
Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 2

Why Software Engineering ?Why Software Engineering ?Why Software Engineering ?Why Software Engineering ?

� Change in nature & complexity of software

Ready for change

� Concept of one “guru” is over

� We all want improvement

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 3

� Software industry is in Crisis!

Source: The Standish Group International, Inc. (CHAOS research)

over budget

53%

success

16%failure

31%

The Evolving Role of SoftwareThe Evolving Role of SoftwareThe Evolving Role of SoftwareThe Evolving Role of Software

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 4

• Data on 28,000 projects

completed in 2000

This is the
SORRY state
of Software
Engineering

Today!

Completed
Late, over

budget, and/or
with features

missing – 49%

Cancelled –
23%

Successful –
28%

The Evolving Role of SoftwareThe Evolving Role of SoftwareThe Evolving Role of SoftwareThe Evolving Role of Software

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 5

The Evolving Role of SoftwareThe Evolving Role of SoftwareThe Evolving Role of SoftwareThe Evolving Role of Software

As per the IBM report, “31%of the project get

cancelled before they are completed, 53% over-

run their cost estimates by an average of 189%

and for every 100 projects, there are 94 restarts”.

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 6

The Evolving Role of SoftwareThe Evolving Role of SoftwareThe Evolving Role of SoftwareThe Evolving Role of Software

Year

Hw cost

Sw cost

Relative Cost of Hardware and Software
1960 1999

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 7

• Unlike Hardware

– Moore’s law: processor speed/memory capacity doubles
every two years

The Evolving Role of SoftwareThe Evolving Role of SoftwareThe Evolving Role of SoftwareThe Evolving Role of Software

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 8

Managers and Technical Persons are asked:

� Why does it take so long to get the program finished?

The Evolving Role of SoftwareThe Evolving Role of SoftwareThe Evolving Role of SoftwareThe Evolving Role of Software

� Why are costs so high?

� Why can not we find all errors before release?

� Why do we have difficulty in measuring progress of software

development?

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 9

Factors Contributing to the Software CrisisFactors Contributing to the Software CrisisFactors Contributing to the Software CrisisFactors Contributing to the Software Crisis

• Larger problems,

• Lack of adequate training in software engineering,

• Increasing skill shortage,

• Low productivity improvements.

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 10

Some Software failuresSome Software failuresSome Software failuresSome Software failures

It took the European Space Agency 10
years and $7 billion to produce Ariane 5,

a giant rocket capable of hurling a pair of

three-ton satellites into orbit with each

launch and intended to give Europe

overwhelming supremacy in the

commercial space business.

Ariane 5

The rocket was destroyed after 39 seconds

of its launch, at an altitude of two and a

half miles along with its payload of four

expensive and uninsured scientific

satellites.

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 11

When the guidance system’s own

computer tried to convert one

piece of data the sideways velocity

of the rocket from a 64 bit format

to a 16 bit format; the number was

too big, and an overflow error

resulted after 36.7 seconds. When

the guidance system shutdown, it

passed control to an identical,

redundant unit, which was there to

provide backup in case of just such

a failure. Unfortunately, the second

unit, which had failed in the

identical manner a few

milliseconds before.

Some Software failuresSome Software failuresSome Software failuresSome Software failures

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 12

Y2K problem:

It was simply the ignorance about the

adequacy or otherwise of using only

last two digits of the year.

The 4-digit date format, like 1964,

was shortened to 2-digit format, like

64.

Some Software failuresSome Software failuresSome Software failuresSome Software failures

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 13

The Patriot MissileThe Patriot MissileThe Patriot MissileThe Patriot Missile
o First time used in Gulf war

Reasons:

A small timing error in the system’s clock

accumulated to the point that after 14

hours, the tracking system was no longer

accurate. In the Dhahran attack, the

system had been operating for more than

100 hours.

o Used as a defense from Iraqi Scud

missiles

o Failed several times including one that

killed 28 US soldiers in Dhahran,

Saudi Arabia

Some Software failuresSome Software failuresSome Software failuresSome Software failures

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 14

Part of an abort scenario for the

Shuttle requires fuel dumps to

lighten the spacecraft. It was

during the second of these

dumps that a (software) crash

occurred.

...the fuel management module,

which had performed one

dump and successfully exited,

restarted when recalled for the

second fuel dump...

The Space Shuttle

Some Software failuresSome Software failuresSome Software failuresSome Software failures

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 15

A simple fix took care of the problem…but the

programmers decided to see if they could come up with a

systematic way to eliminate these generic sorts of bugs in

the future. A random group of programmers applied this

system to the fuel dump module and other modules.

Seventeen additional, previously unknown problems

surfaced!

Some Software failuresSome Software failuresSome Software failuresSome Software failures

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 16

Some Software failuresSome Software failuresSome Software failuresSome Software failures

Many companies have experienced failures in their

accounting system due to faults in the software itself. The

failures range from producing the wrong information to

the whole system crashing.

Financial Software

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 17

Some Software failuresSome Software failuresSome Software failuresSome Software failures

Windows XP

o Microsoft released Windows XP on October 25, 2001.

o On the same day company posted 18 MB of

compatibility patches on the website for bug fixes,

compatibility updates, and enhancements.

o Two patches fixed important security holes.

This is Software Engineering.

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 18

The hardware cost continues to decline

drastically.

““““No Silver BulletNo Silver BulletNo Silver BulletNo Silver Bullet””””

However, there are desperate cries for a

silver bullet something to make software

costs drop as rapidly as computer hardware

costs do.

But as we look to the horizon of a decade,

we see no silver bullet. There is no single

development, either in technology or in

management technique, that by itself

promises even one order of magnitude

improvement in productivity, in reliability

and in simplicity.

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 19

The hard part of building software is the specification, design and

testing of this conceptual construct, not the labour of representing it

and testing the correctness of representation.

While there is no royal road, there is a path forward.

Is reusability (and open source) the new silver bullet?

““““No Silver BulletNo Silver BulletNo Silver BulletNo Silver Bullet””””

We still make syntax errors, to be sure, but they are trivial as

compared to the conceptual errors (logic errors) in most systems.

That is why, building software is always hard and there is inherently

no silver bullet.

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 20

““““No Silver BulletNo Silver BulletNo Silver BulletNo Silver Bullet””””

The blame for software bugs belongs to:

• Software companies

• Software developers

• Legal system

• Universities

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 21

What is software?What is software?What is software?What is software?

• Computer programs and associated

documentation

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 22

Programs

Operating

Procedures
Documentation

Software=Program+Documentation+Operating Procedures

Components of software

What is software?What is software?What is software?What is software?

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 23

Documentation

Manuals

Analysis

/Specification

Design

Implementation

Testing

Formal Specification

Context-
Diagram

Data Flow
Diagrams

Flow Charts

Entity-Relationship
Diagram

Source Code Listings

Cross-Reference
Listing

Test Data

Test Results

Documentation consists of different types of manuals areDocumentation consists of different types of manuals areDocumentation consists of different types of manuals areDocumentation consists of different types of manuals are

List of documentation manuals

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 24

Operating

Procedures

User

Manuals

Operational

Manuals

System Overview

Beginner’s Guide

Tutorial

Reference Guide

Installation Guide

System

Administration Guide

List of operating procedure manuals.

Documentation consists of different types of manuals areDocumentation consists of different types of manuals areDocumentation consists of different types of manuals areDocumentation consists of different types of manuals are

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 25

• Software products may be developed for a particular
customer or may be developed for a general market

Software ProductSoftware ProductSoftware ProductSoftware Product

• Software products may be

–Generic - developed to be sold to a range of different
customers

–Bespoke (custom) - developed for a single customer according
to their specification

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 26

Software product is a product designated for
delivery to the user

source
codes

source
codes

object
codes

object
codes

plansplans

reportsreports

manualsmanuals

documentsdocuments

test suitestest suites
prototypesprototypes

datadata

test resultstest results

Software ProductSoftware ProductSoftware ProductSoftware Product

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 27

What is software engineering?What is software engineering?What is software engineering?What is software engineering?

Software engineering is an engineering discipline which

is concerned with all aspects of software production

Software engineers should

– adopt a systematic and organised approach to their

work

– use appropriate tools and techniques depending on

• the problem to be solved,

• the development constraints and

– use the resources available

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 28

At the first conference on software engineering in 1968, Fritz Bauer

defined software engineering as “The establishment and use of

sound engineering principles in order to obtain economically

developed software that is reliable and works efficiently on real

machines”.

Stephen Schach defined the same as “A discipline whose aim is the

production of quality software, software that is delivered on time,

within budget, and that satisfies its requirements”.

Both the definitions are popular and acceptable to majority.

However, due to increase in cost of maintaining software, objective

is now shifting to produce quality software that is maintainable,

delivered on time, within budget, and also satisfies its requirements.

What is software engineering?What is software engineering?What is software engineering?What is software engineering?

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 29

Software ProcessSoftware ProcessSoftware ProcessSoftware Process

The software process is the way in which we produce

software.

Why is it difficult to improve software process ?

• Not enough time

• Lack of knowledge

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 30

Learning curve

Do not quit here!

Improved future state
Process improvement

begins
Initial state

state

Productivity

Time

• Wrong motivations

Software ProcessSoftware ProcessSoftware ProcessSoftware Process

• Insufficient commitment

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 31

Software Characteristics:Software Characteristics:Software Characteristics:Software Characteristics:

�Software does not wear out.

Useful life

phase

Wear out

phase

Burn-in

phase

F
ai

lu
re

 I
n
te

n
si

ty

Time

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 32

� Software is not manufactured

Software Characteristics:Software Characteristics:Software Characteristics:Software Characteristics:

� Reusability of components

� Software is flexible

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 33

Comparison of constructing a bridge vis-à-vis writing a program.

7.

6.

5.

4.

3.

2.

1.

Writing a programConstructing a bridgeSr.

No

Software Characteristics:Software Characteristics:Software Characteristics:Software Characteristics:

The problem is well understood
Only some parts of the problem are

understood, others are not

There are many existing bridges

The requirement for a bridge typically do

not change much during construction

The strength and stability of a bridge can be

calculated with reasonable precision

When a bridge collapses, there is a

detailed investigation and report

Engineers have been constructing bridges

for thousands of years

Materials (wood, stone,iron, steel) and

techniques (making joints in wood, carving

stone, casting iron) change slowly.

Every program is different and designed for

special applications.

Requirements typically change during all

phases of development.

Not possible to calculate correctness of a

program with existing methods.

When a program fails, the reasons are often

unavailable or even deliberately concealed.

Developers have been writing programs

for 50 years or so.

Hardware and software changes rapidly.

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 34

System
Software

Real
Time

Software

Embedded
Software

Engineering
and Scientific

Software

Web based
Software

Artificial
Intelligence

Software
Personal

Computer
Software

Business
Software

The Changing Nature of SoftwareThe Changing Nature of SoftwareThe Changing Nature of SoftwareThe Changing Nature of Software

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 35

The Changing Nature of SoftwareThe Changing Nature of SoftwareThe Changing Nature of SoftwareThe Changing Nature of Software

Trend has emerged to provide source code to the

customer and organizations.

Software where source codes are available are known

as open source software.

Examples

Open source software: LINUX, MySQL, PHP, Open office,

Apache webserver etc.

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 36

Management may be confident about good

standards and clear procedures of the company.

But the taste of any food item
is in the eating;
not in the Recipe !

Software Myths (Management PerspectivesSoftware Myths (Management PerspectivesSoftware Myths (Management PerspectivesSoftware Myths (Management Perspectives)

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 37

Company has latest computers and state-of-

the-art software tools, so we shouldn’t worry

about the quality of the product.

The infrastructure is
only one of the several factors
that determine the quality

of the product!

Software Myths (Management PerspectivesSoftware Myths (Management PerspectivesSoftware Myths (Management PerspectivesSoftware Myths (Management Perspectives)

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 38

Addition of more software specialists, those

with higher skills and longer experience may

bring the schedule back on the track!

Unfortunately,
that may further delay the schedule!

Software Myths (Management PerspectivesSoftware Myths (Management PerspectivesSoftware Myths (Management PerspectivesSoftware Myths (Management Perspectives)

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 39

Software is easy to change

The reality is totally different.

Software Myths (Management PerspectivesSoftware Myths (Management PerspectivesSoftware Myths (Management PerspectivesSoftware Myths (Management Perspectives)

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 40

Computers provide greater reliability than

the devices they replace

This is not always true.

Software Myths (Management PerspectivesSoftware Myths (Management PerspectivesSoftware Myths (Management PerspectivesSoftware Myths (Management Perspectives)

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 41

A general statement of objectives is sufficient to get started with

the development of software. Missing/vague requirements can

easily be incorporated/detailed out as they get concretized.

If we do so, we are heading
towards a disaster.

Software Myths (Customer PerspectivesSoftware Myths (Customer PerspectivesSoftware Myths (Customer PerspectivesSoftware Myths (Customer Perspectives)

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 42

Software with more features is better

software

Software can work right the first time

Both are only myths!

Software Myths (Customer PerspectivesSoftware Myths (Customer PerspectivesSoftware Myths (Customer PerspectivesSoftware Myths (Customer Perspectives)

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 43

Once the software is demonstrated, the job is done.

Usually, the problems just begin!

Software Myths (Developer PerspectivesSoftware Myths (Developer PerspectivesSoftware Myths (Developer PerspectivesSoftware Myths (Developer Perspectives)

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 44

Software quality can not be assessed before

testing.

However, quality assessment techniques
should be used through out the
software development life cycle.

Software Myths (Developer PerspectivesSoftware Myths (Developer PerspectivesSoftware Myths (Developer PerspectivesSoftware Myths (Developer Perspectives)

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 45

The only deliverable for a software
development project is the tested code.

Tested code is only one of the deliverable!

Software Myths (Developer PerspectivesSoftware Myths (Developer PerspectivesSoftware Myths (Developer PerspectivesSoftware Myths (Developer Perspectives)

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 46

Aim is to develop working programs

Those days are over. Now objective is to
develop good quality maintainable

programs!

Software Myths (Developer PerspectivesSoftware Myths (Developer PerspectivesSoftware Myths (Developer PerspectivesSoftware Myths (Developer Perspectives)

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 47

Some TerminologiesSome TerminologiesSome TerminologiesSome Terminologies

� Deliverables and Milestones

Different deliverables are generated during software development.

The examples are source code, user manuals, operating procedure

manuals etc.

The milestones are the events that are used to ascertain the status of

the project. Finalization of specification is a milestone. Completion of

design documentation is another milestone. The milestones are

essential for project planning and management.

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 48

� Product and Process

Some TerminologiesSome TerminologiesSome TerminologiesSome Terminologies

Product: What is delivered to the customer, is called a product. It

may include source code, specification document, manuals,

documentation etc. Basically, it is nothing but a set of deliverables

only.

Process: Process is the way in which we produce software. It is the

collection of activities that leads to (a part of) a product. An efficient

process is required to produce good quality products.

If the process is weak, the end product will undoubtedly suffer, but

an obsessive over reliance on process is also dangerous.

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 49

Some TerminologiesSome TerminologiesSome TerminologiesSome Terminologies

� Measures, Metrics and Measurement

A measure provides a quantitative indication of the extent,

dimension, size, capacity, efficiency, productivity or reliability of

some attributes of a product or process.

Measurement is the act of evaluating a measure.

A metric is a quantitative measure of the degree to which a system,

component or process possesses a given attribute.

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 50

Some TerminologiesSome TerminologiesSome TerminologiesSome Terminologies

� Software Process and Product Metrics

Process metrics quantify the attributes of software development

process and environment;

whereas product metrics are measures for the software product.

Examples

Process metrics: Productivity, Quality, Efficiency etc.

Product metrics: Size, Reliability, Complexity etc.

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 51

� Productivity and Effort

Productivity is defined as the rate of output, or production per unit of

effort, i.e. the output achieved with regard to the time taken but

irrespective of the cost incurred.

Hence most appropriate unit of effort is Person Months (PMs),

meaning thereby number of persons involved for specified months.

So, productivity may be measured as LOC/PM (lines of code

produced/person month)

Some TerminologiesSome TerminologiesSome TerminologiesSome Terminologies

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 52

Some TerminologiesSome TerminologiesSome TerminologiesSome Terminologies

� Module and Software Components

There are many definitions of the term module. They range from “a

module is a FORTRAN subroutine” to “a module is an Ada

Package”, to “Procedures and functions of PASCAL and C”, to

“C++ Java classes” to “Java packages” to “a module is a work

assignment for an individual developer”. All these definition are

correct. The term subprogram is also used sometimes in place of

module.

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 53

“An independently deliverable piece of functionality providing

access to its services through interfaces”.

“A component represents a modular, deployable, and replaceable

part of a system that encapsulates implementation and exposes a set

of interfaces”.

Some TerminologiesSome TerminologiesSome TerminologiesSome Terminologies

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 54

Some TerminologiesSome TerminologiesSome TerminologiesSome Terminologies

� Generic and Customized Software Products

Generic products are developed for anonymous customers. The target

is generally the entire world and many copies are expected to be sold.

Infrastructure software like operating system, compilers, analyzers,

word processors, CASE tools etc. are covered in this category.

The customized products are developed for particular customers.

The specific product is designed and developed as per customer

requirements. Most of the development projects (say about

80%)come under this category.

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 55

Role of Management in Software Development

Factors

People

Product Process

Project

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 56

Dependency

Order

Project Product

Process

People

1

2

3

4

Role of Management in Software Development

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 57

1.1 Software is

(a) Superset of programs (b) subset of programs

(c) Set of programs (d) none of the above

1.2 Which is NOT the part of operating procedure manuals?

(a) User manuals (b) Operational manuals

(c) Documentation manuals (d) Installation manuals

1.3 Which is NOT a software characteristic?

(a) Software does not wear out (b) Software is flexible

(c) Software is not manufactured (d) Software is always correct

1.4 Product is

(a) Deliverables (b) User expectations

(c) Organization's effort in development (d) none of the above

Multiple Choice Questions
Note: Select most appropriate answer of the following questions:

1.5 To produce a good quality product, process should be

(a) Complex (b) Efficient

(c) Rigorous (d) none of the above

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 58

1.6 Which is not a product metric?

(a) Size (b) Reliability

(c) Productivity (d) Functionality

1.7 Which is NOT a process metric?

(a) Productivity (b) Functionality

(c) Quality (d) Efficiency

1.8 Effort is measured in terms of:

(a) Person-months (b) Rupees

(c) Persons (d) Months

1.9 UML stands for

(a) Uniform modeling language (b) Unified modeling language

(c) Unit modeling language (d) Universal modeling language

Multiple Choice Questions
Note: Select most appropriate answer of the following questions:

1.1 An independently deliverable piece of functionality providing access to

its services through interface is called

(a) Software measurement (b) Software composition

(c) Software measure (d) Software component

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 59

1.11 Infrastructure software are covered under

(a) Generic products (b) Customized products

(c) Generic and Customized products (d) none of the above

1.12 Management of software development is dependent on

(a) people (b) product

(c) process (d) all of the above

1.13 During software development, which factor is most crucial?

(a) People (b) Product

(c) Process (d) Project

1.14 Program is

(a) subset of software (b) super set of software

(c) software (d) none of the above

Multiple Choice Questions
Note: Select most appropriate answer of the following questions:

1.15 Milestones are used to

(a) know the cost of the project (b) know the status of the project

(c) know user expectations (d) none of the above

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 60

1.16 The term module used during design phase refers to

(a) Function (b) Procedure

(c) Sub program (d) All of the above

1.17 Software consists of

(a) Set of instructions + operating system

(b) Programs + documentation + operating procedures

(c) Programs + hardware manuals (d) Set of programs

1.18 Software engineering approach is used to achieve:

(a) Better performance of hardware (b) Error free software

(c) Reusable software (d) Quality software product

1.19 Concept of software engineering are applicable to

(a) Fortran language only (b) Pascal language only

(c) ‘C’ language only (d) All of the above

Multiple Choice Questions
Note: Select most appropriate answer of the following questions:

1.20 CASE Tool is

(a) Computer Aided Software Engineering (b) Component Aided Software Engineering

(c) Constructive Aided Software Engineering (d)Computer Analysis Software Engineering

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 61

Exercises

1.1 Why is primary goal of software development now shifting from
producing good quality software to good quality maintainable software?

1.2 List the reasons for the “software crisis”?Why are CASE tools not
normally able to control it?

1.3 “The software crisis is aggravated by the progress in hardware
technology?” Explain with examples.

1.4 What is software crisis? Was Y2K a software crisis?

1.5 What is the significance of software crisis in reference to software
engineering discipline.

1.6 How are software myths affecting software process? Explain with the
help of examples.

1.7 State the difference between program and software. Why have documents
and documentation become very important.

1.8 What is software engineering? Is it an art, craft or a science? Discuss.

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 62

Exercises

1.9 What is aim of software engineering? What does the discipline of
software engineering discuss?

1.10 Define the term “Software engineering”. Explain the major differences
between software engineering and other traditional engineering disciplines.

1.11 What is software process? Why is it difficult to improve it?

1.12 Describe the characteristics of software contrasting it with the
characteristics of hardware.

1.13 Write down the major characteristics of a software. Illustrate with a
diagram that the software does not wear out.

1.14 What are the components of a software? Discuss how a software differs
from a program.

1.15 Discuss major areas of the applications of the software.

1.16 Is software a product or process? Justify your answer with example

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 63

Exercises

1.17 Differentiate between the following

(i) Deliverables and milestones (ii) Product and process

(iii) Measures, metrics and measurement

1.18 What is software metric? How is it different from software
measurement

1.19 Discuss software process and product metrics with the help of examples.

1.20 What is productivity? How is it related to effort. What is the unit of
effort.

1.21 Differentiate between module and software component.

1.22 Distinguish between generic and customized software products. Which
one has larger share of market and why?

1.23 Is software a product or process? Justify your answer with example

Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 64

1.23 Describe the role of management in software development with the help
of examples.

1.24 What are various factors of management dependency in software
development. Discuss each factor in detail.

1.25 What is more important: Product or process? Justify your answer.

Exercises

1Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Why should we really need

it?

� Who should carry out this

activity?

� Where should we do such

type of certification?

Software Certification

� What is certification?

3Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� People

� Process

� Product

Software Certification

We have seen many certified developers (Microsoft certified,

Cisco certified, JAVA certified), certified processes (like ISO or

CMM) and certified products.

There is no clarity about the procedure of software certification.

People

Process Product

To whom should we target

4Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Adam Kalawa of Parasoft has given his views on certification like:

“I strongly oppose certification of software developers. I fear that it

will bring more harm than good to the software industry. It may

further hurt software quality by shifting the blame for bad

software. The campaign for certification assumes that unqualified

developers cause software problem and that we can improve

software quality by ensuring that all developers have the golden

stamp of approval. However, improving quality requires

improving the production process and integrating in to it practices

that reduce the opportunity for introducing defects into the

product”

Requirement of Certification

5Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

 How often will developers require certification to keep pace with

new technologies?

 How will any certification address the issues like fundamentals

of computer science, analytical & logical reasoning,

programming aptitude & positive attitude?

 Process certification alone cannot guarantee high quality

product.

 Whether we go for certified developers or certified processes?

Can independent certification agency provide a fair playing

field for each software industry??

Requirement of Certification

6Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� People

– Industry specific

� Process

– Industry specific

� Product

– For the customer directly and helps to select a particular

product

Types of Certification

7Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The individual obtaining certification receives the following values:

� Recognition by peers

� Increased confidence in personal capabilities

� Recognition by software industry for professional achievement

� Improvement in processes

� Competences maintained through recertification

Certification of Persons

Certification is employees initiated improvement process which

improves competence in quality assurances methods & techniques.

8Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Professional level of competence in the principles & practices of

software quality assurance in the software industry can be

achieved by acquiring the designation of:

o Certified Software Quality Analyst (CSQA)

o Certified Software Tester (CSTE)

o Certified Software Project Manager (CSPM)

Some company specific certifications are also very popular like

Microsoft Office Specialist (MOS) certifications in Word, Excel

and PowerPoint.

MOS is far best known computer skills certification for

administrator.

Certification of Persons

9Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The most popular process certification approaches are:

� ISO 9000

� SEI-CMM

One should always be suspicious about the quality of end

product, however, certification reduces the possibility of poor

quality products.

Any type of process certification helps to produce good quality

and stable software product.

Certification of Processes

10Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� This is what is required for the customer.

� There is no universally accepted product certification

scheme.

� Aviation industry has a popular certification “RTCA DO-

178B”.

� The targeted certification level is either A, B, C, D, or E.

� These levels describe the consequences of a potential failure

of the software : catastrophic, hazardous severe, major,

minor or no effect.

Certification of Products

11Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

DO-178B Records

Certification of Products

Software Development Plan

Software Verification Plan

Software Configuration Management Plan

Software Quality Assurance Plan

Software Requirements Standards

Software Design Document

Software Verification Test Cases & Products

12Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

DO-178B Documents

Certification of Products

Software Verification Results

Problem Report

Software Configuration Management Records

Software Quality Assurance Records

DO-178B certification process is most demanding at higher levels.

13Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

DO-178B level A will:

1. Have largest potential market

2. Require thorough labour intensive preparation of most of

the items on the DO-178B support list.

DO-178B Level E would:

1. Require fewer support item and

2. Less taxing on company resources.

Certification of Products

14Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

We don’t have product certification in most of the areas. RTOS

(real time operating system) is the real-time operating system

certification & marked as “LinuxOS-178”.

Certification of Products

The establishment of independent agencies is a viable option.

15Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Weyukar has rightly said “For Component based Software

Development (CBO) to revolutionalize software development,

developers must be able to produce software significantly cheaper

and faster than they otherwise could, even as the resulting software

meets the same sort of high reliability standards while being easy to

maintain”.

Third Party Certification for Component
base Software Engineering

Bill council has also given his views as “Currently, there is a little

evidences that component based software engineering (CBSE) is

revolutionizing software development, and lots of reasons to believe

otherwise. I believe the primary reason is that the community is not

showing how to develop trusted components”.

16Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Contractor:

• Gives the standard

• Directs any variations in specification

• Define patterns

• Allowable tolerances

• Fix the date of delivery

Third party certification is a method to ensure software components

conform to well defined standards, based on this certification,

trusted assemblies of components can be constructed

Third party certification is based on UL 1998, 2nd ed., UL standard

for safety for software in programmable component.

Third Party Certification for Component
base Software Engineering

17Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

10.1 What is software certification? Discuss its importance in the changing
scenario of software industry.

10.2 What are different types of certifications? Explain the significance of
each type & which one is most important for the end user.

10.3 What is the role of third party certification in component based software
engineering? Why are we not able to stabilize the component based software
engineering practices.

10.4 Name few person specific certification schemes. Which one is most
popular & why?

10.5 Why customer is only interested in product certification? Discuss any
product certification techniques with their generic applicability.

1Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The goal of Software Engineering is to provide

models and processes that lead to the

production of well-documented maintainable

software in a manner that is predictable.

Software Life Cycle Models

3Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

“The period of time that starts when a software product is conceived

and ends when the product is no longer available for use. The

software life cycle typically includes a requirement phase, design

phase, implementation phase, test phase, installation and check out

phase, operation and maintenance phase, and sometimes retirement

phase”.

Software Life Cycle Models

4Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Build & Fix Model

� Product is constructed without

specifications or any attempt at

design

� Adhoc approach and not well

defined

� Simple two phase model Fix

Build

Code

5Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Suitable for small programming exercises of 100 or 200 lines

� Unsatisfactory for software for any reasonable size

� Code soon becomes unfixable & unenhanceable

� No room for structured design

� Maintenance is practically not possible

Build & Fix Model

6Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirement

Design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Analysis & Specification

Waterfall Model

This model is named “waterfall

model” because its diagrammatic

representation resembles a cascade of

waterfalls.

7Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

This model is easy to understand and reinforces

the notion of “define before design” and “design

before code”.

The model expects complete & accurate

requirements early in the process, which is

unrealistic

Waterfall Model

8Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Problems of waterfall model

i. It is difficult to define all requirements at the beginning of a

project

ii. This model is not suitable for accommodating any change

iii. A working version of the system is not seen until late in

the project’s life

iv. It does not scale up well to large projects.

v. Real projects are rarely sequential.

Waterfall Model

9Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Incremental Process Models

They are effective in the situations where requirements are

defined precisely and there is no confusion about the

functionality of the final product.

After every cycle a useable product is given to the customer.

Popular particularly when we have to quickly deliver a limited

functionality system.

10Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Iterative Enhancement Model

This model has the same phases as the waterfall model, but with

fewer restrictions. Generally the phases occur in the same order as

in the waterfall model, but they may be conducted in several cycles.

Useable product is released at the end of the each cycle, with each

release providing additional functionality.

� Customers and developers specify as many requirements as

possible and prepare a SRS document.

� Developers and customers then prioritize these requirements

� Developers implement the specified requirements in one or

more cycles of design, implementation and test based on the

defined priorities.

11Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirements
specification

Architectural
design

Detailed

design

Implementation
and unit testing

Integration
and testing

Operation and
Maintenance

Iterative Enhancement Model

12Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The Rapid Application Development (RAD) Model

o Developed by IBM in 1980

o User participation is essential

The requirements

specification was

defined like this

The developers

understood it in

that way

This is how the

problem was

solved before.

This is how the

problem is

solved now

That is the program after

debugging

This is how the program is

described by marketing

department

This, in fact, is what the

customer wanted …

13Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

o Build a rapid prototype

o Give it to user for evaluation & obtain feedback

o Prototype is refined

Requirements

Planning

User

Description
Construction Cut over

With active participation of users

The Rapid Application Development (RAD) Model

14Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Not an appropriate model in the absence of user

participation.

Reusable components are required to reduce development

time.

Highly specialized & skilled developers are required and

such developers are not easily available.

The Rapid Application Development (RAD) Model

15Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Evolutionary Process Models

Evolutionary process model resembles iterative enhancement

model. The same phases as defined for the waterfall model occur

here in a cyclical fashion. This model differs from iterative

enhancement model in the sense that this does not require a

useable product at the end of each cycle. In evolutionary

development, requirements are implemented by category rather

than by priority.

This model is useful for projects using new technology that is not

well understood. This is also used for complex projects where all

functionality must be delivered at one time, but the requirements

are unstable or not well understood at the beginning.

16Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Validation
Final

version

Development
Intermediate

versions

Specification
Initial

version

Outline

description

Concurrent

activities

Evolutionary Process Model

17Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Prototyping Model

� The prototype may be a usable program but is not suitable as

the final software product.

� The code for the prototype is thrown away. However

experience gathered helps in developing the actual system.

� The development of a prototype might involve extra cost, but

overall cost might turnout to be lower than that of an

equivalent system developed using the waterfall model.

18Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

• Linear model

• “Rapid”

Prototyping Model

19Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Spiral Model

Models do not deal with uncertainly which is inherent to software

projects.

Important software projects have failed because project risks were

neglected & nobody was prepared when something unforeseen

happened.

Barry Boehm recognized this and tired to incorporate the “project

risk” factor into a life cycle model.

The result is the spiral model, which was presented in 1986.

20Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Spiral Model

21Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The radial dimension of the model represents the cumulative costs.

Each path around the spiral is indicative of increased costs. The

angular dimension represents the progress made in completing each

cycle. Each loop of the spiral from X-axis clockwise through 360o

represents one phase. One phase is split roughly into four sectors of

major activities.

� Planning: Determination of objectives, alternatives &

constraints.

� Risk Analysis: Analyze alternatives and attempts to identify

and resolve the risks involved.

� Development: Product development and testing product.

� Assessment: Customer evaluation

Spiral Model

22Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� An important feature of the spiral model is that each phase is

completed with a review by the people concerned with the

project (designers and programmers)

� The advantage of this model is the wide range of options to

accommodate the good features of other life cycle models.

� It becomes equivalent to another life cycle model in

appropriate situations.

The spiral model has some difficulties that need to be resolved

before it can be a universally applied life cycle model. These

difficulties include lack of explicit process guidance in determining

objectives, constraints, alternatives; relying on risk assessment

expertise; and provides more flexibility than required for many

applications.

Spiral Model

23Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The Unified Process

• Developed by I.Jacobson, G.Booch and J.Rumbaugh.

• Software engineering process with the goal of producing good

quality maintainable software within specified time and budget.

• Developed through a series of fixed length mini projects called

iterations.

• Maintained and enhanced by Rational Software Corporation and

thus referred to as Rational Unified Process (RUP).

24Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Phases of the Unified Process

Definition of

objectives

of the project

Planning &

architecture

for the project

Initial

operational

capability

InceptionInception ElaborationElaboration ConstructionConstruction TransitionTransition

Release of

the Software

product

Time

25Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

• Inception: defines scope of the project.

• Elaboration

- How do we plan & design the project?

- What resources are required?

- What type of architecture may be suitable?

• Construction: the objectives are translated in design &

architecture documents.

• Transition : involves many activities like delivering, training,

supporting, and maintaining the product.

Phases of the Unified Process

26Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Initial development & Evolution Cycles

Initial development Cycle

Evolution Cycle

Continue till the product is retired

InceptionInception ElaborationElaboration ConstructionConstruction TransitionTransition
V1

InceptionInception ElaborationElaboration ConstructionConstruction TransitionTransition
V2

InceptionInception ElaborationElaboration ConstructionConstruction TransitionTransition
V3

V1=version1, V2 =version2, V3=version3

27Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Iterations & Workflow of Unified Process

28Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Inception Phase

� Gathering and analyzing the requirements.

� Planning and preparing a business case and evaluating

alternatives for risk management, scheduling resources etc.

� Estimating the overall cost and schedule for the project.

� Studying the feasibility and calculating profitability of the

project.

The inception phase has the following objectives:

29Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Outcomes of Inception Phase

Inception

Project plan

Initial risk

assessment

Initial business

case
Vision

document Initial use

case model

Initial

project

Glossary

Business

model

Prototypes

30Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Elaboration Phase

� Establishing architectural foundations.

� Design of use case model.

� Elaborating the process, infrastructure & development

environment.

� Selecting component.

� Demonstrating that architecture support the vision at

reasonable cost & within specified time.

The elaboration phase has the following objectives:

31Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Outcomes of Elaboration Phase

Elaboration

Revised risk

document

An executable

architectural

prototype

Use case

model Supplementary

Requirements

with non functional

requirement

Architecture

Description

document

Preliminary

User manual

Development plan

32Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Construction Phase

� Implementing the project.

� Minimizing development cost.

� Management and optimizing resources.

� Testing the product

� Assessing the product releases against acceptance criteria

The construction phase has the following objectives:

33Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Outcomes of Construction Phase

Construction

Operational

manuals

Test Suite

A description

of the

current release

Software

product User manuals

Documentation

manuals

Test

Outline

34Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Transition Phase

� Starting of beta testing

� Analysis of user’s views.

� Training of users.

� Tuning activities including bug fixing and enhancements for

performance & usability

� Assessing the customer satisfaction.

The transition phase has the following objectives:

35Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Outcomes of Transition Phase

Transition

Product

release Beta test reports
User feedback

36Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Selection of a Life Cycle Model

Selection of a model is based on:

a) Requirements

b) Development team

c) Users

d) Project type and associated risk

37Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Based On Characteristics Of RequirementsBased On Characteristics Of RequirementsBased On Characteristics Of RequirementsBased On Characteristics Of Requirements

RADSpiralEvolutionary

development

Iterative

enhancement

PrototypeWaterfallRequirements

Are requirements

easily understandable

and defined?

Do we change

requirements quite

often?

Can we define

requirements early

in the cycle?

Requirements are

indicating a complex

system to be built

Yes Yes

Yes Yes

Yes Yes Yes Yes

Yes Yes Yes Yes

No

No

No

No

No

No No

No

No

No

No

No

38Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

RADSpiralEvolutionary

development

Iterative

enhancement

PrototypeWaterfallDevelopment

team

Based On Status Of Development TeamBased On Status Of Development TeamBased On Status Of Development TeamBased On Status Of Development Team

Less experience on

similar projects?

Less domain

knowledge (new to

the technology)

Less experience on

tools to be used

Availability of

training if required

Yes

Yes

Yes

Yes

Yes

Yes Yes

Yes

Yes

Yes

Yes

No

No

No

NoNo

No No No

No

No

No

NoNo

39Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Based On UserBased On UserBased On UserBased On User’’’’s Participations Participations Participations Participation

RADSpiralEvolutionary

development

Iterative

enhancement

PrototypeWaterfallInvolvement

of Users

User involvement

in all phases

Limited user

participation

User have no

previous experience

of participation in

similar projects

Users are experts

of problem domain

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No No No

No

No

No

40Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

RADSpiralEvolutionary

development

Iterative

enhancement

PrototypeWaterfallProject type

and risk

Based On Type Of Project With Associated RiskBased On Type Of Project With Associated RiskBased On Type Of Project With Associated RiskBased On Type Of Project With Associated Risk

Project is the

enhancement of the

existing system

Funding is stable

for the project

High reliability

requirements

Tight project

schedule

Use of reusable

components

Are resources

(time, money,

people etc.) scare?

Yes Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

41Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions
Note: Select most appropriate answer of the following questions:

2.1 Spiral Model was developed by

(a) Bev Littlewood (b) Berry Boehm

(c) Roger Pressman (d) Victor Basili

2.2 Which model is most popular for student’s small projects?

(a) Waterfall model (b) Spiral model

(c) Quick and fix model (d) Prototyping model

2.3 Which is not a software life cycle model?

(a) Waterfall model (b) Spiral model

(c) Prototyping model (d) Capability maturity model

2.4 Project risk factor is considered in

(a) Waterfall model (b) Prototyping model

(c) Spiral model (d) Iterative enhancement model

2.5 SDLC stands for

(a) Software design life cycle (b) Software development life cycle

(c) System development life cycle (d) System design life cycle

42Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions
Note: Select most appropriate answer of the following questions:

2.6 Build and fix model has

(a) 3 phases (b) 1 phase

(c) 2 phases (d) 4 phases

2.7 SRS stands for

(a) Software requirements specification (b) Software requirements solution

(c) System requirements specification (d) none of the above

2.8 Waterfall model is not suitable for

(a) small projects (b) accommodating change

(c) complex projects (d) none of the above

2.9 RAD stands for

(a) Rapid application development (b) Relative application development

(c) Ready application development (d) Repeated application development

2.10 RAD model was proposed by

(a) Lucent Technologies (b) Motorola

(c) IBM (d) Microsoft

43Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions
Note: Select most appropriate answer of the following questions:

2.11 If requirements are easily understandable and defined,which model is best suited?

(a) Waterfall model (b) Prototyping model

(c) Spiral model (d) None of the above

2.12 If requirements are frequently changing, which model is to be selected?

(a) Waterfall model (b) Prototyping model

(c) RAD model (d) Iterative enhancement model

2.13 If user participation is available, which model is to be chosen?

(a) Waterfall model (b) Iterative enhancement model

(c) Spiral model (d) RAD model

2.14 If limited user participation is available, which model is to be selected?

(a) Waterfall model (b) Spiral model

(c) Iterative enhancement model (d) any of the above

2.15 If project is the enhancement of existing system, which model is best suited?

(a) Waterfall model (b) Prototyping model

(c) Iterative enhancement model (d) Spiral model

44Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions
Note: Select most appropriate answer of the following questions:

2.16 Which one is the most important feature of spiral model?

(a) Quality management (b) Risk management

(c) Performance management (d) Efficiency management

2.17 Most suitable model for new technology that is not well understood is:

(a) Waterfall model (b) RAD model

(c) Iterative enhancement model (d) Evolutionary development model

2.18 Statistically, the maximum percentage of errors belong to the following phase of
SDLC

(a) Coding (b) Design

(c) Specifications (d) Installation and maintenance

2.19 Which phase is not available in software life cycle?

(a) Coding (b) Testing

(c) Maintenance (d) Abstraction

2.20 The development is supposed to proceed linearly through the phase in

(a) Spiral model (b) Waterfall model

(c) Prototyping model (d) None of the above

45Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions
Note: Select most appropriate answer of the following questions:

2.21 Unified process is maintained by

(a) Infosys (b) Rational software corporation

(c) SUN Microsystems (d) None of the above

2.22 Unified process is

(a) Iterative (b) Incremental

(c) Evolutionary (d) All of the above

2.23 Who is not in the team of Unified process development?

(a) I.Jacobson (b) G.Booch

(c) B.Boehm (d) J.Rumbaugh

2.24 How many phases are in the unified process?

(a) 4 (b) 5

(c) 2 (d) None of the above

2.25 The outcome of construction phased can be treated as:

(a) Product release (b) Beta release

(c) Alpha release (d) All of the above

46Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

2.1 What do you understand by the term Software Development Life Cycle
(SDLC)? Why is it important to adhere to a life cycle model while
developing a large software product?

2.2 What is software life cycle? Discuss the generic waterfall model.

2.3 List the advantages of using waterfall model instead of adhoc build and
fix model.

2.4 Discuss the prototyping model. What is the effect of designing a
prototype on the overall cost of the project?

2.5 What are the advantages of developing the prototype of a system?

2.6 Describe the type of situations where iterative enhancement model might
lead to difficulties.

2.7 Compare iterative enhancement model and evolutionary process model.

47Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

2.8 Sketch a neat diagram of spiral model of software life cycle.

2.10 As we move outward along with process flow path of the spiral model,
what can we say about software that is being developed or maintained.

2.11 How does “project risk” factor effect the spiral model of software
development.

2.12 List the advantages and disadvantages of involving a software engineer
throughout the software development planning process.

2.13 Explain the spiral model of software development. What are the
limitations of such a model?

2.14 Describe the rapid application development (RAD) model.Discuss each
phase in detail.

2.15 What are the characteristics to be considered for the selection of the life
cycle model?

2.9 Compare the waterfall model and the spiral model of software
development.

48Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

2.16 What is the role of user participation in the selection of a life cycle
model?.

2.18 Write short note on “status of development team” for the selection of a
life cycle model?.

2.19 Discuss the selection process parameters for a life cycle model.

2.20 What is unified process? Explain various phases along with the outcome
of each phase.

2.21 Describe the unified process work products after each phase of unified
process.

2.22 What are the advantages of iterative approach over sequential approach?
Why is unified process called as iterative or incremental?

2.17 Why do we feel that characteristics of requirements play a very
significant role in the selection of a life cycle model?

1Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirement EngineeringRequirement EngineeringRequirement EngineeringRequirement Engineering

Quality of product

Without well written document

-- Developers do not know what to build

-- Customers do not know what to expect

-- What to validate

Requirements describe

What not How

Produces one large document written in natural language
contains a description of what the system will do without

describing how it will do it.

Process that creates it

Crucial process steps

3Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirement

Engineering

Requirements

Elicitation

Requirements

Analysis

Requirements

Documentation

Requirements

Review

Problem Statement

SRS

Crucial Process Steps of requirement engineering

4Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirement EngineeringRequirement EngineeringRequirement EngineeringRequirement Engineering

Requirement Engineering is the disciplined application of
proven principles, methods, tools, and notations to describe a

proposed system’s intended behavior and its associated

constraints.

SRS may act as a contract between developer and customer.

State of practice

Requirements are difficult to uncover

• Requirements change

• Over reliance on CASE Tools

• Tight project Schedule

• Communication barriers

• Market driven software development

• Lack of resources

5Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example

A University wish to develop a software system for the

student result management of its M.Tech. Programme. A

problem statement is to be prepared for the software

development company. The problem statement may give

an overview of the existing system and broad expectations

from the new software system.

Requirement EngineeringRequirement EngineeringRequirement EngineeringRequirement Engineering

6Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Types of Requirements

Known

Requirements

Undreamed

Requirements

Unknown

Requirements

Stakeholder: Anyone who should have some direct or indirect
influence on the system requirements.

