing is very useful in object oriented systems. An activity diagram provides a
pictorial view of a class which helps us to identify various independent paths. However, as the
size of a class increases, design of an activity diagram becomes complex and difficult. This
technique is applicable to the classes of reasonable size.

Table 9.2. Test cases for validate function

Test case markl mark2 mark3 Path
1. 101 40 50 Invalid marks
2. 90 75 75 calculate()

402 Software Testing

Table 9.3. Test cases for calculate function

Test case markl mark2 mark3 Path

1. 40 30 40 Fail

2. 45 47 48 Third division

3. 55 57 60 Second division

4, 70 65 60 First division

5. 80 85 78 First division with distinction

Example 9.1: Consider the program given in Figure 9.9 for determination of the largest amongst
three numbers. There are three methods in this program — getdata, validate and maximum. Design
test cases for validate and maximum methods of the class using path testing.

#include<iostream.h>
#include<conio.h>
class greatest
{
float A;
float B;
float C;
public:
void getdata()
{
cout<<"Enter number 1:\n";
cin>>A;
cout<<"Enter number 2:\n";
cin>>B;
cout<<"Enter number 3:\n";
cin>>C;
}
void validate()
{
if(A<0||A>400||B<0||B>400||C<0]||C>400){
cout<<"Input out of range”;
}
else{
maximum();
}
}
void maximum();
5
void greatest::maximum()
{
/*Check for greatest of three numbers*/
if(A>B) {
if(A>C) {
cout<<A;

Object Oriented Testing 403

}

else {
cout<<C;
}

}

else {

if(C>B) {
cout<<C;
}

else {
cout<<B;
}

}

}

void main()

{

clrser();

greatest g1;

gl.getdata();

gl.validate();

getch();

}

Figure 9.9. Program to determine largest among three numbers

Solution:

The activity diagram for validate and calculate functions is given in Figure 9.10 and Figure
9.11 and their test cases are shown in Table 9.4 and Table 9.5.

[A<0||A>400|[B<0]|
B>400]|C<0]|C>400]

Input out of range

maximum()

Figure 9.10. Activity diagram for function validate()

Table 9.4. Test cases of activity diagram in Figure 9.10
Test case A B Cc Path

1. 500 40 50 Input out of range
2. 90 75 75 maximum()

404 Software Testing

Cyclomatic complexity = e-n+2P =transitions — activities/branches +2P
=5-5+2
=2

I [A>B]

Figure 9.11. Activity diagram for function maximum()

Cyclomatic complexity = e — n + 2P = transitions — activities/branches +2P

11-9+2=4

Table 9.5. Test cases of activity diagram in Figure 9.11

Test case A B C Expected output
1. 100 87 56 100
2 87 56 100 100
3. 56 87 100 100
4 87 100 56 100

9.4 STATE BASED TESTING

State based testing is used as one of the most useful object oriented software testing techniques.
It uses the concept of state machine of electronic circuits where the output of the state machine
is dependent not only on the present state but also on the past state. A state represents the effect
of previous inputs. Hence, in state machine, the output is not only dependent on the present
inputs but also on the previous inputs. In electronic circuits, such circuits are called sequential
circuits. If the output of a state is only dependent on present inputs, such circuits are called
combinational circuits. In state based testing, the resulting state is compared with the expected
state.

9.4.1 What is a State Machine?

State machines are used to model the behaviour of objects. A state machine represents various
states which an object is expected to visit during its lifetime in response to events or methods

Object Oriented Testing 405

along with its responses to these events or methods. A state is represented by rectangles with
rounded corners and transitions are represented by edges (arrows). Events and actions are
represented by annotations on the directed edges. A typical state machine is shown in Figure
9.12 and descriptions of its associated terms are given in Table 9.6.

State 1

B[x<y}/previous Event [guard)/action
Alx>y)/next

(State 2]

®

Figure 9.12. A typical state machine diagram

Table 9.6. Terminologies used in state chart diagram

S.No. Terminologies used in Description Remarks
statechart diagram
1. State Abstract situation in the life cycle of Statel, state2

an entity that occurs in response to
occurrence of some event.

2. Event An input (a message or method call). A,B
3. Action An output or the result of an activity. Next, previous
4. Transition Change of state after occurrence of ~ When x>y and A is the
an event. input, state is changed
from statel to state2
5. Guard condition Predicate expression with an event, Two predicate expres-
stating a Boolean restriction for a sions x>y and x<y

transition to fire.

In the Figure 9.12, there are two states — statel and state2. If at statel, input A is given and
(x>y), then statel is changed to state2 with an output ‘next’. At state2, if the input is B and
(x<y), then state2 is changed to statel with an output ‘previous’. Hence, a transition transfers
a system from one state to another state. The first state is called the accepting state and another
is called the resultant state. Both states (accepting and resultant) may also be the same in case
of self-loop conditions. The state in question is the current state or present state. Transition
occurs from the current state to the resultant state.

We consider an example of a process i.e. program under execution that may have the
following states:

406 Software Testing

» New: The process is created

» Ready: The process is waiting for the processor to be allocated.

» Running: The process is allocated to the processor and is being executed.
» Time expired: The time allocated to the process in execution expires.

» Waiting: The process is waiting for some 1/O or event to occur.

» Terminated: The process under execution has completed.

The state machine for life cycle of a process is shown in Figure 9.13. There are six states in
the state machine — new, ready, running, time expired, waiting and terminated. The waiting
state is decomposed into three concurrent sub-states — I/O operation, child process and interrupt
process. The three processes are separated by dashed lines. After the completion of these sub-
states the flow of control joins to the ready state.

T created

CPU
allocated

0

ﬁVaiting \
/0
process Q—»l 1/0 Request H I/O process]_,@

Child process

Q—»[Fork a child]—»[Child executes]—»[Child terminates]—»@

Interrupt process

K Q—»[Wait for interrupt]——[Interrupt occurs]—»@ /

1/0 or event completion

Figure 9.13. Typical life cycle of a process

9.4.2 State Chart Diagram

In Unified Modeling Language (UML), a state machine is graphically represented by a state
chart diagram. It shows the flow of control from one state to another state. Here too, states are
represented by rectangles with rounded corners and transitions are represented by edges
(arrows).

Object Oriented Testing 407

Two special states are used i.e. o (alpha) and ® (omega) state for representing the constructor
and destructor of a class. These states may simplify testing of multiple constructors, exception
handling and destructors. Binder [BIND99] has explained this concept very effectively as:

“The o state is a null state representing the declaration of an object before its
construction. It may accept only a constructor, new, or a similar initialization
message. The o state is reached after an object has been destructed or deleted,
or has gone out of scope. It allows for explicit modeling and systematic
testing of destructors, garbage collection, and other termination actions.”

Alpha and omega states are different from start state and end state of a state chart diagram.
These are additional states to make things more explicit and meaningful.

We consider an example of a class ‘stack’ where two operations — push and pop, are
allowed. The functionality of a stack suggests three states — empty, holding and full. There are
four events — new, push, pop and destroy, with the following purposes:

(i) New: Creates an empty stack.

