Software

Engineering

Software Engineering (3© ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1

Why Software Engineering ?

N/

** Change in nature & complexity of software

N/

** Concept of one “guru” 1s over

N/

** We all want improvement

\

Ready for change

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The Evolving Role of Software

N/

** Software industry 1s in Crisis!

SuUccess

failure 16%

31%

over budget
53%

Source: The Standish Group International, Inc. (CHAOS research)

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The Evolving Role of Software

LN

Successful -
28%

This is the
SORRY state
of Software
Engineering
Today!

Completed
Late, over
budget, and/or
with features
missing — 49%

Cancelled -
23%

e Data on 28,000 projects
completed in 2000

Software Engineering (3© ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The Evolving Role of Software

As per the IBM report, “31%of the project get
cancelled before they are completed, 53% over-
run their cost estimates by an average of 189%
and for every 100 projects, there are 94 restarts”.

The Evolving Role of Software

!

Hw cost
Sw cost

1960 Year —» 1999
Relative Cost of Hardware and Software

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The Evolving Role of Software

e Unlike Hardware

— Moore’s law: processor speed/memory capacity doubles
every two years

F 3

Hardware

“Produciivity™

mofiware

g 1ime (10 years)

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 7

The Evolving Role of Software

Managers and Technical Persons are asked.:

v" Why does it take so long to get the program finished?
v' Why are costs so high?

v" Why can not we find all errors before release?

v" Why do we have difficulty in measuring progress of software
development?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Factors Contributing to the Software Crisis

e Larger problems,

e Lack of adequate training in software engineering,

e Increasing skill shortage,

 Low productivity improvements.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Some Software failures

Ariane 5

It took the European Space Agency 10
years and $7 billion to produce Ariane 5,
a giant rocket capable of hurling a pair of
three-ton satellites into orbit with each
launch and intended to give Europe
overwhelming supremacy in the
commercial space business.

The rocket was destroyed after 39 seconds
of 1ts launch, at an altitude of two and a
half miles along with its payload of four
expensive and uninsured scientific
satellites.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 10

Some Software failures

When the guidance system’s own
computer tried to convert one
piece of data the sideways velocity
of the rocket from a 64 bit format
to a 16 bit format; the number was
too big, and an overflow error
resulted after 36.7 seconds. When
the guidance system shutdown, it
passed control to an 1dentical,
redundant unit, which was there to
provide backup 1n case of just such
a failure. Unfortunately, the second
unit, which had failled in the
identical manner a few
milliseconds before.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

11

Some Software failures

Y 2K problem:

It was simply the 1ignorance about the
adequacy or otherwise of using only
last two digits of the year.

The 4-digit date format, like 1964,

was shortened to 2-digit format, like tm '
64. e

™ Computer
TimeBgmh

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 12

Some Software failures
The Patriot Missile

o First time used in Gulf war

o Used as a defense from Iraqi Scud
missiles

o Failed several times including one that
killed 28 US soldiers in Dhahran,
Saudi Arabia

Reasons:

A small timing error in the system’s clock
accumulated to the point that after 14
hours, the tracking system was no longer
accurate. In the Dhahran attack, the

system had been operating for more than
100 hours.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 3

Some Software failures

The Space Shuttle

Part of an abort scenario for the
Shuttle requires fuel dumps to
lighten the spacecraft. It was
during the second of these
dumps that a (software) crash
occurred.

...the fuel management module,
which had performed one
dump and successfully exited,
restarted when recalled for the
second fuel dump...

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

14

Some Software failures

A simple fix took care of the problem...but the
programmers decided to see if they could come up with a
systematic way to eliminate these generic sorts of bugs in
the future. A random group of programmers applied this
system to the fuel dump module and other modules.

Seventeen additional, previously unknown problems
surfaced!

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 5

Some Software failures

Financial Software

Many companies have experienced failures in their
accounting system due to faults 1n the software itself. The
failures range from producing the wrong information to
the whole system crashing.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 6

Some Software failures

Windows XP

o Microsoft released Windows XP on October 25, 2001.

o0 On the same day company posted 18 MB of
compatibility patches on the website for bug fixes,
compatibility updates, and enhancements.

o Two patches fixed important security holes.

This 1s Software Engineering.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 17

“No Silver Bullet”

The hardware cost continues to decline
drastically.

However, there are desperate cries for a
silver bullet something to make software
costs drop as rapidly as computer hardware
costs do.

But as we look to the horizon of a decade,
we see no silver bullet. There 1s no single
development, either in technology or in
management technique, that by itself
promises even one order of magnitude
improvement in productivity, in reliability
and 1n simplicit

L]
Software é:gineering (34 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International

1 Publishers, 2007

18

“No Silver Bullet”

The hard part of building software 1s the specification, design and
testing of this conceptual construct, not the labour of representing it
and testing the correctness of representation.

We still make syntax errors, to be sure, but they are trivial as
compared to the conceptual errors (logic errors) in most systems.

That 1s why, building software 1s always hard and there is inherently
no silver bullet.

While there 1s no royal road, there is a path forward.

Is reusability (and open source) the new silver bullet?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 19

“No Silver Bullet”

The blame for software bugs belongs to:

e Software companies

e Software developers
e [egal system

e Universities

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

20

What is software?

e Computer programs and associated
documentation

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

21

What is software?

Software=Program+Documentation+Operating Procedures

Components of software

Software Engineering (31 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 22

Documentation consists of different types of manuals are

Documentation
Manuals

Formal Specification

Analysis Context-
/Specification Diagram

Data Flow
Diagrams

_ Flow Charts
Design <
Entity-Relationship
Diagram

Source Code Listings

A

Implementation Cross-Reference
Listing
Test Data
Testing
—Test Results

List of documentation manuals

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

23

Documentation consists of different types of manuals are

System Overview

User Beginner’s Guide
Manuals Tutorial

Reference Guide

Operating
Procedures

Installation Guide

Operational
Manuals

System
Administration Guide

List of operating procedure manuals.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 2 4

Software Product

e Software products may be developed for a particular
customer or may be developed for a general market

e Software products may be

—Generic - developed to be sold to a range of different
customers

—Bespoke (custom) - developed for a single customer according
to their specification

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 2 5

Software Product

Software product 1s a product designated for
delivery to the user

S o

gIgLeecst @, @
<>

a A o

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 2 6

What is software engineering?

Software engineering is an engineering discipline which
1s concerned with all aspects of software production

Software engineers should

— adopt a systematic and organised approach to their
work

— use appropriate tools and techniques depending on

e the problem to be solved, ,\@ ?‘}

A\
e the development constraints and @% “\\. L)
(
7N

— use the resources available é« «%fé)
N \\}g/ .

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 27

What is software engineering?

At the first conference on software engineering in 1968, Fritz Bauer
defined software engineering as “The establishment and use of
sound engineering principles in order to obtain economically
developed software that 1s reliable and works efficiently on real
machines”.

Stephen Schach defined the same as “A discipline whose aim 1s the
production of quality software, software that is delivered on time,
within budget, and that satisfies its requirements”.

Both the definitions are popular and acceptable to majority.
However, due to increase in cost of maintaining software, objective
1s now shifting to produce quality software that is maintainable,
delivered on time, within budget, and also satisfies 1ts requirements.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 28

Software Process

The software process 1s the way in which we produce
software.

Why 1s 1t difficult to improve software process ?

e Not enough time

e Lack of knowledge

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

29

Software Process

Wrong motivations

e Insufficient commitment

a

Initial state
stat

Productivity

Learning curve

Improved future state
Process improvement

begins

N

Do not quit here!

Time —

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Characteristics:

v'Software does not wear out.

' Burn-in
phase ~ Wear out

phase

[

i Useful life i
' phase '

Failure Intensity—

v

Time

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 3 1

Software Characteristics:

v Software is not manufactured
v" Reusability of components

v Software is flexible

Failure Curve for Software

Result of
Side Effects

Actual

Failure Rate

Idealized
o

—

Time

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

32

Software Characteristics:

Comparison of constructing a bridge vis-a-vis writing a program.

Sr. Constructing a bridge Writing a program
No
L. The problem is well understood Only some parts of the problem are
understood, others are not
2. | There are many existing bridges Every progr-am‘is different and designed for
special applications.
3. | The requirement for a bridge typically do | Requirements typically change during all
not change much during construction phases of development.
4. | The strength and stability of a bridge can be Not possible to calculate correctness of a
calculated with reasonable precision program with existing methods.
5. | When a bridge collapses, there is a When a program fails, the reasons are often
detailed investigation and report unavailable or even deliberately concealed.
6. Engineers have been constructing bridges Developers have been writing programs
for thousands of years for 50 years or so.
7. Materials (wood, stone,iron, steel) and

techniques (making joints in wood, carving
stone, casting iron) change slowly.

Hardware and software changes rapidly.

Software Engineering (3© ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

33

The Changing Nature of Software

System
Software

Engineering
and Scientific Embedded
Software

Software

Web based
Software

Business
Software

Personal
Computer
Software

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

34

The Changing Nature of Software

Trend has emerged to provide source code to the
customer and organizations.

Software where source codes are available are known
as open source software.

Examples

Open source software: LINUX, MySQL, PHP, Open office,
Apache webserver etc.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

35

Software Myths (Management Perspectives)

Management may be confident about good
standards and clear procedures of the company.

Software Engineering (3© ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

36

Software Myths (Management Perspectives)

Company has latest computers and state-of-
the-art software tools, so we shouldn’t worry
about the quality of the product.

The infrastructure is
only one of the several factors

that determine the quality
of the product!

37

Software Myths (Management Perspectives)

Addition of more software specialists, those
with higher skills and longer experience may
bring the schedule back on the track!

Unfortunately,

that may further delay the schedule!

Software Myths (Management Perspectives)

Software 1s easy to change

39

Software Myths (Management Perspectives)

Computers provide greater reliability than
the devices they replace

Software Engineering (3© ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

40

Software Myths (Customer Perspectives)

A general statement of objectives is sufficient to get started with
the development of software. Missing/vague requirements can
easily be incorporated/detailed out as they get concretized.

Software Engineering (3© ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 41

Software Myths (Customer Perspectives)

Software with more features 1s better
software

Software can work right the first time

Software Engineering (3© ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

42

Software Myths (Developer Perspectives)

Once the software 1s demonstrated, the job 1s done.

Software Engineering (3© ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

43

Software Myths (Developer Perspectives)

Software quality can not be assessed before
testing.

However, quality assessment techniques

should be used through out the
software development life cycle.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

44

Software Myths (Developer Perspectives)

The only deliverable for a software
development project 1s the tested code.

Tested code is only one of the deliverable

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

45

Software Myths (Developer Perspectives)

Aim 1s to develop working programs

Those days are over. Now objective is to

develop good quality maintainable
programs

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

46

Some Terminologies

» Deliverables and Milestones

Different deliverables are generated during software development.
The examples are source code, user manuals, operating procedure
manuals etc.

The milestones are the events that are used to ascertain the status of
the project. Finalization of specification 1s a milestone. Completion of
design documentation 1s another milestone. The milestones are
essential for project planning and management.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 47

Some Terminologies

» Product and Process

Product: What 1s delivered to the customer, 1s called a product. It
may 1include source code, specification document, manuals,
documentation etc. Basically, it 1s nothing but a set of deliverables
only.

Process: Process 1s the way in which we produce software. It 1s the
collection of activities that leads to (a part of) a product. An efficient
process 1s required to produce good quality products.

If the process is weak, the end product will undoubtedly suffer, but
an obsessive over reliance on process 1s also dangerous.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 48

Some Terminologies

» Measures, Metrics and Measurement

A measure provides a quantitative indication of the extent,

dimension, size, capacity, efficiency, productivity or reliability of
some attributes of a product or process.

Measurement is the act of evaluating a measure.

A metric 1s a quantitative measure of the degree to which a system,
component or process possesses a given attribute.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

49

Some Terminologies

> Software Process and Product Metrics

Process metrics quantify the attributes of software development
process and environment;

whereas product metrics are measures for the software product.

Examples

Process metrics: Productivity, Quality, Efficiency etc.

Product metrics: Size, Reliability, Complexity etc.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 50

Some Terminologies

» Productivity and Effort

Productivity is defined as the rate of output, or production per unit of
effort, 1.e. the output achieved with regard to the time taken but
irrespective of the cost incurred.

Hence most appropriate unit of effort 1s Person Months (PMs),
meaning thereby number of persons involved for specified months.
So, productivity may be measured as LOC/PM (lines of code
produced/person month)

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 5 1

Some Terminologies

» Module and Software Components

There are many definitions of the term module. They range from “a
module i1s a FORTRAN subroutine” to “a module is an Ada
Package”, to “Procedures and functions of PASCAL and C”, to
“C++ Java classes” to “Java packages” to “a module 1s a work
assignment for an individual developer”. All these definition are
correct. The term subprogram is also used sometimes in place of
module.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 52

Some Terminologies

“An 1ndependently deliverable piece of functionality providing
access to 1ts services through interfaces”.

“A component represents a modular, deployable, and replaceable
part of a system that encapsulates implementation and exposes a set
of interfaces”.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 5 3

Some Terminologies

» Generic and Customized Software Products

Generic products are developed for anonymous customers. The target
1s generally the entire world and many copies are expected to be sold.
Infrastructure software like operating system, compilers, analyzers,
word processors, CASE tools etc. are covered in this category.

The customized products are developed for particular customers.
The specific product 1s designed and developed as per customer
requirements. Most of the development projects (say about
80%)come under this category.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 5 4

Role of Management in Software Development

Factors
P€0p1€ / \ ij ect
Product Process

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 5 5

Role of Management in Software Development

Dependency Product
Order

Process

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 5 6

Multiple Choice Questions

Note: Select most appropriate answer of the following questions:

1.1 Software is
(a) Superset of programs (b) subset of programs
(c) Set of programs (d) none of the above

1.2 Which is NOT the part of operating procedure manuals?
(a) User manuals (b) Operational manuals
(c) Documentation manuals (d) Installation manuals

1.3 Which 1s NOT a software characteristic?

(a) Software does not wear out (b) Software 1s flexible

(c) Software is not manufactured (d) Software 1s always correct
1.4 Product is

(a) Deliverables (b) User expectations

(c) Organization's effort in development (d) none of the above

1.5 To produce a good quality product, process should be
(a) Complex (b) Efficient
(¢) Rigorous (d) none of the above

Software Engineering (3© ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 57

Multiple Choice Questions

Note: Select most appropriate answer of the following questions:
1.6 Which 1s not a product metric?

(a) Size (b) Reliability
(¢) Productivity (d) Functionality
1.7 Which 1s NOT a process metric?
(a) Productivity (b) Functionality
(¢) Quality (d) Efficiency
1.8 Effort is measured in terms of:
(a) Person-months (b) Rupees
(c) Persons (d) Months
1.9 UML stands for
(a) Uniform modeling language (b) Unified modeling language
(¢) Unit modeling language (d) Universal modeling language

1.1 An independently deliverable piece of functionality providing access to
its services through interface is called
(a) Software measurement (b) Software composition
(c) Software measure (d) Software component

Software Engineering (3© ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 5 8

Multiple Choice Questions

Note: Select most appropriate answer of the following questions:

1.11 Infrastructure software are covered under
(a) Generic products (b) Customized products
(¢) Generic and Customized products (d) none of the above

1.12 Management of software development is dependent on

(a) people (b) product
(c) process (d) all of the above
1.13 During software development, which factor is most crucial?
(a) People (b) Product
(c) Process (d) Project
1.14 Program is
(a) subset of software (b) super set of software
(c) software (d) none of the above

1.15 Milestones are used to
(a) know the cost of the project (b) know the status of the project
(¢c) know user expectations (d) none of the above

Software Engineering (3© ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 59

Multiple Choice Questions

Note: Select most appropriate answer of the following questions:

1.16 The term module used during design phase refers to

(a) Function (b) Procedure
(¢) Sub program (d) All of the above

1.17 Software consists of
(a) Set of instructions + operating system
(b) Programs + documentation + operating procedures

(c) Programs + hardware manuals (d) Set of programs
1.18 Software engineering approach is used to achieve:

(a) Better performance of hardware (b) Error free software

(c) Reusable software (d) Quality software product
1.19 Concept of software engineering are applicable to

(a) Fortran language only (b) Pascal language only

(¢c) ‘C’ language only (d) All of the above

1.20 CASE Tool is
(a) Computer Aided Software Engineering (b) Component Aided Software Engineering
(c) Constructive Aided Software Engineering (d)Computer Analysis Software Engineering

Software Engineering (3© ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 60

Exercises

1. Why 1is primary goal of software development now shifting from
producing good quality software to good quality maintainable software?

1.2 List the reasons for the “software crisis”?Why are CASE tools not
normally able to control it?

1.3 “The software crisis i1s aggravated by the progress in hardware
technology?” Explain with examples.

1.4 What 1s software crisis? Was Y2K a software crisis?

1.5 What 1s the significance of software crisis in reference to software
engineering discipline.

1.6 How are software myths affecting software process? Explain with the
help of examples.

1.7 State the difference between program and software. Why have documents
and documentation become very important.

1.8 What is software engineering? Is it an art, craft or a science? Discuss.

Software Engineering (3© ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 6 1

Exercises

1.9 What is aim of software engineering? What does the discipline of
software engineering discuss?

1.10 Define the term “Software engineering”’. Explain the major differences
between software engineering and other traditional engineering disciplines.

1.11 What is software process? Why is it difficult to improve it?

1.12 Describe the characteristics of software contrasting it with the
characteristics of hardware.

1.13 Write down the major characteristics of a software. Illustrate with a
diagram that the software does not wear out.

1.14 What are the components of a software? Discuss how a software differs
from a program.

1.15 Discuss major areas of the applications of the software.

1.16 Is software a product or process? Justify your answer with example

Software Engineering (3© ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 62

Exercises

1.17 Differentiate between the following
(1) Deliverables and milestones (11) Product and process
(111) Measures, metrics and measurement

1.18 What 1s software metric? How 1s it different from software
measurement

1.19 Discuss software process and product metrics with the help of examples.

1.20 What 1s productivity? How is it related to effort. What is the unit of
effort.

1.21 Differentiate between module and software component.

1.22 Distinguish between generic and customized software products. Which
one has larger share of market and why?

1.23 Is software a product or process? Justify your answer with example

Software Engineering (3© ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 63

Exercises

1.23 Describe the role of management in software development with the help
of examples.

1.24 What are various factors of management dependency in software
development. Discuss each factor in detail.

1.25 What is more important: Product or process? Justify your answer.

Software Engineering (3© ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 6 4

Software
Certification

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1

Software Certification

What 1s certification?

Why should we really need
it?

Who should carry out this
activity?

Where should we do such
type of certification?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Certification

To whom should we target
People

= People
= Process
= Product

We have seen many certified developers (Microsoft certified,
Cisco certified, JAVA certified), certified processes (like ISO or
CMM) and certified products.

There 1s no clarity about the procedure of software certification.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 3

Requirement of Certification

Adam Kalawa of Parasoft has given his views on certification like:

“I strongly oppose certification of software developers. I fear that it

will bring more harm than good to the software industry. It may
further hurt software quality by shifting the blame for bad
software. The campaign for certification assumes that unqualified
developers cause software problem and that we can 1mprove
software quality by ensuring that all developers have the golden
stamp of approval. However, improving quality requires
improving the production process and integrating in to it practices
that reduce the opportunity for introducing defects into the
product”

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 4

Requirement of Certification

How often will developers require certification to keep pace with
new technologies?

How will any certification address the 1ssues like fundamentals
of computer science, analytical & logical reasoning,
programming aptitude & positive attitude?

Process certification alone cannot guarantee high quality
product.

Whether we go for certified developers or certified processes?

Can independent certification agency provide a fair playing
field for each software industry??

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 5

Types of Certification

¢ People

— Industry specific
¢ Process

— Industry specific
¢ Product

— For the customer directly and helps to select a particular
product

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 6

Certification of Persons

The individual obtaining certification receives the following values:
¢ Recognition by peers

¢ Increased confidence in personal capabilities

¢+ Recognition by software industry for professional achievement
¢+ Improvement in processes

¢+ Competences maintained through recertification

Certification 1s employees initiated improvement process which
improves competence in quality assurances methods & techniques.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 7

Certification of Persons

Professional level of competence in the principles & practices of
software quality assurance in the software industry can be
achieved by acquiring the designation of:

o Certified Software Quality Analyst (CSQA)
o Certified Software Tester (CSTE)
o Certified Software Project Manager (CSPM)

Some company specific certifications are also very popular like
Microsoft Office Specialist (MOS) certifications in Word, Excel
and PowerPoint.

MOS 1s far best known computer skills certification for
administrator.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Certification of Processes

The most popular process certification approaches are:
+ [SO 9000
¢ SEI-CMM

One should always be suspicious about the quality of end
product, however, certification reduces the possibility of poor
quality products.

Any type of process certification helps to produce good quality
and stable software product.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Certification of Products

This 1s what 1s required for the customer.

There 1s no universally accepted product -certification
scheme.

Aviation industry has a popular certification “RTCA DO-
178B.

The targeted certification level 1s either A, B, C, D, or E.

These levels describe the consequences of a potential failure
of the software : catastrophic, hazardous severe, major,
minor or no effect.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 O

Certification of Products

DO-178B Records

Software Development Plan
Software Verification Plan
Software Configuration Management Plan

Software Quality Assurance Plan

Software Requirements Standards

Software Design Document

Software Verification Test Cases & Products

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

11

Certification of Products

DO-178B Documents

Software Verification Results
Problem Report
Software Configuration Management Records

Software Quality Assurance Records

DO-178B certification process 1s most demanding at higher levels.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

12

Certification of Products

DO-178B level A will:
1. Have largest potential market

2. Require thorough labour intensive preparation of most of
the items on the DO-178B support list.

DO-178B Level E would:
1. Require fewer support item and

2. Less taxing on company resources.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 3

Certification of Products

We don’t have product certification in most of the areas. RTOS
(real time operating system) 1s the real-time operating system
certification & marked as “LinuxOS-178".

The establishment of independent agencies 1s a viable option.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

14

Third Party Certification for Component
base Software Engineering

Weyukar has rnightly said “For Component based Software
Development (CBO) to revolutionalize software development,
developers must be able to produce software significantly cheaper
and faster than they otherwise could, even as the resulting software
meets the same sort of high reliability standards while being easy to
maintain”.

Bill council has also given his views as “Currently, there is a little
evidences that component based software engineering (CBSE) 1s
revolutionizing software development, and lots of reasons to believe
otherwise. I believe the primary reason 1s that the community 1s not
showing how to develop trusted components”.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 5

Third Party Certification for Component
base Software Engineering

Contractor:
e Gives the standard
e Directs any variations in specification
e Define patterns
e Allowable tolerances
e Fix the date of delivery

Third party certification 1s a method to ensure software components
conform to well defined standards, based on this certification,
trusted assemblies of components can be constructed

Third party certification is based on UL 1998, 2™ ed., UL standard
for safety for software in programmable component.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 6

Exercises

10.1 What is software certification? Discuss its importance in the changing
scenario of software industry.

10.2 What are different types of certifications? Explain the significance of
each type & which one 1s most important for the end user.

10.3 What is the role of third party certification in component based software
engineering? Why are we not able to stabilize the component based software
engineering practices.

10.4 Name few person specific certification schemes. Which one is most
popular & why?

10.5 Why customer is only interested in product certification? Discuss any
product certification techniques with their generic applicability.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 7

Software Life
Cycle Models

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1

Software Life Cycle Models

The goal of Software Engineering 1s to provide
models and processes that lead to the
production of well-documented maintainable
software 1n a manner that 1s predictable.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Life Cycle Models

“The period of time that starts when a software product is conceived
and ends when the product is no longer available for use. The
software life cycle typically includes a requirement phase, design
phase, implementation phase, test phase, installation and check out
phase, operation and maintenance phase, and sometimes retirement
phase”.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 3

Build & Fix Model

\/

*¢ Product 1s constructed without
specifications or any attempt at
design

/

¢ Adhoc approach and not well
defined

’0

» Simple two phase model

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Build & Fix Model

Suitable for small programming exercises of 100 or 200 lines

Unsatisfactory for software for any reasonable size
Code soon becomes unfixable & unenhanceable

No room for structured design

Maintenance 1s practically not possible

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Waterfall Model

Requirement
Analysis & Specification

A

This model 1s named
model” because 1its
representation resembles a cascade of

Desi gn erfall S.

A /

Implementation
and unit testing

A /

Integration and
system testing

!

¢

‘waterfall
diagrammatic

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Operation an
maintenance

Waterfall Model

This model 1s easy to understand and reinforces
the notion of “define before design” and “design
before code™.

The model expects complete & accurate
requirements early 1n the process, which 1s
unrealistic

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 7

Waterfall Model

Problems of waterfall model

1. It 1s difficult to define all requirements at the beginning of a
project

11. This model 1s not suitable for accommodating any change

111. A working version of the system 1s not seen until late in
the project’s life

1v. It does not scale up well to large projects.

v. Real projects are rarely sequential.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 8

Incremental Process Models

They are effective in the situations where requirements are

defined precisely and there is no confusion about the
functionality of the final product.

After every cycle a useable product is given to the customer.

Popular particularly when we have to quickly deliver a limited
functionality system.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 9

Iterative Enhancement Model

This model has the same phases as the waterfall model, but with
fewer restrictions. Generally the phases occur in the same order as
in the waterfall model, but they may be conducted in several cycles.
Useable product 1s released at the end of the each cycle, with each
release providing additional functionality.

v' Customers and developers specify as many requirements as
possible and prepare a SRS document.

v' Developers and customers then prioritize these requirements

v' Developers implement the specified requirements in one or

more cycles of design, implementation and test based on the
defined priorities.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 10

Iterative Enhancement Model

Requirements
specification

-

Architectural
design

Detailed
design

Implementation
and unit testing

Integration
and testing

Operation and
aintenance

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

11

The Rapid Application Development (RAD) Model

o Developed by IBM in 1980
o User participation is essential

“ T Bt
ST Y

A s N

SRS
A e - This is how the
The .requi.rements The developel:s This is how the problem is
specification was understood it in problem was solved now
that way
defined lsl.li%m-l{ tw mf:_ glved before. “—x3 O M“L,_
- This is .hOW the program IS This, in fact, is what the
That is the program after described by marketing customer wanted ...

department

debuggi

ing
Software Engineering (34 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The Rapid Application Development (RAD) Model

o Build a rapid prototype

o Q@Give 1t to user for evaluation & obtain feedback

o Prototype 1s refined

With active participation of users

_N—
o N

Requirements >l User »| Construction »| Cut over

Planning Description

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 3

The Rapid Application Development (RAD) Model

Not an appropriate model 1n the absence of user
participation.

Reusable components are required to reduce development
time.

Highly specialized & skilled developers are required and
such developers are not easily available.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 14

Evolutionary Process Models

Evolutionary process model resembles iterative enhancement
model. The same phases as defined for the waterfall model occur
here in a cyclical fashion. This model differs from iterative
enhancement model in the sense that this does not require a
useable product at the end of each cycle. In evolutionary
development, requirements are implemented by category rather
than by priority.

This model 1s useful for projects using new technology that 1s not
well understood. This 1s also used for complex projects where all
functionality must be delivered at one time, but the requirements
are unstable or not well understood at the beginning.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 15

Evolutionary Process Model

Concurrernt
activities

(Sp ecl ficatiorD
G)evelopmenD
(Vali dation)

Initial
version

QOutline
description

Intermediate
versions

Final
version

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 16

Prototyping Model

» The prototype may be a usable program but is not suitable as
the final software product.

» The code for the prototype is thrown away. However
experience gathered helps in developing the actual system.

» The development of a prototype might involve extra cost, but
overall cost might turnout to be lower than that of an
equivalent system developed using the waterfall model.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

17

Prototyping Model

Rapid _____4 Changed :____

prototype ! ' requirements :

| i ety i |

l ‘ :

Analysis i e 1 i

; §

'l

Design it e 248

e Linear mode I o
i1t

° “Rapid” Implementation *—-E i i i
y it

Postdelivery
maintenance

— Development
-=» Maintenance

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

!

Retirement

18

Spiral Model

Models do not deal with uncertainly which 1s inherent to software
projects.

Important software projects have failed because project risks were
neglected & nobody was prepared when something unforeseen
happened.

Barry Boehm recognized this and tired to incorporate the “project
risk” factor into a life cycle model.

The result is the spiral model, which was presented in 1986.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 19

Spiral Model

- Determine Objectives,
Alternatives and Constraints
* Obtain Commitment

/—\ﬁtlysis
Proto Proto

Risk

Risk
Analysis

- Evaluate Alternatives
- Identify, Resolve Risks

Risk
Analysis

Operating
Review Prototype Prototype
Life Cycle [Concep Reas Product Detail
Plan Design Design
f
Development| Req. Validatio Unit
Plan Test
Integrate, Design Devel
- Plan Test plan Validation and evelop

Verificatio

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Implement

Integratio - Verify

20

Spiral Model

The radial dimension of the model represents the cumulative costs.
Each path around the spiral i1s indicative of increased costs. The
angular dimension represents the progress made in completing each
cycle. Each loop of the spiral from X-axis clockwise through 360°

represents one phase. One phase 1s split roughly into four sectors of
major activities.

= Planning: Determination of objectives, alternatives &
constraints.

= Risk Analysis: Analyze alternatives and attempts to identify
and resolve the risks involved.

* Development: Product development and testing product.

= Assessment: Customer evaluation

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 21

Spiral Model

= An important feature of the spiral model 1s that each phase 1s
completed with a review by the people concerned with the
project (designers and programmers)

» The advantage of this model is the wide range of options to
accommodate the good features of other life cycle models.

= [t becomes equivalent to another life cycle model in
appropriate situations.

The spiral model has some difficulties that need to be resolved
before it can be a universally applied life cycle model. These
difficulties include lack of explicit process guidance in determining
objectives, constraints, alternatives; relying on risk assessment
expertise; and provides more flexibility than required for many
applications.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 22

The Unified Process

Developed by I.Jacobson, G.Booch and J.Rumbaugh.

Software engineering process with the goal of producing good
quality maintainable software within specified time and budget.

Developed through a series of fixed length mini projects called
iterations.

Maintained and enhanced by Rational Software Corporation and
thus referred to as Rational Unified Process (RUP).

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 23

Phases of the Unified Process

Inception Elaboration Construction Transition

A
Time
>
Definition of Planning & Initial Release of
objectives architecture operational the Software
of the project for the project capability product

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 24

Phases of the Unified Process

Inception: defines scope of the project.
Elaboration

- How do we plan & design the project?

- What resources are required?

- What type of architecture may be suitable?

Construction: the objectives are translated in design &
architecture documents.

Transition : involves many activities like delivering, training,
supporting, and maintaining the product.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 25

Initial development & Evolution Cycles

\%
Inception Elaboration Construction Transition

Initial development Cycle

V2
Inception Elaboration Construction Transition

Evolution Cycle

: . . . V3
Inception Elaboration Construction Transition

Continue till the product is retired

Vl1=versionl, V2 =version2, V3=version3

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 26

Iterations & Workflow of Unified Process

Phases

Inception Elaboration Construction Transition

Model

ﬁ

Implementation
Test

Deployment

Configuration Management
Project Management

Environment

I E1 c1c2 Cn T1 T2

Ilterations

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 27

Inception Phase

The inception phase has the following objectives:

= Gathering and analyzing the requirements.

= Planning and preparing a business case and evaluating
alternatives for risk management, scheduling resources etc.

= Estimating the overall cost and schedule for the project.

= Studying the feasibility and calculating profitability of the
project.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 28

Outcomes of Inception Phase

Project plan

Prototypes
\ —

Business Inception
model

assessment
. / l vlnitial business
Vision

Initial use Initial case

case model project
Glossary

>Initial risk

document

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 29

Elaboration Phase

The elaboration phase has the following objectives:

= Establishing architectural foundations.
= Design of use case model.

= Elaborating the process, infrastructure & development
environment.

= Selecting component.

= Demonstrating that architecture support the vision at
reasonable cost & within specified time.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 30

Outcomes of Elaboration Phase

Development plan Revised risk

\ document

Preliminary, . An executable
User manual Elaboration > architectural
prototype
l Architecture
Use case Description
model Supplementary document
Requirements

with non functional
requirement

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 3 1

Construction Phase

The construction phase has the following objectives:

* Implementing the project.

* Minimizing development cost.

= Management and optimizing resources.
= Testing the product

= Assessing the product releases against acceptance criteria

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

32

Outcomes of Construction Phase

Test

. Operational
Outline \ / manuals
Documentatign Construction > -
manuals Test Suite
l \ A description
Software of the

User manuals

product current release

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 3 3

Transition Phase

The transition phase has the following objectives:

= Starting of beta testing
"= Analysis of user’s views.
* Training of users.

"= Tuning activities including bug fixing and enhancements for
performance & usability

= Assessing the customer satistaction.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 34

Outcomes of Transition Phase

Transition

N

User feedback

Product
release Beta test reports

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

35

Selection of a Life Cycle Model

Selection of a model 1s based on:

a) Requirements

b) Development team
c) Users

d) Project type and associated risk

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

36

Based On Characteristics Of Requirements

Are requirements
easily understandable Yes No No No No Yes

and defined?

Do we change
requirements quite No Yes No No Yes No

often?

Can we define

requirements early e No Yes Yes No Yes
in the cycle?

Requirements are

indicating a complex No Yes Yes Yes Yes No

system to be built

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 37

Based On Status Of Development Team

Development Waterfall | Prototype Iterative Evolutionary | Spiral | RAD
team enhancement | development
No Yes No No Yes No
Yes No Yes Yes Yes No
Yes No No No Yes No
No No Yes Yes No Yes

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

38

Based On User's Participation

Software Engineering (31 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 39

Based On Type Of Project With Associated Risk,

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Multiple Choice Questions

Note: Select most appropriate answer of the following questions:
2.1 Spiral Model was developed by

(a) Bev Littlewood (b) Berry Boehm

(¢) Roger Pressman (d) Victor Basili
2.2 Which model is most popular for student’s small projects?