--- User
--- Affected persons

Requirements

Functional Non-Functional

Types of RequirementsTypes of RequirementsTypes of RequirementsTypes of Requirements

7Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Maintainability
Portability
Testability

For Users

For Developers

Types of RequirementsTypes of RequirementsTypes of RequirementsTypes of Requirements

Functional requirements describe what the software has to
do. They are often called product features.

Non Functional requirements are mostly quality
requirements. That stipulate how well the software does,

what it has to do.

Availability
Reliability
Usability
Flexibility

8Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

User and system requirements

• User requirement are written for the users and include
functional and non functional requirement.

• System requirement are derived from user requirement.

• The user system requirements are the parts of software

requirement and specification (SRS) document.

Types of RequirementsTypes of RequirementsTypes of RequirementsTypes of Requirements

9Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Types of RequirementsTypes of RequirementsTypes of RequirementsTypes of Requirements

Interface Specification

• Important for the customers.

TYPES OF INTERFACES

• Procedural interfaces (also called Application

Programming Interfaces (APIs)).

• Data structures

• Representation of data.

10Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Feasibility StudyFeasibility StudyFeasibility StudyFeasibility Study

Is cancellation of a project a bad news?

As per IBM report, “31% projects get cancelled before they
are completed, 53% over-run their cost estimates by an

average of 189% & for every 100 projects, there are 94

restarts.

How do we cancel a project with the least work?

CONDUCT A FEASIBILTY STUDY

11Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Feasibility StudyFeasibility StudyFeasibility StudyFeasibility Study

Technical feasibility

• Is it technically feasible to provide direct communication
connectivity through space from one location of globe to

another location?

• Is it technically feasible to design a programming
language using “Sanskrit”?

12Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Feasibility StudyFeasibility StudyFeasibility StudyFeasibility Study

Feasibility depends upon non technical Issues like:

• Are the project’s cost and schedule assumption realistic?

• Does the business model realistic?

• Is there any market for the product?

13Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Feasibility StudyFeasibility StudyFeasibility StudyFeasibility Study

Purpose of feasibility study

“evaluation or analysis of the potential impact of a

proposed project or program.”

Focus of feasibility studies

• Is the product concept viable?

• Will it be possible to develop a product that matches the

project’s vision statement?

• What are the current estimated cost and schedule for the

project?

14Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Feasibility StudyFeasibility StudyFeasibility StudyFeasibility Study

Focus of feasibility studies

• How big is the gap between the original cost & schedule

targets & current estimates?

• Is the business model for software justified when the

current cost & schedule estimate are considered?

• Have the major risks to the project been identified & can

they be surmounted?

• Is the specifications complete & stable enough to
support remaining development work?

15Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Feasibility StudyFeasibility StudyFeasibility StudyFeasibility Study

Focus of feasibility studies

• Have users & developers been able to agree on a

detailed user interface prototype? If not, are the
requirements really stable?

• Is the software development plan complete & adequate
to support further development work?

16Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Perhaps

• Most difficult

• Most critical
• Most error prone

• Most communication intensive

Succeed

Requirements ElicitationRequirements ElicitationRequirements ElicitationRequirements Elicitation

Selection of any method

1. It is the only method that we know

2. It is our favorite method for all situations

3. We understand intuitively that the method is effective in
the present circumstances.

Normally we rely on first two reasons.

effective customer developer partnership

17Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

1. Interviews

Both parties have a common goal

Interview

Requirements ElicitationRequirements ElicitationRequirements ElicitationRequirements Elicitation

Selection of stakeholder

1. Entry level personnel

2. Middle level stakeholder

3. Managers

4. Users of the software (Most important)

Success of the project--- open ended

--- structured

18Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Types of questions.

• Any problems with existing system

• Any Calculation errors

• Possible reasons for malfunctioning

• No. of Student Enrolled

Requirements ElicitationRequirements ElicitationRequirements ElicitationRequirements Elicitation

19Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

5. Possible benefits

6. Satisfied with current policies

7.How are you maintaining the records of previous students?

8. Any requirement of data from other system

9. Any specific problems

10. Any additional functionality

11. Most important goal of the proposed development

At the end, we may have wide variety of expectations from the

proposed software.

Requirements ElicitationRequirements ElicitationRequirements ElicitationRequirements Elicitation

20Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2. Brainstorming Sessions
It is a group technique

Creative ThinkingNew ideas Quickly

Requirements ElicitationRequirements ElicitationRequirements ElicitationRequirements Elicitation

*Idea is to generate views ,not to vet them.

Groups

1. Users 2. Middle Level managers 3. Total Stakeholders

Categorized
Prioritized
Pruned

Prepare long list of requirements

group discussions

21Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

A Facilitator may handle group bias, conflicts carefully.

-- Facilitator may follow a published agenda

-- Every idea will be documented in a way that everyone can
see it.

--A detailed report is prepared.

3. Facilitated Application specification Techniques (FAST)

-- Similar to brainstorming sessions.

-- Team oriented approach

-- Creation of joint team of customers and developers.

Requirements ElicitationRequirements ElicitationRequirements ElicitationRequirements Elicitation

22Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Guidelines

1. Arrange a meeting at a neutral site.

2. Establish rules for participation.

3. Informal agenda to encourage free flow of ideas.

4. Appoint a facilitator.

5. Prepare definition mechanism board, worksheets, wall

stickier.

6. Participants should not criticize or debate.

FAST session Preparations
Each attendee is asked to make a list of objects that are:

RequirementsRequirementsRequirementsRequirements ElicitationElicitationElicitationElicitation

23Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

1. Part of environment that surrounds the system.

2. Produced by the system.

3. Used by the system.
A. List of constraints

B. Functions

C. Performance criteria

Activities of FAST session

1. Every participant presents his/her list

2. Combine list for each topic

3. Discussion

4. Consensus list

5. Sub teams for mini specifications

6. Presentations of mini-specifications

7. Validation criteria

8. A sub team to draft specifications

Requirements ElicitationRequirements ElicitationRequirements ElicitationRequirements Elicitation

24Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

4.Quality Function Deployment

-- Incorporate voice of the customer

Requirements ElicitationRequirements ElicitationRequirements ElicitationRequirements Elicitation

-- Normal requirements

-- Expected requirements

-- Exciting requirements

What is important for customer?

Prime concern is customer satisfaction
Documented

Technical requirements.

25Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Steps

1. Identify stakeholders

2. List out requirements

3. Degree of importance to each requirement.

Requirements ElicitationRequirements ElicitationRequirements ElicitationRequirements Elicitation

26Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

5 Points : V. Important

4 Points : Important

3 Points : Not Important but nice to have

2 Points : Not important

1 Points : Unrealistic, required further

exploration

Requirement Engineer may categorize like:

(i) It is possible to achieve

(ii) It should be deferred & Why

(iii) It is impossible and should be dropped from
consideration

First Category requirements will be implemented as per

priority assigned with every requirement.

Requirements ElicitationRequirements ElicitationRequirements ElicitationRequirements Elicitation

27Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

5. The Use Case Approach

Ivar Jacobson & others introduced Use Case approach for
elicitation & modeling.

Use Case – give functional view

The terms

Use Case

Use Case Scenario

Use Case Diagram

Requirements ElicitationRequirements ElicitationRequirements ElicitationRequirements Elicitation

Use Cases are structured outline or template for the
description of user requirements modeled in a structured
language like English.

Often Interchanged

But they are different

28Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Use case Scenarios are unstructured descriptions of user
requirements.

Use case diagrams are graphical representations that

may be decomposed into further levels of abstraction.

Components of Use Case approach

Actor:

An actor or external agent, lies outside the system model, but
interacts with it in some way.

Actor

Requirements ElicitationRequirements ElicitationRequirements ElicitationRequirements Elicitation

Person, machine, information System

29Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

• Cockburn distinguishes between Primary and
secondary actors.

• A Primary actor is one having a goal requiring the
assistance of the system.

• A Secondary actor is one from which System needs
assistance.

Use Cases

A use case is initiated by a user with a particular goal in
mind, and completes successfully when that goal is
satisfied.

Requirements ElicitationRequirements ElicitationRequirements ElicitationRequirements Elicitation

30Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

* It describes the sequence of interactions between actors
and the system necessary to deliver the services that

satisfies the goal.

* Alternate sequence

* System is treated as black box.

Thus

Use Case captures who (actor) does what (interaction)
with the system, for what purpose (goal), without dealing

with system internals.

Requirements ElicitationRequirements ElicitationRequirements ElicitationRequirements Elicitation

31Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

*defines all behavior required of the system, bounding
the scope of the system.

Jacobson & others proposed a template for writing Use

cases as shown below:

1. Introduction
Describe a quick background of the use case.

2.Actors
List the actors that interact and participate in the
use cases.

3.Pre Conditions
Pre conditions that need to be satisfied for the use
case to perform.

4. Post Conditions
Define the different states in which we expect the system
to be in, after the use case executes.

Requirements ElicitationRequirements ElicitationRequirements ElicitationRequirements Elicitation

32Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

5. Flow of events

5.1 Basic Flow

List the primary events that will occur when this use case is executed.

5.2 Alternative Flows

Any Subsidiary events that can occur in the use case should be

separately listed. List each such event as an alternative flow.

A use case can have many alternative flows as required.

6.Special Requirements

Business rules should be listed for basic & information flows as special

requirements in the use case narration .These rules will also be used

for writing test cases. Both success and failures scenarios should be

described.

7.Use Case relationships

For Complex systems it is recommended to document the relationships

between use cases. Listing the relationships between use cases also

provides a mechanism for traceability

Use Case Template.

Requirements ElicitationRequirements ElicitationRequirements ElicitationRequirements Elicitation

33Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Use Case Guidelines

1. Identify all users

2. Create a user profile for each category of users including

all roles of the users play that are relevant to the system.

3. Create a use case for each goal, following the use case

template maintain the same level of abstraction throughout
the use case. Steps in higher level use cases may be

treated as goals for lower level (i.e. more detailed), sub-
use cases.

4. Structure the use case

5. Review and validate with users.

Requirements ElicitationRequirements ElicitationRequirements ElicitationRequirements Elicitation

34Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Use case Diagrams
-- represents what happens when actor interacts with a system.

-- captures functional aspect of the system.

Use Case
Relationship between
actors and use case
and/or between the
use cases.

Requirements ElicitationRequirements ElicitationRequirements ElicitationRequirements Elicitation

-- Actors appear outside the rectangle.

--Use cases within rectangle providing functionality.

--Relationship association is a solid line between actor & use
cases.

Actor

35Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

*Use cases should not be used to capture all the details of the

system.

*Only significant aspects of the required functionality

*No design issues

*Use Cases are for “what” the system is , not “how” the system

will be designed

* Free of design characteristics

RequirementsRequirementsRequirementsRequirements ElicitationElicitationElicitationElicitation

36Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Use case diagram for Result Management System

Maintain Student

Details

Maintain Subject

Details

Maintain Result

Details

Login

Generate Result

Reports

View Results

Data Entry Operator

Administrator/DR

Student/Teacher

37Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

1. Maintain student Details

Add/Modify/update students details like name, address.

2.Maintain subject Details

Add/Modify/Update Subject information semester wise

3.Maintain Result Details

Include entry of marks and assignment of credit points for each
paper.

4. Login

Use to Provide way to enter through user id & password.

5. Generate Result Report

Use to print various reports

6. View Result
(i) According to course code
(ii) According to Enrollment number/roll number

Requirements ElicitationRequirements ElicitationRequirements ElicitationRequirements Elicitation

38Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Login

1.1 Introduction : This use case describes how a user logs into

the Result Management System.

1.2 Actors : (i) Data Entry Operator

(ii) Administrator/Deputy Registrar

1.3 Pre Conditions : None

1.4 Post Conditions : If the use case is successful, the actor is

logged into the system. If not, the system state is unchanged.

Requirements Elicitation (Use Case)Requirements Elicitation (Use Case)Requirements Elicitation (Use Case)Requirements Elicitation (Use Case)

39Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirements Elicitation (Use Case)Requirements Elicitation (Use Case)Requirements Elicitation (Use Case)Requirements Elicitation (Use Case)

1.5 Basic Flow : This use case starts when the actor wishes

to login to the Result Management system.

(i) System requests that the actor enter his/her name and

password.

(ii) The actor enters his/her name & password.

(iii) System validates name & password, and if finds correct

allow the actor to logs into the system.

40Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

1.6 Alternate Flows

1.6.1 Invalid name & password
If in the basic flow, the actor enters an invalid name

and/or password, the system displays an error message. The
actor can choose to either return to the beginning of the basic
flow or cancel the login, at that point, the use case ends.

1.7 Special Requirements:

None

1.8 Use case Relationships:

None

Use CasesUse CasesUse CasesUse Cases

41Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2.Maintain student details

2.1 Introduction : Allow DEO to maintain student details.

This includes adding, changing and deleting student

information

2.2 Actors : DEO

2.3 Pre-Conditions: DEO must be logged onto the

system before this use case begins.

Use CasesUse CasesUse CasesUse Cases

42Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2.4 Post-conditions : If use case is successful, student

information is added/updated/deleted from the system.

Otherwise, the system state is unchanged.

2.5 Basic Flow : Starts when DEO wishes to

add/modify/update/delete Student information.

(i) The system requests the DEO to specify the function,

he/she would like to perform (Add/update/delete)

(ii) One of the sub flow will execute after getting the

information.

Use CasesUse CasesUse CasesUse Cases

43Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� If DEO selects "Add a student", "Add a student" sub flow will
be executed.

� If DEO selects "update a student", "update a student" sub flow
will be executed.

� If DEO selects "delete a student", "delete a student" sub flow
will be executed.

2.5.1 Add a student
(i) The system requests the DEO to enter:

Name
Address
Roll No
Phone No
Date of admission

(ii) System generates unique id

Use CasesUse CasesUse CasesUse Cases

44Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Use CasesUse CasesUse CasesUse Cases

2.5.2 Update a student

(i) System requires the DEO to enter student-id.

(ii) DEO enters the student_id. The system retrieves and

display the student information.

(iii) DEO makes the desired changes to the student

information.

(iv) After changes, the system updates the student record with
changed information.

45Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2.5.3 Delete a student

(i) The system requests the DEO to specify the student-id.

(ii) DEO enters the student-id. The system retrieves and
displays the student information.

(iii) The system prompts the DEO to confirm the deletion of
the student.

(iv) The DEO confirms the deletion.

(v) The system marks the student record for deletion.

Use CasesUse CasesUse CasesUse Cases

46Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Use CasesUse CasesUse CasesUse Cases

2.6 Alternative flows

2.6.1 Student not found

If in the update a student or delete a student sub flows,

a student with specified_id does not exist, the system

displays an error message .The DEO may enter a

different id or cancel the operation. At this point ,Use

case ends.

47Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Use CasesUse CasesUse CasesUse Cases

2.6.2 Update Cancelled

If in the update a student sub-flow, the data entry

operator decides not to update the student information,

the update is cancelled and the basic flow is restarted at

the begin.

48Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2.6.3 Delete cancelled

If in the delete a student sub flows, DEO decides not to

delete student record ,the delete is cancelled and the

basic flow is re-started at the beginning.

2.7 Special requirements

None

2.8 Use case relationships

None

Use CasesUse CasesUse CasesUse Cases

49Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3. Maintain Subject Details

3.1 Introduction

The DEO to maintain subject information. This includes

adding, changing, deleting subject information from the

system

3.2 Actors : DEO

3.3 Preconditions : DEO must be logged onto the

system before the use case begins.

Use CasesUse CasesUse CasesUse Cases

50Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Use CasesUse CasesUse CasesUse Cases

3.4 Post conditions :

If the use case is successful, the subject information
is added, updated, or deleted from the system,

otherwise the system state is unchanged.

3.5 Basic flows :

The use case starts when DEO wishes to add, change,

and/or delete subject information from the system.

(i) The system requests DEO to specify the function he/she

would like to perform i.e.
• Add a subject

• Update a subject
• Delete a subject.

51Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(ii) Once the DEO provides the required information, one of the sub

flows is executed.

� If DEO selected “Add a subject” the “Add-a subject sub flow

is executed.

� If DEO selected “Update-a subject” the “update-a- subject”

sub flow is executed

� If DEO selected “Delete- a- subject”, the “Delete-a-subject”

sub flow is executed.

3.5.1 Add a Subject

(i) The System requests the DEO to enter the

subject information. This includes :

* Name of the subject

Use CasesUse CasesUse CasesUse Cases

52Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Use CasesUse CasesUse CasesUse Cases

* Subject Code
* Semester

* Credit points

(ii) Once DEO provides the requested information,

the system generates and assigns a unique subject-id to the
subject. The subject is added to the system.

(iii) The system provides the DEO with new

subject-id.

53Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3.5.2 Update a Subject

(i) The system requests the DEO to enter
subject_id.

(ii) DEO enters the subject_id. The system retrieves
and displays the subject information.

(iii) DEO makes the changes.

(iv) Record is updated.

Use CasesUse CasesUse CasesUse Cases

54Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3.5.3 Delete a Subject

(i) Entry of subject_id.

(ii) After this, system retrieves & displays subject
information.

* System prompts the DEO to confirm the deletion.

* DEO verifies the deletion.

* The system marks the subject record for deletion.

Use CasesUse CasesUse CasesUse Cases

55Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3.6 Alternative Flow

3.6.1 Subject not found

If in any sub flows, subject-id not found, error message is

displayed. The DEO may enter a different id or cancel the

case ends here.

3.6.2 Update Cancelled

If in the update a subject sub-flow, the data entry operator

decides not to update the subject information, the update is

cancelled and the basic flow is restarted at the begin.

Use CasesUse CasesUse CasesUse Cases

56Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Use CasesUse CasesUse CasesUse Cases

3.6.3 Delete Cancellation

If in delete-a-subject sub flow, the DEO decides not to

delete subject, the delete is cancelled, and the basic flow
is restarted from the beginning.

3.7 Special Requirements:

None

3.8 Use Case-relationships

None

57Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

4. Maintain Result Details

4.1 Introduction

This use case allows the DEO to maintain subject &

marks information of each student. This includes adding

and/or deleting subject and marks information from the
system.

4.2 Actor

DEO

Use CasesUse CasesUse CasesUse Cases

58Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Use CasesUse CasesUse CasesUse Cases

4.3 Pre Conditions

DEO must be logged onto the system.

4.4 Post Conditions

If use case is successful ,marks information is

added or deleted from the system. Otherwise,
the system state is unchanged.

59Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

4.5 Basic Flow

This use case starts, when the DEO wishes to add,
update and/or delete marks from the system.

(i) DEO to specify the function

(ii) Once DEO provides the information one of the
subflow is executed.

* If DEO selected “Add Marks “, the Add marks
subflow is executed.

* If DEO selected “Update Marks”, the update marks
subflow is executed.

* If DEO selected “Delete Marks”, the delete marks
subflow is executed.

Use CasesUse CasesUse CasesUse Cases

60Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

4.5.1 Add Marks Records

Add marks information .This includes:

a. Selecting a subject code.

b. Selecting the student enrollment number.

c. Entering internal/external marks for that subject code &

enrollment number.

Use CasesUse CasesUse CasesUse Cases

61Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(ii) If DEO tries to enter marks for the same combination of
subject and enrollment number,the system gives a message

that the marks have already been entered.

(iii) Each record is assigned a unique result_id.

4.5.2 Delete Marks records
1. DEO makes the following entries:

a. Selecting subject for which marks have to be

deleted.

b. Selecting student enrollment number.

c. Displays the record with id number.

d. Verify the deletion.

e. Delete the record.

Use CasesUse CasesUse CasesUse Cases

62Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

4.5.2 Update Marks records

1. The System requests DEO to enter the

record_id.

2. DEO enters record_id. The system retrieves &

displays the information.

3. DEO makes changes.

4. Record is updated.

Use CasesUse CasesUse CasesUse Cases

63Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

4.5.3 Compute Result
(i) Once the marks are entered, result is computed

for each student.

(ii) If a student has scored more than 50% in a
subject, the associated credit points are allotted to that

student.
(iii) The result is displayed with subject-code, marks

& credit points.

4.6 Alternative Flow

4.6.1 Record not found
If in update or delete marks sub flows, marks

with specified id number do not exist, the system displays
an error message. DEO can enter another id or cancel the

operation.

Use CasesUse CasesUse CasesUse Cases

64Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Use CasesUse CasesUse CasesUse Cases

4.6.2 Delete Cancelled

If in Delete Marks, DEO decides not to delete marks,

the delete is cancelled and basic flow is re-started at the
beginning.

4.7 Special Requirements

None

4.8 Use case relationships

None

65Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

5 View/Display result

5.1 Introduction

This use case allows the student/Teacher or anyone

to view the result. The result can be viewed on the basis
of course code and/or enrollment number.

5.2 Actors

Administrator/DR, Teacher/Student

5.3 Pre Conditions

None

5.4 Post Conditions

If use case is successful, the marks information is

displayed by the system. Otherwise, state is unchanged.

Use CasesUse CasesUse CasesUse Cases

66Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

5.5 Basic Flow

Use case begins when student, teacher or any other
person wish to view the result.

Two ways

-- Enrollment no.

-- Course code

Use CasesUse CasesUse CasesUse Cases

67Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(ii) After selection, one of the sub flow is executed.

Course code

Enrollment no.

Use CasesUse CasesUse CasesUse Cases

5.5.1 View result enrollment number wise

(i) User to enter enrollment number

(ii) System retrieves the marks of all subjects with

credit points

(iii) Result is displayed.

Sub flow is executed

Sub flow is executed

68Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Use CasesUse CasesUse CasesUse Cases

5.6 Alternative Flow

5.6.1 Record not found

Error message should be displayed.

5.7 Special Requirements

None

5.8 Use Case relationships

None

69Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

6. Generate Report

6.1 Introduction

This use case allows the DR to generate result

reports. Options are

a. Course code wise

b. Semester wise
c. Enrollment Number wise

6.2 Actors

DR

6.3 Pre-Conditions
DR must logged on to the system

Use CasesUse CasesUse CasesUse Cases

70Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Use CasesUse CasesUse CasesUse Cases

6.4 Post conditions

If use case is successful, desired report is

generated. Otherwise, the system state is
unchanged.

6.5 Basic Flow

The use case starts, when DR wish to generate

reports.

(i) DR selects option.

(ii) System retrieves the information displays.

(iii) DR takes printed reports.

71Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

6.6 Alternative Flows

6.6.1 Record not found

If not found, system generates appropriate
message. The DR can select another option or cancel the

operation. At this point, the use case ends.

6.7 Special Requirements

None

6.8 Use case relationships

None

Use CasesUse CasesUse CasesUse Cases

72Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Use CasesUse CasesUse CasesUse Cases

7. Maintain User Accounts

7.1 Introduction

This use case allows the administrator to maintain

user account. This includes adding, changing and

deleting user account information from the system.

7.2 Actors
Administrator

7.3 Pre-Conditions
The administrator must be logged on to the

system before the use case begins.

73Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Use CasesUse CasesUse CasesUse Cases

7.4 Post-Conditions

If the use case was successful, the user account information

is added, updated, or deleted from the system. Otherwise, the

system state is unchanged.

7.5 Basic Flow

This use case starts when the Administrator wishes to add,

change, and/or delete use account information from the system.

(i) The system requests that the Administrator specify the

function he/she would like to perform (either Add a User

Account, Update a User Account, or Delete a User
Account).

(ii) Once the Administrator provides the requested information,
one of the sub-flows is executed

74Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Use CasesUse CasesUse CasesUse Cases

* If the Administrator selected “Add a User Account”, the

Add a User Account sub flow is executed.

* If the Administrator selected “Update a User Account”, the

Update a User Account sub-flow is executed.

* If the Administrator selected “Delete a User Account”, the

Delete a User Account sub-flow is executed.22

7.5.1 Add a User Account

1. The system requests that the Administrator enters the user

information. This includes:

(a) User Name

(b) User ID-should be unique for each user account

(c) Password

(d) Role

.

75Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2. Once the Administrator provides the requested information, the

user account information is added.

7.5.2 Update a User Account

1. The system requests that the Administrator enters the User ID.

2. The Administrator enters the User ID. The system retrieves and

displays the user account information.

3. The Administrator makes the desired changes to the user

account information. This includes any of the information

specified in the Add a User Account sub-flow.

4. Once the Administrator updates the necessary information, the

system updates the user account record with the updated

information.

Use CasesUse CasesUse CasesUse Cases

76Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Use CasesUse CasesUse CasesUse Cases

7.5.3 Delete a User Account

1. The system requests that the Administrator enters

the User ID.

2. The Administrator enters the User ID. The system

retrieves and displays the user account information.

3. The system prompts the Administrator to confirm

the deletion of the user account.

4. The Administrator confirms the deletion.

5. The system deletes the user account record.

77Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Use CasesUse CasesUse CasesUse Cases

7.6 Alternative Flows

7.6.1 User Not Found

If in the Update a User Account or Delete a User
Account sub-flows, a user account with the specified

User ID does not exist, the system displays an error
message. The Administrator can then enter a

different User ID or cancel the operation, at which point

the use case ends.

7.6.2 Update Cancelled

If in the Update a User Account sub-flow, the

Administrator decides not to update the user account

information, the update is cancelled and the Basic Flow
is re-started at the beginning.

78Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Use CasesUse CasesUse CasesUse Cases

7.6.3 Delete Cancelled

If in the Delete a User Account sub-flow, the

Administrator decides not to delete the user account
information, the delete is cancelled and the Basic
Flow is re-started at the beginning.

7.7 Special Requirements
None

7.8 Use case relationships
None

79Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Use CasesUse CasesUse CasesUse Cases

8. Reset System

8.1 Introduction

This use case allows the allows the administrator to

reset the system by deleting all existing information from

the system .

8.2 Actors
Administrator

8.3 Pre-Conditions

The administrator must be logged on to the system

before the use case begins.

80Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Use CasesUse CasesUse CasesUse Cases

8.4 Post-Conditions
If the use case was successful, all the existing

information is deleted from the backend database of

the system. Otherwise, the system state is unchanged.

8.5 Basic Flow
This use case starts when the Administrator wishes to

reset the system.

i. The system requests the Administrator to confirm if

he/she wants to delete all the existing information
from the system.

ii. Once the Administrator provides confirmation, the
system deletes all the existing information from the

backend database and displays an appropriate

message.

81Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Use CasesUse CasesUse CasesUse Cases

8.6 Alternative Flows

8.6.1 Reset Cancelled

If in the Basic Flow, the Administrator decides

not to delete the entire existing information, the reset is

cancelled and the use case ends.

8.7 Special Requirements

None

8.8 Use case relationships

None

82Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

We analyze, refine and scrutinize requirements to make

consistent & unambiguous requirements.

Steps

Requirements AnalysisRequirements AnalysisRequirements AnalysisRequirements Analysis

Draw the context

Diagram

Develop prototype

(optional)

Model the

Requirements

Finalize the

Requirements

Requirements Analysis Steps

83Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Result Management

System

Administrator Marks Entry

Operator

Student Information

Reports generated

Mark sheet generated Student performance

Reports generated

Subject Information

Entry

Student Information

Entry

Marks Entry

Requirements AnalysisRequirements AnalysisRequirements AnalysisRequirements Analysis

84Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Data Flow Diagrams

DFD show the flow of data through the system.

--All names should be unique
-- It is not a flow chart

-- Suppress logical decisions

-- Defer error conditions & handling until the end of
the analysis

Symbol Name Function

Requirements AnalysisRequirements AnalysisRequirements AnalysisRequirements Analysis

Data Flow Connect process

Process Perform some transformation of its
input data to yield output data.

85Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Data Store A repository of data, the
arrowhead indicate net
input and net outputs
to store

Source or sink A source of system inputs or
sink of system outputs

Requirements AnalysisRequirements AnalysisRequirements AnalysisRequirements Analysis

Leveling

DFD represent a system or software at any level of
abstraction.

A level 0 DFD is called fundamental system model or context

model represents entire software element as a single bubble
with input and output data indicating by incoming & outgoing

arrows.

Symbol Name Function

86Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

A

Requirements AnalysisRequirements AnalysisRequirements AnalysisRequirements Analysis

I1

I2

O3

O3

I1

I2

87Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Data DictionariesData DictionariesData DictionariesData Dictionaries

Data Dictionaries are simply repositories to store

information about all data items defined in DFD.

Includes :
Name of data item

Aliases (other names for items)

Description/Purpose
Related data items

Range of values
Data flows

Data structure definition

DDDFD

88Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Data DictionariesData DictionariesData DictionariesData Dictionaries

Notation Meaning

x= a+b x consists of data element a & b

x={a/b} x consists of either a or b

x=(a) x consists of an optional data element a

x= y{a} x consists of y or more occurrences

x={a}z x consists of z or fewer occurrences of a

x=y{a}z x consists of between y & z occurrences of a{

89Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

EntityEntityEntityEntity----Relationship DiagramsRelationship DiagramsRelationship DiagramsRelationship Diagrams

Entity-Relationship Diagrams

It is a detailed logical representation of data for an

organization and uses three main constructs.

Entities Relationships Attributes

Entities

Fundamental thing about which data may be

maintained. Each entity has its own identity.

Entity Type is the description of all entities to which a

common definition and common relationships and attributes
apply.

90Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

EntityEntityEntityEntity----Relationship DiagramsRelationship DiagramsRelationship DiagramsRelationship Diagrams

Consider an insurance company that offers both home
and automobile insurance policies .These policies are

offered to individuals and businesses.

POLICY CUSTOMER

home Automobile individual businesses

POLICY CUSTOMER

91Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

EntityEntityEntityEntity----Relationship DiagramsRelationship DiagramsRelationship DiagramsRelationship Diagrams

Relationships
A relationship is a reason for associating two entity types.
Binary relationships involve two entity types

A CUSTOMER is insured by a POLICY. A POLICY CLAIM is made
against a POLICY.

Relationships are represented by diamond notation in a ER diagram.

CUSTOMER
Insured

by
POLICY

POLICY

CLAIM

Made

Against

Relationships added to ERD

92Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

EntityEntityEntityEntity----Relationship DiagramsRelationship DiagramsRelationship DiagramsRelationship Diagrams
A training department is interested in tracking which training
courses each of its employee has completed.

Each employee may complete more than one course,and
each course may be completed by more than one

employee.

EMPLOYEE completes COURSE

Many-to Many relationship

93Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

EntityEntityEntityEntity----Relationship DiagramsRelationship DiagramsRelationship DiagramsRelationship Diagrams
Degree of relationship

It is the number of entity types that participates in that relationship.

Unary Binary Ternary

Unary relationship

Person
Is

Married

to

Employee
ManagesOne to One

One to many

94Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

EntityEntityEntityEntity----Relationship DiagramsRelationship DiagramsRelationship DiagramsRelationship Diagrams
Binary Relationship

EMPLOYEE PARKING

PLACE
Is

assigned

PRODUCT

LINE PRODUCTContains

STUDENT COURSERegisters

for

One to One

One to many

Many to many

95Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

EntityEntityEntityEntity----Relationship DiagramsRelationship DiagramsRelationship DiagramsRelationship Diagrams
Ternary relationship

Part

Vendor Ware HouseShips

Cardinalities and optionality

Two entity types A,B, connected by a relationship.
The cardinality of a relationship is the number of instances of entity B that
can be associated with each instance of entity A

Movie Video Tape

Is

Stocked

as

96Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

EntityEntityEntityEntity----Relationship DiagramsRelationship DiagramsRelationship DiagramsRelationship Diagrams
Minimum cardinality is the minimum number of instances of
entity B that may be associated with each instance of entity

A.

Minimum no. of tapes available for a movie is zero.We say

VIDEO TAPE is an optional participant in the is-stocked-as
relationship.

MOVIE VIDEO TAPE
Is

Stocked

As

97Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

EntityEntityEntityEntity----Relationship DiagramsRelationship DiagramsRelationship DiagramsRelationship Diagrams

Attributes

Each entity type has a set of attributes associated with it.

An attribute is a property or characteristic of an entity that is

of interest to organization.

Attribute

98Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

EntityEntityEntityEntity----Relationship DiagramsRelationship DiagramsRelationship DiagramsRelationship Diagrams

If there are more candidate keys, one of the key may be chosen

as the Identifier.

It is used as unique characteristic for an entity type.

Identifier

A candidate key is an attribute or combination of attributes that
uniquely identifies each instance of an entity type.

Student_ID Candidate Key

99Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

EntityEntityEntityEntity----Relationship DiagramsRelationship DiagramsRelationship DiagramsRelationship Diagrams

STUDENTStudent_ID

Name Address

Phone_No

Vendors quote prices for several parts along with quantity of parts.
Draw an E-R diagram.

Quote-

price
Vendor Parts

pricequantity

100Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

1. List all inputs, outputs and functions.
2. List all functions and then list all inputs and outputs

associated with each function.

Structured requirements definition (SRD)

Step1
Define a user level DFD. Record the inputs and outputs

for each individual in a DFD.
Step2

Define a combined user level DFD.
Step3

Define application level DFD.

Step4
Define application level functions.

Approaches to problem analysisApproaches to problem analysisApproaches to problem analysisApproaches to problem analysis

101Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirements DocumentationRequirements DocumentationRequirements DocumentationRequirements Documentation

This is the way of representing requirements in a
consistent format

SRS serves many purpose depending upon who is writing
it.

-- written by customer
-- written by developer

Serves as contract between customer & developer.

102Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Nature of SRS

Basic Issues

• Functionality

• External Interfaces

• Performance

• Attributes

• Design constraints imposed on an Implementation

Requirements DocumentationRequirements DocumentationRequirements DocumentationRequirements Documentation

103Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirements DocumentationRequirements DocumentationRequirements DocumentationRequirements Documentation

SRS Should

-- Correctly define all requirements

-- not describe any design details

-- not impose any additional constraints

Characteristics of a good SRS

An SRS Should be

� Correct

� Unambiguous

� Complete

� Consistent

104Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Ranked for important and/or stability

� Verifiable

� Modifiable

� Traceable

Requirements DocumentationRequirements DocumentationRequirements DocumentationRequirements Documentation

105Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirements DocumentationRequirements DocumentationRequirements DocumentationRequirements Documentation
Correct

An SRS is correct if and only if every requirement
stated therein is one that the software shall meet.

Unambiguous
An SRS is unambiguous if and only if, every

requirement stated therein has only one interpretation.

Complete
An SRS is complete if and only if, it includes the

following elements

(i) All significant requirements, whether related to
functionality, performance, design constraints,

attributes or external interfaces.

106Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirements DocumentationRequirements DocumentationRequirements DocumentationRequirements Documentation
(ii) Responses to both valid & invalid inputs.

(iii) Full Label and references to all figures, tables and diagrams
in the SRS and definition of all terms and units of measure.

Consistent

An SRS is consistent if and only if, no subset of
individual requirements described in it conflict.

Ranked for importance and/or Stability

If an identifier is attached to every requirement to
indicate either the importance or stability of that particular
requirement.

107Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirements DocumentationRequirements DocumentationRequirements DocumentationRequirements Documentation

Verifiable
An SRS is verifiable, if and only if, every requirement

stated therein is verifiable.

Modifiable
An SRS is modifiable, if and only if, its structure and style

are such that any changes to the requirements can be made
easily, completely, and consistently while retaining structure and

style.

Traceable
An SRS is traceable, if the origin of each of the

requirements is clear and if it facilitates the referencing of each
requirement in future development or enhancement

documentation.

108Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirements DocumentationRequirements DocumentationRequirements DocumentationRequirements Documentation

Organization of the SRS

IEEE has published guidelines and standards to organize an

SRS.
First two sections are same. The specific tailoring occurs in

section-3.

1. Introduction

1.1 Purpose
1.2 Scope

1.3 Definition, Acronyms and abbreviations
1.4 References

1.5 Overview

109Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirements DocumentationRequirements DocumentationRequirements DocumentationRequirements Documentation

2. The Overall Description

2.1 Product Perspective

2.1.1 System Interfaces

2.1.2 Interfaces

2.1.3 Hardware Interfaces

2.1.4 Software Interfaces

2.1.5 Communication Interfaces

2.1.6 Memory Constraints

2.1.7 Operations

2.1.8 Site Adaptation Requirements

110Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirements DocumentationRequirements DocumentationRequirements DocumentationRequirements Documentation

2.2 Product Functions

2.3 User Characteristics

2.4 Constraints

2.5 Assumptions for dependencies

2.6 Apportioning of requirements

3. Specific Requirements

3.1 External Interfaces

3.2 Functions

3.3 Performance requirements

3.4 Logical database requirements

3.5 Design Constraints

3.6 Software System attributes

3.7 Organization of specific requirements

3.8 Additional Comments.

111Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirements ValidationRequirements ValidationRequirements ValidationRequirements Validation

Check the document for:

� Completeness & consistency

� Conformance to standards

� Requirements conflicts

� Technical errors

� Ambiguous requirements

112Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirements ValidationRequirements ValidationRequirements ValidationRequirements Validation

Validation

process

List of problems

Approved actions

SRS document

Organizational

standards

Organizational

knowledge

113Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirements Review ProcessRequirements Review ProcessRequirements Review ProcessRequirements Review Process

Plan reviewPlan review
Distribute

SRS
documents

Distribute

SRS
documents

Read
documents

Read
documents

Organize

review

Organize

review

Revise

document

Revise

document
Follow up

actions

Follow up

actions

114Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirements ValidationRequirements ValidationRequirements ValidationRequirements Validation

Problem actions

• Requirements clarification

• Missing information

• find this information from stakeholders

• Requirements conflicts

• Stakeholders must negotiate to resolve this conflict

• Unrealistic requirements

• Stakeholders must be consulted

• Security issues

• Review the system in accordance to security standards

115Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Redundancy

� Completeness

� Ambiguity

� Consistency

� Organization

� Conformance

� Traceability

Review ChecklistsReview ChecklistsReview ChecklistsReview Checklists

116Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

PrototypingPrototypingPrototypingPrototyping

Validation prototype should be reasonably complete &
efficient & should be used as the required system.

117Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirements ManagementRequirements ManagementRequirements ManagementRequirements Management

• Process of understanding and controlling changes to
system requirements.

ENDURING & VOLATILE REQUIREMENTS

o Enduring requirements: They are core requirements &

are related to main activity of the organization.

Example: issue/return of a book, cataloging etc.

o Volatile requirements: likely to change during software

development lifer cycle or after delivery of the product

118Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirements Management PlanningRequirements Management PlanningRequirements Management PlanningRequirements Management Planning

• Very critical.

• Important for the success of any project.

119Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirements Change ManagementRequirements Change ManagementRequirements Change ManagementRequirements Change Management

• Allocating adequate resources

• Analysis of requirements

• Documenting requirements

• Requirements traceability

• Establishing team communication

• Establishment of baseline

120Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Q:\IRM\PRIVATE\INITIATIATI\QA\QAPLAN\SRSPLAN.DOC

Download fromDownload fromDownload fromDownload from

121Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Note. Choose the most appropriate answer of the following questions.

3.1 Which one is not a step of requirement engineering?

(a) Requirements elicitation

(b) Requirements analysis

(c) Requirements design

(d) Requirements documentation

3.2 Requirements elicitation means

(a) Gathering of requirements

(b) Capturing of requirements

(c) Understanding of requirements

(d) All of the above

Multiple Choice Questions

122Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3.3 SRS stands for

(a) Software requirements specification

(b) System requirements specification

(c) Systematic requirements specifications

(d) None of the above

3.4 SRS document is for

(a) “What” of a system?

(b) How to design the system?

(c) Costing and scheduling of a system

(d) System’s requirement.

Multiple Choice Questions

123Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3.5 Requirements review process is carried out to

(a) Spend time in requirements gathering

(b) Improve the quality of SRS

(c) Document the requirements

(d) None of the above

3.6 Which one of the statements is not correct during

requirements engineering?

(a) Requirements are difficult to uncover

(b) Requirements are subject to change

(c) Requirements should be consistent

(d) Requirements are always precisely known.

Multiple Choice Questions

124Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3.7 Which one is not a type of requirements?

(a) Known requirements

(b) Unknown requirements

(c) Undreamt requirements

(d) Complex requirements

3.8 Which one is not a requirements elicitation

technique?

(a) Interviews

(b) The use case approach

(c) FAST

(d) Data flow diagram.

Multiple Choice Questions

125Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3.9 FAST stands for

(a) Functional Application Specification Technique

(b) Fast Application Specification Technique

(c) Facilitated Application Specification Technique

(d) None of the above

3.10 QFD in requirement engineering stands for

(a) Quality function design

(b) Quality factor design

(c) Quality function development

(d) Quality function deployment

Multiple Choice Questions

126Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3.11 Which is not a type of requirements under

quality function deployment

(a) Normal requirements

(b) Abnormal requirements

(c) Expected requirements

(d) Exciting requirements

3.12 Use case approach was developed by

(a) I. Jacobson and others

(b) J.D. Musa and others

(c) B. Littlewood

(d) None of the above

Multiple Choice Questions

127Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3.13 Context diagram explains

(a) The overview of the system

(b) The internal view of the system

(c) The entities of the system

(d) None of the above

3.14 DFD stands for

(a) Data Flow design

(b) Descriptive functional design

(c) Data flow diagram

(d) None of the above

Multiple Choice Questions

128Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3.15 Level-O DFD is similar to

(a) Use case diagram

(b) Context diagram

(c) System diagram

(d) None of the above

3.16 ERD stands for

(a) Entity relationship diagram

(b) Exit related diagram

(c) Entity relationship design

(d) Exit related design

Multiple Choice Questions

129Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3.17 Which is not a characteristic of a good SRS?

(a) Correct

(b) Complete

(c) Consistent

(d) Brief

3.18 Outcome of requirements specification phase is

(a) Design Document

(b) Software requirements specification

(c) Test Document

(d) None of the above

Multiple Choice Questions

130Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3.19 The basic concepts of ER model are:

(a) Entity and relationship

(b) Relationships and keys

(c) Entity, effects and relationship

(d) Entity, relationship and attribute

3.20 The DFD depicts

(a) Flow of data

(b) Flow of control

(c) Both (a) and (b)

(d) None of the above

Multiple Choice Questions

131Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3.21 Product features are related to:

(a) Functional requirements

(b) Non functional requirements

(c) Interface requirement

(d) None of the above

3.22 Which one is a quality attribute?

(a) Reliability

(b) Availability

(c) Security

(d) All of the above

Multiple Choice Questions

132Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3.23 IEEE standard for SRS is:

(a) IEEE Standard 837-1998

(b) IEEE Standard 830-1998

(c) IEEE Standard 832-1998

(d) IEEE Standard 839-1998

3.24 Which one is not a functional requirement?

(a) Efficiency

(b) Reliability

(c) Product features

(d) Stability

Multiple Choice Questions

133Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3.23 APIs stand for:

(a) Application performance interfaces

(b) Application programming interfaces

(c) Application programming integration

(d) Application performance integration

Multiple Choice Questions

134Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

3.1 Discuss the significance and use of requirement engineering. What are
the problems in the formulation of requirements?

3.2 Requirements analysis is unquestionably the most communication
intensive step in the software engineering process. Why does the
communication path frequently break down ?

3.3 What are crucial process steps of requirement engineering ? Discuss with
the help of a diagram.

3.4 Discuss the present state of practices in requirement engineering. Suggest
few steps to improve the present state of practice.

3.5 Explain the importance of requirements. How many types of
requirements are possible and why ?

3.7 What do you understand with the term “requirements elicitation” ?
Discuss any two techniques in detail.

3.8 List out requirements elicitation techniques. Which one is most popular
and why ?

3.6 Describe the various steps of requirements engineering. Is it essential to
follow these steps ?

135Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

3.10 Discuss quality function deployment technique of requirements
elicitation. Why an importance or value factor is associated with every
requirement ?

3.11. Explain the use case approach of requirements elicitation. What are
use-case guidelines ?

3.12. What are components of a use case diagram. Explain their usage with
the help of an example.

3.13. Consider the problem of library management system and design the
following:

(i) Problem statement

(ii) Use case diagram

(iii) Use cases.