(i) Push: Push an element in the stack, if space is available.

(iii) Pop: Pop out an element from the stack, if it is available.

(iv) Destroy: Destroy the stack after the completion of its requirement i.e. instance of the
stack class is destroyed.

The state chart diagram for class stack is given in the Figure 9.14.

Alph
new
Empty
push(x)

[top<max-1]

push(x) destroy
—
Holding .:| [top>1]

[top=1] ' pop()
pop() T_

pop()
[top=max-1]
push(x)

destroy

Full
Omega
destroy

Figure 9.14. State chart diagram for class stack

9.4.3 State Transition Tables

State chart diagrams provide a graphical view of the system and help us to understand the
behaviour of the system. Test cases may be designed on the basis of understanding the
behaviour. However, drawing a large state chart diagram is difficult, risky and error prone. If

408 Software Testing

states are more than 10 or 15, it is difficult to keep track of various transitions. In practice, we
may have to handle systems with 100 states or more. State transition tables are used when the
number of states is more these tables and provide information in a compact tabular form. In
state transition tables, rows represent the present acceptable state and columns represent the
resultant state. The state transition table of a class stack is given in Table 9.7.

State transition tables represent every transition, event and action and may help us to design
the test cases.

Table 9.7. State transition table for stack class

State Event/method Resultant state
Alpha Empty Holding Full Omega

Alpha new v

push(x)

pop()

destroy
Empty new

push(x) \/

pop()

destroy \
Holding new

push(x) \ V

pop() v v

destroy N
Full new

push(x)

pop() v

destroy \

9.4.4 Generation of Test Cases

There are many possible testing strategies for the generation of test cases. We may identify
paths from the state chart diagram and execute all of them. This seems to be difficult in practice
due to a large number of paths. Another option is to exercise all transitions at least once; this
may mean all events’ coverage, all states’ coverage and all actions’ coverage. A state chart
diagram and state transition tables may help us to do so and we may be able to generate a good
number of systematic and planned test cases. The test cases for stack class are given in Table
9.8. Here we generate test cases for each independent path in the state transition diagram given
in Figure 9.12. Some illegal transitions are also shown in Table 9.9 in order to give an idea
about undesired actions. What will happen if an illegal event is given to a state? These test
cases are also important and may help to find faults in the state chart diagram.

Object Oriented Testing 409

Table 9.8. Test cases for class stack

Test case id Test case input Expected result

Event (method) Test condition Action State
1.1 New Empty
1.2 Push(x) Holding
1.3 Pop() Top=1 Return x Empty
1.4 destroy Omega
2.1 New Empty
2.2 Push(x) Holding
2.3 Pop() Top>1 Return x holding
2.4 destroy Omega
3.1 New Empty
3.2 Push(x) Top<max-1 Holding
3.3 Push(x) holding
3.4 destroy Omega
4.1 New Empty
4.2 Push(x) Holding
4.3 Push(x) Top=max-1 Full
4.4 Pop() Holding
4.5 destroy Omega
5.1 New Empty
5.2 Push(x) Holding
5.3 Push(x) Top=max-1 Full
5.4 destroy omega
6.1 New empty
6.2 destroy Omega

Table 9.9. lllegal test case for class stack

Test case id Test condition Expected result
Test state Test event Action
7.0 Empty New Illegal exception
8.0 Empty Pop() Illegal exception
9.0 Holding New Illegal exception
10.0 Holding Push (top=max) Illegal exception
11.0 Holding Pop (top=0) Illegal exception
12.0 Full New Illegal exception
13.0 Full Push Illegal exception

14.0 Omega any Illegal exception

410 Software Testing

Example 9.2: Consider the example of withdrawing cash from an ATM machine. The process
consists of the following steps:

(i) The customer will be asked to insert the ATM card and enter the PIN number.
(i) If the PIN number is valid, the withdrawal transaction will be performed:
(a) The customer selects amount.
(b) The system verifies that it has sufficient money to satisfy the request; then the
appropriate amount of cash is dispensed by the machine and a receipt is issued.
(c) If sufficient amount is not available in the account, a message “Balance not
sufficient” is issued.
(iii) If the bank reports that the customer’s PIN is invalid, then the customer will have to
re-enter the PIN.
Draw a Statechart diagram and generate test cases using state based testing.

Solution:

State chart diagram for withdrawal of cash from an ATM machine is shown in Figure 9.15 and
test cases are given in Table 9.10.

Alpha

Insert card

New
Getting
information
Enter PIN
Validate

Validating PIN

Disapproved Approved

Validate

Validating balance

[Balance = balance amount] [Balance not sufficient]

Destro balance> = amount
Y [] Disapproved

Debit account [balance<amount]

Transaction
not completed

Collect cash l

[Money dispensed from slot] Transaction
not completed

Print receipt l

Printing

Transaction completed

L | Ejecting card

Destroy

Figure 9.15. State chart diagram of withdrawal from ATM

Object Oriented Testing 411

Table 9.10. Test cases of withdrawal from ATM

Test case Test case input Expected output

ID Event Test condition Action State

1.1 New Insert card

1.2 Getting information Enter pin

1.3 Validate Validating PIN

1.4 Disapproved Invalid pin

1.5 Transaction not Collect card Ejecting card
completed

1.6 Destroy Omega

21 New Insert card

2.2 Getting information Enter pin

2.3 Validate Validating

2.4 Approved Enter amount

2.5 Validate Validating balance

2.6 Disapproved Balance<amount Balance not sufficient

2.7 Transaction not Collect card Ejecting card
completed

2.8 Destroy Omega

31 New Insert card

3.2 Getting information Enter pin

3.3 Validate Validating

3.4 Approved Enter amount

3.5 Validate Validating balance

3.6 Debit amount Balance>=amount Balance=balance-

amount
3.7 Collect cash Money dispensed from
slot

3.8 Print receipt Collect receipt Printing

3.9 Transaction com- Collect card Ejecting card
pleted

3.10 Destroy Omega

9.5 CLASS TESTING

A class is very important in object oriented programming. Every instance of a class is known
as an object. Testing of a class is very significant and critical in object oriented testing where
we want to verify the implementation of a class with respect to its specifications. If the
implementation is as per specifications, then it is expected that every instance of the class may
behave in the specified way. Class testing is similar to the unit testing of a conventional system.
We require stubs and drivers for testing a ‘unit’ and sometimes, it may require significant

412 Software Testing

effort. Similarly, classes also cannot be tested in isolation. They may also require additional
source code (similar to stubs and drivers) for testing independently.

9.5.1 How Should We Test a Class?

We want to test the source code of a class. Validation and verification techniques are equally
applicable to test a class. We may review the source code during verification and may be able
to detect a good number of errors. Reviews are very common in practice, but their effectiveness
is heavily dependent on the ability of the reviewer(s).