(a) Waterfall model (b) Spiral model

(¢) Quick and fix model (d) Prototyping model
2.3 Which 1s not a software life cycle model?

(a) Waterfall model (b) Spiral model

(c) Prototyping model (d) Capability maturity model
2.4 Project risk factor is considered in

(a) Waterfall model (b) Prototyping model

(¢) Spiral model (d) Iterative enhancement model
2.5 SDLC stands for

(a) Software design life cycle (b) Software development life cycle

(¢c) System development life cycle (d) System design life cycle

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 41

Multiple Choice Questions

Note: Select most appropriate answer of the following questions:

2.6 Build and fix model has
(a) 3 phases (b) 1 phase
(¢) 2 phases (d) 4 phases
2.7 SRS stands for
(a) Software requirements specification (b) Software requirements solution

(c) System requirements specification (d) none of the above
2.8 Waterfall model is not suitable for
(a) small projects (b) accommodating change
(c) complex projects (d) none of the above
2.9 RAD stands for
(a) Rapid application development (b) Relative application development
(c) Ready application development (d) Repeated application development
2.10 RAD model was proposed by
(a) Lucent Technologies (b) Motorola

(c) IBM (d) Microsoft

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 42

Multiple Choice Questions

Note: Select most appropriate answer of the following questions:

2.11 If requirements are easily understandable and defined,which model is best suited?

(a) Waterfall model (b) Prototyping model
(¢) Spiral model (d) None of the above
2.12 If requirements are frequently changing, which model is to be selected?
(a) Waterfall model (b) Prototyping model
(c) RAD model (d) Iterative enhancement model
2.13 If user participation 1s available, which model 1s to be chosen?
(a) Waterfall model (b) Iterative enhancement model
(¢) Spiral model (d) RAD model
2.14 If limited user participation is available, which model is to be selected?
(a) Waterfall model (b) Spiral model
(c) Iterative enhancement model (d) any of the above
2.15 If project is the enhancement of existing system, which model is best suited?
(a) Waterfall model (b) Prototyping model

(c) Iterative enhancement model (d) Spiral model

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 43

Multiple Choice Questions

Note: Select most appropriate answer of the following questions:

2.16 Which one is the most important feature of spiral model?

(a) Quality management (b) Risk management
(¢) Performance management (d) Efficiency management
2.17 Most suitable model for new technology that is not well understood is:
(a) Waterfall model (b) RAD model
(c) Iterative enhancement model (d) Evolutionary development model

2.18 Statistically, the maximum percentage of errors belong to the following phase of
SDLC

(a) Coding (b) Design

(c) Specifications (d) Installation and maintenance
2.19 Which phase is not available in software life cycle?

(a) Coding (b) Testing

(c) Maintenance (d) Abstraction
2.20 The development 1s supposed to proceed linearly through the phase in

(a) Spiral model (b) Waterfall model

(¢) Prototyping model (d) None of the above

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 44

Multiple Choice Questions

Note: Select most appropriate answer of the following questions:

2.21 Unified process is maintained by

(a) Infosys (b) Rational software corporation

(¢) SUN Microsystems (d) None of the above
2.22 Unified process 1s

(a) Iterative (b) Incremental

(c) Evolutionary (d) All of the above
2.23 Who is not in the team of Unified process development?

(a) I.Jacobson (b) G.Booch

(c) B.Boehm (d) J.Rumbaugh
2.24 How many phases are in the unified process?

(a) 4 (b) 5

(c)2 (d) None of the above
2.25 The outcome of construction phased can be treated as:

(a) Product release (b) Beta release

(c) Alpha release (d) All of the above

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 45

Exercises

2.1 What do you understand by the term Software Development Life Cycle
(SDLC)? Why is it important to adhere to a life cycle model while
developing a large software product?

2.2 What is software life cycle? Discuss the generic waterfall model.

2.3 List the advantages of using waterfall model instead of adhoc build and
fix model.

2.4 Discuss the prototyping model. What is the effect of designing a
prototype on the overall cost of the project?

2.5 What are the advantages of developing the prototype of a system?

2.6 Describe the type of situations where iterative enhancement model might
lead to difficulties.

2.1 Compare iterative enhancement model and evolutionary process model.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 46

Exercises

2.8 Sketch a neat diagram of spiral model of software life cycle.

2.9 Compare the waterfall model and the spiral model of software
development.

2.10 As we move outward along with process flow path of the spiral model,
what can we say about software that is being developed or maintained.

2.11 How does “project risk” factor effect the spiral model of software
development.

2.12 List the advantages and disadvantages of involving a software engineer
throughout the software development planning process.

2.13 Explain the spiral model of software development. What are the
limitations of such a model?

2.14 Describe the rapid application development (RAD) model.Discuss each
phase 1n detail.

2.15 What are the characteristics to be considered for the selection of the life
cycle model?

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 47

Exercises

2.16 What is the role of user participation in the selection of a life cycle
model?.

2.17 Why do we feel that characteristics of requirements play a very
significant role in the selection of a life cycle model?

2.18 Write short note on “status of development team” for the selection of a
life cycle model?.
2.19 Discuss the selection process parameters for a life cycle model.

2.20 What is unified process? Explain various phases along with the outcome
of each phase.

2.21 Describe the unified process work products after each phase of unified
process.

2.22 What are the advantages of iterative approach over sequential approach?
Why is unified process called as iterative or incremental?

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 48

Software Requirements
Analysis and specification

Requirement Engineering
Requirements describe
What not How

Produces one large document written in natural language
contains a description of what the system will do without
describing how it will do it.

Crucial process steps
Quality of product === Process that creates it

Without well written document
-- Developers do not know what to build
-- Customers do not know what to expect
-- What to validate

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 2

Problem Statement

Requirements
L Elicitation

\ 4

Requirements

Requirement

: . Analysi
Engineering alysis
Requirements
Documentation
Requirements
N Review
SRS

Crucial Process Steps of requirement engineering

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirement Engineering

Requirement Engineering is the disciplined application of
proven principles, methods, tools, and notations to describe a
proposed system’s intended behavior and its associated
constraints.

SRS may act as a contract between developer and customer.

State of practice

Requirements are difficult to uncover
 Requirements change
* Over reliance on CASE Tools
« Tight project Schedule
« Communication barriers
« Market driven software development
« Lack of resources

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 4

Requirement Engineering

Example

A University wish to develop a software system for the
student result management of its M.Tech. Programme. A
problem statement is to be prepared for the software
development company. The problem statement may give
an overview of the existing system and broad expectations

from the new software system.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Types of Requirements

Types of Requirements

Known
Requirements

A 4

Unknown

Requirements

Undreamed
Requirements

Stakeholder: Anyone who should have some direct or indirect
influence on the system requirements.

Functional

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

User

--- Affected persons

Requirements

Non-Functional

Types of Requirements

Functional requirements describe what the software has to
do. They are often called product features.

Non Functional requirements are mostly quality
requirements. That stipulate how well the software does,
what it has to do.

Availability
Reliability \
Usability

Flexibility /

For Users

Maintainability ,
Portability For Developers
Testability J

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Types of Requirements

User and system requirements

User requirement are written for the users and include
functional and non functional requirement.

System requirement are derived from user requirement.

The user system requirements are the parts of software
requirement and specification (SRS) document.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 8

Types of Requirements

Interface Specification

« Important for the customers.

TYPES OF INTERFACES

 Procedural interfaces (also called Application
Programming Interfaces (APIs)).

 Data structures

* Representation of data.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 9

Feasibility Study

Is cancellation of a project a bad nhews?

As per IBM report, “31% projects get cancelled before they
are completed, 53% over-run their cost estimates by an

average of 189% & for every 100 projects, there are 94
restarts.

How do we cancel a project with the least work?

mm) CONDUCT A FEASIBILTY STUDY

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 O

Feasibility Study

Technical feasibility

 Is it technically feasible to provide direct communication
connectivity through space from one location of globe to
another location?

« |s it technically feasible to design a programming
language using “Sanskrit”?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1

Feasibility Study

Feasibility depends upon non technical Issues like:

* Are the project’s cost and schedule assumption realistic?
* Does the business model realistic?

 |s there any market for the product?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 2

Feasibility Study

Purpose of feasibility study

“evaluation or analysis of the potential impact of a
proposed project or program.”

Focus of feasibility studies

* |s the product concept viable?

« Will it be possible to develop a product that matches the
project’s vision statement?

« What are the current estimated cost and schedule for the
project?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 3

Feasibility Study

Focus of feasibility studies

* How big is the gap between the original cost & schedule
targets & current estimates?

 |s the business model for software justified when the
current cost & schedule estimate are considered?

« Have the major risks to the project been identified & can
they be surmounted?

 |s the specifications complete & stable enough to
support remaining development work?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 4

Feasibility Study
Focus of feasibility studies

« Have users & developers been able to agree on a
detailed user interface prototype? If not, are the
requirements really stable?

* |s the software development plan complete & adequate
to support further development work?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 5

Requirements Elicitation

Perhaps
« Most difficult
* Most critical
* Most error prone
 Most communication intensive

Succeed

| » effective customer developer partnership
Selection of any method
1. It is the only method that we know
2. It is our favorite method for all situations

3. We understand intuitively that the method is effective in
the present circumstances.

Normally we rely on first two reasons.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

16

Requirements Elicitation

1.Interviews

Both parties have a common goal |

--- open ended } Interview Success of the project

--- structured

Selection of stakeholder
1. Entry level personnel
Middle level stakeholder

Managers

B~ W N

Users of the software (Most important)

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

17

Requirements Elicitation

Types of questions.
* Any problems with existing system
« Any Calculation errors
» Possible reasons for malfunctioning
* No. of Student Enrolled

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

18

Requirements Elicitation

5. Possible benefits

6. Satisfied with current policies

/.How are you maintaining the records of previous students?
8. Any requirement of data from other system

9. Any specific problems

10. Any additional functionality

11. Most important goal of the proposed development

At the end, we may have wide variety of expectations from the
proposed software.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 9

Requirements Elicitation

2. Brainstorming Sessions
It is a group technique

group discussions

New ideas Quickly Creative Thinking

Prepare long list of requirements

| Categorized

Prioritized
Pruned

*Idea is to generate views ,not to vet them.
Groups
1. Users 2. Middle Level managers 3. Total Stakeholders

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirements Elicitation

A Facilitator may handle group bias, conflicts carefully.

-- Facilitator may follow a published agenda

-- Ever_¥ idea will be documented in a way that everyone can
see il.

--A detailed report is prepared.

3. Facilitated Application specification Techniques (FAST)

-- Similar to brainstorming sessions.
-- Team oriented approach
-- Creation of joint team of customers and developers.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

21

Requirements Elicitation

Guidelines

1. Arrange a meeting at a neutral site.

. Establish rules for participation.

. Informal agenda to encourage free flow of ideas.

. Appoint a facilitator.

g &~ W DN

. Prepare definition mechanism board, worksheets, wall
stickier.

6. Participants should not criticize or debate.

FAST session Preparations
Each attendee is asked to make a list of objects that are:

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 22

Requirements Elicitation

1.
2.
3.

Part of environment that surrounds the system.
Produced by the system.
Used by the system.

A. List of constraints
B. Functions
C. Performance criteria

Activities of FAST session

©®NOO A LN~

Every participant presents his/her list
Combine list for each topic
Discussion

Consensus list

Sub teams for mini specifications
Presentations of mini-specifications
Validation criteria

. A sub team to draft specifications

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

23

Requirements Elicitation

4. Quality Function Deployment
-- Incorporate\voice of the cusjtomer

Y

Technical r?quirements.

Documented
Prime concern is customer satisfaction

» What is important for customer?

-- Normal requirements
-- Expected requirements
-- Exciting requirements

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 24

Requirements Elicitation

Steps
1. ldentify stakeholders
2. List out requirements

3. Degree of importance to each requirement.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

25

Requirements Elicitation

5 Points V. Important

4 Points Important

3 Points Not Important but nice to have

2 Points Not important

1 Points Unrealistic, required further
exploration

Requirement Engineer may categorize like:

(i) It is possible to achieve

(i) It should be deferred & Why

(iii) It is impossible and should be dropped from

consideration

First Category requirements will be implemented as per
priority assigned with every requirement.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 26

Requirements Elicitation

5. The Use Case Approach

lvar Jacobson & others introduced Use Case approach for
elicitation & modeling.

Use Case — give functional view

The terms

Use Case
Use Case Scenario
Use Case Diagram

Use Cases are structured outline or template for the
description of user requirements modeled in a structured

language like English.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

| Often Interchanged

But they are different

/

27

Requirements Elicitation
Use case Scenarios are unstructured descriptions of user
requirements.
Use case diagrams are graphical representations that

may be decomposed into further levels of abstraction.

Components of Use Case approach

Actor:

An actor or external agent, lies outside the system model, but
interacts with it in some way.

Actor — Person, machine, information System

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 28

Requirements Elicitation

« Cockburn distinguishes between Primary and
secondary actors.

« A Primary actor is one having a goal requiring the
assistance of the system.

« A Secondary actor is one from which System needs
assistance.

Use Cases
A use case is initiated by a user with a particular goal in

mind, and completes successfully when that goal is
satisfied.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 29

Requirements Elicitation

* It describes the sequence of interactions between actors
and the system necessary to deliver the services that
satisfies the goal.

* Alternate sequence

* System is treated as black box.

Thus

Use Case captures who (actor) does what (interaction)
with the system, for what purpose (goal), without dealing
with system internals.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 30

Requirements Elicitation

*defines all behavior required of the system, bounding
the scope of the system.

Jacobson & others proposed a template for writing Use
cases as shown below:

1. Introduction
Describe a quick background of the use case.

2.Actors
List the actors that interact and participate in the
use cases.

3.Pre Conditions
Pre conditions that need to be satisfied for the use
case to perform.

4. Post Conditions
Define the different states in which we expect the system
to be in, after the use case executes.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

31

Requirements Elicitation

5. Flow of events

5.1 Basic Flow
List the primary events that will occur when this use case is executed.

5.2 Alternative Flows

Any Subsidiary events that can occur in the use case should be

separately listed. List each such event as an alternative flow.

A use case can have many alternative flows as required.
6.Special Requirements

Business rules should be listed for basic & information flows as special
requirements in the use case narration .These rules will also be used
for writing test cases. Both success and failures scenarios should be
described.

7.Use Case relationships

For Complex systems it is recommended to document the relationships
between use cases. Listing the relationships between use cases also
provides a mechanism for traceability

Use Case Template.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 32

Requirements Elicitation

Use Case Guidelines
1. Identify all users

2. Create a user profile for each category of users including
all roles of the users play that are relevant to the system.

3. Create a use case for each goal, following the use case
template maintain the same level of abstraction throughout
the use case. Steps in higher level use cases may be
treated as goals for lower level (i.e. more detailed), sub-
use cases.

4. Structure the use case

5. Review and validate with users.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 33

Requirements Elicitation

Use case Diagrams
-- represents what happens when actor interacts with a system.

-- captures functional aspect of the system.

Oy

Actor Relationship between
Use Case
actors and use case

and/or between the
use cases.

-- Actors appear outside the rectangle.
--Use cases within rectangle providing functionality.

--Relationship association is a solid line between actor & use
cases.
34

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirements Elicitation

*Use cases should not be used to capture all the details of the
system.

*Only significant aspects of the required functionality
*No design issues

*Use Cases are for “what” the system is , not “how” the system
will be designed

* Free of design characteristics

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 35

Use case diagram for Result Management System

Maintain Student
Details

Data Entry Operator

Maintain Subject
Details

Maintain Result
Details

O

N\

Administrator/DR

O

Generate Result
Reports

N\

R

Student/Teacher

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

36

Requirements Elicitation

1. Maintain student Details

Add/Modify/update students details like name, address.
2.Maintain subject Details

Add/Modify/Update Subject information semester wise
3.Maintain Result Details

Include entry of marks and assignment of credit points for each
paper.

4. Login

Use to Provide way to enter through user id & password.
5. Generate Result Report

Use to print various reports
6. View Result

1) According to course code
i) According to Enrollment number/roll number

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 37

Requirements Elicitation (Use Case)
Login

1.1 Introduction : This use case describes how a user logs into
the Result Management System.

1.2 Actors : (i) Data Entry Operator
(i) Administrator/Deputy Registrar

1.3 Pre Conditions : None

1.4 Post Conditions : If the use case is successful, the actor is
logged into the system. If not, the system state is unchanged.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 38

Requirements Elicitation (Use Case)

1.5 Basic Flow : This use case starts when the actor wishes
to login to the Result Management system.

(i) System requests that the actor enter his/her name and
password.

(i) The actor enters his/her name & password.

(ilf) System validates name & password, and if finds correct
allow the actor to logs into the system.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 39

Use Cases

1.6 Alternate Flows
1.6.1 Invalid name & password

If in the basic flow, the actor enters an invalid name
and/or password, the system displays an error message. The

actor can choose to either return to the beginning of the basic
flow or cancel the login, at that point, the use case ends.
1.7 Special Requirements:
None

1.8 Use case Relationships:

None

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 40

Use Cases

2.Maintain student details

2.1 Introduction : Allow DEO to maintain student detalils.
This includes adding, changing and deleting student
iInformation

2.2 Actors : DEO

2.3 Pre-Conditions: DEO must be logged onto the
system before this use case begins.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 41

Use Cases

2.4 Post-conditions . If use case is successful, student
information is added/updated/deleted from the system.
Otherwise, the system state is unchanged.

2.5 Basic Flow . Starts when DEO wishes to
add/modify/update/delete Student information.

(i) The system requests the DEO to specify the function,
he/she would like to perform (Add/update/delete)

(i) One of the sub flow will execute after getting the
information.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 42

Use Cases

 If DEO selects "Add a student”, "Add a student" sub flow will
be executed.

 If DEO selects "update a student”, "update a student" sub flow
will be executed.

 If DEO selects "delete a student", "delete a student" sub flow
will be executed.

2.5.1 Add a student

(i) The system requests the DEO to enter:
Name
Address
Roll No
Phone No
Date of admission

(il) System generates unique id

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 43

Use Cases

2.5.2 Update a student

(i) System requires the DEO to enter student-id.

(i) DEOQO enters the student id. The system retrieves and
display the student information.

(i) DEO makes the desired changes to the student
information.

(iv) After changes, the system updates the student record with
changed information.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 44

Use Cases

2.5.3 Delete a student

(i) The system requests the DEO to specify the student-id.

(i) DEO enters the student-id. The system retrieves and
displays the studentinformation.

(i) The system prompts the DEO to confirm the deletion of
the student.

(iv) The DEO confirms the deletion.

(v) The system marks the student record for deletion.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 45

Use Cases

2.0 Alternative flows
2.6.1 Student not found

If in the update a student or delete a student sub flows,
a student with specified_id does not exist, the system
displays an error message .The DEO may enter a
different id or cancel the operation. At this point ,Use
case ends.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 46

Use Cases

2.6.2 Update Cancelled

If in the update a student sub-flow, the data entry
operator decides not to update the student information,
the update is cancelled and the basic flow is restarted at
the begin.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 47

Use Cases

2.6.3 Delete cancelled
If in the delete a student sub flows, DEO decides not to
delete student record ,the delete is cancelled and the
basic flow is re-started at the beginning.

2.7 Special requirements
None

2.8 Use case relationships
None

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 48

Use Cases

3. Maintain Subject Details

3.1

3.2

3.3

Introduction
The DEO to maintain subject information. This includes

adding, changing, deleting subject information from the
system

Actors : DEO

Preconditions : DEO must be logged onto the
system before the use case begins.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 49

Use Cases

3.4 Post conditions

If the use case is successful, the subject information
IS added, updated, or deleted from the system,
otherwise the system state is unchanged.

3.5 Basic flows

The use case starts when DEO wishes to add, change,
and/or delete subject information from the system.

(i) The system requests DEO to specify the function he/she
would like to perform i.e.
« Add a subject
« Update a subject
« Delete a subject.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 50

Use Cases

(if) Once the DEO provides the required information, one of the sub
flows is executed.

O If DEO selected “Add a subject” the “Add-a subject sub flow
IS executed.

O If DEO selected “Update-a subject” the “update-a- subject”
sub flow is executed

 If DEO selected “Delete- a- subject”, the “Delete-a-subject”
sub flow is executed.

3.5.1 Add a Subject

(i) The System requests the DEO to enter the
subject information. This includes :
* Name of the subject

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 51

Use Cases

* Subject Code
* Semester
* Credit points

(i) Once DEO provides the requested information,
the system generates and assigns a uniqgue subject-id to the
subject. The subject is added to the system.

(i) The system provides the DEO with new
subject-id.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 52

Use Cases

3.5.2 Update a Subject

(i) The system requests the DEO to enter
subject_id.
(ii) DEO enters the subject_id. The system retrieves

and displays the subject information.
(iii) DEO makes the changes.

(iv) Record is updated.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

53

Use Cases

3.5.3 Delete a Subject

(i) Entry of subject_id.

(i) After this, system retrieves & displays subject
information.

* System prompts the DEO to confirm the deletion.
* DEO verifies the deletion.

* The system marks the subject record for deletion.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

54

Use Cases

3.6 Alternative Flow
3.6.1 Subject not found
If in any sub flows, subject-id not found, error message is
displayed. The DEO may enter a different id or cancel the

case ends here.

3.6.2 Update Cancelled

If in the update a subject sub-flow, the data entry operator
decides not to update the subject information, the update is
cancelled and the basic flow is restarted at the begin.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 55

Use Cases

3.6.3 Delete Cancellation

If in delete-a-subject sub flow, the DEO decides not to
delete subject, the delete is cancelled, and the basic flow
Is restarted from the beginning.

3.7 Special Requirements:
None
3.8 Use Case-relationships

None

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Use Cases

4. Maintain Result Details

4.1 Introduction

This use case allows the DEO to maintain subject &
marks information of each student. This includes adding
and/or deleting subject and marks information from the

system.

4.2 Actor

DEO

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

57

Use Cases

4.3 Pre Conditions

DEO must be logged onto the system.

4.4 Post Conditions

If use case is successful ,marks information is
added or deleted from the system. Otherwise,
the system state is unchanged.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 58

Use Cases

4.5 Basic Flow

This use case starts, when the DEO wishes to add,
update and/or delete marks from the system.

(i) DEO to specify the function

(i) Once DEO provides the information one of the
subflow is executed.

* If DEO selected “Add Marks “, the Add marks
subflow is executed.

* If DEO selected “Update Marks”, the update marks
subflow is executed.

* If DEO selected “Delete Marks”, the delete marks
subflow is executed.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 59

Use Cases

4.5.1 Add Marks Records

Add marks information . This includes:
a. Selecting a subject code.
b. Selecting the student enroliment number.

c. Entering internal/external marks for that subject code &
enrollment number.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 60

Use Cases

(i) If DEO tries to enter marks for the same combination of
subject and enrollment number,the system gives a message
that the marks have already been entered.

(i) Each record is assigned a unique result_id.

4.5.2 Delete Marks records
1. DEO makes the following entries:

a. Selecting subject for which marks have to be
deleted.

b. Selecting student enrollment number.
c. Displays the record with id number.
d. Verify the deletion.

e. Delete the record.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 61

Use Cases
4.5.2 Update Marks records

1. The System requests DEO to enter the
record id.

2. DEQO enters record_id. The system retrieves &
displays the information.

3. DEO makes changes.

4. Record is updated.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

62

Use Cases

4.5.3 Compute Result

(i) Once the marks are entered, result is computed
for each student.

(i) If a student has scored more than 50% in a
subject, the associated credit points are allotted to that
student.

(i) The result is displayed with subject-code, marks
& credit points.

4.6 Alternative Flow
4.6.1 Record not found
If in update or delete marks sub flows, marks
with specified id number do not exist, the system displays
an error message. DEO can enter another id or cancel the
operation.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 63

Use Cases

4.6.2 Delete Cancelled

If in Delete Marks, DEO decides not to delete marks,
the delete is cancelled and basic flow is re-started at the
beginning.

4.7 Special Requirements
None
4.8 Use case relationships

None

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

64

Use Cases

5 View/Display result
5.1 Introduction

This use case allows the student/Teacher or anyone
to view the result. The result can be viewed on the basis
of course code and/or enrollment number.

5.2 Actors

Administrator/DR, Teacher/Student
5.3 Pre Conditions

None
5.4 Post Conditions

If use case is successful, the marks information is
displayed by the system. Otherwise, state is unchanged.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 65

Use Cases

5.5 Basic Flow

Use case begins when student, teacher or any other
person wish to view the result.

Two ways
-- Enrollment no.

-- Course code

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

66

Use Cases

(il) After selection, one of the sub flow is executed.
Course code — Sub flow is executed

Enrollment no. — Sub flow is executed

5.5.1 View result enrollment number wise

(1) User to enter enrollment number

(i) System retrieves the marks of all subjects with
credit points

(iif) Result is displayed.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 67

Use Cases

5.6 Alternative Flow

5.6.1 Record not found
Error message should be displayed.

5.7 Special Requirements
None
5.8 Use Case relationships

None

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

68

Use Cases
6. Generate Report

6.1 Introduction

This use case allows the DR to generate result
reports. Options are

a. Course code wise
b. Semester wise
c. Enrollment Number wise

6.2 Actors
DR
6.3 Pre-Conditions
DR must logged on to the system

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

69

Use Cases

6.4 Post conditions

If use case is successful, desired report is
generated. Otherwise, the system state is
unchanged.

6.5 Basic Flow

The use case starts, when DR wish to generate
reports.

(i) DR selects option.
(il) System retrieves the information displays.

(i) DR takes printed reports.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 70

Use Cases

6.6 Alternative Flows
6.6.1 Record not found

If not found, system generates appropriate
message. The DR can select another option or cancel the
operation. At this point, the use case ends.

6.7 Special Requirements
None
6.8 Use case relationships

None

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 71

Use Cases
7. Maintain User Accounts

7.1 Introduction

This use case allows the administrator to maintain
user account. This includes adding, changing and
deleting user account information from the system.

7.2 Actors
Administrator
7.3 Pre-Conditions
The administrator must be logged on to the
system before the use case begins.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 72

Use Cases

7.4 Post-Conditions

If the use case was successful, the user account information
iIs added, updated, or deleted from the system. Otherwise, the
system state is unchanged.

7.5 Basic Flow

This use case starts when the Administrator wishes to add,
change, and/or delete use account information from the system.

(i) The system requests that the Administrator specify the
function he/she would like to perform (either Add a User
Account, Update a User Account, or Delete a User
Account).

(i) Once the Administrator provides the requested information,
one of the sub-flows is executed

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 73

Use Cases
* If the Administrator selected “Add a User Account”, the
Add a User Account sub flow is executed.

* If the Administrator selected “Update a User Account”, the
Update a User Account sub-flow is executed.

* If the Administrator selected “Delete a User Account”, the
Delete a User Account sub-flow is executed.22

7.5.1 Add a User Account

1. The system requests that the Administrator enters the user
information. This includes:

(a) User Name
(b) User ID-should be unique for each user account
(c) Password

(d) Role

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 74

Use Cases

2. Once the Administrator provides the requested information, the
user account information is added.

7.5.2 Update a User Account
1. The system requests that the Administrator enters the User ID.

2. The Administrator enters the User ID. The system retrieves and
displays the user account information.

3. The Administrator makes the desired changes to the user
account information. This includes any of the information
specified in the Add a User Account sub-flow.

4. Once the Administrator updates the necessary information, the
system updates the user account record with the updated
information.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 75

Use Cases

7.5.3 Delete a User Account

1. The system requests that the Administrator enters
the User ID.

2. The Administrator enters the User ID. The system
retrieves and displays the user account information.

3. The system prompts the Administrator to confirm
the deletion of the user account.

4. The Administrator confirms the deletion.

5. The system deletes the user account record.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 76

Use Cases

7.6

Alternative Flows
7.6.1 User Not Found

If in the Update a User Account or Delete a User
Account sub-flows, a user account with the specified
User ID does not exist, the system displays an error
message. The Administrator can then enter a
different User ID or cancel the operation, at which point
the use case ends.

7.6.2 Update Cancelled

If in the Update a User Account sub-flow, the
Administrator decides not to update the user account
iInformation, the update is cancelled and the Basic Flow
IS re-started at the beginning.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 77

Use Cases

7.6.3 Delete Cancelled

If in the Delete a User Account sub-flow, the
Administrator decides not to delete the user account
information, the delete is cancelled and the Basic
Flow is re-started at the beginning.

7.7 Special Requirements
None

7.8 Use case relationships
None

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 78

Use Cases
8. Reset System

8.1 Introduction

This use case allows the allows the administrator to
reset the system by deleting all existing information from
the system .

8.2 Actors
Administrator

8.3 Pre-Conditions
The administrator must be logged on to the system
before the use case begins.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 79

Use Cases

8.4 Post-Conditions
If the use case was successful, all the existing
information is deleted from the backend database of
the system. Otherwise, the system state is unchanged.

8.5 Basic Flow
This use case starts when the Administrator wishes to
reset the system.

I. The system requests the Administrator to confirm if
he/she wants to delete all the existing information
from the system.

ii. Once the Administrator provides confirmation, the
system deletes all the existing information from the
backend database and displays an appropriate
message.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 80

Use Cases

8.6 Alternative Flows
8.6.1 Reset Cancelled

If in the Basic Flow, the Administrator decides

not to delete the entire existing information, the reset is
cancelled and the use case ends.

8.7 Special Requirements
None

8.8 Use case relationships
None

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

81

Requirements Analysis

We analyze, refine and scrutinize requirements to make
consistent & unambiguous requirements.

Steps
Draw the context
Diagram
Develop prototype
(optional)
Model the
Requirements
Finalize the
Requirements

Requirements Analysis Steps

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Requirements Analysis

Administrator . . Marks Entry
Subject Information Operator

Entry

Student Information Marks Entry
Entry Result Management
System
Student Information Mark sheet generated Student performance

Reports generated Reports generated

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 83

Requirements Analysis

Data Flow Diagrams

DFD show the flow of data through the system.
--All names should be unique
-- It is not a flow chart
-- Suppress logical decisions
-- Defer error conditions & handling until the end of

the analysis
Symbol Name Function
a Data Flow Connect process

Process Perform some transformation of its
iInput data to yield output data.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 84

Requirements Analysis

Symbol Name Function
Source or sink A source of system inputs or
sink of system outputs
~, 7 Data Store A repository of data, the

arrowhead indicate net
iInput and net outputs
to store

Leveling

DFD represent a system or software at any level of
abstraction.

A level 0 DFD is called fundamental system model or context
model represents entire software element as a single bubble
with input and output data indicating by incoming & outgoing
arrows.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 85

Requirements Analysis

I1

12

.- = T~
P N,
s’ S,
/s’ N
/. N
/. \
‘[I; /. \ \
<, . . 03
! \
! \
A
I
i 1
'| 1
'\ 1
" 1
/
/
/
/
/
s
e
-
‘..

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

86

MData Dictionaries

DFD — DD

Data Dictionaries are simply repositories to store
iInformation about all data items defined in DFD.

Includes :
Name of data item
Aliases (other names for items)
Description/Purpose
Related data items
Range of values
Data flows
Data structure definition

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

87

MData Dictionaries

Notation Meaning

X= a+b X consists of data elementa & b

x={a/b} X consists of eithera or b

X=(a) X consists of an optional data element a
X= y{a} X consists of y or more occurrences
x={a}z X consists of z or fewer occurrences of a

x=y{a}z X consists of between y & z occurrences of af

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 88

Entity-Relationship Diagrams

Entity-RBelationship Diagrams

It is a detailed logical representation of data for an
organization and uses three main constructs.

— |

Entities Relationships Attributes

Entities

Fundamental thing about which data may be
maintained. Each entity has its own identity.

Entity Type is the description of all entities to which a
common definition and common relationships and attributes

apply.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 89

Entity-Relationship Diagrams

Consider an insurance company that offers both home
and automobile insurance policies .These policies are
offered to individuals and businesses.

POLICY CUSTOMER
home /A\uzomobile individual businesses

POLICY CUSTOMER

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 90

Entity-Relationship Diagrams

Relationships
A relationship is a reason for associating two entity types.
Binary relationships » involve two entity types

A CUSTOMER is insured by a POLICY. A POLICY CLAIM is made
against a POLICY.

Relationships are represented by diamond notation in a ER diagram.

Insured
CUSTOMER by POLICY
Made
Against

. : POLICY
Relationships added to ERD CLAIM

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 9 1

Entity-Relationship Diagrams

A training department is interested in tracking which training
courses each of its employee has completed.

EMPLOYEE

completes

Many-to Many relationship

COURSE

Each employee may complete more than one course,and
each course may be completed by more

employee.

than one

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Entity-Relationship Diagrams
Degree of relationship

It is the number of entity types that participates in that relationship.

Unary Binary Ternary

Unary relationship

Is
ol Married
to
One to One . Manages
mployee
|
One to many

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 93

Entity-Relationship Diagrams

Binary Relationship

EMPLOYEE Is PARKING
assigned PLACE
One to One
PRODUCT
LINE Contains PRODUCT
One to many
STUDENT Rnggfisters COURSE
or

Many to many

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 94

Entity-Relationship Diagrams

Ternary relationship

Part

Vendor

Ships

Cardinalities and optionality

Two entity types A,B, connected by a relationship.

Ware House

The cardinality of a relationship is the number of instances of entity B that

can be associated with each instance of entity A

N
Stocked

Movie t
asS

Video Tape

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

95

Entity-Relationship Diagrams

Minimum cardinality is the minimum number of instances of
entity B that may be associated with each instance of entity
A.

Minimum no. of tapes available for a movie is zero.We say
VIDEO TAPE is an optional participant in the is-stocked-as
relationship.

MOVIE [H Stocked (}<4 VIDEO TAPE

Software Engineering (3 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 96

Entity-Relationship Diagrams
Attributes

Each entity type has a set of attributes associated with it.