3.9 Describe facilitated application specification technique (FAST) and
compare this with brainstorming sessions.

136Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

3.14. Consider the problem of railway reservation system and design the
following:

(i) Problem statement

(ii) Use case diagram

(iii) Use cases.

3.15. Explain why a many to many relationship is to be modeled as an
associative entity ?

3.16. What are the linkages between data flow and E–R diagrams ?

3.17. What is the degree of a relationship ? Give an example of each of the
relationship degree.

3.18. Explain the relationship between minimum cardinality and optional and
mandatory participation.

3.19. An airline reservation is an association between a passenger, a flight,
and a seat. Select a few

pertinent attributes for each of these entity types and represent a reservation
in an E–R diagram.

137Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

3.20. A department of computer science has usual resources and usual users
for these resources. A software is to be developed so that resources are
assigned without conflict. Draw a DFD specifying the above system.

3.21. Draw a DFD for result preparation automation system of B. Tech.
courses (or MCA program) of any university. Clearly describe the working
of the system. Also mention all assumptions made by you.

3.22. Write short notes on

(i) Data flow diagram

(ii) Data dictionary.

3.23. Draw a DFD for borrowing a book in a library which is explained
below: “A borrower can borrow a book if it is available else he/she can
reserve for the book if he/she so wishes. He/she can borrow a maximum of
three books”.

3.24. Draw the E–R diagram for a hotel reception desk management.

Explain why, for large software systems development, is it recommended
that prototypes should be “throw-away” prototype ?

138Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

3.26. Discuss the significance of using prototyping for reusable components

and explain the problems,which may arise in this situation.

3.27. Suppose a user is satisfied with the performance of a prototype. If

he/she is interested to buy this

for actual work, what should be the response of a developer ?

3.28. Comment on the statement: “The term throw-away prototype is

inappropriate in that these prototypes expand and enhance the knowledge

base that is retained and incorporated in the final prototype; therefore they

are not disposed of or thrown away at all.”

3.29. Which of the following statements are ambiguous ? Explain why.

(a) The system shall exhibit good response time.

(b) The system shall be menu driven.

(c) There shall exist twenty-five buttons on the control panel, numbered PF1

to PF25.

(d) The software size shall not exceed 128K of RAM.

139Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

3.30. Are there other characteristics of an SRS (besides listed in section

3.4.2) that are desirable ? List a few and describe why ?

3.31. What is software requirements specification (SRS) ? List out the

advantages of SRS standards.

Why is SRS known as the black box specification of a system ?

3.32. State the model of a data dictionary and its contents. What are its

advantages ?

3.33. List five desirable characteristics of a good SRS document. Discuss the

relative advantages of formal requirement specifications. List the important

issues, which an SRS must address.

3.34. Construct an example of an inconsistent (incomplete) SRS.

3.35. Discuss the organization of a SRS. List out some important issues of

this organization.

140Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

3.36. Discuss the difference between the following:

(a) Functional & nonfunctional requirements

(b) User & system requirements

1Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

After the finalization of SRS, we would like to

estimate size, cost and development time of the

project. Also, in many cases, customer may like to

know the cost and development time even prior to

finalization of the SRS.

3Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

In order to conduct a successful software project, we

must understand:

� Scope of work to be done

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

� The risk to be incurred

� The resources required

� The task to be accomplished

� The cost to be expended

� The schedule to be followed

4Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software planning begins before technical work starts, continues as

the software evolves from concept to reality, and culminates only

when the software is retired.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Size estimation

Cost estimation Development time

Resources
requirements

Project
scheduling

Fig. 1: Activities during Software

Project Planning

5Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

}18.

return 0;17.

}16.

}15.

x[j] = save;14.

x[i] = x[j];13.

Save = x[i];12.

{11.

if (x[i] < x[j])10.

for (j=1; j<=im; j++)9.

im1=i-1;8.

{7.

for (i=2; i<=n; i++)6.

If (n<2) return 1;5.

/*This function sorts array x in ascending order */4.

int i, j, save, im1;3.

{2.
int. sort (int x[], int n)1.

If LOC is simply a count of

the number of lines then

figure shown below contains

18 LOC .

When comments and blank

lines are ignored, the

program in figure 2 shown

below contains 17 LOC.

Lines of Code (LOC)

Size Estimation

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Fig. 2: Function for sorting an array

6Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

T
o

ta
l

L
O

C

Total LOC ("wc -l") -- development releases

Total LOC ("wc -l") -- stable releases

Total LOC uncommented -- development releases

Total LOC uncommented -- stable releases

Growth of Lines of Code (LOC)

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

7Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Furthermore, if the main interest is the size of the program

for specific functionality, it may be reasonable to include

executable statements. The only executable statements in

figure shown above are in lines 5-17 leading to a count of

13. The differences in the counts are 18 to 17 to 13. One

can easily see the potential for major discrepancies for

large programs with many comments or programs written

in language that allow a large number of descriptive but

non-executable statement. Conte has defined lines of code

as:

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

8Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

“A line of code is any line of program text that is not a

comment or blank line, regardless of the number of

statements or fragments of statements on the line. This

specifically includes all lines containing program header,

declaration, and executable and non-executable

statements”.

This is the predominant definition for lines of code used

by researchers. By this definition, figure shown above

has 17 LOC.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

9Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Alan Albrecht while working for IBM, recognized the

problem in size measurement in the 1970s, and

developed a technique (which he called Function Point

Analysis), which appeared to be a solution to the size

measurement problem.

Function Count

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

10Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The principle of Albrecht’s function point analysis (FPA)

is that a system is decomposed into functional units.

� Inputs : information entering the system

� Outputs : information leaving the system

� Enquiries : requests for instant access to
information

� Internal logical files : information held within the
system

� External interface files : information held by other system
that is used by the system being
analyzed.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

11Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The FPA functional units are shown in figure given below:

ILF
EIF

User

User

Other

applications

System

Outputs

Inputs

Inquiries

ILF: Internal logical files

EIF: External interfaces

Fig. 3: FPAs functional units System

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

12Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The five functional units are divided in two categories:

(i) Data function types

� Internal Logical Files (ILF): A user identifiable group of

logical related data or control information maintained

within the system.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

� External Interface files (EIF): A user identifiable group of

logically related data or control information referenced by

the system, but maintained within another system. This

means that EIF counted for one system, may be an ILF in

another system.

13Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(ii) Transactional function types

� External Input (EI): An EI processes data or control information

that comes from outside the system. The EI is an elementary

process, which is the smallest unit of activity that is meaningful

to the end user in the business.

� External Output (EO): An EO is an elementary process that

generate data or control information to be sent outside the

system.

� External Inquiry (EQ): An EQ is an elementary process that is

made up to an input-output combination that results in data

retrieval.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

14Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Special features

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

� Function point approach is independent of the language,

tools, or methodologies used for implementation; i.e. they

do not take into consideration programming languages,

data base management systems, processing hardware or

any other data base technology.

� Function points can be estimated from requirement

specification or design specification, thus making it

possible to estimate development efforts in early phases of

development.

15Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Function points are directly linked to the statement of

requirements; any change of requirements can easily

be followed by a re-estimate.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

� Function points are based on the system user’s

external view of the system, non-technical users of

the software system have a better understanding of

what function points are measuring.

16Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Counting function points

1075External Interface files (EIF)

15107External logical files (ILF)

643External Inquiries (EQ)

754External Output (EO)

643External Inputs (EI)

HighAverageLow

Weighting factors
Functional Units

Table 1 : Functional units with weighting factors

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

17Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 2: UFP calculation table

Count

Complexity

Complexity

Totals

Low x 3
Average x 4

High x 6

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

Low x 4
Average x 5

High x 7

Low x 3
Average x 4

High x 6

Low x 7
Average x 10

High x 15

Low x 5
Average x 7

High x 10

Functional
Units

External
Inputs
(EIs)

External
Outputs
(EOs)

External
Inquiries
(EQs)

External
logical
Files (ILFs)

External
Interface
Files (EIFs)

Functional

Unit Totals

Total Unadjusted Function Point Count

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

18Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The weighting factors are identified for all

functional units and multiplied with the functional

units accordingly. The procedure for the

calculation of Unadjusted Function Point (UFP) is

given in table shown above.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

19Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The procedure for the calculation of UFP in mathematical

form is given below:

Where i indicate the row and j indicates the column of Table 1

Wij : It is the entry of the ith row and jth column of the table 1

Zij : It is the count of the number of functional units of Type i that

have been classified as having the complexity corresponding to

column j.

∑∑
= =

=
5

1

3

1i J

ijijwZUFP

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

20Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Organizations that use function point methods develop a criterion for

determining whether a particular entry is Low, Average or High.

Nonetheless, the determination of complexity is somewhat

subjective.

FP = UFP * CAF

Where CAF is complexity adjustment factor and is equal to [0.65 +

0.01 x ΣFi]. The Fi (i=1 to 14) are the degree of influence and are

based on responses to questions noted in table 3.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

21Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 3 : Computing function points.
Rate each factor on a scale of 0 to 5.

20 3 541

ModerateNo
Influence

Average EssentialSignificantIncidental

Number of factors considered (Fi)

1. Does the system require reliable backup and recovery ?

2. Is data communication required ?

3. Are there distributed processing functions ?

4. Is performance critical ?

5. Will the system run in an existing heavily utilized operational environment ?

6. Does the system require on line data entry ?

7. Does the on line data entry require the input transaction to be built over multiple screens or operations ?

8. Are the master files updated on line ?

9. Is the inputs, outputs, files, or inquiries complex ?

10. Is the internal processing complex ?

11. Is the code designed to be reusable ?

12. Are conversion and installation included in the design ?

13. Is the system designed for multiple installations in different organizations ?

14. Is the application designed to facilitate change and ease of use by the user ?

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

22Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Functions points may compute the following important metrics:

Productivity = FP / persons-months

Quality = Defects / FP

Cost = Rupees / FP

Documentation = Pages of documentation per FP

These metrics are controversial and are not universally acceptable.

There are standards issued by the International Functions Point User

Group (IFPUG, covering the Albrecht method) and the United

Kingdom Function Point User Group (UFPGU, covering the MK11

method). An ISO standard for function point method is also being

developed.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

23Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.1

Consider a project with the following functional units:

Number of user inputs = 50

Number of user outputs = 40

Number of user enquiries = 35

Number of user files = 06

Number of external interfaces = 04

Assume all complexity adjustment factors and weighting factors are

average. Compute the function points for the project.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

24Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

∑∑
= =

=
5

1

3

1i J

ijijwZUFP

UFP = 50 x 4 + 40 x 5 + 35 x 4 + 6 x 10 + 4 x 7

= 200 + 200 + 140 + 60 + 28 = 628

CAF = (0.65 + 0.01 ΣFi)

= (0.65 + 0.01 (14 x 3)) = 0.65 + 0.42 = 1.07

FP = UFP x CAF

= 628 x 1.07 = 672

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

We know

25Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example:4.2

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

An application has the following:

10 low external inputs, 12 high external outputs, 20 low

internal logical files, 15 high external interface files, 12

average external inquiries, and a value of complexity

adjustment factor of 1.10.

What are the unadjusted and adjusted function point counts ?

26Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

= 10 x 3 + 12 x 7 + 20 x 7 + 15 + 10 + 12 x 4

= 30 + 84 +140 + 150 + 48

= 452

FP = UFP x CAF

= 452 x 1.10 = 497.2.

∑∑
= =

=
5

1

3

1i J

ijij wZUFP

Solution

Unadjusted function point counts may be calculated using

as:

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

27Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.3

Consider a project with the following parameters.

(i) External Inputs:

(a)10 with low complexity

(b)15 with average complexity

(c)17 with high complexity

(ii) External Outputs:

(a)6 with low complexity

(b)13 with high complexity

(iii) External Inquiries:

(a) 3 with low complexity

(b) 4 with average complexity

(c) 2 high complexity

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

28Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(iv) Internal logical files:

(a)2 with average complexity

(b)1 with high complexity

(v) External Interface files:

(a)9 with low complexity

In addition to above, system requires

i. Significant data communication

ii. Performance is very critical

iii. Designed code may be moderately reusable

iv. System is not designed for multiple installation in different
organizations.

Other complexity adjustment factors are treated as average. Compute

the function points for the project.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

29Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution: Unadjusted function points may be counted using table 2

Count Complexity

Totals

Low x 3
Average x 4

High x 6

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

Low x 4
Average x 5

High x 7

Low x 3
Average x 4

High x 6

Low x 7
Average x 10

High x 15

Low x 5
Average x 7

High x 10

Functional
Units

External
Inputs
(EIs)

External
Outputs
(EOs)

External
Inquiries
(EQs)

External
logical
Files (ILFs)

External
Interface
Files (EIFs)

Functional

Unit Totals

Total Unadjusted Function Point Count

10

Complexity

15

17

6

0

13

3

4

2

0

2

1

9

0

0

30

60

102

24

0

91

9

16

12

0

20

15

45

0

0

192

115

37

35

45

424

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

30Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

=∑
=

14

1i

iF 3+4+3+5+3+3+3+3+3+3+2+3+0+3=41

CAF = (0.65 + 0.01 x ΣFi)

= (0.65 + 0.01 x 41)

= 1.06

FP = UFP x CAF

= 424 x 1.06

= 449.44

Hence FP = 449

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

31Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Relative Cost of Software Phases

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

32Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cost to Detect and Fix Faults

0

20

40

60

80

100

120

140

160

180

200

Req Des I nt

Cost

R
e
la
ti
v
e
 C
o
s
t
to
 d
e
te
c
t
a
n
d
 c
o
rr
e
c
t
fa
u
lt

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

33Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Project scope must be established in advance

Cost Estimation

� Software metrics are used as a basis from which estimates are made

� The project is broken into small pieces which are estimated individually

� Delay estimation until late in project

� Use simple decomposition techniques to generate project cost and
schedule estimates

� Develop empirical models for estimation

� Acquire one or more automated estimation tools

A number of estimation techniques have been developed and are

having following attributes in common :

To achieve reliable cost and schedule estimates, a number of options

arise:

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

34Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

MODELS

Static, Single

Variable

Models

Static,

Multivariable

Models

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

35Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

C = a Lb

E = 1.4 L0.93

DOC = 30.4 L0.90

D = 4.6 L0.26

Static, Single Variable Models

Effort (E in Person-months), documentation (DOC, in number of

pages) and duration (D, in months) are calculated from the number

of lines of code (L, in thousands of lines) used as a predictor.

Methods using this model use an equation to estimate the desired

values such as cost, time, effort, etc. They all depend on the same

variable used as predictor (say, size). An example of the most

common equations is :

(i)

C is the cost, L is the size and a,b are constants

36Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

E = 5.2 L0.91

D = 4.1 L0.36

Static, Multivariable Models

The productivity index uses 29 variables which are found to be

highly correlated to productivity as follows:

These models are often based on equation (i), they actually depend

on several variables representing various aspects of the software

development environment, for example method used, user

participation, customer oriented changes, memory constraints, etc.

∑
=

=Ι
29

1i

ii XW

37Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.4

Compare the Walston-Felix model with the SEL model on a

software development expected to involve 8 person-years of effort.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

(a)Calculate the number of lines of source code that can be

produced.

(b)Calculate the duration of the development.

(c)Calculate the productivity in LOC/PY

(d)Calculate the average manning

38Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

The amount of manpower involved = 8 PY = 96 person-months

(a) Number of lines of source code can be obtained by reversing

equation to give:

L = (E/a)1/b

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

L(SEL) = (96/1.4)1/0.93 = 94264 LOC

L(SEL) = (96/5.2)1/0.91 = 24632 LOC.

Then

39Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(b) Duration in months can be calculated by means of equation

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

D(W-F) = 4.1 L0.36

= 4.1(24.632)0.36 = 13 months

D(SEL) = 4.6 (L)0.26

= 4.6 (94.264)0.26 = 15 months

(c) Productivity is the lines of code produced per person/month (year)

YearsPersonLOCSELP −== /11783
8

94264
)(

YearsPersonLOCFWP −==− /3079
8

24632
)(

40Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(d) Average manning is the average number of persons required per

month in the project.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Persons
M

MP
SELM 46

15

96
.)(=

−
=

Persons
M

MP
FWM 47

13

96
.)(=

−
=−

41Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Constructive Cost model

(COCOMO)

Basic Intermediate Detailed

Model proposed by

B. W. Boehm’s

through his book

Software Engineering Economics in 1981

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

The Constructive Cost Model (COCOMO)

42Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

COCOMO applied to

Semidetached

mode Embedded

mode

Organic

mode

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

43Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Deadline of
the project

Innovation Development
Environment

Nature of ProjectProject sizeMode

Small size project, experienced
developers in the familiar
environment. For example, pay
roll, inventory projects etc.

Medium size project, Medium
size team, Average previous
experience on similar project.
For example: Utility systems
like compilers, database
systems, editors etc.

Organic

Semi
detached

Embedded

Table 4: The comparison of three COCOMO modes

Typically

2-50 KLOC

Typically

50-300 KLOC

Typically over

300 KLOC

Little Not tight Familiar & In
house

Medium Medium Medium

Significant Tight Complex
Hardware/
customer
Interfaces
required

Large project, Real time
systems, Complex interfaces,
Very little previous experience.
For example: ATMs, Air Traffic
Control etc.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

44Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Basic COCOMO model takes the form

Basic Model

bb

b KLOCaE)(=

bd

b EcD)(=

where E is effort applied in Person-Months, and D is the

development time in months. The coefficients ab, bb, cb and db are

given in table 4 (a).

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

45Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

0.322.51.203.6Embedded

0.352.51.123.0Semidetached

0.382.51.052.4Organic

dbcbbbab
Software

Project

Table 4(a): Basic COCOMO coefficients

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

46Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

When effort and development time are known, the average staff size

to complete the project may be calculated as:

Persons
D

E
SS =)(

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Average staff size

When project size is known, the productivity level may be

calculated as:

PMKLOC
E

KLOC
P /)(=Productivity

47Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.5

Suppose that a project was estimated to be 400 KLOC.

Calculate the effort and development time for each of the three

modes i.e., organic, semidetached and embedded.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

48Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

The basic COCOMO equation take the form:

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

bb

b KLOCaE)(=

bd

b KLOCcD)(=

Estimated size of the project = 400 KLOC

(i) Organic mode

E = 2.4(400)1.05 = 1295.31 PM

D = 2.5(1295.31)0.38 = 38.07 PM

49Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

(ii) Semidetached mode

E = 3.0(400)1.12 = 2462.79 PM

D = 2.5(2462.79)0.35 = 38.45 PM

(iii) Embedded mode

E = 3.6(400)1.20 = 4772.81 PM

D = 2.5(4772.8)0.32 = 38 PM

50Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.6

A project size of 200 KLOC is to be developed. Software

development team has average experience on similar type of

projects. The project schedule is not very tight. Calculate the effort,

development time, average staff size and productivity of the project.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

51Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

The semi-detached mode is the most appropriate mode; keeping in

view the size, schedule and experience of the development team.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Average staff size

E = 3.0(200)1.12 = 1133.12 PM

D = 2.5(1133.12)0.35 = 29.3 PM

Hence

Persons
D

E
SS =)(

Persons6738
329

121133
.

.

.
==

52Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Productivity PMKLOC
E

KLOC
/1765.0

12.1133

200
===

PMLOCP /176=

53Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cost drivers

Intermediate Model

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

(i) Product Attributes

� Required s/w reliability

� Size of application database

� Complexity of the product

(ii) Hardware Attributes

� Run time performance constraints

� Memory constraints

� Virtual machine volatility

� Turnaround time

54Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

(iii) Personal Attributes

� Analyst capability

� Programmer capability

� Application experience

� Virtual m/c experience

� Programming language experience

(iv) Project Attributes

� Modern programming practices

� Use of software tools

� Required development Schedule

55Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

TURN

VIRT

STOR

TIME

Computer Attributes

CPLX

DATA

RELY

Product Attributes

Extra

high

Very

high

HighNominalLowVery low

Cost Drivers RATINGS

Multipliers of different cost drivers

1.651.301.151.000.850.70

--1.161.081.000.94--

--1.401.151.000.880.75

--1.151.071.000.87--

--1.301.151.000.87--

1.561.211.061.00----

1.661.301.111.00----

56Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

SCED

TOOL

MODP

Project Attributes

LEXP

VEXP

PCAP

AEXP

ACAP

Personnel Attributes

Extra

high

Very

high

HighNominalLowVery low

Cost Drivers RATINGS

--

--0.951.001.071.14

--0.901.001.101.21

0.700.861.001.171.42

0.820.911.001.131.29 --

0.710.861.001.191.46

1.101.041.001.081.23

0.830.911.001.101.24

0.820.911.001.101.24

Table 5: Multiplier values for effort calculations

--

--

--

--

--

--

57Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Intermediate COCOMO equations

0.322.51.202.8Embedded

0.352.51.123.0Semidetached

0.382.51.053.2Organic

dicibiaiProject

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Table 6: Coefficients for intermediate COCOMO

EAFKLOCaE ib

i *)(=
id

i EcD)(=

58Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Detailed COCOMO

Phase-Sensitive

effort multipliers

Three level product

hierarchy

Modules subsystem

System level

Cost

drivers design

& test

Manpower allocation for

each phase

Detailed COCOMO Model

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

59Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Development Phase

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Plan / Requirements

EFFORT : 6% to 8%

DEVELOPMENT TIME : 10% to 40%

% depend on mode & size

60Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Design

Effort : 16% to 18%

Time : 19% to 38%

Programming

Effort : 48% to 68%

Time : 24% to 64%

Integration & Test

Effort : 16% to 34%

Time : 18% to 34%

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

61Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Size equivalent

Principle of the effort estimate

DD

EE

pp

pp

τ

µ

=

=

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

As the software might be partly developed from software already
existing (that is, re-usable code), a full development is not always
required. In such cases, the parts of design document (DD%), code
(C%) and integration (I%) to be modified are estimated. Then, an
adjustment factor, A, is calculated by means of the following
equation.

A = 0.4 DD + 0.3 C + 0.3 I

The size equivalent is obtained by

S (equivalent) = (S x A) / 100

62Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Lifecycle Phase Values of

0.340.240.240.180.08
Embedded

extra large

S≈320

0.310.260.250.180.08
Embedded

large S≈128

0.280.310.240.170.07
Semidetached

large S≈128

0.250.330.250.170.07
Semidetached

medium S≈32

0.220.380.240.160.06
Organic

medium S≈32

0.160.420.260.160.06
Organic Small

S≈2

Integration
& Test

Module
Code & Test

Detailed
Design

System
Design

Plan &
Requirements

Mode & Code
Size

pµ

Table 7 : Effort and schedule fractions occurring in each phase of the lifecycle

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

63Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Lifecycle Phase Values of

0.300.160.160.380.40
Embedded

extra large

S≈320

0.280.180.180.360.36
Embedded

large S≈128

0.290.250.190.270.22
Semidetached

large S≈128

0.260.270.210.260.20
Semidetached

medium S≈32

0.260.340.210.190.12
Organic

medium S≈32

0.180.390.240.190.10
Organic Small

S≈2

Integration
& Test

Module Code
& Test

Detailed
Design

System
Design

Plan &
Requirements

Mode & Code
Size

pτ

Table 7 : Effort and schedule fractions occurring in each phase of the lifecycle

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

64Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

1. Requirement and product design

(a)Plans and requirements

(b)System design

Distribution of software life cycle:

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

2. Detailed Design

(a)Detailed design

3. Code & Unit test

(a)Module code & test

4. Integrate and Test

(a) Integrate & Test

65Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.7

A new project with estimated 400 KLOC embedded system has to be

developed. Project manager has a choice of hiring from two pools of

developers: Very highly capable with very little experience in the

programming language being used

Or

Developers of low quality but a lot of experience with the programming

language. What is the impact of hiring all developers from one or the

other pool ?

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

66Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

This is the case of embedded mode and model is intermediate

COCOMO.

Case I: Developers are very highly capable with very little experience

in the programming being used.

= 2.8 (400)1.20 = 3712 PM

EAF = 0.82 x 1.14 = 0.9348

E = 3712 x .9348 = 3470 PM

D = 2.5 (3470)0.32 = 33.9 M

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Hence id

i KLOCaE)(=

67Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Case II: Developers are of low quality but lot of experience with the

programming language being used.

EAF = 1.29 x 0.95 = 1.22

E = 3712 x 1.22 = 4528 PM

D = 2.5 (4528)0.32 = 36.9 M

Case II requires more effort and time. Hence, low quality developers
with lot of programming language experience could not match with

the performance of very highly capable developers with very litter

experience.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

68Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Consider a project to develop a full screen editor. The major components
identified are:

I. Screen edit

II. Command Language Interpreter

III. File Input & Output

IV.Cursor Movement

V. Screen Movement

The size of these are estimated to be 4k, 2k, 1k, 2k and 3k delivered source
code lines. Use COCOMO to determine

1. Overall cost and schedule estimates (assume values for different
cost drivers, with at least three of them being different from 1.0)

2. Cost & Schedule estimates for different phases.

Example: 4.8

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

69Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Size of five modules are:

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Screen edit = 4 KLOC

Command language interpreter = 2 KLOC

File input and output = 1 KLOC

Cursor movement = 2 KLOC

Screen movement = 3 KLOC

Total = 12 KLOC

70Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

i. Required software reliability is high, i.e.,1.15

ii. Product complexity is high, i.e.,1.15

iii. Analyst capability is high, i.e.,0.86

iv. Programming language experience is low,i.e.,1.07

v. All other drivers are nominal

EAF = 1.15x1.15x0.86x1.07 = 1.2169

Let us assume that significant cost drivers are

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

71Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(a) The initial effort estimate for the project is obtained from the

following equation

E = ai (KLOC)bi x EAF

= 3.2(12)1.05 x 1.2169 = 52.91 PM

Development time D = Ci(E)di

= 2.5(52.91)0.38 = 11.29 M

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

(b) Using the following equations and referring Table 7, phase wise

cost and schedule estimates can be calculated.

DD

EE

pp

pp

τ

µ

=

=

72Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Since size is only 12 KLOC, it is an organic small model. Phase wise

effort distribution is given below:

System Design = 0.16 x 52.91 = 8.465 PM

Detailed Design = 0.26 x 52.91 = 13.756 PM

Module Code & Test = 0.42 x 52.91 = 22.222 PM

Integration & Test = 0.16 x 52.91 = 8.465 Pm

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Now Phase wise development time duration is

System Design = 0.19 x 11.29 = 2.145 M

Detailed Design = 0.24 x 11.29 = 2.709 M

Module Code & Test = 0.39 x 11.29 = 4.403 M

Integration & Test = 0.18 x 11.29 = 2.032 M

73Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

COCOMO-II

The following categories of applications / projects are identified by

COCOMO-II and are shown in fig. 4 shown below:

End user

programming
Infrastructure

Application

generators &

composition aids

Application

composition

System

integration

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Fig. 4 : Categories of applications / projects

74Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 8: Stages of COCOMO-II

ApplicationsApplication for the

types of projects

Model NameStage

No

Stage I

Stage II

Stage III

Application composition

estimation model

Early design estimation

model

Post architecture

estimation model

Application composition

Application generators,

infrastructure & system

integration

Application generators,

infrastructure & system

integration

In addition to application

composition type of projects, this

model is also used for prototyping

(if any) stage of application

generators, infrastructure & system

integration.

Used in early design stage of a

project, when less is known about

the project.

Used after the completion of the

detailed architecture of the project.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

75Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Application Composition Estimation Model

Fig.5: Steps for the estimation of effort in person months

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

76Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

i. Assess object counts: Estimate the number of screens, reports and

3 GL components that will comprise this application.

ii. Classification of complexity levels: We have to classify each

object instance into simple, medium and difficult complexity levels
depending on values of its characteristics.

Table 9 (a): For screens

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

77Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 9 (b): For reports

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

78Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

iii. Assign complexity weight to each object : The weights are used

for three object types i.e., screen, report and 3GL components using
the Table 10.

Table 10: Complexity weights for each level

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

79Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

iv. Determine object points: Add all the weighted object instances to

get one number and this known as object-point count.

v. Compute new object points: We have to estimate the percentage

of reuse to be achieved in a project. Depending on the percentage
reuse, the new object points (NOP) are computed.

(object points) * (100-%reuse)

NOP = ---

100

NOP are the object points that will need to be developed and differ from
the object point count because there may be reuse.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

80Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

vi. Calculation of productivity rate: The productivity rate can be

calculated as:

Productivity rate (PROD) = NOP/Person month

Table 11: Productivity values

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

81Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

vii.Compute the effort in Persons-Months: When PROD is known,

we may estimate effort in Person-Months as:

NOP
Effort in PM = ------------

PROD

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

82Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Consider a database application project with the following characteristics:

I. The application has 4 screens with 4 views each and 7 data tables

for 3 servers and 4 clients.

II. The application may generate two report of 6 sections each from 07

data tables for two server and 3 clients. There is 10% reuse of

object points.

Example: 4.9

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

The developer’s experience and capability in the similar environment is

low. The maturity of organization in terms of capability is also low.

Calculate the object point count, New object points and effort to develop

such a project.

83Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

This project comes under the category of application composition

estimation model.

24 * (100 -10)

NOP = -------------------- = 21.6

100

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Number of screens = 4 with 4 views each

Number of reports = 2 with 6 sections each

From Table 9 we know that each screen will be of medium

complexity and each report will be difficult complexity.

Using Table 10 of complexity weights, we may calculate object point

count.
= 4 x 2 + 2 x 8 = 24

84Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 11 gives the low value of productivity (PROD) i.e. 7.

NOP

Efforts in PM = -----------

PROD

21.6

Efforts = ----------- = 3.086 PM

7

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

85Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The Early Design Model

The COCOMO-II models use the base equation of the form

PMnominal = A * (size)B

where

PMnominal = Effort of the project in person months

A = Constant representing the nominal productivity, provisionally set to 2.5

B = Scale factor

Size = Software size

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

86Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cont…

RemarksExplanation Scale factor

Precedentness

Development flexibility

Architecture/ Risk

resolution

Reflects the previous

experience on similar

projects. This is applicable to

individuals & organization

both in terms of expertise &

experience

Reflect the degree of flexibility

in the development process.

Reflect the degree of risk

analysis carried out.

Very low means no previous

experiences, Extra high means that

organization is completely familiar with

this application domain.

Very low means a well defined process

is used. Extra high means that the client

gives only general goals.

Very low means very little analysis and

Extra high means complete and through

risk analysis.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Table 12: Scaling factors required for the calculation of the value of B

87Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 12: Scaling factors required for the calculation of the value of B

RemarksExplanation Scale factor

Team cohesion

Process maturity

Reflects the team

management skills.

Reflects the process maturity

of the organization. Thus it is

dependent on SEI-CMM level

of the organization.

Very low means no previous

experiences, Extra high means that

organization is completely familiar with

this application domain.

Very low means organization has no

level at all and extra high means

organization is related as highest level

of SEI-CMM.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

88Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

0.001.563.124.686.247.80Process maturity

0.001.102.193.294.385.48Team cohesion

0.001.412.834.245.657.07Architecture/ Risk
resolution

0.001.012.033.044.055.07Development
flexibility

0.001.242.483.724.966.20Precedent ness

Extra
high

Very
high

HighNominalLowVery
low

Scaling factors

Table 13: Data for the Computation of B

The value of B can be calculated as:

B=0.91 + 0.01 * (Sum of rating on scaling factors for the project)

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

89Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Early design cost drivers

There are seven early design cost drivers and are given below:

i. Product Reliability and Complexity (RCPX)

ii. Required Reuse (RUSE)

iii. Platform Difficulty (PDIF)

iv. Personnel Capability (PERS)

v. Personnel Experience (PREX)

vi. Facilities (FCIL)

vii. Schedule (SCED)

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

90Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Post architecture cost drivers

There are 17 cost drivers in the Post Architecture model. These are rated

on a scale of 1 to 6 as given below :

i. Reliability Required (RELY)

ii. Database Size (DATA)

iii. Product Complexity (CPLX)

iv. Required Reusability (RUSE)

The list of seventeen cost drivers is given below :

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

91Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

v. Documentation (DOCU)

vi. Execution Time Constraint (TIME)

vii. Main Storage Constraint (STOR)

viii.Platform Volatility (PVOL)

ix. Analyst Capability (ACAP)

x. Programmers Capability (PCAP)

xi. Personnel Continuity (PCON)

xii. Analyst Experience (AEXP)

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

92Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

xiii. Programmer Experience (PEXP)

xiv. Language & Tool Experience (LTEX)

xv. Use of Software Tools (TOOL)

xvi. Site Locations & Communication Technology between Sites (SITE)

xvii. Schedule (SCED)

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

93Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Mapping of early design cost drivers and post architecture cost

drivers

The 17 Post Architecture Cost Drivers are mapped to 7 Early Design Cost

Drivers and are given in Table 14

SCEDSCED

TOOL, SITEFCIL

AEXP, PEXP, LTEXPREX

ACAP, PCAP, PCONPERS

TIME, STOR, PVOLPDIF

RUSERUSE

RELY, DATA, CPLX, DOCURCPX

Counter part Combined Post

Architecture Cost drivers

Early Design Cost Drivers

Table 14: Mapping table

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

94Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

i. Product Reliability and Complexity (RCPX): The cost driver combines

four Post Architecture cost drivers which are RELY, DATA, CPLX and

DOCU.

Product of cost drivers for early design model

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

95Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

ii. Required Reuse (RUSE) : This early design model cost driver is same as

its Post architecture Counterpart. The RUSE rating levels are (as per

Table 16):

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

96Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

iii. Platform Difficulty (PDIF) : This cost driver combines TIME, STOR

and PVOL of Post Architecture Cost Drivers.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

97Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

iv. Personnel Capability (PERS) : This cost driver combines three Post

Architecture Cost Drivers. These drivers are ACAP, PCAP and PCON.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

98Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

v. Personnel Experience (PREX) : This early design driver combines three

Post Architecture Cost Drivers, which are AEXP, PEXP and LTEX.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

99Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

vi. Facilities (FCIL): This depends on two Post Architecture Cost Drivers,

which are TOOL and SITE.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

100Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

vii.Schedule (SCED) : This early design cost driver is the same as Post

Architecture Counterpart and rating level are given below using table

16.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

101Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The seven early design cost drivers have been converted into numeric

values with a Nominal value 1.0. These values are used for the calculation

of a factor called “Effort multiplier” which is the product of all seven early

design cost drivers. The numeric values are given in Table 15.

Table 15: Early design parameters

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

102Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The early design model adjusts the nominal effort using 7 effort multipliers

(EMs). Each effort multiplier (also called drivers) has 7 possible weights as

given in Table 15. These factors are used for the calculation of adjusted

effort as given below:

PMadjusted effort may very even up to 400% from PMnominal

Hence PMadjusted is the fine tuned value of effort in the early design phase









×= ∏

=

7

7

nominal

i

iadjusted EMPMPM

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

103Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

A software project of application generator category with estimated 50

KLOC has to be developed. The scale factor (B) has low
precedentness, high development flexibility and low team cohesion.

Other factors are nominal. The early design cost drivers like platform

difficult (PDIF) and Personnel Capability (PERS) are high and others

are nominal. Calculate the effort in person months for the

development of the project.

Example: 4.10

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

104Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Here B = 0.91 + 0.01 * (Sum of rating on scaling factors for the project)

= 0.91 + 0.01 * (4.96 + 2.03 + 4.24 + 4.38 + 4.68)

= 0.91 + 0.01(20.29)=1.1129

PMnominal = A*(size)B

= 2.5 * (50)1.1129 = 194.41 Person months

The 7 cost drivers are

PDIF = high (1.29)

PERS = high (0.83)

RCPX = nominal (1.0)

RUSE = nominal (1.0)

PREX = nominal (1.0)

FCIL = nominal (1.0)

SCEO = nominal (1.0)

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

105Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

= 194.41 * [1.29 x 0.83)

= 194.41 x 1.07

= 208.155 Person months

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

106Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Post Architecture Model

The post architecture model is the most detailed estimation model and is

intended to be used when a software life cycle architecture has been

completed. This model is used in the development and maintenance of

software products in the application generators, system integration or

infrastructure sectors.









×= ∏

=

17

7

nominal

i

iadjusted EMPMPM

EM : Effort multiplier which is the product of 17 cost drivers.

The 17 cost drivers of the Post Architecture model are described in the

table 16.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

107Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cont…Table 16: Post Architecture Cost Driver rating level summary

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

108Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cont…

Table 16: Post Architecture Cost Driver rating level summary

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

109Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cont…
Table 16: Post Architecture Cost Driver rating level summary

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

110Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 16: Post Architecture Cost Driver rating level summary

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

111Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Product complexity is based on control operations, computational

operations, device dependent operations, data management operations and

user interface management operations. Module complexity rating are given

in table 17.

The numeric values of these 17 cost drivers are given in table 18 for the

calculation of the product of efforts i.e., effort multiplier (EM). Hence PM

adjusted is calculated which will be a better and fine tuned value of effort

in person months.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

112Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

User of simple
graphics user
interface (GUI)
builders.

Single file sub
setting with no data
structure changes,
no edits, no
intermediate files,
Moderately
complex COTS-DB
queries, updates.

No cognizance
needed of
particular
processor or I/O
device
characteristics.
I/O done at
GET/PUT level.

Evaluation of
moderate-level
expressions: e.g.,
D=SQRT(B**2-
4*A*C)

Straight forward
nesting of
structured
programming
operators. Mostly
simple predicates

Low

Simple input
forms, report
generators.

Simple arrays in
main memory.
Simple COTSDB
queries, updates.

Simple read,
write statements
with simple
formats.

Evaluation of
simple
expressions: e.g.,
A=B+C*(D-E)

Straight-line code
with a few non-
nested structured
programming
operators: Dos.
Simple module
composition via
procedure calls or
simple scripts.

Very
Low

User Interface
Management
Operations

Data management
Operations

Device-
dependent
Operations

Computational
Operations

Control
Operations

Table 17: Module complexity ratings Cont…

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

113Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Widget set
development
and
extension.
Simple voice
I/O
multimedia.

Simple triggers
activated by data
stream contents.
Complex data
restructuring.

Operations at
physical I/O
level (physical
storage
address
translations;
seeks, read
etc.)
Optimized I/O
overlap.

Basic numerical
analysis:
multivariate
interpolation,
ordinary
differential
equations. Basic
truncation, round
off concerns.

Highly nested
structured
programming operators
with many compound
predicates. Queue and
stack control.
Homogeneous,
distributed processing.
Single processor soft
real time control.

High

Simple use of
widget set.

Multi-file input
and single file
output. Simple
structural
changes, simple
edits. Complex
COTS-DB
queries,
updates.

I/O processing
includes
device
selection,
status
checking and
error
processing.

Use of standard
maths and
statistical
routines. Basic
matrix/ vector
operations.

Mostly simple nesting.
Some inter module
control Decision tables.
Simple callbacks or
message passing,
including middleware
supported distributed
processing.

Nominal

User Interface
Management
Operations

Data
management
Operations

Device-
dependent
Operations

Computational
Operations

Control Operations

Table 17: Module complexity ratings Cont…

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

114Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Complex
multimedia,
virtual reality.

Highly coupled,
dynamic
relational and
object
structures.
Natural
language data
management.

Device timing
dependent coding,
micro
programmed
operations.
Performance
critical embedded
systems.

Difficult and
unstructured
numerical analysis:
highly accurate
analysis of noisy,
stochastic data.
Complex
parallelization.

Multiple resource
scheduling with
dynamically
changing priorities.
Microcode-level
control. Distributed
hard real time
control.

Extra
High

Moderately
complex
2D/3D,
dynamic
graphics,
multimedia.

Distributed
database
coordination.
Complex
triggers. Search
optimization.

Routines for
interrupt
diagnosis,
servicing,
masking.
Communication
line handling.
Performance
intensive
embedded
systems.

Difficult but
structured
numerical analysis:
near singular
matrix equations,
partial differential
equations. Simple
parallelization.

Reentrant and
recursive coding.
Fixed-priority
interrupt handling.
Task
synchronization,
complex callbacks,
heterogeneous
distributed
processing. Single
processor hard real
time control.

Very
High

User
Interface
Management
Operations

Data
management
Operations

Device-dependent
Operations

Computational
Operations

Control Operations

Table 17: Module complexity ratings

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

115Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 18: 17 Cost Drivers

0.740.871.001.161.37PCAP

0.670.831.001.221.50ACAP

1.301.151.000.87PVOL

1.571.211.061.00STOR

1.671.311.111.00TIME

1.131.061.000.950.89DOCU

1.491.291.141.000.91RUSE

1.661.301.151.000.880.75CPLX

1.191.091.000.93DATA

1.391.151.000.880.75RELY

Extra HighVery
High

HighNominalLowVery Low

RatingCost
Driver

Cont…

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

116Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 18: 17 Cost Drivers

1.001.001.001.101.29SCED

0.780.840.921.001.101.25SITE

0.720.861.001.121.24TOOL

0.840.911.001.101.22LTEX

0.810.881.001.121.25PEXP

0.810.891.001.101.22AEXP

0.840.921.001.101.24PCON

Extra HighVery
High

HighNominalLowVery Low

RatingCost
Driver

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

117Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Schedule estimation

Development time can be calculated using PMadjusted as a key factor and the

desired equation is:

100

%
)([))]091.0(2.028.0(

nominal

SCED
PMTDEV

B

adjusted ∗×= −+φ

where Φ = constant, provisionally set to 3.67

TDEVnominal = calendar time in months with a scheduled constraint

B = Scaling factor

PMadjusted = Estimated effort in Person months (after adjustment)

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

118Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Size measurement

Size can be measured in any unit and the model can be calibrated

accordingly. However, COCOMO II details are:

i. Application composition model uses the size in object points.

ii. The other two models use size in KLOC

Early design model uses unadjusted function points. These function points

are converted into KLOC using Table 19. Post architecture model may

compute KLOC after defining LOC counting rules. If function points are

used, then use unadjusted function points and convert it into KLOC using

Table 19.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

119Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

29C++

128C

128Basic-Interpreted

91Basic-Compiled

64ANSI/Quick/Turbo Basic

213Assembly (Macro)

320Assembly

32APL

49AI Shell

71Ada

SLOC/UFPLanguage

Table 19: Converting function points to lines of code

Cont…

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

120Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

6Spreadsheet

80Report Generator

64Prolog

91Pascal

80Modula 2

64Lisp

105Jovial

64Forth

105Fortan 77

91ANSI Cobol 85

SLOC/UFPLanguage

Table 19: Converting function points to lines of code

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

121Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Consider the software project given in example 4.10. Size and scale factor

(B) are the same. The identified 17 Cost drivers are high reliability (RELY),

very high database size (DATA), high execution time constraint (TIME),

very high analyst capability (ACAP), high programmers capability (PCAP).

The other cost drivers are nominal. Calculate the effort in Person-Months for

the development of the project.

Example: 4.11

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

122Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Here B = 1.1129

PMnominal = 194.41 Person-months

= 194.41 x (1.15 x 1.19 x 1.11 x 0.67 x 0.87)

= 194.41 x 0.885

= 172.05 Person-months









×= ∏

=

17

7

nominal

i

iadjusted EMPMPM

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

123Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Putnam Resource Allocation Model

Norden of IBM

Rayleigh curve

Model for a range of hardware development projects.

Fig.6: The Rayleigh manpower loading curve

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Persons

Time

Overall Curve

Design and Coding

124Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Putnam observed that this curve was a close

approximation at project level and software subsystem

level.

No. of projects = 150

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

125Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The Norden / Rayleigh Curve

= manpower utilization rate per unit time

a = parameter that affects the shape of the curve

K = area under curve in the interval [0, ∞]

t = elapsed time

dt

dy

2

2)(at
kate

dt

dy
tm

−== --------- (1)

The curve is modeled by differential equation

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

126Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

On Integration on interval [o, t]

Where y(t): cumulative manpower used upto time t.

y(0) = 0

y(∞) = k

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

y(t) = K [1-e-at2] -------------(2)

The cumulative manpower is null at the start of the project, and

grows monotonically towards the total effort K (area under the

curve).

127Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

0]21[2 22

2

2

=−= − atkae
dt

yd at

a
td

2

12 =

“td”: time where maximum effort rate occurs

Replace “td” for t in equation (2)

2

5.02

2

1

3935.0)(

)1(1)(
2

2

d

t

t

t
a

ktyE

eKektyE d

d

=

==

−=












−== −

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

128Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Replace “a” with in the Norden/Rayleigh model. By

making this substitution in equation we have

22

1

dt

2

2

2

22

2
dt

t

d

te
t

K
tm

−

=)(

2

2

2

2
dt

t

d

te
t

K −

=

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

129Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

m (t)

Person

Time (years)

a=2

a=0.5
a=0.222

a=0.125

Fig.7: Influence of parameter ‘a’ on the manpower

distribution

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

130Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

At time t=td, peak manning m (td) is obtained and denoted by mo.

et

k
m

d

o =

k = Total project cost/effort in person-years.

td = Delivery time in years

m0 = No. of persons employed at the peak

e = 2.71828

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

131Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.12

A software development project is planned to cost 95 MY in a period

of 1 year and 9 months. Calculate the peak manning and average rate

of software team build up.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

132Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

persons3394.32
648.175.1

95
==

×

Average rate of software team build up

monthpersonoryearpersons
t

m

d

/56.1/8.18
75.1

330

===

Software development cost k=95 MY

Peak development time td = 1.75 years

Peak manning mo=
et

k

d

Solution

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

133Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.13

Consider a large-scale project for which the manpower requirement is

K=600 PY and the development time is 3 years 6 months.

(a)Calculate the peak manning and peak time.

(b)What is the manpower cost after 1 year and 2 months?

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

134Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(a)We know td=3 years and 6 months = 3.5 years

NOW

=∴ 0m

Solution

600/(3.5x1.648) 104 persons≅

et

K
m

d

=0

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

135Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(b) We know

[]2

1)(at
eKty

−−=

t = 1 year and 2 months

= 1.17 years

041.0
)5.3(2

1

2

1
22

=
×

==
dt

a

[]2)17.1(041.01600)17.1(−−= ey

= 32.6 PY

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

136Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Slope of manpower distribution curve at start time t=0 has

some useful properties.

)21(2)(' 2

2

2
2

atkae
dt

yd
tm

at −== −

Then, for t=0

222

2
2)0('

dd t

K

t

K
Kam ===

Difficulty Metric

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

137Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The ratio is called difficulty and denoted by D,

which is measured in person/year :

2

dt

K

D= persons/year2

dt

k

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

138Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Project is difficult to develop

if

Manpower demand

is high

When time schedule

is short

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

139Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Peak manning is defined as:

Thus difficult projects tend to have a higher peak

manning for a given development time, which is in line

with Norden’s observations relative to the parameter “a”.

et

k
m

d

=0

dd t

em

t

k
D 0

2
==

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

140Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

D is dependent upon “K”. The derivative of D relative to

“K” and “td” are

2

3

2
yearpersons

t

k
tD

d

d /)('
−

=

2

2

1
)(' −= year

t
kD

d

Manpower buildup

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

141Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

D1(K) will always be very much smaller than the absolute value of

D1(td). This difference in sensitivity is shown by considering two

projects

Project A : Cost = 20 PY & td = 1 year

Project B : Cost = 120 PY & td = 2.5 years

Project A : D` (td) = -40 & D`(K) = 1

Project B : D` (td) = -15.36 & D`(K) = 0.16

The derivative values are

This shows that a given software development is time sensitive.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

142Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Putnam observed that

Difficulty derivative relative to time

Behavior of s/w development

If project scale is increased, the development time also

increase to such an extent that remains constant

around a value which could be 8,15,27.

3

dt

k

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

143Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

It is represented by D0 and can be expressed as:

2

30 / yearperson
t

k
D

d

=

D0 =8, new s/w with many interfaces & interactions

with other systems.

D0 =15, New standalone system.

D0 =27, The software is rebuild form existing software.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

144Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.14

Consider the example 4.13 and calculate the difficulty and

manpower build up.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

145Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

We know

Solution

2

dt

K
D =Difficulty

yearperson /49
)5.3(

600
2

==

Manpower build up can be calculated by following equation

30

dt

K
D =

2

3
/14

)5.3(

600
yearperson==

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

146Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Productivity = No. of LOC developed per person-month

P ∞ Dβ

Avg. productivity

P =

codeproducetoused
manpowercumulative

producedLOC

Productivity Versus Difficulty

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

147Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

P = S/E

)3935.0(
3

2

2
k

t

k
S

d

−









= φ

343139350
//. dtKS φ=

).(
/

/

/

KD

EDS

DP

3935032

32

32

−

−

−

=

=

=

φ

φ

φ

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

148Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

c

Technology Factor

Programming

environment

Hardware

constraints
Complexity

Experience

φ39.0

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

149Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

C 610 – 57314

K : P-Y

T : Years

3/43/1
d

t

CKS =

3/43/1

.
−−

= d
t

KSC

CStK d /3/43/1 =
3

4

1








=

C

S

t
K

d

The trade off of time versus cost

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

150Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

C = 5000

S = 5,00,000 LOC

3

4
)100(

1

dt
K =

123463.0

66643.5

39064.0

16005.0

K (P-Y)td (years)

Table 20: (Manpower versus development time)

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

151Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Development Subcycle

All that has been discussed so far is related to project life cycle as

represented by project curve

Manpower

distribution

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Fig.8: Project life cycle

Maintenance

Project

Test &

Validation
Design code

developmentRequirements

& Specification

Time

152Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Project curve is the addition of two curves

Development

Curve

Test &

Validation

Curve

Project life cycle

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

153Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

An examination of md(t) function shows a non-zero value of md

at time td.

This is because the manpower involved in design & coding is

still completing this activity after td in form of rework due to

the validation of the product.

Nevertheless, for the model, a level of completion has to be

assumed for development.

It is assumed that 95% of the development will be completed

by the time td.

md (t) = 2kdbt e-bt2

yd (t) = Kd [1-e-bt2]

∴

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

154Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

95.01
)(2

=−=
−bt

e
K

ty

d

d

22

1

odt
b =

Tod: time at which development curve exhibits a peak

manning.

6

d
od

t
t =

We may say that∴

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

155Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Relationship between Kd & K must be established.

At the time of origin, both cycles have the same slope.

o

d

od

d

do dt

dm

t

K

t

K

dt

dm








===








22

Kd=K/6

22

od

d

d t

K

t

K
D ==

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

156Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

This does not apply to the manpower build up D0.

Conte investigated that

Larger projects reasonable

Medium & small projects overestimate

33
6 od

d

d

o
t

K

t

K
D ==

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

157Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.15

A software development requires 90 PY during the total development

sub-cycle. The development time is planned for a duration of 3 years

and 5 months

(a)Calculate the manpower cost expended until development time

(b) Determine the development peak time

(c) Calculate the difficulty and manpower build up.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

158Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(a) Duration td = 3.41 years

Solution

95.0
)(

=
d

dd

K

ty

9095.0)(×=dd tY

= 85.5 PY

We know from equation 95.01
)(

=−=
− dbt

e
K

ty

d

d

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

159Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(b) We know from equation

6

d
od

t
t =

years
t

t d
od 39.1449.2/41.3

6
===

months17≅

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

160Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(c) Total Manpower development

PYKK d 5406906 =×==

46)41.3/(540/ 22 === dtKD

95.0/)(ddd tyK =

= 85.5 / 0.95 = 90

persons/years

6.13)41.3/(540 3

3
===

d

o
t

K
D persons/years2

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

161Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example:4.16

A software development for avionics has consumed 32 PY

up to development cycle and produced a size of 48000

LOC. The development of project was completed in 25

months. Calculate the development time, total manpower

requirement, development peak time, difficulty,

manpower build up and technology factor.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

162Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution:

PY
tY

k dd
d 7.33

95.0

32

95.0

)(
===

monthsyears
t

t d
od 10850

6
=== .

)(

K = 6Kd = 6 x 33.7 = 202 PY

yearspesons
t

k
D

d

/7.46
)08.2(

202
22

===

Development time td = 25 months = 2.08 years

Total manpower development

Development peak time

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

163Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2

330 522
082

202
yearPersons

t

k
D

d

/.
).(

===

3/43/1 −−= dtSKC

= 3077

Technology factor

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

164Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example 4.17

What amount of software can be delivered in 1 year 10 months in an

organization whose technology factor is 2400 if a total of 25 PY is

permitted for development effort.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

165Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution:

3/43/1

dtCKS =

= 2400 x 5.313 x 2.18 = 27920 LOC

We know

td = 1.8 years

Kd = 25 PY

K = 25 x 6 = 150 PY

C = 2400

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

166Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example 4.18

The software development organization developing real time

software has been assessed at technology factor of 2200. The

maximum value of manpower build up for this type of

software is Do=7.5. The estimated size to be developed is

S=55000 LOC.

(a) Determine the total development time, the total

development manpower cost, the difficulty and the

development peak manning.

(b) The development time determined in (a) is considered too

long. It is recommended that it be reduced by two months.

What would happen?

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

167Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

3/43/1

dtCKS =

4

3

dkt
c

s
=









7

3

dotD
C

S
=









7/1
3

0

1




















=

C

S

D
td

We have

which is also equivalent to

then

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

168Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

25=
C

S
Since

td = 3 years

PYKd 75.33
06

202
==

D = D0td = 22.5 persons / year

years
t

t d
od 2.1

6

3

6
===

Total development manpower cost

PYtDK d 202275.73

0 =×==

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

169Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Md(t) = 2kd bte-bt2

Yd(t) = kd (1-e-bt2)

Here t = tod

2/1−== eDtm odod

= 22.5 x 1.2 x .606 = 16 persons

Peak manning

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

170Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

III. If development time is reduced by 2 months

Developing

s/w at higher

manpower

build-up

Producing

less software

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

171Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3

7

1








=

C

S

t
D

d

o

Now td = 3 years – 2 months = 2.8 years

yearspersonsDo /.)./()(6118225 73 ==

PYtDk d 2543

0 ==

(i) Increase Manpower Build-up

PYKd 4.42
6

254
==

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

172Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

D = D0td = 32.5 persons / year

The peak time is tod = 1.14 years

Peak manning mod = Dtod e-0.5

= 32.5 x 1.14 x 0.6

= 22 persons

Note the huge increase in peak manning & manpower

cost.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

173Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

696.10119)8.2(5.7 77

0

3

=×==







dtD

C

S

62989.21

3

=








C

S

Then for C=2200

S=47586 LOC

(ii) Produce Less Software

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

174Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Productivity versus difficultProductivity versus difficultProductivity versus difficultProductivity versus difficult

Example 4.19

A stand alone project for which the size is estimated at 12500

LOC is to be developed in an environment such that the

technology factor is 1200. Choosing a manpower build up

Do=15, Calculate the minimum development time, total

development man power cost, the difficulty, the peak manning,

the development peak time, and the development productivity.

175Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

3/43/1

dtCKS =

Size (S) = 12500 LOC

Technology factor (C) = 1200

Manpower buildup (Do) = 15

Now

3/43/1

dtK
C

S
=

4

3

dKt
C

S
=









Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

176Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3

d

o
t

K
DknowweAlso =

7

3

dotD
C

S
=









7/1
3

15

)416.10(








=dt

Substituting the values, we get

33

dodo tDtDK ==

Hence

7

3

15
1200

12500
dt=









yearstd 85.1=

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

177Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(i) Hence Minimum development time (td)=1.85 years

(ii) Total development manpower cost
6

K
Kd =

315 dtK =

PY
K

Kd 83.15
6

97.94

6
===

=15(1.85)3=94.97 PY

Hence

(iii) Difficulty yearPersons
t

K
D

d

/.
).(

.
7527

851

9794
22

===

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

178Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(iv) Peak Manning
et

K
m

d

=0

Persons15.31
648.185.1

97.94
=

×
=

(v) Development Peak time

6

d
od

t
t =

years755.0
449.2

85.1
==

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

179Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(vi) Development Productivity

)(

)(.

dKeffort

ScodeoflinesofNo
=

PYLOC /6.789
83.15

12500
==

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

180Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� We Software developers are extremely optimists.

� We assume, everything will go exactly as planned.

� Other view

not possible to predict what is going to happen ?

Software surprises

Never good news

Software Risk Management

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

181Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Risk management is required to reduce this surprise

factor

Dealing with concern before it becomes a crisis.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Quantify probability of failure & consequences of failure.

182Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

What is risk ?

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Tomorrow’s problems are today’s risks.

“Risk is a problem that may cause some loss or

threaten the success of the project, but which has

not happened yet”.

183Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Risk management is the process of identifying addressing

and eliminating these problems before they can damage

the project.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Current problems &

Potential Problems

184Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Capers Jones has identified the top five risk factors that

threaten projects in different applications.

1. Dependencies on outside agencies or factors.

Typical Software Risk

• Availability of trained, experienced persons

• Inter group dependencies

• Customer-Furnished items or information

• Internal & external subcontractor relationships

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

185Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2. Requirement issues

Uncertain requirements

Wrong product

or

Right product badly

Either situation results in unpleasant surprises and

unhappy customers.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

186Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

• Lack of clear product vision

• Unprioritized requirements

• Lack of agreement on product requirements

• New market with uncertain needs

• Rapidly changing requirements

• Inadequate Impact analysis of requirements changes

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

187Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3. Management Issues

Project managers usually write the risk management

plans, and most people do not wish to air their

weaknesses in public.

• Inadequate planning

• Inadequate visibility into actual project status

• Unclear project ownership and decision making

• Staff personality conflicts

• Unrealistic expectation

• Poor communication

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

188Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

4. Lack of knowledge

• Inadequate training

• Poor understanding of methods, tools, and

techniques

• Inadequate application domain experience

• New Technologies

• Ineffective, poorly documented or neglected

processes

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

189Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

5. Other risk categories

• Unavailability of adequate testing facilities

• Turnover of essential personnel

• Unachievable performance requirements

• Technical approaches that may not work

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

190Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Risk

Management

Risk

Assessment

Risk Control

Risk Identification

Risk Analysis

Risk Prioritization

Risk Management

Planning

Risk Monitoring

Risk Resolution

Risk Management Activities

Fig. 9: Risk Management

Activities

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

191Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Identification of risks

Risk Assessment

Risk analysis involves examining how project outcomes

might change with modification of risk input variables.

Risk prioritization focus for severe risks.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

Risk exposure: It is the product of the probability of incurring

a loss due to the risk and the potential magnitude of that loss.

192Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Another way of handling risk is the risk avoidance. Do not do

the risky things! We may avoid risks by not undertaking

certain projects, or by relying on proven rather than cutting

edge technologies.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

193Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Risk Management Planning produces a plan for dealing with

each significant risks.

Risk Control

� Record decision in the plan.

Risk resolution is the execution of the plans of dealing with

each risk.

Software Project PlanningSoftware Project PlanningSoftware Project PlanningSoftware Project Planning

194Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

4.1 After the finalization of SRS, we may like to estimate

(a) Size (b) Cost

(c) Development time (d) All of the above.

4.2 Which one is not a size measure for software

(a) LOC (b) Function Count

(c) Cyclomatic Complexity (d) Halstead’s program length

4.3 Function count method was developed by

(a) B.Beizer (b) B.Boehm

(c) M.halstead (d) Alan Albrecht

4.4 Function point analysis (FPA) method decomposes the system into functional
units. The total number of functional units are

(a) 2 (b) 5

(c) 4 (d) 1

Multiple Choice Questions
Note: Choose most appropriate answer of the following questions:

195Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

4.6 Function point can be calculated by

(a) UFP * CAF (b) UFP * FAC

(c) UFP * Cost (d) UFP * Productivity

Multiple Choice Questions

4.7 Putnam resource allocation model is based on

(a) Function points

(b) Norden/ Rayleigh curve

(c) Putnam theory of software management

(d) Boehm’s observation on manpower utilisation rate

4.5 IFPUG stand for

(a) Initial function point uniform group

(b) International function point uniform group

(c) International function point user group

(d) Initial function point user group

4.8 Manpower buildup for Putnam resource allocation model is

22
yearpersonstKa d //)(23

yearpersonstKb d //)(

yearpersonstKc d //)(2
yearpersonstKd d //)(3

196Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

4.9 COCOMO was developed initially by

(a) B.W.Bohem (b) Gregg Rothermal

(c) B.Beizer (d) Rajiv Gupta

Multiple Choice Questions

4.10 A COCOMO model is

(a) Common Cost estimation model

(b) Constructive cost Estimation model

(c) Complete cost estimation model

(d) Comprehensive Cost estimation model

4.11 Estimation of software development effort for organic software is COCOMO is

(a) E=2.4(KLOC)1.05PM (b) E=3.4(KLOC)1.06PM

(c) E=2.0(KLOC)1.05PM (d) E-2.4(KLOC)1.07PM

4.12 Estimation of size for a project is dependent on

(a) Cost (b) Schedule

(c) Time (d) None of the above

4.13 In function point analysis, number of Complexity adjustment factor are

(a) 10 (b) 20

(c) 14 (d) 12

197Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

4.14 COCOMO-II estimation model is based on

(a) Complex approach (b) Algorithm approach

(c) Bottom up approach (d) Top down approach

4.15 Cost estimation for a project may include

(a) Software Cost (b) Hardware Cost

(c) Personnel Costs (d) All of the above

4.16 In COCOMO model, if project size is typically 2-50 KLOC, then which mode
is to be selected?

(a) Organic (b) Semidetached

(c) Embedded (d) None of the above

Multiple Choice Questions

4.17 COCOMO-II was developed at

(a) University of Maryland (b) University of Southern California

(c) IBM (d) AT & T Bell labs

4.18 Which one is not a Category of COCOMO-II

(a) End User Programming (b) Infrastructure Sector

(c) Requirement Sector (d) System Integration

198Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

4.19 Which one is not an infrastructure software?

(a) Operating system (b) Database management system

(c) Compilers (d) Result management system

4.20 How many stages are in COCOMO-II?

(a) 2 (b) 3

(c) 4 (d) 5

4.21 Which one is not a stage of COCOMO-II?

(a) Application Composition estimation model

(b) Early design estimation model

(c) Post architecture estimation model

(d) Comprehensive cost estimation model

4.22 In Putnam resource allocation model, Rayleigh curve is modeled by the equation

2

2)()(at
eattma

−=
2

2)()(at
eKttmb

−=
2

2)()(at
eKattmc

−=
2

2)()(at
eKbttmd

−=

199Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

4.23 In Putnam resource allocation model, technology factor ‘C’ is defined as

4.24 Risk management activities are divided in

(a) 3 Categories (b) 2 Categories

(c) 5 Categories (d) 10 Categories

Multiple Choice Questions

4.25 Which one is not a risk management activity?

(a) Risk assessment (b) Risk control

(c) Risk generation (d) None of the above

3/43/1)(−−= dtSKCa 3/43/1)(dtSKCb =
3/43/1)(−= dtSKCc 3/43/1)(dtSKCd −=

200Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

4.1 What are various activities during software project planning?

4.2 Describe any two software size estimation techniques.

4.3 A proposal is made to count the size of ‘C’ programs by number of
semicolons, except those occurring with literal strings. Discuss the
strengths and weaknesses to this size measure when compared with the
lines of code count.

4.4 Design a LOC counter for counting LOC automatically. Is it language
dependent? What are the limitations of such a counter?

4.5 Compute the function point value for a project with the following
information domain characteristics.

Number of user inputs = 30

Number of user outputs = 42

Number of user enquiries = 08

Number of files = 07

Number of external interfaces = 6

Assume that all complexity adjustment values are moderate.

201Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

4.6 Explain the concept of function points. Why FPs are becoming
acceptable in industry?

4.7 What are the size metrics? How is function point metric advantageous
over LOC metric? Explain.

4.8 Is it possible to estimate software size before coding? Justify your answer
with suitable example.

4.9 Describe the Albrecht’s function count method with a suitable example.

4.10 Compute the function point FP for a payroll program that reads a file of
employee and a file of information for the current month and prints
cheque for all the employees. The program is capable of handling an
interactive command to print an individually requested cheque
immediately.

202Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

4.11 Assume that the previous payroll program is expected to read a file
containing information about all the cheques that have been printed. The
file is supposed to be printed and also used by the program next time it is
run, to produce a report that compares payroll expenses of the current
month with those of the previous month. Compute functions points for
this program. Justify the difference between the function points of this
program and previous one by considering how the complexity of the
program is affected by adding the requirement of interfacing with
another application (in this case, itself).

4.12 Explain the Walson & Felix model and compare with the SEL model.

4.13 The size of a software product to be developed has been estimated to be
22000 LOC. Predict the manpower cost (effort) by Walston-Felix Model
and SEL model.

4.14 A database system is to be developed. The effort has been estimated to
be 100 Persons-Months. Calculate the number of lines of code and
productivity in LOC/Person-Month.

203Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

4.15 Discuss various types of COCOMO mode. Explain the phase wise
distribution of effort.

4.16 Explain all the levels of COCOMO model. Assume that the size of an
organic software product has been estimated to be 32,000 lines of code.
Determine the effort required to developed the software product and the
nominal development time.

4.17 Using the basic COCOMO model, under all three operating modes,
determine the performance relation for the ratio of delivered source code
lines per person-month of effort. Determine the reasonableness of this
relation for several types of software projects.

4.18 The effort distribution for a 240 KLOC organic mode software
development project is: product design 12%, detailed design 24%, code
and unit test 36%, integrate and test 28%. How would the following
changes, from low to high, affect the phase distribution of effort and the
total effort: analyst capability, use of modern programming languages,
required reliability, requirements volatility?

204Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

4.19 Specify, design, and develop a program that implements COCOMO.
Using reference as a guide, extend the program so that it can be used as a
planning tool.

4.20 Suppose a system for office automation is to be designed. It is clear
from requirements that there will be five modules of size 0.5 KLOC, 1.5
KLOC, 2.0 KLOC, 1.0 KLOC and 2.0 KLOC respectively. Complexity,
and reliability requirements are high. Programmer’s capability and
experience is low. All other factors are of nominal rating. Use COCOMO
model to determine overall cost and schedule estimates. Also calculate
the cost and schedule estimates for different phases.

4.21 Suppose that a project was estimated to be 600 KLOC. Calculate the
effort and development time for each of the three modes i.e., organic,
semidetached and embedded.

4.22 Explain the COCOMO-II in detail. What types of categories of projects
are identified?

205Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

4.24 Describe various stages of COCOMO-II. Which stage is more popular
and why?

4.25 A software project of application generator category with estimated size
of 100 KLOC has to be developed. The scale factor (B) has high
percedentness, high development flexibility. Other factors are nominal.
The cost drivers are high reliability, medium database size, high
Personnel capability, high analyst capability. The other cost drivers are
nominal. Calculate the effort in Person-Months for the development of
the project.

4.27 Describe the trade-off between time versus cost in Putnam resource
allocation model.

4.26 Explain the Putnam resource allocation model. What are the limitations
of this model?

4.23 Discuss the Infrastructure Sector of COCOMO-II.

4.28 Discuss the Putnam resources allocation model. Derive the time and
effort equations.

206Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

4.30 Obtain software productivity data for two or three software development
programs. Use several cost estimating models discussed in this chapter.
How to the results compare with actual project results?

4.31 It seems odd that cost and size estimates are developed during software
project planning-before detailed software requirements analysis or design
has been conducted. Why do we think this is done? Are there
circumstances when it should not be done?

4.29 Assuming the Putnam model, with S=100,000 , C=5000, Do=15,
Compute development time td and manpower development Kd.

4.32 Discuss typical software risks. How staff turnover problem affects
software projects?

4.33 What are risk management activities? Is it possible to prioritize the risk?

207Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

4.35 What is risk? Is it economical to do risk management? What is the effect
of this activity on the overall cost of the project?

4.36 There are significant risks even in student projects. Analyze a student
project and list all the risk.

4.34 What is risk exposure? What techniques can be used to control each
risk?

1Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

� More creative than analysis

� Problem solving activity

‘HOW’

Software design document (SDD)

WHAT IS DESIGN

3Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Gather data on user requirements

Analyze requirements data

Conceive of a high level design

Refine & document the design

Initial requirements

Obtain answers to
requirement
questions

Validate the design
against the

requirements

Completed design

Fig. 1 : Design framework

4Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

design

Customer Developers

(Implementers)

Satisfy

Software DesignSoftware DesignSoftware DesignSoftware Design

5Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig. 2 : A two part design process

A two part design
process

Customer System

Builders

How

Technical

design

D

e

s

i
g

n

e

r
s

What

Conceptual

design

Conceptual Design and Technical Design

Software DesignSoftware DesignSoftware DesignSoftware Design

6Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Conceptual design answers :

� Where will the data come from ?

� What will happen to data in the system?

� How will the system look to users?

� What choices will be offered to users?

� What is the timings of events?

� How will the reports & screens look like?

7Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Technical design describes :

� Hardware configuration

� Software needs

� Communication interfaces

� I/O of the system

� Software architecture

� Network architecture

� Any other thing that translates the requirements in to a

solution to the customer’s problem.

8Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

The design needs to be

� Correct & complete

� Understandable

� At the right level

� Maintainable

9Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Informal

design

outline

Informal

design

More

formal

design

Finished

design

Fig. 3 : The transformation of an informal design to a detailed

design.

10Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

MODULARITY

There are many definitions of the term module. Range is from :

i. Fortran subroutine

ii. Ada package

iii. Procedures & functions of PASCAL & C

iv. C++ / Java classes

v. Java packages

vi. Work assignment for an individual programmer

11Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

All these definitions are correct. A modular

system consist of well defined manageable

units with well defined interfaces among

the units.

12Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Properties :

i. Well defined subsystem

ii. Well defined purpose

iii. Can be separately compiled and stored in a
library.

iv. Module can use other modules

v. Module should be easier to use than to build

vi. Simpler from outside than from the inside.

13Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Modularity is the single attribute of software that

allows a program to be intellectually manageable.

It enhances design clarity, which in turn eases

implementation, debugging, testing,

documenting, and maintenance of software

product.

14Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig. 4 : Modularity and software cost

15Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Module Coupling

(Uncoupled : no dependencies)

(a)

Coupling is the measure of the degree of

interdependence between modules.

16Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Loosely coupled:
some dependencies

(B)

Highly coupled:
many dependencies

(C)

Fig. 5 : Module coupling

17Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

This can be achieved as:

� Controlling the number of parameters passed
amongst modules.

� Avoid passing undesired data to calling
module.

� Maintain parent / child relationship between
calling & called modules.

� Pass data, not the control information.

18Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Consider the example of editing a student record in a

‘student information system’.

Edit student

record

Retrieve

student record

Student name,
student ID,

address,

course

Student

record

EOF

Edit student

record

Retrieve

student record

Student
record

EOF

Student

ID

Poor design: Tight Coupling Good design: Loose Coupling

Fig. 6 : Example of coupling

19Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Given two procedures A & B, we can identify number of

ways in which they can be coupled.

Worst Content coupling

Common coupling

External coupling

Control coupling

Stamp coupling

BestData coupling

Fig. 7 : The types of module coupling

Software DesignSoftware DesignSoftware DesignSoftware Design

20Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Data coupling

Stamp coupling

The dependency between module A and B is said to be data

coupled if their dependency is based on the fact they

communicate by only passing of data. Other than

communicating through data, the two modules are

independent.

Stamp coupling occurs between module A and B when

complete data structure is passed from one module to another.

21Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Control coupling

Module A and B are said to be control coupled if they

communicate by passing of control information. This is usually

accomplished by means of flags that are set by one module and

reacted upon by the dependent module.

Common coupling

With common coupling, module A and module B have shared

data. Global data areas are commonly found in programming

languages. Making a change to the common data means tracing

back to all the modules which access that data to evaluate the

effect of changes.

22Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig. 8 : Example of common coupling

Software DesignSoftware DesignSoftware DesignSoftware Design

23Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Content coupling

Content coupling occurs when module A changes data of

module B or when control is passed from one module to the

middle of another. In Fig. 9, module B branches into D, even

though D is supposed to be under the control of C.

24Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig. 9 : Example of content coupling

Software DesignSoftware DesignSoftware DesignSoftware Design

25Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cohesion is a measure of the degree to which the

elements of a module are functionally related.

Software DesignSoftware DesignSoftware DesignSoftware Design

Module Cohesion

Fig. 10 : Cohesion=Strength of relations within modules

Module
strength

26Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Types of cohesion

� Functional cohesion

� Sequential cohesion

� Procedural cohesion

� Temporal cohesion

� Logical cohesion

� Coincident cohesion

27Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig. 11 : Types of module cohesion

Software DesignSoftware DesignSoftware DesignSoftware Design

Worst (low)Coincidental Cohesion

Logical Cohesion

Temporal Cohesion

Procedural Cohesion

Communicational Cohesion

Sequential Cohesion

Best (high)Functional Cohesion

28Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Functional Cohesion

� A and B are part of a single functional task. This is very good

reason for them to be contained in the same procedure.

Sequential Cohesion

� Module A outputs some data which forms the input to B. This is

the reason for them to be contained in the same procedure.

29Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Procedural Cohesion

�Procedural Cohesion occurs in modules whose instructions

although accomplish different tasks yet have been combined

because there is a specific order in which the tasks are to be
completed.

Temporal Cohesion

�Module exhibits temporal cohesion when it contains tasks that

are related by the fact that all tasks must be executed in the

same time-span.

30Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Logical Cohesion

� Logical cohesion occurs in modules that contain instructions

that appear to be related because they fall into the same logical

class of functions.

Coincidental Cohesion

� Coincidental cohesion exists in modules that contain

instructions that have little or no relationship to one another.

31Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Relationship between Cohesion & Coupling

Fig. 12 : View of cohesion and coupling

If the software is not properly modularized, a host of seemingly

trivial enhancement or changes will result into death of the project.

Therefore, a software engineer must design the modules with goal of

high cohesion and low coupling.

32Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

STRATEGY OF DESIGN

A good system design strategy is to organize the program modules

in such a way that are easy to develop and latter to, change.

Structured design techniques help developers to deal with the size

and complexity of programs. Analysts create instructions for the

developers about how code should be written and how pieces of

code should fit together to form a program. It is important for two

reasons:

� First, even pre-existing code, if any, needs to be understood,

organized and pieced together.

� Second, it is still common for the project team to have to write

some code and produce original programs that support the

application logic of the system.

33Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Bottom-Up Design

Fig. 13 : Bottom-up tree structure

These modules are collected together in the form of a “library”.

Software DesignSoftware DesignSoftware DesignSoftware Design

34Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Top-Down Design

A top down design approach starts by identifying the major modules

of the system, decomposing them into their lower level modules and

iterating until the desired level of detail is achieved. This is stepwise

refinement; starting from an abstract design, in each step the design

is refined to a more concrete level, until we reach a level where no

more refinement is needed and the design can be implemented

directly.

Software DesignSoftware DesignSoftware DesignSoftware Design

35Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Hybrid Design

For top-down approach to be effective, some bottom-up approach is

essential for the following reasons:

Software DesignSoftware DesignSoftware DesignSoftware Design

� To permit common sub modules.

� Near the bottom of the hierarchy, where the intuition is simpler,

and the need for bottom-up testing is greater, because there are
more number of modules at low levels than high levels.

� In the use of pre-written library modules, in particular, reuse of

modules.

36Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

FUNCTION ORIENTED DESIGN

Function Oriented design is an approach to software design where

the design is decomposed into a set of interacting units where each

unit has a clearly defined function. Thus, system is designed from

a functional viewpoint.

Software DesignSoftware DesignSoftware DesignSoftware Design

37Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

38Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

We continue the refinement of each module until we reach the statement

level of our programming language. At that point, we can describe the

structure of our program as a tree of refinement as in design top-down

structure as shown in fig. 14.

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig. 14 : Top-down structure

39Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

If a program is created top-down, the modules become very specialized.

As one can easily see in top down design structure, each module is used

by at most one other module, its parent. For a module, however, we

must require that several other modules as in design reusable structure

as shown in fig. 15.

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig. 15 : Design reusable structure

40Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Design Notations

Design notations are largely meant to be used during the process

of design and are used to represent design or design decisions.

For a function oriented design, the design can be represented
graphically or mathematically by the following:

Software DesignSoftware DesignSoftware DesignSoftware Design

� Data flow diagrams

� Data Dictionaries

� Structure Charts

� Pseudocode

41Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Structure Chart

It partition a system into block boxes. A black box means that

functionality is known to the user without the knowledge of internal

design.

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig. 16 : Hierarchical format of a structure chart

42Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig. 17 : Structure chart notations

43Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig. 18 : Update file

A structure chart for “update file” is given in fig. 18.

44Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig. 19 : Transaction-centered structure

A transaction centered structure describes a system that processes a

number of different types of transactions. It is illustrated in Fig.19.

45Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

In the above figure the MAIN module controls the system operation

its functions is to:

Software DesignSoftware DesignSoftware DesignSoftware Design

� invoke the INPUT module to read a transaction;

� determine the kind of transaction and select one of a number

of transaction modules to process that transaction, and

� output the results of the processing by calling OUTPUT

module.

46Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Pseudocode

Pseudocode notation can be used in both the preliminary and detailed

design phases.

Software DesignSoftware DesignSoftware DesignSoftware Design

Using pseudocode, the designer describes system characteristics

using short, concise, English language phrases that are structured by

key words such as It-Then-Else, While-Do, and End.

47Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Functional Procedure Layers

Software DesignSoftware DesignSoftware DesignSoftware Design

� Function are built in layers, Additional notation is used to

specify details.

� Level 0

� Function or procedure name

� Relationship to other system components (e.g., part of
which system, called by which routines, etc.)

� Brief description of the function purpose.

� Author, date

48Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

� Level 1

� Function Parameters (problem variables, types, purpose,

etc.)

� Global variables (problem variable, type, purpose,

sharing information)

� Routines called by the function

� Side effects

� Input/Output Assertions

49Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

� Level 2

� Local data structures (variable etc.)

� Timing constraints

� Exception handling (conditions, responses, events)

� Any other limitations

� Level 3

� Body (structured chart, English pseudo code, decision

tables, flow charts, etc.)

50Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

IEEE Recommended practice for software design

descriptions (IEEE STD 1016-1998)

An SDD is a representation of a software system that is used as a medium

for communicating software design information.

Software DesignSoftware DesignSoftware DesignSoftware Design

� Scope

� References

i. IEEE std 830-1998, IEEE recommended practice for

software requirements specifications.

ii. IEEE std 610.12-1990, IEEE glossary of software

engineering terminology.

51Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

� Definitions

i. Design entity. An element (Component) of a design that is

structurally and functionally distinct from other elements and

that is separately named and referenced.

ii. Design View. A subset of design entity attribute information

that is specifically suited to the needs of a software project

activity.

iii. Entity attributes. A named property or characteristics of a

design entity. It provides a statement of fact about the entity.

iv. Software design description (SDD). A representation of a

software system created to facilitate analysis, planning,

implementation and decision making.

52Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The SDD shows how the software system will be structured to

satisfy the requirements identified in the SRS. It is basically the

translation of requirements into a description of the software

structure, software components, interfaces, and data necessary for
the implementation phase. Hence, SDD becomes the blue print for

the implementation activity.

Software DesignSoftware DesignSoftware DesignSoftware Design

� Purpose of an SDD

� Design Description Information Content

� Introduction

� Design entities

� Design entity attributes

53Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

a) Identification

b) Type

c) Purpose

d) Function

e) Subordinates

f) Dependencies

Software DesignSoftware DesignSoftware DesignSoftware Design

The attributes and associated information items are defined in the

following subsections:

g) Interface

h) Resources

i) Processing

j) Data

54Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Each design description writer may have a different view of what

are considered the essential aspects of a software design. The

organization of SDD is given in table 1. This is one of the possible

ways to organize and format the SDD.

Software DesignSoftware DesignSoftware DesignSoftware Design

� Design Description Organization

A recommended organization of the SDD into separate design

views to facilitate information access and assimilation is given in

table 2.

55Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Cont…

56Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Table 1:

Organization of

SDD

57Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Table 2: Design views

Flow charts, PDL etc.Identification,

processing, data

Description of the internal

design details of an entity

Detail

description

Interface files,

parameter tables

Identification,

function, interfaces

List of everything a

designer, developer, tester

needs to know to use design

entities that make up the

system

Interface

description

Structure chart, data

flow diagrams,

transaction diagrams

Identification, type,

purpose, dependencies,

resources

Description of relationships

among entities of system

resources

Dependency

description

Hierarchical

decomposition diagram,

natural language

Identification, type

purpose, function,

subordinate

Partition of the system into

design entities

Decomposition

description

Example

representation

Entity attributeScopeDesign View

58Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Object Oriented Design

Object oriented design is the result of focusing attention not on the

function performed by the program, but instead on the data that are

to do manipulated by the program. Thus, it is orthogonal to function
oriented design.

Software DesignSoftware DesignSoftware DesignSoftware Design

Object Oriented Design begins with an examination of the real

world “things” that are part of the problem to be solved. These
things (which we will call objects) are characterized individually in

terms of their attributes and behavior.

59Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Object Oriented Design is not dependent on any specific

implementation language. Problems are modeled using objects.

Objects have:

Software DesignSoftware DesignSoftware DesignSoftware Design

� Basic Concepts

� Behavior (they do things)

� State (which changes when they do things)

60Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

i. Objects

Software DesignSoftware DesignSoftware DesignSoftware Design

The various terms related to object design are:

The word “Object” is used very frequently and conveys different

meaning in different circumstances. Here, meaning is an entity able to

save a state (information) and which offers a number of operations

(behavior) to either examine or affect this state. An object is

characterized by number of operations and a state which remembers

the effect of these operations.

61Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Objects communicate by message passing. Messages consist of the

identity of the target object, the name of the requested operation and

any other operation needed to perform the function. Message are often

implemented as procedure or function calls.

ii. Messages

iii. Abstraction

In object oriented design, complexity is managed using abstraction.

Abstraction is the elimination of the irrelevant and the amplification of

the essentials.

62Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

In any system, there shall be number of objects. Some of the objects

may have common characteristics and we can group the objects

according to these characteristics. This type of grouping is known as a

class. Hence, a class is a set of objects that share a common structure

and a common behavior.

iv. Class

We may define a class “car” and each object that represent a car

becomes an instance of this class. In this class “car”, Indica, Santro,

Maruti, Indigo are instances of this class as shown in fig. 20.

Classes are useful because they act as a blueprint for objects. If we

want a new square we may use the square class and simply fill in the

particular details (i.e. colour and position) fig. 21 shows how can we

represent the square class.

63Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig.20: Indica, Santro, Maruti, Indigo are all instances of the class “car”

64Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig. 21: The square class

65Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

An attributes is a data value held by the objects in a class. The square

class has two attributes: a colour and array of points. Each attributes

has a value for each object instance. The attributes are shown as

second part of the class as shown in fig. 21.

v. Attributes

An operation is a function or transformation that may be applied to or

by objects in a class. In the square class, we have two operations: set

colour() and draw(). All objects in a class share the same operations.

An object “knows” its class, and hence the right implementation of the

operation. Operation are shown in the third part of the class as

indicated in fig. 21.

vi. Operations

66Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Imagine that, as well as squares, we have triangle class. Fig. 22 shows

the class for a triangle.

vii. Inheritance

Fig. 22: The triangle class

67Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Now, comparing fig. 21 and 22, we can see that there is some

difference between triangle and squares classes.

For example, at a high level of abstraction, we might want to think of a

picture as made up of shapes and to draw the picture, we draw each

shape in turn. We want to eliminate the irrelevant details: we do not

care that one shape is a square and the other is a triangle as long as

both can draw themselves.

To do this, we consider the important parts out of these classes in to a

new class called Shape. Fig. 23 shows the results.

68Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig. 23: Abstracting common features in a new class

This sort of abstraction is called inheritance. The low level classes

(known as subclasses or derived classes) inherit state and behavior

from this high level class (known as a super class or base class).

69Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

When we abstract just the interface of an operation and leave the

implementation to subclasses it is called a polymorphic operation and

process is called polymorphism.

Encapsulation is also commonly referred to as “Information Hiding”. It

consists of the separation of the external aspects of an object from the

internal implementation details of the object.

viii. Polymorphism

ix. Encapsulation (Information Hiding)

x. Hierarchy

Hierarchy involves organizing something according to some particular

order or rank. It is another mechanism for reducing the complexity of

software by being able to treat and express sub-types in a generic way.

70Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig. 24: Hierarchy

71Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

There are various steps in the analysis and design of an object

oriented system and are given in fig. 25

Software DesignSoftware DesignSoftware DesignSoftware Design

� Steps to Analyze and Design Object Oriented System

72Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig. 25: Steps for analysis & design of object

oriented system

73Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

i. Create use case model

Software DesignSoftware DesignSoftware DesignSoftware Design

First step is to identify the actors interacting with the system. We

should then write the use case and draw the use case diagram.

Activity Diagram illustrate the dynamic nature of a system by modeling

the flow of control form activity to activity. An activity represents an

operation on some class in the system that results in a change in the

state of the system. Fig. 26 shows the activity diagram processing an

order to deliver some goods.

ii. Draw activity diagram (If required)

74Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Fig. 26: Activity diagram

75Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

iii. Draw the interaction diagram

An interaction diagram shows an interaction, consisting of a set of

objects and their relationship, including the messages that may be

dispatched among them. Interaction diagrams address the dynamic

view of a system.

a) Firstly, we should identify that the objects with respects to every

use case.

b) We draw the sequence diagrams for every use case.

d) We draw the collaboration diagrams for every use case.

Steps to draws interaction diagrams are as under:

76Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

The object types used in this analysis model are entity objects,

interface objects and control objects as given in fig. 27.

Fig. 27: Object types

77Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

The class diagram shows the relationship amongst classes. There are

four types of relationships in class diagrams.

iv. Draw the class diagram

a) Association are semantic connection between classes. When

an association connects two classes, each class can send

messages to the other in a sequence or a collaboration
diagram. Associations can be bi-directional or unidirectional.

78Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

b) Dependencies connect two classes. Dependencies are

always unidirectional and show that one class, depends on the

definitions in another class.

c) Aggregations are stronger form of association. An

aggregation is a relationship between a whole and its parts.

d) Generalizations are used to show an inheritance relationship

between two classes.

79Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

A state chart diagram is used to show the state space of a given class,

the event that cause a transition from one state to another, and the

action that result from a state change. A state transition diagram for a

“book” in the library system is given in fig. 28.

v. Design of state chart diagrams

Fig. 28: Transition chart for “book” in a library system.

80Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Component diagrams address the static implementation view of a

system they are related to class diagrams in that a component typically

maps to one or more classes, interfaces or collaboration.

vi. Draw component and development diagram

Deployment Diagram Captures relationship between physical

components and the hardware.

81Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

A software has to be developed for automating the manual library of a

University. The system should be stand alone in nature. It should be

designed to provide functionality’s as explained below:

Issue of Books:

� A student of any course should be able to get books issued.

� Books from General Section are issued to all but Book bank

books are issued only for their respective courses.

� A limitation is imposed on the number of books a student can

issue.

� A maximum of 4 books from Book bank and 3 books from

General section is issued for 15 days only.The software takes

the current system date as the date of issue and calculates date

of return.

82Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

� A bar code detector is used to save the student as well as book

information.

� The due date for return of the book is stamped on the book.

Return of Books:

� Any person can return the issued books.

� The student information is displayed using the bar code

detector.

� The system displays the student details on whose name the

books were issued as well as the date of issue and return of the

book.

� The system operator verifies the duration for the issue.

� The information is saved and the corresponding updating take

place in the database.

83Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

Query Processing:

� The system should be able to provide information like:

� Availability of a particular book.

� Availability of book of any particular author.

� Number of copies available of the desired book.