Another type of testing is validation where we may execute a class using a set of test cases.
This is also common in practice but significant effort may be required to write test drivers and
sometime this effort may be more than the effort of developing the ‘unit’ under test. After
writing test cases for a class, we must design a test driver to execute each of the test cases and
record the output of every test case. The test driver creates one or more instances of a class to
execute a test case. We should always remember that classes are tested by creating instances
and testing the behaviour of those instances [MCGRO1].

9.5.2 Issues Related to Class Testing

How should we test a class? We may test it independently, as a unit or as a group of a system.
The decision is dependent on the amount of effort required to develop a test driver, severity of
class in the system and associated risk with it and so on. If a class has been developed to be a
part of a class library, thorough testing is essential even if the cost of developing a test driver
is very high.

Classes should be tested by its developers after developing a test driver. Developers are
familiar with the internal design, complexities and other critical issues of a class under test and
this knowledge may help to design test cases and develop test driver(s). Class should be tested
with respect to its specifications. If some unspecified behaviours have been implemented, we
may not be able to test them. We should always be very careful for additional functionalities
which are not specified. Generally, we should discourage this practice and if it has been
implemented in the SRS document, it should immediately be specified. A test plan with a test
suite may discipline the testers to follow a predefined path. This is particularly essential when
developers are also the testers.

9.5.3 Generating Test Cases

One of the methods of generating test cases is from pre and post conditions specified in the use
cases. As discussed in chapter 6, use cases help us to generate very effective test cases. The pre
and post conditions of every method may be used to generate test cases for class testing. Every
method of a class has a pre-condition that needs to be satisfied before the execution. Similarly,
every method of a class has a post-condition that is the resultant state after the execution of the
method. Consider a class ‘stack’ given in Figure 9.16 with two attributes (x and top) and three
methods (stack(), push(x), pop()).

Object Oriented Testing 413

Stack

X: integer
top: integer

Stack()
push(x)
pop()

Figure 9.16. Specification for the class stack

We should first specify the pre and post conditions for every operation/method of a class.
We may identify requirements for all possible combinations of situations in which a pre-
condition can hold and post-conditions can be achieved. We may generate test cases to address
what happens when a pre-condition is violated [MCGRO1]. We consider the stack class given
in Figure 9.16 and identify the following pre and post conditions of all the methods in the
class:

(1) Stack::Stack()
(a) Pre=true
(b) Post: top=0
(i) Stack::push(x)
(a) Pre: top<MAX
(b) Post: top=top+1
(iii) Stack::pop()
(a) Pre: top>0
(b) Post: top=top-1

After the identification of pre and post conditions, we may establish logical relationships
between pre and post conditions. Every logical relationship may generate a test case. We
consider the push() operation and establish the following logical relationships:

1. (pre condition: top<MAX; post condition: top=top+1)
2. (pre condition: not (top<MAX) ; post condition: exception)
Similarly for pop() operation, the following logical relationships are established:
3. (pre condition: top>0; post condition: top=top-1)
4. (pre condition: not (top>0) ; post condition: exception)

We may identify test cases for every operation/method using pre and post conditions. We
should generate test cases when a pre-condition is true and false. Both are equally important
to verify the behaviour of a class. We may generate test cases for push(x) and pop() operations
(refer Table 9.11 and Table 9.12).

Table 9.11. Test cases of function push()

Test input Condition Expected output

23 top<MAX Element '23’ inserted successfully
34 top=MAX Stack overflow

414 Software Testing

Table 9.12. Test cases of function pop()

Test input Condition Expected output
- top>0 23
- top=0 Stack underflow

Example 9.3. Consider the example of withdrawing cash from an ATM machine given in
example 9.2. Generate test cases using class testing.

Solution:

The class ATMWithdrawal is given in Figure 9.17.

ATMWithdrawal

accountID: integer
amount: integer

ATMWithdrawal (accid,
amt)
Withdraw()

Figure 9.17. Class ATM withdrawal

The pre and post conditions of function Withdraw() are given as:

ATMWirthdrawal::Withdraw()
Pre: true
Post: if(PIN is valid) then
if (balance>=amount) then
balance=balance-amount
else
Display “Insufficient balance”
else
Display “Invalid PIN”
(true, PIN is valid and balance>=amount)
(true, PIN is valid and balance<amount)
(true, PIN is invalid)

Test cases are given in Table 9.13.

Table 9.13. Test cases for function withdraw()

S. No. AccountID Amount Expected output
1. 4321 1000 Balance update/Debit account
2. 4321 2000 Insufficient balance

3. 4322 - Invalid PIN

Object Oriented Testing 415

MULTIPLE CHOICE QUESTIONS

Note: Select the most appropriate answer for the following questions.

9.1 A class has:
(e) Attributes and operations
(f) Attributes and states
(g) Operations and Behaviour
(h) State and information
9.2 An object is:
(a) An information of a class
(b) An instance of a class
(c) An attribute of a class
(d) An operation of a class
9.3 The objects of the same class have:
(a) Different definition for operations and information
(b) Same definition for operations and information
(c) Different operations
(d) Different formats
9.4 All classes inherit information from:
(a) The lower classes
(b) The same classes
(c) The upper classes
(d) The lower and upper classes
9.5 Encapsulation is known as:
(a) Information sharing concept
(b) Information retrieval concept
(¢) Information hiding concept
(d) Information transfer concept
9.6 A method is:
(a) The sequence of steps to be performed to fulfil the assigned task
(b) The set of operations for a particular task
(c) Both (a) and (b)
(d) None of the above
9.7 Which is not a defined testing level?
(a) Method testing
(b) Class testing
(c) Interclass testing
(d) Regression testing
9.8 Which is not a symbol of an activity diagram?
(a) Join
(b) Fork
(c) Operation
(d) Transition

416 Software Testing

9.9 An activity diagram represents the flow of activities through the:
(a) Classes
(b) Methods
(c) Objects
(d) Programs
9.10 Path testing may not be able to detect errors due to:
(a) Omissions of some characteristics of the program
(b) Implementation
(c) Complexity of the code
(d) None of the above
9.11 In state chart diagrams, transitions are represented by:
(a) Edges
(b) States
(c) Variables
(d) Circles
9.12 In state chart diagrams, states are represented by:
(a) Edges
(b) Rounded rectangles
(¢c) Circles
(d) Arrows
9.13 Guard condition in state chart diagram is:
(a) Predicate expression with an event
(b) Regular expression
(c) Sequential expression
(d) Last expression
9.14 What is @ state?
(a) Intermediate state
(b) Null state
(¢) End state
(d) Initial state
9.15 What is o state?
(a) Last state
(b) Intermediate state
(c) Start state
(d) Initial state
9.16 Which is not an object oriented testing technique?
(a) State based testing
(b) Class testing
(¢) Equivalence class testing
(d) Path testing
9.17 Classes are tested by creating:
(a) Other classes
(b) Polymorphism
(c) Class hierarchy
(d) Instances