An attribute is a property or characteristic of an entity that is
of interest to organization.

O Attribute

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

97

Entity-Relationship Diagrams

A candidate key is an attribute or combination of attributes that
uniquely identifies each instance of an entity type.

Student_ID . Candidate Key

If there are more candidate keys, one of the key may be chosen
as the Identifier.
It is used as unique characteristic for an entity type.

|dentifier

>

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 98

Entity-Relationship Diagrams

STUDENT

Student_ID

Vendors quote prices for several parts along with quantity of parts.
Draw an E-R diagram.

Vendor

| Quote- |

| price |

Parts

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Approaches to problem analysis

1. List all inputs, outputs and functions.
2. List all functions and then list all inputs and outputs
associated with each function.

Structured requirements definition (SRD)

Step1
Define a user level DFD. Record the inputs and outputs
for each individual in a DFD.
Step2
Define a combined user level DFD.
Step3
Define application level DFD.
Step4
Define application level functions.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 00

Requirements Documentation

This is the way of representing requirements in a
consistent format

SRS serves many purpose depending upon who is writing
it.

-- written by customer
-- \written by developer

~

Serves as contract between customer & developer.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 01

Requirements Documentation

Nature of SRS

Basic Issues

* Functionality

« External Interfaces

« Performance

 Attributes

» Design constraints imposed on an Implementation

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 02

Requirements Documentation

SRS Should

-- Correctly define all requirements

not describe any design details

-- not impose any additional constraints

Characteristics of a good SRS
An SRS Should be

v

AN NN

Correct
Unambiguous
Complete
Consistent

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

103

Requirements Documentation

Ranked for important and/or stability
Verifiable

Modifiable

Traceable

XN X X

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 04

Requirements Documentation

Correct
An SRS is correct if and only if every requirement
stated therein is one that the software shall meet.

Unambiguous
An SRS is unambiguous if and only if, every
requirement stated therein has only one interpretation.

Complete
An SRS is complete if and only if, it includes the
following elements

(i) All significant requirements, whether related to
functionality, performance, design constraints,
attributes or external interfaces.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 05

Requirements Documentation
(i) Responses to both valid & invalid inputs.

(i) Full Label and references to all figures, tables and diagrams
in the SRS and definition of all terms and units of measure.

Consistent

An SRS is consistent if and only if, no subset of
individual requirements described in it conflict.

Ranked for importance and/or Stability

If an identifier is attached to every requirement to
indicate either the importance or stability of that particular
requirement.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 06

Requirements Documentation

Verifiable
An SRS is verifiable, if and only if, every requirement
stated therein is verifiable.

Modifiable

An SRS is modifiable, if and only if, its structure and style
are such that any changes to the requirements can be made
easily, completely, and consistently while retaining structure and

style.

Traceable

An SRS is traceable, if the origin of each of the
requirements is clear and if it facilitates the referencing of each
requirement in future development or enhancement
documentation.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 07

Requirements Documentation
Organization of the SRS

IEEE has published guidelines and standards to organize an

SRS.
First two sections are same. The specific tailoring occurs in

section-3.

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definition, Acronyms and abbreviations
1.4 References

1.5 Overview

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 08

Requirements Documentation

2. The Overall Description

2.1 Product Perspective
2.1.1 System Interfaces
2.1.2 Interfaces
2.1.3 Hardware Interfaces
2.1.4 Software Interfaces
2.1.5 Communication Interfaces
2.1.6 Memory Constraints
2.1.7 Operations
2.1.8 Site Adaptation Requirements

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 09

Requirements Documentation

2.2
2.3
2.4
2.5
2.6

Product Functions

User Characteristics
Constraints

Assumptions for dependencies
Apportioning of requirements

3. Specific Requirements

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

External Interfaces

Functions

Performance requirements

Logical database requirements
Design Constraints

Software System attributes
Organization of specific requirements
Additional Comments.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

110

Requirements Validation

Check the document for:

v Completeness & consistency
v Conformance to standards

v Requirements conflicts

v" Technical errors

v Ambiguous requirements

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 1

Requirements Validation

SRS document

— : Validation
Organizational

rocess
standards :> P

List of problems

_ar
RN

Approved actions

Organizational
Knowledge

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 2

Requirements Review Process

Distribute

SRS
document

Plan revie

Organize
review

Follow up

actions

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 3

Requirements Validation

Problem actions
e Requirements clarification
e Missing information
e find this information from stakeholders
e Requirements conflicts
e Stakeholders must negotiate to resolve this conflict
e Unrealistic requirements
e Stakeholders must be consulted
e Security issues

e Review the system in accordance to security standards

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 4

Review Checklists

v' Redundancy
v' Completeness
v' Ambiguity

v Consistency
v Organization
v Conformance

v’ Traceability

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 5

Prototyping

Validation prototype should be reasonably complete &
efficient & should be used as the required system.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 6

Requirements Management

* Process of understanding and controlling changes to
system requirements.

ENDURING & VOLATILE REQUIREMENTS

o Enduring requirements: They are core requirements &
are related to main activity of the organization.

Example: issue/return of a book, cataloging etc.

o Volatile requirements: likely to change during software
development lifer cycle or after delivery of the product

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 7

Requirements Management Planning

« Very critical.

« Important for the success of any project.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 8

Requirements Change Management

Allocating adequate resources
Analysis of requirements
Documenting requirements
Requirements traceability
Establishing team communication

Establishment of baseline

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 9

Download from

QNIRM\PRIVATEMNITIATIATINQA\QAPLAN\SRSPLAN.DOC

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 20

Multiple Choice Questions

Note. Choose the most appropriate answer of the following questions.

3.1 Which one is not a step of requirement engineering?

(a) Requirements elicitation

(b) Requirements analysis

(¢) Requirements design

(d) Requirements documentation

3.2 Requirements elicitation means

(a) Gathering of requirements
(b) Capturing of requirements

(¢) Understanding of requirements
(d) All of the above

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 21

Multiple Choice Questions

3.3 SRS stands for

(a) Software requirements specification
(b) System requirements specification

(c) Systematic requirements specifications
(d) None of the above

3.4 SRS document is for
(a) “What” of a system?
(b) How to design the system?

(c) Costing and scheduling of a system
(d) System’s requirement.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 22

Multiple Choice Questions

3.5 Requirements review process is carried out to

(a) Spend time in requirements gathering
(b) Improve the quality of SRS

(¢) Document the requirements

(d) None of the above

3.6 Which one of the statements is not correct during
requirements engineering?

(a) Requirements are difficult to uncover

(b) Requirements are subject to change

(¢) Requirements should be consistent

(d) Requirements are always precisely known.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 23

Multiple Choice Questions

3.7 Which one is not a type of requirements?

(a) Known requirements
(b) Unknown requirements
(¢) Undreamt requirements
(d) Complex requirements

3.8 Which one is not a requirements elicitation
technique?

(a) Interviews

(b) The use case approach
(c) FAST

(d) Data flow diagram.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 24

Multiple Choice Questions

3.9 FAST stands for

(a) Functional Application Specification Technique
(b) Fast Application Specification Technique

(c) Facilitated Application Specification Technique
(d) None of the above

3.10 QFD in requirement engineering stands for
(a) Quality function design
(b) Quality factor design

(¢) Quality function development
(d) Quality function deployment

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 25

Multiple Choice Questions

3.11 Which is not a type of requirements under
quality function deployment

(a) Normal requirements
(b) Abnormal requirements
(¢) Expected requirements
(d) Exciting requirements

3.12 Use case approach was developed by
(a) I. Jacobson and others
(b) J.D. Musa and others

(¢) B. Littlewood
(d) None of the above

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 26

Multiple Choice Questions

3.13 Context diagram explains

(a) The overview of the system

(b) The internal view of the system
(c) The entities of the system

(d) None of the above

3.14 DFD stands for
(a) Data Flow design

(b) Descriptive functional design
(¢) Data flow diagram

(d) None of the above

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 27

Multiple Choice Questions

3.15 Level-O DFD is similar to

(a) Use case diagram
(b) Context diagram
(¢) System diagram
(d) None of the above

3.16 ERD stands for
(a) Entity relationship diagram
(b) Exit related diagram

(c) Entity relationship design
(d) Exit related design

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 28

Multiple Choice Questions

3.17 Which is not a characteristic of a good SRS?

(a) Correct
(b) Complete
(c) Consistent
(d) Brief

3.18 Outcome of requirements specification phase is
(a) Design Document
(b) Software requirements specification

(¢) Test Document
(d) None of the above

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 29

Multiple Choice Questions

3.19 The basic concepts of ER model are:

(a) Entity and relationship

(b) Relationships and keys

(c) Entity, effects and relationship
(d) Entity, relationship and attribute

3.20 The DFD depicts

(a) Flow of data

(b) Flow of control
(c) Both (a) and (b)
(d) None of the above

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 30

Multiple Choice Questions

3.21 Product features are related to:

(a) Functional requirements

(b) Non functional requirements
(c) Interface requirement

(d) None of the above

3.22 Which one is a quality attribute?
(a) Reliability
(b) Availability

(¢) Security
(d) All of the above

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 31

Multiple Choice Questions

3.23 IEEE standard for SRS is:

(a) IEEE Standard 837-1998
(b) IEEE Standard 830-1998
(¢) IEEE Standard 832-1998
(d) IEEE Standard 839-1998

3.24 Which one is not a functional requirement?

(a) Efficiency

(b) Reliability

(¢c) Product features
(d) Stability

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 32

Multiple Choice Questions

3.23 APIs stand for:

(a) Application performance interfaces
(b) Application programming interfaces
(c) Application programming integration
(d) Application performance integration

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 33

Exercises

3.1 Discuss the significance and use of requirement engineering. What are
the problems in the formulation of requirements?

3.2 Requirements analysis is unquestionably the most communication
intensive step in the software engineering process. Why does the
communication path frequently break down ?

3.3 What are crucial process steps of requirement engineering ? Discuss with
the help of a diagram.

3.4 Discuss the present state of practices in requirement engineering. Suggest
few steps to improve the present state of practice.

3.5 Explain the importance of requirements. How many types of
requirements are possible and why ?

3.6 Describe the various steps of requirements engineering. Is it essential to
follow these steps ?

3.7 What do you understand with the term ‘“requirements elicitation” ?
Discuss any two techniques in detail.

3.8 List out requirements elicitation techniques. Which one is most popular
and why ?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 34

Exercises

3.9 Describe facilitated application specification technique (FAST) and
compare this with brainstorming sessions.

3.10 Discuss quality function deployment technique of requirements
elicitation. Why an importance or value factor is associated with every
requirement ?

3.11. Explain the use case approach of requirements elicitation. What are
use-case guidelines ?

3.12. What are components of a use case diagram. Explain their usage with
the help of an example.

3.13. Consider the problem of library management system and design the
following:

(i) Problem statement
(ii) Use case diagram
(ii1) Use cases.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 35

Exercises

3.14. Consider the problem of railway reservation system and design the
following:

(i) Problem statement

(i1) Use case diagram

(ii1) Use cases.

3.15. Explain why a many to many relationship is to be modeled as an
associative entity ?

3.16. What are the linkages between data flow and E-R diagrams ?

3.17. What is the degree of a relationship ? Give an example of each of the
relationship degree.

3.18. Explain the relationship between minimum cardinality and optional and
mandatory participation.

3.19. An airline reservation is an association between a passenger, a flight,
and a seat. Select a few

pertinent attributes for each of these entity types and represent a reservation
in an E-R diagram.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 36

Exercises

3.20. A department of computer science has usual resources and usual users
for these resources. A software i1s to be developed so that resources are
assigned without conflict. Draw a DFD specifying the above system.

3.21. Draw a DFD for result preparation automation system of B. Tech.
courses (or MCA program) of any university. Clearly describe the working
of the system. Also mention all assumptions made by you.

3.22. Write short notes on
(i) Data flow diagram
(i) Data dictionary.

3.23. Draw a DFD for borrowing a book in a library which 1s explained
below: “A borrower can borrow a book if it is available else he/she can
reserve for the book if he/she so wishes. He/she can borrow a maximum of
three books™.

3.24. Draw the E-R diagram for a hotel reception desk management.

Explain why, for large software systems development, is it recommended
that prototypes should be “throw-away” prototype ?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 37

Exercises

3.26. Discuss the significance of using prototyping for reusable components
and explain the problems,which may arise in this situation.

3.27. Suppose a user is satisfied with the performance of a prototype. If
he/she 1s interested to buy this

for actual work, what should be the response of a developer ?

3.28. Comment on the statement: “The term throw-away prototype 1is
inappropriate in that these prototypes expand and enhance the knowledge
base that is retained and incorporated in the final prototype; therefore they
are not disposed of or thrown away at all.”

3.29. Which of the following statements are ambiguous ? Explain why.
(a) The system shall exhibit good response time.
(b) The system shall be menu driven.

(c) There shall exist twenty-five buttons on the control panel, numbered PF1
to PF25.

(d) The software size shall not exceed 128K of RAM.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 38

Exercises

3.30. Are there other characteristics of an SRS (besides listed in section
3.4.2) that are desirable ? List a few and describe why ?

3.31. What is software requirements specification (SRS) ? List out the
advantages of SRS standards.

Why is SRS known as the black box specification of a system ?

3.32. State the model of a data dictionary and its contents. What are its
advantages ?

3.33. List five desirable characteristics of a good SRS document. Discuss the
relative advantages of formal requirement specifications. List the important
1ssues, which an SRS must address.

3.34. Construct an example of an inconsistent (incomplete) SRS.

3.35. Discuss the organization of a SRS. List out some important issues of
this organization.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 39

Exercises

3.36. Discuss the difference between the following:
(a) Functional & nonfunctional requirements
(b) User & system requirements

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 40

Software

Project Planning

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1

Software Project Planning

After the finalization of SRS, we would like to
estimate size, cost and development time of the
project. Also, 1n many cases, customer may like to
know the cost and development time even prior to
finalization of the SRS.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Project Planning

In order to conduct a successful software project, we
must understand:

= Scope of work to be done
= The risk to be incurred
* The resources required

* The task to be accomplished
= The cost to be expended

= The schedule to be followed

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 3

Software Project Planning

Software planning begins before technical work starts, continues as
the software evolves from concept to reality, and culminates only
when the software 1s retired.

Fig. 1: Activities during Software
Project Flamning [e]

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 4

Software Project Planning

Size Estimation
Lines of Code (LOC)

If LOC 1s simply a count of
the number of lines then

figure shown below contains
18 LOC.

When comments and blank
lines are 1gnored, the

program 1n figure 2 shown
below contains 17 LOC.

Fig. 2: Function for sorting an array

1. int. sort (int X[], int n)
2. {

3. inti, j, save, im1;

4. /*This function sorts array x in ascending order */
5. If (n<2) return 1;

6. for (i=2; i<=n; i++)

7. {

8. im1=i-1;

9. for (j=1; j<=im; j++)
10. | if (x[i] < x[j])

11. | {

12. Save = X]i];

13. X[i] = X[j];

14. | x[j] = save;

15. |}

16. |}

17. return O;

18. |}

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 5

Software Project Planning

Growth of Lines of Code (LOC)

2,500,000

—o—Total LOC ("wc -I") -- development releases

—— Total LOC ("wc -1") -- stable releases
2,000,000

-+ Total LOC uncommented -- development releases

-« Total LOC uncommented -- stable releases
1,500,000

Total LOC

1,000,000

500,000

0
Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 6

Software Project Planning

Furthermore, if the main interest is the size of the program
for specific functionality, 1t may be reasonable to include
executable statements. The only executable statements 1n
figure shown above are in lines 5-17 leading to a count of
13. The differences in the counts are 18 to 17 to 13. One
can easily see the potential for major discrepancies for
large programs with many comments or programs written
in language that allow a large number of descriptive but
non-executable statement. Conte has defined lines of code
as:

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 7

Software Project Planning

“A line of code 1s any line of program text that 1s not a
comment or blank line, regardless of the number of
statements or fragments of statements on the line. This
specifically includes all lines containing program header,
declaration, and executable and non-executable
statements”.

This 1s the predominant definition for lines of code used

by researchers. By this definition, figure shown above
has 17 LOC.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 8

Software Project Planning

Function Count

Alan Albrecht while working for IBM, recognized the
problem 1n size measurement in the 1970s, and
developed a technique (which he called Function Point

Analysis), which appeared to be a solution to the size
measurement problem.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 9

Software Project Planning

The principle of Albrecht’s function point analysis (FPA)
1s that a system 1s decomposed 1nto functional units.

" Inputs : information entering the system

* Qutputs ; information leaving the system

= Enquiries : requests for instant access to
information

* Internal logical files : information held within the
system

» External interface files : information held by other system

that is used by the system being
analyzed.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 O

Software Project Planning

The FPA functional units are shown in figure given below:

Inquiries

Other
applications
EIF

Inputs ILF
Outputs ILF: Internal logical files

System EIF: External interfaces

Fig. 3: FPAs functional units System

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1

Software Project Planning

The five functional units are divided in two categories:

(1) Data function types

* Internal Logical Files (ILF): A user identifiable group of
logical related data or control information maintained
within the system.

» External Interface files (EIF): A user identifiable group of
logically related data or control information referenced by
the system, but maintained within another system. This
means that EIF counted for one system, may be an ILF in
another system.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 2

Software Project Planning

(11) Transactional function types

= External Input (EI): An EI processes data or control information
that comes from outside the system. The EI 1s an elementary
process, which 1s the smallest unit of activity that 1s meaningful
to the end user 1n the business.

= External Output (EO): An EO is an elementary process that
generate data or control information to be sent outside the
system.

» External Inquiry (EQ): An EQ 1s an elementary process that 1s
made up to an input-output combination that results in data
retrieval.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 3

Software Project Planning

Special features

» Function point approach is independent of the language,
tools, or methodologies used for implementation; 1.e. they
do not take into consideration programming languages,
data base management systems, processing hardware or
any other data base technology.

» Function points can be estimated from requirement
specification or design specification, thus making 1t
possible to estimate development efforts in early phases of
development.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 4

Software Project Planning

» Function points are directly linked to the statement of
requirements; any change of requirements can easily
be followed by a re-estimate.

» Function points are based on the system user’s
external view of the system, non-technical users of
the software system have a better understanding of
what function points are measuring.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 5

Software Project Planning

Counting function points

Weighting factors

External Inputs (EI) 3 4 6
External Output (EO) 4 5 7
External Inquiries (EQ) 3 4 6
External logical files (ILF) 7 10 15
External Interface files (EIF) S 7/ 10

Table 1 : Functional units with weighting factors

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

16

Software Project Planning

Table 2: UFP calculation table

Functional Count Complexity Functional
Units Complexity Totals Unit Totals
External] Low x 3 =]
Inputs] Average x 4 =]
(Els)] Highx6 = []
External] Low x 4 = []
Outputs] Average x 5 = []
(EOs)] Highx7 =] []
External [] Lowx3 =[]
Inquiries [1 Averagex4 =]
(EQs)] Highx6 -] -
External [] Low x 7 = []
logical [] Averagex 10 =]
Files ALFs) | [] Highx I5 = [] []
External] Low X 5 =]
Interface] Average x 7 =]
Files (EIFs) |] Highx 10 -] []
Total Unadjusted Function Point Count []

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

17

Software Project Planning

The weighting factors are 1dentified for all
functional units and multiplied with the functional
units accordingly. The procedure for the
calculation of Unadjusted Function Point (UFP) 1s
given 1n table shown above.

Software Project Planning

The procedure for the calculation of UFP in mathematical
form 1s given below:

UFP = iiZijwij

=1 J=1

Where 1 indicate the row and j indicates the column of Table 1

Wi; : Itis the entry of the i'" row and j™ column of the table 1

71 : It 1s the count of the number of functional units of Type i that
have been classified as having the complexity corresponding to

column j.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 9

Software Project Planning

Organizations that use function point methods develop a criterion for
determining whether a particular entry 1s Low, Average or High.
Nonetheless, the determination of complexity 1s somewhat
subjective.

FP = UFP * CAF

Where CAF is complexity adjustment factor and 1s equal to [0.65 +
0.01 x XF,]. The F; (i=1 to 14) are the degree of influence and are
based on responses to questions noted 1n table 3.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 20

Software Project Planning

Table 3 : Computing function points.
Rate each factor on a scale of 0 to 5.

it i 1 1 { |

| | | | | 1
Influence Incidental Moderate verage Significant Essential

Number of factors considered (F;)

Does the system require reliable backup and recovery ?
Is data communication required ?

Are there distributed processing functions ?

Is performance critical ?

Will the system run in an existing heavily utilized operational environment ?
Does the system require on line data entry ?

Does the on line data entry require the input transaction to be built over multiple screens or operations ?
Are the master files updated on line ?

O 0Nk =

Is the inputs, outputs, files, or inquiries complex ?

. Is the internal processing complex ?

_— =
_ O

. Is the code designed to be reusable ?

[E—
[\

. Are conversion and installation included in the design ?

[E—
(V)

. Is the system designed for multiple installations in different organizations ?

[E—
N

. Is the application designed to facilitate change and ease of use by the user ?
Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 2 1

Software Project Planning

Functions points may compute the following important metrics:

Productivity =
Quality =
Cost =

Documentation =

FP / persons-months
Defects / FP
Rupees / FP

Pages of documentation per FP

These metrics are controversial and are not universally acceptable.
There are standards issued by the International Functions Point User
Group (IFPUG, covering the Albrecht method) and the United
Kingdom Function Point User Group (UFPGU, covering the MK11
method). An ISO standard for function point method is also being

developed.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 22

Software Project Planning

Example: 4.1

Consider a project with the following functional units:

Number of user inputs =350
Number of user outputs =40
Number of user enquiries =35
Number of user files =06
Number of external interfaces = 04

Assume all complexity adjustment factors and weighting factors are
average. Compute the function points for the project.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 23

Software Project Planning

Solution

We know

UFP = Z Z Zw,

i=1 J=1

UFP =50x4+40x5+35x4+6x10+4x7
=200+ 200 + 140 + 60 + 28 = 628
CAF =(0.65 + 0.01 2F))
=(0.65+0.01 (14x3))=0.65+0.42=1.07
FP = UFP x CAF
= 628 x 1. 07 672

ng (34 ed.), B K Aggarwal sh Singh, Copyright © New Age International Publishers, 2007

24

Software Project Planning

Example:4.2

An application has the following:

10 low external inputs, 12 high external outputs, 20 low
internal logical files, 15 high external interface files, 12

average external inquiries, and a value of complexity
adjustment factor of 1.10.

What are the unadjusted and adjusted function point counts ?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 25

Software Project Planning

Solution

Unadjusted function point counts may be calculated using

as:
5 3
UFP=),) Z;w,
i=1 J=I
=10x3+12x7+20x7+15+10+12x4
=30+ 84 +140 + 150 + 48
=452
FP = UFP x CAF

=452 x 1.10 =497.2.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 26

Software Project Planning

Example: 4.3

Consider a project with the following parameters.

(i) External Inputs:

(a) 10 with low complexity

(b) 15 with average complexity

(¢) 17 with high complexity
(ii) External Outputs:

(a) 6 with low complexity

(b) 13 with high complexity
(ii1) External Inquiries:

(a) 3 with low complexity

(b) 4 with average complexity

(¢) 2 high complexity

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

27

Software Project Planning

(iv) Internal logical files:
(a) 2 with average complexity
(b)1 with high complexity
(v) External Interface files:

()9 with low complexity
In addition to above, system requires

1. Significant data communication
11. Performance 1s very critical
111. Designed code may be moderately reusable

1v. System 1s not designed for multiple installation 1n different
organizations.

Other complexity adjustment factors are treated as average. Compute
the function points for the project.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 28

Software Project Planning

Solution: Unadjusted function points may be counted using table 2

Functional Count Complexity Complexity Functional
Units Totals Unit Totals

External Low x 3 =

Inputs Average x 4 =

(EIs) High x 6 = 102

External [6 | t{owxd =

Outputs [0o] Averagex5 = [o |

(EOs) High x 7 -

External Low x 3 - L9]

Inquiries Average x 4 =

(EQs) High x 6 -

External [0 1 Lowx7 = [o |

logical Average x 10 =

Files (ILFs) High x 15 = [15]

External L 9 | towx5s -

Interface [0] Averagex7 = [0]

Files (EIFs) [0 | Highx 10 - [o]

Total Unadjusted Function Point Count 424

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Project Planning

14
D F, =3+4+3+5+343+3+3+343+2+3+0+3=41
=l
CAF =(0.65 +0.01 x ZF))
= (0.65 + 0.01 x 41)
= 1.06
FP = UFP x CAF
= 424 x 1.06

= 449 .44

Hence FP = 449

oftware Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Project Planning

Relative Cost of Software Phases

Bl Requirements
Analysis

@ Design

® Coding

B Testing

W Integration

B Maintenance

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 3 1

Relative Cost to detect and correct fault

Software Project Planning

Cost to Detect and Fix Faults

200
1801
1601
140
120

100"

] Cost

80
60
40
20

Req Des I nt

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

32

Software Project Planning

Cost Estimation

A number of estimation techniques have been developed and are
having following attributes in common :

>
>

Project scope must be established in advance

Software metrics are used as a basis from which estimates are made

» The project is broken into small pieces which are estimated individually

To achieve reliable cost and schedule estimates, a number of options
arise:

>
>

Delay estimation until late in project

Use simple decomposition techniques to generate project cost and
schedule estimates

Develop empirical models for estimation

Acquire one or more automated estimation tools

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 33

Software Project Planning

MODELS

Static, Single Static,

Software Eng

Variable Multivariable
Models Models

ineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

34

Software Project Planning

Static, Single Variable Models

Methods using this model use an equation to estimate the desired
values such as cost, time, effort, etc. They all depend on the same
variable used as predictor (say, size). An example of the most
common equations 1s :

C=all
C 1s the cost, L 1s the size and a,b are constants
E =14L09
DOC =30.4 1.2
D =4.61.026

Effort (E 1in Person-months), documentation (DOC, in number of
pages) and duration (D, in months) are calculated from the number
of lines of code (L, in thousands of lines) used as a predictor.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 35

Software Project Planning

Static, Multivariable Models

These models are often based on equation (1), they actually depend
on several variables representing various aspects of the software
development environment, for example method wused, user
participation, customer oriented changes, memory constraints, etc.

E =52L09
D =4.1L036

The productivity index uses 29 variables which are found to be
highly correlated to productivity as follows:

29
[=) WX,
i=1

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 36

Software Project Planning

Example: 4.4

Compare the Walston-Felix model with the SEL model on a
software development expected to involve 8 person-years of effort.

(a)Calculate the number of lines of source code that can be
produced.

(b)Calculate the duration of the development.
(c)Calculate the productivity in LOC/PY

(d)Calculate the average manning

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 37

Software Project Planning

Solution

The amount of manpower involved = 8 PY = 96 person-months

(a) Number of lines of source code can be obtained by reversing
equation to give:

L = (E/a)l/
Then

L(SEL) = (96/1.4)1093 = 94264 1L.OC
L(SEL) = (96/5.2)1/0°1 = 24632 LOC.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

38

Software Project Planning

(b) Duration in months can be calculated by means of equation
D(SEL) = 4.6 (L)%-26
= 4.6 (94.264)"-26 = 15 months
D(W-F) = 4.1 LV3¢
=4.1(24.632)"3% = 13 months

(¢) Productivity is the lines of code produced per person/month (year)

P(SEL) = # =11783 LOC / Person—Years

PW—-F)= @ =3079 LOC / Person—Years

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 39

Software Project Planning

(d) Average manning is the average number of persons required per
month 1n the project.

P-M
M (SEL) = 06 = 6.4 Persons
15M
P-M
MW —F)= 06 ="7.4Persons

13M

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 40

Software Project Planning

The Constructive Cost Model (COCOMO)

Constructive Cost model
(COCOMO)

\ 4
Basic Intermediate Detailed

Model proposed by
B. W. Boehm’s
through his book
Software Engineering Economics in 1981

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

41

Software Project Planning

COCOMO applied to

\ 2
Semidetached

Organic mode Embedded
mode mode

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

42

Software Project Planning

Organic | Typically Small size project, experienced Little Not tight Familiar & In
developers in the familiar house
2-50 KLOG environment. For example, pay
roll, inventory projects etc.
Semi Typically Medium size project, Medium | Medium Medium Medium
detached size team, Average previous
50-300 KLOG experience on similar project.
For example: Utility systems
like compilers, database
systems, editors etc.
Embedded| Typically over | Large project, Real time | Significant | Tight Complex
300 KLOG systems, Complex interfaces, Hardware/
Very little previous experience. customer
For example: ATMs, Air Traffic Interfaces
Control etc. required
Table 4: The comparison of three COCOMO modes
Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 43

Software Project Planning

Basic Model

Basic COCOMO model takes the form

E=a, (KLOC)"”

D=c,(E)"

where E 1s effort applied in Person-Months, and D 1s the
development time in months. The coefficients a,, b,, ¢, and d, are
given in table 4 (a).

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 44

Software Project Planning

Software ay, b, Cy, d,
Project
Organic 2.4 1.05 2.5 0.38
Semidetached 3.0 1.12 2.5 0.35
Embedded 3.6 1.20 2.5 0.32

Table 4(a): Basic COCOMO coefficients

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Project Planning

When effort and development time are known, the average staff size
to complete the project may be calculated as:

E
Average staff size ($5) = — Persons

D

When project size 1s known, the productivity level may be
calculated as:

Productivity (P) = KL;C KLOC/PM

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 46

Software Project Planning

Example: 4.5

Suppose that a project was estimated to be 400 KLOC.
Calculate the effort and development time for each of the three
modes 1.e., organic, semidetached and embedded.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 47

Software Project Planning

Solution

The basic COCOMO equation take the form:
E=a,(KLOC)”
D =c,(KLOC)"

Estimated size of the project = 400 KLOC

(i) Organic mode
E =2.4(400)19°=1295.31 PM
D =2.5(1295.31)%38=38.07 PM

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

48

Software Project Planning

(i) Semidetached mode

E =3.0(400)"1? = 2462.79 PM
D =2.5(2462.79)%3> = 38.45 PM

(ili) Embedded mode

E = 3.6(400)1-20= 4772.81 PM
D = 2.5(4772.8)°32 = 38 PM

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

49

Software Project Planning

Example: 4.6

A project size of 200 KLOC 1s to be developed. Software
development team has average experience on similar type of
projects. The project schedule 1s not very tight. Calculate the effort,
development time, average staff size and productivity of the project.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 50

Software Project Planning

Solution

The semi-detached mode 1s the most appropriate mode; keeping in
view the size, schedule and experience of the development team.

Hence E =3.0(200)12=1133.12 PM
D =2.5(1133.12)%3=29.3 PM

E
Average staff size (SS) = 5 Persons

113312
29.3

= 38.67 Persons

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

51

Software Project Planning

KLOC 200

= =0.1765 KLOC / PM
E 1133.12

Productivity =

P=176 LOC/PM

52

Software Project Planning

Intermediate Model

Cost drivers
(i) Product Attributes

(it)

» Required s/w reliability

» Size of application database
» Complexity of the product

Hardware Attributes
» Run time performance constraints
» Memory constraints

» Virtual machine volatility

» Turnaround time

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

53

Software Project Planning

(iii) Personal Attributes

» Analyst capability

» Programmer capability

» Application experience

» Virtual m/c experience

» Programming language experience
(iv) Project Attributes

» Modern programming practices

» Use of software tools

» Required development Schedule

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

54

Software Project Planning

Multipliers of different cost drivers

Cost Drivers RATINGS
Very low Low Nominal High Very Extra
high high

Product Attributes
RELY 0.75 0.88 1.00 1.15 1.40
DATA - 0.94 1.00 1.08 1.16
CPLX 0.70 0.85 1.00 1.15 1.30 1.65
Computer Attributes
TIME - - 1.00 1.11 1.30 1.66
STOR - -- 1.00 1.06 1.21 1.56
VIRT -- 0.87 1.00 1.15 1.30
TURN -- 0.87 1.00 1.07 1.15

Software Engineering (3 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 55

Software Project Planning

Cost Drivers RATINGS
Very low Low Nominal High Very Extra
high high
Personnel Attributes
ACAP 1.46 1.19 1.00 0.86 0.71
AEXP 1.29 1.13 1.00 0.91 0.82
PCAP 1.42 1147 1.00 0.86 0.70
VEXP 1.21 110 1.00 0.90
LEXP 114 1.07 1.00 0.95
Project Attributes
MODP 1.24 1.10 1.00 0.91 0.82
TOOL 1.04 1.10 1.00 0.91 0.83
SCED
1.23 1,08 1,00 1.04 1.10

Table 5: Multiplier values for effort calculations

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 56

Software Project Planning

Intermediate COCOMO equations

E =a,(KLOC)" * EAF

— di
D =c,(EF)
Organic 3.2 1.05 2.5 0.38
Semidetached 3.0 1.12 2.5 0.35
Embedded 2.8 1.20 2.5 0.32

Table 6: Coefficients for intermediate COCOMO

Software Engineering (31 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Project Planning

Detailed COCOMO Model

Detailed COCOMO
Phase-Sensitive Three level product
effort multipliers hierarchy
Cost \l | Modules subsystem
drivers” N design System level

& test

Manpower allocation for
each phase

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 58

Software Project Planning

Development Phase

Plan / Requirements
EFFORT
DEVELOPM]

ENT TIM

—
= .
-

% depend on mode & size

6% to 8%
10% to 40%

shers, 2007

59

Software Project Planning

Design
Effort ; 16% to 18%
Time ; 19% to 38%
Programming
Effort ; 48% to 68%
Time ; 249 to 64%

Integration & Test

Effort . 16% to 34%
Time . 18% to 34%

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Project Planning

Principle of the effort estimate

Size equivalent

As the software might be partly developed from software already
existing (that 1s, re-usable code), a full development is not always
required. In such cases, the parts of design document (DD%), code
(C%) and integration (1%) to be modified are estimated. Then, an

adjustment factor, A, 1s calculated by means of the following

equation.
A=04DD+03C+031

The size equivalent 1s obtained by
S (equivalent) = (S x A) / 100
E =uF
D, =7 D

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 61

Lifecycle Phase Values of [/,

Software Project Planning

Mode & Code Plan & System Detailed Module Integration
Size Requirements Design Design Code & Test & Test

organic Smal 0.06 0.16 0.26 0.42 0.16

Organic

medium S~32 0.06 0.16 0.24 0.38 0.22

Semidetached

medium S<32 0.07 0.17 0.25 0.33 0.25

Semidetached

large S~128 0.07 0.17 0.24 0.31 0.28

Embedded

large S~128 0.08 0.18 0.25 0.26 0.31

Embedded

extra large 0.08 0.18 0.24 0.24 0.34

S=320

Table 7 : Effort and schedule fractions occurring in each phase of the lifecycle

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

62

Lifecycle Phase Values of T P

Software Project Planning

Mode & Code Plan & System Detailed Module Code | Integration
Size Requirements Design Design & Test & Test

g;%an'c Smal 0.10 0.19 0.24 0.39 0.18

Organic

medium S=32 0.12 0.19 0.21 0.34 0.26

Semidetached

medium S=32 0.20 0.26 0.21 0.27 0.26

Semidetached

large S=128 0.22 0.27 0.19 0.25 0.29

Embedded

large S~128 0.36 0.36 0.18 0.18 0.28

Embedded

extra large 0.40 0.38 0.16 0.16 0.30

S~=320

Table 7 : Effort and schedule fractions occurring in each phase of the lifecycle

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

63

Software Project Planning

Distribution of software life cycle:

1. Requirement and product design
(a) Plans and requirements

(b)System design
2. Detailed Design
(a) Detailed design
3. Code & Unit test
(a) Module code & test

4. Integrate and Test
(a) Integrate & Test

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

64

Software Project Planning

Example: 4.7

A new project with estimated 400 KLOC embedded system has to be
developed. Project manager has a choice of hiring from two pools of
developers: Very highly capable with very little experience in the
programming language being used

Or

Developers of low quality but a lot of experience with the programming
language. What 1s the impact of hiring all developers from one or the
other pool ?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 65

Software Project Planning

Solution

This is the case of embedded mode and model is intermediate
COCOMO.