The system should also be able to generate reports regarding the

details of the books available in the library at any given time. The

corresponding printouts for each entry (issue/return) made in the

system should be generated. Security provisions like the ‘login

authenticity should be provided. Each user should have a user id and

a password. Record of the users of the system should be kept in the

log file. Provision should be made for full backup of the system.

84Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

85Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

86Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

87Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

88Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

89Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

90Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

91Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

92Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

93Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software DesignSoftware DesignSoftware DesignSoftware Design

94Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

5.1 The most desirable form of coupling is

(a) Control Coupling (b) Data Coupling

(c) Common Coupling (d) Content Coupling

5.2 The worst type of coupling is

(a) Content coupling (b) Common coupling

(c) External coupling (d) Data coupling

Multiple Choice Questions
Note: Choose most appropriate answer of the following questions:

5.3 The most desirable form of cohesion is

(a) Logical cohesion (b) Procedural cohesion

(c) Functional cohesion (d) Temporal cohesion

5.4 The worst type of cohesion is

(a) Temporal cohesion (b) Coincidental cohesion

(c) Logical cohesion (d) Sequential cohesion

5.5 Which one is not a strategy for design?

(a) Bottom up design (b) Top down design

(c) Embedded design (d) Hybrid design

95Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions
5.6 Temporal cohesion means

(a) Cohesion between temporary variables

(b) Cohesion between local variable

(c) Cohesion with respect to time

(d) Coincidental cohesion

5.7 Functional cohesion means

(a) Operations are part of single functional task and are placed in same procedures

(b) Operations are part of single functional task and are placed in multiple procedures

(c) Operations are part of multiple tasks

(d) None of the above

5.8 When two modules refer to the same global data area, they are related as

(a) External coupled (b) Data coupled

(c) Content coupled (d) Common coupled

5.9 The module in which instructions are related through flow of control is

(a) Temporal cohesion (b) Logical cohesion

(c) Procedural cohesion (d) Functional cohesion

96Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

5.10 The relationship of data elements in a module is called

(a) Coupling (b) Cohesion

(c) Modularity (d) None of the above

5.12 The extent to which different modules are dependent upon each other is called

(a) Coupling (b) Cohesion

(c) Modularity (d) Stability

5.11 A system that does not interact with external environment is called

(a) Closed system (b) Logical system

(c) Open system (d) Hierarchal system

97Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

5.1 What is design? Describe the difference between conceptual design and
technical design.

5.2 Discuss the objectives of software design. How do we transform an
informal design to a detailed design?

5.3 Do we design software when we “write” a program? What makes
software design different from coding?

5.4 What is modularity? List the important properties of a modular system.

5.5 Define module coupling and explain different types of coupling.

5.6 Define module cohesion and explain different types of cohesion.

5.7 Discuss the objectives of modular software design. What are the effects
of module coupling and cohesion?

5.8 If a module has logical cohesion, what kind of coupling is this module
likely to have with others?

5.9 What problems are likely to arise if two modules have high coupling?

98Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

5.10 What problems are likely to arise if a module has low cohesion?

5.11 Describe the various strategies of design. Which design strategy is most
popular and practical?

5.12 If some existing modules are to be re-used in building a new system,
which design strategy is used and why?

5.13 What is the difference between a flow chart and a structure chart?

5.14 Explain why it is important to use different notations to describe
software designs.

5.15 List a few well-established function oriented software design
techniques.

5.16 Define the following terms: Objects, Message, Abstraction, Class,
Inheritance and Polymorphism.

5.17 What is the relationship between abstract data types and classes?

99Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

5.18 Can we have inheritance without polymorphism? Explain.

5.19 Discuss the reasons for improvement using object-oriented design.

5.20 Explain the design guidelines that can be used to produce “good
quality” classes or reusable classes.

5.21 List the points of a simplified design process.

5.22 Discuss the differences between object oriented and function oriented
design.

5.23 What documents should be produced on completion of the design
phase?

5.24 Can a system ever be completely “decoupled”? That is, can the degree
of coupling be reduced so much that there is no coupling between
modules?

1Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Software Metrics: What and Why ?

1. How to measure the size of a software?

2. How much will it cost to develop a software?

3. How many bugs can we expect?

4. When can we stop testing?

5. When can we release the software?

3Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

6. What is the complexity of a module?

7. What is the module strength and coupling?

8. What is the reliability at the time of release?

9. Which test technique is more effective?

10. Are we testing hard or are we testing smart?

11. Do we have a strong program or a week test suite?

4Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

� Pressman explained as “A measure provides a quantitative

indication of the extent, amount, dimension, capacity, or size
of some attribute of the product or process”.

� Measurement is the act of determine a measure

� The metric is a quantitative measure of the degree to which

a system, component, or process possesses a given
attribute.

� Fenton defined measurement as “ it is the process by which
numbers or symbols are assigned to attributes of entities in

the real world in such a way as to describe them according

to clearly defined rules”.

5Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

� Definition

Software metrics can be defined as “The continuous application of

measurement based techniques to the software development
process and its products to supply meaningful and timely

management information, together with the use of those techniques

to improve that process and its products”.

6Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

� Areas of Applications

The most established area of software metrics is cost and size

estimation techniques.

The prediction of quality levels for software, often in terms of

reliability, is another area where software metrics have an important

role to play.

The use of software metrics to provide quantitative checks on

software design is also a well established area.

7Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

� Problems During Implementation

� Statement : Software development is to complex; it
cannot be managed like other parts of

the organization.

Management view : Forget it, we will find developers and

managers who will manage that

development.

� Statement : I am only six months late with project.

Management view : Fine, you are only out of a job.

8Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

� Statement : I am only six months late with project.

Management view : Fine, you are only out of a job.

� Statement : But you cannot put reliability constraints

in the contract.

Management view : Then we may not get the contract.

9Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

i. Product metrics: describe the characteristics of the
product such as size, complexity, design features,

performance, efficiency, reliability, portability, etc.

ii. Process metrics: describe the effectiveness and
quality of the processes that produce the software

product. Examples are:

� Categories of Metrics

• effort required in the process

• time to produce the product

• effectiveness of defect removal during development

• number of defects found during testing

• maturity of the process

10Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

ii. Project metrics: describe the project characteristics
and execution. Examples are :

• number of software developers

• staffing pattern over the life cycle of the software

• cost and schedule

• productivity

11Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Token Count

The size of the vocabulary of a program, which consists of the

number of unique tokens used to build a program is defined as:

η = η1+ η2

η : vocabulary of a program

η1 : number of unique operators

η2 : number of unique operands

where

12Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

The length of the program in the terms of the total number of tokens

used is

N = N1+N2

N : program length

N1 : total occurrences of operators

N2 : total occurrences of operands

where

13Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

V = N * log2 η

Volume

The unit of measurement of volume is the common unit for

size “bits”. It is the actual size of a program if a uniform
binary encoding for the vocabulary is used.

Program Level

The value of L ranges between zero and one, with L=1
representing a program written at the highest possible level

(i.e., with minimum size).

L = V* / V

14Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

D = 1 / L

E = V / L = D * V

Program Difficulty

As the volume of an implementation of a program increases,

the program level decreases and the difficulty increases.

Thus, programming practices such as redundant usage of
operands, or the failure to use higher-level control constructs

will tend to increase the volume as well as the difficulty.

Effort

The unit of measurement of E is elementary mental

discriminations.

15Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

� Estimated Program Length

222121 loglog ηηηη +=Ν
∧

10log1014log14 22 +=Ν
∧

= 53.34 + 33.22 = 86.56

)!(log)!(2212 ηη +=Ν LogJ

The following alternate expressions have been published to

estimate program length.

16Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

122221 log ηηηη +=Ν LogB

2211 ηηηη +=Νc

2/)log(2 ηη=Ν s

The definitions of unique operators, unique operands, total

operators and total operands are not specifically delineated.

17Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

1. Comments are not considered.

2. The identifier and function declarations are not considered.

3. All the variables and constants are considered operands.

4. Global variables used in different modules of the same

program are counted as multiple occurrences of the same

variable.

� Counting rules for C language

18Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

6. Functions calls are considered as operators.

7. All looping statements e.g., do {…} while (), while () {…}, for ()

{…}, all control statements e.g., if () {…}, if () {…} else {…}, etc.

are considered as operators.

8. In control construct switch () {case:…}, switch as well as all the

case statements are considered as operators.

5. Local variables with the same name in different functions are

counted as unique operands.

19Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

11. GOTO is counted as an operator and the label is counted as

an operand.

12. The unary and binary occurrence of “+” and “-” are dealt

separately. Similarly “*” (multiplication operator) are dealt with
separately.

9. The reserve words like return, default, continue, break, sizeof,

etc., are considered as operators.

10. All the brackets, commas, and terminators are considered as

operators.

20Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

15. All the hash directive are ignored.

14. In the structure variables such as “struct-name, member-name”

or “struct-name -> member-name”, struct-name, member-name

are taken as operands and ‘.’, ‘->’ are taken as operators. Some
names of member elements in different structure variables are

counted as unique operands.

13. In the array variables such as “array-name [index]” “array-

name” and “index” are considered as operands and [] is

considered as operator.

21Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

� Potential Volume

)2(log)2(* *

22

*

2 ηη ++=V

� Estimated Program Level / Difficulty

Halstead offered an alternate formula that estimate the program

level.

where

∧

)/(2 212 Ν=
∧

ηηL

2

21

2

1

η

η Ν
==

∧

∧

L

D

22Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

∧∧

==Ε DVLV */

2221 2/)log(ηηNNn=

β/ET =

� Effort and Time

β is normally set to 18 since this seemed to give best results in

Halstead’s earliest experiments, which compared the predicted
times with observed programming times, including the time for

design, coding, and testing.

23Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

VLVL
2* =×=λ

� Language Level

Using this formula, Halstead and other researchers determined the

language level for various languages as shown in Table 1.

24Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Table 1: Language levels

25Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example- 6.I

Consider the sorting program in Fig. 2 of chapter 4. List out the

operators and operands and also calculate the values of software

science measures like

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

.,,,, etcEVN λη

26Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

The list of operators and operands is given in table 2.

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

27Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Table 2: Operators and operands of sorting program of fig. 2 of chapter 4

28Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Here N1=53 and N2=38. The program length N=N1+N2=91

Vocabulary of the program

Volume

= 91 x log224 = 417 bits

24101421 =+=+= ηηη

η2log×= NV

The estimated program length of the program
∧

N

= 14 log214 + 10 log210

= 14 * 3.81 + 10 * 3.32

= 53.34 + 33.2 = 86.45

29Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Conceptually unique input and output parameters are

represented by

{x: array holding the integer to be sorted. This is used

both as input and output}.

{N: the size of the array to be sorted}.

The potential volume V* = 5 log25 = 11.6

L = V* / V

*

2η

3*

2 =η

Since

30Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Estimated program level

027.0
417

6.11
==

D = I / L

03.37
027.0

1
==

038.0
38

10

14

22

2

2

1

=×=×=
∧

N
L

η

η

31Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

We may use another formula

67.15038.0417 =×=×=
∧∧

LVV

VDLVE ×==
∧∧∧

/

=417 / 0.038 = 10973.68

Therefore, 10974 elementary mental discrimination are
required to construct the program.

minutes10seconds610
18

10974
/ ==== βET

This is probably a reasonable time to produce the program,

which is very simple

32Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Table 3

33Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Table 3

34Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example- 6.2

Consider the program shown in Table 3. Calculate the various

software science metrics.

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

35Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

List of operators and operands are given in Table 4.

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Table 4

36Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Table 5

37Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Program vocabulary

Program length

= 84 + 55 = 139

42=η

N = N1 +N2

Estimated length 115.18518log1824log24 22 =+=
∧

N

% error = 24.91

Program volume V = 749.605 bits

Estimated program level

2

2

1

2

N

η

η
×=

02727.0
55

18

24

2
=×=

38Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Effort
∧

= LV /

= 27488.33 elementary mental discriminations.

Time T =

02727.

605.748
=

18

33.27488
/ =βE

Minimal volume V*=20.4417

= 1527.1295 seconds

= 25.452 minutes

39Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Data Structure Metrics

Data OutputInternal DataData InputProgram

Payroll Name/ Social Security

No./ Pay Rate/ Number

of hours worked

Spreadsheet

Software

Planner

Item Names/ Item

amounts/ Relationships

among items

Program size/ No. of

software developers on

team

Withholding rates

Overtime factors

Insurance premium

Rates

Cell computations

Sub-totals

Model parameters

Constants

Coefficients

Gross pay withholding

Net pay

Pay ledgers

Spreadsheet of items

and totals

Est. project effort

Est. project duration

Fig.1: Some examples of input, internal, and output data

40Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

One method for determining the amount of data is to count the

number of entries in the cross-reference list.

� The Amount of Data

A variable is a string of alphanumeric characters that is defined by a

developer and that is used to represent some value during either

compilation or execution.

41Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Fig.2: Payday program

42Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Fig.3: A cross reference of program payday

check

gross

hours

net

pay

rate

tax

2

4

6

4

5

6

4

14

12

11

14

12

11

13

14

13

12

15

13

12

14

15

14

13

15

15

15

14

15

43Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

2η

10stdin

9feof

Fig.4: Some items not counted as VARS

= VARS + unique constants + labels.

Halstead introduced a metric that he referred to as to be a count

of the operands in a program – including all variables, constants, and

labels. Thus,

2η

labelsconstantsunique2 ++= VARSη

44Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Fig.6: Program payday with operands in brackets

45Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

The Usage of Data within a Module

� Live Variables

Definitions :

1. A variable is live from the beginning of a procedure to the end

of the procedure.

2. A variable is live at a particular statement only if it is referenced

a certain number of statements before or after that statement.

3. A variable is live from its first to its last references within a

procedure.

46Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

cont…

47Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Fig.6: Bubble sort program

48Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

It is thus possible to define the average number of live variables,

which is the sum of the count of live variables divided by

the count of executable statements in a procedure. This is a

complexity measure for data usage in a procedure or program.

The live variables in the program in fig. 6 appear in fig. 7 the

average live variables for this program is

647.3
34

124
=

)(LV

49Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

CountLive VariablesLine

cont…

4

5

6

7

8

9

10

11

12

13

14

15

0

0

3

3

3

0

0

0

0

0

1

2

16 4

t, x, k

t, x, k

t, x, k

size

size, j

Size, j, a, b

50Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

CountLive VariablesLine

cont…

17

18

19

20

21

22

23

24

25

26

27

28

5

6

6

6

6

6

7

7

6

6

6

6

29 5

size, j, a, b, last

size, j, a, b, last, continue

size, j, a, b, last, continue

size, j, a, b, last, continue

size, j, a, b, last, continue

size, j, a, b, last, continue

size, j, a, b, last, continue, i

size, j, a, b, last, continue, i

size, j, a, b, continue, i

size, j, a, b, continue, i

size, j, a, b, continue, i

size, j, a, b, continue, i

size, j, a, b, i

51Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

CountLive VariablesLine

30

31

32

33

34

35

36

37

5

5

5

4

4

4

3

0

size, j, a, b, i

size, j, a, b, i

size, j, a, b, i

size, j, a, b

size, j, a, b

size, j, a, b

j, a, b

--

Fig.7: Live variables for the program in fig.6

52Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

� Variable spans

scanf (“%d %d, &a, &b)

x =a;

y = a – b;

z = a;

printf (“%d %d, a, b);

…

21

…

32

…

45

…

53

…

60

…

Fig.: Statements in ac program referring to variables a and b.

The size of a span indicates the number of statements that pass

between successive uses of a variables

53Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

� Making program-wide metrics from intra-module metrics

m

LV
programLV

i

m

i 1=
Σ

=

n

SP
programSP

i

n

i 1=
Σ

=

For example if we want to characterize the average number of live variables
for a program having modules, we can use this equation.

where is the average live variable metric computed from the ith module
i

LV)(

The average span size for a program of n spans could be computed by

using the equation.

)(SP

54Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

� Program Weakness

γ*LVWM =

A program consists of modules. Using the average number of live

variables and average life variables , the module weakness

has been defined as
)(LV)(γ

55Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

m

WM

WP
i

m

i








Σ

=
=1

A program is normally a combination of various modules, hence

program weakness can be a useful measure and is defined as:

where, WMi : weakness of ith module

WP : weakness of the program

m : number of modules in the program

56Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example- 6.3

Consider a program for sorting and searching. The program sorts an

array using selection sort and than search for an element in the

sorted array. The program is given in fig. 8. Generate cross

reference list for the program and also calculate and WM for the

program.

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

LV ,,γ

57Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

The given program is of 66 lines and has 11 variables. The variables

are a, I, j, item, min, temp, low, high, mid, loc and option.

58Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

59Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

60Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

61Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Fig.8: Sorting & searching program

62Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Cross-Reference list of the program is given below:

a

i

j

item

min

temp

low

high

mid

loc

option

11

12

12

12

12

12

13

13

13

13

14

18

16

25

44

24

29

46

45

46

56

40

19

16

25

47

27

31

47

46

47

61

41

27

16

25

49

29

50

47

49

62

27

18

27

59

30

52

51

50

29

19

30

62

54

52

51

30

22

31

54

52

30

22

59

31

22

61

37

24

47

36

49

36

59

36 37 37

63Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

CountLive VariablesLine

cont…

13

14

15

16

17

18

19

20

22

23

24

25

1

1

1

2

2

3

3

3

3

3

4

5

26 5

low

low

low

low, i

low, i

low, i, a

low, i, a

low, i, a

low, i, a

low, i, a

low, i, a, min

low, i, a, min, j

Live Variables per line are calculated as:

low, i, a, min, j

64Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

CountLive VariablesLine

cont…

27

28

29

30

31

32

33

34

35

36

37

38

5

5

6

6

5

3

3

3

3

3

3

2

39 2

low, i, a

low, i, a, min, j

low, i, a, min, j

low, i, a, min, j, temp

low, i, a, min, j, temp

low, i, a, j, temp

low, i, a

low, i, a

low, i, a

low, i, a

low, i, a

low, a

low, a

65Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

CountLive VariablesLine

cont…

40

41

42

43

44

45

46

47

48

49

50

51

3

3

2

2

3

4

5

5

5

5

5

5

52 5

low, a, option

low, a, option

low, a

low, a

low, a, item

low, a, item, high

low, a, item, high, mid

low, a, item, high, mid

low, a, item, high, mid

low, a, item, high, mid

low, a, item, high, mid

low, a, item, high, mid

low, a, item, high, mid

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

66Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

CountLive VariablesLine

cont…

53

54

55

56

57

58

59

60

61

62

5

5

3

4

4

4

4

3

3

2

low, a, item, high, mid

low, a, item, high, mid

a, item, mid

a, item, mid, loc

a, item, mid, loc

a, item, mid, loc

a, item, mid, loc

item, mid, loc

item, mid, loc

item, loc

67Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

CountLive VariablesLine

63

64

65

66

0

0

0

0

174Total

68Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Average number of live variables () =

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

statements executable ofCount

 variableslive ofcount of Sum

851815283

LV(WM) WeaknessModule

815
11

174

 variablesofnumber Total

 variableslive ofcount of Sum

283
53

174

...

.

.

=×=

×=

==

=

==

WM

LV

γ

γ

γ

LV

69Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� The Sharing of Data Among Modules

A program normally contains several modules and share coupling

among modules. However, it may be desirable to know the amount

of data being shared among the modules.

Fig.10: Three modules from an imaginary program

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

70Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig.11: ”Pipes” of data shared among the modules

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Fig.12: The data shared in program bubble

71Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Component : Any element identified by decomposing a
(software) system into its constituent

parts.

Cohesion : The degree to which a component

performs a single function.

Coupling : The term used to describe the degree of

linkage between one component to
others in the same system.

Information Flow Metrics

72Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

1. ‘FAN IN’ is simply a count of the number of other Components

that can call, or pass control, to Component A.

2. ‘FANOUT’ is the number of Components that are called by

Component A.

3. This is derived from the first two by using the following formula.

We will call this measure the INFORMATION FLOW index of
Component A, abbreviated as IF(A).

� The Basic Information Flow Model

Information Flow metrics are applied to the Components of a

system design. Fig. 13 shows a fragment of such a design, and for
component ‘A’ we can define three measures, but remember that

these are the simplest models of IF.

IF(A) = [FAN IN(A) x FAN OUT (A)]2

73Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Fig.13: Aspects of complexity

74Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

1. Note the level of each Component in the system design.

2. For each Component, count the number of calls so that
Component – this is the FAN IN of that Component. Some

organizations allow more than one Component at the highest

level in the design, so for Components at the highest level which

should have a FAN IN of zero, assign a FAN IN of one. Also

note that a simple model of FAN IN can penalize reused
Components.

3. For each Component, count the number of calls from the

Component. For Component that call no other, assign a FAN

OUT value of one.

The following is a step-by-step guide to deriving these most simple

of IF metrics.

cont…

75Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

4. Calculate the IF value for each Component using the above

formula.

5. Sum the IF value for all Components within each level which is

called as the LEVEL SUM.

6. Sum the IF values for the total system design which is called the

SYSTEM SUM.

7. For each level, rank the Component in that level according to

FAN IN, FAN OUT and IF values. Three histograms or line plots
should be prepared for each level.

8. Plot the LEVEL SUM values for each level using a histogram or

line plot.

76Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

� A More Sophisticated Information Flow Model

a = the number of components that call A.

b = the number of parameters passed to A from components

higher in the hierarchy.

c = the number of parameters passed to A from components

lower in the hierarchy.

d = the number of data elements read by component A.

Then:

FAN IN(A)= a + b + c + d

77Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MetricsSoftware MetricsSoftware MetricsSoftware Metrics

Also let:

e = the number of components called by A;

f = the number of parameters passed from A to components higher

in the hierarchy;

g = the number of parameters passed from A to components lower

in the hierarchy;

h = the number of data elements written to by A.

Then:

FAN OUT(A)= e + f + g + h

78Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

An action performed by or on an object, available

to all instances of class, need not be unique.

Operation6

Defines the structural properties of a class and

unique within a class.

Attribute5

an operation upon an object, defined as part of the

declaration of a class.

Method4

A set of objects that share a common structure and

common behavior manifested by a set of methods;

the set serves as a template from which object can

be created.

Class 3

A request that an object makes of another object to

perform an operation.

Message2

Object is an entity able to save a state (information)

and offers a number of operations (behavior) to

either examine or affect this state.

Object1

Meaning/purposeTermS.No

Object Oriented MetricsObject Oriented MetricsObject Oriented MetricsObject Oriented Metrics

Terminologies

79Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Object A is coupled to object B, if and only if A

sends a message to B.

Coupling 10

The degree to which the methods within a class

are related to one another.

Cohesion 9

A relationship among classes, where in an object

in a class acquires characteristics from one or

more other classes.

Inheritance 8

The process of creating an instance of the object

and binding or adding the specific data.

Instantiation 7

Meaning/purposeTermS.No

Object Oriented MetricsObject Oriented MetricsObject Oriented MetricsObject Oriented Metrics

Terminologies

80Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Object Oriented MetricsObject Oriented MetricsObject Oriented MetricsObject Oriented Metrics

• Measuring on class level

– coupling

– inheritance

– methods

– attributes

– cohesion

• Measuring on system level

81Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Object Oriented MetricsObject Oriented MetricsObject Oriented MetricsObject Oriented Metrics

Size Metrics:

� Number of Methods per Class (NOM)

� Number of Attributes per Class (NOA)

• Weighted Number Methods in a Class (WMC)

– Methods implemented within a class or the sum of the

complexities of all methods

82Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Object Oriented MetricsObject Oriented MetricsObject Oriented MetricsObject Oriented Metrics

Coupling Metrics:

• Response for a Class (RFC)

– Number of methods (internal and external) in a class.

� Data Abstraction Coupling(DAC)

- Number of Abstract Data Types in a class.

� Coupling between Objects (CBO)

– Number of other classes to which it is coupled.

83Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

• Message Passing Coupling (MPC)

– Number of send statements defined in a class.

• Coupling Factor (CF)

– Ratio of actual number of coupling in the system to

the max. possible coupling.

Object Oriented MetricsObject Oriented MetricsObject Oriented MetricsObject Oriented Metrics

84Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Object Oriented MetricsObject Oriented MetricsObject Oriented MetricsObject Oriented Metrics

Cohesion Metrics:

� LCOM: Lack of cohesion in methods

– Consider a class C1 with n methods M1, M2…., Mn. Let (Ij)

= set of all instance variables used by method Mi. There

are n such sets {I1},…….{In}. Let

otherwise 0

|Q| |P| if |,Q|-|P| LCOM

=

>=

}0II |)II({(Q and }0II |)II{(P ji j,ji j, ≠∩==∩= ii

)}.(I},........I{(n1 sets are 0 then P=0If all n

85Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Object Oriented MetricsObject Oriented MetricsObject Oriented MetricsObject Oriented Metrics

• Tight Class Cohesion (TCC)

_ Percentage of pairs of public methods of the class

with common attribute usage.

• Loose Class Cohesion (LCC)

– Same as TCC except that this metric also
consider indirectly connected methods.

• Information based Cohesion (ICH)

– Number of invocations of other methods of the same
class, weighted by the number of parameters of the

invoked method.

86Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Object Oriented MetricsObject Oriented MetricsObject Oriented MetricsObject Oriented Metrics

Inheritance Metrics:

• DIT - Depth of inheritance tree

• NOC - Number of children

– only immediate subclasses are counted.

87Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Inheritance Metrics:

• AIF- Attribute Inheritance Factor

– Ratio of the sum of inherited attributes in all classes of the

system to the total number of attributes for all classes.

∑
∑

=

==
TC

i ia

TC

i id

)(CA

 (CA

1

1
)

AIF

)(CA)(CA)(CA idiiia +=

Object Oriented MetricsObject Oriented MetricsObject Oriented MetricsObject Oriented Metrics

TC= total number of classes

Ad (Ci) = number of attribute declared in a class

Ai (Ci) = number of attribute inherited in a class

88Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Object Oriented MetricsObject Oriented MetricsObject Oriented MetricsObject Oriented Metrics

Inheritance Metrics:

• MIF- Method Inheritance Factor

– Ratio of the sum of inherited methods in all classes of the

system to the total number of methods for all classes.

∑
∑

=

==
TC

i
ia

TC

i
ii

)(CM

) (CM

1

1MIF

)(CM)(CM)(CM idiiia +=

TC= total number of classes

Md(Ci)= the number of methods declared in a class

Mi(Ci)= the number of methods inherited in a class

89Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

UseUseUseUse----Case Oriented MetricsCase Oriented MetricsCase Oriented MetricsCase Oriented Metrics

• Counting actors

2Interactive or protocol

driven interface

Average

1Program interfaceSimple

3Graphical interfaceComplex

FactorDescriptionType

Actor weighting factors

o Simple actor: represents another system with a defined interface.

o Average actor: another system that interacts through a text based

interface through a protocol such as TCP/IP.

o Complex actor: person interacting through a GUI interface.

The actors weight can be calculated by adding these values together.

90Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

UseUseUseUse----Case Oriented MetricsCase Oriented MetricsCase Oriented MetricsCase Oriented Metrics

• Counting use cases

104 to 7 transactionsAverage

53 or fewer transactionsSimple

15More than 7 transactionsComplex

FactorDescriptionType

Transaction-based weighting factors

The number of each use case type is counted in the software and

then each number is multiplied by a weighting factor as shown in
table above.

91Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Web Engineering Project MetricsWeb Engineering Project MetricsWeb Engineering Project MetricsWeb Engineering Project Metrics

� Number of static web pages

� Number of dynamic web pages

� Number of internal page links

� Word count

� Web page similarity

� Web page search and retrieval

� Number of static content objects

� Number of dynamic content objects

92Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Metrics AnalysisMetrics AnalysisMetrics AnalysisMetrics Analysis

Statistical Techniques

• Summary statistics such as mean, median, max. and min.

• Graphical representations such as histograms, pie charts and

box plots.

• Principal component analysis

• Regression and correlation analysis

• Reliability models for predicting future reliability.

93Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Metrics AnalysisMetrics AnalysisMetrics AnalysisMetrics Analysis

Problems with metric data:

• Normal Distribution

• Outliers

• Measurement Scale

• Multicollinearity

94Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Metrics AnalysisMetrics AnalysisMetrics AnalysisMetrics Analysis

Common pool of data:

• The selection of projects should be representative and not all

come from a single application domain or development styles.

• No single very large project should be allowed to dominate the

pool.

• For some projects, certain metrics may not have been collected.

95Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Metrics AnalysisMetrics AnalysisMetrics AnalysisMetrics Analysis

Pattern of Successful Applications:

• Any metric is better then none.

• Automation is essential.

• Empiricism is better then theory.

• Use multifactor rather then single metrics.

• Don’t confuse productivity metrics with complexity metrics.

• Let them mature.

• Maintain them.

• Let them die.

96Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

6.1 Which one is not a category of software metrics ?

(a) Product metrics (b) Process metrics

(c) Project metrics (d) People metrics

6.2 Software science measures are developed by

(a) M.Halstead (b) B.Littlewood

(c) T.J.McCabe (d) G.Rothermal

6.3 Vocabulary of a program is defined as:

6.4 In halstead theory of software science, volume is measured in bits. The bits are

(a) Number of bits required to store the program

(b) Actual size of a program if a uniform binary encoding scheme for
vocabulary is used

(c) Number of bits required to execute the program

(d) None of the above

Multiple Choice Questions
Note: Choose most appropriate answer of the following questions:

21)(ηηη +=a 21)(ηηη −=b

21)(ηηη ×=c 21 /)(ηηη =d

97Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

6.6 Language level is defined as

Multiple Choice Questions

6.7 Program weakness is

6.5 In Halstead theory, effort is measured in

(a) Person-months (b) Hours

(c) Elementary mental discriminations (d) None of the above

VLa
3)(=λ LVb =λ)(

*)(LVc =λ VLd
2)(=λ

γ×= LVWMa)(γ/)(LVWMb =

γ+= LVWMa)((d) None of the above

6.8 ‘FAN IN’ of a component A is defined as

(a) Count of the number of components that can call, or pass control, to
component A

(b) Number of components related to component A

(c) Number of components dependent on component A

(d) None of the above

98Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

6.9 ‘FAN OUT’ of a component A is defined as

(a) number of components related to component A

(b) number of components dependent on component A

(c) number of components that are called by component A

(d) none of the above

Multiple Choice Questions

6.10 Which is not a size metric?

(a) LOC (b) Function count

(c) Program length (d) Cyclomatic complexity

6.12 A human mind is capable of making how many number of elementary mental
discriminations per second (i.e., stroud number)?

(a) 5 to 20 (b) 20 to 40

(c) 1 to 10 (d) 40 to 80

6.11 Which one is not a measure of software science theory?

(a) Vocabulary (b) Volume

(c) Level (d) Logic

99Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

6.13 Minimal implementation of any algorithm was given the following name by
Halstead:

(a) Volume (b) Potential volume

(c) Effective volume (d) None of the above

6.14 Program volume of a software product is

(a) V=N log2n (b) V=(N/2) log2n

(c) V=2N log2n (d) V=N log2n+1

6.15 Which one is the international standard for size measure?

(a) LOC (b) Function count

(c) Program length (d) None of the above

Multiple Choice Questions

6.16 Which one is not an object oriented metric?

(a) RFC (b) CBO

(c)DAC (d) OBC

100Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

6.17 Which metric also consider indirect connected methods?

(a) TCC (b) LCC

(c) Both of the above (d) None of the above

6.20 Which of the following is not a size metric?

(a) LOC (b) FP

(c) Cyclomatic Complexity (d) program length

6.18 depth of inheritance tree (DIT) can be measured by:

(a) Number of ancestors classes (b) Number of successor classes

(c) Number of failure classes (d) Number of root classes

6.19 A dynamic page is:

(a) where contents are not dependent on the actions of the user

(b) where contents are dependent on the actions of the user

(c) where contents cannot be displayed

(d) None of the above

101Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

6.1 Define software metrics. Why do we really need metrics in software?

6.2 Discus the areas of applications of software metrics? What are the
problems during implementation of metrics in any organizations?

6.3 What are the various categories of software metrics? Discuss with the
help of suitable example.

6.4 Explain the Halstead theory of software science. Is it significant in
today’s scenario of component based software development?

6.5 What is the importance of language level in Halstead theory of software
science?

6.6 Give Halstead’s software science measure for:

(i) Program Length (ii) Program volume

(iii) Program level (iv) Effort

(v) Language level

102Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

6.7 For a program with number of unique operators and number of

unique operands , Compute the following:

(i) Program volume (ii) Effort and time

(iii) Program length (iv) Program level

6.8 Develop a small software tool that will perform a Halstead analysis on a
programming language source code of your choice.

6.9 Write a program in C and also PASCAL for the calculation of the roots
of a quadratic equation, Find out all software science metrics for both the
programs. Compare the outcomes and comment on the efficiency and
size of both the source codes.

6.10 How should a procedure identifier be considered, both when declared
and when called/ What about the identifier of a procedure that is passed
as a parameter to another procedure?

201 =η

402 =η

103Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

6.11 Assume that the previous payroll program is expected to read a file
containing information about all the cheques that have been printed. The
file is supposed to be printed and also used by the program next time it is
run, to produce a report that compares payroll expenses of the current
month with those of the previous month. Compute functions points for
this program. Justify the difference between the function points of this
program and previous one by considering how the complexity of the
program is affected by adding the requirement of interfacing with
another application (in this case, itself).

6.12 Define data structure metrics. How can we calculate amount of data in a
program?

6.13 Describe the concept of module weakness. Is it applicable to programs
also.

6.14 Write a program for the calculation of roots of a quadratic equation.
Generate cross reference list for the program and also calculate for this
program.

104Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

6.15 Show that the value of SP at a particular statement is also the value of
LV at that point.

6.16 Discuss the significance of data structure metrics during testing.

6.17 What are information flow metrics? Explain the basic information flow
model.

6.18 Discuss the problems with metrics data. Explain two methods for the
analysis of such data.

6.19 Show why and how software metrics can improve the software process.
Enumerate the effect of metrics on software productivity.

6.20 Why does lines of code (LOC) not measure software nesting and control
structures?

6.21 Several researchers in software metrics concentrate on data structure to
measure complexity. Is data structure a complexity or quality issue, or
both?

105Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

6.22 List the benefits and disadvantages of using Library routines rather than
writing own code.

6.23 Compare software science measure and function points as measure of
complexity. Which do you think more useful as a predictor of how much
particular software’s development will cost?

6.24 Some experimental evidence suggests that the initial size estimate for a
project affects the nature and results of the project. Consider two
different managers charged with developing the same application. One
estimates that the size of the application will be 50,000 lines, while the
other estimates that it will be 100,000 lines. Discuss how these estimates
affect the project throughout its life cycle.

6.25 Which one is the most appropriate size estimation technique and why?

6.26 Discuss the object oriented metrics. What is the importance of metrics
in object oriented software development ?

106Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

6.27 Define the following: RFC, CBO, DAC, TCC, LCC & DIT.

6.28 What is the significance of use case metrics? Is it really important to
design such metrics?

1Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Basic Concepts

There are three phases in the life of any hardware component i.e.,

burn-in, useful life & wear-out.

Failure rate increase in wear-out phase due to wearing out/aging of

components. The best period is useful life period. The shape of this
curve is like a “bath tub” and that is why it is known as bath tub

curve. The “bath tub curve” is given in Fig.7.1.

During useful life period, failure rate is approximately constant.

In burn-in phase, failure rate is quite high initially, and it starts

decreasing gradually as the time progresses.

3Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig. 7.1: Bath tub curve of hardware reliability.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

4Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig. 7.2: Software reliability curve (failure rate versus time)

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

We do not have wear out phase in software. The expected curve for

software is given in fig. 7.2.

5Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� change in environment

� change in infrastructure/technology

� major change in requirements

� increase in complexity

� extremely difficult to maintain

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Software may be retired only if it becomes obsolete. Some of

contributing factors are given below:

� deterioration in structure of the code

� slow execution speed

� poor graphical user interfaces

6Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

What is Software Reliability?

“Software reliability means operational reliability. Who cares how

many bugs are in the program?

As per IEEE standard: “Software reliability is defined as the ability of

a system or component to perform its required functions under

stated conditions for a specified period of time”.

7Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

“It is the probability of a failure free operation of a program for a

specified time in a specified environment”.

Software reliability is also defined as the probability that a software

system fulfills its assigned task in a given environment for a
predefined number of input cases, assuming that the hardware and

the inputs are free of error.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

8Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Failures and Faults

A fault is the defect in the program that, when executed under

particular conditions, causes a failure.

The execution time for a program is the time that is actually spent by

a processor in executing the instructions of that program. The
second kind of time is calendar time. It is the familiar time that we

normally experience.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

9Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

There are four general ways of characterising failure occurrences in

time:

1. time of failure,

2. time interval between failures,

3. cumulative failure experienced up to a given time,

4. failures experienced in a time interval.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

10Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2825015

2522214

2819713

2616912

1914311

2012410

181049

15868

14717

12576

9455

11364

7253

10182

881

Failure interval (sec)Failure Time (sec)Failure Number

Table 7.1: Time based failure specification

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

11Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

114240

113210

112180

211150

19120

2890

3660

3330

Failure in interval (30 sec)Cumulative FailuresTime (sec)

Table 7.2: Failure based failure specification

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

12Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

0.130.029

0.160.038

ProbabilityValue of random
variable (failures
in time period)

0.120.047

0.090.056

0.070.085

0.050.114

0.040.163

0.030.222

0.020.181

0.010.100

Elapsed time tB = 5 hrElapsed time tA = 1 hr

Table 7.3: Probability distribution at times tA and tB

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

13Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

ProbabilityValue of random
variable (failures
in time period)

7.773.04Mean failures

0.01015

0.02014

0.03013

0.05012

0.07011

0.100.0110

Elapsed time tB = 5 hrElapsed time tA = 1 hr

Table 7.3: Probability distribution at times tA and tB

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

14Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Failure behavior is affected by two principal factors:

A random process whose probability distribution varies with time to

time is called non-homogeneous. Most failure processes during test
fit this situation. Fig. 7.3 illustrates the mean value and the related

failure intensity functions at time tA and tB. Note that the mean

failures experienced increases from 3.04 to 7.77 between these two

points, while the failure intensity decreases.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

� the number of faults in the software being executed.

� the execution environment or the operational profile of
execution.

15Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig. 7.3: Mean Value & failure intensity functions.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

16Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Environment

The environment is described by the operational profile. The

proportion of runs of various types may vary, depending on the

functional environment. Examples of a run type might be:

1. a particular transaction in an airline reservation system or a
business data processing system,

2. a specific cycle in a closed loop control system (for

example, in a chemical process industry),

3. a particular service performed by an operating system for a

user.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

17Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The run types required of the program by the environment can be

viewed as being selected randomly. Thus, we define the operational

profile as the set of run types that the program can execute along

with possibilities with which they will occur. In fig. 7.4, we show two

of many possible input states A and B, with their probabilities of
occurrence.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The part of the operational profile for just these two states is shown

in fig. 7.5. A realistic operational profile is illustrated in fig.7.6.

18Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig. 7.4: Input Space

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

19Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig. 7.5: Portion of operational profile

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

20Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Fig. 7.6: Operational profile

21Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Fig. 7.7: Reliability and failure intensity

Fig.7.7 shows how failure intensity and reliability typically vary

during a test period, as faults are removed.

22Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

There are at least four other ways in which software reliability

measures can be of great value to the software engineer, manager
or user.

1. you can use software reliability measures to evaluate software

engineering technology quantitatively.

2. software reliability measures offer you the possibility of

evaluating development status during the test phases of a

project.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Uses of Reliability Studies

23Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3. one can use software reliability measures to monitor the

operational performance of software and to control new features
added and design changes made to the software.

4. a quantitative understanding of software quality and the various

factors influencing it and affected by it enriches into the

software product and the software development process.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

24Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Quality

Different people understand different meanings of quality like:

� conformance to requirements

� fitness for the purpose

� level of satisfaction

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

25Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

26Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig 7.8: Software quality attributes

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

27Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The extent of effort required to learn, operate and

understand the functions of the software

Usability7

The extent to which an error is traceable in order to

fix it.

Traceability6

The extent to which a software is simple in its

operations.

Simplicity5

The extent to which a software tolerates the

unexpected problems.

Robustness4

The extent to which a software is consistent and give

results with precision.

Consistency &

precision

3

The extent to which a software meets its

specifications.

Correctness2

The extent to which a software performs its intended

functions without failure.

Reliability1

28Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The effort required to locate and fix an error during

maintenance phase.

Maintainability14

The effort required to test a software to ensure that it

performs its intended functions.

Testability13

The amount of computing resources and code required

by software to perform a function.

Efficiency12

The extent to which a software has specified functions.Completeness11

The extent to which a software is in conformity of

operational environment.

Conformity of

operational

environment

10

The extent to which documents are clearly & accurately

written.

Clarity &

Accuracy of

documentation

9

Meeting specifications with precision.Accuracy8

29Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The effort required to transfer a program from one

platform to another platform.

Portability20

The extent to which a software is expandable without

undesirable side effects.

Expandability19

The effort required to modify a software during

maintenance phase.

Modifiability18

The extent to which a software is adaptable to new

platforms & technologies.

Adaptability17

The extent to which a software is readable in order to

understand.

Readability16

It is the extent of ease to implement, test, debug and

maintain the software.

Modularity15

Table 7.4: Software quality attributes

30Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig 7.9: Software quality factors

� McCall Software Quality Model

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

31Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Factors which are related to the operation of a product are

combined. The factors are:

� Correctness

� Efficiency

� Integrity

� Reliability

� Usability

i. Product Operation

These five factors are related to operational performance,

convenience, ease of usage and its correctness. These factors play

a very significant role in building customer’s satisfaction.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

32Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The factors which are required for testing & maintenance are

combined and are given below:

� Maintainability

� Flexibility

� Testability

ii. Product Revision

These factors pertain to the testing & maintainability of software.

They give us idea about ease of maintenance, flexibility and testing
effort. Hence, they are combined under the umbrella of product

revision.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

33Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

We may have to transfer a product from one platform to an other

platform or from one technology to another technology. The factors

related to such a transfer are combined and given below:

� Portability

� Reusability

� Interoperability

iii. Product Transition

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

34Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Most of the quality factors are explained in table 7.4. The remaining

factors are given in table 7.5.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The effort required to couple one system with

another.

Interoperability4

The extent to which a program can be reused in

other applications.

Reusability3

The effort required to modify an operational program.Flexibility2

The extent to which access to software or data by

the unauthorized persons can be controlled.

Integrity1

PurposeQuality FactorsSr.No.

Table 7.5: Remaining quality factors (other are in table 7.4)

35Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig 7.10: McCall’s quality model

Quality criteria

36Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 7.5(a):

Relation

between quality

factors and

quality criteria

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

37Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The run-time efficiency of the software.Execution efficiency9

The run time storage requirements of the software.Storage efficiency8

The ease with which software and data can be

checked for compliance with standards or other

requirements.

Access audit7

The provisions for control and protection of the

software and data.

Access control6

It is the indication of I/O rate.I/O rate5

It is related to the I/O volume.I/O volume4

The ease with which inputs and outputs can be

assimilated.

Communicativeness3

The ease with which new users can use the

system.

Training 2

The ease of operation of the software.Operability1

38Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The degree to which the software provides for

measurements of its use or identification of errors.

Instrumentation17

The compactness of the source code, in terms of lines

of code.

Conciseness16

The ease with which the software can be understood.Simplicity15

The use of uniform design and implementation

techniques and notations throughout a project.

Consistency14

The degree to which continuity of operation is ensured

under adverse conditions.

Error tolerance13

The precision of computations and output.Accuracy12

The degree to which a full implementation of the

required functionality has been achieved.

Completeness11

The ability to link software components to

requirements.

Traceability10

39Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The use of standard data representations.Data commonality25

The degree to which standard protocols and

interfaces are used.

Communication

commonality

24

The degree to which software is independent of its

environment.

Software system

independence

23

The degree to which software is dependent on its

associated hardware.