Object Oriented Testing 417

9.18 What types of things become objects?

(a) Real World entities
(b) Humans

(c) Humans and animals
(d) Any living thing

9.19 Classes should be tested by their:

(a) Customers
(b) Developers
(c) Testers

(d) Managers

9.20 Object orientation is centered around concepts like:

9.1

9.2

9.3
9.4
9.5
9.6

9.7

9.8

9.9

(a) Objects and classes

(b) Messages and inheritance

(c) Polymorphism and encapsulation
(d) All of the above

EXERCISES

(a) What is object orientation? How is it close to real life situations? Explain basic
concepts which help us to model a real life situation.
(b) Describe the following terms:
Messages, Methods, Responsibility, Abstraction
(a) How is object oriented testing different from procedural testing?
(b) Discuss the following terms:
(i) Object
(i) Class
(ii1)) Message
(iv) Inheritance
(v) Polymorphism
(a) Explain the issues in object oriented testing.
(b) What are various levels of testing? Which testing level is easy to test and why?
Explain the testing process for object oriented programs.
Write the limitations of the basic state model. How are they overcome in state charts?
What is state based testing? Draw the state machine model for a “traffic light controller’.
What are the limitations of a basic state model? How are they overcome in a state
chart?
What is an activity diagram? What are the basic symbols used in the construction of
such diagram? Explain with the help of an example.
How can we calculate cyclomatic complexity from an activity diagram? What does it
signify? What is the relationship of cyclomatic complexity with number of test
cases?
Write a program for finding the roots of a quadratic equation. Draw the activity
diagram and calculate the cyclomatic complexity. Generate the test cases on the basis
of cyclomatic complexity.

418 Software Testing

9.10 What is path testing? How can we perform it in object oriented software? Explain the
various steps of path testing.

9.11 What is a state chart diagram? Discuss the components of a state chart diagram.
Explain with the help of an example.

9.12 Draw the state chart diagram of a ‘queue’. Identify the operations of a ‘queue’ and
generate the state transition table. Write test cases from the state transition table.

9.13 What is class testing? What are various issues related to class testing?

9.14 Define a class ‘queue’. Identify pre and post conditions of various operations and
generate the test cases.

9.15 Write short notes on:
(a) Class hierarchy
(b) Inheritance and Polymorphism
(c) Encapsulation

FURTHER READING

The basic concepts of object-oriented programming in a language independent manner

are presented in:

T. Budd, “An Introduction to Object-Oriented Programming”, Pearson Education,
India, 1997.

The definitions of object, class, inheritance and aggregation may be read from:
Edward V. Berard, “Basic Object-Oriented Concepts”, http://www.ipipan.gda.
pl/~marek/objects/TOA/oobasics/oobasics.html

Booch and his colleagues provide an excellent tutorial on nine diagrams of Unified

Modeling Language:

G. Booch, J. Rumbaugh and L. V. Jacobson., “The Unified Modeling Language
User Guide”, Addison-Wesley, Boston, 1999.

A useful guide to designing test cases for object-oriented applications. This book

provides comprehensive and detailed coverage of techniques to develop testable

models from unified Modeling Language and state machines:
R.V. Binder, “Testing Object Oriented Systems: Models, Patterns and Tools”,
Addison-Wesley, 1999.

Binder has significantly contributed in the area on object-oriented testing:

R. Binder, “State-based Testing”, Object Magazine, vol. 5, no.4, pp. 75-78, July-
Aug, 1995.

R. Binder, “State-based testing: Sneak paths and Conditional Transitions”,
Object magazine, vol. 5, no. 6, pp. 87-89, Nov-Dec 1995.

R. Binder, “Testing Object-Oriented Systems: A Status Report,” Released online
by RBSC Corporation, 1995. Available at http://stsc.hill.af.mil/crosstalk/1995/
April/testinoo.asp.

McGregor and Sykes provide good differences of testing traditional and object-

oriented software. They also describe methods for testing of classes:

J.D. McGregor and David A. Sykes, “A Practical Guide to Testing Object
Oriented Software”, Addison Wesley, 2001.

Object Oriented Testing 419

A complete bibliographical list on object-oriented testing can be obtained from:

http://oo-testing.com/bib/

A study on mutation analysis on object oriented programs can be found in:
Y.S. Ma and Y.R. Kwon, “A Study on Method and Tool of Mutation Analysis for
Object Oriented Programs”, Software Engineering Review, vol. 15, no. 2,
pp. 41-52, 2002.

10

Metrics and Models in Software Testing

How do we measure the progress of testing? When do we release the software? Why do we
devote more time and resources for testing a particular module? What is the reliability of
software at the time of release? Who is responsible for the selection of a poor test suite? How
many faults do we expect during testing? How much time and resources are required for
software testing? How do we know the effectiveness of a test suite? We may keep on framing
such questions without much effort. However, finding answers to such questions is not easy
and may require a significant amount of effort. Software testing metrics may help us to
measure and quantify many things which may help us find some answers to such important
questions.

10.1 SOFTWARE METRICS

“What cannot be measured cannot be controlled” is a reality in this world. If we want to control
something, we should first be able to measure it. Therefore, everything should be measurable.
If a thing is not measurable, we should make an effort to make it measurable. The area of
measurement is very important in every field and we have mature and establish metrics to
quantify various things. However, in software engineering this ‘area of measurement’ is still in
its developing stage and it may require a significant effort to make it mature, scientific and
effective.

10.1.1 Measure, Measurement and Metrics

These terms are often used interchangeably. However, we should understand the difference
between these terms. Pressman explained this clearly as [PRES05]:

“A measure provides a quantitative indication of the extent, amount, dimension, capacity or
size of some attributes of a product or process. Measurement is the act of determining a

Metrics and Models in Software Testing 421

measure. The metric is a quantitative measure of the degree to which a product or process
possesses a given attribute.” For example, a measure is the number of failures experienced
during testing. Measurement is the way of recording such failures. A software metric may be
an average number of failures experienced per hour during testing.

Fenton [FENTO04] has defined measurement as:

“It is the process by which numbers or symbols are assigned to attributes of
entities in the real world in such a way as to describe them according to
clearly defined rules.”

The basic issue is that we want to measure every attribute of an entity. We should have
established metrics to do so. However, we are in the process of developing metrics for many
attributes of various entities used in software engineering.

Software metrics can be defined as [GOOD93]: “The continuous application of measurement
based techniques to the software development process and its products to supply meaningful
and timely management information, together with the use of those techniques to improve that
process and its products.”

Many things are covered in this definition. Software metrics are related to measures which,
in turn, involve numbers for quantification. These numbers are used to produce a better product
and improve its related process. We may like to measure quality attributes such as testability,
complexity, reliability, maintainability, efficiency, portability, enhanceability, usability, etc. for
a software. Similarly, we may also like to measure size, effort, development time and resources
for a software.