Hence E=a, (KLOC)*

- 2.8 (400)'20 = 3712 PM

Case I: Developers are very highly capable with very little experience
in the programming being used.

EAF =0.82x1.14 = 0.9348
E = 3712 x .9348 = 3470 PM
D = 2.5 (3470)9-32 = 33.9 M

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 66

Software Project Planning

Case Il: Developers are of low quality but lot of experience with the
programming language being used.

EAF =1.29x0.95=1.22
E — 3712 x 1.22 = 4528 PM
D = 2.5 (4528)032 = 36.9 M

Case Il requires more effort and time. Hence, low quality developers
with lot of programming language experience could not match with
the performance of very highly capable developers with very litter
experience.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 67

Software Project Planning

Example: 4.8

Consider a project to develop a full screen editor. The major components
identified are:

I. Screen edit

II. Command Language Interpreter
I1I. File Input & Output

IV.Cursor Movement

V. Screen Movement

The size of these are estimated to be 4k, 2k, 1k, 2k and 3k delivered source
code lines. Use COCOMO to determine

I. Overall cost and schedule estimates (assume values for different
cost drivers, with at least three of them being different from 1.0)

2. Cost & Schedule estimates for different phases.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 68

Software Project Planning

Solution

Size of five modules are:

Screen edit =4 KLOC
Command language interpreter =2 KLOC
File input and output =1 KLOC
Cursor movement =2 KLOC
Screen movement =3 KLOC

Total =12 KLOC

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 69

Software Project Planning

Let us assume that significant cost drivers are

V.

Required software reliability is high, i.e.,1.15
Product complexity is high, i.e.,1.15

Analyst capability is high, i.e.,0.86

Programming language experience is low,i.e.,1.07

All other drivers are nominal
EAF =1.15x1.15x0.86x1.07 = 1.2169

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

70

Software Project Planning

(a) The initial effort estimate for the project is obtained from the
following equation

E = a, (KLOC)®' x EAF
=3.2(12)'%x 1.2169 = 52.91 PM
Development time D = C,(E)?
= 2.5(52.91)038 = 11.29 M

(b) Using the following equations and referring Table 7, phase wise
cost and schedule estimates can be calculated.

E =uk
Dp = z'pD

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 71

Software Project Planning

Since size is only 12 KLOG, it is an organic small model. Phase wise
effort distribution is given below:

System Design =0.16 x 52.91 = 8.465 PM
Detailed Design =0.26 x 52.91 = 13.756 PM
Module Code & Test =0.42 x 52.91 = 22.222 PM
Integration & Test =0.16 x 52.91 = 8.465 Pm
Now Phase wise development time duration is

System Design =0.19x11.29=2.145 M
Detailed Design =0.24x11.29 =2.709 M
Module Code & Test =0.39x11.29 =4.403 M

Integration & Test =0.18x11.29 =2.032 M

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 72

Software Project Planning

COCOMO-II

The following categories of applications / projects are identified by
COCOMO-II and are shown 1n fig. 4 shown below:

Application
generators &
composition aids

End user Application
programming composition

Infrastructure

System
integration

Fig. 4 : Categories of applications / projects

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 73

Software Project Planning

Stage Model Name Application for the Applications
No types of projects
Stage | | Application composition | Application composition | In addition to application
estimation model composition type of projects, this
model is also used for prototyping
(if any) stage of application
generators, infrastructure & system
integration.
Stage Il | Early design estimation | Application generators, | Used in early design stage of a
model infrastructure & system | project, when less is known about
integration the project.
Stage Il | Post architecture | Application generators, | Used after the completion of the

estimation model

infrastructure & system
integration

detailed architecture of the project.

Table 8: Stages of COCOMO-II

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 74

Software Project Planning

Application Composition Estimation Model

Assess object
counts

4

Classify complexity
levels of each object

Assign complexity

weights to each object |

Determine object
points

h

Compute new
object points

Calculate
productivity rate

Compute the estimated
effort in person months

Fig.5; Steps for the estimation of effort in person months

ware Engifeering (34 ed.), By K.K Aggar wa Yogesh Singh, Copyright © New Age International PublisHers, 2007 75

Software Project Planning

I. Assess object counts: Estimate the number of screens, reports and
3 GL components that will comprise this application.

ii. Classification of complexity levels: We have to classify each
object instance into simple, medium and difficult complexity levels
depending on values of its characteristics.

Number of # and sources of data tables
views Total < 4 Total < 8 Total 8 +
contained (< 2 server (2 — 3 server (> 3 server,
< 3 client) 3 — 5 client) > 5 client)
<3 Simple Simple Medium
3—-7 Simple Medium Difficult
> 8 Medium Difficult Difficult

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 9 (a): For screens

Software Project Planning

Number of

and sources of data tables

sections Total < 4 Total < 8 Total 8 +
contained (< 2 server (2 — 3 server (> 3 server,
< 3 client) 3 — 5 elient) > 5 elient)

Oorl Simple Simple Medium

2 or 3 Simple Medium Difficult
4+ Medium Difficult Difficult

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 9 (b): For reports

Software Project Planning

lii. Assign complexity weight to each object : The weights are used
for three object types i.e., screen, report and 3GL components using
the Table 10.

Object Complexity Weight

Type Simple Medium Difficult
Screen 1 2 3
Report 2 5 8
3GL Component — — 10

Table 10: Complexity weights for each level

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 78

Software Project Planning

Iv. Determine object points: Add all the weighted object instances to
get one number and this known as object-point count.

v. Compute new object points: We have to estimate the percentage
of reuse to be achieved in a project. Depending on the percentage
reuse, the new object points (NOP) are computed.

(object points) * (100-%reuse)
NOP = -
100

NOP are the object points that will need to be developed and differ from
the object point count because there may be reuse.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 79

Software Project Planning

vi. Calculation of productivity rate: The productivity rate can be
calculated as:

Productivity rate (PROD) = NOP/Person month

Developer’s experience PROD (NOP/PM)
& capability; ICASE
maturity & capability
Very low 4
Low 7
Nominal 13
High 25
Very high 50

Table 11: Productivity values

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

80

Software Project Planning

vii. Compute the effort in Persons-Months: When PROD is known,
we may estimate effort in Person-Months as:

NOP
Effortin PM = -
PROD

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 81

Software Project Planning

Example: 4.9

Consider a database application project with the following characteristics:

I. The application has 4 screens with 4 views each and 7 data tables
for 3 servers and 4 clients.

II. The application may generate two report of 6 sections each from 07
data tables for two server and 3 clients. There 1s 10% reuse of
object points.

The developer’s experience and capability in the similar environment 1s
low. The maturity of organization in terms of capability i1s also low.
Calculate the object point count, New object points and effort to develop
such a project.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 82

Software Project Planning

Solution

This project comes under the category of application composition
estimation model.

Number of screens = 4 with 4 views each

Number of reports = 2 with 6 sections each

From Table 9 we know that each screen will be of medium
complexity and each report will be difficult complexity.

Using Table 10 of complexity weights, we may calculate object point
count —4Xx2+2x8=24

24 * (100 -10)
NOP = -------mmmmomeeee _ 216
100

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 83

Software Project Planning

Table 11 gives the low value of productivity (PROD) i.e. 7.

NOP
Efforts in PM = -------—---
PROD

21.6
Efforts = ----------- = 3.086 PM
7

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

84

Software Project Planning

The Early Design Model

The COCOMO-II models use the base equation of the form
I:)Mnominal =A~ (Size)B
where

PM,.ominal = Effort of the project in person months

A = Constant representing the nominal productivity, provisionally set to 2.5
B = Scale factor

Size = Software size

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 85

Software Project Planning

Scale factor Explanation Remarks
experience on similar | experiences, Extra high means that

projects. This is applicable to | organization is completely familiar with
individuals & organization | this application domain.

both in terms of expertise &
experience

Development flexibility | Reflect the degree of flexibility | Very low means a well defined process
in the development process. is used. Extra high means that the client
gives only general goals.

Architecture/ Risk | Reflect the degree of risk | Very low means very little analysis and

resolution analysis carried out. Extra high means complete and through
risk analysis.

Cont...

Table 12: Scaling factors required for the calculation of the value of B

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 86

Software Project Planning

Scale factor

Explanation

Remarks

Team cohesion

Reflects the team
management skills.

Very low means no previous
experiences, Extra high means that
organization is completely familiar with
this application domain.

Process maturity

Reflects the process maturity
of the organization. Thus it is
dependent on SEI-CMM level
of the organization.

Very low means organization has no
level at all and extra high means
organization is related as highest level
of SEI-CMM.

Table 12: Scaling factors required for the calculation of the value of B

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 87

Software Project Planning

Scaling factors Very Low Nominal | High Very Extra
low high high
Precedent ness 6.20 4.96 3.72 2.48 1.24 0.00
Development 5.07 4.05 3.04 2.03 1.01 0.00
flexibility
Architecture/ Risk 7.07 5.65 4.24 2.83 1.41 0.00
resolution
Team cohesion 5.48 4.38 3.29 2.19 1.10 0.00
Process maturity 7.80 6.24 4.68 3.12 1.56 0.00

Table 13: Data for the Computation of B

The value of B can be calculated as:

B=0.91 + 0.01 * (Sum of rating on scaling factors for the project)

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 88

Software Project Planning

Early design cost drivers

There are seven early design cost drivers and are given below:

1. Product Reliability and Complexity (RCPX)
1. Required Reuse (RUSE)

i11. Platform Difficulty (PDIF)

1v. Personnel Capability (PERS)

v. Personnel Experience (PREX)

vi. Facilities (FCIL)

vil. Schedule (SCED)

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Project Planning

Post architecture cost drivers

There are 17 cost drivers in the Post Architecture model. These are rated
on a scale of 1 to 6 as given below :

Very Low Low Nominal High Very High Extra High

1 2 3 4 5 6

The list of seventeen cost drivers 1s given below :
1. Relability Required (RELY)
11. Database Size (DATA)
111. Product Complexity (CPLX)
1v. Required Reusability (RUSE)

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 90

Software Project Planning

v. Documentation (DOCU)

vi. Execution Time Constraint (TIME)
vil. Main Storage Constraint (STOR)
viii. Platform Volatility (PVOL)

1x. Analyst Capability (ACAP)

Xx. Programmers Capability (PCAP)
x1. Personnel Continuity (PCON)

xi1. Analyst Experience (AEXP)

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

91

Software Project Planning

xiii. Programmer Experience (PEXP)

xiv. Language & Tool Experience (LTEX)
xv. Use of Software Tools (TOOL)
xvi. Site Locations & Communication Technology between Sites (SITE)

xvii. Schedule (SCED)

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

92

Software Project Planning

Mapping of early design cost drivers and post architecture cost
drivers

The 17 Post Architecture Cost Drivers are mapped to 7 Early Design Cost
Drivers and are given in Table 14

Early Design Cost Drivers Counter part Combined Post
Architecture Cost drivers
RCPX RELY, DATA, CPLX, DOCU
RUSE RUSE
PDIF TIME, STOR, PVOL
PERS ACAP, PCAP, PCON
PREX AEXP, PEXP, LTEX
FCIL TOOL, SITE
SCED SCED

Table 14: Mapping table

Software Engineering (3% ed.), By K.K Aggarwal & Yogesh Singh, Copyright gNew Age International Publishers, 2007 93

Software Project Planning

Product of cost drivers for early design model

1. Product Reliability and Complexity (RCPX): The cost driver combines
four Post Architecture cost drivers which are RELY, DATA, CPLX and

DOCU.
RCPX Extra Very Low Nominal High Very Extra
Low Low High High

Sum of RELY, 5,6 7,8 9-11 12 13-15 16-18 19-21

DATA, CPLX,

DOCU ratings

Emphasis on Very Little | Some Basic Strong Very Extreme

reliability, Little Strong

documentation

Product Very Simple | Some Moderate | Complex Very Extremely

complexity Simple Complex Complex

Database Small Small | Small | Moderate Large Very Very

size Large Large
Software Engineering (31 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 94

Software Project Planning

11. Required Reuse (RUSE) : This early design model cost driver is same as

its Post architecture Counterpart. The RUSE rating levels are (as per
Table 16):

Vary Low Nominal High Very Extra
Low High High
1 2 3 4 5 6
RUSE None Across Across Across Across
project program product multiple
line product
line

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

95

Software Project Planning

i11. Platform Difficulty (PDIF) : This cost driver combines TIME, STOR
and PVOL of Post Architecture Cost Drivers.

PDIF Low Nominal High Very High Extra High
Sum of Time, STOR 8 9 10-12 13-15 16-17

& PVOL ratings

Time & storage < 50% < 50% 65% 80% 90%
constraint

Platform Very Stable Somewhat Volatile Highly
Volatility stable stable Volatile

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

96

1v.

Software Project Planning

Personnel Capability (PERS) : This cost driver combines three Post
Architecture Cost Drivers. These drivers are ACAP, PCAP and PCON.

PERS Extra Very Low Nominal High Very Extra
Low Low High High
Sum of ACAP, PCAP, 3.4 5,6 7.8 9 10, 11 12, 13 14, 15
PCON ratings
Combined ACAP & PCAP 20% 39% 45% 55% 65% 75% 85%
Percentile
Annual Personnel 45% 30% 20% 12% 9% 5% 4%

Turnover

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

97

Software Project Planning

v. Personnel Experience (PREX) : This early design driver combines three

Post Architecture Cost Drivers, which are AEXP, PEXP and LTEX.

PREX Extra Very Low Nominal | High Very | Extra
Low Low High | High
Sum of AEXP, PEXP and LTEX 3,4 5,6 7,8 9 10, 11 | 12, 13 | 14, 15
ratings
Applications, Platform, Language =3 5 9 1 vear 2 year | 4 year | 6 year
& Tool Experience months | months | months
98

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Project Planning

vi. Facilities (FCIL): This depends on two Post Architecture Cost Drivers,

which are TOOL and SITE.

FCIL

Extra Very Low Nominal High Very Extra
Low Low High High
Sum of TOOL 2 3 4,5 6 7,8 9, 10 11
& SITE ratings
Tool support Minimal Some Simple Basic Good Very |Very strong
CASE life support | strong & well
tools cycle of tools | use of | integrated
tools tools tools
Multisite Weak support| Some Moderate Basic Strong Very Very
conditions of complex | support | support support support | strong strong
development multisite support | support
support development

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

99

Software Project Planning

vil.Schedule (SCED) : This early design cost driver is the same as Post
Architecture Counterpart and rating level are given below using table

SCED Very Low Low Nominal High Very High
Schedule 75% of Nominal 85% 100% 130% 160%
Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 OO

Software Project Planning

The seven early design cost drivers have been converted into numeric
values with a Nominal value 1.0. These values are used for the calculation
of a factor called “Effort multiplier” which 1s the product of all seven early
design cost drivers. The numeric values are given in Table 15.

Early design Extra Very Low Nominal High Very Extra
Cost drivers Low Low High High
RCPX 73 81 98 1.0 1.0 1.74 2.38
RUSE — — 0.95 1.0 1.07 1.15 1.24
PDIF — — 0.87 1.0 1.29 1.81 2.61
PERS 2.12 1.62 1.26 1.0 0.83 0.63 0.50
PREX 1.59 1.33 1.12 1.0 0.87 0.71 0.62
FCIL 1.43 1.30 1.10 1.0 0.87 0.73 0.62
SCED — 1.43 1.14 1.0 1.0 1.0 —

Table 15: Early design parameters

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 01

Software Project Planning

The early design model adjusts the nominal effort using 7 effort multipliers
(EMs). Each effort multiplier (also called drivers) has 7 possible weights as

given 1n Table 15. These factors are used for the calculation of adjusted
effort as given below:

PM adjusted nommal |:I_I EM, i|

PM, iusteq €itort may very even up to 400% from PM

nominal

Hence PM, q 18 the fine tuned value of effort in the early design phase

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 02

Software Project Planning

Example: 4.10

A software project of application generator category with estimated 50
KLOC has to be developed. The scale factor (B) has low
precedentness, high development flexibility and low team cohesion.
Other factors are nominal. The early design cost drivers like platform
difficult (PDIF) and Personnel Capability (PERS) are high and others
are nominal. Calculate the effort in person months for the
development of the project.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 03

Software Project Planning

Solution

Here B =0.91+ 0.01 * (Sum of rating on scaling factors for the project)
=0.91 +0.01 * (4.96 + 2.03 + 4.24 + 4.38 + 4.68)
=0.91 + 0.01(20.29)=1.1129

PM. mina = A*(size)B
=2.5*(560)11129 = 194.41 Person months

The 7 cost drivers are
PDIF = high (1.29)
PERS = high (0.83)
RCPX = nominal (1.0)
RUSE = nominal (1.0)
PREX = nominal (1.0)
FCIL =nominal (1.0)
SCEQO = nominal (1.0)

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 04

Software Project Planning

acffrstad notninal

[7
PM = PA X | |Eﬂ;1’ i
T

=194.41 * [1.29 x 0.83)
=194.41 x 1.07
= 208.155 Person months

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 05

Software Project Planning

Post Architecture Model

The post architecture model 1s the most detailed estimation model and 1s
intended to be used when a software life cycle architecture has been
completed. This model is used in the development and maintenance of

software products in the application generators, system integration or
infrastructure sectors.

PMadjusted — PMnominal X H EMz

EM : Effort multiplier which 1s the product of 17 cost drivers.

The 17 cost drivers of the Post Architecture model are described in the
table 16.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 06

Software Project Planning

Cost Purpose Very Low Nominal High Very Extra
driver low High High
RELY Measure of the ex- |Only slight |Low, easily | Moderate, |High Rizk to =
(Reliabil- [tent to which the|inconven- |recoverable |easily financial | human
ity software must per- |ience losszes Iecover- loss life
réquired} form its intended able losses
function over a pe-
riod of time
DATA Measure the affect = Database D D D =
(Data of large data _sizeD) |10<3 100< 5 >
hase requirements on Prog. size < 1000
size) product develop- (P) < 100 = 1000
ment < 10
CPLX Complexity is
(Product |divided into five
complex- |areas.
ity) Control operations,
computational o -
ﬂ]‘JE'I'Ijl‘tiOIIS, S cee Table 4.17
dependent opera-
tions, data man-
agement opera-
tions & User
Interface manage-
ment operations.
DOoCU Suitahility of the |Many life |Some needs | Adequate |Exces- Very =
Doci- project’s documen- |cyele needs |uncovered sive for |Exces-
menta- | tation to its life uncovered life cvele | sive
tion cyrle needs needs

Table 16: Post Architecture Cost Driver rating level summary

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cont...
107

Software Project Planning

TIME Measure of execu- — — < 50% use T0% 85% 95%
(Execu- |tlon time constraint of a avail-
Esn on software able execu-
Tinie tion time
con-
straint)
STOR Measure of main —_ — < 50% use T0% 85% 95%
(Main storage constraint of available
Storﬂge 01 SUﬂ-TrVﬂI"B Stnrage
con-
straint)
PVOL Measure of changes —_ Major Major: Major: Major: —
(Platform |to the OS, compil- changes 6 months |2months |2 week
Volatil- ers, editors, DBMS every 12 Minor: Minor: Minor:
ity) ete. 111?11th5 & 2 weeks 1 week |2 days
minor
changes
every 1
month
ACAP Should include 15th 35th 55th 75th 90th —
(Analyst |analysis and Percentile |Percentile Percentile |Percen- |Percen-
capabil- |design ability, tile tile
itv) efficiency &
i thoroughness,
and communication
skills.
Table 16: Post Architecture Cost Driver rating level summary
Cont...
Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 08

Software Project Planning

PCAF Capability of 15th 35th 55th 75th 90th —
(Pro- Programmers as a |Percentile |Percentile |Percentile |Percen- |Percen-
gram- team. It includes tile tile
mers ability, efficiency,
capabil- |thoroughness &
itv) communication
" skills
PCON Rating i=s in terms |48%/year 24%/year 12%/year |6%/year |3%/year —
(Person- |of Project’s annual
nel personnel turnover
Continu-
ity)
AEXP Rating is dependent | £ 2 months |6 months 1 year 3 year 6 year —
(Applica- |on level of applica-
tions tions experience.
Experi-
ence)
PEXP Measure of Plat- < 2 months |6 months 1 year 3 year 6 year —
(Platform | form experience
experi-
ence)

Table 16: Post Architecture Cost Driver rating level summary

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cont...
10

9

Software Project Planning

LTEX Rating is for Lan- |<£ 2 months |6 months 1 vear 3 vear G vear —
(Lan- guage & tool expe-
cuage § |Tlence
Tool
experi-
EnICE)
TOOL It iz the indicator of | No use Begimming to | Some nse | Good nse | Rontine —
(Use of |usage of software nse &
Suft“.'ﬂre tools hahbitual
tools) nse
SITE Site location & Interna- Multicity & | Multicity | Same Same Fully
(Multizite | Communication tional with |multi & multi city or building |co-
develop- technology he- some phone |company company | Metro or located
ment) tween sites & mail with indi- with with complex |with
facility vidual Narrow widehand | with inter-
phones, band mail |elec- widehand | active
FAX tronic elec- multi-
commu- | tromic media
nication |commu-
nication
& Video
conferen-
cing
SCED Measure of Sched- | 75% of | 35% 100% 130% 160% —
(Required | ule constraint. Rat- | nominal
Develop- |ings are defined in
ment terms of percentage
Schedule) | of schedule stretch-

out or acceleration
with respect to
nominal schedule

Table 16: Post Architecture Cost Driver rating level summary

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

110

Software Project Planning

Product complexity 1s based on control operations, computational
operations, device dependent operations, data management operations and

user interface management operations. Module complexity rating are given
in table 17.

The numeric values of these 17 cost drivers are given in table 18 for the
calculation of the product of efforts i.e., effort multiplier (EM). Hence PM
adjusted 1s calculated which will be a better and fine tuned value of effort
in person months.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 1

Software Project Planning

Control Computational Device- Data management | User Interface
Operations Operations dependent Operations Management
Operations Operations

Very | Straight-line code | Evaluation of Simple read, Simple arrays in Simple input

Low | with a few non- simple write statements | main memory. forms, report
nested structured | expressions: e.g., | with simple Simple COTSDB generators.
programming A=B+C*(D-E) formats. queries, updates.
operators: Dos.

Simple module
composition via
procedure calls or
simple scripts.

Low | Straight forward Evaluation of No cognizance Single file sub User of simple
nesting of moderate-level needed of setting with no data | graphics user
structured expressions: e.g., | particular structure changes, | interface (GUI)
programming D=SQRT(B**2- processor or |/O no edits, no builders.
operators. Mostly | 4*A*C) device intermediate files,
simple predicates characteristics. Moderately

I/O done at complex COTS-DB
GET/PUT level. queries, updates.
Table 17: Module complexity ratings Cont...

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

112

Software Project Planning

Control Operations Computational Device- Data User Interface
Operations dependent management Management
Operations Operations Operations

Nominal | Mostly simple nesting. Use of standard I/O processing | Multi-file input Simple use of
Some inter module maths and includes and single file widget set.
control Decision tables. | statistical device output. Simple
Simple callbacks or routines. Basic selection, structural
message passing, matrix/ vector status changes, simple
including middleware operations. checking and edits. Complex
supported distributed error COTS-DB
processing. processing. queries,

updates.

High Highly nested Basic numerical Operations at | Simple triggers Widget set
structured analysis: physical I/O activated by data | development
programming operators | multivariate level (physical | stream contents. | and
with many compound interpolation, storage Complex data extension.
predicates. Queue and | ordinary address restructuring. Simple voice
stack control. differential translations; l/O
Homogeneous, equations. Basic | seeks, read multimedia.
distributed processing. | truncation, round | etc.)

Single processor soft off concerns. Optimized I/0
real time control. overlap.
Table 17: Module complexity ratings Cont...
Software Engineering (3¢ ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 113

Software Project Planning

Control Operations Computational Device-dependent | Data User
Operations Operations management Interface
Operations Management
Operations
Very | Reentrant and Difficult but Routines for Distributed Moderately
High | recursive coding. structured interrupt database complex
Fixed-priority numerical analysis: | diagnosis, coordination. 2D/3D,
interrupt handling. near singular servicing, Complex dynamic
Task matrix equations, masking. triggers. Search | graphics,
synchronization, partial differential Communication optimization. multimedia.
complex callbacks, equations. Simple | line handling.
heterogeneous parallelization. Performance
distributed intensive
processing. Single embedded
processor hard real systems.
time control.
Extra | Multiple resource Difficult and Device timing Highly coupled, | Complex
High | scheduling with unstructured dependent coding, | dynamic multimedia,
dynamically numerical analysis: | micro relational and virtual reality.
changing priorities. highly accurate programmed object
Microcode-level analysis of noisy, operations. structures.
control. Distributed stochastic data. Performance Natural
hard real time Complex critical embedded | language data
control. parallelization. systems. management.

Table 17: Module complexity ratings

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

114

Software Project Planning

Cost Rating
Driver
Very Low Low Nominal High Very Extra High
High
RELY 0.75 0.88 1.00 1.15 1.39
DATA 0.93 1.00 1.09 1.19
CPLX 0.75 0.88 1.00 1.15 1.30 1.66
RUSE 0.91 1.00 1.14 1.29 1.49
DOCU 0.89 0.95 1.00 1.06 1.13
TIME 1.00 1.11 1.31 1.67
STOR 1.00 1.06 1.21 1.57
PVOL 0.87 1.00 1.15 1.30
ACAP 1.50 1.22 1.00 0.83 0.67
PCAP 1.37 1.16 1.00 0.87 0.74
Table 18: 17 Cost Drivers Cont...

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

115

Software Project Planning

Cost Rating
Driver
Very Low Low Nominal High Very Extra High
High

PCON 1.24 1.10 1.00 0.92 0.84
AEXP 1.22 1.10 1.00 0.89 0.81
PEXP 1.25 1.12 1.00 0.88 0.81
LTEX 1.22 1.10 1.00 0.91 0.84
TOOL 1.24 1.12 1.00 0.86 0.72
SITE 1.25 1.10 1.00 0.92 0.84 0.78
SCED 1.29 1.10 1.00 1.00 1.00

Software Engineering (39 e

Table 18: 17 Cost Drivers

d.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

116

Software Project Planning

Schedule estimation

Development time can be calculated using PM, .4 s a key factor and the
desired equation is:

)(0.28+0.2(B—0.091))] N SCED %

TDEV adjusted 100

nominal

=[px(PM

where @ = constant, provisionally set to 3.67

TDEV ... = calendar time in months with a scheduled constraint

B = Scaling factor

PM = Estimated effort in Person months (after adjustment)

adjusted

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 7

Software Project Planning

Size measurement

Size can be measured in any unit and the model can be calibrated
accordingly. However, COCOMO II details are:

1. Application composition model uses the size in object points.

11. The other two models use size in KLOC

Early design model uses unadjusted function points. These function points
are converted into KLOC using Table 19. Post architecture model may
compute KLOC after defining LOC counting rules. If function points are
used, then use unadjusted function points and convert it into KLOC using

Table 19.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 8

Software Project Planning

Language SLOC/UFP
Ada 71
Al Shell 49
APL 32
Assembly 320
Assembly (Macro) 213
ANSI/Quick/Turbo Basic 64
Basic-Compiled 91
Basic-Interpreted 128
C 128
C++ 29

Table 19: Converting function points to lines of code

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cont... g

Software Project Planning

Language SLOC/UFP

ANSI Cobol 85 91

Fortan 77 105
Forth 64
Jovial 105
Lisp 64
Modula 2 80
Pascal 91

Prolog 64
Report Generator 80
Spreadsheet 6

Table 19: Converting function points to lines of code

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

120

Software Project Planning

Example: 4.11

Consider the software project given in example 4.10. Size and scale factor
(B) are the same. The identified 17 Cost drivers are high reliability (RELY),
very high database size (DATA), high execution time constraint (TIME),
very high analyst capability (ACAP), high programmers capability (PCAP).
The other cost drivers are nominal. Calculate the effort in Person-Months for

the development of the project.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 21

Software Project Planning

Solution
Here B=1.1129
PM, ina = 194.41 Person-months
- 1 _
PM adjusted PM ina X H EM,
| =T _

=19441 x (1.15x 1.19x 1.11 x 0.67 x 0.87)
=194.41 x 0.885

= 172.05 Person-months

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

122

Software Project Planning

Putnam Resource Allocation Model
Norden of IBM

gRayleigh curve

g Model for a range of hardware development projects.
A

Overall Curve

Design and Coding

Persons

Time——

Fig.6: The Rayleigh manpower loading curve

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 23

Software Project Planning

Putnam observed that this curve was a close
approximation at project level and software subsystem
level.

No. of projects = 150

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 24

Software Project Planning

The Norden / Rayleigh Curve

The curve 1s modeled by differential equation

dy —at?
m(t) = —==2kate™™ ---—---- (D)
dt
dy o e
J; = manpower utilization rate per unit time
a = parameter that affects the shape of the curve
K =area under curve in the interval [0, *]

t = elapsed time

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 25

Software Project Planning

On Integration on interval [o, t]
y(©) = K [1-€%7] woemmmmeees (2)
Where y(t): cumulative manpower used upto time t.

y(0)=0
y(<) =k

The cumulative manpower 1s null at the start of the project, and
grows monotonically towards the total effort K (area under the
curve).

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 26

Software Project Planning

d’y 2 2
—=2kae™ [1-2at"1=0
dt
1
17 =—
‘" 2a

“ty’: time where maximum effort rate occurs
Replace “t;” for ¢ in equation (2)

ti

E=y({t)=k|l1-e” |=K(1-e)

E=1y()=0.3935%
1
2t

a =

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 27

Software Project Planning

(Y

1
Replace “a” with pyel in the Norden/Rayleigh model. By
d

making this substitution in equation we have

2K 5,2
Ly
_t
_ B2
== e

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 28

Software Project Planning

\

— Time (years) ——>

Fig.7: Influence of parameter ‘a’ on the manpower
distribution

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 29

Software Project Planning

At time t=t;, peak manning m (t,) 1s obtained and denoted by m,.

k
m =
" t,e
k = Total project cost/effort in person-years.
ty = Delivery time in years
m, = No. of persons employed at the peak

e =2.71828

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 30

Software Project Planning

Example: 4.12

A software development project is planned to cost 95 MY in a period
of 1 year and 9 months. Calculate the peak manning and average rate
of software team build up.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 31

Software Project Planning

Solution
Software development cost k=95 MY
Peak development time t; = 1.75 years
Peak ' X
eak manning m = : N
95

=32.94 =33 persons
1.75%1.648

Average rate of software team build up

m, 33
t, 1.75

=18.8 persons | year or 1.56 person/ month

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 32

Software Project Planning

Example: 4.13

Consider a large-scale project for which the manpower requirement 1s
K=600 PY and the development time is 3 years 6 months.

(a)Calculate the peak manning and peak time.

(b)What is the manpower cost after 1 year and 2 months?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 33

Software Project Planning

Solution

(a) We know t ;=3 years and 6 months = 3.5 years

K
m, =
NOW 0= Ve

m, = 600/(3.5x1.648) = 104 persons

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 34

Software Project Planning

(b) We know
2
y(t) = K[l —e]
t =1 year and 2 months

= 1.17 years

11
2t7 2X(3.5)°

=0.041

a =

)7(1 17) = 600 [1 — 6_0'041(1'17)2]

=32.6 PY

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

135

Software Project Planning

Difficulty Metric

Slope of manpower distribution curve at start time t=0 has
some useful properties.