Machine

independence

22

The provision of highly independent modules.Modularity21

The degree to which the documents are self

explanatory.

Self-

descriptiveness

20

The breadth of the potential application of software

components.

Generability19

The degree to which storage requirements or

software functions can be expanded.

Expandability18

Table 7.5 (b): Software quality criteria

40Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Boehm Software Quality Model

Fig.7.11: The Boehm software quality model

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

41Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

ISO 9126

� Functionality

� Reliability

� Usability

� Efficiency

� Maintainability

� Portability

42Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Attributes of software that bear on the frequency of failure

by faults in the software

• Maturity

Characteristics relating to capability of software to

maintain its level of performance under stated conditions

for a stated period of time

Reliability

Ability to prevent unauthorized access, whether accidental

or deliberate, to program and data.

• Security

Software’s ability to interact with specified systems• Interoperability

The provision of right or agreed results or effects• Accuracy

The presence and appropriateness of a set of functions for

specified tasks

• Suitability

Characteristics relating to achievement of the basic

purpose for which the software is being engineered

Functionality

Short Description of the Characteristics and the

concerns Addressed by Attributes

Characteristic/

Attribute

43Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Characteristic related to the relationship between the level

of performance of the software and the amount of

resources used, under stated conditions.

Efficiency

The ease of operation and control by users.• Operability

The effort required for a user to learn its application,

operation, input and output.

• Learnability

The effort required for a user to recognize the logical

concept and its applicability.

• Understandability

Characteristics relating to the effort needed for use, and on

the individual assessment of such use, by a stated implied

set of users.

Usability

Capability and effort needed to reestablish level of

performance and recover affected data after possible

failure.

• Recoverability

Ability to maintain a specified level of performance in cases

of software faults or unexpected inputs

• Fault tolerance

44Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The effort needed for validating the modified software.• Testability

The risk of unexpected effect of modifications.• Stability

The effort needed for modification, fault removal or for

environmental change.

• Changeability

The effort needed for diagnosis of deficiencies or causes

of failures, or for identification of parts to be modified.

• Analyzability

Characteristics related to the effort needed to make

modifications, including corrections, improvements or

adaptation of software to changes in environment,

requirements and functions specifications.

Maintainability

The amount of resources used and the duration of such

use in performing its function.

• Resource

behavior

The speed of response and processing times and

throughout rates in performing its function.

• Time behavior

45Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The opportunity and effort of using it in the place of other

software in a particular environment.

• Replaceability

The extent to which it adheres to standards or

conventions relating to portability.

• Conformance

The effort needed to install the software in a specified

environment.

• Installability

The opportunity for its adaptation to different specified

environments.

• Adaptability

Characteristics related to the ability to transfer the

software from one organization or hardware or software

environment to another.

Portability

Table 7.6: Software quality characteristics and attributes – The ISO 9126

view

46Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig.7.12: ISO 9126 quality model

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

47Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Reliability Models

� Basic Execution Time Model









−=

0

0 1)(
V

µ
λµλ

Fig.7.13: Failure intensity λ as a

function of µ for basic model

(1)

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

48Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

0

0

Vd

d λ

µ

λ −
=

Fig.7.14: Relationship between & µ for basic modelτ

(2)

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

49Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007









−=

0

0

)(
1

)(

Vd

d τµ
λ

τ

τµ

For a derivation of this relationship, equation 1 can be written as:

The above equation can be solved for and result in :)(τµ





















 −
−=

0

0
0 exp1)(

V
V

τλ
τµ

(3)

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

50Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Fig.7.15: Failure intensity versus execution time for basic model

The failure intensity as a function of execution time is shown in

figure given below








 −
=

0

0
0 exp)(

V

τλ
λτλ

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

51Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Derived quantities

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Fig.7.16: Additional failures required to be experienced to reach the

objective

52Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

This can be derived in mathematical form as:









=∆

F

PLn
V

λ

λ

λ
τ

0

0

Fig.7.17: Additional time required to reach the

objective

53Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example- 7.1

Assume that a program will experience 200 failures in infinite time. It has

now experienced 100. The initial failure intensity was 20 failures/CPU hr.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

(i) Determine the current failure intensity.

(ii) Find the decrement of failure intensity per failure.

(iii)Calculate the failures experienced and failure intensity after 20 and 100

CPU hrs. of execution.

(iv)Compute addition failures and additional execution time required to

reach the failure intensity objective of 5 failures/CPU hr.

Use the basic execution time model for the above mentioned calculations.

54Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Here Vo=200 failures

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

(i) Current failure intensity:









−=

0

0 1)(
V

µ
λµλ

failures100=µ

hr.PUfailures/C200 =λ

rhPUfailures/C10)5.01(20
200

100
120 =−=








−=

55Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

(ii) Decrement of failure intensity per failure can be calculated as:

hr.CPU/1.0
200

20

0

0 −=−=
−

=
Vd

d λ

µ

λ





















 −
−=

0

0
0 exp1)(

V
V

τλ
τµ

(iii) (a) Failures experienced & failure intensity after 20 CPU hr:

))21exp(1(200
200

2020
exp1200 −−=















 ×−
−=

failures173)1353.01(200 ≈−=

56Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability








 −
=

0

0
0 exp)(

V

τλ
λτλ





















 −
−=

0

0
0 exp1)(

V
V

τλ
τµ

(b) Failures experienced & failure intensity after 100 CPU hr:

lmost)failures(a200
200

10020
exp1200 =















 ×−
−=








 −
=

0

0
0 exp)(

V

τλ
λτλ

hrCPUfailures /71.2)2exp(20
200

2020
exp20 =−=







 ×−
=

57Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

hrCPUfailures /000908.0
200

10020
exp20 =







 ×−
=

() failures50)510(
20

200

0

0 =−







=−








=∆ FP

V
λλ

λ
µ

(iv) Additional failures required to reach the failure intensity

objective of 5 failures/CPU hr.

()µ∆

58Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

















=∆

F

PLn
V

λ

λ

λ
τ

0

0

Additional execution time required to reach failure intensity objective

of 5 failures/CPU hr.

hr.CPU93.6
5

10

20

200
=








= Ln

59Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Logarithmic Poisson Execution Time Model

Failure Intensity

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Fig.7.18: Relationship between

)exp()(0 θµλµλ −=

60Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Fig.7.19: Relationship between

)exp(0 µθθλ
µ

λ
−−=

d

d
θλ

µ

λ
−=

d

d

61Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

)1(
1

)(0 += θτλ
θ

τµ Ln

)1/()(00 += θτλλτλ

(4)

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability









=∆

F

PLn
λ

λ

θ
µ

1









−=∆

PF λλθ
τ

111

objectiveintensity Failure

intensity failurePresent

=

=

F

P

λ

λ

62Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example- 7.2

Assume that the initial failure intensity is 20 failures/CPU hr. The failure

intensity decay parameter is 0.02/failures. We have experienced 100

failures up to this time.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

(i) Determine the current failure intensity.

(ii) Calculate the decrement of failure intensity per failure.

(iii)Find the failures experienced and failure intensity after 20 and 100 CPU

hrs. of execution.

(iv)Compute the additional failures and additional execution time required to

reach the failure intensity objective of 2 failures/CPU hr.

Use Logarithmic Poisson execution time model for the above mentioned

calculations.

63Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

(i) Current failure intensity:

)exp()(0 θµλµλ −=

failures100=µ

failures/02.0=θ

hr.PUfailures/C200 =λ

= 20 exp (-0.02 x 100)

= 2.7 failures/CPU hr.

64Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

(ii) Decrement of failure intensity per failure can be calculated as:

θλ
d

d
−=

µ

λ

()1
1

)(0 += θτλ
θ

τµ Ln

(iii) (a) Failures experienced & failure intensity after 20 CPU hr:

failuresLn 109)12002.020(
02.0

1
=+××=

= -.02 x 2.7 = -.054/CPU hr.

65Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

()1/)(00 += θτλλτλ

(b) Failures experienced & failure intensity after 100 CPU hr:

./22.2)12002.20/()20(hrCPUfailures=+××=

()1
1

)(0 += θτλ
θ

τµ Ln

failuresLn 186)110002.020(
02.0

1
=+××=

()1/)(00 += θτλλτλ

./4878.0)110002.20/()20(hrCPUfailures=+××=

66Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

failures15
2

72

020

11
=








==∆

.

.
LnLn

F

P

λ

λ

θ
µ

(iv) Additional failures required to reach the failure intensity

objective of 2 failures/CPU hr.
()µ∆

hr.CPU56
72

1

2

1

020

1111
.

..
=








−=








−=∆

PF λλθ
τ

67Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example- 7.3

The following parameters for basic and logarithmic Poisson models are

given:

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

(a) Determine the addition failures and additional execution time required to

reach the failure intensity objective of 5 failures/CPU hr. for both models.

(b) Repeat this for an objective function of 0.5 failure/CPU hr. Assume that

we start with the initial failure intensity only.

Logarithmic Poisson

execution time model

Basic execution time model

hr PUfailures/C 10=
o

λ hr PUfailures/C 30=
o

λ

failures 010=
o

V failure250 /.=θ

68Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

(a) (i) Basic execution time model

)(
0

0
FP

V
λλ

λ
µ −=∆

0λ









=∆

F

PLn
λ

λ

λ
τ

0

0V

Pλ

failures50)510(
10

100
=−=

(Present failure intensity) in this case is same as (initial

failure intensity).

Now,

69Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

(ii) Logarithmic execution time model

hr.CPU93.6
5

10

10

100
=








= Ln









=∆

F

PLn
λ

λ

θ
µ

1

Failures67.71
5

30

025.0

1
=








= Ln









−=∆

PF λλθ
τ

111

hr.CPU66.6
30

1

5

1

025.0

1
=








−= Ln

70Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

(b) Failure intensity objective = 0.5 failures/CPU hr.

()FP

V
λλ

λ
µ −=∆

0

0

failures95)5.010(
10

100
=−=

Logarithmic model has calculated more failures in almost some duration of
execution time initially.

()Fλ

(i) Basic execution time model









=∆

F

PLn
V

λ

λ

λ
τ

0

0

hrCPULn /30
05.0

10

10

100
=








=

71Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability









=∆

F

PLn
λ

λ
µ

θ

1

failuresLn 164
5.0

30

025.0

1
=








=

(ii) Logarithmic execution time model









−=∆

PF λλ
τ

11

θ

1

hrCPU /66.78
30

1

5.0

1

025.0

1
=








−=

72Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The calendar time component is based on a debugging process

model. This model takes into account:

1. resources used in operating the program for a given

execution time and processing an associated quantity of

failure.

2. resources quantities available, and

3. the degree to which a resource can be utilized (due to

bottlenecks) during the period in which it is limiting.

Table 7.7 will help in visualizing these different aspects of the

resources, and the parameters that result.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

� Calendar Time Component

73Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

PcPcµcθcComputer time

PfPfµf0Failure correction

personnel

1PIµIθIFailure identification

personnel

UtilisationQuantities

available

FailureCPU hrResource

Planned parametersUsage parameters
requirements per

Fig. : Calendar time component resources and parameters

Resource usage

74Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

τθµµ ∆+∆= ccCX

µµ ∆= ffX

τθµµ ∆+∆= IIIX

Hence, to be more precise, we have

(for computer time)

(for failure correction)

(for failure identification)

λµθτ rrT ddx +=/

75Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

ττ ddxpPddt Trr /)/1(/ =

rrrr pPddt /)(/ λµθτ +=

Calendar time to execution time relationship

76Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Fig.7.20: Instantaneous calendar time to execution time ratio

77Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Fig.7.21: Calendar time to execution time ratio for different

limiting resources

78Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example- 7.4

A team run test cases for 10 CPU hrs and identifies 25 failures. The effort

required per hour of execution time is 5 person hr. Each failure requires 2

hr. on an average to verify and determine its nature. Calculate the failure

identification effort required.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

79Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

As we know, resource usage is:

µµτθ rrrX +=

hr.person15θHere =r

Hence,

failures25=µ

hrs.CPU10=τ rehrs./failu2=rµ

Xr = 5 (10) + 2 (25)

= 50 + 50 = 100 person hr.

80Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example- 7.5

Initial failure intensity for a given software is 20 failures/CPU hr. The

failure intensity objective of 1 failure/CPU hr. is to be achieved.

Assume the following resource usage parameters.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

)(0λ

)(Fλ

1 CPU hr.1.5 CPU hr.Computer time

5 Person hr.0Failure Correction effort

1 Person hr.2 Person hr.Failure identification effort

Per failurePer hourResource Usage

81Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(a)What resources must be expended to achieve the reliability

improvement? Use the logarithmic Poisson execution time model with a

failure intensity decay parameter of 0.025/failure.

(b) If the failure intensity objective is cut to half, what is the effect on

requirement of resources ?

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

82Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

(a)








=∆

F

PLn
λ

λ

θ
µ

1

failures119
1

20

0.025

1
=








= Ln









−=∆

PF λλθ
τ

111

() hrs.CPU3805.01
025.0

1

20

1

1

1

025.0

1
=−=








−=

83Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Hence τµµ ∆+∆= 111 θX

µµ ∆= FFX

= 1 (119) + 2 (38) = 195 Person hrs.

= 5 (119) = 595 Person hrs.

τµµ ∆+∆= ccCX θ

= 1 (119) + (1.5) (38) = 176 CPU hr.

84Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

(b) hr.PUfailures/C5.0=Fλ

failures148
5.0

20

025.0

1
=








=∆ Lnµ

.hrCPU78
20

1

5.0

1

025.0

1
=








−=∆τ

So, XI = 1 (148) + 2 (78) = 304 Person hrs.

XF = 5 (148) = 740 Person hrs.

XC = 1 (148) + (1.5)(78) = 265 CPU hrs.

85Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Hence, if we cut failure intensity objective to half, resources requirements

are not doubled but they are some what less. Note that is

approximately doubled but increases logarithmically. Thus, the resources

increase will be between a logarithmic increase and a linear increase for

changes in failure intensity objective.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

τ∆

86Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example- 7.6

A program is expected to have 500 faults. It is also assumed that one fault

may lead to one failure only. The initial failure intensity was 2 failures/CPU

hr. The program was to be released with a failure intensity objective of 5

failures/100 CPU hr. Calculated the number of failure experienced before

release.

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

87Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The number of failure experienced during testing can be calculated using
the equation mentioned below:

()FP

V
λλ

λ
µ −=∆

0

0

failureonetoleadsfaultonebecause500VHere 0 =

hr.PUfailures/C20 =λ

.hrCPU00failures/15F =λ

hr.PUfailures/C05.0=

88Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

So ()05.02
2

500
−=∆µ

= 487 failures

Hence 13 faults are expected to remain at the release instant of

the software.

89Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� The Jelinski-Moranda Model

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

)1()(+−= iNt φλ

where

φ = Constant of proportionality

N = Total number of errors present

I = number of errors found by time interval ti

90Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Fig.7.22: Relation between t & λ

91Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example- 7.7

There are 100 errors estimated to be present in a program. We have

experienced 60 errors. Use Jelinski-Moranda model to calculate

failure intensity with a given value of φ=0.03. What will be failure

intensity after the experience of 80 errors?

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

92Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

N = 100 errors

i = 60 failures

φ = 0.03

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

We know

= 0.03(100-60+1)

= 1.23 failures/CPU hr.

)(.)(160100030 +−=tλ

After 80 failures)180100(03.0)(+−=tλ
= 0.63 failures/CPU hr.

Hence, there is continuous decrease in the failure intensity as the

number of failure experienced increases.

93Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� The Bug Seeding Model

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

t

t

t

t

nn

n

NN

N

+
=

+

The bug seeding model is an outgrowth of a technique used to

estimate the number of animals in a wild life population or fish in a
pond.

t

t

N
n

n
N =
∧

s

s

N
n

n
N =

94Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Capability Maturity Model

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Fig.7.23: Maturity levels of CMM

It is a strategy for improving the software process, irrespective of the

actual life cycle model used.

95Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Maturity Levels:

� Initial (Maturity Level 1)

� Repeatable (Maturity Level 2)

� Defined (Maturity Level 3)

� Managed (Maturity Level 4)

� Optimizing (Maturity Level 5)

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

96Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Fig.7.24: The five levels of CMM

Process ControlOptimizing

Process MeasurementManaged

Process DefinitionDefined

Basic Project ManagementRepeatable

Adhoc ProcessInitial

CharacterizationMaturity Level

97Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Key Process Areas

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The key process areas at level 2 focus on the software project’s

concerns related to establishing basic project management controls,
as summarized below:

98Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The key process areas at level 3 address both project and

organizational issues, as summarized below:

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

99Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

100Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The key process areas at level 4 focus on establishing a quantitative

understanding of both the software process and the software work
products being built, as summarized below:

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

101Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The key process areas at level 5 cover the issues that both the

organization and the projects must address to implement continuous
and measurable software process improvement, as summarized

below:

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

102Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Common Features

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

103Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� ISO 9000

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The SEI capability maturity model initiative is an attempt to improve

software quality by improving the process by which software is

developed.

ISO-9000 series of standards is a set of document dealing with

quality systems that can be used for quality assurance purposes.

ISO-9000 series is not just software standard. It is a series of five

related standards that are applicable to a wide variety of industrial

activities, including design/ development, production, installation,
and servicing. Within the ISO 9000 Series, standard ISO 9001 for

quality system is the standard that is most applicable to software

development.

104Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

1. Management responsibility

2. Quality system

3. Contract review

4. Design control

5. Document control

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

� Mapping ISO 9001 to the CMM

6. Purchasing

7. Purchaser-supplied product

105Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

8. Product identification and traceability

9. Process control

10. Inspection and testing

11. Inspection, measuring and test equipment

12. Inspection and test status

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

13. Control of nonconforming product

14. Corrective action

106Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

15. Handling, storage, packaging and delivery

16. Quality records

17. Internal quality audits

18. Training

19. Servicing

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

20. Statistical techniques

107Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Contrasting ISO 9001 and the CMM

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

The biggest difference, however, between these two documents is

the emphasis of the CMM on continuous process improvement.

The biggest similarity is that for both the CMM and ISO 9001, the

bottom line is “Say what you do; do what you say”.

There is a strong correlation between ISO 9001 and the CMM,

although some issues in ISO 9001 are not covered in the CMM, and

some issues in the CMM are not addressed in ISO 9001.

108Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

7.1 Which one is not a phase of “bath tub curve” of hardware reliability

(a) Burn-in (b) Useful life

(c) Wear-out (d) Test-out

7.2 Software reliability is

(a) the probability of failure free operation of a program for a specified time in
a specified environment

(b) the probability of failure of a program for a specified time in a specified
environment

(c) the probability of success of a program for a specified time in any
environment

(d) None of the above

7.3 Fault is

(a) Defect in the program (b) Mistake in the program

(c) Error in the program (d) All of the above

7.4 One fault may lead to

(a) one failure (b) two failures

(c) many failures (d) all of the above

Multiple Choice Questions
Note: Choose most appropriate answer of the following questions:

109Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

7.7 Maximum possible value of reliability is

(a) 100 (b) 10

(c) 1 (d) 0

Multiple Choice Questions

7.5 Which ‘time’ unit is not used in reliability studies

(a) Execution time (b) Machine time

(c) Clock time (d) Calendar time

7.6 Failure occurrences can be represented as

(a) time to failure (b) time interval between failures

(c) failures experienced in a time interval (d) All of the above

7.9 As the reliability increases, failure intensity

(a) decreases (b) increases

(c) no effect (d) None of the above

7.8 Minimum possible value of reliability is

(a) 100 (b) 10

(c) 1 (d) 0

110Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

7.10 If failure intensity is 0.005 failures/hour during 10 hours of operation of a
software, its reliability can be expressed as

(a) 0.10 (b) 0.92

(c) 0.95 (d) 0.98

Multiple Choice Questions

7.11 Software Quality is

(a) Conformance to requirements (b) Fitness for the purpose

(c) Level of satisfaction (d) All of the above

7.12 Defect rate is

(a) number of defects per million lines of source code
(b) number of defects per function point

(c) number of defects per unit of size of software

(d) All of the above

7.13 How many product quality factors have been proposed in McCall quality model?

(a) 2 (b) 3

(c) 11 (d) 6

111Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

7.14 Which one is not a product quality factor of McCall quality model?

(a) Product revision (b) Product operation

(c) Product specification (d) Product transition

Multiple Choice Questions

7.15 The second level of quality attributes in McCall quality model are termed as

(a) quality criteria (b) quality factors

(c) quality guidelines (d) quality specifications

7.16 Which one is not a level in Boehm software quality model ?

(a) Primary uses (b) Intermediate constructs

(c) Primitive constructs (d) Final constructs

7.17 Which one is not a software quality model?

(a) McCall model (b) Boehm model

(c) ISO 9000 (d) ISO 9126

7.18 Basic execution time model was developed by

(a) Bev.Littlewood (b) J.D.Musa

(c) R.Pressman (d) Victor Baisili

112Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

7.19 NHPP stands for

(a) Non Homogeneous Poisson Process (b) Non Hetrogeneous Poisson Process

(c) Non Homogeneous Poisson Product (d) Non Hetrogeneous Poisson Product

7.20 In Basic execution time model, failure intensity is given by

7.21 In Basic execution time model, additional number of failures required to
achieve a failure intensity objective is expressed as









−=

0

2

0 1)()(
V

a
µ

λµλ 







−=

0

0 1)()(
V

b
µ

λµλ









−=

µ
λµλ 0

0 1)()(
V

c 







−=

2

0
0 1)()(

µ
λµλ

V
d

)(µ∆

)()(
0

0
FP

V
a λλ

λ
µ −=∆)()(

0

0
PF

V
b λλ

λ
µ −=∆

)()(
0

0
PF

V
c λλ

λ
µ −=∆)()(

0

0
FP

V
d λλ

λ
µ −=∆

113Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

7.22 In Basic execution time model, additional time required to achieve a failure
intensity objective is given as

7.23 Failure intensity function of Logarithmic Poisson execution model is given as

)(τ∆

)()()(0 θµλµλ −= LNa









=∆

P

FLn
V

c
λ

λ

λ
τ

0

0)(







=∆

F

PLn
V

d
λ

λ

λ
τ

0

0)(









=∆

P

FLn
V

a
λ

λλ
τ

0

0)(







=∆

F

PLn
V

b
λ

λλ
τ

0

0)(

)exp()()(0 θµλµλ =b

)exp()()(0 θµλµλ −=c)log()()(0 θµλµλ −=d

7.24 In Logarithmic Poisson execution model, ‘θ’ is known as

(a) Failure intensity function parameter (b) Failure intensity decay parameter

(c) Failure intensity measurement (d) Failure intensity increment parameter

114Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

7.25 In jelinski-Moranda model, failure intensity is defined aseneous Poisson
Product

7.26 CMM level 1 has

(a) 6 KPAs (b) 2 KPAs

(c) 0 KPAs (d) None of the above

7.27 MTBF stands for

(a) Mean time between failure (b) Maximum time between failures

(c) Minimum time between failures (d) Many time between failures

7.28 CMM model is a technique to

(a) Improve the software process (b) Automatically develop the software

(c) Test the software (d) All of the above

7.29 Total number of maturing levels in CMM are

(a) 1 (b) 3

(c) 5 (d) 7

)1()()(+−= iNta φλ

)1()()(−+= iNtc φλ

)1()()(++= iNtb φλ

)1()()(−−= iNtd φλ

115Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

7.30 Reliability of a software is dependent on number of errors

(a) removed (b) remaining

(c) both (a) & (b) (d) None of the above

7.31 Reliability of software is usually estimated at

(a) Analysis phase (b) Design phase

(c) Coding phase (d) Testing phase

Multiple Choice Questions

7.32 CMM stands for

(a) Capacity maturity model (b) Capability maturity model

(c) Cost management model (d) Comprehensive maintenance model

7.33 Which level of CMM is for basic project management?

(a) Initial (b) Repeatable

(c) Defined (d) Managed

7.34 Which level of CMM is for process management?

(a) Initial (b) Repeatable

(c) Defined (d) Optimizing

116Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

7.36 CMM was developed at

(a) Harvard University (b) Cambridge University

(c) Carnegie Mellon University (d) Maryland University

7.39 The number of clauses used in ISO 9001 are

(a) 15 (b) 25

(c) 20 (d) 10

7.35 Which level of CMM is for process management?

(a) Initial (b) Defined

(c) Managed (d) Optimizing

7.38 The model to measure the software process improvement is called

(a) ISO 9000 (b) ISO 9126

(c) CMM (d) Spiral model

7.37 McCall has developed a

(a) Quality model (b) Process improvement model

(c) Requirement model (d) Design model

117Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

7.41 In ISO 9126, each characteristics is related to

(a) one attributes (b) two attributes

(c) three attributes (d) four attributes

7.44 Each maturity model is CMM has

(a) One KPA (b) Equal KPAs

(c) Several KPAs (d) no KPA

7.40 ISO 9126 contains definitions of

(a) quality characteristics (b) quality factors

(c) quality attributes (d) All of the above

7.43 Which is not a software reliability model ?

(a) The Jelinski-Moranda Model (b) Basic execution time model

(c) Spiral model (d) None of the above

7.42 In McCall quality model; product revision quality factor consist of

(a) Maintainability (b) Flexibility

(c) Testability (d) None of the above

118Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

7.46 In reliability models, our emphasis is on

(a) errors (b) faults

(c) failures (d) bugs

7.49 MTTF stands for

(a) Mean time to failure (b) Maximum time to failure

(c) Minimum time to failure (d) None of the above

7.45 KPA in CMM stands for

(a) Key Process Area (b) Key Product Area

(c) Key Principal Area (d) Key Performance Area

7.48 Software reliability is defined with respect to

(a) time (b) speed

(c) quality (d) None of the above

7.47 Software does not break or wear out like hardware. What is your opinion?

(a) True (b) False

(c) Can not say (d) not fixed

119Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

7.50 ISO 9000 is a series of standards for quality management systems and has

(a) 2 related standards (b) 5 related standards

(c) 10 related standards (d) 25 related standards

120Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

7.1 What is software reliability? Does it exist?

7.2 Explain the significance of bath tube curve of reliability with the help of
a diagram.

7.3 Compare hardware reliability with software reliability.

7.6 Describe the following terms:

(i) Operational profile (ii) Input space

(iii) MTBF (iv) MTTF

(v) Failure intensity.

7.4 What is software failure? How is it related with a fault?

7.5 Discuss the various ways of characterising failure occurrences with
respect to time.

121Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

7.7 What are uses of reliability studies? How can one use software reliability
measures to monitor the operational performance of software?

7.8 What is software quality? Discuss software quality attributes.

7.9 What do you mean by software quality standards? Illustrate their essence
as well as benefits.

7.10 Describe the McCall software quality model. How many product quality
factors are defined and why?

7.11 Discuss the relationship between quality factors and quality criteria in
McCall’s software quality model.

7.12 Explain the Boehm software quality model with the help of a block
diagram.

7.13 What is ISO9126 ? What are the quality characteristics and attributes?

122Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

7.14 Compare the ISO9126 with McCall software quality model and
highlight few advantages of ISO9126.

7.15 Discuss the basic model of software reliability. How can be
calculated.

7.16 Assume that the initial failure intensity is 6 failures/CPU hr. The failure
intensity decay parameter is 0.02/failure. We assume that 45 failures
have been experienced. Calculate the current failure intensity.

7.17 Explain the basic & logarithmic Poisson model and their significance in
reliability studies.

τµ ∆∆ and

123Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

7.18 Assume that a program will experience 150 failures in infinite time. It
has now experienced 80. The initial failure intensity was 10 failures/CPU
hr.

(i) Determine the current failure intensity

(ii) Calculate the failures experienced and failure intensity after 25 and
40 CPU hrs. of execution.

(iii) Compute additional failures and additional execution time required
to reach the failure intensity objective of 2 failures/CPU hr.

Use the basic execution time model for the above mentioned
calculations.

7.19 Write a short note on Logarithmic Poisson Execution time model. How
can we calculate

7.20 Assume that the initial failure intensity is 10 failures/CPU hr. The
failure intensity decay parameter is 0.03/failure. We have experienced 75
failures upto this time. Find the failures experienced and failure intensity
after 25 and 50 CPU hrs. of execution.

?& τµ ∆∆

124Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

7.21 The following parameters for basic and logarithmic Poisson models are
given:

7.22 Quality and reliability are related concepts but are fundamentally
different in a number of ways. Discuss them.

7.23 Discuss the calendar time component model. Establish the relationship
between calendar time to execution time.

Determine the additional failures and additional execution time required
to reach the failure intensity objective of 0.1 failure/CPU hr. for both
models.

125Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

7.24 A program is expected to have 250 faults. It is also assumed that one
fault may lead to one failure. The initial failure intensity is 5 failure/CPU
hr. The program is released with a failure intensity objective of 4
failures/10 CPU hr. Calculate the number of failures experienced before
release.

7.25 Explain the Jelinski-Moranda model of reliability theory. What is the
relation between ‘t’ and

7.27 Explain how the CMM encourages continuous improvement of the
software process.

7.28 Discuss various key process areas of CMM at various maturity levels.

?''λ

7.26 Describe the Mill’s bug seeding model. Discuss few advantages of this
model over other reliability models.

7.30 Discuss the 20 clauses of ISO9001 and compare with the practices in the
CMM.

7.29 Construct a table that correlates key process areas (KPAs) in the CMM
with ISO9000.

126Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

7.31 List the difference of CMM and ISO9001. Why is it suggested that
CMM is the better choice than ISO9001?

7.32 Explain the significance of software reliability engineering. Discuss the
advantage of using any software standard for software development?

7.33 What are the various key process areas at defined level in CMM?
Describe activities associated with one key process area.

7.34 Discuss main requirements of ISO9001 and compare it with SEI
capability maturity model.

7.35 Discuss the relative merits of ISO9001 certification and the SEI CMM
based evaluation. Point out some of the shortcomings of the ISO9001
certification process as applied to the software industry.

1Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Many people understand many definitions of testing :

• What is Testing?

1. Testing is the process of demonstrating that errors are not present.

2. The purpose of testing is to show that a program performs its intended
functions correctly.

3. Testing is the process of establishing confidence that a program does
what it is supposed to do.

These definitions are incorrect.

Software TestingSoftware TestingSoftware TestingSoftware Testing

3Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

A more appropriate definition is:

“Testing is the process of executing a program with

the intent of finding errors.”

Software TestingSoftware TestingSoftware TestingSoftware Testing

4Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

• Why should We Test ?

Although software testing is itself an expensive activity, yet launching of
software without testing may lead to cost potentially much higher than that
of testing, specially in systems where human safety is involved.

In the software life cycle the earlier the errors are discovered and removed,
the lower is the cost of their removal.

5Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

• Who should Do the Testing ?

o Testing requires the developers to find errors from their software.

o It is difficult for software developer to point out errors from own
creations.

o Many organisations have made a distinction between development
and testing phase by making different people responsible for each
phase.

6Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

• What should We Test ?

We should test the program’s responses to every possible input. It means,
we should test for all valid and invalid inputs. Suppose a program requires
two 8 bit integers as inputs. Total possible combinations are 28x28. If only
one second it required to execute one set of inputs, it may take 18 hours to
test all combinations. Practically, inputs are more than two and size is also
more than 8 bits. We have also not considered invalid inputs where so
many combinations are possible. Hence, complete testing is just not
possible, although, we may wish to do so.

7Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 1: Control flow graph

8Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

The number of paths in the example of Fig. 1 are 1014 or 100 trillions. It is
computed from 520 + 519 + 518 + …… + 51; where 5 is the number of paths
through the loop body. If only 5 minutes are required to test one test path, it
may take approximately one billion years to execute every path.

9Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

People make errors. A good synonym is mistake. This may be a syntax
error or misunderstanding of specifications. Sometimes, there are logical
errors.

When developers make mistakes while coding, we call these mistakes
“bugs”.

Some Terminologies

� Error, Mistake, Bug, Fault and Failure

A fault is the representation of an error, where representation is the mode
of expression, such as narrative text, data flow diagrams, ER diagrams,
source code etc. Defect is a good synonym for fault.

A failure occurs when a fault executes. A particular fault may cause
different failures, depending on how it has been exercised.

10Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Test and Test case terms are used interchangeably. In practice, both are
same and are treated as synonyms. Test case describes an input
description and an expected output description.

The set of test cases is called a test suite. Hence any combination of test
cases may generate a test suite.

� Test, Test Case and Test Suite

Date:Date:

Run by:Written by:

Any suggestion:Post conditions:

Any other observation:Expected Outputs:

If fails, any possible reason (Optional);Inputs:

Result:Pre condition: (If any)

Execution History:Purpose :

Section-II

(After Execution)

Section-I

(Before Execution)

Test Case ID

Fig. 2: Test case template

11Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Verification is the process of evaluating a system or component to
determine whether the products of a given development phase satisfy the
conditions imposed at the start of that phase.

� Verification and Validation

Validation is the process of evaluating a system or component during or at
the end of development process to determine whether it satisfies the
specified requirements .

Testing= Verification+Validation

12Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

� Alpha, Beta and Acceptance Testing

The term Acceptance Testing is used when the software is developed for
a specific customer. A series of tests are conducted to enable the customer
to validate all requirements. These tests are conducted by the end user /
customer and may range from adhoc tests to well planned systematic
series of tests.

The terms alpha and beta testing are used when the software is developed
as a product for anonymous customers.

Alpha Tests are conducted at the developer’s site by some potential
customers. These tests are conducted in a controlled environment. Alpha
testing may be started when formal testing process is near completion.

Beta Tests are conducted by the customers / end users at their sites.
Unlike alpha testing, developer is not present here. Beta testing is
conducted in a real environment that cannot be controlled by the developer.

13Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Input test
data

System
under
test

Output
test data

Input
domain

Output
domain

Functional Testing

Fig. 3: Black box testing

14Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Boundary Value Analysis

Consider a program with two input variables x and y. These input variables
have specified boundaries as:

a ≤ x ≤ b

c ≤ y ≤ d

Fig.4: Input domain for program having two input variables

Input domain

y

d

c

a b
x

15Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 5: Input domain of two variables x and y with

boundaries [100,300] each

The boundary value analysis test cases for our program with two inputs
variables (x and y) that may have any value from 100 to 300 are: (200,100),
(200,101), (200,200), (200,299), (200,300), (100,200), (101,200), (299,200) and

(300,200). This input domain is shown in Fig. 8.5. Each dot represent a test case

and inner rectangle is the domain of legitimate inputs. Thus, for a program of n

variables, boundary value analysis yield 4n + 1 test cases.

y

x

Input domain

300

200

100

400

0 300200100 400

16Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example- 8.I

Consider a program for the determination of the nature of roots of a
quadratic equation. Its input is a triple of positive integers (say a,b,c) and
values may be from interval [0,100]. The program output may have one of
the following words.

[Not a quadratic equation; Real roots; Imaginary roots; Equal roots]

Design the boundary value test cases.

17Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

Quadratic equation will be of type:

ax2+bx+c=0

Roots are real if (b2-4ac)>0

Roots are imaginary if (b2-4ac)<0

Roots are equal if (b2-4ac)=0

Equation is not quadratic if a=0

18Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

The boundary value test cases are :

Expected outputcbaTest Case

1

3

2

4

5

7

6

10

8

11

9

12

13

0

50

1

99

100

50

50

50

50

50

50

50

50

50

50

50

50

50

1

0

50

99

50

100

50

50

50

50

50

50

50

50

50

0

50

1

50

99

100

Not Quadratic

Real Roots

Imaginary Roots

Imaginary Roots

Imaginary Roots

Imaginary Roots

Imaginary Roots

Imaginary Roots

Imaginary Roots

Imaginary Roots

Equal Roots

Real Roots

Real Roots

19Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example – 8.2

Consider a program for determining the Previous date. Its input is a triple of
day, month and year with the values in the range

1 ≤ month ≤ 12

1 ≤ day ≤ 31

1900 ≤ year ≤ 2025

The possible outputs would be Previous date or invalid input date. Design the
boundary value test cases.

20Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

The Previous date program takes a date as input and checks it for validity.
If valid, it returns the previous date as its output.

With single fault assumption theory, 4n+1 test cases can be designed and
which are equal to 13.

21Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

The boundary value test cases are:

Expected outputYearDayMonthTest Case

1

3

2

4

5

7

6

10

8

11

9

12

13

6

6

6

6

6

6

6

1

6

2

6

11

12

15

15

15

15

15

2

1

15

30

15

31

15

15

1900

1962

1901

2024

2025

1962

1962

1962

1962

1962

1962

1962

1962

14 June, 1900

14 June, 1901

14 June, 1962

14 June, 2024

14 June, 2025

31 May, 1962

1 June, 1962

29 June, 1962

Invalid date

14 January, 1962

14 February, 1962

14 November, 1962

14 December, 1962

22Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example – 8.3

Consider a simple program to classify a triangle. Its inputs is a triple of
positive integers (say x, y, z) and the date type for input parameters ensures
that these will be integers greater than 0 and less than or equal to 100. The
program output may be one of the following words:

[Scalene; Isosceles; Equilateral; Not a triangle]

Design the boundary value test cases.

23Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

The boundary value test cases are shown below:

Expected OutputzyxTest case

Isosceles

Isosceles

Isosceles

Equilateral

Isosceles

Isosceles

Isosceles

Not a triangle

Not a triangle

Not a triangle

Isosceles

Isosceles

Isosceles

1

2

50

99

100

50

50

50

50

50

50

50

50

50

50

50

50

50

1

2

99

100

50

50

50

50

1

2

3

4

5

6

7

8

9

10

11

12

13

50

50

50

50

50

50

50

50

50

1

2

99

100

24Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

It is nothing but the extension of boundary value analysis. Here, we would
like to see, what happens when the extreme values are exceeded with a
value slightly greater than the maximum, and a value slightly less than
minimum. It means, we want to go outside the legitimate boundary of input
domain. This extended form of boundary value analysis is called
robustness testing and shown in Fig. 6

There are four additional test cases which are outside the legitimate input
domain. Hence total test cases in robustness testing are 6n+1, where n is
the number of input variables. So, 13 test cases are:

(200,99), (200,100), (200,101), (200,200), (200,299), (200,300)

(200,301), (99,200), (100,200), (101,200), (299,200), (300,200), (301,200)

Robustness testing

Software TestingSoftware TestingSoftware TestingSoftware Testing

25Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 8.6: Robustness test cases for two variables x

and y with range [100,300] each

y

x

300

200

100

400

0 300200100 400

26Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

If we reject “single fault” assumption theory of reliability and may like to see
what happens when more than one variable has an extreme value. In
electronic circuits analysis, this is called “worst case analysis”. It is more
thorough in the sense that boundary value test cases are a proper subset
of worst case test cases. It requires more effort. Worst case testing for a
function of n variables generate 5n test cases as opposed to 4n+1 test
cases for boundary value analysis. Our two variables example will have
52=25 test cases and are given in table 1.

Worst-case testing

Software TestingSoftware TestingSoftware TestingSoftware Testing

27Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

299299191001016

200299183001005

101299172991004

100299162001003

300200151011002

299200141001001

yxyx

InputsTest case

number

InputsTest case

number

--20020013

3003002510120012

2993002410020011

2003002330010110

101300222991019

100300212001018

300299201011017

Table 1: Worst cases test inputs for two variables example

28Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example - 8.4

Consider the program for the determination of nature of roots of a quadratic
equation as explained in example 8.1. Design the Robust test case and worst
test cases for this program.

29Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

Robust test cases are 6n+1. Hence, in 3 variable input cases total number
of test cases are 19 as given on next slide:

30Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing
Expected OutputcbaTest case

Invalid input`

Not quadratic equation

Imaginary roots

Real roots

Imaginary roots

Invalid input

Invalid input

Imaginary roots

Imaginary roots

Invalid input

Imaginary roots

Imaginary roots

Equal roots

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

-1

0

1

99

100

101

1

2

3

4

5

6

7

8

9

10

11

12

13

-1

0

1

50

99

100

101

50

50

50

50

50

50

Invalid input

Real roots

Imaginary roots

Real roots

Invalid input

Imaginary roots

-1

0

1

99

100

101

50

50

50

50

50

50

14

15

16

17

18

19

50

50

50

50

50

50

31Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

In case of worst test case total test cases are 5n. Hence, 125 test cases will be

generated in worst test cases. The worst test cases are given below:

Not Quadratic100005

Not Quadratic99004

Not Quadratic50003

Not Quadratic1002

Not Quadratic0001

Expected outputcbaTest Case

Not Quadratic1001010

Not Quadratic99109

Not Quadratic50108

Not Quadratic1107

Not Quadratic0106

Not Quadratic9950014

Not Quadratic5050013

Not Quadratic150012

Not Quadratic050011

32Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Not Quadratic10099020

Not Quadratic9999019

Not Quadratic5099018

Not Quadratic199017

Not Quadratic099016

Not Quadratic10050015

Expected outputcbATest Case

Not Quadratic100100025

Not Quadratic99100024

Not Quadratic50100023

Not Quadratic1100022

Not Quadratic0100021

Real Roots01131

Imaginary1000130

Imaginary990129

Imaginary500128

Imaginary10127

Equal Roots00126

33Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Real Roots150137

Real Roots050136

Imaginary1001135

Imaginary991134

Imaginary501133

Imaginary11132

Expected outputCbATest Case

Real Roots5099143

Real Roots199142

Real Roots099141

Real Roots10050140

Real Roots9950139

Real Roots5050138

Real Roots50100148

Real Roots1100147

Real Roots0100146

Real Roots10099145

Real Roots9999144`

34Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Imaginary9905054

Imaginary5005053

Imaginary105052

Equal Roots005051

Real Roots100100150

Real Roots99100149

Expected outputCbATest Case

Imaginary10015060

Imaginary9915059

Imaginary5015058

Imaginary115057

Real Roots015056

Imaginary10005055

Imaginary100505065

Imaginary99505064

Imaginary50505063

Real Roots1505062

Real Roots0505061

35Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Real Roots01005071

Imaginary100995070

Imaginary99995069

Imaginary50995068

Real Roots1995067

Real Roots0995066

Expected outputCbATest Case

Imaginary109977

Equal Roots009976

Imaginary1001005075

Imaginary991005074

Equal Roots501005073

Real Roots11005072

Imaginary119982

Real Roots019981

Imaginary10009980

Imaginary9909979

Imaginary5009978

36Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Imaginary50509988

Real Roots1509987

Real Roots0509986

Imaginary10019985

Imaginary9919984

Imaginary5019983

Expected outputCbATest Case

Imaginary99999994

Imaginary Roots50999993

Real Roots1999992

Real Roots0999991

Imaginary100509990

Imaginary99509989

Imaginary10010099100

Imaginary991009999

Imaginary501009998

Real Roots11009997

Real Roots01009996

Imaginary100999995

37Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Real Roots01100106

Imaginary1000100105

Imaginary990100104

Imaginary500100103

Imaginary10100102

Equal Roots00100101

Expected outputCbATest Case

Real Roots150100112

Real Roots050100111

Imaginary1001100110

Imaginary991100109

Imaginary501100108

Imaginary11100107

Imaginary5099100118

Real Roots199100117

Real Roots099100116

Imaginary10050100115

Imaginary9950100114

Imaginary5050100113

38Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Imaginary100100100125

Imaginary99100100124

Imaginary50100100123

Real Roots1100100122

Real Roots0100100121

Imaginary10099100120

Imaginary9999100119

Expected outputCbATest Case

39Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example – 8.5

Consider the program for the determination of previous date in a calendar as
explained in example 8.2. Design the robust and worst test cases for this
program.

40Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

Robust test cases are 6n+1. Hence total 19 robust test cases are designed
and are given on next slide.

41Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing
Expected OutputYearDayMonthTest case

Invalid date (outside range)

14 June, 1900

14 June, 1962

14 June, 1901

14 June, 2025

Invalid date (outside range)

Invalid date

14 June, 2024

31 May, 1962

Invalid date

1 June, 1962

29 June, 1962

Invalid date

1899

1900

1901

1962

2024

2025

2026

1962

1962

1962

1962

1962

1962

15

15

15

15

15

15

15

0

1

2

30

31

32

1

2

3

4

5

6

7

8

9

10

11

12

13

6

6

6

6

6

6

6

6

6

6

6

6

6

Invalid date

14 January, 1962

14 November, 1962

14 February, 1962

Invalid date

14 December, 1962

1962

1962

1962

1962

1962

1962

15

15

15

15

15

15

14

15

16

17

18

19

0

1

2

11

12

13

42Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

In case of worst test case total test cases are 5n. Hence, 125 test cases will be

generated in worst test cases. The worst test cases are given below:

31 December, 20242025115

31 December, 20232024114

31 December, 19611962113

31 December, 19001901112

31 December, 18991900111

Expected outputYearDayMonthTest Case

1 January, 202520252110

1 January, 20242024219

1 January, 19621962218

1 January, 19011901217

1 January, 1900 1900216

14 January, 2024202415114

14 January, 1962196215113

14 January, 1901190115112

14 January, 1900190015111

43Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

29 January, 2025202530120

29 January, 2024202430119

29 January, 1962196230118

29 January, 1901190130117

29 January, 1900 190030116

14 January, 2025202515115

Expected outputcbATest Case

30 January, 2025202531125

30 January, 2024202431124

30 January, 1962196231123

30 January, 1901190131122

30 January, 1900 190031121

1 February, 190019002231

31 January, 202520251230

31 January, 202420241229

31 January, 196219621228

31 January, 190119011227

31 January, 190019001226

44Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

14 February, 1901190115237

14 February, 1900190015236

1 February, 202520252235

1 February, 202420242234

1 February, 196219622233

1 February, 190119012232

Expected outputYearDayMonthTest Case

Invalid date196230243

Invalid date190130242

Invalid date190030241

14 February, 2025202515240

14 February, 2024202415239

14 February, 1962196215238

Invalid date196231248

Invalid date190131247

Invalid date190031246

Invalid date202530245

Invalid date202430244

45Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

31 May, 202420241654

31 May, 196219621653

31 May, 190119011652

31 May, 190019001651

Invalid date202531250

Invalid date202431249

Expected outputYearDayMonthTest Case

1 June, 202520252660

1 June, 202420242659

1 June, 196219622658

1 June, 190119012657

1 June, 190019002656

31 May, 202520251655

14 June, 2025202515665

14 June, 2024202415664

14 June, 1962196215663

14 June, 1901190115662

14 June, 1900190015661

46Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Invalid date190031671

29 June, 2025202530670

29 June, 2024202430669

29 June, 1962196230668

29 June, 1901190130667

29 June, 1900190030666

Expected outputYearDayMonthTest Case

31 October, 1901190111177

31 October, 1900190011176

Invalid date202531675

Invalid date202431674

Invalid date196231673

Invalid date190131672

1 November, 1901190121182

1 November, 1900190021181

31 October, 2025202511180

31 October, 2024202411179

31 October, 1962196211178

47Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

14 November, 19621962151188

14 November, 19011901151187

14 November, 19001900151186

1 November, 2025202521185

1 November, 2024202421184

1 November, 1962196221183

Expected outputYearDayMonthTest Case

29 November, 20242024301194

29 November, 19621962301193

29 November, 19011901301192

29 November, 19001900301191

14 November, 20252025151190

14 November, 20242024151189

Invalid date20253111100

Invalid date2024311199

Invalid date1962311198

Invalid date1901311197

Invalid date1900311196

29 November, 20252025301195

48Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

1 December, 19001900212106

30 November, 20252025112105

30 November, 20242024112104

30 November, 19621962112103

30 November, 19011901112102

30 November, 19001900112101

Expected outputYearDayMonthTest Case

14 December, 190119011512112

14 December, 190019001512111

1 December, 20252025212110

1 December, 20242024212109

1 December, 19621962212108

1 December, 19011901212107

29 December, 196219623012118

29 December, 190119013012117

29 December, 190019003012116

14 December, 202520251512115

14 December, 202420241512114

14 December, 196219621512113

49Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

30 December, 202520253112125

30 December, 202420243112124

30 December, 196219623112123

30 December, 190119013112122

30 December, 190019003112121

29 December, 202520253012120

29 December, 202420243012119

Expected outputYearDayMonthTest Case

50Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example – 8.6

Consider the triangle problem as given in example 8.3. Generate robust and
worst test cases for this problem.

51Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

Robust test cases are given on next slide.

52Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing
Expected Outputzyx`

Invalid input`

Isosceles

Equilateral

Isosceles

Not a triangle

Invalid input

Invalid input

Isosceles

Isosceles

Invalid input

Isosceles

Isosceles

Not a triangle

0

1

2

50

99

100

101

50

50

50

50

50

50

50

50

50

50

50

50

50

0

1

2

99

100

101

1

2

3

4

5

6

7

8

9

10

11

12

13

50

50

50

50

50

50

50

50

50

50

50

50

50

Invalid input

Isosceles

Isosceles

Isosceles

Invalid input

Not a triangle

50

50

50

50

50

50

50

50

50

50

50

50

14

15

16

17

18

19

0

1

2

99

100

100

53Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Worst test cases are 125 and are given below:

Not a triangle9950114

Isosceles5050113

Not a triangle250112

Not a triangle150111

Not a triangle1002110

Not a triangle99219

Not a triangle50218

Isosceles2217

Not a triangle1216

Not a triangle100115

Not a triangle99114

Not a triangle50113

Not a triangle2112

Equilateral1111

Expected outputzyxTest Case

54Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Isosceles12231

Not a triangle1001230

Not a triangle991229

Not a triangle501228

Isosceles21227

Not a triangle11226

Isosceles100100125

Not a triangle99100124

Not a triangle50100123

Not a triangle2100122

Not a triangle1100121

Not a triangle10099120

Isosceles9999119

Not a triangle5099118

Not a triangle299117

Not a triangle199116

Not a triangle10050115

Expected outputcbATest Case

55Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Not a triangle50100248

Not a triangle2100247

Not a triangle1100246

Scalene10099245

Isosceles9999244

Not a triangle5099243

Not a triangle299242

Not a triangle199241

Not a triangle10050240

Not a triangle9950239

Isosceles5050238

Not a triangle250237

Not a triangle150236

Not a triangle1002235

Not a triangle992234

Not a triangle502233

Equilateral22232

Expected outputCbATest Case

56Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Not a triangle99505065

Isosceles50505064

Equilateral2505063

Isosceles1505062

Isosceles100505061

Not a triangle9925060

Not a triangle5025059

Isosceles225058

Not a triangle125057

Not a triangle10025056

Not a triangle9915055

Not a triangle5015054

Isosceles215053

Not a triangle115052

Not a triangle10015051

Isosceles99100250

Scalene50100249

Expected outputCbATest Case

57Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Not a triangle229982

Not a triangle129981

Not a triangle10019980

Isosceles9919979

Not a triangle5019978

Not a triangle219977

Not a triangle115076

Isosceles1001005075

Scalene991005074

Not a triangle501005073

Not a triangle21005072

Not a triangle11005071

Scalene100995070

Isosceles99995069

Isosceles50995068

Not a triangle2995067

Not a triangle1995066

Expected outputCBATest Case

58Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Isosceles10010099100

Isosceles991009999

Scalene501009998

Scalene21009997

Not a triangle11009996

Isosceles100999995

Equilateral99999994

Isosceles50999993

Isosceles2999992

Isosceles1999991

Scalene100509990

Isosceles99509989

Isosceles50509988

Not a triangle2509987

Not a triangle1509986

Scalene10029985

Isosceles9929984

Not a triangle5029983

Expected outputCbATest Case

59Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Scalene5099100118

Scalene299100117

Not a triangle199100116

Isosceles10050100115

Scalene9950100114

Not a triangle5050100113

Not a triangle250100112

Not a triangle150100111

Isosceles1002100110

Scalene992100109

Not a triangle502100108

Not a triangle22100107

Not a triangle12100106

Isosceles1001100105

Not a triangle991100104

Not a triangle501100103

Not a triangle21100102

Not a triangle11100101

Expected outputCbATest Case

60Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Equilateral100100100125

Isosceles99100100124

Isosceles50100100123

Isosceles2100100122

Isosceles1100100121

Isosceles10099100120

Isosceles9999100119

Expected outputCbATest Case

61Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

In this method, input domain of a program is partitioned into a finite number of

equivalence classes such that one can reasonably assume, but not be

absolutely sure, that the test of a representative value of each class is
equivalent to a test of any other value.

Two steps are required to implementing this method:

Equivalence Class Testing

1. The equivalence classes are identified by taking each input condition and
partitioning it into valid and invalid classes. For example, if an input

condition specifies a range of values from 1 to 999, we identify one valid
equivalence class [1<item<999]; and two invalid equivalence classes

[item<1] and [item>999].

2. Generate the test cases using the equivalence classes identified in the
previous step. This is performed by writing test cases covering all the valid

equivalence classes. Then a test case is written for each invalid equivalence
class so that no test contains more than one invalid class. This is to ensure

that no two invalid classes mask each other.

62Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 7: Equivalence partitioning

System
under test

OutputsValid
inputs

Invalid input

Input domain Output domain

Most of the time, equivalence class testing defines classes of the input domain.

However, equivalence classes should also be defined for output domain.
Hence, we should design equivalence classes based on input and output

domain.

63Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example 8.7

Consider the program for the determination of nature of roots of a quadratic
equation as explained in example 8.1. Identify the equivalence class test
cases for output and input domains.

64Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

Output domain equivalence class test cases can be identified as follows:

O1={<a,b,c>:Not a quadratic equation if a = 0}

O1={<a,b,c>:Real roots if (b2-4ac)>0}

O1={<a,b,c>:Imaginary roots if (b2-4ac)<0}

O1={<a,b,c>:Equal roots if (b2-4ac)=0}`

The number of test cases can be derived form above relations and shown
below:

Equal roots50100504

Imaginary roots5050503

Real roots505012

Not a quadratic equation505001

Expected outputcbaTest case

65Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

We may have another set of test cases based on input domain.

I1= {a: a = 0}

I2= {a: a < 0}

I3= {a: 1 ≤ a ≤ 100}

I4= {a: a > 100}

I5= {b: 0 ≤ b ≤ 100}

I6= {b: b < 0}

I7= {b: b > 100}

I8= {c: 0 ≤ c ≤ 100}

I9= {c: c < 0}

I10={c: c > 100}

66Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Expected outputcbaTest Case

1

3

2

4

5

7

6

10

8

9

0

50

-1

101

50

50

50

50

50

50

50

50

50

50

50

101

-1

50

50

50

50

50

50

50

50

50

50

101

50

-1

Not a quadratic equation

Invalid input

Imaginary Roots

invalid input

Imaginary Roots

invalid input

invalid input

Imaginary Roots

invalid input

invalid input

Here test cases 5 and 8 are redundant test cases. If we choose any value other

than nominal, we may not have redundant test cases. Hence total test cases are

10+4=14 for this problem.

67Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example 8.8

Consider the program for determining the previous date in a calendar as
explained in example 8.3. Identify the equivalence class test cases for output
& input domains.

68Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

Output domain equivalence class are:

O1={<D,M,Y>: Previous date if all are valid inputs}

O1={<D,M,Y>: Invalid date if any input makes the date invalid}

Invalid date19623162

14 June, 196219621561

Expected outputYDMTest case

69Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

We may have another set of test cases which are based on input domain.

I1={month: 1 ≤ m ≤ 12}

I2={month: m < 1}

I3={month: m > 12}

I4={day: 1 ≤ D ≤ 31}

I5={day: D < 1}

I6={day: D > 31}

I7={year: 1900 ≤ Y ≤ 2025}

I8={year: Y < 1900}

I9={year: Y > 2025}

70Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Expected outputYDMTest Case

1

3

2

4

5

7

6

8

9

6

13

-1

6

6

6

6

6

6

15

15

15

15

-1

15

32

15

15

1962

1962

1962

1962

1962

1962

1962

1899

2026

14 June, 1962

Invalid input

invalid input

14 June, 1962

invalid input

invalid input

14 June, 1962

invalid input (Value out of range)

Inputs domain test cases are :

invalid input (Value out of range)

71Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example – 8.9

Consider the triangle problem specified in a example 8.3. Identify the
equivalence class test cases for output and input domain.

Software TestingSoftware TestingSoftware TestingSoftware Testing

72Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Output domain equivalence classes are:

O1={<x,y,z>: Equilateral triangle with sides x,y,z}

O1={<x,y,z>: Isosceles triangle with sides x,y,z}

O1={<x,y,z>: Scalene triangle with sides x,y,z}

O1={<x,y,z>: Not a triangle with sides x,y,z}

The test cases are:

Software TestingSoftware TestingSoftware TestingSoftware Testing

Expected OutputzyxTest case

Equilateral

Isosceles

Not a triangle

Scalene

50

99

50

50

50

50

99

100

1

2

3

4

50

50

100

50

73Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Input domain based classes are:

I1={x: x < 1}

I2={x: x > 100}

I3={x: 1 ≤ x ≤ 100}

I4={y: y < 1}

I5={y: y > 100}

I6={y: 1 ≤ y ≤ 100}

I7={z: z < 1}

I8={z: z > 100}

I9={z: 1 ≤ z ≤ 100}

74Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Some inputs domain test cases can be obtained using the relationship amongst x,y

and z.

I10={< x,y,z >: x = y = z}

I11={< x,y,z >: x = y, x ≠ z}

I12={< x,y,z >: x = z, x ≠ y}

I13={< x,y,z >: y = z, x ≠ y}

I14={< x,y,z >: x ≠ y, x ≠ z, y ≠ z}

I15={< x,y,z >: x = y + z}

I16={< x,y,z >: x > y +z}

I17={< x,y,z >: y = x +z}

I18={< x,y,z >: y > x + z}

I19={< x,y,z >: z = x + y}

I20={< x,y,z >: z > x +y}

75Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Expected OutputzyxTest case

Invalid input

Invalid input

Equilateral

Equilateral

50

50

50

50

50

50

0

101

50

60

60

50

50

50

50

50

0

101

50

50

50

50

60

50

60

50

1

2

3

4

5

6

7

8

9

10

11

12

13

0

101

50

50

50

50

50

50

50

60

50

50

60

Test cases derived from input domain are:

Invalid input

Invalid input

Invalid input

Invalid input

Equilateral

Equilateral

Isosceles

Isosceles

Isosceles

76Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Expected OutputzyxTest case

Scalene

Not a triangle

50

50

25

50

25

100

100

99

50

50

100

100

50

50

14

15

16

17

18

19

20

100

100

100

50

50

50

25

Not a triangle

Not a triangle

Not a triangle

Not a triangle

Not a triangle

77Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Decision Table Based Testing

XXX

XX

XXX

XXXAction a1

Stub

a2

a3

a4

---FalseTrueFalseTrueFalseTrue

FalseTrueTrue False

FalseTrue

EntryCondition

Stub

C1

C2

C3

Table 2: Decision table terminology

78Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Test case design

N

--

Y

Y N

Y N Y N

Y Y Y YN N N N

X

X

X X

X

X

X X

X

--

--

C1:x,y,z are sides of a triangle?

C2:x = y?

C3:x = z?

C4:y = z?

a1: Not a triangle

a2: Scalene

a3: Isosceles

a4: Equilateral

a5: Impossible

Table 3: Decision table for triangle problem

79Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Table 4: Modified decision table

XXXa5 : Impossible

Xa4 : Equilateral

XXXa3 : Isosceles

Xa2 : Scalene

XXXa1 : Not a triangle

FTFTFTFT------C6 : y = z ?

FFTTFFTT------C5 : x = z ?

FFFFTTTT------C4 : x = y ?

TTTTTTTTF----C3 : z < x + y ?

TTTTTTTTTF--C2 : y < x + z ?

TTTTTTTTTTFConditions

C1 : x < y + z ?

80Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example 8.10

Consider the triangle program specified in example 8.3. Identify the

test cases using the decision table of Table 4.

81Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Expected OutputzyxTest case

Not a triangle

Equilateral

Isosceles

Impossible

Isosceles

Isosceles

2

2

4

5

?

?

3

?

2

2

5

1

4

2

5

?

?

2

?

3

2

4

1

2

3

4

5

6

7

8

9

10

11

4

1

1

5

?

?

2

?

2

3

3

Solution

There are eleven functional test cases, three to fail triangle property, three
impossible cases, one each to get equilateral, scalene triangle cases, and

three to get on isosceles triangle. The test cases are given in Table 5.

Not a triangle

Not a triangle

Scalene

Impossible

Impossible

Test cases of triangle problem using decision table

82Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example 8.11

Consider a program for the determination of Previous date. Its input is a triple of day,

month and year with the values in the range

1 ≤ month ≤ 12

1 ≤ day ≤ 31

1900 ≤ year ≤ 2025

The possible outputs are “Previous date” and “Invalid date”. Design the test cases

using decision table based testing.

83Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing
Solution

The input domain can be divided into following classes:

I1= {M1: month has 30 days}

I2= {M2: month has 31 days except March, August and January}

I3= {M3: month is March}

I4= {M4: month is August}

I5= {M5: month is January}

I6= {M6: month is February}

I7= {D1: day = 1}

I8= {D2: 2 ≤ day ≤ 28}

I9= {D3: day = 29}

I10={D4: day = 30}

I11={D5: day = 31}

I12={Y1: year is a leap year}

I13={Y2: year is a common year}

84Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing
The decision table is given below:

a9: Decrement year

a8: Reset month to December

XXXXa7: decrement month

a6: Reset day to 28

a5: Reset day to 29

XXa4: Reset day to 30

XXa3: Reset day to 31

XXXXXXXXXa2: Decrement day

XXa1: Impossible

Y1Y2Y1Y2Y1Y2Y1Y2Y1Y2Y1Y2Y1Y2Y1C3: year in

D3D2D2D1D1D5D5D4D4D3D3D2D2D1D1C2: days in

M2M2M2M2M2M1M1M1M1M1M1M1M1M1M1C1: Months in

151413121110987654321Sr.No.

85Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

a9: Decrement year

a8: Reset month to December

XXa7: decrement month

Xa6: Reset day to 28

Xa5: Reset day to 29

a4: Reset day to 30

a3: Reset day to 31

XXXXXXXXXXXXXa2: Decrement day

a1: Impossible

Y2Y1Y2Y1Y2Y1Y2Y1Y2Y1Y2Y1Y2Y1Y2C3: year in

D5D5D4D4D3D3D2D2D1D1D5D5D4D4D3C2: days in

M3M3M3M3M3M3M3M3M3M3M2M2M2M2M2C1: Months in

302928272625242322212019181716Sr.No.

86Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

XXa9: Decrement year

XXa8: Reset month to December

XXa7: decrement month

a6: Reset day to 28

a5: Reset day to 29

a4: Reset day to 30

XXXXa3: Reset day to 31

XXXXXXXXXXXa2: Decrement day

a1: Impossible

Y1Y2Y1Y2Y1Y2Y1Y2Y1Y2Y1Y2Y1Y2Y1C3: year in

D3D2D2D1D1D5D5D4D4D3D3D2D2D1D1C2: days in

M5M5M5M5M5M4M4M4M4M4M4M4M4M4M4C1: Months in

454443424140393837363534333231Sr.No.

87Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

a9: Decrement year

a8: Reset month to December

XXa7: decrement month

a6: Reset day to 28

a5: Reset day to 29

a4: Reset day to 30

XXa3: Reset day to 31

XXXXXXXXa2: Decrement day

XXXXXa1: Impossible

Y2Y1Y2Y1Y2Y1Y2Y1Y2Y1Y2Y1Y2Y1Y2C3: year in

D5D5D4D4D3D3D2D2D1D1D5D5D4D4D3C2: days in

M6M6M6M6M6M6M6M6M6M6M5M5M5M5M5C1: Months in

605958575655545352515049484746Sr.No.

88Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

28 May, 1964196429May15

14 May, 1962196215May14

14 May, 1964196415May13

30 April, 196219621May12

30 April, 196419641May11

Impossible196231June10

Impossible196431June9

29 June, 1962196230June8

29 June, 1964196430June7

28 June, 1962196229June6

28 June, 1964196429June5

14 June, 1962196215June4

14 June, 1964196415June3

31 May, 196219621June2

31 May, 196419641June1

Expected outputYearDayMonthTest case

89Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

30 March, 1962196231March30

30 March, 1964196431March29

29 March, 1962196230March28

29 March, 1964196430March27

28 March, 1962196229March26

28 March, 1964196429March25

14 March, 1962196215March24

14 March, 1964196415March23

28 February, 196219621March22

29 February, 196419641March21

30 May, 1962196231May20

30 May, 1964196431May19

29 May, 1962196230May18

29 May, 1964196430May17

28 May, 1962196229May16

Expected outputYearDayMonthTest case

90Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

28 January, 1964196429January45

14 January, 1962196215January44

14 January, 1964196415January43

31 December, 196219621January42

31 December, 196419641January41

30 August, 1962196231August40

30 August, 1964196431August39

29 August, 1962196230August38

29 August, 1964196430August37

28 August, 1962196229August36

28 August, 1964196429August35

14 August, 1962196215August34

14 August, 1964196415August33

31 July, 196419621August32

31 July, 196219641August31

Expected outputYearDayMonthTest case

91Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Impossible196231February60

Impossible196431February59

Impossible196230February58

Impossible196430February57

Impossible196229February56

28 February, 1964196429February55

14 February, 1962196215February54

14 February, 1964196415February53

31 January, 196219621February52

31 January, 196419641February51

30 January, 1962196231January50

30 January, 1964196431January49

29 January, 1962196230January48

29 January, 1964196430January47

28 January, 1962196229January46

Expected outputYearDayMonthTest case

92Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Cause Effect Graphing Technique

� Consider single input conditions

Steps

� do not explore combinations of input circumstances

1. Causes & effects in the specifications are identified.

A cause is a distinct input condition or an equivalence class of input conditions.

An effect is an output condition or a system transformation.

2. The semantic content of the specification is analysed and transformed into a

boolean graph linking the causes & effects.

3. Constraints are imposed

4. graph – limited entry decision table

Each column in the table represent a test case.

5. The columns in the decision table are converted into test cases.

93Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

The basic notation for the graph is shown in fig. 8

Fig.8. 8 : Basic cause effect graph symbols

94Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Myers explained this effectively with following example. “The characters in column 1

must be an A or B. The character in column 2 must be a digit. In this situation, the

file update is made. If the character in column 1 is incorrect, message x is issued. If

the character in column 2 is not a digit, message y is issued”.

The causes are

c1: character in column 1 is A

c2: character in column 1 is B

c3: character in column 2 is a digit

and the effects are

e1: update made

e2: message x is issued

e3: message y is issued

95Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 9: Sample cause effect graph

96Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

The E constraint states that it must always be true that at most

one of c1 or c2 can be 1 (c1 or c2 cannot be 1 simultaneously). The

I constraint states that at least one of c1, c2 and c3 must always be

1 (c1, c2 and c3 cannot be 0 simultaneously). The O constraint
states that one, and only one, of c1 and c2 must be 1. The

constraint R states that, for c1 to be 1, c2 must be 1 (i.e. it is

impossible for c1 to be 1 and c2 to be 0),

97Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 10: Constraint symbols

98Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 11: Symbol for masks constraint

99Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 12 : Sample cause effect graph with exclusive constraint

100Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example 8.12

Consider the triangle problem specified in the example 8.3. Draw the Cause
effect graph and identify the test cases.

101Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

The causes are

and effects are

c1: side x is less than sum of sides y and z

c2: side y is less than sum of sides x and y

c3: side z is less than sum of sides x and y

c4: side x is equal to side y

c5: side x is equal to side z

c6: side y is equal to side z

e1: Not a triangle

e2: Scalene triangle

e3: Isosceles triangle

e4: Equilateral triangle

e5: Impossible stage

102Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Conditions
C1: x < y + z ? 1 1

X

1 1

X

1

X

1

X

1 11

1

X

10

1 1 1 1 1 1 1 110

0 1 1 1 1 1 1 11X

X 1 1 1 1 0 0 00X

X 1 1 0 0 1 1 00X

X 1 0 1 0 1 0 01X

1

1

1 1

1

1

1

1

1

1

C2: y < x + z ?

C3: z < x + y ?

C4: x = y ?

C5: x = z ?

C6: y = z ?

e1: Not a triangle

e2: Scalene

e3: Isosceles

e4: Equilateral

e5: Impossible

Table 6: Decision table

The cause effect graph is shown in fig. 13 and decision table is shown in table 6.

The test cases for this problem are available in Table 5.

103Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 13: Cause effect graph of triangle problem

104Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Structural Testing

A complementary approach to functional testing is called structural / white box

testing. It permits us to examine the internal structure of the program.

Path Testing

Path testing is the name given to a group of test techniques based on judiciously

selecting a set of test paths through the program. If the set of paths is properly

chosen, then it means that we have achieved some measure of test thoroughness.

This type of testing involves:

1. generating a set of paths that will cover every branch in the program.

2. finding a set of test cases that will execute every path in the set of program

paths.

105Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Flow Graph

Fig. 14: The basic construct of the flow graph

The control flow of a program can be analysed using a graphical representation

known as flow graph. The flow graph is a directed graph in which nodes are either

entire statements or fragments of a statement, and edges represents flow of control.

106Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

107Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

108Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

109Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

110Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 15: Program for previous date problem

111Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 16: Flow graph of previous date
problem

112Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Sequential nodesn615,16,17

Sequential nodes and are combined to form new node n5n513,14

Decision node, if true go to 13 else go to 15n412

Decision node, if true go to 12 else go to 19n311

Decision node, if true go to 13 else go to 44 n210

There is a sequential flow from node 1 to 9n11 to 9

RemarksDD Path graph
corresponding

node

Flow graph
nodes

Cont….

Table 7: Mapping of flow graph nodes and DD path nodes

DD Path Graph

Decision node, if true go to 24 else go to 26n1223

Intermediate noden1122

Decision node, if true go to 22 else go to 27n1021

Intermediate node with one input edge and one output edgen920

Decision node, if true go to 20 else go to 37n819

Edges from node 14 to 17 are terminated heren718

113Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Sequential nodesn1831,32

Decision node, if true go to 31 else go to 33n1730

Sequential nodesn1628,29

Two edges from node 26 & 21 are terminated here. Also a decision noden1527

Two edges from node 25 & 23 are terminated heren1426

Sequential nodesn1324,25

RemarksDD Path graph

corresponding
node

Flow graph

nodes

Cont….

Three edge from node 36,39 and 42 are terminated heren2443

Sequential nodesn2340,41,42

Sequential nodesn2238,39

Decision node, if true go to 38 else go to 40n2137

Three edge from node 29,32 and 35 are terminated heren2036

Sequential nodesn1933,34,35

114Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Decision node, if true go to 45 else go to 82. Three edges from 18,43 & 10

are also terminated here.

n2544

Decision node, if true go to 46 else go to 77n2645

Decision node, if true go to 47 else go to 51n2746

Intermediate node with one input edge & one output egen3052

Decision node, if true go to 52 else go to 68n2951

Sequential nodesn2847,48,49,50

RemarksDD Path graph
corresponding

node

Flow graph
nodes

Cont….

Decision node, if true go to 60 else go to 63. Two edge from nodes 58 and

53 are terminated.

n3659

Two edge from node 57 and 55 are terminated heren3558

Sequential nodesn3456,57

Decision node, if true go to 56 else go to 58n3355

Intermediate noden3254

Decision node, if true go to 54 else go to 59n3153

115Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Sequential nodesn3760,61,62

Sequential nodesn3863,64,65,66

Two edge from node 62 and 66 are terminated heren3967

Decision node, if true go to 69 else go to 72n4068

Sequential nodesn4169,70,71

Sequential nodesn4272,73,74,75

RemarksDD Path graph
corresponding

node

Flow graph
nodes

Sequential nodes with exit noden4986,87

Two edges from nodes 81 and 84 are terminated heren4885

Sequential nodesn4782,83,84

Intermediate noden4681

Two edges from nodes 76 & 79 are terminated heren4580

Sequential nodesn4477,78,79

Four edges from nodes 50, 67, 71 and 75 are terminated here.n4376

116Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 17: DD path graph
of previous date

problem

117Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 18: Independent paths of previous date problem

118Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example 8.13

Consider the problem for the determination of the nature of roots of a quadratic

equation. Its input a triple of positive integers (say a,b,c) and value may be from

interval [0,100].

The program is given in fig. 19. The output may have one of the following words:

[Not a quadratic equation; real roots; Imaginary roots; Equal roots]

Draw the flow graph and DD path graph. Also find independent paths from the DD

Path graph.

119Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Cont….

120Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 19: Code of quadratic equation problem

121Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing
Solution

Fig. 19 (a) : Program flow

graph

122Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 19 (b) : DD Path graph

123Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Two edges are combined hereF16

Sequential nodeE14,15

Decision nodeD13

Intermediate nodeC12

Decision nodeB11

Sequential nodesA1 to 10

RemarksDD Path graph

corresponding
node

Flow graph

nodes

Cont….

The mapping table for DD path graph is:

Sequential nodeL23,24,25

Decision nodeK22

Sequential nodeJ20,21

Decision nodeI19

Intermediate nodeH18

Two edges are combined and decision nodeG17

124Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Sequential nodes with exit nodeS38,39

Three edges are combined hereR37

Sequential nodeQ34,35,36

Sequential nodeP32,33

Decision nodeO31

Three edges are combinedN30

Sequential nodesM26,27,28,29

RemarksDD Path graph
corresponding

node

Flow graph
nodes

Independent paths are:

(i) ABGOQRS (ii) ABGOPRS

(iii) ABCDFGOQRS (iv) ABCDEFGOPRS

(v) ABGHIJNRS (vi) ABGHIKLNRS

(vi) ABGHIKMNRS

125Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example 8.14

Consider a program given in Fig.8.20 for the classification of a triangle. Its input is a

triple of positive integers (say a,b,c) from the interval [1,100]. The output may be

[Scalene, Isosceles, Equilateral, Not a triangle].

Draw the flow graph & DD Path graph. Also find the independent paths from the DD

Path graph.

126Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

127Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 20 : Code of triangle classification problem

128Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Flow graph of
triangle problem is:

Solution :

Fig.8. 20 (a): Program flow graph

129Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

RemarksDD Path graph
corresponding

node

Flow graph
nodes

Cont….

The mapping table for DD path graph is:

Sequential nodes

Decision node

Decision node

Sequential nodes

Two edges are joined here

Sequential nodes

Decision nodes plus joining of two edges

Decision node

Sequential nodes

Decision node

Sequential nodes

Sequential nodes

A

C

D

E

F

H

G

B

I

J

L

K

1 TO 9

10

11

12, 13

14

15, 16, 17

18

19

20, 21

22

23, 24

25, 26, 27

130Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

RemarksDD Path graph

corresponding
node

Flow graph

nodes

Fig. 20 (b): DD Path graph

Decision node

Sequential nodes

Sequential nodes

Sequential nodes with exit node

Three edges are combined here

Three edges are combined here

N

M

O

P

R

Q

28

29

30, 31

32, 33, 34

35

36, 37

131Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 20 (b): DD Path graph

DD Path graph is given in Fig. 20 (b)

Independent paths are:

(i) ABFGNPQR

(ii) ABFGNOQR

(iii) ABCEGNPQR

(iv) ABCDEGNOQR

(v) ABFGHIMQR

(vi) ABFGHJKMQR

(vii)ABFGHJMQR

132Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Cyclomatic Complexity

McCabe’s cyclomatic metric V(G) = e – n + 2P.

For example, a flow graph shown in in Fig. 21 with entry node ‘a’ and exit node ‘f’.

Fig. 21: Flow graph

133Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

The value of cyclomatic complexity can be calculated as :

V(G) = 9 – 6 + 2 = 5

Here e = 9, n = 6 and P =1

There will be five independent paths for the flow graph illustrated in Fig. 21.

Path 1 : a c f

Path 2 : a b e f

Path 3 : a d c f

Path 4 : a b e a c f or a b e a b e f

Path 5 : a b e b e f

134Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Several properties of cyclomatic complexity are stated below:

1. V(G) ≥1

2. V (G) is the maximum number of independent paths in graph G.

3. Inserting & deleting functional statements to G does not affect V(G).

4. G has only one path if and only if V(G)=1.

5. Inserting a new row in G increases V(G) by unity.

6. V(G) depends only on the decision structure of G.

Software TestingSoftware TestingSoftware TestingSoftware Testing

135Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 22

The role of P in the complexity calculation V(G)=e-n+2P is required to be understood
correctly. We define a flow graph with unique entry and exit nodes, all nodes
reachable from the entry, and exit reachable from all nodes. This definition would
result in all flow graphs having only one connected component. One could, however,
imagine a main program M and two called subroutines A and B having a flow graph
shown in Fig. 22.

136Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Let us denote the total graph above with 3 connected components as

PneBAMV 2)(+−=∪∪

= 13-13+2*3

= 6

This method with P 1 can be used to calculate the complexity of a
collection of programs, particularly a hierarchical nest of subroutines.

≠

137Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

KnepneCV
k

i

k

i

ii 22)(
1 1

+−=+−= ∑ ∑
= =

)()2(
11

∑∑
==

=+−=
k

i

i

k

i

ii CVne

Notice that . In general, the
complexity of a collection C of flow graphs with K connected components is
equal to the summation of their complexities. To see this let Ci,1 ≤ I ≤ K

denote the k distinct connected component, and let ei and ni be the number of edges

and nodes in the ith-connected component. Then

6)()()()(=++=∪∪ BVAVMVBAMV

138Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Two alternate methods are available for the complexity calculations.

1. Cyclomatic complexity V(G) of a flow graph G is equal to the number of
predicate (decision) nodes plus one.

V(G)= +1

Where is the number of predicate nodes contained in the flow graph
G.

2. Cyclomatic complexity is equal to the number of regions of the flow
graph.

∏

∏

139Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing
Example 8.15

Consider a flow graph given in Fig. 23 and calculate the cyclomatic
complexity by all three methods.

Fig. 23

140Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

Cyclomatic complexity can be calculated by any of the three methods.

1. V(G) = e – n + 2P

= 13 – 10 + 2 = 5

2. V(G) = π + 1

= 4 + 1 = 5

3. V(G) = number of regions

= 5

Therefore, complexity value of a flow graph in Fig. 23 is 5.

141Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example 8.16

Consider the previous date program with DD path graph given in Fig. 17.
Find cyclomatic complexity.

142Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

Number of edges (e) = 65

Number of nodes (n) =49

(i) V(G) = e – n + 2P = 65 – 49 + 2 = 18

(ii) V(G) = π + 1 = 17 + 1 = 18

(iii) V(G) = Number of regions = 18

The cyclomatic complexity is 18.

143Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example 8.17

Consider the quadratic equation problem given in example 8.13 with its DD
Path graph. Find the cyclomatic complexity:

144Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

Number of nodes (n) = 19

Number of edges (e) = 24

(i) V(G) = e – n + 2P = 24 – 19 + 2 = 7

(ii) V(G) = π + 1 = 6 + 1 = 7

(iii)V(G) = Number of regions = 7

Hence cyclomatic complexity is 7 meaning thereby, seven
independent paths in the DD Path graph.

145Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example 8.18

Consider the classification of triangle problem given in example 8.14. Find
the cyclomatic complexity.

146Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

Number of edges (e) = 23

Number of nodes (n) =18

(i) V(G) = e – n + 2P = 23 – 18 + 2 = 7

(ii) V(G) = π + 1 = 6 + 1 = 7

(iii)V(G) = Number of regions = 7

The cyclomatic complexity is 7. Hence, there are seven independent paths
as given in example 8.14.

147Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Graph Matrices

Fig. 24 (a): Flow graph and graph matrices

A graph matrix is a square matrix with one row and one column for every node in the

graph. The size of the matrix (i.e., the number of rows and columns) is equal to the

number of nodes in the flow graph. Some examples of graphs and associated

matrices are shown in fig. 24.

148Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 24 (b): Flow graph and graph matrices

149Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 24 (c): Flow graph and graph matrices

150Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 25 : Connection matrix of flow graph shown in Fig. 24 (c)

151Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

The square matrix represent that there are two path ab and cd from node 1 to

node 2.

152Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing
Example 8.19

Consider the flow graph shown in the Fig. 26 and draw the graph & connection

matrices. Find out cyclomatic complexity and two / three link paths from a node to

any other node.

Fig. 26 : Flow graph

153Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

The graph & connection matrices are given below :

To find two link paths, we have to generate a square of graph matrix [A] and for three

link paths, a cube of matrix [A] is required.

154Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

155Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Data Flow Testing

As we know, variables are defined and referenced throughout the program. We

may have few define/ reference anomalies:

Data flow testing is another from of structural testing. It has nothing to do with data

flow diagrams.

i. Statements where variables receive values.

ii. Statements where these values are used or referenced.

i. A variable is defined but not used/ referenced.

ii. A variable is used but never defined.

iii. A variable is defined twice before it is used.

156Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Definitions

(i) Defining Node: Node n ϵ G(P) is a defining node of the variable v ϵ V,

written as DEF (v, n), if the value of the variable v is defined at the statement

fragment corresponding to node n.

The definitions refer to a program P that has a program graph G(P) and a set of

program variables V. The G(P) has a single entry node and a single exit node. The

set of all paths in P is PATHS(P)

(ii) Usage Node: Node n ϵ G(P) is a usage node of the variable v ϵ V, written as

USE (v, n), if the value of the variable v is used at statement fragment

corresponding to node n. A usage node USE (v, n) is a predicate use (denote

as p) if statement n is a predicate statement otherwise USE (v, n) is a

computation use (denoted as c).

157Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(iii) Definition use: A definition use path with respect to a variable v (denoted

du-path) is a path in PATHS(P) such that, for some v ϵ V, there are define and

usage nodes DEF(v, m) and USE(v, n) such that m and n are initial and final
nodes of the path.

(iv) Definition clear : A definition clear path with respect to a variable v (denoted

dc-path) is a definition use path in PATHS(P) with initial and final nodes DEF

(v, m) and USE (v, n), such that no other node in the path is a defining node of v.

Software TestingSoftware TestingSoftware TestingSoftware Testing

The du-paths and dc-paths describe the flow of data across source statements from

points at which the values are defined to points at which the values are used. The

du-paths that are not definition clear are potential trouble spots.

158Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 27 : Steps for data flow testing

Hence, our objective is to find all du-paths and then identity those du-paths which are

not dc-paths. The steps are given in Fig. 27. We may like to generate specific test

cases for du-paths that are not dc-paths.

159Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example 8.20

Consider the program of the determination of the nature of roots of a quadratic

equation. Its input is a triple of positive integers (say a,b,c) and values for each of

these may be from interval [0,100]. The program is given in Fig. 19. The output may

have one of the option given below:

(i) Not a quadratic program

(ii) real roots

(iii) imaginary roots

(iv) equal roots

(v) invalid inputs

Find all du-paths and identify those du-paths that are definition clear.

160Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

Step I: The program flow graph is given in Fig. 19 (a). The variables used in the

program are a,b,c,d, validinput, D.

Used at nodeDefined at nodeVariable

a

b

c

d

6

8

10

18

11,13,18,20,24,27,28

11,18,20,24,28

11,18

19,22,23,27

D

Validinput

23, 27

3, 12, 14

24,28

17,31

Step III: Define/use nodes for all variables are given below:

Step II: DD Path graph is given in Fig. 19(b). The cyclomatic complexity of this graph

is 7 indicating there are seven independent paths.

161Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Step IV: The du-paths are identified and are named by their beginning and ending

nodes using Fig. 19 (a).

Definition clear ?Path (beginning, end) nodesVariable

a

b

6, 11

6, 13

6, 18

6, 20

6, 24

6, 27

6, 28

Yes

Yes

Yes

Yes

Yes

Yes

Yes

8, 11

8, 18

8, 20

8, 24

8, 28

Yes

Yes

Yes

Yes

Yes

162Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Definition clear ?Path (beginning, end) nodesVariable

3, 17

3, 31

12, 17

12, 31

14, 17

14, 31

no

no

no

no

yes

yes

23, 24

23, 28

27, 24

27, 28

18, 19

18, 22

18, 23

18, 27

Yes

Yes

Yes

Yes

Yes

Path not possible

Path not possible

Yes

10, 11

10, 18

Yes

Yes
c

d

D

validinput

163Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Example 8.21

Consider the program given in Fig. 20 for the classification of a triangle. Its
input is a triple of positive integers (say a,b,c) from the interval [1,100]. The
output may be:

[Scalene, Isosceles, Equilateral, Not a triangle, Invalid inputs].

Find all du-paths and identify those du-paths that are definition clear.

164Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Solution

Step I: The program flow graph is given in Fig. 20 (a). The variables used in
the program are a,b,c, valid input.

Step III: Define/use nodes for all variables are given below:

Used at nodeDefined at nodeVariable

a

b

c

valid input

6

7

9

3, 13, 16

10, 11, 19, 22

10, 11, 19, 22

10, 11, 19, 22

18, 29

Step II: DD Path graph is given in Fig. 20(b). The cyclomatic complexity of
this graph is 7 and thus, there are 7 independent paths.

165Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Definition clear ?Path (beginning, end) nodesVariable

a

b

5, 10

5, 11

5, 19

5, 22

Yes

Yes

Yes

Yes

7, 10

7, 11

7, 19

7, 22

Yes

Yes

Yes

Yes

Step IV: The du-paths are identified and are named by their beginning and ending

nodes using Fig. 20 (a).

166Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Definition clear ?Path (beginning, end) nodesVariable

3, 18

3, 29

12, 18

12, 29

16, 18

16, 29

no

no

no

no

Yes

Yes

9, 10

9, 11

9, 19

9, 22

Yes

Yes

Yes

Yes

c

valid input

Hence total du-paths are 18 out of which four paths are not definition clear

167Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Mutation Testing

Mutation testing is a fault based technique that is similar to fault seeding, except that

mutations to program statements are made in order to determine properties about

test cases. it is basically a fault simulation technique.

Multiple copies of a program are made, and each copy is altered; this altered copy is

called a mutant. Mutants are executed with test data to determine whether the test

data are capable of detecting the change between the original program and the

mutated program.

A mutant that is detected by a test case is termed “killed” and the goal of mutation

procedure is to find a set of test cases that are able to kill groups of mutant

programs.

168Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

When we mutate code there needs to be a way of measuring the degree to which the

code has been modified. For example, if the original expression is x+1 and the

mutant for that expression is x+2, that is a lesser change to the original code than a

mutant such as (c*22), where both the operand and the operator are changed. We

may have a ranking scheme, where a first order mutant is a single change to an

expression, a second order mutant is a mutation to a first order mutant, and so on.

High order mutants becomes intractable and thus in practice only low order mutants

are used.

One difficulty associated with whether mutants will be killed is the problem of

reaching the location; if a mutant is not executed, it cannot be killed. Special test

cases are to be designed to reach a mutant. For example, suppose, we have the

code.

Read (a,b,c);

If(a>b) and (b=c) then

x:=a*b*c; (make mutants; m1, m2, m3 …….)

169Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

To execute this, input domain must contain a value such that a is greater than b and

b equals c. If input domain does not contain such a value, then all mutants made at

this location should be considered equivalent to the original program, because the

statement x:=a*b*c is dead code (code that cannot be reached during execution). If

we make the mutant x+y for x+1, then we should take care about the value of y

which should not be equal to 1 for designing a test case.

The manner by which a test suite is evaluated (scored) via mutation testing is as

follows: for a specified test suite and a specific set of mutants, there will be three

types of mutants in the code i.e., killed or dead, live, equivalent. The sum of the

number of live, killed, and equivalent mutants will be the total number of mutants

created. The score associated with a test suite T and mutants M is simply.