10.1.2 Applications

Software metrics are applicable in all phases of the software development life cycle. In the
software requirements and analysis phase, where output is the SRS document, we may have to
estimate the cost, manpower requirement and development time for the software. The customer
may like to know the cost of the software and development time before signing the contract.
As we all know, the SRS document acts as a contract between customer and developer. The
readability and effectiveness of the SRS document may help to increase the confidence level
of the customer and may provide better foundations for designing the product. Some metrics
are available for cost and size estimation like COCOMO, Putnam resource allocation model,
function point estimation model, etc. Some metrics are also available for the SRS document
like the number of mistakes found during verification, change request frequency, readability,
etc. In the design phase, we may like to measure stability of a design, coupling amongst
modules, cohesion of a module, etc. We may also like to measure the amount of data input to
a software, processed by the software and also produced by the software. A count of the
amount of data input to, processed in, and output from the software is called a data structure
metric. Many such metrics are available like number of variables, number of operators, number
of operands, number of live variables, variable spans, module weakness, etc. Some information
flow metrics are also popular like FAN IN, FAN OUT, etc.

Use cases may also be used to design metrics like counting actors, counting use cases,
counting the number of links, etc. Some metrics may also be designed for various applications
of websites like number of static web pages, number of dynamic web pages, number of internal

422 Software Testing

page links, word count, number of static and dynamic content objects, time taken to search a
web page and retrieve the desired information, similarity of web pages, etc. Software metrics
have a number of applications during the implementation phase and after the completion of
such a phase. Halstead software size measures are applicable after coding like token count,
program length, program volume, program level, difficulty, estimation of time and effort,
language level, etc. Some complexity measures are also popular like cyclomatic complexity,
knot count, feature count, etc. Software metrics have found a good number of applications
during testing. One area is the reliability estimation where popular models are Musa’s basic
execution time model and Logarithmic Poisson execution time model. Jelinski Moranda model
[JELI72] is also used for the calculation of reliability. Source code coverage metrics are
available that calculate the percentage of source code covered during testing. Test suite
effectiveness may also be measured. The number of failures experienced per unit of time,
number of paths, number of independent paths, number of du paths, percentage of statement
coverage and percentage of branch condition covered are also useful software metrics. The
maintenance phase may have many metrics like number of faults reported per year, number of
requests for changes per year, percentage of source code modified per year, percentage of
obsolete source code per year, etc.

We may find a number of applications of software metrics in every phase of the software
development life cycle. They provide meaningful and timely information which may help us
to take corrective actions as and when required. Effective implementation of metrics may
improve the quality of software and may help us to deliver the software in time and within
budget.

10.2 CATEGORIES OF METRICS

There are two broad categories of software metrics, namely, product metrics and process
metrics. Product metrics describe the characteristics of the product such as size, complexity,
design features, performance, efficiency, reliability, portability, etc. Process metrics describe
the effectiveness and quality of the processes that produce the software product. Examples are
effort required in the process, time to produce the product, effectiveness of defect removal
during development, number of defects found during testing, maturity of the process, etc.
[AGGAO0S].

10.2.1 Product Metrics for Testing

These metrics provide information about the testing status of a software product. The data for
such metrics are also generated during testing and may help us to know the quality of the
product. Some of the basic metrics are given as:

(i) Number of failures experienced in a time interval

(i1)) Time interval between failures

(iii)) Cumulative failures experienced up to a specified time
(iv) Time of failure

(v) Estimated time for testing

(vi) Actual testing time

Metrics and Models in Software Testing 423

With these basic metrics, we may find some additional metrics as given below:

Actual time spent %100

(i) % of time spent = — ——
Estimated testing time

(i) Average time interval between failures

(ii1) Maximum and minimum failures experienced in any time interval
(iv) Average number of failures experienced in time intervals

(v) Time remaining to complete the testing

We may design similar metrics to find the indications about the quality of the product.

10.2.2 Process Metrics for Testing

These metrics are developed to monitor the progress of testing, status of design and development
of test cases, and outcome of test cases after execution.
Some of the basic process metrics are given below:

(i) Number of test cases designed

(i1) Number of test cases executed

(ii1)) Number of test cases passed

(iv) Number of test cases failed

(v) Test case execution time

(vi) Total execution time

(vii) Time spent for the development of a test case

(viii) Total time spent for the development of all test cases

On the basis of the above direct measures, we may design the following additional metrics
which may convert the base metric data into more useful information.

(i) % of test cases executed

(i) % of test cases passed

(iii) % of test cases failed

(iv) Total actual execution time / total estimated execution time
(v) Average execution time of a test case

These metrics, although simple, may help us to know the progress of testing and may
provide meaningful information to the testers and the project manager.

An effective test plan may force us to capture data and convert it into useful metrics for
both, process and product. This document also guides the organization for future projects and
may also suggest changes in the existing processes in order to produce a good quality
maintainable software product.

10.3 OBJECT ORIENTED METRICS USED IN TESTING

Object oriented metrics capture many attributes of a software product and some of them are
relevant in testing. Measuring structural design attributes of a software system, such as
coupling, cohesion or complexity, is a promising approach towards early quality assessments.

424 Software Testing

There are several metrics available in the literature to capture the quality of design and source
code.

10.3.1 Coupling Metrics

Coupling relations increase complexity, reduce encapsulation, potential reuse, and limit
understanding and maintainability. Coupling metrics require information about attribute usage
and method invocations of other classes. These metrics are given in Table 10.1. Higher values
of coupling metrics indicate that a class under test will require a higher number of stubs during

testing. In addition, each interface will require to be tested thoroughly.

Table 10.1. Coupling metrics
Metric Definition Source
Coupling between Objects CBO for a class is a count of the number of other [CHID94]
(CBO) classes to which it is coupled.
Data Abstraction Coupling Data Abstraction is a technique of creating new
(DAC) data types suited for an application to be pro-
grammed.
DAC = number of ADTs defined in a class. [LI93]
Message Passing Coupling It counts the number of ‘send’ statements defined
(MPC) in a class.
Response for a Class (RFC) It is defined as a set of methods that can be [CHID94]
potentially executed in response to a message
received by an object of that class. It is given by
RFC=|RS|, where RS, the response set of the
class, is given by
RS = MI U all J{RU
Information flow-based The number of methods invoked in a class,
coupling (ICP) weighted by the number of parameters of the
methods invoked.
Information flow-based inheri- Same as ICP, but only counts methods invocations [LEE95]
tance coupling. (IHICP) of ancestors of classes.
Information flow-based non- Same as ICP, but only counts methods invocations
inheritance coupling (NIHICP) of classes not related through inheritance.
Fan-in It counts the number of classes that count the
given class plus the number of global data
elements.
Fan-out Count of modules (classes) called by a given [BINK9O8]
module plus the number of global data elements
altered by the module (class).

10.3.2 Cohesion Metrics

Cohesion is a measure of the degree to which the elements of a module are functionally related.
The cohesion measure requires information about attribute usage and method invocations
within a class. These metrics are summarized in Table 10.2. More cohesiveness is desirable

Metrics and Models in Software Testing 425

among the methods within a class. In most of the situations, highly cohesive classes are easy
to test.