' dzy —at® 2
m'(t) = % =2kae™™ (1-2at”)
Then, for t=0
m'(0)=2Ka = 2K = K

2t7 t,

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 36

Software Project Planning

K
The ratio el 1s called difficulty and denoted by D,
which is measured in person/year :
k
D= t_2 persons/year
d

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 37

Software Project Planning

Project 1s difficult to develop
if

Manpower demand When time schedule
1s high 1s short

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

138

Software Project Planning

Peak manning 1s defined as:

mg =

DE_

Ly

Thus difficult projects tend to have a higher peak
manning for a given development time, which 1s in line
with Norden’s observations relative to the parameter “a”

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 39

Software Project Planning

Manpower buildup

D 1s dependent upon “K”. The derivative of D relative to
66K79 and “td,, are

—2k

D'(t;)= — persons [year2
Lq
' 1 -2
D'(k) =— year
td

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 40

Software Project Planning

D!(K) will always be very much smaller than the absolute value of
D!(t,). This difference in sensitivity is shown by considering two
projects

Project A : Cost =20 PY & t; =1 year
Project B : Cost = 120 PY & t; = 2.5 years

The derivative values are

Project A D (t) =-40& D (K)=1
Project B : D (ty) =-15.36 & D' (K)=0.16

This shows that a given software development is time sensitive.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 41

Software Project Planning

Putnam observed that
Diftficulty derivative relative to time

Behavior of s/w development

It project scale 1s increased, the %evelopment time also

increase to such an extent that -~ remains constant

¥

around a value which could be 8,15,27.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

142

Software Project Planning

It 1s represented by D, and can be expressed as:

k
D, =— person/ year”
td

D, =8, new s/w with many interfaces & interactions
with other systems.

D, =15, New standalone system.

D, =27, The software 1s rebuild form existing software.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 43

Software Project Planning

Example: 4.14

Consider the example 4.13 and calculate the difficulty and
manpower build up.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 44

Software Project Planning

Solution
We know

K
Difficulty D = el

d

6

_ 000 =49 person/ year

- (3.5)°

Manpower build up can be calculated by following equation

K
DOZE

_ 600 =14 person/ year®

- (3.5)

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 45

Software Project Planning

Productivity Versus Difficulty

Productivity = No. of LOC developed per person-month
P DB

Avg. productivity

LOC produced

cumulative manpower
used to produce code

P =

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 46

Software Project Planning

P =S/E

= gD *7(0.3935 K)
2

3
k(0.3935)

k

tj_

S=¢
S = o_.393s¢1<“ 3,

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 47

Software Project Planning

0.39¢9 —> c—
\
Technology Factor
Hardware Experience prooramming
constraints Complexity environment

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 48

Software Project Planning

C ——> 610-57314
K:P-Y
T : Years
1/3#”3
S=CK “
=173 4/3
C=SK *“
The trade off of time versus cost

K"t;”=8/C

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

149

Software Project Planning

C = 5000 K :%(100)3
S =5,00,000 LOC »
ty (years) K (P-Y)
5.0 1600
4.0 3906
3.5 6664
3.0 12346

Table 20: (Manpower versus development time)

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 50

Software Project Planning

Development Subcycle

All that has been discussed so far is related to project life cycle as
represented by project curve

Manpower

Adistribution Project

—

Requirements
& Specificatiop

Fig.8: Project life cycle

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 51

Software Project Planning

Project life cycle

Project curve 1s the addition of two curves

Development Test &
Curve Validation
Curve

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 52

Software Project Planning

.+, my (t) = 2k bt e
yq (0 = K4 [1-eP]

An examination of m(t) function shows a non-zero value of m,
at time t;.

This 1s because the manpower involved in design & coding 1s
still completing this activity after t¢ in form of rework due to
the validation of the product.

Nevertheless, for the model, a level of completion has to be
assumed for development.

It 1s assumed that 95% of the development will be completed
by the time t;.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 53

Software Project Planning

Yl 10" ~0.95
Kd
1
.*. We may say that b = 2
od

T 4 time at which development curve exhibits a peak
manning.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 54

Software Project Planning

Relationship between K ; & K must be established.

At the time of origin, both cycles have the same slope.

)l
dt)t t dt)

K =K/6

K K
P tzd
d od

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, C

opyright © New Age International Publishers, 2007

155

Software Project Planning

This does not apply to the manpower build up D,

K K
Do — 3 — d3
td 6t od

Conte investigated that
Larger projects ——> reasonable

Medium & small projects —> overestimate

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 56

Software Project Planning

Example: 4.15

A software development requires 90 PY during the total development

sub-cycle. The development time i1s planned for a duration of 3 years
and 5 months

(a)Calculate the manpower cost expended until development time
(b) Determine the development peak time

(c) Calculate the difficulty and manpower build up.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 57

Software Project Planning
Solution

(a) Duration t; = 3.41 years

We know from equation) ;{ () —1— e_btd =(0.95
d

y, ()
Kd

=0.95

Y,(t,) =0.95%x90

=85.5PY

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 58

Software Project Planning

Ly

NG

=3.41/2.449 =1.39 years

(b) We know from equation f g =
0

_ Iy

f —
od \/g

= 17 months

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

159

Software Project Planning

(c) Total Manpower development

K,=v,(,)/0.95
=85.5/0.95=90

K =6K, =90%6=540PY

D =K /12 =540/(3.41)? = 46 persons/years

D = 53 =540/(3.41)° =13.6 persons/years’

Ly

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

160

Software Project Planning

Example:4.16

A software development for avionics has consumed 32 PY
up to development cycle and produced a size of 48000
LOC. The development of project was completed in 25
months. Calculate the development time, total manpower
requirement, development peak time, difficulty,
manpower build up and technology factor.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 61

Software Project Planning

Solution:

Development time t, = 25 months = 2.08 years

Y (t 32
Total manpower development &, =2 a) _ =337 PY
0.95 0.95
Development peak time t = (t_\/d_) = (.85 years =10 months
6

K = 6K, =6 x 33.7 =202 PY

ko 202
7 (2.08)

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

=46.7 pesons/ years

162

Software Project Planning

D, = K22 22.5 Persons/ year*

£ (2.08)°

Technology factor

C =SK ™",

= 3077

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 63

Software Project Planning

Example 4.17

What amount of software can be delivered in 1 year 10 months in an
organization whose technology factor 1s 2400 1f a total of 25 PY 1s
permitted for development effort.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 64

Software Project Planning

Solution:
t; = 1.8 years

K, =25PY
K =25x6=150PY
C =2400

We know S = CK 1/3td4/3
=2400x 5.313 x2.18 =27920 LOC

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 65

Software Project Planning

Example 4.18

The software development organization developing real time
software has been assessed at technology factor of 2200. The
maximum value of manpower build up for this type of

software 1s D_=7.5. The estimated size to be developed is
S=55000 LOC.

(a) Determine the total development time, the total
development manpower cost, the difficulty and the
development peak manning.

(b) The development time determined 1n (a) 1s considered too
long. It 1s recommended that it be reduced by two months.
What would happen?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 66

Software Project Planning

Solution

We have S = CK1/3td4/3
P 3
(—J = kt;
C
G\
which is also equivalent to (_j =Dt
— —1/7

3
then ¢ = DL(%j
0

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

167

Software Project Planning

Since S =25
C
t,; = 3 years

K =Dy, =75%27=202 PY

Total development manpower cost K, :20_062 =33775PY

D =Dgty = 22.5 persons / year

:t—d:izl.Z years

“=J6 e

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 68

Software Project Planning

M, (t) = 2k, bte >
Y (t) = ky (1-eP?)

Here t=1,4
Peak manning =m , =Dt e "*

=22.5x 1.2x.606 =16 persons

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 69

Software Project Planning

III. If development time 1s reduced by 2 months

Developing Producing
s/w at higher less software
manpower

build-up

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 70

Software Project Planning

(1) Increase Manpower Build-up

3
i
i\ C

Now t; =3 years — 2 months =2.8 years

D, = (25)3 /(2.8)7 =11.6 persons/ years

k=D, =254 PY

K, =22 —42.4Py

6

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

171

Software Project Planning

D = Dyt = 32.5 persons / year
The peak time1s t 4 = 1.14 years
Peak manning m_4 = Dt 4 e
=32.5x1.14x0.6

= 22 persons

Note the huge increase in peak manning & manpower
cost.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 72

Software Project Planning

(11) Produce Less Software

3
(%j = D] =7.5%(2.8)" =10119.696

3
(Ej =21.62989
C

Then for C=2200
S=47586 LOC

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 73

Productivity versus difficult

Example 4.19

A stand alone project for which the size 1s estimated at 12500
LOC 1s to be developed in an environment such that the
technology factor 1s 1200. Choosing a manpower build up
D =15, Calculate the minimum development time, total
development man power cost, the difficulty, the peak manning,
the development peak time, and the development productivity.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 74

Software Project Planning

Solution

Size (S) = 12500 LOC
Technology factor (C) = 1200
Manpower buildup (D)) =15

Now S = CK "3

1/3,4/3
= K"

S
C

R)
S .
— | =Kt
(CJ ’

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 75

Software Project Planning

Also we know D =—

K=Dt =Dt

S 3
Hence (j =D¢t’
C
. 12500
Substituting the values, we get (j =15t,

1200
{(10.416)3 }”7
t, =

15

t, =1.85 years

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

176

Software Project Planning

(1) Hence Minimum development time (t;)=1.85 years

(i1) Total development manpower cost K, =§
Hence K=151,
=15(1.85)’=94.97 PY
K, =5 297 _ 583 py
6
(i) Difficulty ~ p=2-2%2" _ 9795 persons/ year

12 (1.85)

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 77

Software Project Planning

K
(1v) Peak Manning m, =
0 ‘ \/;

9497
1.85%1.648

=31.15Person

[
(v) Development Peak time ¢ , = —d_

J6
1.85

——=0.735 years
2 449

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 78

Software Project Planning

(vi) Development Productivity

_ No .of lines of code (S)
B effort (K ,)

_ 12500 =7789.6 LOC/PY

15.83

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

179

Software Project Planning

Software Risk Management

» We Software developers are extremely optimists.
» We assume, everything will go exactly as planned.
» Other view
not possible to predict what 1s going to happen ?
Software surprises

\

Never good news

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 80

Software Project Planning

Risk management i1s required to reduce this surprise
factor

Dealing with concern before 1t becomes a crisis.

Quantify probability of failure & consequences of failure.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 81

Software Project Planning

What is risk ?

Tomorrow’s problems are today’s risks.

“Risk is a problem that may cause some loss or
threaten the success of the project, but which has
not happened yet”.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 82

Software Project Planning

Risk management is the process of 1dentifying addressing
and eliminating these problems before they can damage
the project.

Current problems &

——> Potential Problems

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 83

Software Project Planning

Typical Software Risk

Capers Jones has 1dentified the top five risk factors that
threaten projects in different applications.

1. Dependencies on outside agencies or factors.
e Availability of trained, experienced persons
e Inter group dependencies

e (Customer-Furnished items or information

e Internal & external subcontractor relationships

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 84

Software Project Planning

2. Requirement 1ssues

Uncertain requirements

\

Wrong product

or
Right product badly

Either situation results in unpleasant surprises and
unhappy customers.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 85

Software Project Planning

Lack of clear product vision

Lack of agreement on product requirements
Unprioritized requirements

New market with uncertain needs

Rapidly changing requirements

Inadequate Impact analysis of requirements changes

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 86

3.

Software Project Planning

Management Issues

Project managers usually write the risk management
plans, and most people do not wish to air their
weaknesses 1n public.

Inadeg

uate planning

Inadeg

uate visibility into actual project status

Unclear project ownership and decision making

Staff personality conflicts

Unrealistic expectation

Poor communication

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 87

Software Project Planning

4. Lack of knowledge

e Inadequate training

e Poor understanding of methods, tools, and
techniques

e Inadequate application domain experience
e New Technologies

e Ineffective, poorly documented or neglected
processes

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 88

Software Project Planning

3. Other risk categories
e Unavailability of adequate testing facilities
e Turnover of essential personnel
e Unachievable performance requirements

e Technical approaches that may not work

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 89

Software Project Planning

Risk Management Activities

Risk Identification
Risk Z Risk Analysis

Assessment T~

Risk Prioritization

Risk /

Management\ Risk Management
Planning
Risk Control . —
Risk Monitoring
Fig. 9: Risk Management _ .
Activities Risk Resolution

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 90

Software Project Planning

Risk Assessment

Identification of risks

Risk analysis 1nvolves examining how project outcomes
might change with modification of risk input variables.

Risk prioritization focus for severe risks.

Risk exposure: It 1s the product of the probability of incurring
a loss due to the risk and the potential magnitude of that loss.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 91

Software Project Planning

Another way of handling risk is the risk avoidance. Do not do
the risky things! We may avoid risks by not undertaking
certain projects, or by relying on proven rather than cutting
edge technologies.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 92

Software Project Planning

Risk Control

Risk Management Planning produces a plan for dealing with
each significant risks.

» Record decision in the plan.

Risk resolution 1s the execution of the plans of dealing with
each risk.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 93

Multiple Choice Questions

Note: Choose most appropriate answer of the following questions:

4.1 After the finalization of SRS, we may like to estimate

(a) Size (b) Cost

(¢c) Development time (d) All of the above.
4.2 Which one is not a size measure for software

(a) LOC (b) Function Count

(¢) Cyclomatic Complexity (d) Halstead’s program length
4.3 Function count method was developed by

(a) B.Beizer (b) B.Boehm

(c) M.halstead (d) Alan Albrecht

4.4 Function point analysis (FPA) method decomposes the system into functional
units. The total number of functional units are

(a) 2 (b) 5
(c)4 (d) 1

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 94

Multiple Choice Questions

4.5 TFPUG stand for
(a) Initial function point uniform group
(b) International function point uniform group
(¢) International function point user group
(d) Initial function point user group

4.6 Function point can be calculated by
(a) UFP * CAF (b) UFP * FAC
(c) UFP * Cost (d) UFP * Productivity

4.7 Putnam resource allocation model 1s based on
(a) Function points
(b) Norden/ Rayleigh curve
(¢) Putnam theory of software management
(d) Boehm’s observation on manpower utilisation rate

4.8 Manpower buildup for Putnam resource allocation model is

(a)K/ tc% persons | year2 (b)K/ tfl persons | year2
(c)K/ t§ persons | year (d)K/ tfl persons | year

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 95

Multiple Choice Questions

4.9 COCOMO was developed initially by
(a) B.W.Bohem (b) Gregg Rothermal
(c) B.Beizer (d) Rajiv Gupta

4.10 A COCOMO model is
(a) Common Cost estimation model
(b) Constructive cost Estimation model
(¢) Complete cost estimation model
(d) Comprehensive Cost estimation model

4.11 Estimation of software development effort for organic software is COCOMO is

(a) E=2.4(KLOC)"%PM (b) E=3.4(KLOC)!%°PM

(c¢) E=2.0(KLOC)%°PM (d) E-2.4(KLOC)"7PM
4.12 Estimation of size for a project is dependent on

(a) Cost (b) Schedule

(c) Time (d) None of the above

4.13 In function point analysis, number of Complexity adjustment factor are
(a) 10 (b) 20
(c) 14 (d) 12

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 96

Multiple Choice Questions

4.14 COCOMO-II estimation model is based on

(a) Complex approach (b) Algorithm approach

(¢) Bottom up approach (d) Top down approach
4.15 Cost estimation for a project may include

(a) Software Cost (b) Hardware Cost

(¢) Personnel Costs (d) All of the above

4.16 In COCOMO model, if project size is typically 2-50 KLOC, then which mode
is to be selected?

(a) Organic (b) Semidetached
(c) Embedded (d) None of the above
4.17 COCOMO-II was developed at
(a) University of Maryland (b) University of Southern California
(c) IBM (d) AT & T Bell labs
4.18 Which one is not a Category of COCOMO-II
(a) End User Programming (b) Infrastructure Sector

(¢) Requirement Sector (d) System Integration

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 97

Multiple Choice Questions

4.19 Which one is not an infrastructure software?
(a) Operating system (b) Database management system
(¢c) Compilers (d) Result management system

4.20 How many stages are in COCOMO-II?
(a) 2 (b) 3
(c) 4 (d)5

4.21 Which one is not a stage of COCOMO-II?
(a) Application Composition estimation model
(b) Early design estimation model
(c) Post architecture estimation model
(d) Comprehensive cost estimation model

4.22 In Putnam resource allocation model, Rayleigh curve is modeled by the equation

(Cl) m(t) =2at e—atz (b) m(t) — 2Kt e—at2
(¢) m(t)=2Kate™ (d) m(t)=2Kbte ™

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 98

Multiple Choice Questions

4.23 In Putnam resource allocation model, technology factor ‘C’ is defined as

(a) C — SK—1/3Z,C;4/3 (b) C — SK1/3Z_3/3
(C) C — SKI/Sl,d—4/3 (d) C — SK—I/SZ_;US
4.24 Risk management activities are divided in
(a) 3 Categories (b) 2 Categories
(c) 5 Categories (d) 10 Categories

4.25 Which one 1s not a risk management activity?
(a) Risk assessment (b) Risk control
(c) Risk generation (d) None of the above

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 99

Exercises

4.1 What are various activities during software project planning?

4.2 Describe any two software size estimation techniques.

4.3 A proposal is made to count the size of ‘C’ programs by number of
semicolons, except those occurring with literal strings. Discuss the
strengths and weaknesses to this size measure when compared with the
lines of code count.

4.4 Design a LOC counter for counting LOC automatically. Is it language
dependent? What are the limitations of such a counter?

4.5 Compute the function point value for a project with the following
information domain characteristics.
Number of user inputs = 30
Number of user outputs =42
Number of user enquiries = 08
Number of files = 07
Number of external interfaces = 6
Assume that all complexity adjustment values are moderate.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 200

Exercises

4.6 Explain the concept of function points. Why FPs are becoming
acceptable in industry?

4.7 What are the size metrics? How is function point metric advantageous
over LOC metric? Explain.

4.8 Is it possible to estimate software size before coding? Justify your answer
with suitable example.

4.9 Describe the Albrecht’s function count method with a suitable example.

4.10 Compute the function point FP for a payroll program that reads a file of
employee and a file of information for the current month and prints
cheque for all the employees. The program is capable of handling an
interactive command to print an 1individually requested cheque
immediately.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 201

Exercises

4.11 Assume that the previous payroll program is expected to read a file
containing information about all the cheques that have been printed. The
file 1s supposed to be printed and also used by the program next time it is
run, to produce a report that compares payroll expenses of the current
month with those of the previous month. Compute functions points for
this program. Justify the difference between the function points of this
program and previous one by considering how the complexity of the
program 1s affected by adding the requirement of interfacing with
another application (in this case, itself).

4.12 Explain the Walson & Felix model and compare with the SEL model.

4.13 The size of a software product to be developed has been estimated to be
22000 LOC. Predict the manpower cost (effort) by Walston-Felix Model
and SEL model.

4.14 A database system is to be developed. The effort has been estimated to
be 100 Persons-Months. Calculate the number of lines of code and
productivity in LOC/Person-Month.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 202

Exercises

4.15 Discuss various types of COCOMO mode. Explain the phase wise
distribution of effort.

4.16 Explain all the levels of COCOMO model. Assume that the size of an
organic software product has been estimated to be 32,000 lines of code.
Determine the effort required to developed the software product and the
nominal development time.

4.17 Using the basic COCOMO model, under all three operating modes,
determine the performance relation for the ratio of delivered source code
lines per person-month of effort. Determine the reasonableness of this
relation for several types of software projects.

4.18 The effort distribution for a 240 KLOC organic mode software
development project 1s: product design 12%, detailed design 24%, code
and unit test 36%, integrate and test 28%. How would the following
changes, from low to high, affect the phase distribution of effort and the
total effort: analyst capability, use of modern programming languages,
required reliability, requirements volatility?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 203

Exercises

4.19 Specify, design, and develop a program that implements COCOMO.
Using reference as a guide, extend the program so that it can be used as a
planning tool.

4.20 Suppose a system for office automation is to be designed. It is clear
from requirements that there will be five modules of size 0.5 KLOC, 1.5
KLOC, 2.0 KLOC, 1.0 KLOC and 2.0 KLOC respectively. Complexity,
and reliability requirements are high. Programmer’s capability and
experience 1s low. All other factors are of nominal rating. Use COCOMO
model to determine overall cost and schedule estimates. Also calculate
the cost and schedule estimates for different phases.

4.21 Suppose that a project was estimated to be 600 KLOC. Calculate the
effort and development time for each of the three modes i.e., organic,
semidetached and embedded.

4.22 Explain the COCOMOK-II in detail. What types of categories of projects
are 1dentified?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 204

Exercises

4.23 Discuss the Infrastructure Sector of COCOMO-II.

4.24 Describe various stages of COCOMO-II. Which stage is more popular
and why?

4.25 A software project of application generator category with estimated size
of 100 KLOC has to be developed. The scale factor (B) has high
percedentness, high development flexibility. Other factors are nominal.
The cost drivers are high reliability, medium database size, high
Personnel capability, high analyst capability. The other cost drivers are
nominal. Calculate the effort in Person-Months for the development of
the project.

4.26 Explain the Putnam resource allocation model. What are the limitations
of this model?

4.277 Describe the trade-off between time versus cost in Putnam resource
allocation model.

4.28 Discuss the Putnam resources allocation model. Derive the time and
effort equations.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 205

Exercises

4.29 Assuming the Putnam model, with S=100,000 , C=5000, D_=15,
Compute development time t; and manpower development K ;.

4.30 Obtain software productivity data for two or three software development
programs. Use several cost estimating models discussed in this chapter.
How to the results compare with actual project results?

4.31 It seems odd that cost and size estimates are developed during software
project planning-before detailed software requirements analysis or design
has been conducted. Why do we think this 1s done? Are there
circumstances when it should not be done?

4.32 Discuss typical software risks. How staff turnover problem affects
software projects?

4.33 What are risk management activities? Is it possible to prioritize the risk?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 206

Exercises

4.34 What is risk exposure? What techniques can be used to control each
risk?

4.35 What is risk? Is it economical to do risk management? What is the effect
of this activity on the overall cost of the project?

4.36 There are significant risks even in student projects. Analyze a student
project and list all the risk.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 207

Software
Design

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1

Software Design

NG

** More creative than analysis

\/

** Problem solving activity

WHAT IS DESIGN

"HOW’

~~

Software design document (SDD)

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Design

Initial requirements

Gather data on user requirements

|

Vo

>lAnalyze requirements dataje

Validate the design

against the
requirements

| 4

Obtain answers to
requirement
questions

A
L> Conceive of a high level design

—

Y

’ Refine & document the design

!

Completed design
Fig. 1 : Design framework

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Design
design

Satisfy

Customer Developers
(Implementers)

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Design

Conceptual Design and Technical Design

D
e
m .S How
Conceptual g Technical
design n design
e
r
S
Customeri A two part design System
Process Builders

Fig. 2 : A two part design process

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Design

Conceptual design answers :

v

N N N N

Where will the data come from ?

What will happen to data in the system?
How will the system look to users?
What choices will be offered to users?
What is the timings of events?

How will the reports & screens look like?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Design

Technical design describes :

** Hardware configuration

» Software needs

** Communication interfaces
¢ I/0 of the system

** Software architecture

» Network architecture

** Any other thing that translates the requirements in to a
solution to the customer’s problem.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 7

Software Design

The design needs to be

» Correct & complete
» Understandable

» At the right level
» Maintainable

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Design

Informal More o
design | Informal [+q,ma| > Finished
outline design design design
7\ 7\ 7 N 7
Y Y

Fig. 3 : The transformation of an informal design to a detailed

design.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Design

MODULARITY

There are many definitions of the term module. Range 1s from :

1. Fortran subroutine
11. Ada package
111. Procedures & functions of PASCAL & C

1v. C++/Java classes

v. Java packages

vi. Work assignment for an individual programmer

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 O

Software Design

All these definitions are correct. A modular
system consist of well defined manageable
units with well defined interfaces among
the units.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

11

Software Design

Properties :

1.

11.

111.

1V.

V1.

Well defined subsystem
Well defined purpose

Can be separately compiled and stored in a
library.

Module can use other modules

Module should be easier to use than to build

Simpler from outside than from the inside.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

12

Software Design

Modularity 1s the single attribute of software that
allows a program to be intellectually manageable.

It enhances design clarity, which 1in turn eases
implementation, debugging, testing,
documenting, and maintenance of software
product.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

13

Software Design

Total Software

Cost !\

Region of Minimum
Cost Cost to
M integrate

Cost of Effort

Number of Modules

Fig. 4 : Modularity and software cost

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

14

Software Design

Module Coupling

Coupling 1s the measure of the degree of
interdependence between modules.

O O
O O

(Uncoupled : no dependencies)

(a)

Software Engineering (3 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 15

Software Design

Loosely coupled: Highly coupled:
some dependencies many dependencies

(B) (©)

Fig. 5 : Module coupling

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 6

Software Design

This can be achieved as:

J

J
J
J

Controlling the number of parameters passed
amongst modules.

Avoid passing undesired data to calling
module.

Maintain parent / child relationship between
calling & called modules.

Pass data, not the control information.

Consider the example of editing a student record 1n a
‘student information system’.

Software Design

Edit student
record

Edit student
record

Student name,
student ID,
address,
course

Y

y

Student
record
EOF

Retrieve
student record

Poor design: Tight Coupling

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Student

ID

Y

Y\

Student
record
EOF

Retrieve
student record

Good design: Loose Coupling

Fig. 6 : Example of coupling

18

Software Design

Data coupling Best
A

Stamp coupling

Control coupling

External coupling

Common coupling

Content coupling Worst

Fig. 7 : The types of module coupling

Given two procedures A & B, we can identify number of
ways 1n which they can be coupled.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 9

Software Design

Data coupling

The dependency between module A and B 1s said to be data
coupled 1f their dependency 1s based on the fact they
communicate by only passing of data. Other than
communicating through data, the two modules are
independent.

Stamp coupling

Stamp coupling occurs between module A and B when
complete data structure 1s passed from one module to another.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 20

Software Design

Control coupling

Module A and B are said to be control coupled if they
communicate by passing of control information. This 1s usually
accomplished by means of flags that are set by one module and
reacted upon by the dependent module.

Common coupling

With common coupling, module A and module B have shared
data. Global data areas are commonly found in programming
languages. Making a change to the common data means tracing
back to all the modules which access that data to evaluate the
effect of changes.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 21

Change V1 to Zero

Module X

Software Design

Global:

Variables:

Al
A2
A3

V1
V2

Increment V1

Module Y

Common data area and
variable names

V1 =V2 + Al

Module Z

Fig. 8 : Example of common coupling

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 22

Software Design

Content coupling

Content coupling occurs when module A changes data of
module B or when control i1s passed from one module to the
middle of another. In Fig. 9, module B branches into D, even
though D 1s supposed to be under the control of C.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 23

Software Design

Module B

Go To Temp

Module D

Go To Temp

Temp:

Fig. 9 : Example of content coupling

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Design

Module Cohesion

Cohesion 1s a measure of the degree to which the
elements of a module are functionally related.

N /] P N /]

RN el IR

S strength
N

N /]
N

N /]
N

Fig. 10 : Cohesion=Strength of relations within modules
Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

25

Software Design

Types of cohesion

vV V Y VY Y V

Functional cohesion

Sequential cohesion

Procedural cohesion
Temporal cohesion

Logical cohesion

Coincident cohesion

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

26

Software Design

Functional Cohesion

Best (high)

Sequential Cohesion

A

Communicational Cohesion

Procedural Cohesion

Temporal Cohesion

Logical Cohesion

Coincidental Cohesion

Worst (low)

Fig. 11 : Types of module cohesion

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

27

Software Design

Functional Cohesion

» A and B are part of a single functional task. This is very good
reason for them to be contained in the same procedure.

Sequential Cohesion

» Module A outputs some data which forms the input to B. This is
the reason for them to be contained in the same procedure.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 28

Software Design

Procedural Cohesion

»Procedural Cohesion occurs in modules whose instructions
although accomplish different tasks yet have been combined
because there is a specific order in which the tasks are to be
completed.

Temporal Cohesion

»Module exhibits temporal cohesion when it contains tasks that
are related by the fact that all tasks must be executed in the
same time-span.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 29

Software Design

Logical Cohesion

» Logical cohesion occurs in modules that contain instructions
that appear to be related because they fall into the same logical
class of functions.

Coincidental Cohesion

» Coincidental cohesion exists in modules that contain
instructions that have little or no relationship to one another.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 30

Software Design

Relationship between Cohesion & Coupling

If the software 1s not properly modularized, a host of seemingly
trivial enhancement or changes will result into death of the project.
Therefore, a software engineer must design the modules with goal of
high cohesion and low coupling.

\ N\

High Coupling Low Coupling
Fig. 12 : View of cohesion and coupling

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 3 1

Software Design

STRATEGY OF DESIGN

A good system design strategy is to organize the program modules
in such a way that are easy to develop and latter to, change.
Structured design techniques help developers to deal with the size
and complexity of programs. Analysts create instructions for the
developers about how code should be written and how pieces of

code should fit together to form a program. It is important for two
reasons:

» First, even pre-existing code, if any, needs to be understood,
organized and pieced together.

» Second, it is still common for the project team to have to write
some code and produce original programs that support the
application logic of the system.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 32

Software Design

Bottom-Up Design

These modules are collected together in the form of a “library”.

Fig. 13 : Bottom-up tree structure

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 33

Software Design

Top-Down Design

A top down design approach starts by identifying the major modules
of the system, decomposing them into their lower level modules and
iterating until the desired level of detail 1s achieved. This 1s stepwise
refinement; starting from an abstract design, in each step the design
1s refined to a more concrete level, until we reach a level where no
more refinement 1s needed and the design can be implemented
directly.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 34

Software Design

Hybrid Design

For top-down approach to be effective, some bottom-up approach 1s
essential for the following reasons:

>
>

To permit common sub modules.

Near the bottom of the hierarchy, where the intuition is simpler,
and the need for bottom-up testing is greater, because there are
more number of modules at low levels than high levels.

In the use of pre-written library modules, in particular, reuse of
modules.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 35

Software Design

FUNCTION ORIENTED DESIGN

Function Oriented design is an approach to software design where
the design 1s decomposed into a set of interacting units where each
unit has a clearly defined function. Thus, system is designed from
a functional viewpoint.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 36

Software Design

Consider the example of scheme interpreter. Top-level function may look like:
While (not finished)
{

Read an expression from the terminal;

Evaluate the expression;

Print the value;

f

We thus get a fairly natural division of our interpreter into a “read” module, an “evalu-
ate” module and a “print” module. Now we consider the “print” module and is given below:

Print (expression exp)

{
Switch (exp — type)
Case integer: /*print an integer®/
Case real: /*print a real™/
Case list: /*print a list™/
}

Sotftware Engineering (3 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007/ 37

Software Design

We continue the refinement of each module until we reach the statement

level of our programming language. At that point, we can describe the

structure of our program as a tree of refinement as in design top-down
structure as shown in fig. 14.

s5h S

Fig. 14 : Top-down structure

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

38

Software Design

If a program 1s created top-down, the modules become very specialized.
As one can easily see in top down design structure, each module 1s used
by at most one other module, its parent. For a module, however, we

must require that several other modules as in design reusable structure
as shown 1n fig. 135.

Fig. 15 : Design reusable structure

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 39

Software Design

Design Notations

Design notations are largely meant to be used during the process
of design and are used to represent design or design decisions.
For a function oriented design, the design can be represented
graphically or mathematically by the following:

Data flow diagrams

Data Dictionaries

>
>
» Structure Charts
>

Pseudocode

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 40

Software Design

Structure Chart

It partition a system into block boxes. A black box means that
functionality 1s known to the user without the knowledge of internal

design.
e N
T R

F% . 16 : Hierarchical format of a structure chart

Wware Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 41

Software Design

o—> Data
Module
—> Control
G’hysical Sturagej
Library
Module

Diamond symbol ?ﬁ{

for conditional call Repititive call
of module of module

Fig. 17 : Structure chart notations

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 42

Software Design

A structure chart for “update file” is given 1n fig. 18.

Update File

new
Master

continue
= Response

mastér\\ T
new

ualii:iTrE:ms.q\\‘\o Master

getVaIici Trans get Master update Master put New:v Master

validTrans

new
Master continue

transjI valid Trans Response

formated
Master

formated

Master
get Trans validate Trans format Master write Master ask If
User wants
To Continue

Fig. 18 : Update file

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Design

A transaction centered structure describes a system that processes a
number of different types of transactions. It 1s illustrated in Fig.19.

MAIN

Input Module 1 Module 2 Module 3 Output

Fig. 19 : Transaction-centered structure

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 44

Software Design

In the above figure the MAIN module controls the system operation
1ts functions 1is to:

» Invoke the INPUT module to read a transaction:

» determine the kind of transaction and select one of a number
of transaction modules to process that transaction, and

> output the results of the processing by calling OUTPUT
module.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 45

Software Design

Pseudocode

Pseudocode notation can be used in both the preliminary and detailed
design phases.

Using pseudocode, the designer describes system characteristics
using short, concise, English language phrases that are structured by
key words such as It-Then-Else, While-Do, and End.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 46

Software Design

Functional Procedure Layers

» Function are built in layers, Additional notation is used to
specify details.

> Level 0

= Function or procedure name

= Relationship to other system components (e.g., part of
which system, called by which routines, etc.)

= Brief description of the function purpose.

= Author, date

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 47

Software Design

> Level 1

= Function Parameters (problem variables, types, purpose,
etc.)

= (Global variables (problem variable, type, purpose,
sharing information)

= Routines called by the function
= Side effects

» |nput/Output Assertions

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

48

Software Design

> Level 2

= Local data structures (variable etc.)
= Timing constraints
= Exception handling (conditions, responses, events)

= Any other limitations

> Level 3

= Body (structured chart, English pseudo code, decision
tables, flow charts, etc.)

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 49

Software Design

IEEE Recommended practice for software design
descriptions (IEEE STD 1016-1998)

> Scope

An SDD i1s a representation of a software system that is used as a medium
for communicating software design information.

