Chapter 1 Data Communications and NM Overview

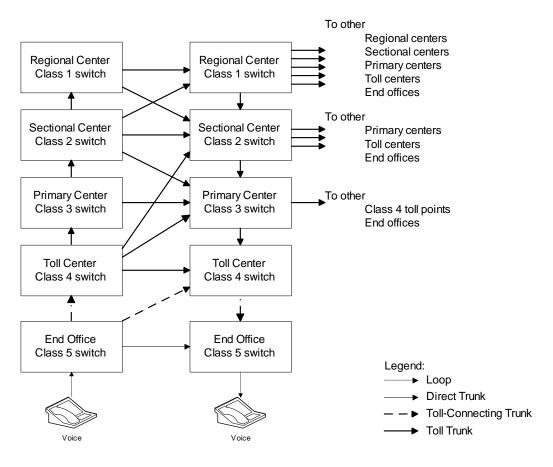
Outline

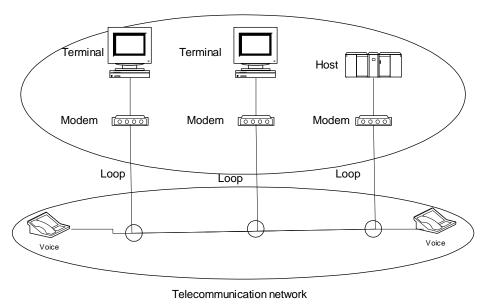
- Analogy of telephone network
- Data and telecommunication network
- Distributed computing environment
- Internet
- Protocols and standards
- IT management
- Network and system management
- Current status and future of network management

Telephone Network

- Characteristics:
 - Reliable does what is expected of it
 - Dependable always there when you need it (remember 911?)
 - Good quality (connection) hearing each other well
- Reasons:
 - Good planning, design, and implementation
 - Good operation and management of network

Telephone Network Model

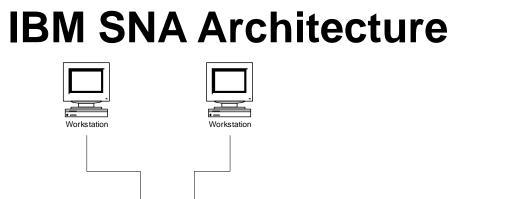



Figure 1.1 Telephone Network Model

- Notice the hierarchy of switches
- Primary and secondary routes programmed
- Automatic routing
- Where is the most likely failure?
- Use of Operations Systems to ensure QoS

Operations Systems / NOC

- Monitor telephone network parameters
 - S/N ratio, transmission loss, call blockage, etc.
- Real-time management of network
- Trunk (logical entity between switches) maintenance system measures loss and S/N. Trunks not meeting QoS are removed before customer notices poor quality
- Traffic measurement systems measure call blockage. Additional switch planned to keep the call blockage below acceptable level
- Operations systems are distributed at central offices
- Network management done centrally from Network
 Operations Center (NOC)


Data and Telecommunication Network

Data communication network

- Computer data is carried over long distance by telephone (telecommunication network)
- Output of telephone is analog and output of computers is digital
- Modem is used to "modulate" and "demodulate" computer data to analog format and back
- Clear distinction between the two networks is getting fuzzier with modern multimedia networks

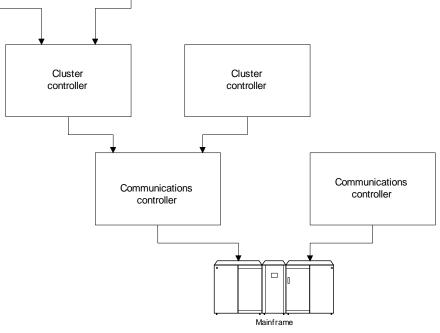
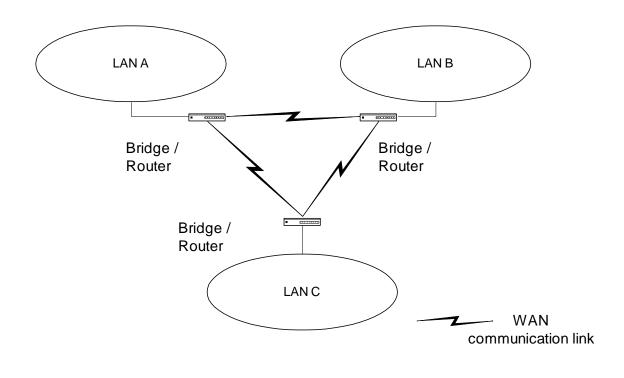


Figure 1.5 IBM Systems Network Architecture Model


- IBM System Network Architecture (SNA) is a major step in network architecture
- SNA is based on multitude of (dumb) terminals accessing a mainframe host at a remote location

DCE. Distributed Computing Environment

(a) Hosts and Workstations on Local LAN

- Driving technologies for DCE:
 - Desktop processor
 - LAN
 - LAN WAN network

LAN-WAN Network

- Major impacts of DCE:
 - No more monopolistic service provider
 - No centralized IT controller
 - Hosts doing specialized function
 - Client/Server architecture formed the core of DCE network

Client/Server Model

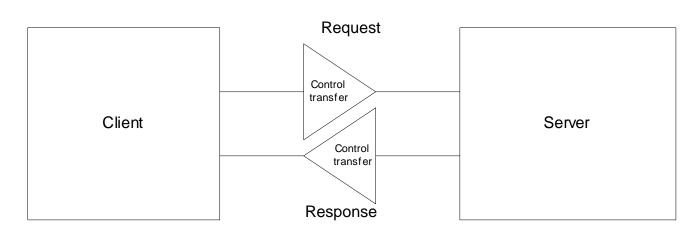


Figure 1.7 Simple Client-Server Model

- Post office analogy; clerk the server, and the customer the client
- Client always initiates requests
- Server always responds
- Notice that control is handed over to the receiving entity.

Client/Server Examples

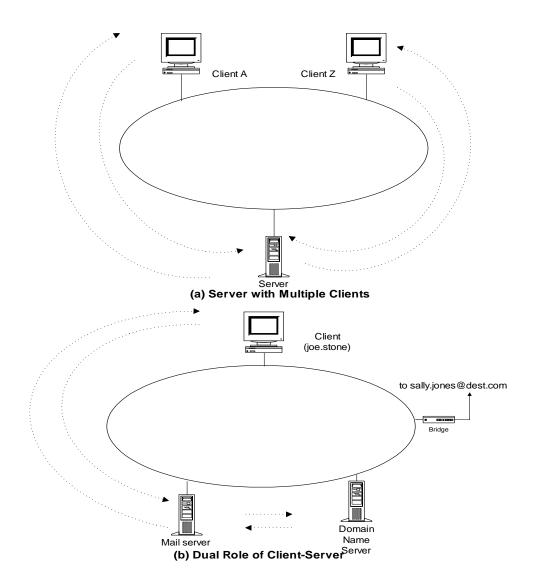
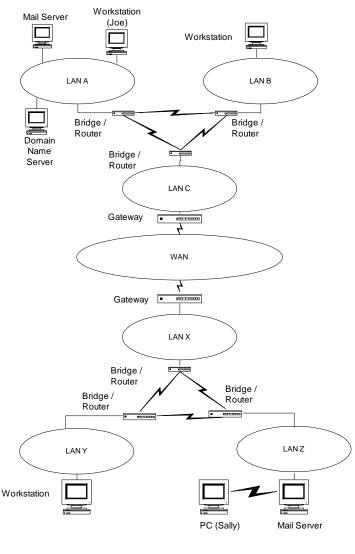



Figure 1.8 Client-Server in Distributed Computing Environment

TCP/IP Based Networks

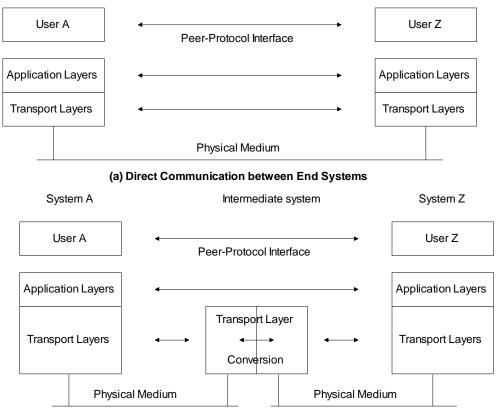
- TCP/IP is a suite of protocols
- Internet is based on TCP/IP
- IP is Internet protocol at the network layer level
- TCP is connection-oriented transport protocol and ensures end-to-end connection
- UDP is connectionless transport protocol and provides datagram service
- Internet e-mail and much of the network mgmt. messages are based on UDP/IP
- ICMP part of TCP/IP suite

Internet Configuration

Figure 1.9 Internet Configuration

Notes

• Walk through the scenario of e-mail from Joe to Sally


Architecture, Protocols and Standards

- Communication architecture
 - Modeling of communication systems, comprising
 - functional components and
 - operations interfaces between them
- Communication protocols
 - Operational procedures
 - intra- and inter-modules
- Communication standards
 - Agreement between manufacturers on protocols
 of communication equipment on
 - physical characteristics and
 - operational procedures

Notes

• Examples: (Students to call out)

Communication Architecture

(b) Communication between End Systems via an Intermediate System

Figure 1.11 Basic Communication Architecture

- Inter-layer interface: user and service provider
- Peer-layer protocol interface
- Analogy of hearing-impaired student
- Role of intermediate systems
- Gateway: Router with protocol conversion as gateway to an autonomous network or subnet

OSI Reference Model

	User / Application program	
Layer 7	Application	
Layer 6	Presentation	
Layer 5	Session	
Layer 4	Transport	
Layer 3	Network	
Layer 2	Data link	
Layer 1	Physical	
	Physical medium	

Notes

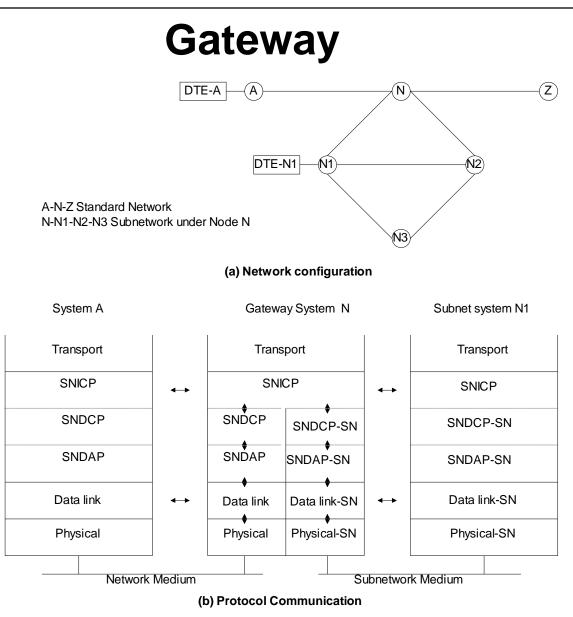
• Importance of the knowledge of layer structure in NM

OSI Layers and Services

Layer No.	Layer Name	Salient services provided by the layer
1 Physical		-Transfers to and gathers from the physical medium raw bit data
		-Handles physical and electrical interfaces to the transmission medium
2 Data link		-Consists of two sublayers: Logical link control (LLC) and Media access control (MAC)
		-LLC: Formats the data to go on the medium; performs error control and flow control
		-MAC: Controls data transfer to and from LAN; resolves conflicts with other data on LAN
3	Network	Forms the switching / routing layer of the network
4	Transport	-Multiplexing and de-multiplexing of messages from applications
		-Acts as a transparent layer to applications and thus isolates them from the transport system layers
		-Makes and breaks connections for connection-oriented communications
		-Flow control of data in both directions
5	Session	-Establishes and clears sessions for applications, and thus minimizes loss of data during large data exchange
6	Presentation	-Provides a set of standard protocols so that the display would be transparent to syntax of the application
		-Data encryption and decryption
7	Application	-Provides application specific protocols for each specific application and each specific transport protocol system

Notes

 Importance of services offered by different layers and the protocol conversion at different layers in NM


PDU Communication Model

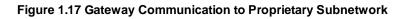

End System A			End System Z		
User A			User Z		
			Î		
Application	► (A) PCI UD		Application		
Presentation	→ (P) PCI (A) PDU		Presentation		
Session	► (S) PCI (P) PDU		Session		
Transport	→[(T) PCI(S) PDU		Transport		
Network	→ (N) PCI (T) PDU		Network		
Data link	► (D) PCI (N) PDU		Data link		
Physical			Physical		
	(D)PDU Data stream				
Physical Medium					

Figure 1.14 PDU Communication Model between End Systems

Notes

• What is the relevance of PDU model in NM?

Notes

 cc:mail from a station in Novel IPX network to an Internet station with SMTP e-mail

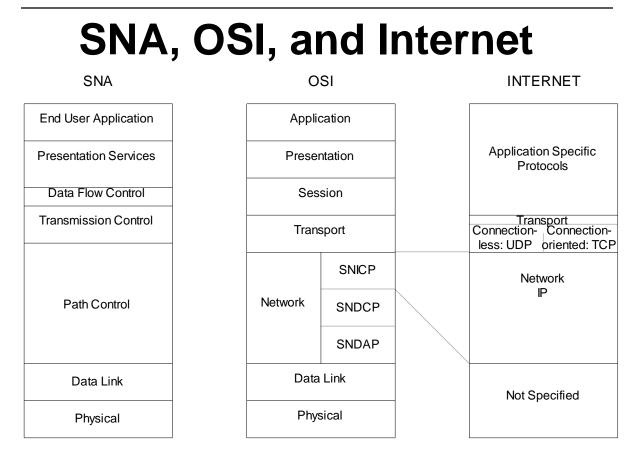


Figure 1.18 Comparison of OSI, Internet, and SNA Protocol Layer Models

- Similarity between SNA and OSI
- Simplicity of Internet; specifies only layers 3 and 4
- Integrated application layers over Internet
- Commonality of layers 1 and 2 IEEE standard

Application Protocols

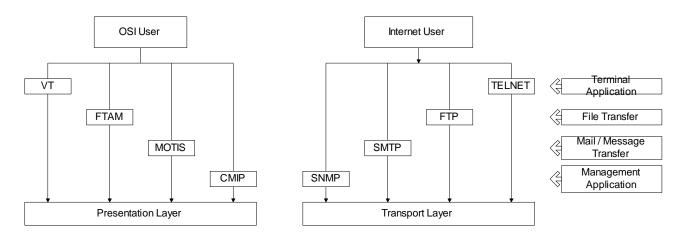


Figure 1.19 Application Specific Protocols in ISO and Internet Models

Internet user	OSI user
Telnet	Virtual Terminal
File Transfer Protocol	File Transfer Access & Mgmt
Simple Mail Transfer	Message-oriented Text
Protocol	Interchange Standard
Simple Network	Common Management
Management Protoco	Information Protocol

NM Case Histories

- The case of the Footprint
- Case of the crashing bridge

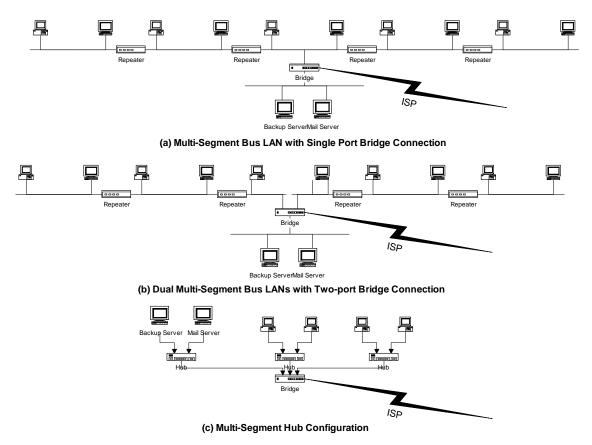


Figure 1.20 Case History 2: Network Configuration Evolution

Common Network Problems

- Loss of connectivity
- Duplicate IP address
- Intermittent problems
- Network configuration issues
- Non-problems
- Performance problems

Challenges of IT Managers

- Reliability
- Non-real time problems
- Rapid technological advance
- Managing client/server environment
- Scalability
- Troubleshooting tools and systems
- Trouble prediction
- Standardization of operations NMS helps
- Centralized management vs "sneaker-net"

Network Management

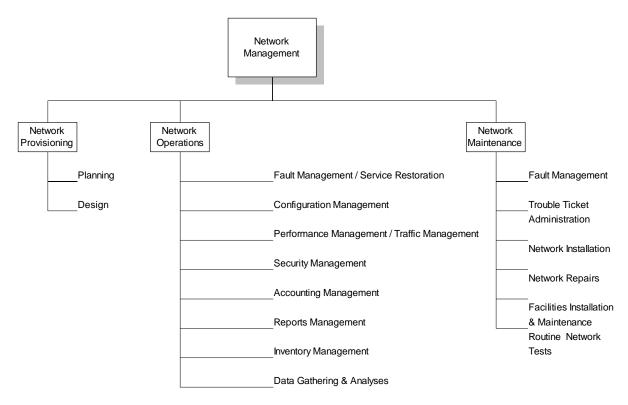


Figure 1.21 Network Management Functional Groupings

- OAM&P
 - Operations
 - Administration
 - Maintenance
 - Provisioning

NM Functional Flow Chart



Figure 1.22. Network Management Functional Flow Chart

NM Components

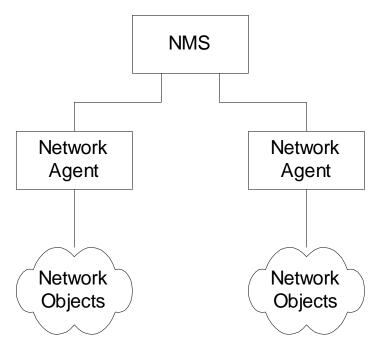
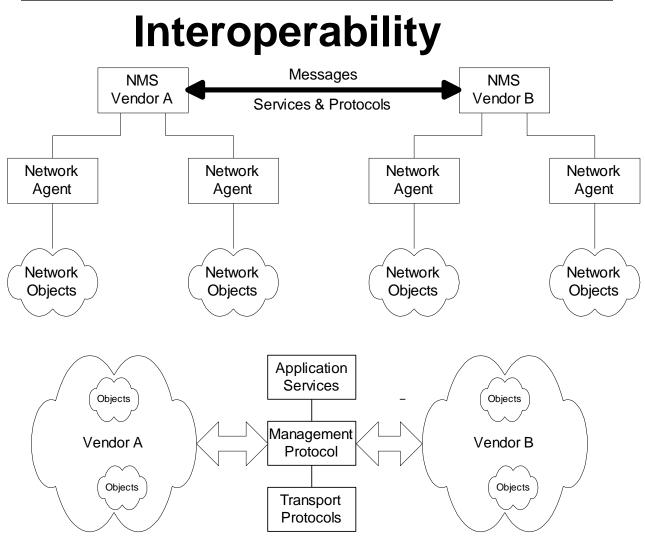



Figure 1.24 Network Management Components

(b) Services and Protocols

Notes

 Message exchange between NMSs managing different domains

Status and Future Trends

- Status:
 - SNMP management
 - Limited CMIP management
 - Operations systems
 - Polled systems
- Future trends:
 - Object-oriented approach
 - Service and policy management
 - Business management
 - Web-based management

Chapter 2 Computer Network Technology

Technology and Management

- What are the technologies that need to managed?
- Challenges of technological progress on network management

Computer Network Technology

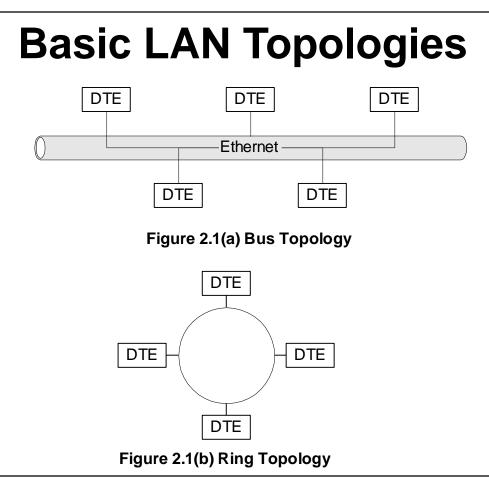
- Network comprises
 - Nodes
 - Links
- Topology: How they're configured
 - LAN
 - WAN

Notes

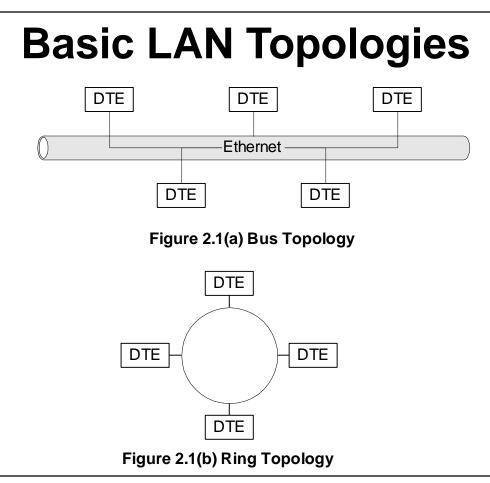
Distinction between LAN and WAN

LANs

•Type of LANs


- Ethernet
- Fast Ethernet
- Gigabit Ethernet
- Half-duplex Vs Full-duplex
- Switched Ethernet
- VLAN
- Token ring
- FDDI
- ATM / LANE

Nodes


- Hubs
- Bridges
- Remote bridges
- Routers
- Gateways
- Half bridge / half router
- Switches

WANs

- Facilities / Media
 - Wired
 - Copper
 - Coaxial
 - Fiber
 - Wireless
 - Terrestrial
 - Satellite
- Mode
 - Digital
 - Analog
- Services
 - POTS
 - ISDN
 - Broadband

- Bus topology
 - Used in Ethernet LAN family
 - Common shared medium
 - Randomized access (CSMA/CD)
 - Easy to implement
 - Lower utilization under heavy traffic 30%-40%
 - Single culprit could effect the entire LAN

- Ring Topology
 - Used in token ring and FDDI
 - Shared medium
 - Deterministic access
 - Master DTE has control
 - High utilization >90%

Star & Hybrid LAN Topologies

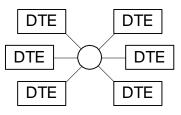


Figure 2.1(c) Star Topology

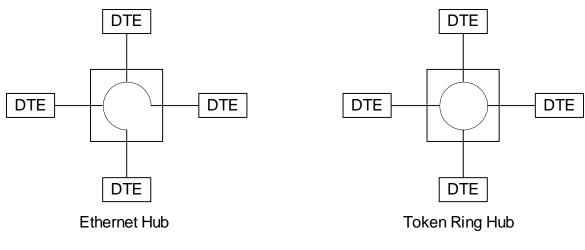
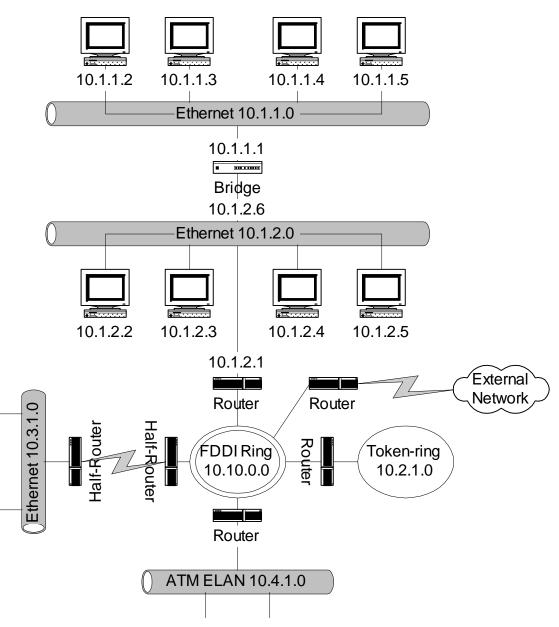



Figure 2.1(d) Hub Configurations

- Star topology used with bus and ring topology
- Hub is "LAN in a box"
- What does the electronic LAN inside the box look like?
- Why has hub become so popular?