Table 10.2. Cohesion metrics

Metric Definition Sources
Lack of Cohesion of Methods It measures the dissimilarity of methods in [CHID94]
(LCOM) a class by looking at the instance variable or

attributes used by methods. Consider a class
C, with n methods M, M......, M . Let (Ij) =set
of all instance variables used by method M.
There are n such sets {l },....... {I }. Let

P ={{l.I;)I,~l;=0}and Q={((l,1;) I, n1; # O} .
If all n sets {(l1},......... (In)}are Othen P=0

LCOM =[|P|-|Q],if [P] > |Q|
=0 otherwise

Tight Class Cohesion (TCC) The measure TCC is defined as the percentage
of pairs of public methods of the class with a
common attribute usage.

Loose Class Cohesion (LCC) In addition to direct attributes, this measure [BEIMO5]
considers attributes indirectly used by a
method.
Information based Cohesion ICH for a class is defined as the number of [LEEO5]
(ICH) invocations of other methods of the same

class, weighted by the number of parameters
of the invoked method.

10.3.3 Inheritance Metrics

Inheritance metrics requires information about ancestors and descendants of a class. They also
collect information about methods overridden, inherited and added (i.e. neither inherited nor
overridden). These metrics are summarized in Table 10.3. If a class has a higher number of
children (or sub-classes) more testing may be required in testing the methods of that class.
Higher the depth of the inheritance tree, more complex is the design as a larger number of
methods and classes are involved. Thus, we may test all the inherited methods of a class and
the testing effort will increase accordingly.

Table 10.3. Inheritance metrics
Metric Definition Sources

Number of Children (NOC) The NOC is the number of immediate sub-classes [CHID94]
of a class in a hierarchy.

Depth of Inheritance Tree (DIT) The depth of a class within the inheritance hier-
archy is the maximum number of steps from the
class node to the root of the tree and is measured
by the number of ancestor classes.

(Contd.)

426 Software Testing

(Contd.)

Metric Definition Sources

Number of Parents (NOP) The number of classes that a class directly inher- [LORE94]
its from (i.e. multiple inheritance).

Number of Descendants (NOD) The number of sub-classes (both direct and indi-
rectly inherited) of a class.

Number of Ancestors (NOA) The number of super classes (both direct and [TEGA92]
indirectly inherited) of a class.

Number of Methods Overridden When a method in a sub-class has the same

(NMO) name and type signature as in its super class,
then the method in the super class is said to be
overridden by the method in the sub-class.

Number of Methods Inherited ~ The number of methods that a class inherits from [LORE94]

(NMI)

Number of Methods Added
(NMA)

its super (ancestor) class.

The number of new methods added in a class
(neither inherited nor overriding).

10.3.4 Size Metrics

Size metrics indicate the length of a class in terms of lines of source code and methods used in
the class. These metrics are given in Table 10.4. If a class has a larger number of methods with
greater complexity, then more test cases will be required to test that class. When a class with
a larger number of methods with greater complexity is inherited, it will require more rigorous
testing. Similarly, a class with a larger number of public methods will require thorough testing
of public methods as they may be used by other classes.

Table 10.4. Size metrics

of all methods in a class. Consider a class K,
with methods M,,........ M that are defined in
the class. Let C,,.......... C, be the complexity of
the methods.

WMC = ic,
i=1

Metric Definition Sources
Number of Attributes per Class (NA) It counts the total number of attributes
defined in a class.
Number of Methods per Class (NM) It counts the number of methods defined in
a class.
Weighted Methods per Class (WMC) The WMC is a count of sum of complexities [CHID94]

Number of public methods (PM)

Number of non-public methods
(NPM)

Lines Of Code (LOC)

It counts the number of public methods
defined in a class.

It counts the number of private methods
defined in a class.

It counts the lines in the source code.

Metrics and Models in Software Testing 427
10.4 WHAT SHOULD WE MEASURE DURING TESTING?

We should measure everything (if possible) which we want to control and which may help us
to find answers to the questions given in the beginning of this chapter. Test metrics may help
us to measure the current performance of any project. The collected data may become historical
data for future projects. This data is very important because in the absence of historical data,
all estimates are just guesses. Hence, it is essential to record the key information about the
current projects. Test metrics may become an important indicator of the effectiveness and
efficiency of a software testing process and may also identify risky areas that may need more
testing.

10.4.1 Time

We may measure many things during testing with respect to time and some of them are given
as:

(i) Time required to run a test case

(i) Total time required to run a test suite

(iii) Time available for testing

(iv) Time interval between failures

(v) Cumulative failures experienced up to a given time
(vi) Time of failure

(vii) Failures experienced in a time interval

A test case requires some time for its execution. A measurement of this time may help to
estimate the total time required to execute a test suite. This is the simplest metric and may
estimate the testing effort. We may calculate the time available for testing at any point in time
during testing, if we know the total allotted time for testing. Generally a unit of time is seconds,
minutes or hours, per test case. The total testing time may be defined in terms of hours. The
time needed to execute a planned test suite may also be defined in terms of hours.

When we test a software product, we experience failures. These failures may be recorded in
different ways like time of failure, time interval between failures, cumulative failures
experienced up to a given time and failures experienced in a time interval. Consider the Table
10.5 and Table 10.6 where time-based failure specification and failure-based failure
specification are given:

Table 10.5. Time-based failure specification
S. No. of failure occurrences Failure time measured Failure intervals in minutes
in minutes

1. 12 12

2. 26 14

3. 35 09

4. 38 03

5. 50 12

(Contd.)

428 Software Testing

(Contd.)
S. No. of failure occurrences Failure time measured Failure intervals in minutes
in minutes
6. 70 20
7. 106 36
8. 125 19
9. 155 30
10. 200 45

Table 10.6. Failure-based failure specification

Time in minutes Cumulative failures Failures in interval of 20 minutes
20 01 01
40 04 03
60 05 01
80 06 01
100 06 00
120 07 01
140 08 01
160 09 01
180 09 00
200 10 01

These two tables give us an idea about the failure pattern and may help us to define the
following:

(i) Time taken to experience ‘n’ failures

(i1)) Number of failures in a particular time interval

(i) Total number of failures experienced after a specified time

(iv) Maximum / minimum number of failures experienced in any regular time interval.

10.4.2 Quality of Source Code

We may know the quality of the delivered source code after a reasonable time of release using
the following formula:
WDy + WD,
S
Where WD,: Number of weighted defects found before release

WD, : Number of weighted defects found after release
S: Size of the source code in terms of KLOC.

0SC =

Metrics and Models in Software Testing 429

The weight for each defect is defined on the basis of defect severity and removal cost. A
severity rate is assigned to each defect by testers based on how important or serious the defect
is. A lower value of this metric indicates a lower number of errors detected or a lesser number
of serious errors detected.

We may also calculate the number of defects per execution test case. This may also be used
as an indicator of source code quality as the source code progresses through the series of test
activities [STEPO3].