> References

I. |IEEE std 830-1998, IEEE recommended practice for
software requirements specifications.

i. I[EEE std 610.12-1990, |IEEE glossary of software
engineering terminology.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 50

Software Design

> Definitions

iv.

Design entity. An element (Component) of a design that is
structurally and functionally distinct from other elements and
that is separately named and referenced.

Design View. A subset of design entity attribute information
that is specifically suited to the needs of a software project
activity.

Entity attributes. A named property or characteristics of a
design entity. It provides a statement of fact about the entity.

Software design description (SDD). A representation of a
software system created to facilitate analysis, planning,
implementation and decision making.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 51

Software Design

» Purpose of an SDD

The SDD shows how the software system will be structured to
satisfy the requirements identified in the SRS. It is basically the
translation of requirements into a description of the software
structure, software components, interfaces, and data necessary for
the implementation phase. Hence, SDD becomes the blue print for
the implementation activity.

» Design Description Information Content
= Introduction
= Design entities

= Design entity attributes

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 52

Software Design

The attributes and associated information items are defined in the
following subsections:

a) ldentification fy Dependencies
b) Type g) Interface

c) Purpose h) Resources
d) Function 1) Processing

e) Subordinates j) Data

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 53

Software Design

» Design Description Organization

Each design description writer may have a different view of what
are considered the essential aspects of a software design. The
organization of SDD is given in table 1. This is one of the possible

ways to organize and format the SDD.

A recommended organization of the SDD into separate design
views to facilitate information access and assimilation is given in

table 2.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 54

Software Design

1. Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions and acronyms
2. References
3. Decomposition description
3.1 Module decomposition
3.1.1 Module 1 description
3.1.2 Module 2 description
3.2 Concurrent Process decompostion
3.2.1 Process 1 description
3.2.2 Process 2 description
3.3 Data decomposition
3.3.1 Data entity 1 description
3.3.2 Data entity 2 description

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cont...

55

Software Design

4. Dependency description
4.1 Intermodule dependencies
4.2 Interprocess dependencies
4.3 Data dependencies
5. Interface description
5.1 Module Interface
5.1.1 Module 1 description
5.1.2 Module 2 description

5.2 Process interface Table 1:
5.2.1 Process 1 description Organizatign of
5.2.2 Process 2 description SDD

6. Detailed design
6.1 Module detailed design
6.1.1 Module 1 detail
6.1.2 Module 2 detail
6.2 Data detailed design
6.2.1 Data entry 1 detail
6.2.2 Data entry 2 detail

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 56

Software Design

Design View Scope Entity attribute Example
representation
Decomposition | Partition of the system into | Identification, type Hierarchical
description design entities purpose, function, decomposition diagram,
subordinate natural language
Dependency Description of relationships | Identification, type, Structure chart, data
description among entities of system purpose, dependencies, | flow diagrams,
resources resources transaction diagrams
Interface List of everything a Identification, Interface files,
description designer, developer, tester function, interfaces parameter tables
needs to know to use design
entities that make up the
system
Detail Description of the internal Identification, Flow charts, PDL etc.
description design details of an entity processing, data

Table 2: Design views

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 57

Software Design

Object Oriented Design

Object oriented design is the result of focusing attention not on the
function performed by the program, but instead on the data that are
to do manipulated by the program. Thus, it is orthogonal to function
oriented design.

Object Oriented Design begins with an examination of the real
world “things” that are part of the problem to be solved. These
things (which we will call objects) are characterized individually in
terms of their attributes and behavior.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 58

Software Design

» Basic Concepts
Object Oriented Design is not dependent on any specific

implementation language. Problems are modeled using objects.
Objects have:

= Behavior (they do things)
= State (which changes when they do things)

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 59

Software Design

The various terms related to object design are:
I. Objects

The word “Object” is used very frequently and conveys different
meaning in different circumstances. Here, meaning is an entity able to
save a state (information) and which offers a number of operations
(behavior) to either examine or affect this state. An object is
characterized by number of operations and a state which remembers
the effect of these operations.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 60

Software Design

Il. Messages

Objects communicate by message passing. Messages consist of the
identity of the target object, the name of the requested operation and
any other operation needed to perform the function. Message are often
implemented as procedure or function calls.

. Abstraction

In object oriented design, complexity is managed using abstraction.
Abstraction is the elimination of the irrelevant and the amplification of
the essentials.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 61

Software Design

lv. Class

In any system, there shall be number of objects. Some of the objects
may have common characteristics and we can group the objects
according to these characteristics. This type of grouping is known as a
class. Hence, a class is a set of objects that share a common structure
and a common behavior.

We may define a class “car’ and each object that represent a car
becomes an instance of this class. In this class “car”, Indica, Santro,
Maruti, Indigo are instances of this class as shown in fig. 20.

Classes are useful because they act as a blueprint for objects. If we
want a new square we may use the square class and simply fill in the
particular details (i.e. colour and position) fig. 21 shows how can we
represent the square class.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 62

Software Design

Class Car

2
Q.
Y
Indica Santro/ -&

Fig.20: Indica, Santro, Maruti, Indigo are all instances of the class “car”

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 63

Software Design

Class Square

Square

Colour
Point[4]

Set Colour()
Draw()

— | S

Name

Attributes

Operations

Fig. 21: The square class

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

64

Software Design

v. Attributes

An attributes is a data value held by the objects in a class. The square
class has two attributes: a colour and array of points. Each attributes
has a value for each object instance. The attributes are shown as
second part of the class as shown in fig. 21.

vi. Operations

An operation is a function or transformation that may be applied to or
by objects in a class. In the square class, we have two operations: set
colour() and draw(). All objects in a class share the same operations.
An object “knows” its class, and hence the right implementation of the
operation. Operation are shown in the third part of the class as
indicated in fig. 21.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 65

Software Design

vil. Inheritance

Imagine that, as well as squares, we have triangle class. Fig. 22 shows
the class for a triangle.

Class Triangle

Triangle

Colour
Point[3]

Set Colour()
Draw()

Fig. 22: The triangle class

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 66

Software Design

Now, comparing fig. 21 and 22, we can see that there is some
difference between triangle and squares classes.

For example, at a high level of abstraction, we might want to think of a
picture as made up of shapes and to draw the picture, we draw each
shape in turn. We want to eliminate the irrelevant details: we do not
care that one shape is a square and the other is a triangle as long as
both can draw themselves.

To do this, we consider the important parts out of these classes in to a
new class called Shape. Fig. 23 shows the results.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 67

Software Design

Class shape
Shape Base class
Colour (super class)
Set Colour()
Draw()
inherits inherits
Class square Class triangle
Square Triangle
. Desired class .

Point[4] (subclasses) Point[3]
Draw() Draw()

Fig. 23: Abstracting common features in a new class

This sort of abstraction is called inheritance. The low level classes
(known as subclasses or derived classes) inherit state and behavior
from this high level class (known as a super class or base class).

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 68

Software Design

viil. Polymorphism

When we abstract just the interface of an operation and leave the
implementation to subclasses it is called a polymorphic operation and
process is called polymorphism.

IX. Encapsulation (Information Hiding)

Encapsulation is also commonly referred to as “Information Hiding”. It
consists of the separation of the external aspects of an object from the
internal implementation details of the object.

X. Hierarchy

Hierarchy involves organizing something according to some particular
order or rank. It is another mechanism for reducing the complexity of
software by being able to treat and express sub-types in a generic way.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 69

Software Design

Asset

_—

Bank Security Real Estate

N]

Savings Checking Stock Bond

Fig. 24: Hierarchy

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 70

Software Design

» Steps to Analyze and Design Object Oriented System

There are various steps in the analysis and design of an object
oriented system and are given in fig. 25

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 71

Problem
istatement

Create use
case model

|

Draw Activity

Software Design

Diagram (If reqd.)

v

Draw the
interaction
diagrams

I

Draw the
class diagram

|

Draw the
state chart,
object diagram
(If required)

Fig. 25: Steps for analysis & design of object
oriented system

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

]

Draw
component &
Deployment
Diagram

!

Design
documents

72

Software Design

I. Create use case model

First step is to identify the actors interacting with the system. We
should then write the use case and draw the use case diagram.

ii. Draw activity diagram (If required)

Activity Diagram illustrate the dynamic nature of a system by modeling
the flow of control form activity to activity. An activity represents an
operation on some class in the system that results in a change in the
state of the system. Fig. 26 shows the activity diagram processing an
order to deliver some goods.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 73

Software Design

!

[Receive orderj

T
| |

[Send order to J [Send invoice]
store for delivery L

¢ [Get Payment]
Deliver Goods
through appropriate
transport model

v
[Order closed J

:

Fig. 26: Activity diagram

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

74

Software Design

. Draw the interaction diagram

An interaction diagram shows an interaction, consisting of a set of
objects and their relationship, including the messages that may be
dispatched among them. Interaction diagrams address the dynamic

view of a system.
Steps to draws interaction diagrams are as under:

a) Firstly, we should identify that the objects with respects to every
use case.

b) We draw the sequence diagrams for every use case.

d) We draw the collaboration diagrams for every use case.

75

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Design

The object types used in this analysis model are entity objects,
interface objects and control objects as given in fig. 27.

o O O

Entity object Interface object Control object

Fig. 27: Object types

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 76

Software Design

Iv. Draw the class diagram

The class diagram shows the relationship amongst classes. There are
four types of relationships in class diagrams.

a) Association are semantic connection between classes. When
an association connects two classes, each class can send
messages to the other in a sequence or a collaboration
diagram. Associations can be bi-directional or unidirectional.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 77

b)

d)

Software Design

Dependencies connect two classes. Dependencies are
always unidirectional and show that one class, depends on the
definitions in another class.

Aggregations are stronger form of association. An
aggregation is a relationship between a whole and its parts.

&

Generalizations are used to show an inheritance relationship
between two classes.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 78

Software Design

v. Design of state chart diagrams

A state chart diagram is used to show the state space of a given class,
the event that cause a transition from one state to another, and the

action that result from a state change. A state transition diagram for a
“oook” in the library system is given in fig. 28.

Purchase Book is numbered .
o ook > New & stamped > ,ivallable
Book is Book is
returned iIssued
Book is v
oY Disposed old or
P < BT Issued

Fig. 28: Transition chart for “book”™ in a library system.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

79

Software Design

vi. Draw component and development diagram

Component diagrams address the static implementation view of a
system they are related to class diagrams in that a component typically
maps to one or more classes, interfaces or collaboration.

Deployment Diagram Captures relationship between physical
components and the hardware.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 80

Software Design

A software has to be developed for automating the manual library of a
University. The system should be stand alone in nature. It should be
designed to provide functionality’s as explained below:

Issue of Books:
% A student of any course should be able to get books issued.

»» Books from General Section are issued to all but Book bank
books are issued only for their respective courses.

“ A limitation is imposed on the number of books a student can
Issue.

A maximum of 4 books from Book bank and 3 books from
General section is issued for 15 days only.The software takes
the current system date as the date of issue and calculates date
of return.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 81

Software Design

*»» A bar code detector is used to save the student as well as book
information.

% The due date for return of the book is stamped on the book.
Return of Books:
% Any person can return the issued books.

% The student information is displayed using the bar code
detector.

“ The system displays the student details on whose name the
books were issued as well as the date of issue and return of the
book.

% The system operator verifies the duration for the issue.

% The information is saved and the corresponding updating take
place in the database.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 82

Software Design

Query Processing:

% The system should be able to provide information like:

“ Availability of a particular book.

“ Availability of book of any particular author.

“* Number of copies available of the desired book.
The system should also be able to generate reports regarding the
details of the books available in the library at any given time. The
corresponding printouts for each entry (issue/return) made in the
system should be generated. Security provisions like the ‘login
authenticity should be provided. Each user should have a user id and

a password. Record of the users of the system should be kept in the
log file. Provision should be made for full backup of the system.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 83

Software Design

T
Operator
F
Bar code
reader
O
P

Librarian %

4. Query book
User

iy

6. Generate report

"“ﬂ-\.\"
ey

7. Maintain login

Use case diagram for library management system

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 84

Software Design

x -@ O @)

- User - Login - Login Checker - Login Detail

| 1. Enter userid and Password |
]

2. Submit Details

i

Yy ____

3. Get login details

4. Check login
5. Error or |

SUCCES5 Msgd
4

LY
_____________.l

Sequence diagram—Login

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Design
r x O O 00O O O O

Ciperator . Bar code - Student Inf - Book Inf - Issue form - Sorry WMag Box D Student C Student Clssue book
reader controller controller details Izsue ook details
details
| 1.Read | | | | | I | |
: barcode : 2 Submit i i i i i i i
" barcode 1 I I) I I I I
L | i 3 Get student!detalls i L] : :
T T T Ll
1 1 1 1 I
4. validats stddent details | i _,J i :
:l 5 In wvalid ﬂtudeht o : : : :
t t I 1 I
& Check bock can 1 FL_ I 1 |
be Izssued dr not : I : I
1 . 1 1 I 1 I
2 Read :I |?. Cann't SELUE o | | 1 |
-
Bk cods _ : : | I : I
1 1 1 | I 1 I
¥ 1 1 I I 1 I
9. Submit Bk Code | 10. Check bodk can i | i |
- be izsued It_':-r nat : I : I
g1 11.Bdok cann't d : d :
belissusd o | : : :
T
12. Update details i H i
1 1 I
T T Ly 1 I
i 12]Add record | i I
: : : > i
i 114 Add record| __ !
15. lzzue su-:i::esﬂfu Iy i i i
g 1 I 1 I
1 I 1 I
I | I |
I I I I
1 I 1 I
1 I 1 I
1 I 1 I
| | | |
I I I I
1 I 1 I
1 I 1 I
1 I 1 I
1 I 1 I
1 I 1 I
1 I 1 I
1 I 1 I
1 I 1 I
1 I 1 I
1 I 1 I
1 I 1 I
! ! ! !

——
I
I
I
T T 1
I I I
1 1 1
I I I
I I I
I I I
I I I
1 1 1
I I I
I I I

Sequence diagram—issue book

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Design

r ¥ O O © O 0 +ro

- Book
returned

- Operator - Bar code - Return - Calculate cStudent - Student issue - Issus book
reader boak fine details book details details
| | | | | | |
| 1.Read i i i i i i
| | | | | | |
| code 1 o | | | |
2.Submit | 3 vglidate | I I I
> iffine l l I l
PR i i i i
4. Calculate | i i i
fine ! | | |
| | | |
| | |
| | |
| | |
| | | |
¥ I I I
5. Update i i i
A
6. Delete [i i
: >! :
| |
| _J |
| 7 Update | N
| |

| | U
B. Book returnefl successfully
i i i
- | | |
| | | |
| | | |
T | | | |
X I I I I
| | | |
! ! ! !

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Sequence diagram—return book

!

EE
; Usé‘r\

h!
%

|
L1
|

Software Design

}_Q

- Query book interface

O

- Query operator

O

- Book details

1
eqer name/author

Ly

User can be a
student,
librarian,
operator

Sequence diagram—query book

2. Get details

4. Show result

.,_I_

3. Search details

T
|
|
|
|
|
|
|
|
|
|
|

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Design
r 0 0 O O

- Operator - Update - Catalog - Book details s Issue Bk
catalog form controller details

1. Enter details J
oy

2. Submit details

-
3. Change details

4_If changes to books

.

-
|
|
|
|
|
|
|
|
|
|
|
|

Sequence diagram—maintain catalog

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Design

O O @)

. Report generate - Report : Complete
window generator database

| | |
i 1. Ent!ar and select the search ¢riteria

X

- Librarian

)] ,
2. Submit the criteria ! 3 Search |

4. Display report T ’|i
<

Sequence diagram—generate reports

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

90

o

- Librarian

Software Design

}_O

- Login detall

1. Enter details

form

5. Select Login name
to be deleted

2. Submit details

O

ot

4. Successfuly updated

.

- Login details
controller

2. Add/Update details

o

- Login
details
|

6. Submit id

=

-

8. Successfuly deleted

7. Delete details

k 4
1|

Sequence diagram—maintain login

-
|
|
|
|
|
|
|
|
|
|

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

91

Software Design

X O O O

- Operator - Student detail - Student detail - Student
form controller details
|

|
1 1
I I
! 1. Enter details !

P
2. Submit details
g 3. Add/Update details
4 Successfully updated U
+
I
5. Select student Id !
to be deleted e !
*— 6. Submit id ! !
" 7. Delete details o
’ 8. Successfully deleted U
|
|
L |
| |
| |
1 |
| |
| |
| |
| |
I |
| |
1 |

---1

Sequence diagram—maintain student details

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Design

Class diagram of entity classes

Book Details Student Details
= Book Id » Student Barcode Id
= Book Mame » Student Roll no.
e Author Mame « Mame
= Publisher » Course
= Copies in Book Bank » MNo. of Book Bank Issued
» Copies in General e Mo, of General Issued Login Details
=~ Add Book() = Get Student Details() * lserld
= |pdate Mo. of Copies() = Add Student() * User Name
X = Delete Student() = Password
: ~ Update Student() = User Role
|
+
i | ~ Add()
| ! = Delete()
: | =~ Update()
1 |
1 |
Issued Book Details :
Student Issued
o il Book Details
* Barcode Id
= Student Bar Code Id
s |ssued
» Book Bar Code Id
~ Add() Add
Ay
=~ Delete() ~ Del I:él
= |ssue() elete()
= Return()

Class diagram of entity classes

Multiple Choice Questions

Note: Choose most appropriate answer of the following questions:

5.1 The most desirable form of coupling is

(a) Control Coupling (b) Data Coupling
(¢) Common Coupling (d) Content Coupling
5.2 The worst type of coupling is
(a) Content coupling (b) Common coupling
(c) External coupling (d) Data coupling
5.3 The most desirable form of cohesion is
(a) Logical cohesion (b) Procedural cohesion
(c) Functional cohesion (d) Temporal cohesion

5.4 The worst type of cohesion is
(a) Temporal cohesion (b) Coincidental cohesion
(c) Logical cohesion (d) Sequential cohesion

5.5 Which one is not a strategy for design?
(a) Bottom up design (b) Top down design
(¢) Embedded design (d) Hybrid design

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

94

Multiple Choice Questions

5.6 Temporal cohesion means
(a) Cohesion between temporary variables
(b) Cohesion between local variable
(c) Cohesion with respect to time
(d) Coincidental cohesion

5.7 Functional cohesion means
(a) Operations are part of single functional task and are placed in same procedures
(b) Operations are part of single functional task and are placed in multiple procedures
(c) Operations are part of multiple tasks

(d) None of the above

5.8 When two modules refer to the same global data area, they are related as
(a) External coupled (b) Data coupled
(c) Content coupled (d) Common coupled

5.9 The module in which instructions are related through flow of control is
(a) Temporal cohesion (b) Logical cohesion
(c) Procedural cohesion (d) Functional cohesion

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 95

Multiple Choice Questions

5.10 The relationship of data elements in a module is called

(a) Coupling (b) Cohesion

(¢) Modularity (d) None of the above
5.11 A system that does not interact with external environment is called

(a) Closed system (b) Logical system

(c) Open system (d) Hierarchal system

5.12 The extent to which different modules are dependent upon each other is called
(a) Coupling (b) Cohesion
(¢) Modularity (d) Stability

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 96

Exercises

5.1 What is design? Describe the difference between conceptual design and
technical design.

5.2 Discuss the objectives of software design. How do we transform an
informal design to a detailed design?

5.3 Do we design software when we “write” a program? What makes
software design different from coding?

5.4 What is modularity? List the important properties of a modular system.
5.5 Define module coupling and explain different types of coupling.

5.6 Define module cohesion and explain different types of cohesion.

5.7 Discuss the objectives of modular software design. What are the effects
of module coupling and cohesion?

5.8 If a module has logical cohesion, what kind of coupling 1s this module
likely to have with others?

5.9 What problems are likely to arise if two modules have high coupling?

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 97

Exercises

5.10 What problems are likely to arise if a module has low cohesion?

5.11 Describe the various strategies of design. Which design strategy is most
popular and practical?

5.12 If some existing modules are to be re-used in building a new system,
which design strategy 1s used and why?

5.13 What is the difference between a flow chart and a structure chart?

5.14 Explain why 1t is important to use different notations to describe
software designs.

5.15 List a few well-established function oriented software design
techniques.

5.16 Define the following terms: Objects, Message, Abstraction, Class,
Inheritance and Polymorphism.

5.17 What is the relationship between abstract data types and classes?

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 98

Exercises

5.18 Can we have inheritance without polymorphism? Explain.

5.19 Discuss the reasons for improvement using object-oriented design.

5.20 Explain the design guidelines that can be used to produce “good
quality” classes or reusable classes.

5.21 List the points of a simplified design process.

5.22 Discuss the differences between object oriented and function oriented
design.

5.23 What documents should be produced on completion of the design
phase?

5.24 Can a system ever be completely “decoupled”? That is, can the degree
of coupling be reduced so much that there i1s no coupling between
modules?

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 99

Software
Metrics

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1

Software Metrics

Software Metrics: What and Why ?

1. How to measure the size of a software?

2. How much will it cost to develop a software?
3. How many bugs can we expect?

4. When can we stop testing?

5. When can we release the software?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

8.

9.

Software Metrics

What is the complexity of a module?
What is the module strength and coupling?
What is the reliability at the time of release?

Which test technique is more effective?

10. Are we testing hard or are we testing smart?

11. Do we have a strong program or a week test suite?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Metrics

Pressman explained as “A measure provides a quantitative
indication of the extent, amount, dimension, capacity, or size
of some attribute of the product or process”.

Measurement is the act of determine a measure

The metric is a quantitative measure of the degree to which
a system, component, or process possesses a given
attribute.

Fenton defined measurement as “ it is the process by which
numbers or symbols are assigned to attributes of entities in
the real world in such a way as to describe them according
to clearly defined rules”.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Metrics

= Definition

Software metrics can be defined as “The continuous application of
measurement based techniques to the software development
process and its products to supply meaningful and timely
management information, together with the use of those techniques
to improve that process and its products’.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 5

Software Metrics

= Areas of Applications

The most established area of software metrics is cost and size
estimation techniques.

The prediction of quality levels for software, often in terms of
reliability, is another area where software metrics have an important
role to play.

The use of software metrics to provide quantitative checks on
software design is also a well established area.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 6

Software Metrics

= Problems During Implementation

> Statement . Software development is to complex; it
cannot be managed like other parts of
the organization.

Management view : Forget it, we will find developers and
managers who will manage that
development.

> Statement . | am only six months late with project.

Management view : Fine, you are only out of a job.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 7

Software Metrics

> Statement . | am only six months late with project.
Management view : Fine, you are only out of a job.
» Statement . But you cannot put reliability constraints

In the contract.

Management view : Then we may not get the contract.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 8

Software Metrics

Categories of Metrics

Product metrics: describe the characteristics of the
product such as size, complexity, design features,
performance, efficiency, reliability, portability, etc.

Process metrics: describe the effectiveness and
quality of the processes that produce the software
product. Examples are:

effort required in the process

time to produce the product

effectiveness of defect removal during development
number of defects found during testing

maturity of the process

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 9

Software Metrics

Project metrics: describe the project characteristics
and execution. Examples are :

* number of software developers
- staffing pattern over the life cycle of the software

« cost and schedule

* productivity

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 O

Software Metrics

Token Count

The size of the vocabulary of a program, which consists of the
number of unique tokens used to build a program is defined as:

n=n+no

n :vocabulary of a program
where _ .

N, : number of unique operators

N, : number of unique operands

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1

Software Metrics

The length of the program in the terms of the total number of tokens
used is

N : program length
where
N, : total occurrences of operators

N, : total occurrences of operands

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 2

Software Metrics

Volume

V=N "log, n

The unit of measurement of volume is the common unit for

size “bits”. It i1s the actual size of a program if a uniform
binary encoding for the vocabulary is used.

Program Level
L=V*/V

The value of L ranges between zero and one, with L=1

representing a program written at the highest possible level
(i.e., with minimum size).

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 3

Software Metrics

Program Difficulty
D=1/L

As the volume of an implementation of a program increases,
the program level decreases and the difficulty increases.
Thus, programming practices such as redundant usage of
operands, or the failure to use higher-level control constructs
will tend to increase the volume as well as the difficulty.

Effort
E=V/L=D*V

The unit of measurement of E is elementary mental
discriminations.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 4

Software Metrics
= Estimated Program Length

N=nlog,n +n,log,n,

N =14 log,14+10 log, 10

= 53.34 + 33.22 = 86.56

The following alternate expressions have been published to
estimate program length.

N, =Log,(n,!)+log,(n,!)

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 5

Software Metrics

N, =mnLog,n,+n,log,n,

N, :771\/7771’”72\%

NS :(ﬂlogz 77)/2

The definitions of unique operators, unique operands, total
operators and total operands are not specifically delineated.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 6

Software Metrics

= Counting rules for C language

1. Comments are not considered.

2. The identifier and function declarations are not considered.
3. All the variables and constants are considered operands.

4. Global variables used in different modules of the same
program are counted as multiple occurrences of the same
variable.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 7

Software Metrics

Local variables with the same name in different functions are
counted as unique operands.

Functions calls are considered as operators.

All looping statements e.g., do {...} while (), while () {...}, for ()
{...}, all control statements e.g., if () {...},if () {...} else{...}, etc.
are considered as operators.

In control construct switch () {case:...}, switch as well as all the
case statements are considered as operators.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 8

10.

11.

12.

Software Metrics

The reserve words like return, default, continue, break, sizeof,
etc., are considered as operators.

All the brackets, commas, and terminators are considered as
operators.

GOTO is counted as an operator and the label is counted as
an operand.

The unary and binary occurrence of “+” and “” are dealt
separately. Similarly “*” (multiplication operator) are dealt with
separately.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 9

Software Metrics

13. In the array variables such as “array-name [index]” “array-
name” and “index” are considered as operands and [] Is

considered as operator.

14. In the structure variables such as “struct-name, member-name”
or “struct-name -> member-name”, struct-name, member-name
are taken as operands and ‘.’, ->" are taken as operators. Some
names of member elements in different structure variables are

counted as unique operands.

15. All the hash directive are ignored.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 20

Software Metrics

= Potential Volume
V* = (2+77§)log2(2+77;)

= Estimated Program Level / Difficulty

Halstead offered an alternate formula that estimate the program
level.

L= 2772 /(771N2)

where
I 7N,

7 2m,

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 2 1

D=

Software Metrics

= Effort and Time

E=V/L=V*D
=(n,N,Nlog,n)/2n,
T=E/f

B is normally set to 18 since this seemed to give best results in
Halstead’'s earliest experiments, which compared the predicted
times with observed programming times, including the time for
design, coding, and testing.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 22

Software Metrics

= |[anguage Level

A=LxV*=[V

Using this formula, Halstead and other researchers determined the
language level for various languages as shown in Table 1.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 23

Software Metrics

Language Language Level A Variance ¢
PL/1 1.53 0.92
ALGOL 1.21 0.74
FORTRAN 1.14 0.81
CDC Assembly 0.88 0.42
PASCAL 2.54 -
APL 2.42 -

C 0.857 0.445

Table 1: Language levels

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Metrics

Example- 6.1

Consider the sorting program in Fig. 2 of chapter 4. List out the
operators and operands and also calculate the values of software

science measures like 77, N,V ,E, A etc.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 25

Solution

Software Metrics

The list of operators and operands is given in table 2.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Operators Occurrences Operands Occurrences

int 4 SORT 1

() 5} X i/

: 4 n 3

[] 7 i 8

if 2 j 7

< 2 save 3

(Contd.)...

26

Software Metrics

11 1ml 3

for 2 2 2

= 6 1 3

— 1 0 1

< = 2 — —

+ + 2 — —

return 2 — _

() 3 — —
n, =14 N, =53 n, = 10 N, = 38

Table 2: Operators and operands of sorting program of fig. 2 of chapter 4

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 27

Software Metrics

Here N,=53 and N,=38. The program length N=N,+N,=91
Vocabulary of the program 77 =17}, +11, =14 +10=24

Volume V = NX10g2 n
=91 x log,24 = 417 bits

The estimated program length]QI of the program
=14 log,14 + 10 log,10
=14 *3.81 + 10 * 3.32
= 53.34 + 33.2 = 86.45

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

28

Software Metrics

Conceptually unique input and output parameters are
*k
represented by 7],

_3 {x: array holding the integer to be sorted. This is used

77 both as input and output}.

{N: the size of the array to be sorted}.

The potential volume V* = 51og,5 =11.6

Since L=V*/V

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 29

Software Metrics

Lo 6.027

417

D=1/L

L =37.03

" 0.027

Estimated program level

=2 2 104034
n N, 14 38

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

30

Software Metrics

We may use another formula

V=VxL=417x0.038 =15.67

E=V/L=DxV
=417/ 0.038 = 10973.68

Therefore, 10974 elementary mental discrimination are
required to construct the program.

T=E/p= 10974 _ 610seconds =10 minutes

18

This is probably a reasonable time to produce the program,
which is very simple

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 3 1

Software Metrics

#include < stdic.h =

fdefine MAXLINE 100

int getline({char line[],int max) ;

int strindex(char sourcel[],char search forl[]);

char pattern|[]="ould”;

int main()

{

char line[MAXLINE] ;

int found = 0;

while({getline (line , MAXLINE) =0)

if (etrindex(line, pattern)>=0)

{

printf (“%s”,1line) ;

found++;

}

return found;

Table 3

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...

32

Software Metrics

int getline (char =[],int 1lim)

{

int <,1i=0;

while(--1im = 0 && (c=getchar())!= EOF && cl='‘n’)

gi++]=c;

if (e=='%n")

2li++] = o;

s[i] = *\o';

return i;

)

int sgtrindex{char =[],char t[])

{

int 1i,7,k;

for(i=0;s[i] !='%\O"';i++)

{
for(j=1i,k=0;t[k]l != '"N\Oo',=[]] ==tlkl;j++,k++];
if (k=0 && t[k] =='%0")

return 1i;

}

return -1;

Table 3

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Metrics

Example- 6.2

Consider the program shown in Table 3. Calculate the various
software science metrics.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 34

Solution

Software Metrics

List of operators and operands are given

in Table 4.

Operators Occurrences Operands Occurrences
main () 1 — —
- 1 Extern variable pattern 1
for 2 main function line 3
== 3 found 2
= 4 getline function s 3
getchar 1 lim 1

Table 4

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...

35

Software Metrics

() 1 £ 5
&& 3] 4
-- 1 Strindex function = 2
return 4 t 3
++ 6 I 5
printf 1 J 3
> = 1 k 6
strindex 1 Numerical Operands 1 1
If 3 MAXLINE 1
> 3 0 8
getline 1 N 4
while 2 \n’ 2
{1 5 strings “ould” 1
= 10 — —=
[9 i —
6 — e
14 —_ —
EOF 1 — —
n, =24 N, = 84 N, = 18 N, = 55

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 5

36

Software Metrics

Program vocabulary 77 = 42

Program length N =N, +N,

=84 + 55 =139
Estimated length N =24log, 24 +18log, 18 =185.115
% error = 24.91
Program volume V =749.605 bits
. 2 1,
Estimated program level = —X
m N,
2 18
=0.02727

24 55

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

37

Software Metrics

Minimal volume *=20.4417

Effort =V /L

_ 748.605
02727

= 27488.33 elementary mental discriminations.

27488.33

18
= 1527.1295 seconds

= 25.452 minutes

TimeT= E/f=

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 38

Software Metrics

Data Structure Metrics

Payroll Name/ Social Security | Withholding rates Gross pay withholding
No./ Pay Rate/ Number | Overtime factors Net pay
of hours worked Insurance premium | Pay ledgers
Rates
Spreadsheet | Item Names/ ltem | Cell computations Spreadsheet of items
amounts/ Relationships | Sub-totals and totals
among items
Software Program size/ No. of | Model parameters Est. project effort
Planner software developers on | Constants Est. project duration
team Coefficients

Fig.1: Some examples of input, internal, and output data

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 39

Software Metrics

= The Amount of Data

One method for determining the amount of data is to count the
number of entries in the cross-reference list.

A variable is a string of alphanumeric characters that is defined by a
developer and that is used to represent some value during either
compilation or execution.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 40

Software Metrics

1. finclude < stdic. h =

2. struct check

3. {

4. float gross, tax, net;

5. } pay;

6. float hours, rate;

2 void main ()

8. {

g, while (! feof (stdin))
10. {
11. gcanf ("%f %f", & hours, & rate);
12. rpay. gross = hours * rate;
13. pay. tax = 0.25 * pay. gross;
14. rpay. net = pay. grogs - pay. tax;
15. printf ("$f %f %f/n", pay. gross, pay. tax, pay. net);
16. }
17 }

Fig.2: Payday program

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

41

Software Metrics

check 2
gross 4 12 13 14 15
hours 6 11 12
net 4 14 15
pay 5 12 13 13 14
14 14 15 15 15
rate 6 11 12
tax 4 13 14 15

Fig.3: A cross reference of program payday

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

42

Software Metrics

feof 9

stdin 10

Fig.4: Some items not counted as VARS

7], = VARS + unique constants + labels.

Halstead introduced a metric that he referred to as to be a count
. . . . 2

of the operands in a program — including all variables, constants, and

labels. Thus,

1, = VARS +unique constants + labels

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 43

Software Metrics

1 | # include < stdio. h =

2 | struct [check]

3|

4 float [greoss], [tax], [net];

5 |} [payl;

6 | float [hours], [rate);

7 | void main ()

8 | {

9 |while (! feof (stdin))

10 {

11 gcanf ("% £ % £", & [hour], & [rate]);

12 [pav] . [gross] = [hours] * [rate];

13 [pay] . [tax] = 0.25 * [pay] . [gross];

14 [pay] . [net] = [pay] . [gross] - [pay] . [tax];
15 printf ("% £ ¥ £ & £/n", [pay] . [gross] [pay] . [tax], [pay] . [net]);
16 }

17 |}

Fig.6: Program payday with operands in brackets

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

44

Software Metrics

The Usage of Data within a Module

v" Live Variables

Definitions :

1. A variable is live from the beginning of a procedure to the end
of the procedure.

2. A variable is live at a particular statement only if it is referenced
a certain number of statements before or after that statement.