A Campus Network

Figure 2.3 Campus Network of LANs

Notes

• ATM VLAN an alternative to FDDI backbone

WAN Topologies

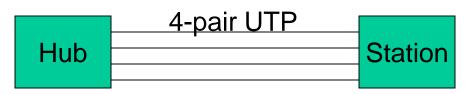
Figure 2.2(b) Tree Topology

- Mesh topology
 - Implemented in network layer level
 - Multiple paths between nodes
 - Flat topology
 - Redundancy
 - Load balancing
 - Shortest path
- Tree topology
 - Used with Ethernet bridges
 - Hierarchical
 - Efficient for small networks and
 - special purpose networks

Ethernet

Table 2.1 Ethernet LAN Topology Limits

TYPE	DESCRIPTION	SEGMENT LENGTH	DROP CABLE
10Base2 10Base5	Thin coax (0.25") Thick Coax (0.5")	200 meters 500 meters	Not allowed Twisted pair: 50 meters
10Base-T	Hub topology	N/A	Twisted pair: 100 meters
10Base-F	Hub topology	N/A	2 km


- IEEE 802.3 standard
- 10 Mbps data rate
- Collision analogy of hollow pipe
- Principle of operation; CSMA/CD
- Segment length and drop cable length
- Minimum size of packet 64 bytes
- Maximum size of packet 1500 bytes
- Hub configuration

Fast Ethernet

Network			
Data Link	LLC		
	MAC Sublayer		
Physical	Convergence Layer		
	PMD Sublayer		

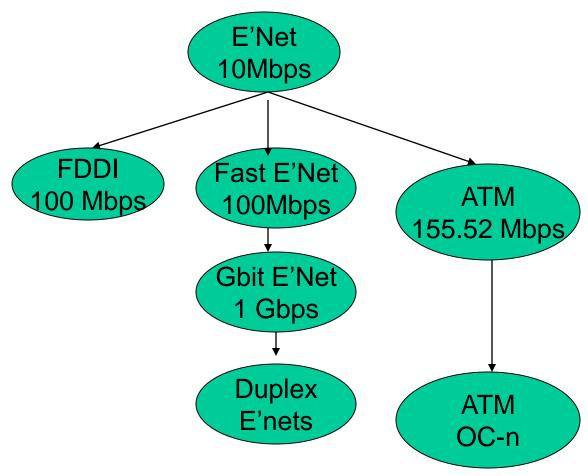

LLC Logical Link control MAC Medium Access Control PMD Physical Medium Dependent

Figure 2.4 100Base-T Fast Ethernet Protocol Architecture

- Rationale
 - Max drop length 100m => Max round-trip time 1/10 of Ethernet; hence 10 times data rate
- Standard 100Base-T4
- Compatibility with 10BaseT
- UTP limitation; Use 4-pair UTP @ 25 Mbps/pair
- Alternatives: 2-pair 100BaseTX Cat 5(Max 100 m) and 100Base FX optical fiber (Max 2 km)

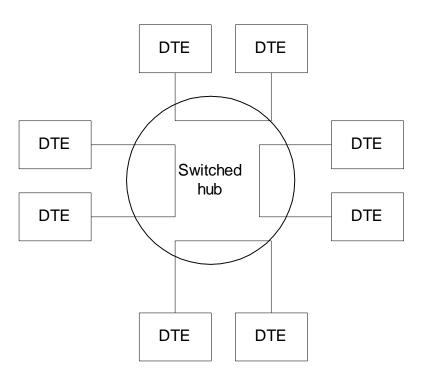

Gigbit Ethernet

Table 2.2 Gigabit Ethernet	Topology Limits
----------------------------	-----------------

	9 micron Single- Mode	50 micron Single Mode	50 micron Multimode	62.5 micron Multimode	Balance Shielded Cable	UTP
1000BASE-LX	10 km	3 km	550 m	440 m	-	-
1000BASE-SX	-		550 m	260 m	-	-
1000BASE-CX	-		-	-	25 m	-
1000BASE-T	-		-	-	-	100 m

- Packet size 512 bytes, slot size 4.096 microseconds
- Minimum frame size 64 bytes for backward compatibility; Slot filled with carrier extension
- Packet bursts with no idle time between frames increases efficiency

Switched Ethernet

- Maximum throughput increased ~N/2 in N-port hub
- Snooping capability lost for management

Client/Server Configuration using Switched Hub

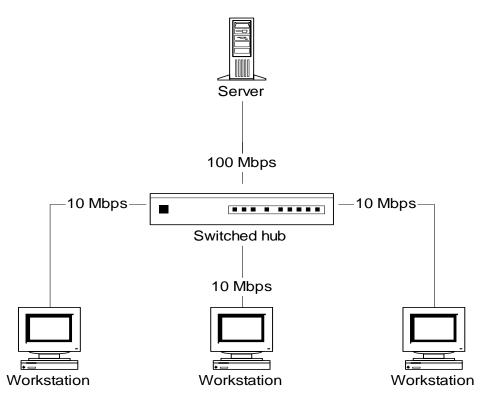


Figure 2.9 Switched Hub in Client-Server Configuration

Virtual LAN

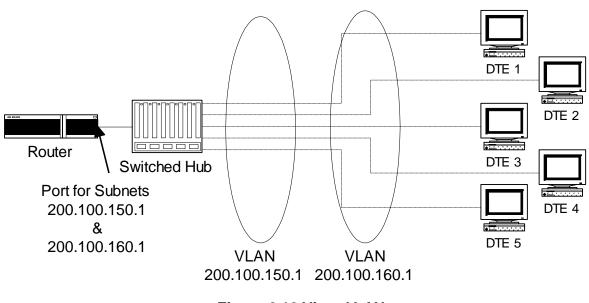


Figure 2.10 Virtual LANs

- Switched hub enables establishing virtual LANs
- Permits switching stations between LANs without physical moving of equipment
- Walk through scenario

Token Ring

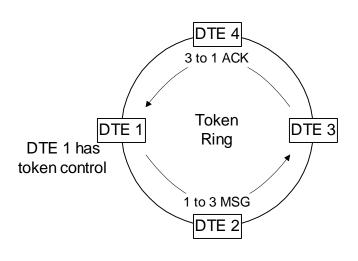


Figure 2.11 Token Ring LAN

- Adopted by IBM
- IEEE 802.5 standard
- Data rates of 4Mbps and 16 Mbps
- Single and dual ring LANs

Dual Ring TR LAN

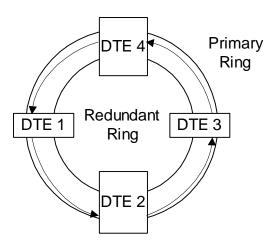


Figure 2.12(a) Token Ring Dual Ring Management

Failure Recovery in TR LAN

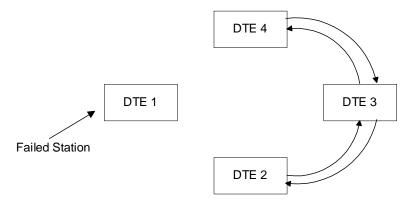


Figure 2.12(b) Token Ring DTE Isolation

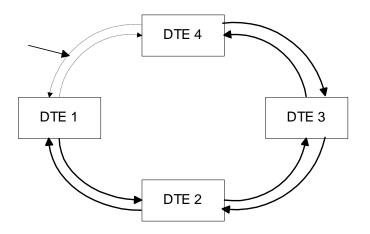
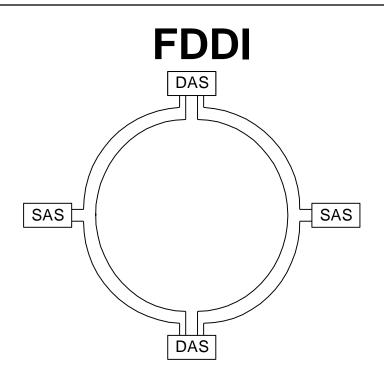
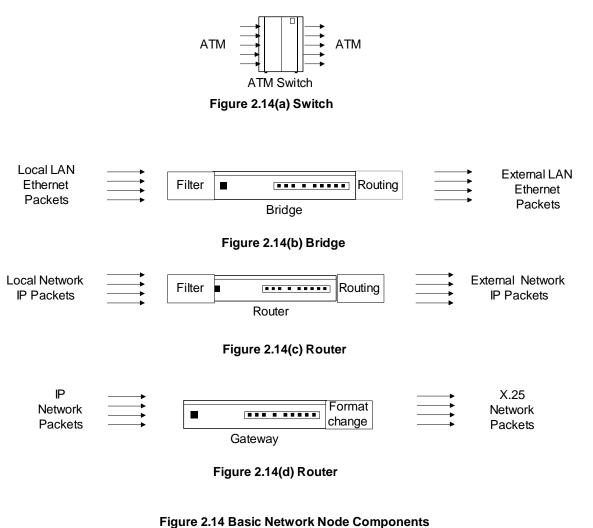



Figure 2.12(c) Token Ring Segment Isolation

- Station failure recovery
- Link failure recovery



SAS Single Attached Station DAS Dual Attached Station

- Uses fiber optics medium
- Modified token ring protocol
- Data rate 100 Mbps
- Segment length 100 km
- 500 stations in the ring with max separation of 2 km
- Single and dual attached stations
- Dual attached stations load share the two rings

Basic Network Nodes

Figure 2.14 Basic Network Node Compon

Network Node Components

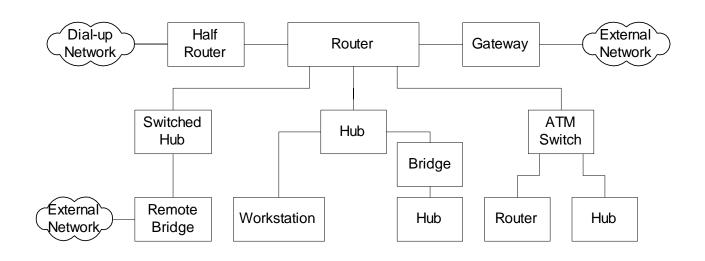


Figure 2.15 Networked Components

- Hubs
- Bridges
- Remote bridges
- Routers
- Gateways
- Half bridge / half router
- Switches

Figure 2.16(a) Hub Configuration

- Hub is a platform
- Function dependent on what is housed
 - LAN
 - Switched LAN
 - Bridge

Stacked Hubs

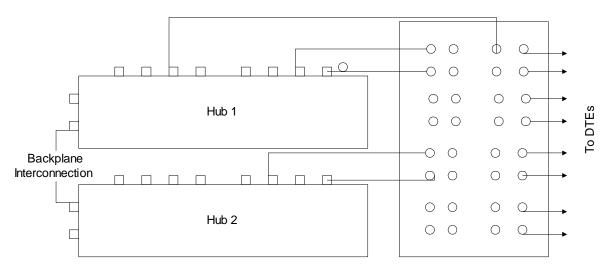
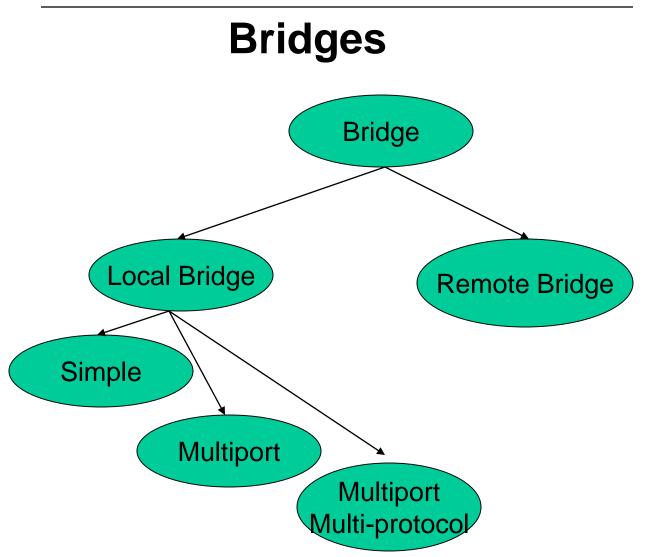
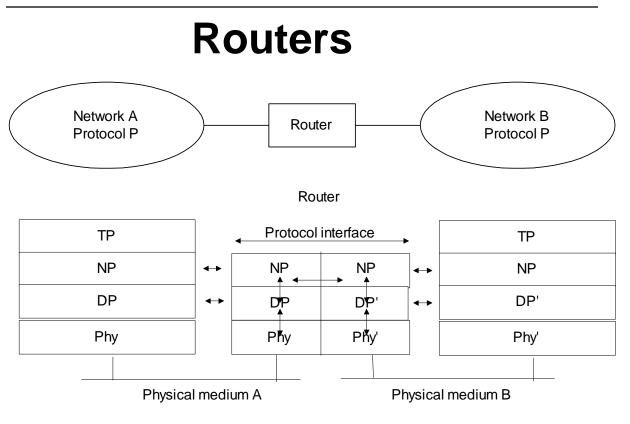
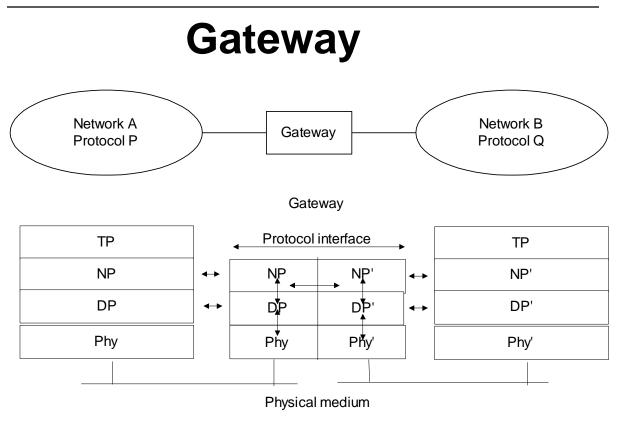
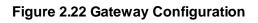




Figure 2.16(b) Stacked Hub

- Hub ports can be scaled up using stacked hubs
- Stacked hub
 - extend back plane
 - connected as daisy chain




- Bridges two nodes at data link control layer
 - Ethernet: tree topology, transparent bridge
 - Token ring:mesh topology, source routing bridge
- Remote bridge uses WAN interface cards; same protocol used at both ends
- Ethernet bridge is a learning bridge

- Routers operate at network layer
- Routes packets between nodes of similar network protocols
- Routing table used to route packets
- DLC and Physical layers could be different under the same common network layer protocol

- Gateway is router connecting two networks with dissimilar network protocols
- Gateway does the protocol conversion at the network layer
- Protocol converter does the conversion at the application layer

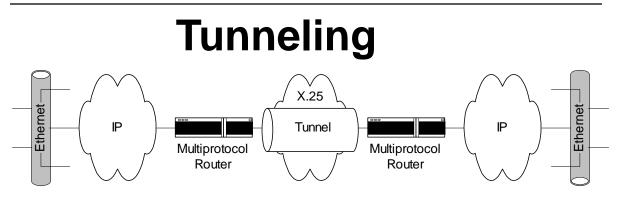
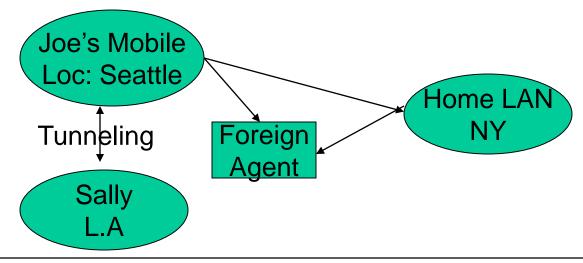



Figure 2.24 Tunneling Using Multiprotocol Routers

- Tunneling is transmission of packets (via multiprotocol routers) by encapsulation
- In Figure 2.24, packets are encapsulated and transmitted through X.25 network in a serial mode
- In the mobile environment, Joe and his home agent in NY communicate Joe's Seattle location to the foreign agent. His communication with Sally in LA is tunneled

Half-Bridge

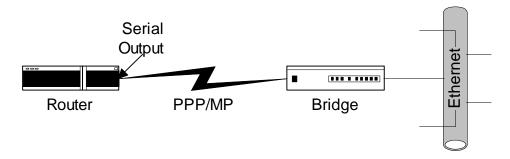


Figure 2.25 Half-Bridge Configuration

- Half-bridge (also referred to as half-router) is point-to-point communication
- Uses PPP protocol
- Helps low-end users to communicate with ISP on dial-up link saving the expense of dedicated link
- Router encapsulates packets in PPP frames and puts serial outputs to the bridge, and vice-versa

Switched Networks

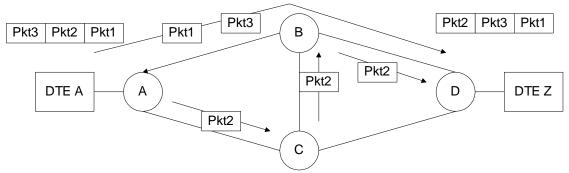


Figure 2.26(a) Datagram Configuration

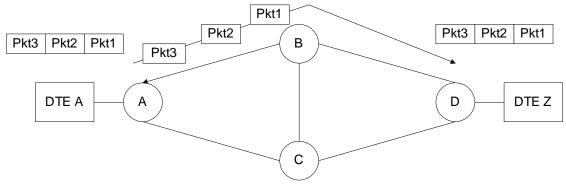
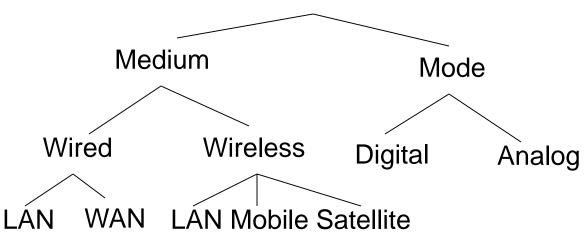
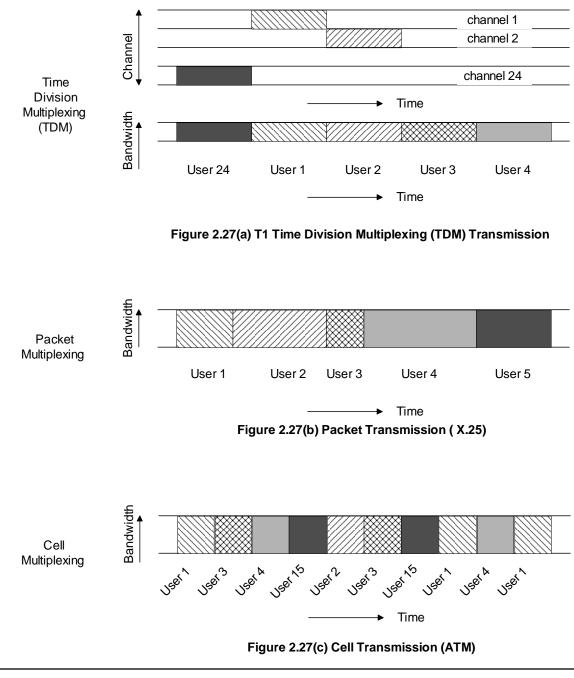