10.4.3 Source Code Coverage

We may like to execute every statement of a program at least once before its release to the
customer. Hence, the percentage of source code coverage may be calculated as:

Number of statements of a source

code covered by test suite <100

% of source code coverage = Total number of statements

of a source code

Higher the value of this metric, higher the confidence about the effectiveness of a test suite.
We should write additional test cases to cover the uncovered portions of the source code.

10.4.4 Test Case Defect Density

This metric may help us to know the efficiency and effectiveness of our test cases.

. Number of failed test
Test case defect density = Umber of fatied test cases x100

Number of executed test cases

Where
Failed test case: A test case that when executed, produces an undesired output.
Passed test case: A test case that when executed, produces a desired output.

Higher the value of this metric, higher the efficiency and effectiveness of the test cases
because it indicates that they are able to detect a higher number of defects.

10.4.5 Review Efficiency

Review efficiency is a metric that gives an insight on the quality of the review process carried
out during verification.

Total number of defects found during review <100

Review = Total number of project defects

Higher the value of this metric, better is the review efficiency.

430 Software Testing

10.5 SOFTWARE QUALITY ATTRIBUTES PREDICTION MODELS

Software quality is dependent on many attributes like reliability, maintainability, fault
proneness, testability, complexity, etc. A number of models are available for the prediction of
one or more such attributes of quality. The real benefits of these models are in large scale
systems where testing persons are asked to focus their attention and resources on problematic
and critical areas of the system.

10.5.1 Reliability Models

Many reliability models for software are available where emphasis is on failures rather than
faults. We experience failures during execution of any program. A fault in the program may
lead to failure(s) depending upon the input(s) given to a program with the purpose of executing
it. Hence, the time of failure and time between failures may help us to find reliability of
software. As we all know, software reliability is the probability of failure-free operation of
software in a given time under specified conditions. Generally, we consider the calendar time.
We may like to know the probability that a given software product will not fail in a time period
of one month or one week and so on. However, most of the available models are based on
execution time. The execution time is the time for which the computer actually executes the
program. Reliability models based on execution time normally give better results than those
based on calendar time. In many cases, we have a mapping table that converts execution time
to calendar time for the purpose of reliability studies. In order to differentiate both the timings,
execution time is represented by 7 and calendar time by t.

Most of the reliability models are applicable at system testing level. Whenever the software
fails, we note the time of failure and also try to locate and correct the fault that caused the
failure. During system testing, the software may not fail at regular intervals and may also not
follow a particular pattern. The variation in time between successive failures may be described
in terms of following functions:

i (7) : average number of failures up to time 7
A (7) : average number of failures per unit time at time 7 and is known as failure
intensity function.

It is expected that the reliability of a program increases due to fault detection and correction
over time and hence the failure intensity decreases accordingly.

(i) Basic Execution Time Model
This is one of the popular models of software reliability assessment and was developed
by J.D. MUSA[MUSA79]in 1979. As the name indicates, it is based on execution time
(7). The basic assumption is that failures may occur according to a Non-Homogeneous
Poisson Process (NHPP) during testing. Many examples may be given for real world
events where poisson processes are used. A few examples are given as:

(i) Number of users using a website in a given period of time
(il)) Number of persons requesting for railway tickets in a given period of time
(iii)) Number of e-mails expected in a given period of time

Metrics and Models in Software Testing 431

The failures during testing represent a non-homogeneous process and the failure intensity
decreases as a function of time. J.D. Musa assumed that the decrease in failure intensity as a
function of the number of failures observed is constant and is given as:

- H
M) = 2, (1 7 j
Where A: Initial failure intensity at the start of testing
V. Total number of failures experienced up to infinite time
U : Number of failures experienced up to a given point in time

Musa [MUSA79] has also given the relationship between failure intensity (1) and the mean
failures experienced («) and is given in Figure 10.1.

Ao

Figure 10.1. A as a function of

If we take the first derivative of the equation given above, we get the slope of the failure
intensity as given below:
dA 2

o

du v

Figure 10.2. Relationship between Tand u

432 Software Testing

The negative sign shows that there is a negative slope indicating a decrementing trend in
failure intensity.

This model also assumes a uniform failure pattern meaning thereby equal probability of
failures due to various faults. The relationship between execution time (7) and mean failures
experienced (i) is given in Figure 10.2.

The derivation of the relationship of Figure 10.2 may be obtained as:

dp) _ (| ue)
dt ° V

o

wr) = v, (l—exp[— A;TD

The failure intensity as a function of time is given in Figure 10.3.

Ao

Figure 10.3. Relationship between A and 7

This relationship is useful for calculating the present failure intensity at any given value of
execution time. We may find this relationship as:

M) = A, exp(—);;’Tj

o

Two additional equations are given to calculate additional failures required to be experienced
(Au) to reach a failure intensity objective (A,) and additional time required to reach the
objective (A7). These equations are given as:

v
= (Ap =)
A

0

AT= ﬁln A—P
A Ap

0

Au=

Where
Au : Expected number of additional failures to be experienced to reach failure
intensity objective.
A7: Additional time required to reach the failure intensity objective.

Metrics and Models in Software Testing 433

A,: Present failure intensity
A, : Failure intensity objective

Ap and A7 are very interesting metrics to know the additional time and additional failures
required to achieve a failure intensity objective.

Example 10.1 A program will experience 100 failures in infinite time. It has now experienced
50 failures. The initial failure intensity is 10 failures/hour. Use the basic execution time model
for the following:

(1) Find the present failure intensity.

(i) Calculate the decrement of failure intensity per failure.

(iii) Determine the failure experienced and failure intensity after 10 and 50 hours of
execution.

(iv) Find the additional failures and additional execution time needed to reach the failure
intensity objective of 2 failures/hour.

Solution:
(a) The present failure intensity can be calculated using the following equation:
M= 2 [- %)
V,= 100 failures
U= 50 failures
A, = 10 failures/hour

(0]

50
H AMw = 10{1-—
ence A(L) (100)

= 5 failures/hour

(b) Decrement of failure intensity per failure can be calculated using the following:

ar _ Ao
du Vo

= —£=—0.1/hour
100

(¢c) Failures experienced and failure intensity after 10 and 50 hours of execution can be
calculated as:

M1)= A, exp [— %Tj

o

(1) After 10 hours of execution:

(1) = 100(1—exp(—10X50D

100

434 Software Testing

100 (1—exp (- 5))

99 failures

AoT
A, exp | -=2—
oo
- 10 exp(_leSO)
100
= 10exp (- 9)

= 0.067 failures/hour

A7)

(il) After 50 hours of execution:

IOO(I—GXp(—leO))
100

100(1 — exp(-1))
63 failures

M1 = Ay exp (—M)
Vo

= 10 exp(—lol;olo)

= 10 exp(-1)
= 3.68 failures/hour

H(7)

(¢) Aupand At with failure intensity objective of 2 failures/hour:

V
= (Ap =)
A

1
L(;)(S —2) =30 failures

AT= &ln A—P
A Ap

0

= @(ln(éj) =9.16 hours
10 2

Au=

(iv) Logarithmic Poisson Execution time model
With a slight modification in the failure intensity function, Musa presented a logarithmic
poisson execution time model. The failure intensity function is given as:

M) = A, exp(—6u)
Where

0: Failure intensity decay parameter which represents the relative change of failure intensity

per failure experienced.