3. A variable is live from its first to its last references within a
procedure.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 4 5

Software Metrics

1 #include < stdic. h >

2

3 void swap (int x [], int K)

4 {

5 int t;

6 £ = x[K];

7 x[K] = x[K + 1];

8 Xx[E + 1] = t;

9 }

10

11 void main ()

12 {

13 int i, j, last, size, continue, af[l00], b[100];
14 scanf ("% 4", & size);

15 for (§ = 1; jJ < = size; 7 + +)
16 scanf ("%d %4A", & aljl, & bl(j]l;
17 last = size;

18 continue = 1;

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

CcoNntys.

Software Metrics

19 while (continue)

20 {

21 continue = 0;

22 last = last-1;

23 i=1;

24 while (i « = last)

25 {

26 if (af[i]l > a[i + 1])

27 {

28 continue = 1;

29 swap (a, 1);

30 swap (b, 1);

31 }

32 i=1+1;

33 }

34 }

35 for (j = 1; j <« = size; J ++)
36 printf ("%d #d\n", aljl, bljl);
37 }

Fig.6: Bubble sort program

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

47

Software Metrics

It is thus possible to define the average number of live variables,

(LV) which is the sum of the count of live variables divided by
the count of executable statements in a procedure. This Is a
complexity measure for data usage in a procedure or program.
The live variables in the program in fig. 6 appear in fig. 7 the

average live variables for this program is

22 3647

34

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 48

Software Metrics

Line Live Variables Count
4 0
5 0
6 t, x, Kk 3
7 t, x, K 3
8 t, x, k 3
9 0
10 0
11 - 0
12 - 0
13 0
14 size 1
15 size, | 2
16 Size, j, a,b 4

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

cont...
49

Software Metrics

Line Live Variables Count
17 size, j, a, b, last 5
18 size, j, a, b, last, continue 6
19 size, j, a, b, last, continue 6
20 size, j, a, b, last, continue 6
21 size, j, a, b, last, continue 6
22 size, j, a, b, last, continue 6
23 size, |, a, b, last, continue, i 7
24 size, |, a, b, last, continue, i 7
25 size, j, a, b, continue, | 6
26 size, j, a, b, continue, | 6
27 size, j, a, b, continue, | 6
28 size, j, a, b, continue, | 6
29 size, j,a, b, i 5

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

cont...
50

Software Metrics

Line Live Variables Count
30 size, j, a, b, i 5
31 size, j, a, b, i 5
32 size, j,a, b, i 5
33 size,j,a, b 4
34 size, j,a, b 4
35 size,j,a, b 4
36 jab 3
37 -- 0

Fig.7: Live variables for the program in fig.6

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

o1

Software Metrics

v Variable spans

21 scanf (“%d %d, &a, &b)
32 X =a;

45 y=a-—Db;

53 z=a;

60 printf (“%d %d, a, b);

Fig.: Statements in ac program referring to variables a and b.

The size of a span indicates the number of statements that pass
between successive uses of a variables

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 52

Software Metrics

= Making program-wide metrics from intra-module metrics

For example if we want to characterize the average number of live variables
for a program having modules, we can use this equation.

£ LV,

LV program =
m

where (LV). is the average live variable metric computed from the ith module

The average span size (SP) for a program of n spans could be computed by

using the equation.

DR

l

SP program =
n

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 53

Software Metrics

= Program Weakness

A program consists of modules. Using the average number of live
variables (LV) and average life variables (), the module weakness
has been defined as

WM:ﬁ*y

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 54

Software Metrics

A program is normally a combination of various modules, hence
program weakness can be a useful measure and is defined as:

LWM,
Wp ="
m
where, WM, :weakness of th module
WP :weakness of the program

m : number of modules in the program

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 5 5

Software Metrics

Example- 6.3

Consider a program for sorting and searching. The program sorts an
array using selection sort and than search for an element in the
sorted array. The program is given in fig. 8. Generate cross
reference list for the program and also calculatgyangAWM for the
program.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 56

Software Metrics

Solution

The given program is of 66 lines and has 11 variables. The variables

are a, |, J, item, min, temp, low, high, mid, loc and option.

1

[

Wwooow =1 3y e W

10

f**i

/***% PROGRAM TO SORT AN ARRAY USING SELECTION SORT & THEN SEARCH

*******!

/**%%* FOR AN ELEMENT IN THE SORTED ARRAY *******%/

f**i

#include <=stdio.hs=

#define MAX 10

main ()

{

(Contd.)...

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 57

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Metrics

int a[MAX] ;
int i,j,item,min, temp;
int low=0,high,mid, loc;

char option;

for (i=0;i<MAX;1++)

{

printf ("Enter af®d]:",1i);

scanf ("%d", &a[i]) ;
}
/* selection sort */
for (i=0;i<(MAX-1);i++)
{
min=i;
for (j=1i+1; J<MARX;j++)
{

if (a[minl=alj])

(Contd.)...

58

28
29
30
31
32
33
34
35
36
37
38

39
40
41
42
43

Software Metrics

{
temp=a[min] ;
a[minl=alj];

alj]l=temp;

}

printf ("\n The Sorted Arravy:\n");
for (i1i=0; 1<MAX;i++)
printf ("\n al%d]=%d",i,ali]);

printf ("\n Do you want to search any element in the array

(Y/N) :");
fflush(=stdin) ;
gscanf ("%sc¢", &option) ;
if (toupper (option)=='Y")
{
printf ("\n Enter the item to be sgearched :");
(Contd.)...

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 59

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Software Metrics

gscanf ("&d", &item);
high=MAX;
mid=(int) (low+high) /2;

while ((low<=high)é&&(item!=a[mid]))

{

}

if (item>a[mid])
low=mid+1;

else high=mid-1;
mid=(int) (low+high) /2;

if (low>high)

{

loc=0:;

printf ("\n No such item is present in the array\n");

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...

60

59
60
61
62

63
64
65
66

J

Software Metrics

i1f (item==a [mid])

{

loc=mid;

printf ("\n The item %d is present at location %d in the sorted

array\n",item, loc) ;

}

printf ("\n Sorting & Searching done");

Fig.8: Sorting & searching program

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

61

Cross-Reference list of the program is given below:

Software Metrics

a 11 18 19 27 27 29 30 30 31 37 47 49 59
i 12 16 16 16 18 19 22 22 22 24 36 36 36 37 37
j 12 25 25 25 27 30 31
item 12 44 47 49 59 62
min 12 24 27 29 30
temp 12 29 31
low 13 46 47 50 52 54
high 13 45 46 47 51 52 54
mid 13 46 47 49 50 51 52 59 61
loc 13 56 61 62
option| 14 40 41

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

62

Live Variables per line are calculated as:

Line Live Variables Count
13 low 1
14 low 1
15 low 1
16 low, i 2
17 low, i 2
18 low, i, a 3
19 low, i, a 3
20 low, i, a 3
22 low, i, a 3
23 low, i, a 3
24 low, i, a, min 4
25 low, i, a, min, j 5
26 low, i, &, min, | 9

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

cont. 63

Software Metrics

Line Live Variables Count
27 low, i, a, min, j 5
28 low, i, a, min, j 5
29 low, i, &, min, |, temp 6
30 low, i, @, min, |, temp 6
31 low, i, a, |, temp 3)
32 low, i, a 3
33 low, i, a 3
34 low, i, a 3
35 low, i, a 3
36 low, i, a 3
37 low, i, a 3
38 low, a 2
39 low, a 2

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

cont..,

Software Metrics

Line Live Variables Count
40 low, a, option 3
41 low, a, option 3
42 low, a 2
43 low, a 2
44 low, a, item 3
45 low, a, item, high 4
46 low, a, item, high, mid)
47 low, a, item, high, mid)
48 low, a, item, high, mid 5
49 low, a, item, high, mid 5
50 low, a, item, high, mid 5
51 low, a, item, high, mid 5
52 low, a, item, high, mid 5

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

cont. 65

Software Metrics

Line Live Variables Count
53 low, a, item, high, mid 5
54 low, a, item, high, mid 5
55 a, item, mid 3
56 a, item, mid, loc 4
57 a, item, mid, loc 4
58 a, item, mid, loc 4
59 a, item, mid, loc 4
60 item, mid, loc 3
61 item, mid, loc 3
62 item, loc)

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

cont. 66

Software Metrics

Line

Live Variables

Count

63

64

65

66

Total

N | O | O | oo

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

67

Software Metrics

Sum of count of live variables

Average number of live variables (LV) =
Count of executable statements

LV = 74 _ 3.28
53

_ Sum of count of live variables

Total number of variables

174
= ——=15.8
4 11

Module Weakness (WM) = LV x 4
WM =3.28x15.8=51.8

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 68

Software Metrics

= The Sharing of Data Among Modules

A program normally contains several modules and share coupling
among modules. However, it may be desirable to know the amount
of data being shared among the modules.

Fig.10: Three modules from an imaginary program

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 69

Software Metrics

Fig.11: "Pipes” of data shared among the modules

Main a,b,] swap

Fig.12: The data shared in program bubble

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Metrics

Information Flow Metrics

Component : Any element identified by decomposing a
(software) system into its constituent
parts.

Cohesion : The degree to which a component

performs a single function.

Coupling : The term used to describe the degree of
linkage between one component to
others in the same system.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 71

Software Metrics

= The Basic Information Flow Model

Information Flow metrics are applied to the Components of a
system design. Fig. 13 shows a fragment of such a design, and for
component ‘A’ we can define three measures, but remember that

these are the simplest models of IF.

1. ‘FAN IN" is simply a count of the number of other Components
that can call, or pass control, to Component A.

2. ‘FANOUT is the number of Components that are called by
Component A.

3. This is derived from the first two by using the following formula.
We will call this measure the INFORMATION FLOW index of

Component A, abbreviated as IF(A).
IF(A) = [FAN IN(A) x FAN OUT (A)]?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 72

Software Metrics

Fig.13: Aspects of complexity

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

73

Software Metrics

The following is a step-by-step guide to deriving these most simple
of IF metrics.

1. Note the level of each Component in the system design.

2. For each Component, count the number of calls so that
Component — this is the FAN IN of that Component. Some
organizations allow more than one Component at the highest
level in the design, so for Components at the highest level which
should have a FAN IN of zero, assign a FAN IN of one. Also
note that a simple model of FAN IN can penalize reused
Components.

3. For each Component, count the number of calls from the
Component. For Component that call no other, assign a FAN
OUT value of one.

cont...

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 74

Software Metrics

Calculate the IF value for each Component using the above
formula.

Sum the IF value for all Components within each level which is
called as the LEVEL SUM.

Sum the IF values for the total system design which is called the
SYSTEM SUM.

For each level, rank the Component in that level according to
FAN IN, FAN OUT and IF values. Three histograms or line plots
should be prepared for each level.

Plot the LEVEL SUM values for each level using a histogram or
line plot.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 7 5

Software Metrics

= A More Sophisticated Information Flow Model

a = the number of components that call A.

b = the number of parameters passed to A from components
higher in the hierarchy.

c = the number of parameters passed to A from components
lower in the hierarchy.

d = the number of data elements read by component A.

Then:
FAN IN(A)=a+b+c+d

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 76

Software Metrics

Also let:
e = the number of components called by A;

f = the number of parameters passed from A to components higher
in the hierarchy;

g = the number of parameters passed from A to components lower
In the hierarchy;

h = the number of data elements written to by A.

Then:
FAN OUT(A)=e+f+g+h

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 77

Object Oriented Metrics

Terminologies
S.No Term Meaning/purpose

1 | Object Object is an entity able to save a state (information)
and offers a number of operations (behavior) to
either examine or affect this state.

2 | Message | A request that an object makes of another object to
perform an operation.

3 |Class A set of objects that share a common structure and
common behavior manifested by a set of methods;
the set serves as a template from which object can
be created.

4 | Method an operation upon an object, defined as part of the
declaration of a class.

5 | Attribute Defines the structural properties of a class and
unique within a class.

6 | Operation | An action performed by or on an object, available
to all instances of class, need not be unique.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

78

Object Oriented Metrics

Terminologies
S.No Term Meaning/purpose
7 | Instantiation | The process of creating an instance of the object

and binding or adding the specific data.

8 | Inheritance | A relationship among classes, where in an object
in a class acquires characteristics from one or
more other classes.

9 | Cohesion The degree to which the methods within a class
are related to one another.

10 | Coupling Object A is coupled to object B, if and only if A

sends a message to B.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

79

Object Oriented Metrics

Measuring on class level

coupling
iInheritance
methods
attributes
cohesion

Measuring on system level

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

80

Object Oriented Metrics

Size Metrics:
 Number of Methods per Class (NOM)

 Number of Attributes per Class (NOA)

« Weighted Number Methods in a Class (WMC)

— Methods implemented within a class or the sum of the
complexities of all methods

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 81

Object Oriented Metrics

Coupling Metrics:

Response for a Class (RFC)

— Number of methods (internal and external) in a class.

Data Abstraction Coupling(DAC)

- Number of Abstract Data Types in a class.

Coupling between Objects (CBO)

— Number of other classes to which it is coupled.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

82

Object Oriented Metrics

« Message Passing Coupling (MPC)

— Number of send statements defined in a class.

e Coupling Factor (CF)

— Ratio of actual number of coupling in the system to
the max. possible coupling.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

83

Object Oriented Metrics

Cohesion Metrics:
e | COM: Lack of cohesion in methods

— Consider a class C; with n methods M;, M,...., M,. Let (1)
= set of all instance variables used by method M. There
are n such sets {l.},....... {l.}. Let

P={(,1)IT, "I, =0}andQ={ (I, I)IT, NI, %0}
Ifall n{(Ii},........ .(In)}sets are 0 then P=0
LCOM =lPI-1QLif IPI>1Q]I

= () otherwise

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

84

Object Oriented Metrics

« Tight Class Cohesion (TCC)

_ Percentage of pairs of public methods of the class
with common attribute usage.

* Loose Class Cohesion (LCC)

— Same as TCC except that this metric also
consider indirectly connected methods.

 Information based Cohesion (ICH)

— Number of invocations of other methods of the same
class, weighted by the number of parameters of the
iInvoked method.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 8 5

Object Oriented Metrics

Inheritance Metrics:

DIT - Depth of inheritance tree

NOC - Number of children

— only immediate subclasses are counted.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

86

Object Oriented Metrics

Inheritance Metrics:
 AIlF- Attribute Inheritance Factor

— Ratio of the sum of inherited attributes in all classes of the
system to the total number of attributes for all classes.

A LC)
> AC,)
A(C)=A(C)+A(C)

AIF =

TC= total number of classes
Ad (Ci) = number of attribute declared in a class

Ai (Ci) = number of attribute inherited in a class

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 87

Object Oriented Metrics

Inheritance Metrics:
« MIF- Method Inheritance Factor

— Ratio of the sum of inherited methods in all classes of the
system to the total number of methods for all classes.

C

- Mi(C;i

MIF = =L ()
D MdC)

MdoCi)=Mi(Ci)+ Ma(Ci)
T'C= total number of classes
Md(Ci)= the number of methods declared in a class

Mi(Ci)= the number of methods inherited in a class

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 88

Use-Case Oriented Metrics

« Counting actors

Type Description Factor
Simple Program interface 1
Average Interactive or protocol 2

driven interface

Complex Graphical interface 3

Actor weighting factors
o Simple actor: represents another system with a defined interface.

o Average actor: another system that interacts through a text based
interface through a protocol such as TCP/IP.

o Complex actor: person interacting through a GUI interface.

The actors weight can be calculated by adding these values together.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 89

Use-Case Oriented Metrics

« Counting use cases

Type Description Factor

Simple 3 or fewer transactions 5
Average 4 to 7 transactions 10
Complex More than 7 transactions 15

Transaction-based weighting factors

The number of each use case type is counted in the software and
then each number is multiplied by a weighting factor as shown in
table above.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 90

L R L VA L

Web Engineering Project Metrics

Number of static web pages
Number of dynamic web pages
Number of internal page links
Word count

Web page similarity

Web page search and retrieval
Number of static content objects

Number of dynamic content objects

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

91

Metrics Analysis

Statistical Techniques
e Summary statistics such as mean, median, max. and min.

« (@raphical representations such as histograms, pie charts and
box plots.

* Principal component analysis
« Regression and correlation analysis

« Reliability models for predicting future reliability.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 92

Metrics Analysis

Problems with metric data:

Normal Distribution
Outliers
Measurement Scale

Multicollinearity

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

93

Metrics Analysis

Common pool of data:

The selection of projects should be representative and not all
come from a single application domain or development styles.

No single very large project should be allowed to dominate the
pool.

For some projects, certain metrics may not have been collected.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 94

Metrics Analysis

Pattern of Successful Applications:

Any metric is better then none.

Automation is essential.

Empiricism is better then theory.

Use multifactor rather then single metrics.

Don’t confuse productivity metrics with complexity metrics.
Let them mature.

Maintain them.

Let them die.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 95

Multiple Choice Questions

Note: Choose most appropriate answer of the following questions:

6.1 Which one is not a category of software metrics ?
(a) Product metrics (b) Process metrics
(¢) Project metrics (d) People metrics

6.2 Software science measures are developed by

(a) M.Halstead (b) B.Littlewood
(c) T.J.McCabe (d) G.Rothermal
6.3 Vocabulary of a program is defined as:
(@)n =1, +1, (b)yn =m, -1,
()i =1, %7, (d)yn=m/m,

6.4 In halstead theory of software science, volume is measured in bits. The bits are
(a) Number of bits required to store the program

(b) Actual size of a program if a uniform binary encoding scheme for
vocabulary 1s used

(¢) Number of bits required to execute the program
(d) None of the above

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 96

Multiple Choice Questions

6.5 In Halstead theory, effort i1s measured in
(a) Person-months (b) Hours
(c) Elementary mental discriminations (d) None of the above

6.6 Language level is defined as

(@)A=LV (D)A=LV
(c)A=LV* (d)A=LV

6.7 Program weakness is
(@)WM =LV Xy (L)WM =LV | y
(@WWM =LV +y (d) None of the above

6.8 ‘FAN IN’ of a component A 1s defined as

(a) Count of the number of components that can call, or pass control, to
component A

(b) Number of components related to component A

(¢) Number of components dependent on component A
(d) None of the above

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 97

Multiple Choice Questions

6.9 ‘FAN OUT’ of a component A 1s defined as
(a) number of components related to component A
(b) number of components dependent on component A
(¢c) number of components that are called by component A
(d) none of the above

6.10 Which is not a size metric?
(a) LOC (b) Function count
(c) Program length (d) Cyclomatic complexity

6.11 Which one is not a measure of software science theory?
(a) Vocabulary (b) Volume
(c) Level (d) Logic

6.12 A human mind is capable of making how many number of elementary mental
discriminations per second (i.e., stroud number)?

(a) 5 to 20 (b) 20 to 40
©) 1to 10 (d) 40 to 80

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 98

Multiple Choice Questions

6.13 Minimal implementation of any algorithm was given the following name by
Halstead:

(a) Volume (b) Potential volume
(c) Effective volume (d) None of the above

6.14 Program volume of a software product is

(a) V=N log,n (b) V=(N/2) log,n

(c) V=2N log,n (d) V=N log,n+1
6.15 Which one is the international standard for size measure?

(a) LOC (b) Function count

(c) Program length (d) None of the above
6.16 Which one 1s not an object oriented metric?

(a) RFC (b) CBO

(c)DAC (d) OBC

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

99

Multiple Choice Questions

6.17 Which metric also consider indirect connected methods?

(a) TCC (b) LCC
(c) Both of the above (d) None of the above
6.18 depth of inheritance tree (DIT) can be measured by:
(a) Number of ancestors classes (b) Number of successor classes
(¢) Number of failure classes (d) Number of root classes

6.19 A dynamic page is:
(a) where contents are not dependent on the actions of the user
(b) where contents are dependent on the actions of the user
(c) where contents cannot be displayed

(d) None of the above
6.20 Which of the following is not a size metric?
(a) LOC (b) FP

(¢) Cyclomatic Complexity (d) program length

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 OO

Exercises

6.1 Define software metrics. Why do we really need metrics in software?

6.2 Discus the areas of applications of software metrics? What are the
problems during implementation of metrics in any organizations?

6.3 What are the various categories of software metrics? Discuss with the
help of suitable example.

6.4 Explain the Halstead theory of software science. Is it significant in
today’s scenario of component based software development?

6.5 What is the importance of language level in Halstead theory of software
science’?

6.6 Give Halstead’s software science measure for:
(1) Program Length (11) Program volume
(111) Program level (iv) Effort
(v) Language level

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 01

Exercises

6.7 For a program with number of unique operators 77, =20 and number of

unique operands 77, =40 , Compute the following:
(1) Program volume (i1) Effort and time

(111) Program length (1v) Program level

6.8 Develop a small software tool that will perform a Halstead analysis on a
programming language source code of your choice.

6.9 Write a program in C and also PASCAL for the calculation of the roots
of a quadratic equation, Find out all software science metrics for both the
programs. Compare the outcomes and comment on the efficiency and
size of both the source codes.

6.10 How should a procedure identifier be considered, both when declared
and when called/ What about the identifier of a procedure that is passed
as a parameter to another procedure?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 02

Exercises

6.11 Assume that the previous payroll program is expected to read a file
containing information about all the cheques that have been printed. The
file 1s supposed to be printed and also used by the program next time it is
run, to produce a report that compares payroll expenses of the current
month with those of the previous month. Compute functions points for
this program. Justify the difference between the function points of this
program and previous one by considering how the complexity of the
program 1s affected by adding the requirement of interfacing with
another application (in this case, itself).

6.12 Define data structure metrics. How can we calculate amount of data in a
program?

6.13 Describe the concept of module weakness. Is it applicable to programs
also.

6.14 Write a program for the calculation of roots of a quadratic equation.
Generate cross reference list for the program and also calculate for this
program.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 03

Exercises

6.15 Show that the value of SP at a particular statement 1s also the value of
LV at that point.

6.16 Discuss the significance of data structure metrics during testing.

6.17 What are information flow metrics? Explain the basic information flow
model.

6.18 Discuss the problems with metrics data. Explain two methods for the
analysis of such data.

6.19 Show why and how software metrics can improve the software process.
Enumerate the effect of metrics on software productivity.

6.20 Why does lines of code (LOC) not measure software nesting and control
structures?

6.21 Several researchers in software metrics concentrate on data structure to

measure complexity. Is data structure a complexity or quality issue, or
both?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 04

Exercises

6.22 List the benefits and disadvantages of using Library routines rather than
writing own code.

6.23 Compare software science measure and function points as measure of
complexity. Which do you think more useful as a predictor of how much
particular software’s development will cost?

6.24 Some experimental evidence suggests that the initial size estimate for a
project affects the nature and results of the project. Consider two
different managers charged with developing the same application. One
estimates that the size of the application will be 50,000 lines, while the
other estimates that it will be 100,000 lines. Discuss how these estimates
affect the project throughout its life cycle.

6.25 Which one is the most appropriate size estimation technique and why?

6.26 Discuss the object oriented metrics. What is the importance of metrics
in object oriented software development ?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 05

Exercises

6.27 Define the following: RFC, CBO, DAC, TCC, LCC & DIT.

6.28 What is the significance of use case metrics? Is it really important to
design such metrics?

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 06

Software
Reliabihity

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1

Software Reliability

Basic Concepts

There are three phases in the life of any hardware component i.e.,
burn-in, useful life & wear-out.

In burn-in phase, failure rate is quite high initially, and it starts
decreasing gradually as the time progresses.

During useful life period, failure rate is approximately constant.

Failure rate increase in wear-out phase due to wearing out/aging of
components. The best period is useful life period. The shape of this
curve is like a “bath tub” and that is why it is known as bath tub
curve. The “bath tub curve” is given in Fig.7.1.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 2

Software Reliability

ABurn-in
i Useful life i Wear-out
| |
| |
| |
T | |
| |
| |
Failure : :
rate | I
|
|
|
|
|
! >
Time ——p

Fig. 7.1: Bath tub curve of hardware reliability.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Reliability

We do not have wear out phase in software. The expected curve for
software is given in fig. 7.2.

4 Testing

phase _
Useful life

Obsolescence

!

Failure
rate

Time ——»

Fig. 7.2: Software reliability curve (failure rate versus time)

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 4

Software Reliability

Software may be retired only if it becomes obsolete. Some of
contributing factors are given below:

v change in environment

change 1n infrastructure/technology
major change in requirements
increase in complexity

extremely difficult to maintain

deterioration in structure of the code

slow execution speed

AN N N N Y NN

poor graphical user interfaces

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 5

Software Reliability

What is Software Reliability?

“Software reliability means operational reliability. Who cares how
many bugs are in the program?

As per IEEE standard: “Software reliability is defined as the ability of
a system or component to perform its required functions under
stated conditions for a specified period of time”.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 6

Software Reliability

Software reliability is also defined as the probability that a software
system fulfills its assigned task in a given environment for a
predefined number of input cases, assuming that the hardware and
the inputs are free of error.

“It is the probability of a failure free operation of a program for a
specified time in a specified environment”.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 7

Software Reliability

= Failures and Faults

A fault is the defect in the program that, when executed under
particular conditions, causes a failure.

The execution time for a program is the time that is actually spent by
a processor in executing the instructions of that program. The

second kind of time is calendar time. It is the familiar time that we
normally experience.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 8

Software Reliability

There are four general ways of characterising failure occurrences in
time:

1. time of failure,
2. time interval between failures,
3. cumulative failure experienced up to a given time,

4. failures experienced in a time interval.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 9

Software Reliability

Failure Number

Failure Time (sec)

Failure interval (sec)

1 8 8
2 18 10
3 25 7
4 36 11
5 45 9
6 57 12
7 71 14
8 86 15
9 104 18
10 124 20
11 143 19
12 169 26
13 197 28
14 222 25
15 250 28

Table 7.1: Time based failure specification

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

10

Software Reliability

Time (sec) Cumulative Failures Failure in interval (30 sec)
30 3 3
60 6 3
90 8 2
120 9 1
150 11 2
180 12 1
210 13 1
240 14 1

Table 7.2: Failure based failure specification

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

11

Software Reliability

Value of random Probability
variable (failures | plapsed time t, = 1 hr | Elapsed time t = 5 hr
in time period)

0 0.10 0.01
1 0.18 0.02
2 0.22 0.03
3 0.16 0.04
4 0.11 0.05
S 0.08 0.07
6 0.05 0.09
/ 0.04 0.12
8 0.03 0.16
9 0.02 0.13

Table 7.3: Probability distribution at times t, and tg

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

12

Software Reliability

Value of random Probability
variable (failures | plapsed time t, = 1 hr | Elapsed time t = 5 hr
in time period)
10 0.01 0.10
11 0 0.07
12 0 0.05
13 0 0.03
14 0 0.02
15 0 0.01
Mean failures 3.04 7.77

Table 7.3: Probability distribution at times t, and tg

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

13

Software Reliability

A random process whose probability distribution varies with time to
time is called non-homogeneous. Most failure processes during test
fit this situation. Fig. 7.3 illustrates the mean value and the related
failure intensity functions at time t, and tg. Note that the mean
failures experienced increases from 3.04 to 7.77 between these two
points, while the failure intensity decreases.

Failure behavior is affected by two principal factors:

v" the number of faults in the software being executed.

v’ the execution environment or the operational profile of
execution.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 4

Software Reliability

10

Mean Failures [

5

Mean value Function

—110

Failure Intensity

_| (failures/hr)

3]

Failure Intensity

10

Fig. 7.3: Mean Value & failure intensity functions.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

15

Software Reliability

Environment

The environment is described by the operational profile. The
proportion of runs of various types may vary, depending on the
functional environment. Examples of a run type might be:

1. a particular transaction in an airline reservation system or a
business data processing system,

2. a specific cycle in a closed loop control system (for
example, in a chemical process industry),

3. a particular service performed by an operating system for a
user.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 6

Software Reliability

The run types required of the program by the environment can be
viewed as being selected randomly. Thus, we define the operational
profile as the set of run types that the program can execute along
with possibilities with which they will occur. In fig. 7.4, we show two
of many possible input states A and B, with their probabilities of
occurrence.

The part of the operational profile for just these two states is shown
in fig. 7.5. A realistic operational profile is illustrated in fig.7.6.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 7

Software Reliability

* Input state A
(Pa=0.12)

* Input state B
(Pg = 0.08)

Fig. 7.4: Input Space

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

18

Software Reliability

Probability of occurrence
AN

015
0.12

0.10F

0.08

0.05F

— >
Fig. 7.5: Portion of operational profile

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

19

Software Reliability

Probability of occurrence
N

Input state

Fig. 7.6: Operational profile

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

20

Software Reliability

Fig.7.7 shows how failure intensity and reliability typically vary
during a test period, as faults are removed.

Reliability 1.0

Failure

Intensity Reliability

Failure
Intensity

Time (hr)

Fig. 7.7: Reliability and failure intensity

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 2 1

Software Reliability

Uses of Reliability Studies

There are at least four other ways in which software reliability
measures can be of great value to the software engineer, manager
or user.

1. you can use software reliability measures to evaluate software
engineering technology quantitatively.

2. software reliability measures offer you the possibility of
evaluating development status during the test phases of a
project.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 22

Software Reliability

3. one can use software reliability measures to monitor the
operational performance of software and to control new features
added and design changes made to the software.

4. a quantitative understanding of software quality and the various
factors influencing it and affected by it enriches into the
software product and the software development process.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 23

Software Reliability

Software Quality

Different people understand different meanings of quality like:

% conformance to requirements

% fitness for the purpose

¢+ level of satisfaction

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

24

Software Reliability

Attribute
domain

Reliability

Attributes

Correctness

Consistency and precision

Robustness

Simplicity

Traceability

Accuracy

Clarity and accuracy of documentation

Conformity of operational environment

Completeness

Efficiency

Testability

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

25

Software Reliability

Attribute

domain Attributes

I

Accuracy and clarity of documentation

Modularity

Maintainability

Readability

Simplicity

‘——‘—_‘——_

——

Modifiability

Adaptability Expandability

Portability

Fig 7.8: Software quality attributes

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

26

Software Reliability

Reliability The extent to which a software performs its intended
functions without failure.
Correctness The extent to which a software meets its

specifications.

Consistency &

The extent to which a software is consistent and give

precision results with precision.

Robustness The extent to which a software tolerates the
unexpected problems.

Simplicity The extent to which a software is simple in its
operations.

Traceability The extent to which an error is traceable in order to
fix it.

Usability The extent of effort required to learn, operate and

understand the functions of the software

(Contd.)...

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 27

Software Reliability

8 Accuracy Meeting specifications with precision.
9 Clarity & The extent to which documents are clearly & accurately
Accuracy of written.
documentation
10 | Conformity of The extent to which a software is in conformity of
operational operational environment.
environment
11 | Completeness | The extent to which a software has specified functions.
12 | Efficiency The amount of computing resources and code required
by software to perform a function.
13 | Testability The effort required to test a software to ensure that it
performs its intended functions.
14 | Maintainability | The effort required to locate and fix an error during

maintenance phase.

(Contd.)...

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 28

Software Reliability

15 | Modularity It is the extent of ease to implement, test, debug and
maintain the software.

16 | Readability The extent to which a software is readable in order to
understand.

17 | Adaptability The extent to which a software is adaptable to new
platforms & technologies.

18 | Modifiability The effort required to modify a software during
maintenance phase.

19 | Expandability The extent to which a software is expandable without
undesirable side effects.

20 | Portability The effort required to transfer a program from one

platform to another platform.

Table 7.4: Software quality attributes

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 29

Software Reliability

McCall Software Quality Model

Product Product

Transition | revision

Product
operation

Fig 7.9: Software quality factors

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

30

Software Reliability

i. Product Operation

Factors which are related to the operation of a product are
combined. The factors are:

= (Correctness

= Efficiency

= Integrity
= Reliability
= Usabillity

These five factors are related to operational performance,
convenience, ease of usage and its correctness. These factors play
a very significant role in building customer’s satisfaction.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 3 1

Software Reliability

. Product Revision

The factors which are required for testing & maintenance are
combined and are given below:

= Maintainability
= Flexibility
= Testability
These factors pertain to the testing & maintainability of software.

They give us idea about ease of maintenance, flexibility and testing

effort. Hence, they are combined under the umbrella of product
revision.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 32

Software Reliability

li. Product Transition

We may have to transfer a product from one platform to an other
platform or from one technology to another technology. The factors
related to such a transfer are combined and given below:

= Portability
= Reusability

= Interoperability

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 33

Software Reliability

Most of the quality factors are explained in table 7.4. The remaining
factors are given in table 7.5.

Sr.No. | Quality Factors Purpose

1 Integrity The extent to which access to software or data by
the unauthorized persons can be controlled.

2 Flexibility The effort required to modify an operational program.

3 Reusability The extent to which a program can be reused in
other applications.

4 Interoperability | The effort required to couple one system with
another.

Table 7.5: Remaining quality factors (other are in table 7.4)

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 34

QU8.| |ty Crlterla Faitors Criteria

Operahility

Training

Communicativensss

10 valume

/O rate

Access control

Access audrt

Storage efficiency

Exzcution efficiency

Traceabhility

Completeness

Error tolerance

Consistency

Simplicity

Concisensss

Instrumentation

Expandability

Generality

Self descriptiveness

Modularity

|
|
|
|
|
|
|
|
|
|
|
ACCUracy |
|
|
|
|
|
|
|
|
|
|

Machine Independence

| Software system independence]

—— Communication commonality |

—_ Data commonality]

Fig 7.10: McCall’s quality model

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Reliability

ol alE& 2l |22|2]|2]2
Zle|f|s |25 2|22 |2 2
Sr. No. Quality Criteria = T g |2 8|2 |= | @ g |93

TlE|E|E | S8R ||| % (28
SIS E|S|eE |8 |k |z |£([2

1. Operability *

2. Training x

3. Communicativeness *

4. IO volume *

5. I/O rate x

a. Access control ®

7. Access Andit x

8. Storage efficiency %

9. Execution Efficiency %

10. Traceability ®

11. Completeness ®

12, Accuracy x

13. Error tolerance x

14. Consistency = = x

15. Simplicity ® * x®

16. Conciseness x

17. Instrumentation ®

15. Expandability b

19. Cenerality b ®

20. Self-descriptiveness x ® * x

21. Modularity x e * ® ®

232. Machine independence x %

23. SMW system independence x® 5

24, Comnmnication commonality ®

25. Data commeonality ®

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 7.5(a):
Relation
between quality
factors and
quality criteria

36

Software Reliability

Operability

The ease of operation of the software.