Figure 2.26(b) Virtual Circuit Configuration

- Switches are embedded in bridges and routers
- Switched network used in WAN
- Two types of switched networks
 - Circuit-switched
 - Packet-switched
 - Datagram service
 - Virtual circuit


Transmission Technology

Transmission Technology

- Physical transport media
 - UTP
 - Coax
 - Fiber
 - Terrestrial wireless
 - Satellite transmission

Transmission Modes

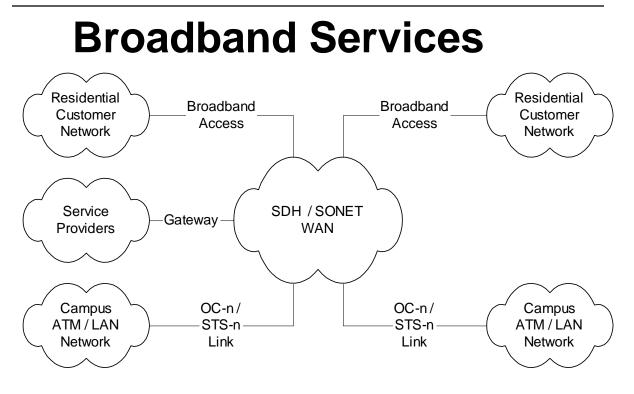


Figure 2.28 Broadband Services Network

- Integrated services: Voice, video, and data
- Narrow band ISDN (Integrated Services Digital Net.)
 Basic rate:2B + D (B channel 64 kbps and
 - D channel 16 kbps
 - Primary rate: 23B + D channels
- Broadband (ISDN) Services uses ATM technology
 - SONET (Synchronous Optical Network) or SDH (Synchronous Digital Hierarchy)
 - Data rate OC-n
 - OC-1 51.84 Mbps
 - OC-3 155.52 Mbps
 - Access technologies:
 - HFC (Hybrid Fiber Coaxial) / Cable modem
 - ADSL (Ásymmetric Digital Subscriber Line)

Chapter 3 Basic Foundations: Standards, Models, and Language

Introduction

- Standards
 - Standards organizations
 - Protocol standards of transport layers
 - Protocol standards of management (application) layer
- Management Models
- Language

Standard	Salient Points			
OSI / CMIP	International standard (ISO / OSI)			
	 Management of data communications network - LAN and WAN 			
	Deals with all 7 layers			
	Most complete			
	Object oriented			
	Well structured and layered			
	Consumes large resource in implementation			
SNMP / Internet	Industry standard (IETF)			
	 Originally intended for management of Internet components, currently adopted for WAN and telecommunication systems 			
	Easy to implement			
	Most widely implemented			
TMN	International standard (ITU-T)			
	 Management of telecommunications network 			
	Based on OSI network management framework			
	 Addresses both network and administrative aspects of management 			
IEEE	IEEE standards adopted internationally			
	Addresses LAN and MAN management			
	Adopts OSI standards significantly			
	Deals with first two layers of OSI RM			
Web-based Management	Web-Based Enterprise Management (WBEM)			
	Java Management Application Program Interface (JMAPI)			

OSI Architecture and Model

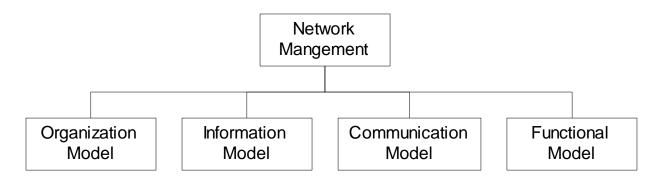


Figure 3.1 OSI Network Management Model

- Organization
 - Network management components
 - Functions of components
 - Relationships
- Information
 - Structure of management information (SMI)
 - Syntax and semantics
 - Management information base (MIB)
 - Organization of management information
 - Object-oriented

OSI Architecture and Model

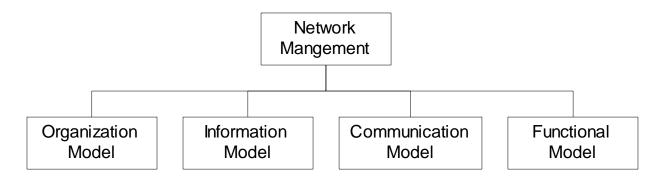


Figure 3.1 OSI Network Management Model

- Communication
 - Transfer syntax with bi-directional messages
 - Transfer structure (PDU)
- Functions
 - Application functions
 - Configure components
 - Monitor components
 - Measure performance
 - Secure information
 - Usage accounting

SNMP Architecture and Model

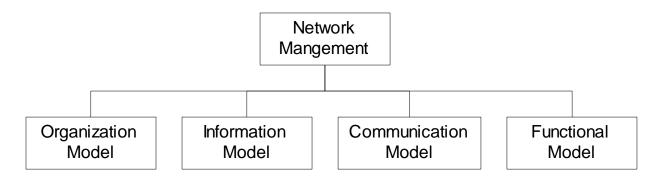


Figure 3.1 OSI Network Management Model

- Organization
 - Same as OSI model
- Information
 - Same as OSI, but scalar
- Communication
 - Messages less complex than OSI and unidirectional
 - Transfer structure (PDU)
- Functions
 - Application functions
 - Operations
 - Administration
 - Security

TMN Architecture

- Addresses management of telecommunication networks
- Based on OSI model
- Superstructure on OSI network
- Addresses network, service, and business management

Organizational Model

- Manager
 - Sends requests to agents
 - Monitors alarms
 - Houses applications
 - Provides user interface
- Agent
 - Gathers information from objects
 - Configures parameters of objects
 - Responds to managers' requests
 - Generates alarms and sends them to mangers
- Managed object
 - Network element that is managed
 - Houses management agent
 - All objects are not managed / manageable

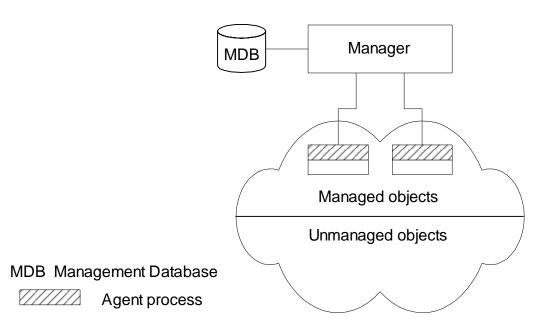


Figure 3.2 Two-Tier Network Mangement Organization Model

- Agent built into network element Example: Managed hub, managed router
- An agent can manage multiple elements Example: Switched hub, ATM switch
- MDB is a physical database
- Unmanaged objects are network elements that are not managed - both physical (unmanaged hub) and logical (passive elements)

Three-Tier Model

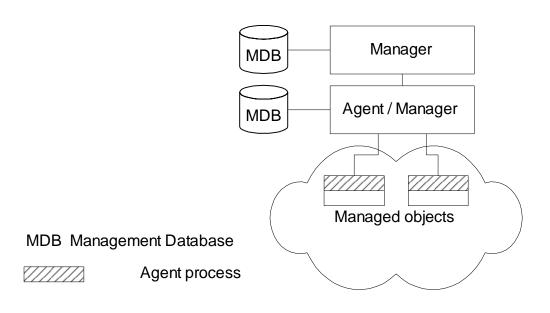
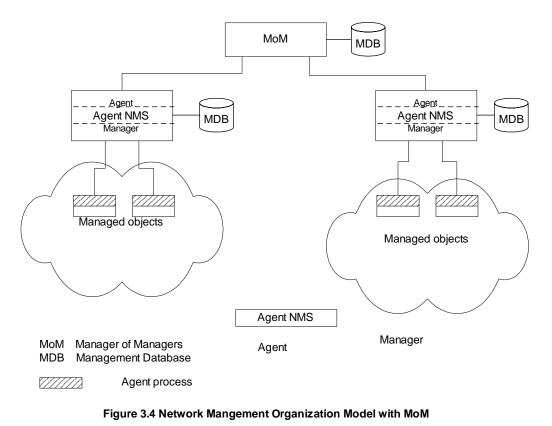



Figure 3.3 Three-Tier Network Mangement Organization Model

- Middle layer plays the dual role
 - Agent to the top-level manager
 - Manager to the managed objects
- Example of middle level: Remote monitoring agent (RMON)

Manager of Managers

- Agent NMS manages the domain
- MoM presents integrated view of domains
- Domain may be geographical, administrative, vendor-specific products, etc.

Peer NMSs

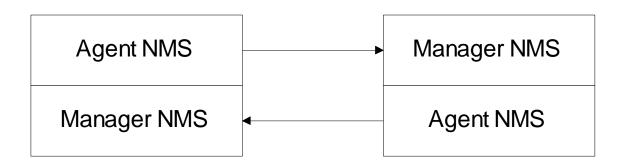


Figure 3.5 Dual Role of Management Process

- Dual role of both NMSs
- Network management system acts as peers
- Dumbbell architecture discussed in Chapter 1
- Notice that the manager and agent functions are processes and not systems

Information Model: Analogy

- Figure in a book uniquely identified by
 - ISBN, Chapter, and Figure number in that hierarchical order
- ID: {ISBN, chapter, figure}
- The three elements above define the syntax
- Semantics is the meaning of the three entities according to Webster's dictionary
- The information comprises syntax and semantics about an object

Structure of Management Information (SMI)

- SMI defines for a managed object
 - Syntax
 - Semantics
 - plus additional information such as status
- Example

sysDescr:	{ system 1 }
Syntax:	OCTET STRING
Definition:	"A textual description of the entity. "
Access:	read-only
Status:	mandatory

Management Information Base (MIB)

- Information base contains information about objects
- Organized by grouping of related objects
- Defines relationship between objects
- It is NOT a physical database. It is a *virtual* database that is compiled into management module

Information Base View: An Analogy

- Fulton County library system has many branches
- Each branch has a set of books
- The books in each branch is a different set
- The information base of the county has the view (catalog) of all books
- The information base of each branch has the catalog of books that belong to that branch. That is, each branch has its view (catalog) of the information base
- Let us apply this to MIB view

MIB View and Access of an Object

- A managed object has many attributes its information base
- There are several operations that can be performed on the objects
- A user (manager) can view and perform only certain operations on the object by invoking the management agent
- The view of the object attributes that the agent perceives is the MIB view
- The operation that a user can perform is the MIB access

Management Data Base / Information Base

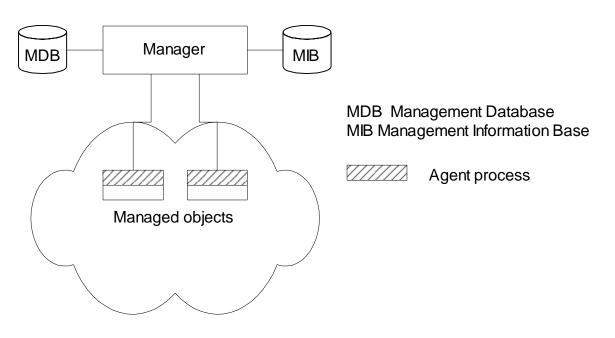


Figure 3.6 Network Configuration with Data and Information Base

- Distinction between MDB and MIB
 - MDB physical database; e.g.. Oracle, Sybase
 - MIB virtual database; schema compiled into management software
- An NMS can automatically discover a managed object, such as a hub, when added to the network
- The NMS can identify the new object as hub only after the MIB schema of the hub is compiled into NMS software

Managed Object

- Managed objects can be
 - Network elements (hardware, system)
 - hubs, bridges, routers, transmission facilities
 - Software (non-physical)
 - programs, algorithms
 - Administrative information
 - contact person, name of group of objects (IP group)

Management Information Tree

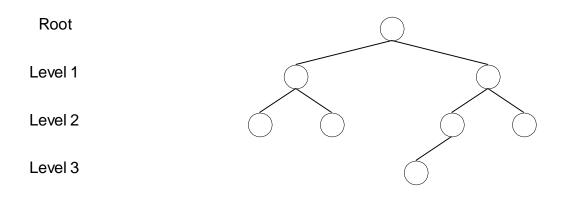
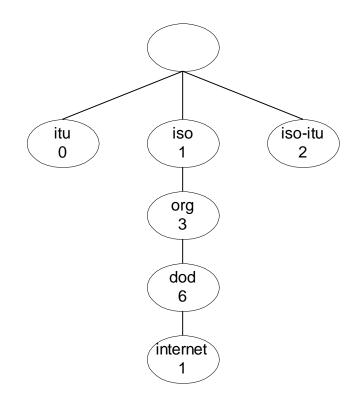



Figure 3.7 Generic Representation of Management Information Tree

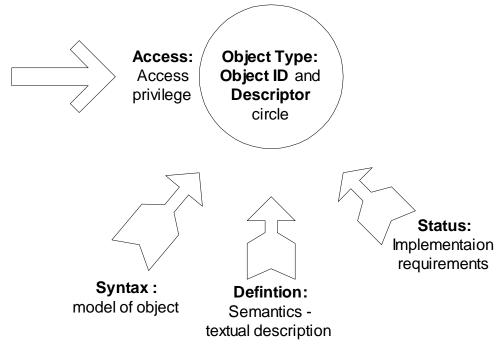
OSI Management Information Tree

Figure 3.8 OSI Management Information Tree

Notes

iso International Standards Organization
 itu International Telecommunications Union
 dod Department of Defense

• Designation:


• iso	1
• org	1.3
• dod	1.3.6
 internet 	1.3.6.1

Object Type and Instance

- Type
 - Name
 - Syntax
 - Definition
 - Status
 - Access
- Instance

- Example of a circle
 - "circle" is syntax
 - Semantics is definition from dictionary"
 "A plane figure bounded by a single curved line, every point of which is of equal distance from the center of the figure."
- Analogy of nursery school

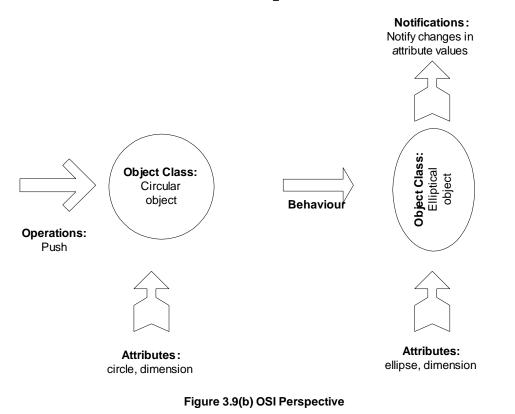

Managed Object: Internet Perspective

Figure 3.9(a) Internet Perspective

●object ID	unique ID
●and <i>descriptor</i> ●syntax	and name for the object used to model the object
•access	access privilege to a managed object
●status	implementation requirements
 definition 	textual description of the semantics of object type

Managed Object: OSI Perspective

Notes

behaviour

- object class managed object
- attributes attributes visible at its boundary
- operations operations which may be applied to it
 - behaviour exhibited by it in response to operation
- notifications notifications emitted by the object

Packet Counter Example

Characteristics	Example
Object type	PktCounter
Syntax	Counter
Access	Read-only
Status	Mandatory
Description	Counts number of packets

Figure 3.10(a) Internet Perspective

Characteristics	Example
Object class	Packet Counter
Attributes	Single-valued
Operations	get, set
Behavior	Retrieves or resets values
Notifications	Generates notifications on new value

Figure 3.10 (b) OSI Perspective

Figure 3.10 Packet Counter As Example of Managed Object

Internet Vs OSI Managed Object

- Scalar object in Internet Vs Object-oriented approach in OSI
- OSI characteristics of operations, behaviour, and notification are part of communication model in Internet: get/set and response/alarm
- Internet syntax is absorbed as part of OSI attributes
- Internet access is part of OSI security model
- Internet status is part of OSI conformance application
- OSI permits creation and deletion of objects; Internet does not: Enhancement in SNMPv2

Mgmt. Communication Model

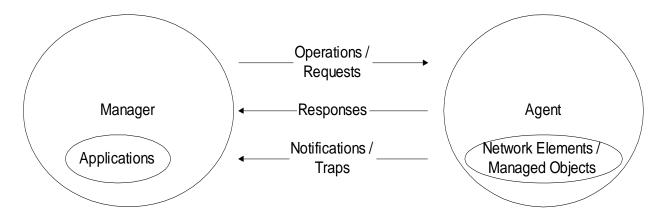
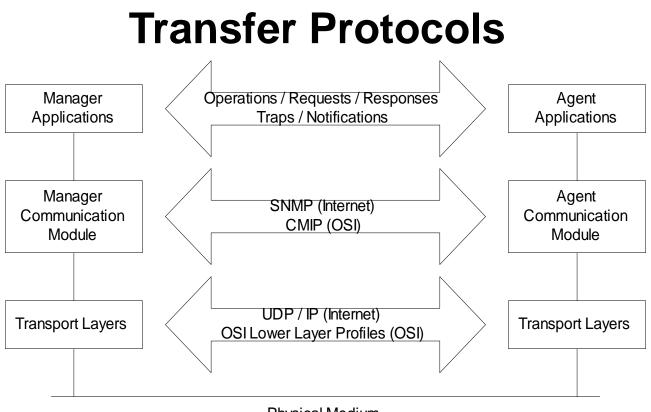



Figure 3.11 Management Message Communication Model

- In Internet requests/responses, in OSI operations
- In Internet traps and notifications (SNMPv2), in OSI notifications

Physical Medium

- Internet is based on SNMP; OSI is based on CMIP
- OSI uses CMISE (Common Management Information Service Element) application with CMIP
- OSI specifies both c-o and connectionless transport protocol; SNMPv2 extended to c-o, but rarely used

Abstract Syntax Notation One

- ASN.1 is more than a syntax; it's a language
- Addresses both syntax and semantics
- Two type of syntax
 - Abstract syntax: set of rules that specify
 data type and structure for information storage
 - Transfer syntax: set of rules for communicating information between systems
- Makes application layer protocols independent of lower layer protocols
- Can generate machine-readable code: Basic Encoding Rules (BER) is used in management modules

Backus-Nauer Form (BNF)

Definition:

```
<name> ::= <definition>
```

Rules:

```
<digit> ::= 0|1|2|3|4|5|6|7|8|9
```

```
<number> ::= <number> | <digit> <number>
```

```
<op> ::= +|-|x|/
```

```
<SAE> ::= <number>|<SAE>|<SAE><op><SAE>
```

Example:

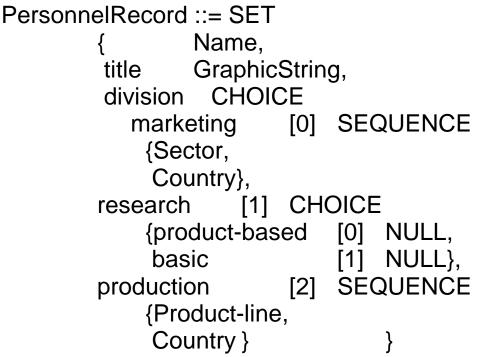
- 9 is primitive 9
- 19 is construct of 1 and 9
- 619 is *construct* of 6 and 19

- BNF is used for ASN.1 constructs
- Constructs developed from primitives
- The above example illustrates how numbers are constructed from the primitive <digit>
- Simple Arithmetic Expression entity (<SAE>) is constructed from the primitives <digit> and <op>

Simple Arithmetic Expression

<SAE> ::= <number> | <SAE><op><number>

Example: $26 = 13 \times 2$

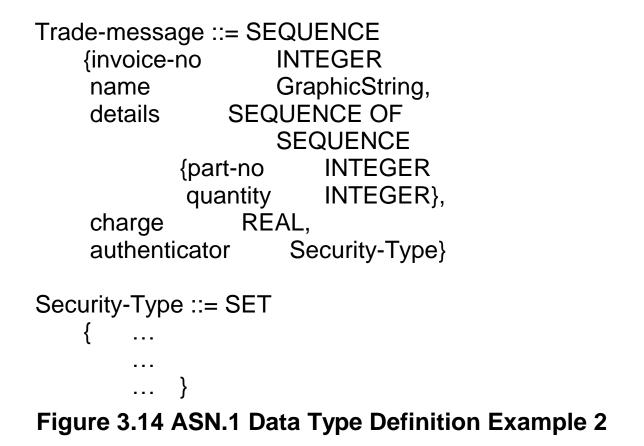

Constructs and primitives

Type and Value

- Assignments
 - <BooleanType> ::= BOOLEAN
 - <BooleanValue> ::= TRUE | FALSE
- ASN.1 module is a group of assignments person-name Person-Name::=

{	
first	"John",
middle	"I",
last	"Smith"
}	

Data Type: Example 1



etc.