Metrics and Models in Software Testing 435

The slope of failure intensity is given as:

)
du

a _ g

du

The expected number of failures for this model is always infinite at infinite time. The
relation for mean failures experienced is given as:

W) = éln(;toer +1)

The expression for failure intensity with respect to time is given as:
A
/’1{(»[) = 0
(4,01 +1)
The relationship for an additional number of failures and additional execution time are
given as:

1 (2
- —In| 2L
Ap= e“(%)

Ar= L[L1
When execution time is more, the logarithmic poisson model may give larger values of

failure intensity than the basic model.

Example 10.2: The initial failure intensity of a program is 10 failures/hour. The program has
experienced 50 failures. The failure intensity decay parameter is 0.01/failure. Use the
logarithmic poisson execution time model for the following:

(a) Find present failure intensity.

(b) Calculate the decrement of failure intensity per failure.

(c) Determine the failure experienced and failure intensity after 10 and 50 hours of
execution.

(d) Find the additional failures and additional failure execution time needed to reach the
failure intensity objective of 2 failures/hour.

Solution:
(a) Present failure intensity can be calculated as:
AMu) = A, exp(—6u)
A, = 50 failures
U= 50 failures
0= 0.01/failures

436 Software Testing

Hence

(b)

(©

(i)

(d)

2 (1) = 10exp(~50x0.01)

= 6.06 failures/hour
Decrement of failure intensity per failure can be calculated as:

da
= —0.01 x 6.06
= —0.06

Failure experienced and failure intensity after 10 and 50 hours of execution can be
calculated as:

W) = %ln(1091+1)

/I(T) = L

(2,07 +1)

After 10 hours of execution:
1
)= —In(10x0.01x10+1
MO = oo ()
= L1n(2) =69 failures

0.01

M7T) = 10 = 10 =5 failures/hour

(10x0.01x10+1) 2
After 50 hours of execution:

1
)= ——In(10x0.01x50+1
KO = oo n()

= L1n(6) =179 failures
0.01

M7T) = 10 = 10 =1.66 failures/hour
(10x0.01x50+1) 6

A 1 and A T with failure intensity objective of 2 failures/hour:

1 A
Au= —In| =L
g e“(xpj

= Lln(%) =110 failures

1{ 1 1
AT= —| ———
i e(zF xpj

= L(l—szﬁ.S hours
0.01\2 6.06

Metrics and Models in Software Testing 437

(iii) The Jelinski — Moranda Model
The Jelinski — Moranda model [JELI72] is the earliest and simplest software reliability model.
It proposed a failure intensity function in the form of:

A= (N —i+1)

Where ¢ : Constant of proportionality
N : total number of errors present
i: number of errors found by time interval 7.

This model assumes that all failures have the same failure rate. It means that the failure rate
is a step function and there will be an improvement in reliability after fixing an error. Hence,
every failure contributes equally to the overall reliability. Here, failure intensity is directly
proportional to the number of errors remaining in a software.

Once we know the value of failure intensity function using any reliability model, we may
calculate reliability using the equation given below:

R(t) = e M
Where A is the failure intensity and ¢ is the operating time. Lower the failure intensity,
higher is the reliability and vice versa.

Example 10.3: A program may experience 200 failures in infinite time of testing. It has
experienced 100 failures. Use Jelinski-Moranda model to calculate failure intensity after the
experience of 150 failures.

Solution:

Total expected number of failures (N) = 200
Failures experienced (i) =100
Constant of proportionality (¢) = 0.02

We know

Mt)= ¢(N—i+1)
= 0.02(200-100+1)

= 2.02 failures/hour
After 150 failures:

A(f)= 0.02 (200 — 150 +1)

= 1.02 failures/hour
Failure intensity will decrease with every additional failure experienced.

10.5.2 An Example of Fault Prediction Model in Practice

It is clear that software metrics can be used to capture the quality of object oriented design and
source code. These metrics provide ways to evaluate the quality of software and their use in
earlier phases of software development can help organizations in assessing a large software
development quickly, at a low cost.

438 Software Testing

To achieve help for planning and executing testing by focusing resources on the fault-prone
parts of the design and source code, the model used to predict faulty classes should be used.
The fault prediction model can also be used to identify classes that are prone to have severe
faults. One can use this model with respect to high severity of faults to focus the testing on
those parts of the system that are likely to cause serious failures. In this section, we describe
models used to find relationship between object oriented metrics and fault proneness, and how
such models can be of great help in planning and executing testing activities [MALHO09,
SING10].

In order to perform the analysis, we used public domain KC1 NASA data set [NASAO04].
The data set is available on www.mdp.ivv.nasa.gov. The 145 classes in this data were developed
using C++ language.

The goal of our analysis is to explore empirically the relationship between object oriented
metrics and fault proneness at the class level. Therefore, fault proneness is the binary dependent
variable and object oriented metrics (namely WMC, CBO, RFC, LCOM, DIT, NOC and
SLOC) are the independent variables. Fault proneness is defined as the probability of fault
detection in a class. We first associated defects with each class according to their severities.
The value of severity quantifies the impact of the defect on the overall environment with 1
being most severe to 5 being least severe. Faults with severity rating 1 were classified as high
severity faults. Faults with severity rating 2 were classified as medium severity faults and
faults with severity rating 3, 4 and 5 as low severity faults as at severity rating 4 no class was
found to be faulty and at severity rating 5, only one class was faulty. Table 10.7 summarizes
the distribution of faults and faulty classes at high, medium and low severity levels in the KC1
NASA data set after pre-processing of faults in the data set.

Table 10.7. Distribution of faults and faulty classes at high, medium and low severity levels

Level of severity Number of faulty % of faulty Number of faults % of Distribution of
classes classes faults

High 23 15.56 48 7.47

Medium 58 40.00 449 69.93

Low 39 26.90 145 22.59

The ‘min’, ‘max’, ‘mean’, ‘median’, ‘std dev’, ‘25% quartile’ and ‘75% quartile’ for all
metrics in the analysis are shown in Table 10.8.

Table 10.8. Descriptive statistics for metrics

Metric Min. Max. Mean Median Std. Dev. Percentile (25%) Percentile (75%)
CBO 0 24 8.32 8 6.38 3 14

Lcom 0 100 68.72 84 36.89 56.5 96

NOC 0] 5 0.21 0 0.7 0] 0]

RFC 0 222 3438 28 36.2 10 445

WMC 0 100 17.42 12 17.45 8 22

LoC 0 2313 21125 108 345.55 8 235.5

DIT 0 6 1 1 1.26 0 1.5

Metrics and Models in Software Testing 439

The low values of DIT and NOC indicate that inheritance is not much used in the system.
The LCOM metric has high values. Table 10.9 shows the correlation among metrics, which is
an important static quantity.

Table 1