%100
##

#
×

− equivalenttotal

killed

170Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing
Levels of Testing

There are 3 levels of testing:

i. Unit Testing

ii. Integration Testing

iii. System Testing

171Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

There are number of reasons in support of unit testing than testing the entire product.

Unit Testing

Software TestingSoftware TestingSoftware TestingSoftware Testing

1. The size of a single module is small enough that we can locate an error
fairly easily.

2. The module is small enough that we can attempt to test it in some
demonstrably exhaustive fashion.

3. Confusing interactions of multiple errors in widely different parts of the
software are eliminated.

172Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Stubs serve to replace modules that are subordinate to (called by) the module to be

tested. A stub or dummy subprogram uses the subordinate module’s interface, may

do minimal data manipulation, prints verification of entry, and returns.

This overhead code, called scaffolding represents effort that is import to testing, but

does not appear in the delivered product as shown in Fig. 29.

Software TestingSoftware TestingSoftware TestingSoftware Testing

There are problems associated with testing a module in isolation. How do we run a

module without anything to call it, to be called by it or, possibly, to output

intermediate values obtained during execution? One approach is to construct an

appropriate driver routine to call if and, simple stubs to be called by it, and to insert

output statements in it.

173Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 29 : Scaffolding required testing a program unit (module)

174Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The purpose of unit testing is to determine that each independent module is

correctly implemented. This gives little chance to determine that the interface
between modules is also correct, and for this reason integration testing must be

performed. One specific target of integration testing is the interface: whether

parameters match on both sides as to type, permissible ranges, meaning and
utilization.

Integration Testing

Software TestingSoftware TestingSoftware TestingSoftware Testing

175Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 30 : Three different integration approaches

176Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Of the three levels of testing, the system level is closet to everyday experiences.

We test many things; a used car before we buy it, an on-line cable network
service before we subscribe, and so on. A common pattern in these familiar

forms is that we evaluate a product in terms of our expectations; not with

respect to a specification or a standard. Consequently, goal is not to find faults,
but to demonstrate performance. Because of this we tend to approach system

testing from a functional standpoint rather than from a structural one. Since it is
so intuitively familiar, system testing in practice tends to be less formal than it

might be, and is compounded by the reduced testing interval that usually

remains before a delivery deadline.

System Testing

Software TestingSoftware TestingSoftware TestingSoftware Testing

Petschenik gives some guidelines for choosing test cases during system testing.

177Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

During system testing, we should evaluate a number of attributes of the
software that are vital to the user and are listed in Fig. 31. These represent the

operational correctness of the product and may be part of the software
specifications.

Software TestingSoftware TestingSoftware TestingSoftware Testing

Usable

Secure

Compatible

Dependable

Documented

Is the product convenient, clear, and predictable?

Is access to sensitive data restricted to those with authorization?

Will the product work correctly in conjunction with existing data,

software, and procedures?

Do adequate safeguards against failure and methods for recovery

exist in the product?

Are manuals complete, correct, and understandable?

Fig. 31 : Attributes of software to be tested during system testing

178Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

o It refers to test the software as a complete product.

o This should be done after unit & integration testing.

o Alpha, beta & acceptance testing are nothing but the various ways of involving

customer during testing.

Validation Testing

179Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

o IEEE has developed a standard (IEEE standard 1059-1993) entitled “ IEEE guide

for software verification and validation “ to provide specific guidance about

planning and documenting the tasks required by the standard so that the

customer may write an effective plan.

o Validation testing improves the quality of software product in terms of functional

capabilities and quality attributes.

Validation Testing

180Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

The Art of Debugging

The goal of testing is to identify errors (bugs) in the program. The process of
testing generates symptoms, and a program’s failure is a clear symptom of the

presence of an error. After getting a symptom, we begin to investigate the cause
and place of that error. After identification of place, we examine that portion to

identify the cause of the problem. This process is called debugging.

Debugging Techniques

Pressman explained few characteristics of bugs that provide some clues.

1. “The symptom and the cause may be geographically remote. That is, the

symptom may appear in one part of a program, while the cause may actually be

located in other part. Highly coupled program structures may complicate this

situation.

2. The symptom may disappear (temporarily) when another error is corrected.

181Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3. The symptom may actually be caused by non errors (e.g. round off inaccuracies).

4. The symptom may be caused by a human error that is not easily traced.

5. The symptom may be a result of timing problems rather than processing

problems.

6. It may be difficult to accurately reproduce input conditions (e.g. a real time

application in which input ordering is indeterminate).

7. The symptom may be intermittent. This is particularly common in embedded

system that couple hardware with software inextricably.

8. The symptom may be due to causes that are distributed across a number of tasks

running on different processors”.

Software TestingSoftware TestingSoftware TestingSoftware Testing

182Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Induction approach

Software TestingSoftware TestingSoftware TestingSoftware Testing

� Locate the pertinent data

� Organize the data

� Devise a hypothesis

� Prove the hypothesis

183Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 32 : The inductive debugging process

184Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Deduction approach

Software TestingSoftware TestingSoftware TestingSoftware Testing

� Enumerate the possible causes or hypotheses

� Use the data to eliminate possible causes

� Refine the remaining hypothesis

� Prove the remaining hypothesis

185Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Fig. 33 : The inductive debugging process

186Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

Testing Tools

One way to improve the quality & quantity of testing is to make the process as

pleasant as possible for the tester. This means that tools should be as concise,

powerful & natural as possible.

The two broad categories of software testing tools are :

� Static

� Dynamic

187Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

There are different types of tools available and some are listed below:

1. Static analyzers, which examine programs systematically and automatically.

2. Code inspectors, who inspect programs automatically to make sure they adhere

to minimum quality standards.

3. standards enforcers, which impose simple rules on the developer.

4. Coverage analysers, which measure the extent of coverage.

5. Output comparators, used to determine whether the output in a program is

appropriate or not.

188Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software TestingSoftware TestingSoftware TestingSoftware Testing

6. Test file/ data generators, used to set up test inputs.

7. Test harnesses, used to simplify test operations.

8. Test archiving systems, used to provide documentation about programs.

189Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

8.1 Software testing is:

(a) the process of demonstrating that errors are not present

(b) the process of establishing confidence that a program does what it is supposed
to do

(c) the process of executing a program to show it is working as per specifications

(d) the process of executing a program with the intent of finding errors

8.2 Software mistakes during coding are known as:

(a) failures (b) defects

(c) bugs (d) errors

8.3 Functional testing is known as:

(a) Structural testing (b) Behavior testing

(c) Regression testing (d) None of the above

8.4 For a function of n variables, boundary value analysis yields:

(a) 4n+3 test cases (b) 4n+1 test cases

(c) n+4 test cases (d) None of the above

Multiple Choice Questions
Note: Choose most appropriate answer of the following questions:

190Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

8.7 Regression testing is primarily related to:

(a) Functional testing (b) Data flow testing

(c) Development testing (d) Maintenance testing

Multiple Choice Questions

8.8 A node with indegree=0 and out degree ≠ 0 is called

(a) Source node (b) Destination node

(c) Transfer node (d) None of the above

8.5 For a function of two variables, how many cases will be generated by
robustness testing?

(a) 9 (b) 13

(c) 25 (d) 42

8.6 For a function of n variables robustness testing of boundary value analysis yields:

(a) 4n+1 (b) 4n+3

(c) 6n+1 (d) None of the above

8.9 A node with indegree ≠ 0 and out degree=0 is called

(a) Source node (b) Predicate node

(c) Destination node (d) None of the above

191Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

8.10 A decision table has

(a) Four portions (b) Three portions

(c) Five portions (d) Two portions

Multiple Choice Questions

8.11 Beta testing is carried out by

(a) Users (b) Developers

(c) Testers (d) All of the above

8.12 Equivalence class partitioning is related to

(a) Structural testing (b) Blackbox testing

(c) Mutation testing (d) All of the above

8.13 Cause effect graphing techniques is one form of

(a) Maintenance testing (b) Structural testing

(c) Function testing (d) Regression testing

8.14 During validation

(a) Process is checked (b) Product is checked

(c) Developer’s performance is evaluated (d) The customer checks the product

192Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

8.15 Verification is

(a) Checking the product with respect to customer’s expectation

(b) Checking the product with respect to specifications

(c) Checking the product with respect to the constraints of the project

(d) All of the above

8.16 Validation is

(a) Checking the product with respect to customer’s expectation

(b) Checking the product with respect to specifications

(c) Checking the product with respect to the constraints of the project

(d) All of the above

8.17 Alpha testing is done by

(a) Customer (b) Tester

(c) Developer (d) All of the above

Multiple Choice Questions

8.18 Site for Alpha testing is

(a) Software company (b) Installation place

(c) Any where (d) None of the above

193Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

8.19 Site for Beta testing is

(a) Software company (b) User’s site

(c) Any where (d) All of the above

8.20 Acceptance testing is done by

(a) Developers (b) Customers

(c) Testers (d) All of the above

8.21 One fault may lead to

(a) One failure (b) No failure

(c) Many failure (d) All of the above

8.22 Test suite is

(a) Set of test cases (b) Set of inputs

(c) Set of outputs (d) None of the above

8.23 Behavioral specification are required for:

(a) Modeling (b) Verification

(c) Validation (d) None of the above

194Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

8.24 During the development phase, the following testing approach is not adopted

(a) Unit testing (b) Bottom up testing

(c) Integration testing (d) Acceptance testing

8.25 Which is not a functional testing technique?

(a) Boundary value analysis (b) Decision table

(c) Regression testing (d) None of the above

Multiple Choice Questions

8.26 Decision table are useful for describing situations in which:

(a) An action is taken under varying sets of conditions.

(b) Number of combinations of actions are taken under varying sets of conditions

(c) No action is taken under varying sets of conditions

(d) None of the above

8.27 One weakness of boundary value analysis and equivalence partitioning is

(a) They are not effective

(b) They do not explore combinations of input circumstances

(c) They explore combinations of input circumstances

(d) None of the above

195Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

8.28 In cause effect graphing technique, cause & effect are related to

(a) Input and output (b) Output and input

(c) Destination and source (d) None of the above

8.29 DD path graph is called as

(a) Design to Design Path graph (b) Defect to Defect Path graph

(c) Destination to Destination Path graph (d) Decision to decision Path graph

8.31 Cyclomatic complexity is developed by

(a) B.W.Boehm (b) T.J.McCabe

(c) B.W.Lettlewood (d) Victor Basili

8.30 An independent path is

(a) Any path through the DD path graph that introduce at least one new set of
processing statements or new conditions

(b) Any path through the DD path graph that introduce at most one new set of
processing statements or new conditions

(c) Any path through the DD path graph that introduce at one and only one new
set of processing statements or new conditions

(d) None of the above

196Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

8.32 Cyclomatic complexity is denoted by

(a) V(G)=e-n+2P (b) V(G)= ∏ +1

(c) V(G)=Number of regions of the graph (d) All of the above

8.33 The equation V(G)= ∏ +1 of cyclomatic complexity is applicable only if
every predicate node has

(a) two outgoing edges (b) three or more outgoing edges

(c) no outgoing edges (d) none of the above

8.34 The size of the graph matrix is

(a) Number of edges in the flow graph

(b) Number of nodes in the flow graph

(c) Number of paths in the flow graph

(d) Number of independent paths in the flow graph

197Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

8.35 Every node is represented by

(a) One row and one column in graph matrix

(b) Two rows and two columns in graph matrix

(c) One row and two columns in graph matrix

(d) None of the above

8.36 Cyclomatic complexity is equal to

(a) Number of independent paths (b) Number of paths

(c) Number of edges (d) None of the above

8.37 Data flow testing is related to

(a) Data flow diagrams (b) E-R diagrams

(c) Data dictionaries (d) none of the above

8.38 In data flow testing, objective is to find

(a) All dc-paths that are not du-paths (b) All du-paths

(c) All du-paths that are not dc-paths (d) All dc-paths

198Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

8.39 Mutation testing is related to

(a) Fault seeding (b) Functional testing

(c) Fault checking (d) None of the above

8.40 The overhead code required to be written for unit testing is called

(a) Drivers (b) Stubs

(c) Scaffolding (d) None of the above

8.41 Which is not a debugging techniques

(a) Core dumps (b) Traces

(c) Print statements (d) Regression testing

8.42 A break in the working of a system is called

(a) Defect (b) Failure

(c) Fault (d) Error

8.43 Alpha and Beta testing techniques are related to

(a) System testing (b) Unit testing

(c) acceptance testing (d) Integration testing

199Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

8.44 Which one is not the verification activity

(a) Reviews (b) Path testing

(c) Walkthrough (d) Acceptance testing

8.45 Testing the software is basically

(a) Verification (b) Validation

(c) Verification and validation (d) None of the above

8.46 Integration testing techniques are

(a) Topdown (b) Bottom up

(c) Sandwich (d) All of the above

8.47 Functionality of a software is tested by

(a) White box testing (b) Black box testing

(c) Regression testing (d) None of the above

8.48 Top down approach is used for

(a) Development (b) Identification of faults

(c) Validation (d) Functional testing

200Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

8.49 Thread testing is used for testing

(a) Real time systems (b) Object oriented systems

(c) Event driven systems (d) All of the above

8.50 Testing of software with actual data and in the actual environment is called

(a) Alpha testing (b) Beta testing

(c) Regression testing (d) None of the above

201Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

8.1 What is software testing? Discuss the role of software testing during
software life cycle and why is it so difficult?

8.2 Why should we test? Who should do the testing?

8.3 What should we test? Comment on this statement. Illustrate the
importance of testing

8.4 Defined the following terms:

(i) fault (ii) failure

(iii) bug (iv) mistake

8.5 What is the difference between

(i) Alpha testing & beta testing

(ii) Development & regression testing

(iii) Functional & structural testing

8.6 Discuss the limitation of testing. Why do we say that complete testing is
impossible?

202Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

8.7 Briefly discuss the following

(i) Test case design, Test & Test suite

(ii) Verification & Validation

(iii) Alpha, beta & acceptance testing

8.8 Will exhaustive testing (even if possible for every small programs)
guarantee that the program is 100% correct?

8.9 Why does software fail after it has passed from acceptance testing?
Explain.

8.10 What are various kinds of functional testing? Describe any one in detail.

8.11 What is a software failure? Explain necessary and sufficient conditions
for software failure. Mere presence of faults means software failure. Is it
true? If not, explain through an example, a situation in which a failure
will definitely occur.

8.12 Explain the boundary value analysis testing techniques with the help of
an example.

203Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

8.13 Consider the program for the determination of next date in a calendar.
Its input is a triple of day, month and year with the following range

1 ≤ month ≤ 12

1 ≤ day ≤ 31

1900 1 ≤ year ≤ 2025

The possible outputs would be Next date or invalid date. Design
boundary value, robust and worst test cases for this programs.

8.14 Discuss the difference between worst test case and adhoc test case
performance evaluation by means of testing. How can we be sure that the
real worst case has actually been observed?

8.15 Describe the equivalence class testing method. Compare this with
boundary value analysis techniques

204Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

8.16 Consider a program given below for the selection of the largest of
numbers

205Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

(i) Design the set of test cases using boundary value analysis technique and
equivalence class testing technique.

(ii) Select a set of test cases that will provide 100% statement coverage.

(iii) Develop a decision table for this program.

8.17 Consider a small program and show, why is it practically impossible to
do exhaustive testing?

8.18 Explain the usefulness of decision table during testing. Is it really
effective? Justify your answer.

8.19 Draw the cause effect graph of the program given in exercise 8.16.

8.20 Discuss cause effect graphing technique with an example.

8.21 Determine the boundary value test cases the extended triangle problem
that also considers right angle triangles.

206Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

8.22 Why does software testing need extensive planning? Explain.

8.23 What is meant by test case design? Discuss its objectives and indicate
the steps involved in test case design.

8.24 Let us consider an example of grading the students in an academic
institution. The grading is done according to the following rules:

Generate test cases using equivalence class testing technique

207Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

8.25 Consider a program to determine whether a number is ‘odd’ or ‘even’
and print the message

NUMBER IS EVEN

Or

NUMBER IS ODD

The number may be any valid integer.

Design boundary value and equivalence class test cases.

8.26 Admission to a professional course is subject to the following
conditions:

208Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

If aggregate marks of an eligible candidate are more than 225, he/she will be
eligible for honors course, otherwise he/she will be eligible for pass course.
The program reads the marks in the three subjects and generates the
following outputs:

(a) Not Eligible

(b) Eligible to Pass Course

(c) Eligible to Honors Course

Design test cases using decision table testing technique.

8.27 Draw the flow graph for program of largest of three numbers as shown
in exercise 8.16. Find out all independent paths that will guarantee that
all statements in the program have been tested.

8.28 Explain the significance of independent paths. Is it necessary to look for
a tool for flow graph generation, if program size increases beyond 100
source lines?

8.29 Discuss the structure testing. How is it different form functional testing?

209Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

8.30 What do you understand by structural testing? Illustrate important
structural testing techniques.

8.31 Discuss the importance of path testing during structural testing.

8.32 What is cyclomatic complexity? Explain with the help of an example.

8.33 Is it reasonable to define “thresholds” for software modules? For
example, is a module acceptable if its V(G) ≤ 10? Justify your answer.

8.34 Explain data flow testing. Consider an example and show all “du” paths.
Also identify those “du” paths that are not “dc” paths.

8.35 Discuss the various steps of data flow testing.

8.36 If we perturb a value, changing the current value of 100 by 1000, what
is the effect of this change? What precautions are required while
designing the test cases?

210Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

8.38 What are the objectives of testing? Why is the psychology of a testing
person important?

8.39 Why does software fail after it has passed all testing phases? Remember,
software, unlike hardware does not wear out with time.

8.43 Peteschenik suggested that a different team than the one that does
integration testing should carry out system testing. What are some good
reasons for this?

8.40 What is the purpose of integration testing? How is it done?

8.41 Differentiate between integration testing and system testing.

8.42 Is unit testing possible or even desirable in all circumstances? Provide
examples to Justify your answer?

8.37 What is the difference between white and black box testing? Is
determining test cases easier in back or white box testing? Is it correct to
claim that if white box testing is done properly, it will achieve close to
100% path coverage?

211Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

8.45 How can design attributes facilitate debugging?

8.46 List some of the problem that could result from adding debugging
statements to code. Discuss possible solutions to these problems.

8.47 What are various debugging approaches? Discuss them with the help of
examples.

8.48 Researchers and practitioners have proposed several mixed testing
strategies intended to combine advantages of various techniques
discussed in this chapter. Propose your own combination, perhaps also
using some kind of random testing at selected points.

8.44 Test a program of your choice, and uncover several program errors.
Localise the main route of these errors, and explain how you found the
courses. Did you use the techniques of Table 8? Explain why or why not.

8.49 Design a test set for a spell checker. Then run it on a word processor
having a spell checker, and report on possible inadequacies with respect
to your requirements.

212Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Exercises

8.50 4 GLs represent a major step forward in the development of automatic
program generation. Explain the major advantage & disadvantage in the
use of 4 GLs. What are the cost impact of applications of testing and how
do you justify expenditures for these activities.

1Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Software Maintenance is a very broad activity that includes error
corrections, enhancements of capabilities, deletion of obsolete capabilities,
and optimization.

What is Software Maintenance?

3Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Categories of Maintenance

� Corrective maintenance

This refer to modifications initiated by defects in the software.

� Adaptive maintenance

It includes modifying the software to match changes in the ever changing
environment.

� Perfective maintenance

It means improving processing efficiency or performance, or restructuring
the software to improve changeability. This may include enhancement of
existing system functionality, improvement in computational efficiency etc.

4Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

� Other types of maintenance

There are long term effects of corrective, adaptive and perfective changes.
This leads to increase in the complexity of the software, which reflect
deteriorating structure. The work is required to be done to maintain it or to
reduce it, if possible. This work may be named as preventive
maintenance.

5Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Fig. 1: Distribution of maintenance effort

Perfective (50%)

Adaptive (25%)

Preventive (4%)

Corrective (21%) Perfective

Adaptive

Preventive

Corrective

6Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

� Often the program is written by another person or group of persons.

Problems During Maintenance

� Often the program is changed by person who did not understand it
clearly.

� Program listings are not structured.

� High staff turnover.

� Information gap.

� Systems are not designed for change.

7Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

A common misconception about maintenance is that it is not manageable.

Report of survey conducted by Lientz & Swanson gives some interesting
observations:

Maintenance is Manageable

Table 1: Distribution of maintenance effort

12.4%

9.3%

17.3%

6.2%

41.8%

5.5%

4.0%

3.5%

1

2

3

4

5

6

7

8

Emergency debugging

Routine debugging

Data environment adaptation

Changes in hardware and OS

Enhancements for users

Documentation Improvement

Code efficiency improvement

Others

8Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Table 2: Kinds of maintenance requests

Kinds of maintenance requests

1

2

3

4

5

6

40.8%

27.1%

10%

5.6%

6.4%

10.1%

New reports

Add data in existing reports

Reformed reports

Condense reports

Consolidate reports

Others

9Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

� Budget and effort reallocation

Potential Solutions to Maintenance Problems

� Complete replacement of the system

� Maintenance of existing system

10Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

The Maintenance Process

Fig. 2: The software

maintenance process

11Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

� Program Understanding

The first phase consists of analyzing the program in order to understand.

� Generating Particular Maintenance Proposal

The second phase consists of generating a particular maintenance
proposal to accomplish the implementation of the maintenance objective.

� Ripple Effect

The third phase consists of accounting for all of the ripple effect as a
consequence of program modifications.

12Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

� Modified Program Testing

The fourth phase consists of testing the modified program to ensure that
the modified program has at least the same reliability level as before.

� Maintainability

Each of these four phases and their associated software quality attributes
are critical to the maintenance process. All of these factors must be
combined to form maintainability.

13Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Maintenance Models

� Quick-fix Model

Fig. 3: The quick-fix model

This is basically an adhoc approach to maintaining software. It is a fire
fighting approach, waiting for the problem to occur and then trying to fix it
as quickly as possible.

Problem
found

Fix it

14Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

� Iterative Enhancement Model

� Analysis

� Characterization of proposed modifications

� Redesign and implementation

15Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Fig. 4: The three stage cycle of iterative enhancement

Analyze existing system

Characterize
proposed

modifications

Redesign current

version and

implementation

16Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Reuse Oriented Model

1. Identification of the parts of the old system that are candidates for
reuse.

2. Understanding these system parts.

3. Modification of the old system parts appropriate to the new
requirements.

4. Integration of the modified parts into the new system.

The reuse model has four main steps:

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

17Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Fig. 5: The reuse model

New system

Components
library

Requirements analysis

Design

Source code

Test data

Requirements analysis

Design

Source code

Test data

Old system

18Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Boehm’s Model

Boehm proposed a model for the maintenance process based upon

the economic models and principles.

Boehm represent the maintenance process as a closed loop cycle.

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

19Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Management decisions

Change

implementation
Evaluation

Approved changesProposed changes

New version of

software

Results

Fig. 6: Boehm’s model

20Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

� Taute Maintenance Model

Fig. 7: Taute maintenance model

It is a typical maintenance model and has eight phases in cycle fashion. The

phases are shown in Fig. 7

21Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

1. Change request phase

2. Estimate phase

3. Schedule phase

4. Programming phase

5. Test phase

6. Documentation phase

7. Release phase

8. Operation phase

Phases :

22Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Estimation of maintenance costs

100Implementation

10Design

1Analysis

RatioPhase

Table 3: Defect repair ratio

23Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

� Belady and Lehman Model

M = P + Ke
(c-d)

M : Total effort expended

P : Productive effort that involves analysis, design, coding, testing and
evaluation.

K : An empirically determined constant.

c : Complexity measure due to lack of good design and documentation.

d : Degree to which maintenance team is familiar with the software.

where

24Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Example – 9.1

The development effort for a software project is 500 person months. The
empirically determined constant (K) is 0.3. The complexity of the code is
quite high and is equal to 8. Calculate the total effort expended (M) if

(i) maintenance team has good level of understanding of the project (d=0.9)

(ii) maintenance team has poor understanding of the project (d=0.1)

25Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Solution

Development effort (P) = 500 PM

(i) maintenance team has good level of understanding of the project (d=0.9)

(ii) maintenance team has poor understanding of the project (d=0.1)

K = 0.3

C = 8

M = P + Ke
(c-d)

= 500 + 0.3e
(8-0.9)

= 500 + 363.59 = 863.59 PM

M = P + Ke
(c-d)

= 500 + 0.3e
(8-0.1)

= 500 + 809.18 = 1309.18 PM

26Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

� Boehm Model

Boehm used a quantity called Annual Change Traffic (ACT).

“The fraction of a software product’s source instructions which undergo
change during a year either through addition, deletion or modification”.

Where, SDE : Software development effort in person months

ACT : Annual change Traffic

EAF : Effort Adjustment Factor

AME = ACT * SDE * EAF

total

deletedadded

KLOC

KLOCKLOC
ACT

+
=

AME = ACT x SDE

27Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Example – 9.2

Annual Change Traffic (ACT) for a software system is 15% per year. The
development effort is 600 PMs. Compute estimate for Annual Maintenance
Effort (AME). If life time of the project is 10 years, what is the total effort of
the project ?

28Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Solution

The development effort = 600 PM

Annual Change Traffic (ACT) = 15%

Total duration for which effort is to be calculated = 10 years

The maintenance effort is a fraction of development effort and is assumed to
be constant.

AME = ACT x SDE

= 0.15 x 600 = 90 PM

Maintenance effort for 10 years = 10 x 90 = 90 PM

Total effort = 600 + 900 = 1500 PM

29Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Example – 9.3

A software project has development effort of 500 PM. It is assumed that 10%
code will be modified per year. Some of the cost multipliers are given as:

1. Required software Reliability (RELY) : high

2. Date base size (DATA) : high

3. Analyst capability (ACAP) : high

4. Application experience (AEXP) : Very high

5. Programming language experience (LEXP) : high

Other multipliers are nominal. Calculate the Annual Maintenance Effort
(AME).

30Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Solution

Annual change traffic (ACT) = 10%

Software development effort (SDE) = 500 Pm

Using Table 5 of COCOMO model, effort adjustment factor can be
calculated given below :

RELY = 1.15

ACAP = 0.86

AEXP = 0.82

LEXP = 0.95

DATA = 1.08

31Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Other values are nominal values. Hence,

EAF = 1.15 x 0.86 x 0.82 x 0.95 x 1.08 = 0.832

AME = ACT * SDE * EAF

= 0.1 * 500 * 0.832 = 41.6 PM

AME = 41.6 PM

32Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Regression Testing

Regression testing is the process of retesting the modified parts of the
software and ensuring that no new errors have been introduced into
previously test code.

“Regression testing tests both the modified code and other parts of the
program that may be affected by the program change. It serves many
purposes :

� increase confidence in the correctness of the modified program

� locate errors in the modified program

� preserve the quality and reliability of software

� ensure the software’s continued operation

33Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

� Development Testing Versus Regression Testing

5.

4.

3.

2.

1.

Regression testingDevelopment testing Sr.

No.

We create test suites and test plans

We test all software components

Budget gives time for testing

We perform testing just once on a

software product

Performed under the pressure of

release date of the software

We can make use of existing test suite and

test plans

We retest affected components that have

been modified by modifications.

Budget often does not give time for

regression testing.

We perform regression testing many times

over the life of the software product.

Performed in crisis situations, under greater

time constraints.

34Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Regression Test Selection

Regression testing is very expensive activity and consumes significant
amount of effort / cost. Many techniques are available to reduce this effort/
cost.

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

1. Reuse the whole test suite

2. Reuse the existing test suite, but to apply a regression test
selection technique to select an appropriate subset of the test suite
to be run.

35Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

returnS5’returnS5

elseS4’elseS4

return (error)S3’return (error)S3

if (y = 0)S2’if (y = 0)S2

y = (x -1) * (x + 1)S1’y = (x - 1) * (x + 1)S1

Fragment B

(modified form of A)

Fragment A










y

1









− 3

1

y

Fig. 8: code fragment A and B

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

36Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

S1, S2, S5x = 0t4

S1, S2, S5x = 2t3

S1, S2, S3x = -1t2

S1, S2, S3x = 1t1

Execution HistoryInputTest number

Test cases

Fig. 9: Test cases for code fragment A of Fig. 8

37Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

If we execute all test cases, we will detect this divide by zero fault. But we
have to minimize the test suite. From the fig. 9, it is clear that test cases t3
and t4 have the same execution history i.e. S1, S2, S5. If few test cases have
the same execution history; minimization methods select only one test case.
Hence, either t3 or t4 will be selected. If we select t4 then fine otherwise fault
not found.

Minimization methods can omit some test cases that might expose fault in
the modified software and so, they are not safe.

A safe regression test selection technique is one that, under certain
assumptions, selects every test case from the original test suite that can
expose faults in the modified program.

38Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

� Selective Retest Techniques

Selective retest techniques are broadly classified in three categories :

1. Coverage techniques : They are based on test coverage criteria.
They locate coverable program components that have been modified,
and select test cases that exercise these components.

2. Minimization techniques: They work like coverage techniques,
except that they select minimal sets of test cases.

3. Safe techniques: They do not focus on coverage criteria; instead they
select every test case that cause a modified program to produce
different output than its original version.

Selective retest techniques may be more economical than the “retest-all”
technique.

39Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Rothermal identified categories in which regression test selection
techniques can be compared and evaluated. These categories are:

Inclusiveness measures the extent to which a technique chooses test
cases that will cause the modified program to produce different output than
the original program, and thereby expose faults caused by modifications.

Precision measures the ability of a technique to avoid choosing test cases
that will not cause the modified program to produce different output than
the original program.

Efficiency measures the computational cost, and thus, practically, of a
technique.

Generality measures the ability of a technique to handle realistic and
diverse language constructs, arbitrarily complex modifications, and realistic
testing applications.

40Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Reverse Engineering

Reverse engineering is the process followed in order to find difficult,
unknown and hidden information about a software system.

41Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

1. Program comprehension

2. Redocumentation and/ or document generation

3. Recovery of design approach and design details at any level of
abstraction

4. Identifying reusable components

5. Identifying components that need restructuring

6. Recovering business rules, and

7. Understanding high level system description

� Scope and Tasks

The areas there reverse engineering is applicable include (but not limited to):

42Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Fig. 10: Mapping between application and domains program

� Mapping between application and program domains

Problem/

application domain

Programming/

implement domain

Mapping

Reverse Engineering encompasses a wide array of tasks related to understanding

and modifying software system. This array of tasks can be broken into a number of

classes.

43Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

� Mapping between concrete and abstract levels

� Rediscovering high level structures

� Finding missing links between program syntax and

semantics

� To extract reusable component

44Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

� Levels of Reverse Engineering

Reverse Engineers detect low level implementation constructs and replace
them with their high level counterparts.

The process eventually results in an incremental formation of an overall
architecture of the program.

45Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Fig. 11: Levels of abstraction

46Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Redocumentation

Redocumentation is the recreation of a semantically equivalent
representation within the same relative abstraction level.

Design recovery

Design recovery entails identifying and extracting meaningful higher level
abstractions beyond those obtained directly from examination of the source
code. This may be achieved from a combination of code, existing design
documentation, personal experience, and knowledge of the problem and
application domains.

47Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Software RE-Engineering

Software re-engineering is concerned with taking existing legacy systems
and re-implementing them to make them more maintainable.

The critical distinction between re-engineering and new software
development is the starting point for the development as shown in Fig.12.

48Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Fig. 12: Comparison of new software development with re-engineering

System
specification

Design and
implementation

New system

Existing
software
system

Understanding
and

transformation

Re-engineered
system

49Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

� Study code well before attempting changes

� Concentrate on overall control flow and not coding

� Heavily comment internal code

� Create Cross References

� Build Symbol tables

� Use own variables, constants and declarations to localize the effect

� Keep detailed maintenance document

The following suggestions may be useful for the modification of the legacy
code:

� Use modern design techniques

50Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

� Source Code Translation

1. Hardware platform update: The organization may wish to
change its standard hardware platform. Compilers for the original
language may not be available on the new platform.

2. Staff Skill Shortages: There may be lack of trained
maintenance staff for the original language. This is a particular
problem where programs were written in some non standard
language that has now gone out of general use.

3. Organizational policy changes: An organization may decide to
standardize on a particular language to minimize its support
software costs. Maintaining many versions of old compilers can
be very expensive.

51Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

� Program Restructuring

1. Control flow driven restructuring: This involves the imposition
of a clear control structure within the source code and can be
either inter modular or intra modular in nature.

2. Efficiency driven restructuring: This involves restructuring a
function or algorithm to make it more efficient. A simple example
is the replacement of an IF-THEN-ELSE-IF-ELSE construct with
a CASE construct.

52Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Fig. 13: Restructuring a program

53Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

3. Adaption driven restructuring: This involves changing the
coding style in order to adapt the program to a new programming
language or new operating environment, for instance changing
an imperative program in PASCAL into a functional program in
LISP.

54Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Configuration Management

The process of software development and maintenance is controlled is
called configuration management. The configuration management is
different in development and maintenance phases of life cycle due to
different environments.

� Configuration Management Activities

The activities are divided into four broad categories.

1. The identification of the components and changes

2. The control of the way by which the changes are made

3. Auditing the changes

4. Status accounting recording and documenting all the activities
that have take place

55Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

The following documents are required for these activities

� Project plan

� Software requirements specification document

� Software design description document

� Source code listing

� Test plans / procedures / test cases

� User manuals

56Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

� Software Versions

Two types of versions namely revisions (replace) and variations (variety).

Version Control :

A version control tool is the first stage towards being able to manage
multiple versions. Once it is in place, a detailed record of every version of
the software must be kept. This comprises the

� Name of each source code component, including the variations and
revisions

� The versions of the various compilers and linkers used

� The name of the software staff who constructed the component

� The date and the time at which it was constructed

57Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

� Change Control Process

Change control process comes into effect when the software and
associated documentation are delivered to configuration management
change request form (as shown in fig. 14), which should record the
recommendations regarding the change.

58Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Fig. 14: Change request form

59Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

Documentation

Software documentation is the written record of the facts about a

software system recorded with the intent to convey purpose, content
and clarity.

60Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

� User Documentation

7.

6.

5.

4.

3.

2.

1.

FunctionDocumentS.No.

Table 5: User Documentation

System Overview

Installation Guide

Beginner’s Guide

Reference Guide

Enhancement

Quick reference card

System administration

Provides general description of system’s functions.

Describes how to set up the system, customize it to

local hardware needs and configure it to particular

hardware and other software systems.

Provides simple explanations of how to start using

the system.

Provides in depth description of each system facility

and how it can be used.

Booklet Contains a summary of new features.

Serves as a factual lookup.

Provides information on services such as net-

working, security and upgrading.

61Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

� System Documentation

It refers to those documentation containing all facets of system, including
analysis, specification, design, implementation, testing, security, error
diagnosis and recovery.

62Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

� System Documentation

4.

3.

2.

1.

FunctionDocumentS.No.

System Rationale

SRS

Specification/ Design

Implementation

Describes the objectives of the entire system.

Provides information on exact requirements of

system as agreed between user and developers.

Provides description of:

(i) How system requirements are implemented.

(ii) How the system is decomposed into a set of

interacting program units.

(iii) The function of each program unit.

Provides description of:

(i) How the detailed system design is expressed in

some formal programming language.

(ii) Program actions in the form of intra program

comments.

63Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software MaintenanceSoftware MaintenanceSoftware MaintenanceSoftware Maintenance

7.

6.

5.

FunctionDocumentS.No.

System Test Plan

Acceptance Test Plan

Data Dictionaries

Provides description of how program units are

tested individually and how the whole system is

tested after integration.

Describes the tests that the system must pass

before users accept it.

Contains description of all terms that relate to the

software system in question.

Table 6: System Documentation

64Software Engineering, By K.K Aggarwal & Yogesh Singh, New Age International Publishers

9.1 Process of generating analysis and design documents is called

(a) Inverse Engineering (b) Software Engineering

(c) Reverse Engineering (d) Re-engineering

9.2 Regression testing is primarily related to

(a) Functional testing (b) Data flow testing

(c) Development testing (d) Maintenance testing

9.3 Which one is not a category of maintenance ?

(a) Corrective maintenance (b) Effective maintenance

(c) Adaptive maintenance (d) Perfective maintenance

9.4 The maintenance initiated by defects in the software is called

(a) Corrective maintenance (b) Adaptive maintenance

(c) Perfective maintenance (d) Preventive maintenance

Multiple Choice Questions
Note: Choose most appropriate answer of the following questions:

9.5 Patch is known as

(a) Emergency fixes (b) Routine fixes

(c) Critical fixes (d) None of the above

65Software Engineering, By K.K Aggarwal & Yogesh Singh, New Age International Publishers

9.6 Adaptive maintenance is related to

(a) Modification in software due to failure

(b) Modification in software due to demand of new functionalities

(c) Modification in software due to increase in complexity

(d) Modification in software to match changes in the ever-changing environment.

9.7 Perfective maintenance refers to enhancements

(a) Making the product better

(b) Making the product faster and smaller

(c) Making the product with new functionalities
(d) All of the above

9.8 As per distribution of maintenance effort, which type of maintenance has
consumed maximum share?

(a) Adaptive (b) Corrective

(c) Perfective (d) Preventive

Multiple Choice Questions

9.9 As per distribution of maintenance effort, which type of maintenance has
consumed minimum share?

(a) Adaptive (b) Corrective

(c) Perfective (d) Preventive

66Software Engineering, By K.K Aggarwal & Yogesh Singh, New Age International Publishers

9.10 Which one is not a maintenance model ?

(a) CMM (b) Iterative Enhancement model

(c) Quick-fix model (d) Reuse-Oriented model

Multiple Choice Questions

9.11 In which model, fixes are done without detailed analysis of the long-term effects?

(a) Reuse oriented model (b) Quick-fix model

(c) Taute maintenance model (d) None of the above

9.12 Iterative enhancement model is a

(a) three stage model (b) two stage model

(c) four stage model (d) seven stage model

9.13 Taute maintenance model has

(a) Two phases (b) six phases

(c) eight phases (d) ten phases

9.14 In Boehm model, ACT stands for

(a) Actual change time (b) Actual change traffic

(c) Annual change traffic (d) Annual change time

67Software Engineering, By K.K Aggarwal & Yogesh Singh, New Age International Publishers

9.15 Regression testing is known as

(a) the process of retesting the modified parts of the software

(b) the process of testing the design documents

(c) the process of reviewing the SRS

(d) None of the above

9.16 The purpose of regression testing is to

(a) increase confidence in the correctness of the modified program
(b) locate errors in the modified program

(c) preserve the quantity and reliability of software

(d) All of the above

9.17 Regression testing is related to

(a) maintenance of software (b) development of software

(c) both (a) and (b) (d) none of the above.

Multiple Choice Questions

9.18 Which one is not a selective retest technique

(a) coverage technique (b) minimization technique

(c) safe technique (d) maximization technique

68Software Engineering, By K.K Aggarwal & Yogesh Singh, New Age International Publishers

9.19 Purpose of reverse engineering is to

(a) recover information from the existing code or any other intermediate
document

(b) redocumentation and/or document generation

(c) understand the source code and associated documents

(d) All of the above

9.20 Legacy systems are

(a) old systems (b) new systems

(c) undeveloped systems (d) None of the above

9.21 User documentation consists of

(a) System overview (b) Installation guide

(c) Reference guide (d) All of the above

Multiple Choice Questions

9.22 Which one is not a user documentations ?

(a) Beginner’s Guide (b) Installation guide

(c) SRS (d) System administration

69Software Engineering, By K.K Aggarwal & Yogesh Singh, New Age International Publishers

9.23 System documentation may not have

(a) SRS (b) Design document

(c) Acceptance Test Plan (d) System administration

9.24 The process by which existing processes and methods are replaced by new
techniques is:

(a) Reverse engineering (b) Business process re-engineering

(c) Software configuration management (d) Technical feasibility

9.25 The process of transforming a model into source code is

(a) Reverse Engineering (b) Forward engineering

(c) Re-engineering (d) Restructuring

Multiple Choice Questions

70Software Engineering, By K.K Aggarwal & Yogesh Singh, New Age International Publishers

Exercises

9.1 What is software maintenance? Describe various categories of
maintenance. Which category consumes maximum effort and why?

9.2 What are the implication of maintenance for a one person software
production organisation?

9.3 Some people feel that “maintenance is manageable”. What is your
opinion about this issue?

9.4 Discuss various problems during maintenance. Describe some solutions
to these problems.

9.5 Why do you think that the mistake is frequently made of considering
software maintenance inferior to software development?

9.6 Explain the importance of maintenance. Which category consumes
maximum effort and why?

9.7 Explain the steps of software maintenance with help of a diagram.

9.8 What is self descriptiveness of a program? Explain the effect of this
parameter on maintenance activities.

71Software Engineering, By K.K Aggarwal & Yogesh Singh, New Age International Publishers

Exercises

9.9 What is ripple effect? Discuss the various aspects of ripple effect and
how does it affect the stability of a program?

9.10 What is maintainability? What is its role during maintenance?

9.11 Describe Quick-fix model. What are the advantage and disadvantage of
this model?

9.12 How iterative enhancement model is helpful during maintenance?
Explain the various stage cycles of this model.

9.13 Explain the Boehm’s maintenance model with the help of a diagram.

9.14 State the various steps of reuse oriented model. Is it a recommended
model in object oriented design?

9.15 Describe the Taute maintenance model. What are various phases of this
model?

9.16 Write a short note on Boledy and Lehman model for the calculation of
maintenance effort.

72Software Engineering, By K.K Aggarwal & Yogesh Singh, New Age International Publishers

Exercises

9.17 Describe various maintenance cost estimation model.s

9.18 The development effort for a project is 600 PMs. The empirically
determined constant (K) of Belady and Lehman model is 0.5. The
complexity of code is quite high and is equal to 7. Calculate the total
effort expended (M) if maintenance team has reasonable level of
understanding of the project (d=0.7).

9.19 Annual change traffic (ACT) in a software system is 25% per year. The
initial development cost was Rs. 20 lacs. Total life time for software is
10 years. What is the total cost of the software system?

9.20 What is regression testing? Differentiate between regression and
development testing?

9.21 What is the importance of regression test selection? Discuss with help of
examples.

9.22 What are selective retest techniques? How are they different from
“retest-all” techniques?

73Software Engineering, By K.K Aggarwal & Yogesh Singh, New Age International Publishers

Exercises

9.23 Explain the various categories of retest techniques. Which one is not
useful and why?

9.24 What are the categories to evaluate regression test selection techniques?
Why do we use such categorisation?

9.25 What is reverse engineering? Discuss levels of reverse engineering.

9.26 What are the appropriate reverse engineering tools? Discuss any two
tools in detail.

9.27 Discuss reverse engineering and re-engineering.

9.28 What is re-engineering? Differentiate between re-engineering and new
development.

9.29 Discuss the suggestions that may be useful for the modification of the
legacy code.

9.30 Explain various types of restructuring techniques. How does
restructuring help in maintaining a program?

74Software Engineering, By K.K Aggarwal & Yogesh Singh, New Age International Publishers

Exercises

9.31 Explain why single entry, single exit modules make testing easier during
maintenance.

9.32 What are configuration management activities? Draw the performa of
change request form.

9.33 Explain why the success of a system depends heavily on the quantity of
the documentation generated during system development.

9.34 What is an appropriate set of tools and documents required to maintain
large software product/

9.35 Explain why a high degree of coupling among modules can make
maintenance very difficult.

9.36 Is it feasible to specify maintainability in the SRS? If yes, how would
we specify it?

9.37 What tools and techniques are available for software maintenance?
Discuss any two of them.

75Software Engineering, By K.K Aggarwal & Yogesh Singh, New Age International Publishers

Exercises

9.38 Why is maintenance programming becoming more challenging than
new development? What are desirable characteristics of a maintenance
programmer?

9.39 Why little attention is paid to maintainability during design phase?

9.40 List out system documentation and also explain their purpose.