Figure 3.13 ASN.1 Data Type Definition Example 1

- Module name starts with capital letters
- Data types:
 - Primitives: NULL, GraphicString
 - Constructs
 - Alternatives : CHOICE
 - List maker: SET, SEQUENCE
 - Repetition: SET OF, SEQUENCE OF:
- Difference between SET and SEQUENCE

Data Type: Example 2

Notes

SEQUENCE OF SEQUENCE makes tables of rows

ASN.1 Symbols

Symbol	Meaning
::=	Defined as
I	or, alternative, options of a list
-	Signed number
	Following the symbol are comments
{}	Start and end of a list
[]	Start and end of a tag
()	Start and end of subtype
	Range

Keyword Examples

- CHOICE
- SET
- SEQUENCE
- OF
- NULL

Notes

Keywords are in all UPPERCASE letters

ASN.1 Data Type Conventions

Data Types	Convention	Example
Object name	Initial lowercase letter	sysDescr, etherStatsPkts
Application data type	Initial uppercase letter	Counter, IpAddress
Module	Initial uppercase letter	PersonnelRecord
Macro, MIB module	All uppercase letters	RMON-MIB
Keywords	All uppercase letters	INTEGER, BEGIN

Data Type: Structure & Tag

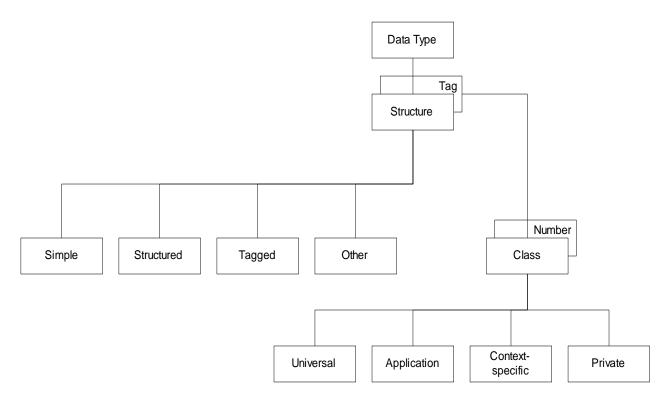


Figure 3.15 ASN.1 Data Type Structure and Tag

- Structure defines how data type is built
- Tag uniquely identifies the data type

Structure

- Simple
 - PageNumber ::= INTEGER
 - ChapterNumber ::= INTEGER
- Structure / Construct
 - BookPageNumber ::=
 - SEQUENCE

{ChapterNumber, Separator, PageNumber

- Example: {1-1, 2-3, 3-39}
- Tagged
 - Derived from another type; given a new ID
 - In Fig. 3-14, INTEGER is either universal or application specific
- Other types:
 - CHOICE, ANY

Notes

BookPages ::= SEQUENCE OF { BookPageNumber}

or

BookPages ::= SEQUENCE OF SEQUENCE {ChapterNumber, Separator, PageNumber} }

Tag

- Tag uniquely identifies a data type
- Comprises *class* and *tag number*
- Class:
 - Universal always true
 - Application only in the application used
 - Context-specific specific context in application
 - Private used extensively by commercial vendors

Notes

Example: BOOLEAN Universal 1 INTEGER Universal 2 research Application [1] (Figure 3.13) product-based Context-specific under *research* [0]

Enumerated Integer

RainbowColors ::= ENUMERATED

{

}

violet	(0)
indigo	(1)
blue	(2)
green	(3)
yellow	(4)
orange	(5)
red	(6)

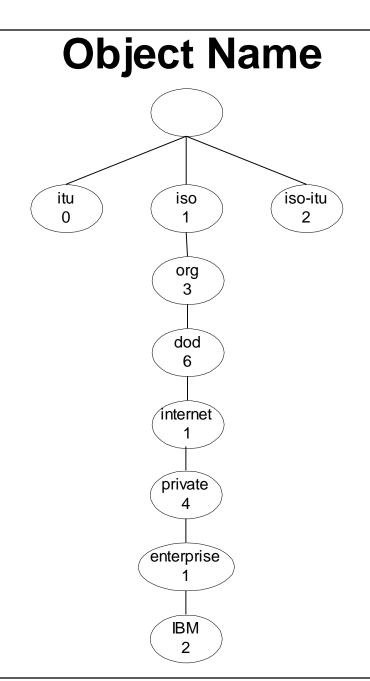
- ENUMERATED is a special case of INTEGER
- Example: RainbowColors(5) is orange

ASN.1 Module Example

IpNetMediaEntry ::=SEQUENCE{

ipNetToMedialfIndex ipNetToMediaPhysAddress ipNetToMediaNetAddress ipNetToMediaType

INTEGER


PhysAddress

IpAddress

INTEGER}

Number of Children Child Information Name	17 September 1971 Mary T Smith	
Child Information	Susan B Jones	
Date of Birth	a) Informal description of personnel record	
PersonnelRecord ::= [APPLICATION 0] IMPLICIT SET { Name, title [0] VisibleString, number EmployeeNumber, dateOfHire [1] Date, nameOfSpouse [2] Name, children [3] IMPLICIT SEQUENCE OF ChildInformation DEFAULT { } } ChildInformation ::= SET { Name, dateOfBirth [0] Date } Name ::= [APPLICATION 1] IMPLICIT SEQUENCE { givenName VisibleString, initial VisibleString, familyName VisibleString }		
EmployeeNumber ::= [APPLICATION 2] IMPLICIT INTEGER		
-	TION 3] IMPLICIT VisibleString YYYYMMDD b) ASN.1 description of the record structure	
{ title number dateOfHire nameOfSpou children { { dateOfBirt { dateOfBirt (c) AS	{givenName "Ralph", initial "T", familyName "Smith"}, h "19571111"}, {givenName "Susan", initial "B", familyName "Jones"}	

Network Management: Principles and Practice © Mani Subramanian 2000

Notes

internet OBJECT IDENTIFIER ::= {ISO(1) ORG(3) DOD(6) INTERNET(1)}

TLV Encoding

Туре	Length		Value	
Class (7-8th bits)	P/C Tag Number (6th bit) (1-5th bits)			

Class	8 th bit	7 th bit
Universal	0	0
Application	0	1
Context-specific	1	0
Private	1	1

Notes

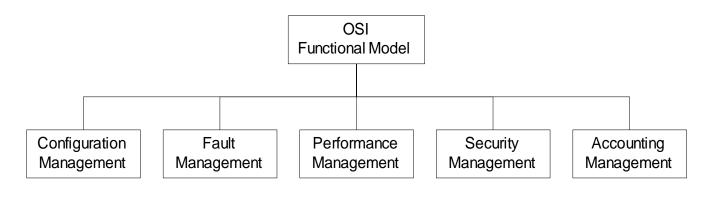
• TLV Type, length, and value are components of the structure

Macro

<macroname> MACRO ::= BEGIN

TYPE NOTATION ::= <syntaxOfNewType> VALUE NOTATION ::= <syntaxOfNewValue> <auxiliaryAssignments>

END


Example:

CS8803 OBJECT-IDENTITY STATUS current DESCRIPTION "A graduate-level network management course offered every fall by College of Computing in Georgia Institute of Technology." ::= {csclasses 50}

Notes

Macro is used to create new data types

Functional Model

- Configuration management
 - set and change network configuration and component parameters
 - Set up alarm thresholds
- Fault management
 - Detection and isolation of failures in network
 - Trouble ticket administration
- Performance management
 - Monitor performance of network
- Security management
 - Authentication
 - Authorization
 - Encryption
- Accounting management
 - Functional accounting of network usage

Chapter 4 SNMPv1: Organization and Information Models

Case Histories

- AT&T Network Management Centers
 - Network Control Centers
 - Network Operations Center
- CNN World Headquarters
- Centralized troubleshooting of NIC
- Performance degradation due to NMS
- Bell Operating company procedure

Figure 4.1 A Managed LAN Network

Notes

 NMS on subnet 192.168.252.1 manages the router and the hubs on subnet 172.16.46.1 across the backbone network

Managed Hub: System Information

Title: System Information: 172.16.46.2 Name or IP Address: 172.16.46.2

System Name : System Description : 3Com LinkBuilder FMS, SW version:3.02 System Contact : System Location : System Object ID : .iso.org.dod.internet.private.enterprises.43.1.8.5 System Up Time : (2475380437) 286 days, 12:03:24.37

Figure 4.2(a) System Information on 172.16.46.2 Hub

- Information obtained querying the hub
- Data truly reflects what is stored in the hub

Managed Router: System Information

Title: System Information: router1.gatech.edu Name or IP Address: 172.16.252.1

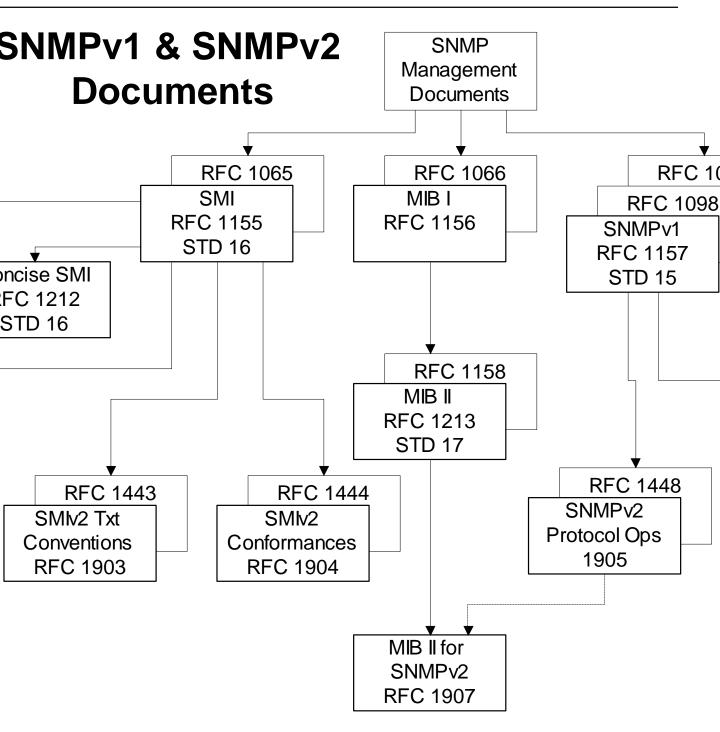
System Name System Description	 router1.gatech.edu Cisco Internetwork Operating System Software IOS (tm) 7000 Software (C7000-JS-M), Version 11.2(6),RELEASE SOFTWARE (ge1) Copyright (c) 1986-1997 by Cisco Systems, Inc. Compiled Tue 06-May-97 19:11 by kuong
System Contact	
System Location	:
System Object ID	: iso.org.dod.internet.private.enterprises.cisco.ciscoProducts. cisco 7000
System Up Time	: (315131795) 36 days, 11:21:57.95

Figure 4.2(c) System Information on Router

Managed Hub: Port Addresses

Index	Interface	IP address	Network Mask	Network Address	Link Address
1	3Com	172.16.46.2	255.255.255.0	172.16 46.0	0x08004E07C25C
2	3Com	192.168.101.1	255.255.255.0	192.168.101.0	<none></none>

- Information acquired by the NMS on hub interfaces
- Index refers to the interface on the hub
- Link address is the MAC address
- The second row data is a serial link


Managed Router: Port Addresses

Index	Interface	IP address	Network Mask	Network	Link Address
				Address	
23	LEC.1.0	192.168.3.1	255.255.255.0	192.168.3.0	0x00000C3920B4
25	LEC.3.9	192.168.252.1	255.255.255.0	192.168.252.	0x00000C3920B4
		5		0	
13	Ethernet2/0	172.1646.1	255.255.255.0	172.1646.0	0x00000C3920AC
16	Ethernet2/3	172.16.49.1	255.255.255.0	172.16.49.0	0x00000C3920AF
17	Ethernet2/4	172.16.52.1	255.255.255.0	172.16.52.0	0x00000C3920B0
9	Ethernet1/2	172.16.55.1	255.255.255.0	172.16.55.0	0x00000C3920A6
2	Ethernet 0/1	172.16.56.1	255.255.255.0	172.16.56.0	0x00000C39209D
15	Ethernet2/2	172.16.57.1	255.255.255.0	172.16.57.0	0x00000C3920AE
8	Ethernet1/1	172.16.58.1	255.255.255.0	172.16.58.0	0x00000C3920A5
14	Ethernet2/1	172.16.60.1	255.255.255.0	172.16.60.0	0x00000C3920AD

- Information acquired by NMS on the router interfaces
- Index refers to the interface on the router
- LEC is the LAN emulation card
- Ethernet 2/0 interface refers to the interface card 2 and port 0 in that card

Internet SNMP Management

- 1970 Advanced Research Project Agency Network (ARPANET) Internet control Message Protocol (ICMP)
- Internet Engineering Task Force (IETF)
 - 1990 SNMPv1
 - 1995 SNMPv2
 - 1998 SNMPv3
- Internet documents:
 - Request for Comments (RFC)
 - IETF STD Internet Standard
 - FYI For your information
- Source for RFCs
 - ftp://nic.mil/rfc
 - ftp://ftp.internic.net/rfc
 - http://nic/internet.net/

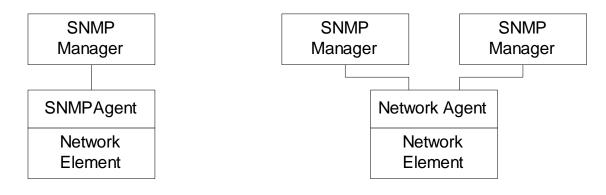
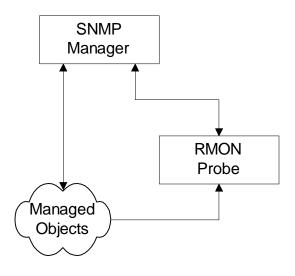


Figure 4.4 SNMP Document Evolution

SNMP Model

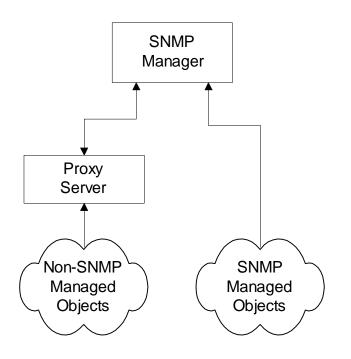
- Organization Model
 - Relationship between network element, agent, and manager
 - Hierarchical architecture
- Information Model
 - Uses ASN.1 syntax
 - SMI (Structure of Management Information
 - MIB (Management Information Base)
- Communication Model
 - Transfer syntax
 - SNMP over TCP/IP
 - Communication services addressed by messages
 - Security framework community-based model

Two-Tier Organization Model


(a) One Manager - One Agent Model

(b) Multiple Managers - One Agent Model

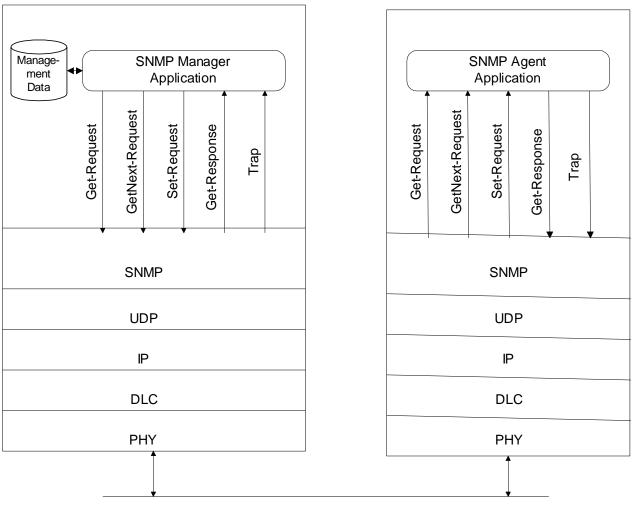
Notes


• Any host that could query an agent is a manager

Three-Tier Organization Model: RMON

- Managed object comprises network element and management agent
- RMON acts as an agent and a manager
- RMON (Remote Monitoring) gathers data from MO, analyses the data, and stores the data
- Communicates the statistics to the manager

Three-Tier Organization Model: Proxy Server


Notes

 Proxy server converts non-SNMP data from non-SNMP objects to SNMP compatible objects and messages

System Architecture

SNMP Manager

SNMP Agent

Physical Medium

- Messages between manager and agent
- Direction of messages 3 from manager and 2 from agent

SNMP Messages

- Get-Request
 - Sent by manager requesting data from agent
- Get-Next-Request
 - Sent by manager requesting data on the next MO to the one specified
- Set-Request
 - Initializes or changes the value of network element
- Get-Response
 - Agent responds with data for get and set requests from the manager
- Trap
 - Alarm generated by an agent

Information

- Structure of Management Information (SMI) (RFC 1155)
- Managed Object
 - Scalar
 - Aggregate or tabular object
- Management Information Base (RFC 1213)

Notes

RFCs can be downloaded from ftp.internic.net/rfc

Managed Object

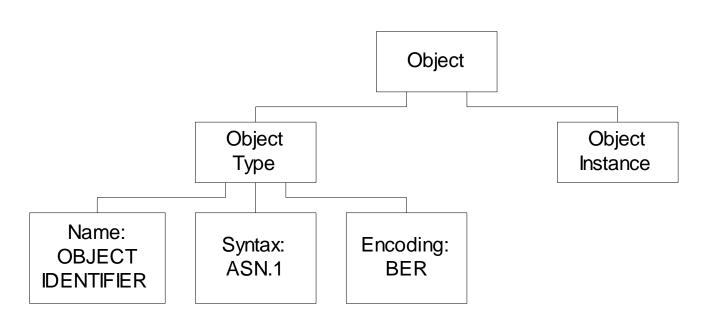


Figure 4.10 Managed Object : Type and Instance

- Object type and data type are synonymous
- Object identifier is data type, not instance
- Object instance IP address (See Figure 4.2)

Managed Object: Multiple Instances

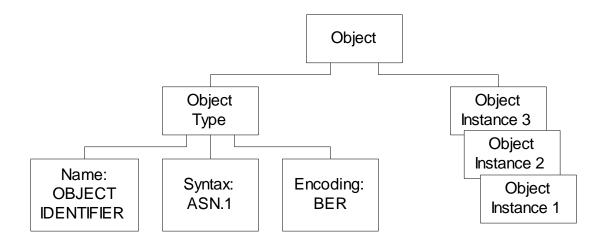


Figure 4.11 Managed Object : Type with Multiple Instances

- All 3 Com hubs of the same version have identical identifier; they are distinguished by the IP address
- Each IP address is an instance of the object

Name

Uniquely defined by

- DESCRIPTOR AND
- OBJECT IDENTIFIER

internet OBJECT IDENTIFIER ::= {iso org(3) dod(6) 1 }.

internet OBJECT IDENTIFIER ::= {iso(1) standard(3) dod(6) internet(1)}
internet OBJECT IDENTIFIER ::= {1 3 6 1}
internet OBJECT IDENTIFIER ::= {iso standard dod internet }
internet OBJECT IDENTIFIER ::= { iso standard dod(6) internet(1) }
internet OBJECT IDENTIFIER ::= { iso(1) standard(3) 6 1 }

Notes

Example

ipAddrTable ip 20

Internet Subnodes

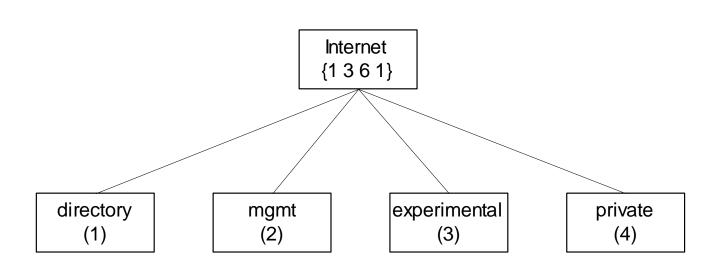


Figure 4.13 Subnodes under Internet Node in SNMPv1

 directory 	OBJECT IDENTIFIER ::= {internet 1}
mgmt	OBJECT IDENTIFIER ::= {internet 2}
experimental	OBJECT IDENTIFIER ::= {internet 3}
private	OBJECT IDENTIFIER ::= {internet 4}

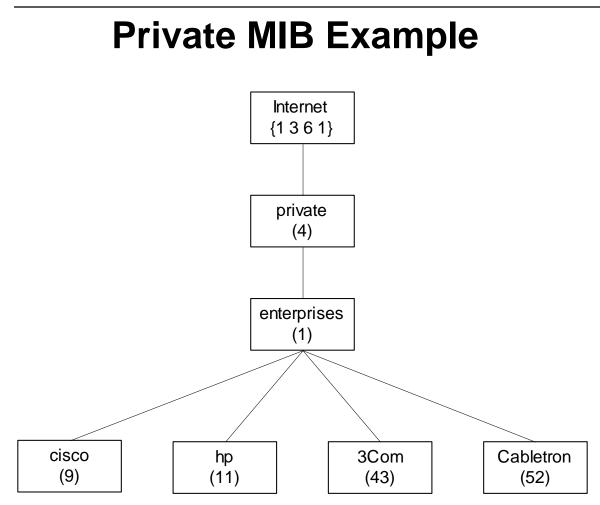
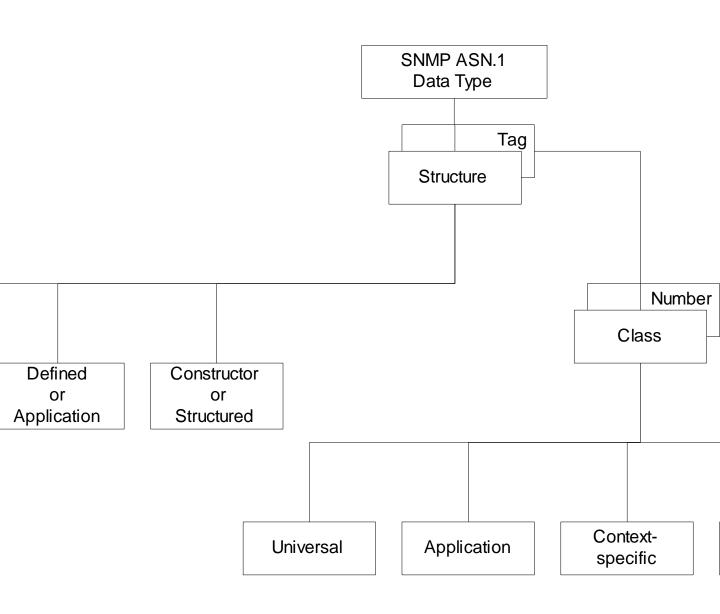



Figure 4.14 Private Subtree for Commercial Vendors

- private MIB intended for vendor equipment
- IANA (Internet Assigned Numbers Authority) assigns identifiers

SNMP ASN.1 Data Type

Figure 4.15 SNMP ASN.1 Data Type

Primitive Data Types

Structure	Data Type	Comments
Primitive types	INTEGER	Subtype INTEGER (n1nN)
		Special case: Enumerated
		INTEGER type
	OCTET STRING	8-bit bytes binary and textual data
		Subtypes can be specified by
		either range or fixed
	OBJECT IDENTIFIER	Object position in MIB
	NULL	Placeholder

- get-request message has NULL for value fields and get-response from agent has the values filled in
- subtype:
 - INTEGER (0..255)
 - OCTET STRING (SIZE 0..255)
 - OCTET STRING (SIZE 8)

Enumerated

• Special case of INTEGER data type

Notes

noError NULL by convention

Defined or Application Data Type

Defined types	NetworkAddress	Not used
	IpAddress	Dotted decimal IP address
	Counter	Wrap-around, non-negative integer, monotonically increasing, max 2^32 -1
	Gauge	Capped, non-negative integer, increase or decrease
	TimeTicks	Non-negative integer in hundredths of second units
	Opaque	Application-wide arbitrary ASN.1 syntax, double wrapped OCTET STRING

- Defined data types are simple or base types
- Opaque is used to create data types based on previously defined data types

Constructor or Structured Data Type: SEQUENCE

List maker

SEQUENCE { <type1>, <type2>,..., <typeN> }

	Object	OBJECT IDENTIFIER	ObjectSyntax
1	ipAdEntAddr	{ipAddrEntry 1}	IpAddress
2	ipAdEntIfIndex	{ipAddrEntry 2}	INTEGER
3	ipAdEntNetMask	{ipAddrEntry 3}	IpAddress
4	ipAdEntBcastAddr	{ipAddrEntry 4}	INTEGER
5	ipAdEntReasmMaxSize	{ipAddrEntry 5}	INTEGER
6	ipAddrEntry	{ipAddrTable 1}	SEQUENCE

IpAddrEntry ::=		
SEQUENCE {		
ipAdEntAddr	IpAddress	
ipAdEntIfIndex	INTEGER	
ipAdEntNetMask	IpAddress	
ipAdEntBcastAddr	INTEGER	
ipAdEntReasmMaxSize	INTEGER (065535)	
}		
Managed Object IpAd	drEntry as a list	
	SEQUENCE { ipAdEntAddr ipAdEntIfIndex ipAdEntNetMask ipAdEntBcastAddr ipAdEntReasmMaxSize }	SEQUENCE { ipAdEntAddr IpAddress ipAdEntIfIndex INTEGER ipAdEntNetMask IpAddress ipAdEntBcastAddr INTEGER

Constructor or Structured Data Type: SEQUENCE OF

SEQUENCE OF <entry>

where <entry> is a list constructor

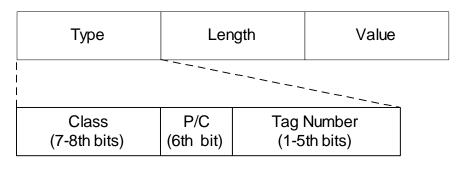
	Object Name	OBJECT IDENTIFIER	Syntax
7	ipAddrTable	{ip 20}	SEQUENCE OF

Table: IpAddrTable ::= SEQUENCE OF IpAddrEntry

Managed Object ipAddrTable as a table

SEQUENCE OF Example

Title: System Information : router1.gatech.edu Name or IP Address: 172.16252.1


Index	Interface	IP address	Network Mask	Network Address	Link Address
23	LEC.1.0	192.168.3.1	255.255.255.0	192.168.3.0	0x00000C3920B4
25	LEC.3.9	192.168.252.1	255.255.255.0	192.168.252.	0x00000C3920B4
		5		0	
13	Ethernet2/0	172.1646.1	255.255.255.0	172.1646.0	0x00000C3920AC
16	Ethernet2/3	172.16.49.1	255.255.255.0	172.16.49.0	0x00000C3920AF
17	Ethernet2/4	172.16.52.1	255.255.255.0	172.16.52.0	0x00000C3920B0
9	Ethernet1/2	172.16.55.1	255.255.255.0	172.16.55.0	0x00000C3920A6
2	Ethernet 0/1	172.16.56.1	255.255.255.0	172.16.56.0	0x00000C39209D
15	Ethernet2/2	172.16.57.1	255.255.255.0	172.16.57.0	0x00000C3920AE
8	Ethernet1/1	172.16.58.1	255.255.255.0	172.16.58.0	0x00000C3920A5
14	Ethernet2/1	172.16.60.1	255.255.255.0	172.16.60.0	0x00000C3920AD

Notes

• The above example (Figure 4.3) uses part of the IP MIB discussed for SEQUENCE OF construct

Encoding

- Basic Encoding Rules (BER)
 - Tag, Length, and Value (TLV)

 SNMP Data Types and Tags 	
Туре	Tag
OBJECT IDENTIFIER	UNIVERSAL 6
SEQUENCE	UNIVERSAL 16
IpAddress	APPLICATION 0
Counter	APPLICATION 1
Gauge	APPLICATION 2
TimeTicks	APPLICATION 3
Opaque	APPLICATION 4

Managed Object: Structure

OBJECT:

sysDescr:	{ system 1 }	
Syntax:	OCTET STRING	
Definition:	"A textual description of the entity. This value should include the full name and version identification of the system's hardware type, software operating-system, and networking software. It is mandatory that this only contain	
	printable ASCII characters."	
Access:	read-only	
Status:	mandatory	
_		

Figure 4.17 Specifications for System Description

Managed Object: Macro

```
OBJECT-TYPE MACRO ::=
BEGIN
TYPE NOTATION ::= "SYNTAX" type(TYPE ObjectSyntax)
"ACCESS" Access
"STATUS" Status
VALUE NOTATION ::= value(VALUE ObjectName)
Access ::= "read-only" | "write-only" | "not-accessible"
Status ::= "mandatory" | "optional" | "obsolete"
```

END

Figure 4.18(a) OBJECT-TYPE Macro [RFC 1155]

Notes

sysDescr OBJECT-TYPE SYNTAX DisplayString (SIZE (0..255)) ACCESS read-only STATUS mandatory DESCRIPTION "A textual description of the entity. This value should include the full name and version identification of the system's hardware type, software operating-system, and networking software. It is mandatory that this only contain printable ASCII characters."

::= {system 1 }

Figure 4.18(b) Scalar or Single Instance Macro: sysDescr

[RFC 1213]

Aggregate Object

- A group of objects
- Also called tabular objects
- Can be represented by a table with
 - Columns of objects
 - Rows of instances

Table of Objects List of Objects

Objects

- Example: IP address table
- Consists of objects:
 - IP address
 - Interface
 - Subnet mask (which subnet this address belongs to)
 - Broadcast address (value of l.s.b. in IP broadcast address)
 - Largest IP datagram that can be assembled
- Multiple instances of these objects associated with the node

Aggregate M.O. Macro: Table Object

ipAddrTable OBJECT-TYPE SYNTAX SEQUENCE OF IpAddrEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The table of addressing information relevant to this entity's IP addresses." ::= {ip 20}

Notes

ipAddrTable OBJECT-TYPE ::= {ip 20} ipAddrEntry OBJECT-TYPE ::= {ipAddrTable 1}

Aggregate M.O. Macro: Entry Object

ipAddrEntry OBJECT-TYPE SYNTAX IpAddrEntry ACCESS not-accessible STATUS mandatory DESCRIPTION

"The addressing information for one of this entity's IP addresses."

INDEX { ipAdEntAddr } ::= { ipAddrTable 1 }

IpAddrEntry ::= SEQUENCE { ipAdEntAddr IpAddress, ipAdEntIfIndex INTEGER, ipAdEntNetMask IpAddress, ipAdEntBcastAddr INTEGER, ipAdEntReasmMaxSize INTEGER (0..65535)

- Index ipAdEntAddr uniquely identifies an instance
- May require more than one object in the instance to uniquely identify it

Aggregate M.O. Macro: Columnar Objects

ipAdEntAddr OBJECT-TYPE

SYNTAX IpAddress ACCESS read-only STATUS mandatory DESCRIPTION "The IP address to which this entry's addressing information pertains."

::= { ipAddrEntry 1 }

ipAdEntReasmMaxSize OBJECT-TYPE
 SYNTAX INTEGER (0..65535)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The size of the largest IP datagram which this
 entity can re-assemble from incoming IP
 fragmented datagrams received on this interface."
::= { ipAddrEntry 5 }

Tabular Representation of Aggregate Object

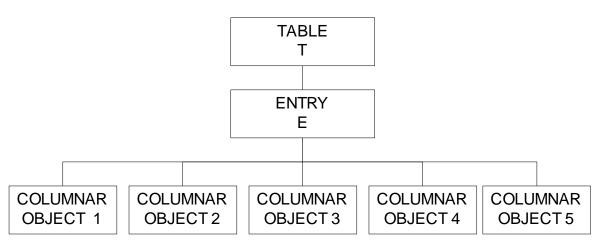


Figure 4.22(a) Multiple Instance Managed Object

- The objects *TABLE T* and *ENTRY E* are objects that are logical objects. They define the grouping and are not accessible
- Columnar objects are objects that represent the attributes and hence are accessible
- Each instance of *E* is a row of columnar objects
 1 through 5
- Multiple instances of E are represented by multiple rows

Tabular Representation of Aggregate Object

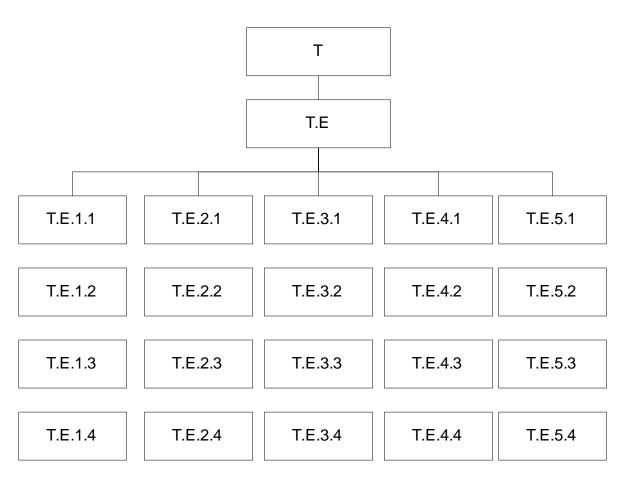


Figure 4.22(b) Example of 5 Columnar Object with 4 Instances (rows)

Notes

• Notice that the column-row numeric designation is reverse of what we are used to as row-column

Multiple Instances of Aggregate Managed Object

ipAddrTable {1.3.6.1.2.1.4.20} ipAddrEntry (1)

ipAdEntAddr (1) ipAdEntIfIndex (2) ipAdEntNetMask (3) ipAdEntBcastAddr (4) ipAdEntReasmMaxSize (5)

Columnar object ID of ipAdEntBcastAddr is (1.3.6.1.2.1.4.20.1.4):

iso org dod internet mgmt mib ip ipAddrTable ipAddrEntry ipAdEntBcastAddr 1 3 6 1 2 1 4 20 1 4 Figure 4.23(a) Columnar objects under ipAddrEntry

Row	ipAdEntAddr	ipAdEntIfIndex	IpAdEntNetMask	IpAdEntBcastAddr	IpAdEntReasmMaxSize
1	123.45.2.1	1	255.255.255.0	0	12000
2	123.45.3.4	3	255.255.0.0	1	12000
3	165.8.9.25	2	255.255.255.0	0	10000
4	9.96.8.138	4	255.255.255.0	0	15000

Figure 4.23(b) Object instances of ipAddrTable (1.3.6.1.2.1.4.20)

Columnar Object	Row # in (b)	Object Identifier
ipAdEntAddr 1.3.6.1.2.1.4.20.1.1	2	{1.3.6.1.2.1.4.20.1.1.123.45.3.4}
ipAdEntIfIndex 1.3.6.1.2.1.4.20.1.2	3	{1.3.6.1.2.1.4.20.1.2.165.8.9.25}
ipAdEntBcastAddr 1.3.6.1.2.1.4.20.1.4	1	{1.3.6.1.2.1.4.20.1.4.123.45.2.1}
IpAdEntReasmMaxSize 1.3.6.1.2.1.4.20.1.5	4	{1.3.6.1.2.1.4.20.1.5.9.96.8.138}

Figure 4.23(c) Object Id for specific instance

RFC1155-SMI DEFINITIONS ::= BEGIN

```
EXPORTS -- EVERYTHING
```

internet, directory, mgmt, experimental, private, enterprises, OBJECT-TYPE, ObjectName, ObjectSyntax, SimpleSyntax, ApplicationSyntax, NetworkAddress, IpAddress, Counter, Gauge, TimeTicks, Opaque;

-- the path to the root

```
internet OBJECT IDENTIFIER ::= { iso org(3) dod(6) 1 }
```

directory OBJECT IDENTIFIER ::= { internet 1 }
mgmt OBJECT IDENTIFIER ::= { internet 2 }
experimental OBJECT IDENTIFIER ::= { internet 3 }
private OBJECT IDENTIFIER ::= { internet 4 }

```
enterprises OBJECT IDENTIFIER ::= { private 1 }
```

Notes

 EXPORTS identifies the objects that any other module could import

-- definition of object types

```
OBJECT-TYPE MACRO ::=
BEGIN
TYPE NOTATION ::= "SYNTAX" type (TYPE ObjectSyntax)
"ACCESS" Access
"STATUS" Status
VALUE NOTATION ::= value (VALUE ObjectName)
Access ::= "read-only" | "read-write" | "write-only" "not-accessible"
Status ::= "mandatory" | "optional" | "obsolete"
END
```

-- names of objects in the MIB

ObjectName ::= OBJECT IDENTIFIER

-- syntax of objects in the MIB

ObjectSyntax ::= CHOICE { simple SimpleSyntax,

}

application-wide ApplicationSyntax

SimpleSyntax ::= CHOICE { number INTEGER, string OCTET STRING, object OBJECT IDENTIFIER, empty NULL }

ApplicationSyntax ::= CHOICE { address NetworkAddress, counter Counter, gauge Gauge, ticks TimeTicks, arbitrary Opaque -- other application-wide types, as they are defined, will be added here }

-- application-wide types NetworkAddress ::= CHOICE { internet **IpAddress** } IpAddress ::= [APPLICATION 0] -- in network-byte order **IMPLICIT OCTET STRING (SIZE (4))** Counter ::= [APPLICATION 1] IMPLICIT INTEGER (0..4294967295) Gauge ::= [APPLICATION 2] IMPLICIT INTEGER (0..4294967295) TimeTicks ::= [APPLICATION 3] **IMPLICIT INTEGER (0..4294967295)** Opaque ::= [APPLICATION 4] -- arbitrary ASN.1 value, IMPLICIT OCTET STRING -- "double-wrapped"

END

MIB

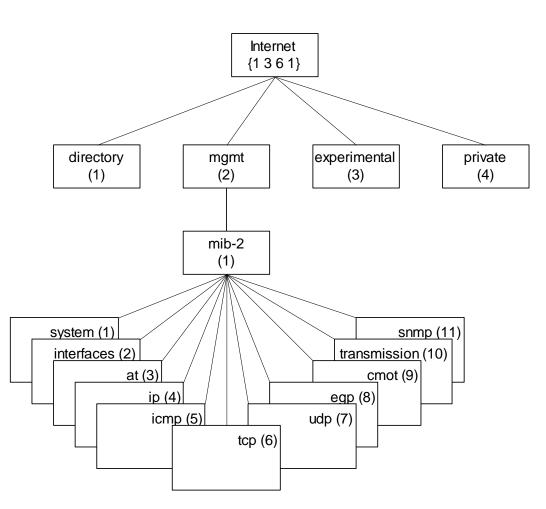


Figure 4.26 Internet MIB-II Group

- MIB-II (RFC 1213) is superset of MIB-I
- Objects that are related grouped into object groups
- MIB module comprises module name, imports from other modules, and definitions of current module
- RFC 1213 defines eleven groups; expanded later

System Group

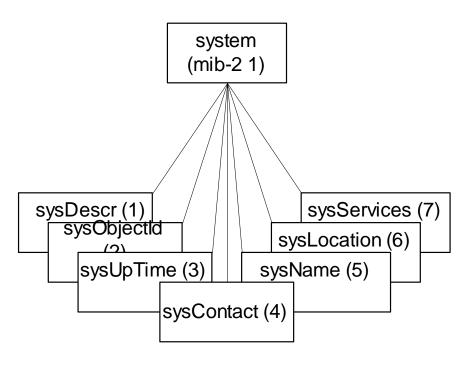


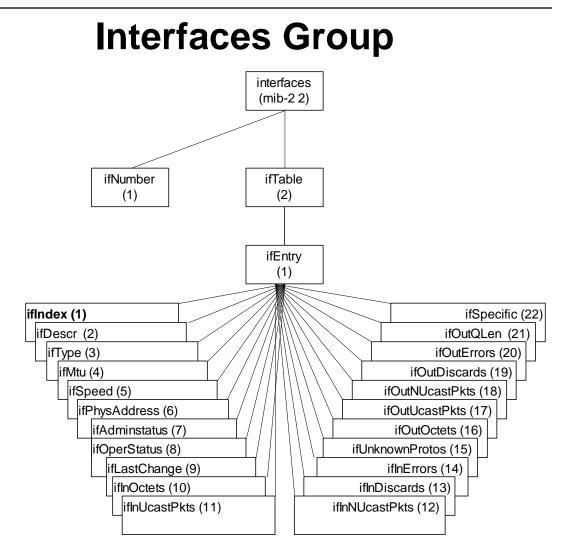
Figure 4.27 System Group

Entity	OID	Description (brief)
sysDescr	system 1	Textual description
sysObjectID	system 2	OBJECT IDENTIFIER of the entity
sysUpTime	system 3	Time (in hundredths of a second since last reset)
sysContact	system 4	Contact person for the node
sysName	system 5	Administrative name of the system
sysLocation	system 6	Physical location of the node
sysServices	system 7	Value designating the layer services provided by the entity

sysServices

sysServices OBJECT-TYPE SYNTAX INTEGER (0..127) ACCESS read-only STATUS mandatory DESCRIPTION

"A value which indicates the set of services that this entity primarily offers.


The value is a sum. This sum initially takes the value zero, Then, for each layer, L, in the range 1 through 7, that this node performs transactions for, 2 raised to (L - 1) is added to the sum. For example, a node which performs primarily routing functions would have a value of 4 ($2^{(3-1)}$). In contrast, a node which is a host offering application services would have a value of 72 ($2^{(4-1)} + 2^{(7-1)}$). Note that in the context of the Internet suite of protocols, values should be calculated accordingly:

layer functionality

- 1 physical (e.g., repeaters)
- 2 datalink/subnetwork (e.g., bridges)
- 3 internet (e.g., IP gateways)
- 4 end-to-end (e.g., IP hosts)
- 7 applications (e.g., mail relays)

For systems including OSI protocols, layers 5 and 6 may also be counted."

::= { system 7 }

Legend: INDEX in bold

Figure 4.28 Interfaces Group

ifEntry

IfEntry OBJECT-TYPE SYNTAX IfEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "An interface entry containing objects at the subnetwork layer and below for a particular interface." INDEX {ifIndex} ::= {ifTable 1}

- ifEntry specifies the objects in a row in the ifTable
- Each interface is defined as a row in the table

ifType

ifType OBJECT-TYPE SYNTAX INTEGER { -- none of the following other(1), regular1822(2), hdh1822(3), ddn-x25(4), rfc877-x25(5), ethernet-csmacd(6), iso88023-csmacd(7), iso88024-tokenBus(8), iso88025-tokenRing(9), iso88026-man(10), starLan(11), proteon-10Mbit(12), proteon-80Mbit(13), hyperchannel(14), fddi(15), lapb(16), sdlc(17), -- T-1 ds1(18), e1(19), -- european equiv. of T-1 basicISDN(20), primaryISDN(21), -- proprietary serial propPointToPointSerial(22), ppp(23),

Notes

 Type of interface below the network layer defined as enumerated integer

.

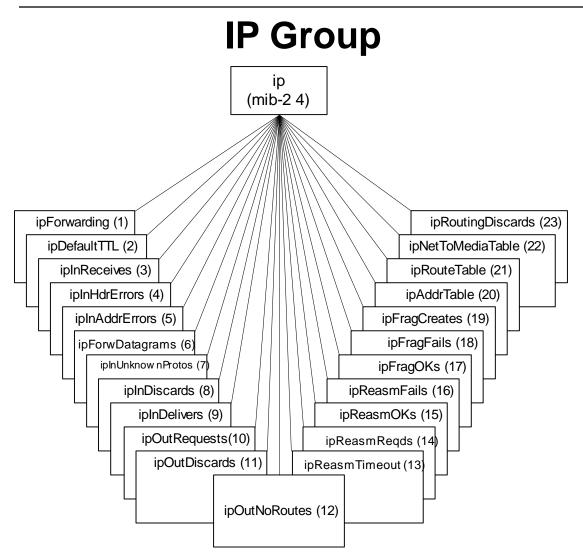
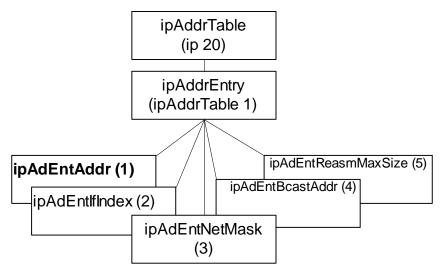



Figure 4.29 IP Group

- ipForwarding: Gateway(1) and Router(2)
- IP Address Table contains table of IP addresses
- IP Route Table contains an entry for each route
- IP Network-to-Media Table is address translation table mapping IP addresses to physical addresses

IP Address Table

Legend: INDEX in bold

Figure 4.30 IP Address Table

Entity	OID	Description (brief)		
ipAddrTable	ip 20	Table of IP addresses		
ipAddrEntry	IpAddrTable 1	One of the entries in the IP address table		
ipAdEntAddr	IpAddrEntry 1	The IP address to which this entry's addressing information pertains		
ipAdEntIfIndex	IpAddrEntry 2	Index value of the entry, same as ifIndex		
ipAdEntNetMask	IpAddrEntry 3	Subnet mask for the IP address of the entry		
ipAdEntBcastAddr	IpAddrEntry 4	Broadcast address indicator bit		
ipAdEntReasmMaxSize	IpAddrEntry 5	Largest IP datagram that can be reassembled on this interface		

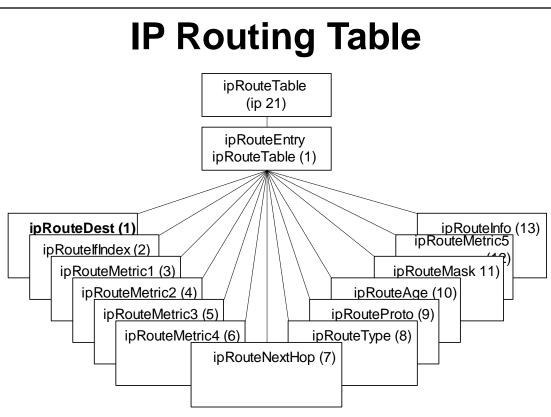


Figure 4.31 IP Routing Table

Entity	OID	Description (brief)				
ipRouteTable	ip 21	IP routing table				
ipRouteEntry	ipRouteTable 1	Route to a particular destination				
ipRouteDest	ipRouteEntry 1	Destination IP address of this route				
ipRoutelfIndex	ipRouteEntry 2	Index of interface, same as ifIndex				
ipRouteMetric1	ipRouteEntry 3	Primary routing metric for this route				
ipRouteMetric2	ipRouteEntry 4	An alternative routing metric for this route				
ipRouteMetric3	ipRouteEntry 5	An alternative routing metric for this route				
ipRouteMetric4	ipRouteEntry 6	An alternative routing metric for this route				
ipRouteNextHop	ipRouteEntry 7	IP address of the next hop				
ipRouteType	ipRouteEntry 8	Type of route				
ipRouteProto	ipRouteEntry 9	Routing mechanism by which this route was learned				
ipRouteAge	ipRouteEntry 10	Number of seconds since routing was last updated				
ipRouteMask	ipRouteEntry 11	Mask to be logically ANDed with the destination address before comparing with the ipRouteDest field				
ipRouteMetric5	ipRouteEntry 12	An alternative metric for this route				
ipRouteInfo	ipRouteEntry 13	Reference to MIB definition specific to the routing protocol				

IP Address Translation Table

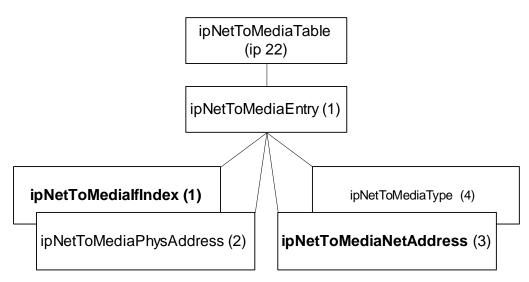
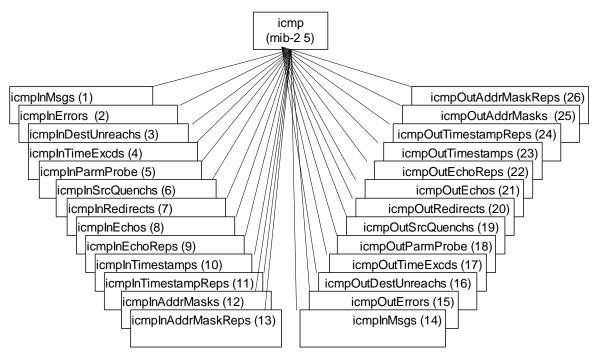



Figure 4.32 IP Address Translation Table

Entity	OID	Description (brief)		
ipNetToMediaTable	ip 22	Table mapping IP addresses to		
		physical addresses		
ipNetToMediaEntry	IpNetToMediaTable 1	IP address to physical address		
		for the particular interface		
ipNetToMedialfIndex	IpNetToMediaEntry 1	Interfaces on which this entry's		
		equivalence is effective; same		
		as ifIndex		
ipNetToMediaPhysAddress	IpNetToMediaEntry 2	Media dependent physical		
		address		
ipNetToMediaNetAddress	IpNetToMediaEntry 3	IP address		
ipNetToMediaType	IpNetToMediaEntry 4	Type of mapping		

ICMP Group

- Objects associated with ping
 - icmpOutEchos # ICMP echo messages sent
 - icmpInEchoReps # ICMP echo reply messages
 - received
- Objects associated with *traceroute/tracert*
 - icmpInTimeExcs # ICMP time exceeded messages received

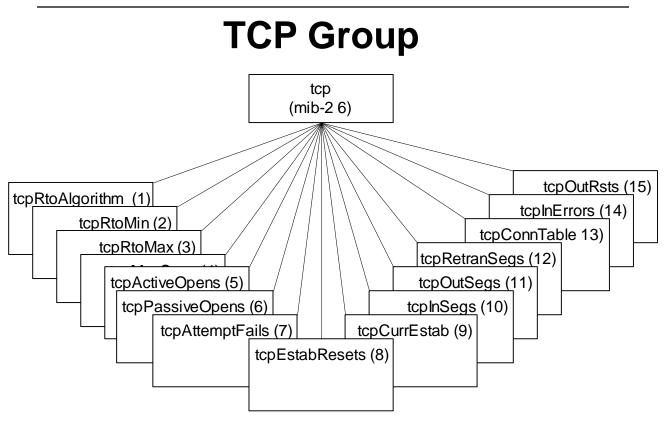


Figure 4.35 TCP Group

- Connection-oriented transport protocol group
- Has one table

TCP Connection Table

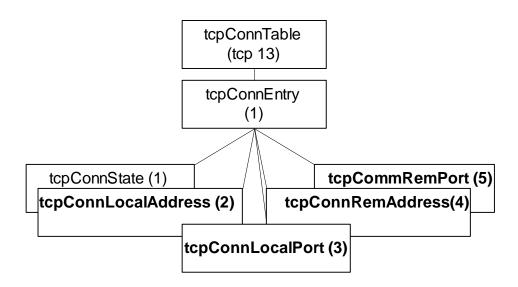
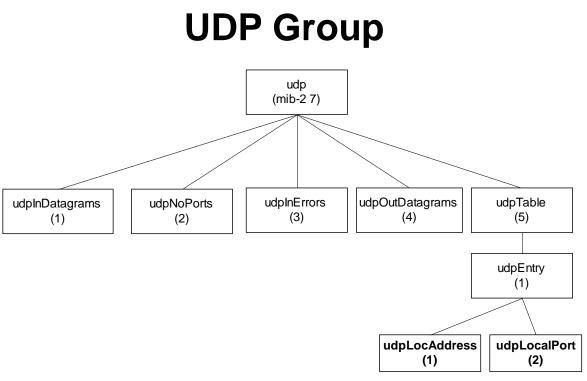



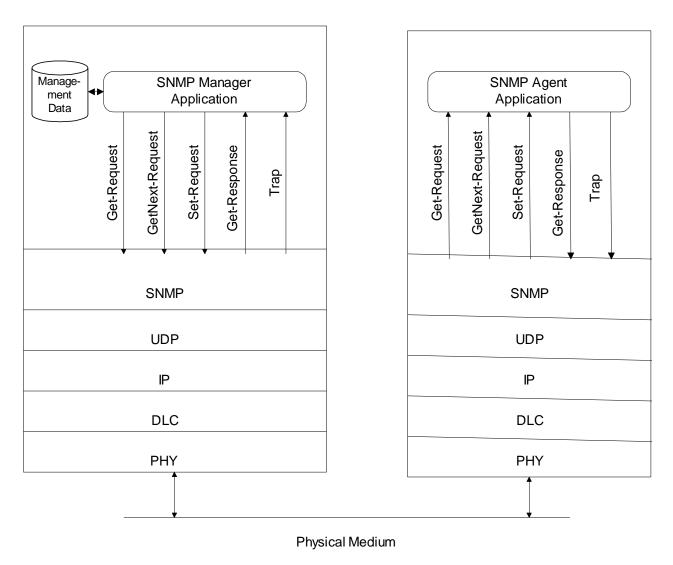
Figure 4.36 TCP Connection Table

Entity	OID	Description (brief)			
tcpConnTable	tcp 13	TCO connection table			
tcpconnEntry	TcpConnTable 1	Information about a particular TCP connection			
tcpConnState	TcpConnEntry 1	State of the TCP connection			
tcpConnLocalAddress	TcpConnEntry 2	Local IP address			
tcpConnLocalPort	TcpConnEntry 3	Local port number			
tcpConnRemAddress	TcpConnEntry 4	Remote IP address			
tcpConnRemPort	TcpConnEntry 5	Remote port number			

Figure 4.37 UDP Group

- Connectionless transport protocol group
- Has one table, UDP table

Entity	OID	Description (brief)			
udpInDatagrams udp 1		Total number of datagrams delivered to the			
		users			
udpNoPorts	udp 2	Total number of received datagrams for			
		which there is no application			
udpInErrors	udp 3	Number of received datagrams with errors			
udpOutDatagrams	udp 4	Total number of datagrams sent			
udpTable	udp 5	UDP Listener table			
udpEntry	udpTable 1	Information about a particular connection or			
		UDP listener			
udpLocalAddress	udpEntry 1	Local IP address			
udpLocalPort	udpEntry 2	Local UDP port			


Chapter 5 SNMPv1:

Communication and Functional Models

SNMP Architecture

SNMP Manager

SNMP Agent

- Truly simple network management protocol
- Five messages, three from manager and two from agent

SNMP Messages

- Get-Request
- Get-Next-Request
- Set-Request
- Get-Response
- Trap
 - Generic trap
 - Specific trap
 - Time stamp

- Generic trap
 - coldStart
 - warmStart
 - linkDown
 - linkUp
 - authenticationfailure
 - egpNeighborLoss
 - enterpriseSpecific
- Specific trap
 - for special measurements such as statistics
- Time stamp: Time since last initialization

Administrative Model

- Based on community profile and policy
- SNMP Entities:
 - SNMP application entities
 - Reside in management stations and network elements
 - Manager and agent
 - SNMP protocol entities
 - Communication processes (PDU handlers)
 - Peer processes that support application entities

SNMP Community

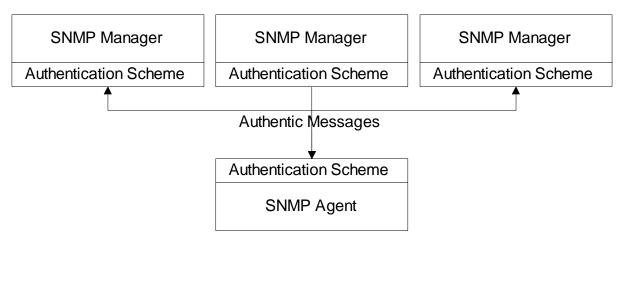
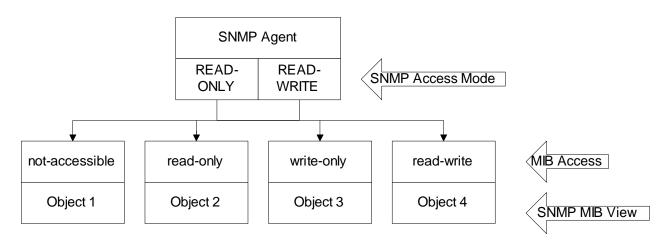



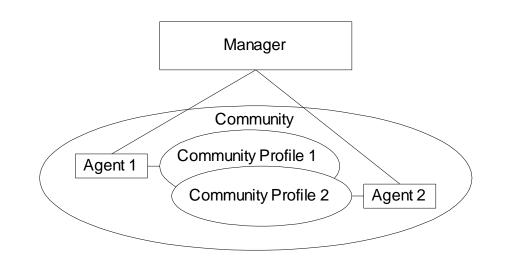
Figure 5.1 SNMP Community

- Security in SNMPv1 is community-based
- Authentication scheme in manager and agent
- Community: Pairing of two application entities
- Community name: String of octets
- Two applications in the same community communicate with each other
- Application could have multiple community names
- Communication is not secured in SNMPv1 no encryption

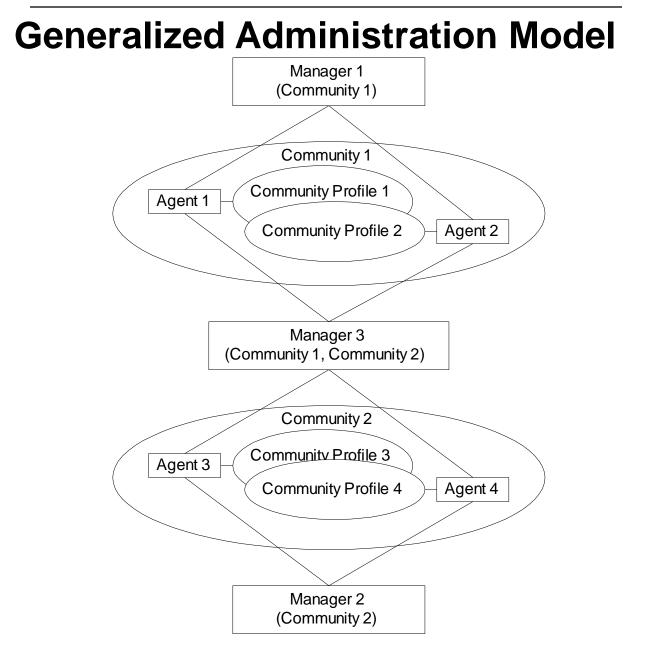
Community Profile

- MIB view
 - An agent is programmed to view only a subset of managed objects of a network element
- Access mode
 - Each community name is assigned an access mode:: read-only and read-write
- Community profile: MIB view + access mode
- Operations on an object determined by community profile and the access mode of the object
- Total of four access privileges
- Some objects, such as table and table entry are non-accessible

Administration Model

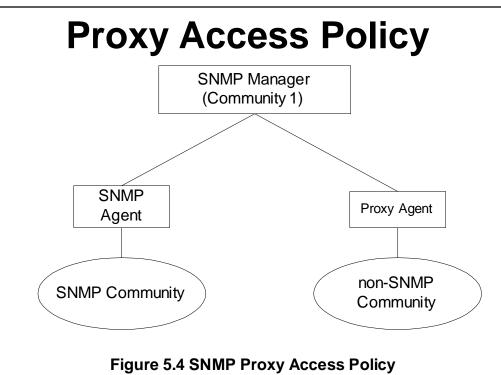

- Administration model is SNMP access policy
- SNMP community paired with SNMP community profile is SNMP access policy

Notes

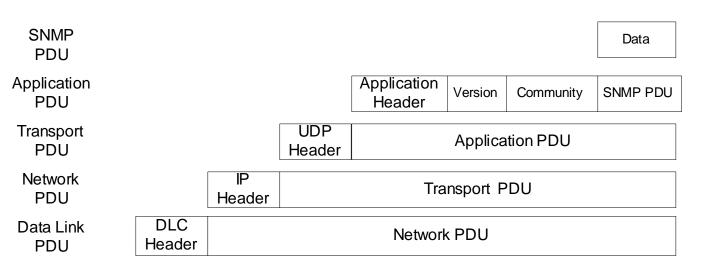

Parameters:

- Community / communities
- Agent / Agents
- Manager / managers

Access Policy



- Manager manages Community 1 and 2 network components via Agents 1 and 2
- Agent 1 has only view of Community Profile 1, e.g. Cisco components
- Agent 2 has only view of Community Profile 2, e.g. 3Com components
- Manager has total view of both Cisco and 3Com components


Figure 5.3 SNMP Access Policy

Notes
Manager 1 manages community 1, manager 2 community 2,and manager 3 (MoM) both communities 1 and 2

- Proxy agent enables non-SNMP community elements to be managed by an SNMP manager.
- An SNMP MIB is created to handle the non-SNMP objects

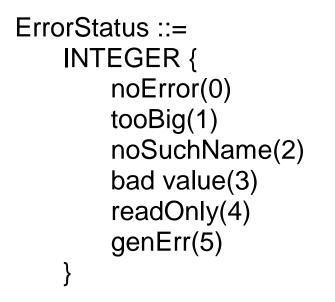
Protocol Entities

Figure 5.5 Encapsulated SNMP Message

- Protocol entities support application entities
- Communication between remote peer processes
- Message consists of
 - Version identifier
 - Community name
 - Protocol Data Unit
- Message encapsulated and transmitted

Get and Set PDU

PDU	Error	Error	VarBind 1	VarBind 1	 VarBind n	VarBind n
Type RequestID	Status	Index	name	value	name	value


Figure 5.8 Get and Set Type PDUs

Notes

• VarBindList: multiple instances of VarBind pairs

```
PDUs ::=
          CHOICE {
               get-request
                                  GetRequest-PDU,
                                  GetNextRequest-PDU,
               get-next-request
                                  GetResponse-PDU,
               get-response
                                  SetRequest-PDU,
               set-request
                             Trap-PDU
               trap
PDU Types: enumerated INTEGER
                           [0]
         get-request
                           [1]
         get-next-request
                           [2]
         set-request
                           [3]
         get-response
                           [4]
         trap
```

Error in Response

Error Index: No. of VarBind that the first error occurred

Trap PDU

PDU Type	Enterprise	Agent Address	Generic Trap Type	Specific Trap Type	Timestamp	VarBind 1 name	VarBind 1 value		VarBind n name	VarBind n value
-------------	------------	------------------	----------------------	-----------------------	-----------	-------------------	--------------------	--	-------------------	--------------------

Generic Trap Type	Description (brief)
coldStart(0)	Sending protocol entity is reinitializing itself;
	agent's configuration or protocol entity
	implementation may be altered
warmStart(1)	Sending protocol entity is reinitializing itself;
	agent configuration or protocol entity
	implementation not altered
linkDown(2)	Failure of one of the communication links
linkUp(3)	One of the links has come up
authenticationFailure(4)	Authentication failure
egpNeighborLoss(5)	Loss of EGP neighbor
enterpriseSpecific(6)	Enterprise-specific trap

- Enterprise and agent address pertain to the system generating the trap
- Seven generic traps specified by enumerated INTEGER
- Specific trap is a trap not covered by enterprise specific trap
- time stamp indicates elapsed time since last reinitialization

SNMP Operations

GetRequest (sysDescr.0)
etResponse (sysDescr .0= "SunOS")
GetRequest (sysObjectID.0)
GetResponse (sysObjectID.0=enterprises.11.2.3.10.1.2)
GetRequest (sysUpTime.0)
esponse (sysUpTime.0=2247349530)
GetRequest (sysContact.0)
GetResponse (sysContact.0=" ")
GetRequest (sysName.0)
etResponse (sysName.0="noc1 ")
GetRequest (sysLocation.0)
GetResponse (sysLocation.0=" ")
GetRequest (sysServices.0)
GetResponse (sysServices.0=72)

Figure 5.10 Get-Request Operation for System Group

MIB for Get-Next-Request

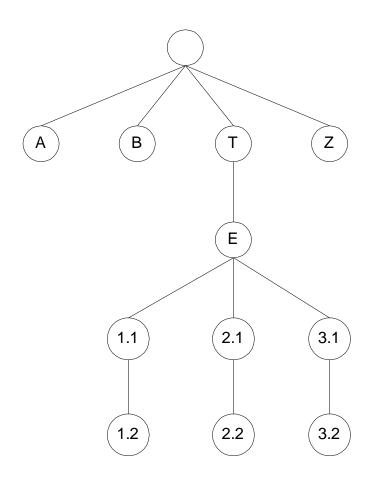
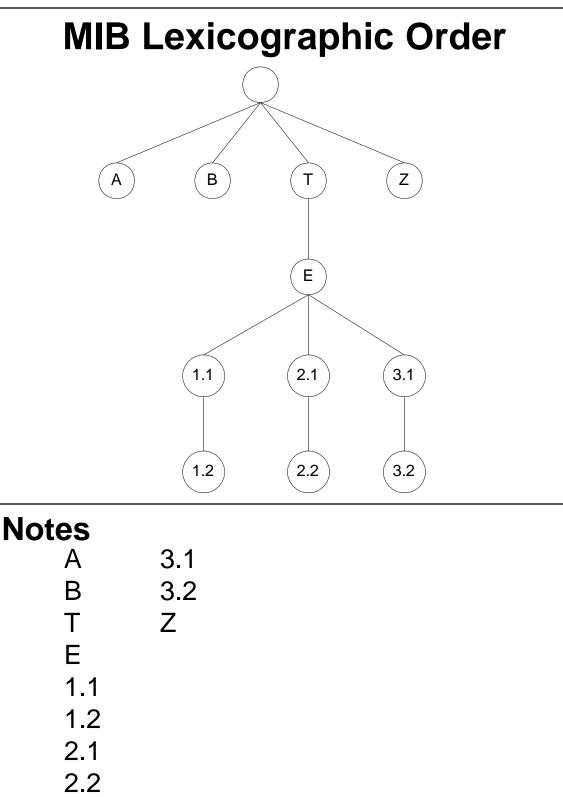



Figure 5.12 MIB for Operation Sequences in Figures 5.13 and 5.15

Le	xico	gra	phic	Order	

Lexicographic order
1
1118
115
126
15
2
22
250
2509
3
321
34
9

- Procedure for ordering:
 - Start with leftmost digit as first position
 - Before increasing the order in the first position, select the lowest digit in the second position
 - Continue the process till the lowest digit in the last position is captured
 - Increase the order in the last position until all the digits in the last position are captured
 - Move back to the last but one position and repeat the process
 - Continue advancing to the first position until all the numbers are ordered
- Tree structure for the above process

A More Complex MIB Example

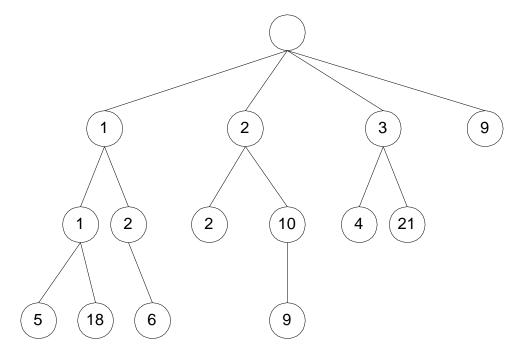
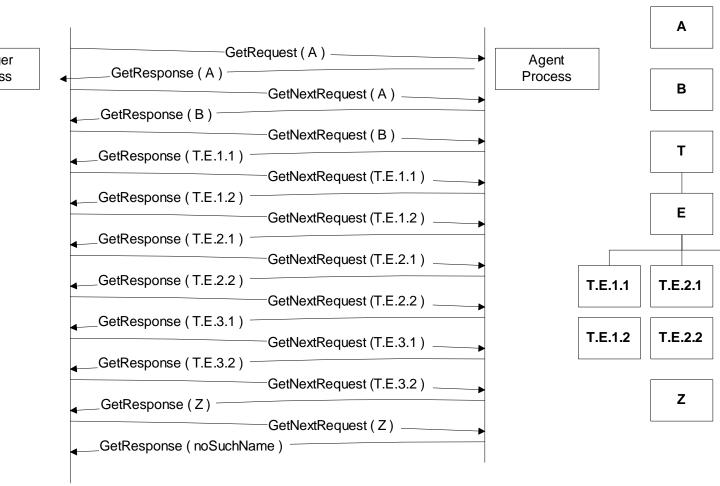



Figure 5.14 MIB Example for Lexicographic Ordering

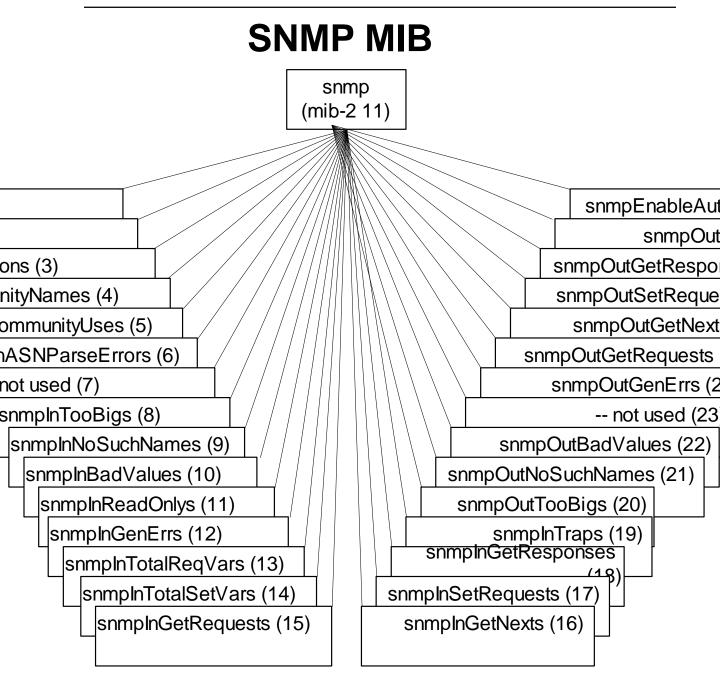
1
1.1
1.1.5
1.1.5 1.1.18
12
126
2
2.2
2.10
2.10.9
2 2.2 2.10 2.10.9 3 3.4 3.21 0
3.4
3.21
9

Get-Next-Request Operation

Get-Next-Request Operation



Figure 5.16 GetNextRequest Example with Indices


Sniffer Data

14:03:36.788270 noc3.btc.gatech.edu.164 > noc1.btc.gatech.edu.snmp: Community = public GetRequest(111) Request ID = 4 system.sysDescr.0 system.sysObjectID.0 system.sysUpTime.0 system.sysContact.0 system.sysName.0 system.sysLocation.0 system.sysServices.0

Figure 5.17(a) Get-Request Message from Manager-to-Agent

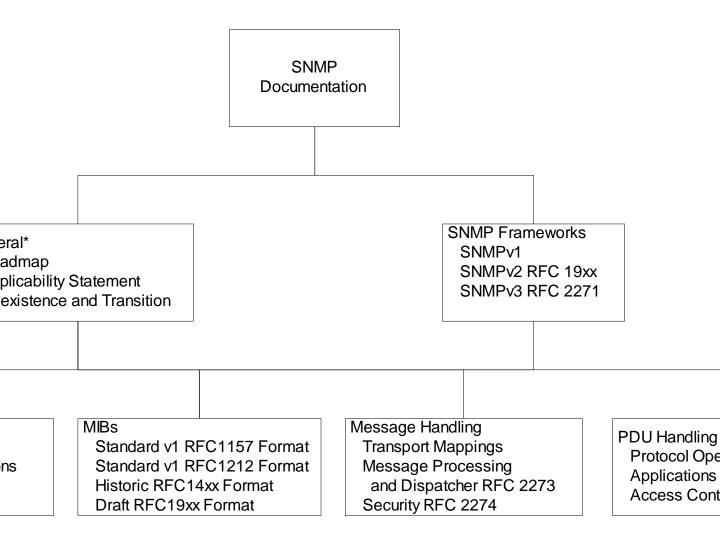
```
14:03:36.798269 noc1.btc.gatech.edu.snmp >
noc3.btc.gatech.edu.164:
Community = public
GetResponse(196)
Request ID = 4
system.sysDescr.0 = "SunOS noc1 5.5.1 Generic_103640-08
sun4u"
system.sysObjectID.0 = E:hp.2.3.10.1.2
system.sysObjectID.0 = E:hp.2.3.10.1.2
system.sysUpTime.0 = 247396453
system.sysContact.0 = "Brandon Rhodes"
system.sysName.0 = "noc1"
system.sysLocation.0 = "BTC NM Lab"
system.sysServices.0 = 72
```

Figure 5.17(b) Get-Response Message from Agent-to-Manager (After)

Figure 5.21 SNMP Group

Note: Most of the MIB objects were not used and hence deprecated in SNMPv2

Network Management: Principles and Practice © Mani Subramanian 2000


Chapter 7

SNMPv3

Key Features

- Modularization of document
- Modularization of architecture
- SNMP engine
- Security feature
 - Secure information
 - Access control

Documentation

uments FCs 1442, 1443, and 1444 FCs 1902, 1903, and 1904

Figure 7.1 SNMP Documentation (recommended in SNMPv3)

Compare this to the document organization in Chapter 4

Architecture

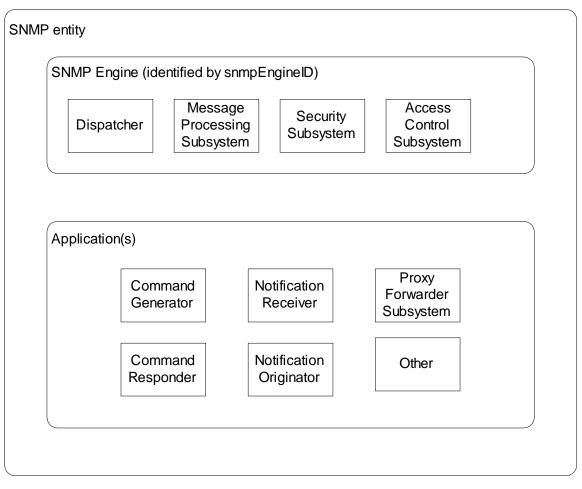


Figure 7.2 SNMPv3 Architecture

- SNMP entity is a node with an SNMP management element either an agent or manager or both
- Three names associated with an entity
 - Entities: SNMP engine
 - Identities: Principal and security name
 - Management Information: Context engine

SNMP Engine ID

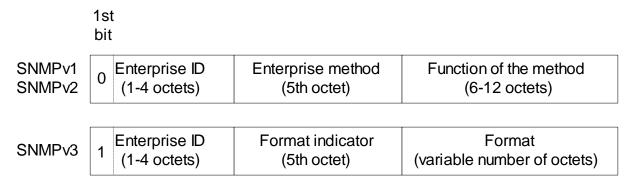


Figure 7.3 SNMP Engine ID

- Each SNMP engine has a unique ID: snmpEngineID
- Acme Networks {enterprises 696}
- SNMPv1 snmpEngineID '000002b8'H
- SNMPv3 snmpEngineID '800002b8'H (the 1st octet is 1000 0000)

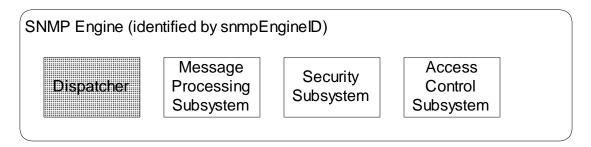
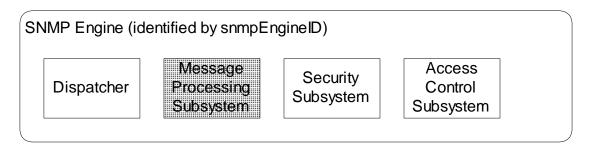

SNMPv3 Engine ID Format 5th Octet

Table 7.2 SNMPv3 Engine ID Format (5th octet)

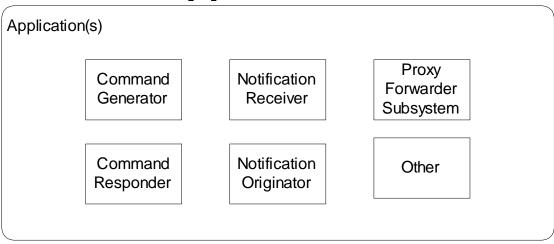
0	Reserved, unused	
1	IPv4 address (4 octets)	
2	IPv6 (16 octets)	
	Lowest non-special IP address	
3	MAC address (6 octets)	
	Lowest IEEE MAC address, canonical order	
4	Text, administratively assigned	
	Maximum remaining length 27	
5	Octets, administratively assigned	
	Maximum remaining length 27	
6-127	Reserved, unused	
128-255	As defined by the enterprises	
	Maximum remaining length 27	


- For SNMPv1 and SNMPv2:
 - Octet 5 is the method
 - Octet 6-12 is IP address
- Examples: IBM host IP address 10.10.10.10
 SNMPv1: 00 00 00 02 01 0A 0A 0A 0A 00 00 00
 SNMPv3: 10 00 00 02 02 00 00 00 00 00 00 00 0A 0A 0A 0A

Dispatcher

- One dispatcher in an SNMP engine
- Handles multiple version messages
- Interfaces with application modules, network, and message processing models
- Three components for three functions
 - Transport mapper delivers messages over the transport protocol
 - Message Dispatcher routes messages between network and appropriate module of MPS
 - PDU dispatcher handles messages between application and MSP

Message Processing Subsystem


- Contains one or more Message Processing Models
- One MPM for each SNMP version
- SNMP version identified in the header

Security and Access Control

- Security at the message level
 - Authentication
 - Privacy of message via secure communication
- Flexible access control
 - Who can access
 - What can be accessed
 - Flexible MIB views

Applications

Application	Example
 Command generator 	get-request
 Command responder 	get-response
 Notification receiver 	trap generation
 Notification receiver 	trap processing
 Proxy Forwarder 	get-bulk to get-next
(SNMP versions only)	
Other	Special application

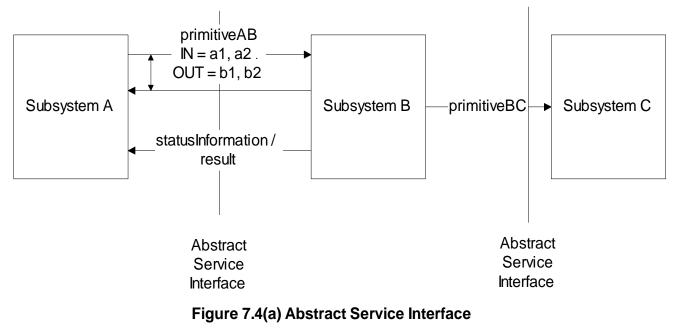
Names

- SNMP Engine ID
- Principal principal Who: person or group or application
- Security Name securityName human readable name
- Context Engine ID contextEngineID

snmpEngineID

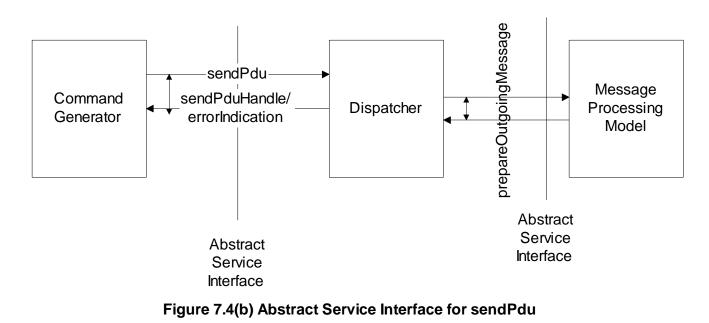
 Context Name contextName

Notes


 An SNMP agent can monitor more than one network element (context)

Examples: SNMP Engine ID IP address

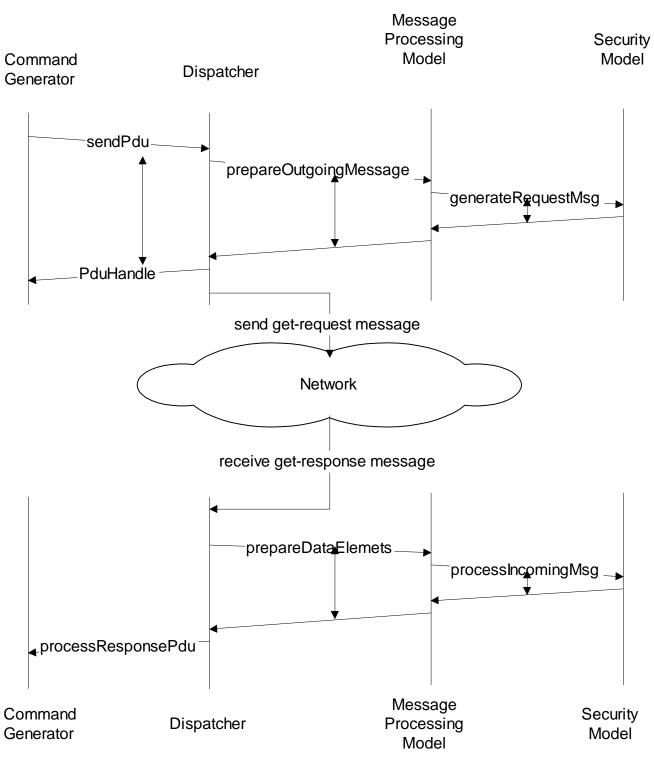
Principal John Smith Security Name Administrator

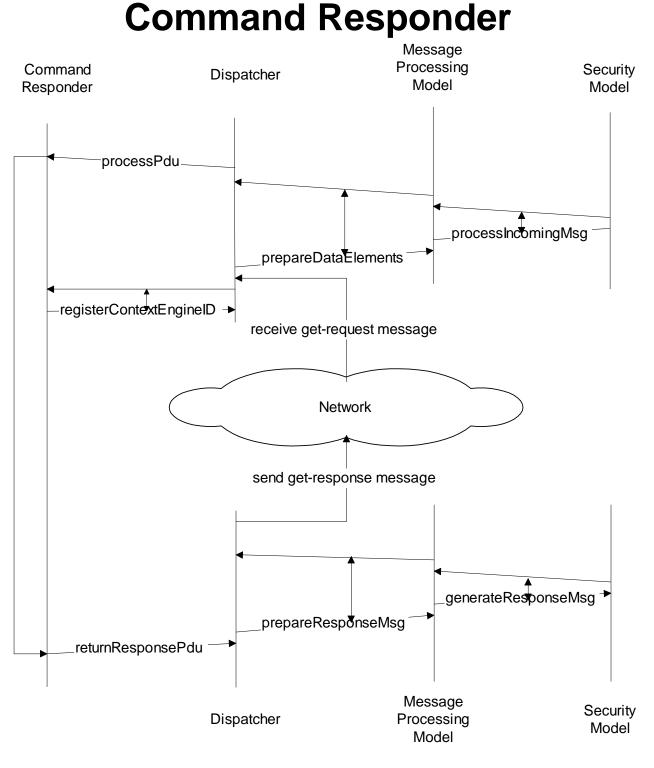

Principal Li, David, Kristen, Rashmi, Security Name Operator

Abstract Service Interface

- Abstract service interface is a conceptual interface between modules, independent of implementation
- Defines a set of primitives
- Primitives associated with receiving entities except for Dispatcher
- Dispatcher primitives associated with
 - messages to and from applications
 - registering and un-registering of application modules
 - transmitting to and receiving messages from network
- IN and OUT parameters
- Status information / result

sendPDU Primitive


- sendPdu request sent by the application module, command generator, is associated with the receiving module, dispatcher
- After the message is transmitted over the network, dispatcher sends a handle to the command generator for tracking the response
- sendPdu is the IN parameter
- sendPduHandle is the OUT parameter, shown as coupled to the IN parameter


Dispatcher Primitives

Module	Primitive	Service Provided		
Dispatcher	sendPdu	Request from application to send a PDU to a remote entity		
Dispatcher	processPdu	Processing of incoming message from remote entity		
Dispatcher	returnResponsePdu	Request from application to send a response PDU		
Dispatcher	processResponsePdu	Processing of incoming response from a remote entity		
Dispatcher	registerContextEngineID	Register request from a Context Engine		
Dispatcher	unregisterContextEngineID	Unregister request from a Context Engine		

Chapter 7

Command Generator

Figure 7.6 Command Responder Application

Notification / Proxy

- Notification originator
 - Generates trap and inform messages
 - Determine target, SNMP version, and security
 - Decides context information
- Notification receiver
 - Registers with SNMP engine
 - Receives notification messages
- Proxy forwarder
 - Proxy server
 - Handles only SNMP messages by
 - Command generator
 - Command responder
 - Notification generator
 - Report indicator
 - Uses the translation table in the proxy group MIB

SNMpV2 MIB

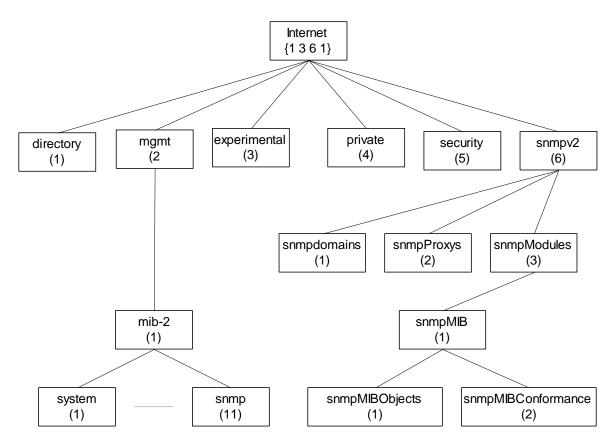


Figure 6.31 SNMPv2 Internet Group

- SNMPv3 MIB developed under snmpModules
- Security placeholder not used

SNMPv3 MIB

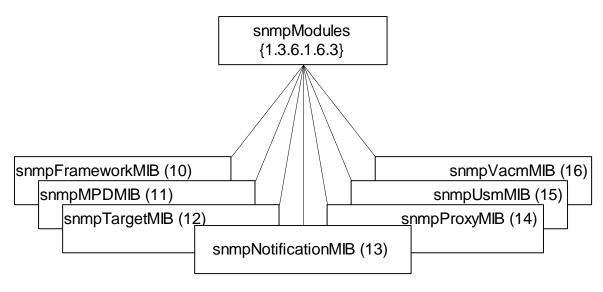


Figure 7.7 SNMPv3 MIB

- snmpFrameworkMIB describes SNMP management architecture
- snmpMPDMIB identifies objects in the message processing and dispatch subsystems
- snmpTargetMIB and snmpNotificationMIB used for notification generation
- snmpProxyMIB defines translation table for proxy forwarding
- snmpUsMIB defines user-based security model objects
- snmpVacmMIB defines objects for view-based access control

SNMPv3 Target MIB

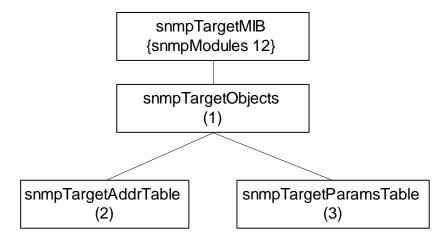


Figure 7.8 Target Address and Target Parameter Tables

- Target MIB contains two tables
- Target address table contains addresses of the targets for notifications (see notification group)
- Target address table also contains information for establishing the transport parameters
- Target address table contains reference to the second table, target parameter table
- Target parameter table contains security parameters for authentication and privacy

SNMPv3 Notification MIB

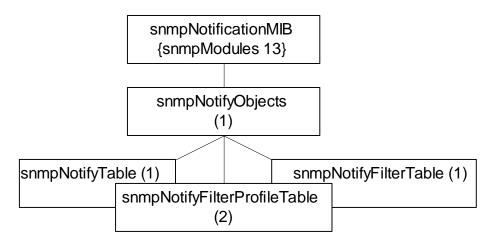


Figure 7.9 SNMP Notification Tables

- Notification group contains three tables
- Notify table contains groups of management targets to receive notifications and the type of notifications
- The target addresses to receive notifications that are listed in target address table (see target group) are tagged here
- Notification profile table defines filter profiles associated with target parameters
- Notification filter table contains table profiles of the targets

Security Threats

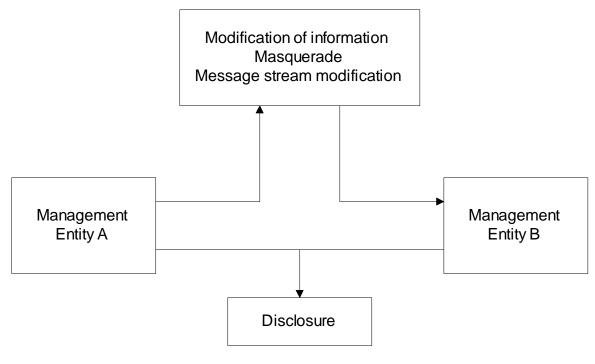


Figure 7.10 Security Threats to Management Information

- Modification of information: Contents modified by unauthorized user, does not include address change
- Masquerade: change of originating address by unauthorized user
- Fragments of message altered by an unauthorized user to modify the meaning of the message
- Disclosure is eavesdropping
- Disclosure does not require interception of message
- Denial of service and traffic analysis are not considered as threats

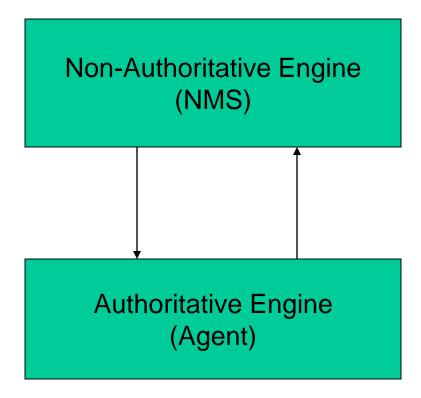
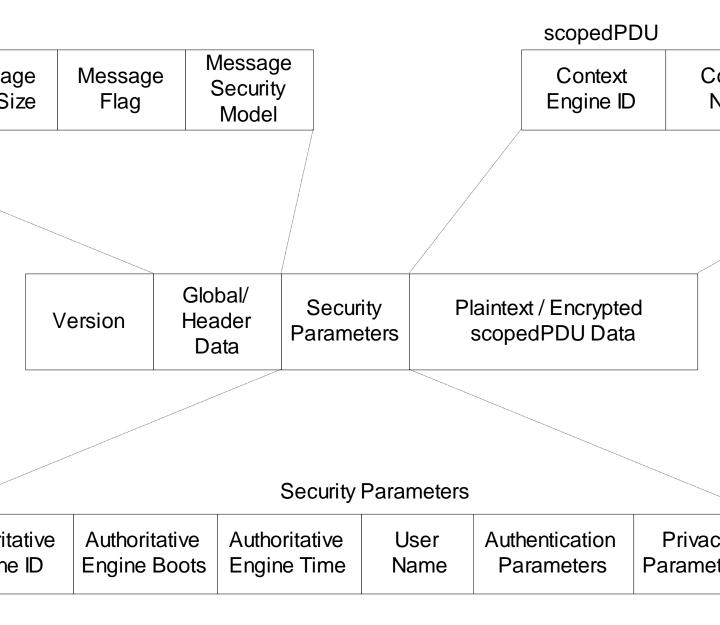

Security Services

Figure 7.11 Security Services

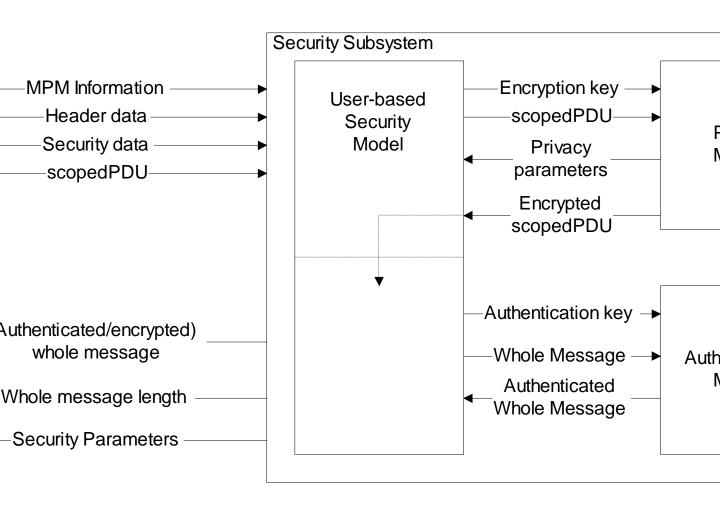

- Authentication
 - Data integrity:
 - HMAC-MD5-96 / HMAC-SHA-96
 - Data origin authentication
 - Append to the message a unique Identifier associated with authoritative SNMP engine
- Privacy / confidentiality:
 - Encryption
- Timeliness:
 - Authoritative Engine ID, No. of engine boots and time in seconds

Role of SNMP Engines

- Responsibility of Authoritative engine:
 - Unique SNMP engine ID
 - Time-stamp
- Non-authoritative engine should keep a table of the time-stamp and authoritative engine ID

SNMPv3 Message Format

Figure 7.12 SNMPv3 Message Format


SNMPv3 Message Format

Field	Object name	Description
Version	msgVersion	SNMP version number of the message format
Message ID	msglD	Administrative ID associated with the message
Message Max. Size	msgMaxSize	Maximum size supported by the sender
Message flags	msgFlags	Bit fields identifying report, authentication, and privacy of the message
Message Security Model	msgSecurityModel	Security model used for the message; concurrent multiple models allowed
Security Parameters (See Table 7.8)	msgSecurityParameters	Security parameters used for communication between sending and receiving security modules
Plaintext/Encrypted scopedPDU Data	scopedPduData	Choice of plaintext or encrypted scopedPDU; scopedPDU uniquely identifies context and PDU
Context Engine ID	contextEngineID	Unique ID of a context (managed entity) with a context name realized by an SNMP entity
Context Name	contextName	Name of the context (managed entity)
PDU	data	Contains unencrypted PDU

User-Based Security Model

- Based on traditional user name concept
- USM primitives across abstract service interfaces
 - Authentication service primitives
 - authenticateOutgoingMsg
 - authenticateIncomingMsg
 - Privacy Services
 - encryptData
 - decryptData

Secure Outgoing Message

Figure 7.13 Privacy and Authentication Service for Outgoing Message

- USM invokes privacy module w/ encryption key and scopedPE
- Privacy module returns privacy parameters and encrypted sco
- USM then invokes the authentication module w/authentication whole message and receives authenticated whole message

Secure Incoming Message

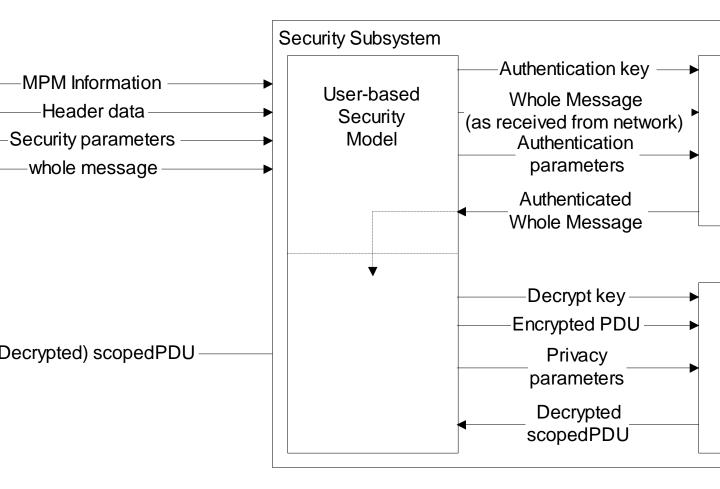


Figure 7.14 Privacy and Authentication Service for Incoming Message

- Processing secure incoming message reverse of secure
- Authentication validation done first by the authentication
- Decryption of the message done then by the privacy mod

Chapter 7

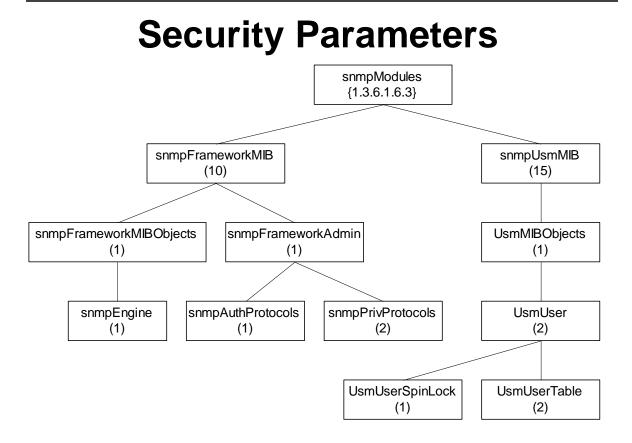


Figure 7.15 SNMPv3 MIB Objects for Security Parameters

Notes

Table 7.8 Security Parameters and Corresponding MIB Objects

Security Parameters	USM User Group Objects
msgAuthoritativeEngineID	snmpEngineID (under snmpEngine Group)
msgAuthoritativeEngineBo	snmpEngineBoots (under snmpEngine Group)
ots	
msgAuthoritativeEngineTi	snmpEngineTime (under snmpEngine Group)
me	
msgUserName	usmUserName (in usmUserTable)
msgAuthenticationParame	usmUserAuthProtocol (in usmUserTable)
ters	
msgPrivacyParameters	usmUserPrivProtocol (in usmUserTable)

Privacy Module

- Encryption and decryption of scoped PDU (context engine ID, context name, and PDU)
- CBC DES (Cipher Block Chaining Data Encryption Standard) symmetric protocol
- Encryption key (and initialization vector) made up of secret key (user password), and timeliness value
- Privacy parameter is salt value (unique for each packet) in CBC-DES

Authentication Key

- Secret key for authentication
- Derived from user (NMS) password
- MD5 or SHA-1 algorithm used
- Authentication key is *digest2*

Notes

Procedure:

- 1. Derive *digest0:* Password repeated until it forms 2²⁰ octets.
- 2. Derive *digest1:*

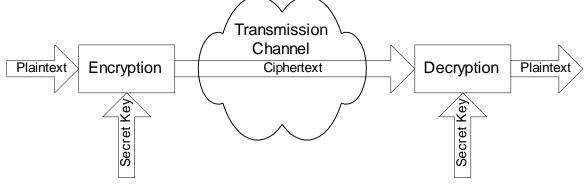
Hash *digest0* using MD5 or SHA-1.

3. Derive *digest2*:

Concatenate authoritative SNMP engine ID and *digest1* and hash with the same algorithm

Authentication Parameters

- Authentication parameter is Hashed Message Access Code (HMAC)
- HMAC is 96-bit long (12 octets)
- Derived from authorization key (authKey)


Notes

Procedure:

- 1. Derive *extendedAuthKey*: Supplement authKey with 0s to get 64-byte string
- 2. Define *ipad*, *opad*, K1, and K2: *ipad* = 0x36 (00110110) repeated 64 times *opad* = 0x5c (01011100) repeated 64 times
 K1 = extendedAuthKey XOR ipad
 K2 = extendedAuthKey XOR opad
- 3. Derive HMAC by hashing algorithm used HMAC = H (K2, H (K1, *wholeMsg)*)

Encryption Protocol

- Cipher Block Chaining mode of Data Encryption Standard (CBC-DES) protocol
- 16-octet privKey is secret key
- First 8-octet of *privKey* used as 56-bit DES key; (Only 7 high-order bits of each octet used)
- Last 8-octet of *privKey* used as pre-initialization vector

Figure 13.33 Basic Cryptographic Communication

- CBC Mode
 - Plaintext divided into 64-bit blocks
 - Each block is XOR-d with ciphertext of the previous block and then encrypted
 - Use pre-IV (initialization vector) for prefixing the first message block

Access Control

- View-based Access Control Model
 - Groups: Name of the group comprising security model and security name: In SNMPv1, is community name
 - Security Level
 - no authentication no privacy
 - authentication no privacy
 - authentication privacy
 - Contexts: Names of the context
 - MIB Views and View Families
 - MIB view is a combination of view subtrees
 - Access Policy
 - read-view
 - write-view
 - notify-view
 - not-accessible

VCAM Process

Answers 6 questions:

- 1. Who are you (group)?
- 2. Where do you want to go (context)?
- 3. How secured are you to access the information (security model and security level)?
- 4. Why do you want to access the information (read, write, or send notification)?
- 5. What object (object type) do you want to access?
- 6. Which object (object instance) do you want to access?

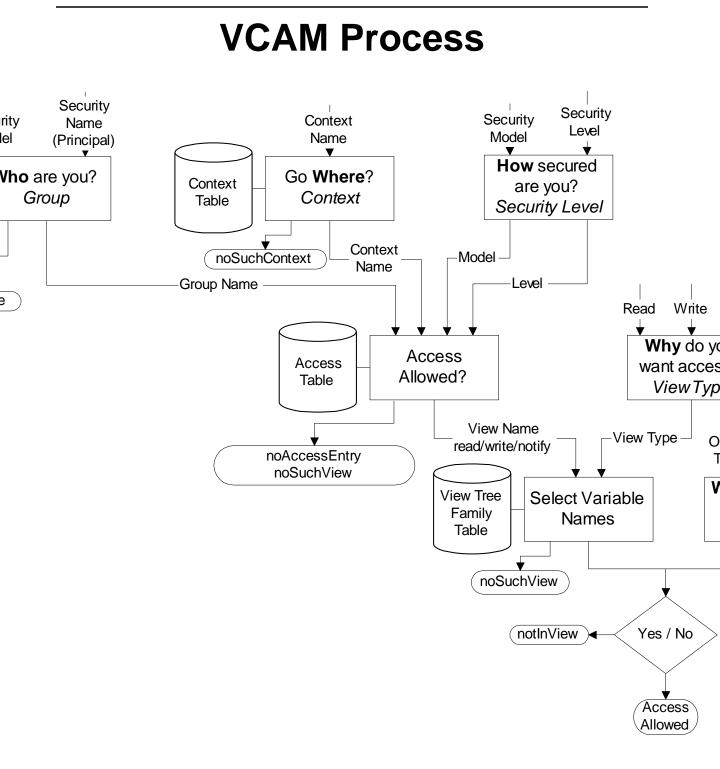


Figure 7.16 VACM Process

VACM MIB

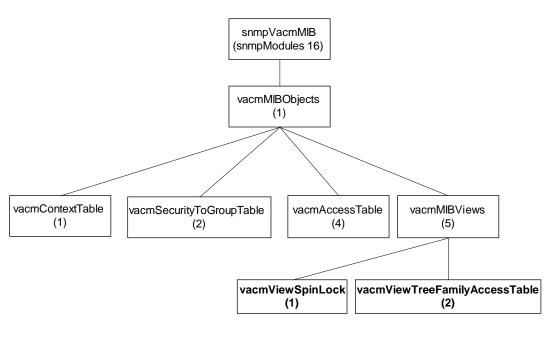


Figure 7.17 VACM MIB

- Four tables used to achieve access control
 - Group defined by security-to-group table
 - Context defined by context table
 - Access determines access allowed and the view name
 - View tree family table determines the MIB view, which is very flexible

MIB Views

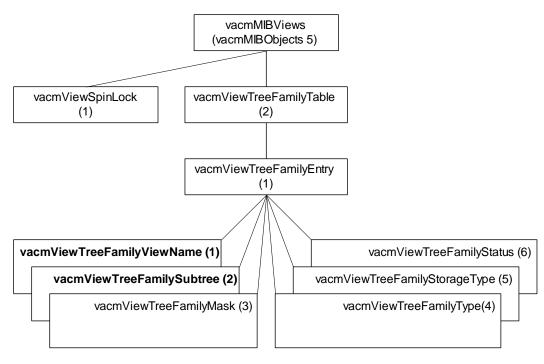
Simple view:

system 1.3.6.1.2.1.1

Complex view:

All information relevant to a particular interface system and interfaces groups

Family view subtrees


View with all columnar objects in a row appear as separate subtree.

OBJECT IDENTIFIER (family name) paired with

bit-string value (family mask)

to select or suppress columnar objects

VACM MIB View

Notes

Example:

Family view name = "system" Family subtree = 1.3.6.1.2.1.1 Family mask = "" (implies all 1s by convention) Family type = 1 (implies value to be included)