Training

The ease with which new users can use the
sysiem.

Communicativeness

The ease with which inputs and outputs can be
assimilated.

I/0O volume

It is related to the I/O volume.

I/O rate

It is the indication of I/O rate.

Access control

The provisions for control and protection of the
software and data.

Access audit

The ease with which software and data can be
checked for compliance with standards or other
requirements.

Storage efficiency

The run time storage requirements of the software.

Execution efficiency

The run-time efficiency of the software.

(Contd.)...

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 37

Software Reliability

10 | Traceability The abilty to Ilink software components to
requirements.

11 | Completeness | The degree to which a full implementation of the
required functionality has been achieved.

12 | Accuracy The precision of computations and output.

13 | Error tolerance | The degree to which continuity of operation is ensured
under adverse conditions.

14 | Consistency The wuse of uniform design and implementation
techniques and notations throughout a project.

15 | Simplicity The ease with which the software can be understood.

16 | Conciseness The compactness of the source code, in terms of lines
of code.

17 | Instrumentation | The degree to which the software provides for

measurements of its use or identification of errors.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...
38

Software Reliability

18 | Expandability The degree to which storage requirements or
software functions can be expanded.
19 | Generability The breadth of the potential application of software
components.
20 | Self- The degree to which the documents are self
descriptiveness explanatory.
21 | Modularity The provision of highly independent modules.
22 | Machine The degree to which software is dependent on its
independence associated hardware.
23 | Software system | The degree to which software is independent of its
independence environment.
24 | Communication The degree to which standard protocols and
commonality interfaces are used.
25 | Data commonality | The use of standard data representations.

Table 7.5 (b): Software quality criteria

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 39

Software Reliability

Boehm Software Quality Model

Primary uses

Intermediate constructs

Primitive constructs

Device independence

GGeneral utility

As 15 utility

Maintainability

Portability

Completeness

Reliability

Accuracy

Consistency

Efficiency

Device efficiency

Human engineering

Accessibility

Communicativeness

Testability

Structuredness

Fig.7.11: The Boehm software quality model

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Understandability

Self descriptiveness

Conciseness

T~

Modifiability

Leqibility

Augmentability

40

Software Reliability

ISO 9126

= Functionality
= Reliability
Usability

Efficiency
= Maintainability
= Portability

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

41

Software Reliability

Characteristic/
Attribute

Short Description of the Characteristics and the
concerns Addressed by Attributes

Functionality

Characteristics relating to achievement of the basic
purpose for which the software is being engineered

« Suitability The presence and appropriateness of a set of functions for
specified tasks
« Accuracy The provision of right or agreed results or effects

Interoperability

Software’s ability to interact with specified systems

« Security Ability to prevent unauthorized access, whether accidental
or deliberate, to program and data.

Reliability Characteristics relating to capability of software to
maintain its level of performance under stated conditions
for a stated period of time

» Maturity Attributes of software that bear on the frequency of failure

by faults in the software

(Contd.)...

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 42

Software Reliability

* Fault tolerance

Ability to maintain a specified level of performance in cases
of software faults or unexpected inputs

» Recoverability

Capability and effort needed to reestablish level of
performance and recover affected data after possible
failure.

Usability

Characteristics relating to the effort needed for use, and on
the individual assessment of such use, by a stated implied
set of users.

» Understandability

The effort required for a user to recognize the logical
concept and its applicability.

» Learnability

The effort required for a user to learn its application,
operation, input and output.

» Operability

The ease of operation and control by users.

Efficiency

Characteristic related to the relationship between the level
of performance of the software and the amount of
resources used, under stated conditions.

(Contd.)...

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 43

Software Reliability

 Time behavior

The speed of response and processing times and
throughout rates in performing its function.

 Resource
behavior

The amount of resources used and the duration of such
use in performing its function.

Maintainability

Characteristics related to the effort needed to make
modifications, including corrections, improvements or
adaptation of software to changes in environment,
requirements and functions specifications.

Analyzability

The effort needed for diagnosis of deficiencies or causes
of failures, or for identification of parts to be modified.

Changeability

The effort needed for modification, fault removal or for
environmental change.

Stability

The risk of unexpected effect of modifications.

Testability

The effort needed for validating the modified software.

(Contd.)...

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 44

Software Reliability

Portability Characteristics related to the ability to transfer the
software from one organization or hardware or software
environment to another.

« Adaptability The opportunity for its adaptation to different specified
environments.

+ Installability The effort needed to install the software in a specified
environment.

« Conformance The extent to which it adheres to standards or

conventions relating to portability.

Replaceability

The opportunity and effort of using it in the place of other
software in a particular environment.

Table 7.6: Software quality characteristics and attributes — The ISO 9126

view

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 45

Software Reliability

=
0
3 S
o far 8
il @
o 7]
3 =
o
8 S
- f—:
g <
2 2
c |5 SO 9126 e ~
O | & '| quality | 5]
> \ S model é’ f 3
= =
= =
1]
@
]
%fj:.‘, ; e vy o
£ a””abi,rﬁy gincet B
E e T o
2 2
E "Er
Analyz- | Change- | 5t- | Test- Time |Resource
ability | ability [ability | ability |behaviour| behaviour

K | \ N
Fig.7.12: ISO 9126 quality model

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Reliability

Software Reliability Models

= Basic Execution Time Model

r

—

u
A=A 1-= (1)
(1) =4, v

o=

a

Failure intensity ()

Fig.7.13: Failure intensity A as a
function of u for basic model

»
W, (total failures)
— Mean failure experienced () -»

dottware Engineering (3 ed.), By K.K Aggarwal & Yogesh dingh, Copyright © New Age International Publishers, 2007 47

=

=]

— Mean failures experienced (i) —»

Software Reliability

dA -4,
du 'V,

(2)

Execution time (1) —»

Fig.7.14: Relationship betweer{ & J for basic model

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

48

Software Reliability

For a derivation of this relationship, equation 1 can be written as:

au(@) _ o [_H@)
dt ’ V,

The above equation can be solved for £#(7) and result in :

—A,T
(3)
VO

H(T) =V,| 1—exp

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 49

Software Reliability

The failure intensity as a function of execution time is shown in
figure given below

- AT

A(T) = A, exp >
0

Tt
Q

Failure intensity (&) —»

Execution time (1) ——»

Fig.7.15: Failure intensity versus execution time for basic model

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 50

Software Reliability

Derived quantities

Ag - Initial failure intensity
& Ap - Present failure intensity
ho Mg - Failure intensity objective

Al - Expected number of additional failures to be
T) experienced to reach failure intensity objective.
".“p ———————————

Fig.7.16: Additional failures required to be experienced to reach the

Software Engineering (3" ed.), By K.K Aggarwal & @Qj@@l{ Np@ight © New Age International Publishers, 2007

o1

Software Reliability

Fig.7.17: Additional time required to reach the
objective

This can be derived in mathematical form as:

AT=&Ln &
A\ A

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 52

Software Reliability

Example- 7.1

Assume that a program will experience 200 failures in infinite time. It has
now experienced 100. The initial failure intensity was 20 failures/CPU hr.

(i) Determine the current failure intensity.
(i) Find the decrement of failure intensity per failure.

(iii) Calculate the failures experienced and failure intensity after 20 and 100
CPU hrs. of execution.

(iv)Compute addition failures and additional execution time required to
reach the failure intensity objective of 5 failures/CPU hr.

Use the basic execution time model for the above mentioned calculations.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 53

Software Reliability

Solution
Here V=200 failures

1 =100 failures
A, =20 failures/CPU hr.

(i) Current failure intensity:

_ 111 &
A(u) = 20[1 v }

0
100 .
=20 l_ﬁ =20(1-0.5) =10 failures/CPU hr

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

54

Software Reliability
(i) Decrement of failure intensity per failure can be calculated as:

dA _—4 __ 20 _ 5 1/cPUR

(iii) (a) Failures experienced & failure intensity after 20 CPU hr:

— AT
=V 1- 0
U(T) VOE exp[7 D
—20x%20
= 200(1 — exp(00 D =200(1—exp(1-2))

=200(1-0.1353) = 1'73failures

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 55

Software Reliability

A7) =4, exp(_‘;107)
0

—20%20
200

(b) Failures experienced & failure intensity after 100 CPU hr:

—A,T
H(T) = V({l - eXp[v D

= 200(1 — exp(— 2(2);01 00)j = 200 failures(almost)

AT)=4, exp[_ ;LOT]

Vo

=20 exp(j =20 exp(—2) =2.71failures | CPU hr

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 56

Software Reliability

~ 20 exp(_ 2(2)50100j — 0.000908 failures/ CPU hr

(iv) Additional failures (Au) required to reach the failure intensity
objective of 5 failures/CPU hr.

Voli; 2 y_(200) 0 o o
Aﬂ—[zj(ﬂp ﬂF)—(0 j(lO 5) = 50 failures

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 57

Software Reliability

Additional execution time required to reach failure intensity objective
of 5 failures/CPU hr.

_ @Ln(%j — 6.93CPU hr.

20

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 58

Software Reliability

Logarithmic Poisson Execution Time Model

Failure Intensity

A(u) = Ay exp(—6u)

-
[=]

Failure intensity (A)—»

— Mean failures experienced (u) —»

Fig.7.18: Relationship between M & A

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

59

Software Reliability

dA
== =~ 1,0 exp(—16) i _ _op
du du

<
=}
=
=
!
o
=,
=
=
3,
[
-
fad,
0
0
=)
3
o
o
o
@

—»

Basic model

Mean failures
experienced (1)

Execution time (t) —»

Fig.7.19: Relationship between

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 60

Software Reliability

u(r) = %Ln(loé’f+ 1)

A7) = A, (4,07 +1)

1 (2
Apr=—Ln| 22
=5

1| 1 1 (4)
O| Ar Ap | A =Present failureintensity

AT

A = Failure intensity objective

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 61

Software Reliability

Example- 7.2

Assume that the initial failure intensity is 20 failures/CPU hr. The failure
intensity decay parameter is 0.02/failures. We have experienced 100
failures up to this time.

(i) Determine the current failure intensity.
(if) Calculate the decrement of failure intensity per failure.

(iii) Find the failures experienced and failure intensity after 20 and 100 CPU
hrs. of execution.

(iv) Compute the additional failures and additional execution time required to
reach the failure intensity objective of 2 failures/CPU hr.

Use Logarithmic Poisson execution time model for the above mentioned
calculations.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 62

Software Reliability

Solution

A, =20 failures/CPU hr.
1 =100 failures

6 =0.02/tailures

(i) Current failure intensity:

A(u) = A, exp(=6u)
= 20 exp (-0.02 x 100)

= 2.7 failures/CPU hr.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

63

Software Reliability

(i) Decrement of failure intensity per failure can be calculated as:
di_
du

=-.02 x 2.7 = -.054/CPU hr.

—04

(iii) (a) Failures experienced & failure intensity after 20 CPU hr:
1
u(t) = 5Ln(209T+ 1)

1)2 Ln(20x0.02x20+1) =109 failures

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 64

Software Reliability

A(t)= A, /(4,07 +1)

=(20)/(20x.02%x20+1) =2.22 failures/ CPU hr.

(b) Failures experienced & failure intensity after 100 CPU hr:

u(7) = % Ln(A,07+1)

1
002

Ln(20x0.02x100+1) =186 failures
A(t)= A, /(4,07 +1)

=(20)/(20%.02x100+1) =0.4878 failures/ CPU hr.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

65

Software Reliability

(iv) Additional failures (Ax) required to reach the failure intensity
objective of 2 failures/CPU hr.

ApL = an A _ ! Ln ﬂ] =15 failures
6 A, 0.02 2

ar=t| Lo Lo VL L 6 scpune
6|4, A, | 00202 2.7

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 66

Software Reliability

Example- 7.3

The following parameters for basic and logarithmic Poisson models are
given:

(a) Determine the addition failures and additional execution time required to
reach the failure intensity objective of 5 failures/CPU hr. for both models.

(b) Repeat this for an objective function of 0.5 failure/CPU hr. Assume that
we start with the initial failure intensity only.

Basic execution time model Logarithmic Poisson
execution time model

A =10 failures/CPU hr A =30 failures/CPU hr
6 =0.25/failure

V =100 failures

[

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 67

Software Reliability

Solution

(a) (i) Basic execution time model

V
:_O(ﬂp _AF)

0

110—0(10 5) =50 failures

/lP (Present failure intensity) in this case is same as /10 (initial
failure intensity).

Now, AT = E Ln(ﬁj
A \ A

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 68

Software Reliability

@Ln(mj 6.93 CPU hr.
10 5

(i) Logarithmic execution time model

1 (2
Au=2ra 22
H=% n[ﬂJ

R

0.025

AT:l L1
o\ 4. 4,

L 1) _666CPUN
0.025 "\5 30

Ln(350 j 71.67 Failures

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

69

Software Reliability

Logarithmic model has calculated more failures in almost some duration of
execution time initially.

(b) Failure intensity objective (ﬂF)= 0.5 failures/CPU hr.

(1) Basic execution time model

V V A
Au=-"2(1,-1 At=—21Ln =L
ya! Zo(P F) (2 Py n(/lpj

100 10
%(10—0.5)=95 failures :—Ln(5j=30 CPU/hr

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 70

Software Reliability

(i) Logarithmic execution time model

1 (A
Au=—pn 22
. "[z,,j

T 0025 105
Ar=t L_1
0\ 1. A,

= : t_1 =78.66 CPU/hr
0.02510.5 30

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

: Ln(ﬂj =164 failures

Software Reliability

= (Calendar Time Component

The calendar time component is based on a debugging process
model. This model takes into account:

1. resources used in operating the program for a given
execution time and processing an associated quantity of
failure.

2. resources quantities available, and

3. the degree to which a resource can be utilized (due to
bottlenecks) during the period in which it is limiting.

Table 7.7 will help in visualizing these different aspects of the
resources, and the parameters that result.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 72

Software Reliability

Resource usage

Usage parameters
requirements per

Planned parameters

Resource CPU hr Failure Quantities | Utilisation
available

Failure identification 0, U, P, 1

personnel

Failure correction 0 i P, P

personnel

Computer time oc Mg P, P

Fig. : Calendar time component resources and parameters

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

73

Software Reliability

Hence, to be more precise, we have

X =uAu+6 At (for computer time)
Xf = ,UfA,U (for failure correction)
X, =, Au+6,Art (for failure identification)

dx, /dt=060 +uA

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

74

Software Reliability

Calendar time to execution time relationship

dt/dt=(/P.p)dx,/dt

dt/dt =6 +ul) Pp,

75

Software Reliability

P,

v

Execution time t

Fig.7.20: Instantaneous calendar time to execution time ratio

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 76

Software Reliability

FC
| ’ IC L
Failure : Failure e
correction + identification
personnel ! personnel !
limited ' limited '+ Computer time
segment ' segment + limited segment

v

Execution time 1

Fig.7.21: Calendar time to execution time ratio for different
limiting resources

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Reliability

Example- 7.4

A team run test cases for 10 CPU hrs and identifies 25 failures. The effort
required per hour of execution time is 5 person hr. Each failure requires 2
hr. on an average to verify and determine its nature. Calculate the failure

identification effort required.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 78

Software Reliability

Solution

As we know, resource usage Iis:

X,=01+u.u
Here 0, =15 person hr. =25 tailures
7 =10 CPU hrs. . =2 hrs./failure

Hence, X,=5(10) + 2 (25)
=50 + 50 = 100 person hr.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

79

Software Reliability

Example- 7.5

Initial failure intensity (A,) for a given software is 20 failures/CPU hr. The
failure intensity objective (A.) of 1 failure/CPU hr. is to be achieved.

Assume the following resource usage parameters.

Resource Usage Per hour Per failure
Failure identification effort 2 Person hr. 1 Person hr.
Failure Correction effort 0 5 Person hr.
Computer time 1.5 CPU hr. 1 CPU hr.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 80

Software Reliability

(a) What resources must be expended to achieve the reliability
improvement? Use the logarithmic Poisson execution time model with a
failure intensity decay parameter of 0.025/failure.

(b)If the failure intensity objective is cut to half, what is the effect on
requirement of resources ?

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 81

Solution

@ Ayl L,{

1
0.025

Software Reliability

Ln(?j =119 failures

AT:l :
0\ A,

1
O 025

Software Enginee

1
Ap

(Lij L (1-0.05)=38 CPU hrs.

20) 0.025

ring (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

82

Hence

Software Reliability

X, = Au+0,At

=1(119) + 2 (38) = 195 Person hrs.

X = U AU
=5 (119) = 595 Person hrs.

X, =uAu+0 At

-1 (119) + (1.5) (38) = 176 CPU hr.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

83

Software Reliability
(b) A. =0.5 failures/CPU hr.

Au : Ln(ﬂj =148 failures

T 0.025 105

: (: 1j=78CPUh1r.

T= —
0.02510.5 20

So, =1 (148) + 2 (78) = 304 Person hrs.

X
Xe=5(148) = 740 Person hrs.
X

|
F
c=1(148) + (1.5)(78) = 265 CPU hrs.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Reliability

Hence, if we cut failure intensity objective to half, resources requirements
are not doubled but they are some what less. Note that Az is
approximately doubled but increases logarithmically. Thus, the resources
increase will be between a logarithmic increase and a linear increase for
changes in failure intensity objective.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 85

Software Reliability

Example- 7.6

A program is expected to have 500 faults. It is also assumed that one fault
may lead to one failure only. The initial failure intensity was 2 failures/CPU
hr. The program was to be released with a failure intensity objective of 5
failures/100 CPU hr. Calculated the number of failure experienced before

release.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 86

Software Reliability

Solution

The number of failure experienced during testing can be calculated using
the equation mentioned below:

Aﬂ:%(ﬂp _Z’F)

0

Here V, =500 because one fault leads to one failure

A, = 2 failures/CPU hr.

A. =5 failures/100 CPU hr.
= (0.05 failures/CPU hr.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 87

Software Reliability

500
—(

So Al = 2-0.05)

= 487 failures

Hence 13 faults are expected to remain at the release instant of
the software.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 88

Software Reliability

= The Jelinski-Moranda Model
A)=0(N —i+1)

where
¢ = Constant of proportionality
N = Total number of errors present

| = number of errors found by time interval t.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

89

Software Reliability

|
|
|
|
T—————-
|
|
|
—_———— e e

b —

LW

No
(N= 1L~
(N=2)p | -mm -
(N=3)p | -mm -

Relation betweent & A

Fig.7.22

90

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Reliability

Example- 7.7

There are 100 errors estimated to be present in a program. We have
experienced 60 errors. Use Jelinski-Moranda model to calculate

failure intensity with a given value of ¢=0.03. What will be failure
intensity after the experience of 80 errors?

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 9 1

Software Reliability

Solution
N = 100 errors
| = 60 failures
¢ =0.03
We know A(t) =0.03(100 —60 +1)

= 0.03(100-60+1)
= 1.23 failures/CPU hr.

After 80 failures A(¢) =0.03(100—-80+1)
- 0.63 failures/CPU hr.

Hence, there is continuous decrease in the failure intensity as the
number of failure experienced increases.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 92

Software Reliability

* The Bug Seeding Model

The bug seeding model is an outgrowth of a technique used to
estimate the number of animals in a wild life population or fish in a

pond.
N n

! 4

N+N, n+n

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 93

Software Reliability

= Capability Maturity Model

It is a strategy for improving the software process, irrespective of the
actual life cycle model used.

Optimizing I 5
Managed »
4
Defined 2
3
Repeatable -
2
Initial ~—
1

Fig.7.23: Maturity levels of CMM

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 94

Software Reliability

Maturity Levels:

v

v

Initial (Maturity Level 1)

Repeatable (Maturity Level 2)

Defined (Maturity Level 3)
Managed (Maturity Level 4)

Optimizing (Maturity Level 5)

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

95

Software Reliability

Maturity Level

Characterization

Initial Adhoc Process
Repeatable Basic Project Management
Defined Process Definition
Managed Process Measurement
Optimizing Process Control

Fig.7.24: The five levels of CMM

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Reliability

= Key Process Areas

The key process areas at level 2 focus on the software project’s
concerns related to establishing basic project management controls,
as summarized below:

Requirements Management (RM) Establish a common relationship between the customer
requirements and the developers in order to understand
the requirements of the project.

Software Project Planning (PP) Establish reasonable plans for performing the software
engineering and for managing the software project.

Software Project Tracking and Establish adequate visibility into actual progress so that

Oversight (PT) management can take effective actions when the soft-

ware project’s performance deviates significantly from
the software plans.

Software Subcontract Select qualified software subcontractors and manage
Management (SM) them effectively.
Software Quality Assurance (QA) Provide management with appropriate visibility into the

process being used by the software project and of the
products being built.

Software Configuration Establish and maintain the integrity of the products of
Management (CM) the software project throughout the project’s software
life cycle.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 97

Software Reliability

The key process areas at level 3 address both project and
organizational issues, as summarized below:

Organization Process Focus (PF) Establish the organizational responsibility for software
process activities that improve the organization’s over-
all software process capability.

Organization Process Definition (PD) Develop and maintain a usable set of software process

assets that improve process performance across the
projects and provide a basis for cumulative, long-term
benefits to the organization.

Training Program (TP) Develop the skills and knowledge of individuals so that
they can perform their roles effectively and efficiently.

Integrated Software Integrate the software engineering and management

Management (IM) activities into a coherent, defined software process that

is tailored from the organization’s standard software
process and related process assets.

(Contd.)...

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 98

Software Reliability

Software Product Engineering (PE)

Inter group Coordination (IC)

Peer Reviews (PR)

Consistently perform a well-defined engineering proc-
ess that integrates all the software engineering activi-
ties to produce correct, consistent software products ef-
fectively and efficiently.

Establish a means for the software engineering group
to participate actively with the other engineering groups
so the project 1s better able to satisfy the customer’s
needs effectively and efficiently.

Remove defects from the software work products early
and efficiently. An important corollary effect is to de-
velop a better understanding of the software work prod-
ucts and of the defects that can be prevented.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 99

Software Reliability

The key process areas at level 4 focus on establishing a quantitative
understanding of both the software process and the software work
products being built, as summarized below:

Quantitative Process Control the process performance of the software project
Management (QP) quantitatively.

Software Quality Management (QM) Develop a quantitative understanding of the quality of
the project’s software products and achieve specific qual-
ity goals.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 OO

Software Reliability

The key process areas at level 5 cover the issues that both the
organization and the projects must address to implement continuous
and measurable software process improvement, as summarized
below:

Defect Prevention (DP) Identify the causes of defects and prevent them from
recurring.

Technology Change Management Identify beneficial new technologies (i.e., tools, methods,

(TM) and processes) and transfer them into the organization
in an orderly manner.

Process Change Continually improve the software processes used in the

Management (PC) organization with the intent of improving software

quality, increasing productivity, and decreasing the cycle
time for product development.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 01

Software Reliability

Common Features

Commitment to Perform (CO)

Ability to Perform (AB)

Activities Performed (AC)

Measurement and Analysis (ME)

Verifying Implementation (VE)

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Desecribes the actions the organizations must take to en-
sure that the process is established and will endure. It
includes practices on policy and leadership.

Describes the preconditions that must exist in the project
or organization to implement the software process com-
petently. It includes practices on resources, organiza-
tional structure, training, and tools.

Describes the role and procedures necessary to imple-
ment a key process area. It includes practices on plans,
procedures, work performed, tracking, and corrective
action.

Desecribes the need to measure the process and analyze
the measurements. It includes examples of measure-
ments.

Describes the steps to ensure that the activities are per-
formed in compliance with the process that has been
established. It includes practices on management re-
views and audits.

102

Software Reliability

= |SO 9000

The SEI capability maturity model initiative is an attempt to improve
software quality by improving the process by which software is
developed.

ISO-9000 series of standards is a set of document dealing with
quality systems that can be used for quality assurance purposes.
ISO-9000 series is not just software standard. It is a series of five
related standards that are applicable to a wide variety of industrial
activities, including design/ development, production, installation,
and servicing. Within the ISO 9000 Series, standard ISO 9001 for
quality system is the standard that is most applicable to software
development.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 03

Software Reliability

= Mapping ISO 9001 to the CMM
1. Management responsibility
2. Quality system
3. Contract review

Design control

Document control

Purchasing

A -

Purchaser-supplied product

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 04

10.

11.

12.
13.
14.

Software Reliability

Product identification and traceability
Process control

Inspection and testing

Inspection, measuring and test equipment

Inspection and test status

Control of nonconforming product

Corrective action

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

105

15.
16.

17.

18.

19.
20.

Software Reliability

Handling, storage, packaging and delivery

Quality records
Internal quality audits
Training

Servicing

Statistical techniques

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

106

Software Reliability

= (Contrasting ISO 9001 and the CMM

There is a strong correlation between ISO 9001 and the CMM,
although some issues in ISO 9001 are not covered in the CMM, and
some issues in the CMM are not addressed in ISO 9001.

The biggest difference, however, between these two documents is
the emphasis of the CMM on continuous process improvement.

The biggest similarity is that for both the CMM and I1SO 9001, the
bottom line is “Say what you do; do what you say”.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 07

Multiple Choice Questions

Note: Choose most appropriate answer of the following questions:

7.1 Which one is not a phase of “bath tub curve” of hardware reliability
(a) Burn-in (b) Useful life
(c) Wear-out (d) Test-out

7.2 Software reliability 1s

(a) the probability of failure free operation of a program for a specified time in
a specified environment

(b) the probability of failure of a program for a specified time in a specified
environment

(¢) the probability of success of a program for a specified time in any
environment

(d) None of the above

7.3 Faultis
(a) Defect in the program (b) Mistake in the program
(¢) Error in the program (d) All of the above

7.4 One fault may lead to
(a) one failure (b) two failures
(¢c) many failures (d) all of the above

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 08

Multiple Choice Questions

7.5 Which ‘time’ unit is not used in reliability studies
(a) Execution time (b) Machine time
(c) Clock time (d) Calendar time

7.6 Failure occurrences can be represented as

(a) time to failure (b) time interval between failures
(c) failures experienced in a time interval (d) All of the above

7.7 Maximum possible value of reliability is

(a) 100 (b) 10
(c)1 (d)0
7.8 Minimum possible value of reliability is
(a) 100 (b) 10
(c)1 (d)0
7.9 As the reliability increases, failure intensity
(a) decreases (b) increases
(c) no effect (d) None of the above

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 09

Multiple Choice Questions

7.10 If failure intensity is 0.005 failures/hour during 10 hours of operation of a
software, its reliability can be expressed as

(a) 0.10 (b) 0.92
(c) 0.95 (d) 0.98
7.11 Software Quality 1s
(a) Conformance to requirements (b) Fitness for the purpose
(c) Level of satisfaction (d) All of the above

7.12 Defect rate 1s

(a) number of defects per million lines of source code
(b) number of defects per function point

(c) number of defects per unit of size of software
(d) All of the above

7.13 How many product quality factors have been proposed in McCall quality model?
(a) 2 (b) 3
(c) 11 (d) 6

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 O

Multiple Choice Questions

7.14 Which one is not a product quality factor of McCall quality model?

(a) Product revision (b) Product operation
(c) Product specification (d) Product transition
7.15 The second level of quality attributes in McCall quality model are termed as
(a) quality criteria (b) quality factors
(¢) quality guidelines (d) quality specifications
7.16 Which one is not a level in Boehm software quality model ?
(a) Primary uses (b) Intermediate constructs
(c) Primitive constructs (d) Final constructs

7.17 Which one is not a software quality model?
(a) McCall model (b) Boehm model
(c) ISO 9000 (d) ISO 9126

7.18 Basic execution time model was developed by

(a) Bev.Littlewood (b) J.D.Musa
(¢) R.Pressman (d) Victor Baisili

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 1

Multiple Choice Questions

7.19 NHPP stands for
(a) Non Homogeneous Poisson Process (b) Non Hetrogeneous Poisson Process
(¢) Non Homogeneous Poisson Product (d) Non Hetrogeneous Poisson Product

7.20 In Basic execution time model, failure intensity is given by

(& i #

(a) ﬂ(ﬂ)—ﬂo[l VOJ (b) A1) ﬂ{l v
(c)ﬂw):ﬂo[l—&j (d)zuz):ﬂo(l—i%
7 7

7.21 In Basic execution time model, additional number of failures required to
achieve a failure intensity objective (Au) 1S expressed as

V V
(a) Au /10 (/113 ﬂ’F) (D) Au 1 (ﬂ‘F /113)

0

A A
Al =2 — Ay =-"2 —
(c) Au V(/lF A.) (d) Au V(/ip A.)

0 0

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 2

Multiple Choice Questions

7.22 In Basic execution time model, additional time required to achieve a failure
intensity objective (A7) is given as

(a) AT = & Ln(/lF} (b)) AT = & Ln(/lpl
0 \Ap 0 \Ap
(c) AT = ZZLn(jij (d) At = ZZLn(jij
7.23 Failure intensity function of Logarithmic Poisson execution model is given as
(a) A(u) = A4 LN (=61) (D) A() = A, exp(Gu)
(c) A(u) = A, exp(—6u) (d) A(w) = A, log(—6u)

7.24 In Logarithmic Poisson execution model, ‘0’ is known as
(a) Failure intensity function parameter (b) Failure intensity decay parameter
(c) Failure intensity measurement (d) Failure intensity increment parameter

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 3

Multiple Choice Questions

7.25 In jelinski-Moranda model, failure intensity is defined aseneous Poisson

Product
(a) A(t)=@d(N —i+1) (b)) A(t) =@d(N +i+1)
(c) A1) =@¢(N +i—1) (d) A)=¢(N —i-1)
7.26 CMM level 1 has
(a) 6 KPAs (b) 2 KPAs
(c) 0 KPAs (d) None of the above
7.27 MTBF stands for
(a) Mean time between failure (b) Maximum time between failures
(¢) Minimum time between failures (d) Many time between failures
7.28 CMM model is a technique to
(a) Improve the software process (b) Automatically develop the software
(c) Test the software (d) All of the above

7.29 Total number of maturing levels in CMM are
(@)1 (b) 3
(©)5 (d) 7

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 4

Multiple Choice Questions

7.30 Reliability of a software is dependent on number of errors

(a) removed (b) remaining
(c) both (a) & (b) (d) None of the above
7.31 Reliability of software is usually estimated at
(a) Analysis phase (b) Design phase
(c) Coding phase (d) Testing phase
7.32 CMM stands for
(a) Capacity maturity model (b) Capability maturity model
(¢) Cost management model (d) Comprehensive maintenance model

7.33 Which level of CMM is for basic project management?
(a) Initial (b) Repeatable
(¢) Defined (d) Managed

7.34 Which level of CMM is for process management?
(a) Initial (b) Repeatable
(c) Defined (d) Optimizing

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 5

Multiple Choice Questions

7.35 Which level of CMM is for process management?

(a) Initial (b) Defined
(c) Managed (d) Optimizing
7.36 CMM was developed at
(a) Harvard University (b) Cambridge University
(c) Carnegie Mellon University (d) Maryland University
7.37 McCall has developed a
(a) Quality model (b) Process improvement model
(c) Requirement model (d) Design model

7.38 The model to measure the software process improvement is called

(a) ISO 9000 (b) ISO 9126

(c) CMM (d) Spiral model
7.39 The number of clauses used in ISO 9001 are

(a) 15 (b) 25

(c) 20 (d) 10

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 6

Multiple Choice Questions

7.40 ISO 9126 contains definitions of

(a) quality characteristics (b) quality factors
(c) quality attributes (d) All of the above
7.41 In ISO 9126, each characteristics 1s related to
(a) one attributes (b) two attributes
(c) three attributes (d) four attributes
7.42 In McCall quality model; product revision quality factor consist of
(a) Maintainability (b) Flexibility
(c) Testability (d) None of the above
7.43 Which is not a software reliability model ?
(a) The Jelinski-Moranda Model (b) Basic execution time model
(c) Spiral model (d) None of the above

7.44 Each maturity model is CMM has
(a) One KPA (b) Equal KPAs
(c) Several KPAs (d) no KPA

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 7

Multiple Choice Questions

7.45 KPA in CMM stands for

(a) Key Process Area (b) Key Product Area
(c) Key Principal Area (d) Key Performance Area
7.46 In reliability models, our emphasis is on
(a) errors (b) faults
(c) failures (d) bugs
7.4°7 Software does not break or wear out like hardware. What is your opinion?
(a) True (b) False
(c) Can not say (d) not fixed
7.48 Software reliability is defined with respect to
(a) time (b) speed
(c) quality (d) None of the above

7.49 MTTF stands for
(a) Mean time to failure (b) Maximum time to failure
(¢) Minimum time to failure (d) None of the above

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 8

Multiple Choice Questions

7.50 ISO 9000 is a series of standards for quality management systems and has
(a) 2 related standards (b) 5 related standards
(¢) 10 related standards (d) 25 related standards

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 9

Exercises

7.1 What is software reliability? Does it exist?

7.2 Explain the significance of bath tube curve of reliability with the help of
a diagram.

7.3 Compare hardware reliability with software reliability.

7.4 What 1s software failure? How is it related with a fault?

7.5 Discuss the various ways of characterising failure occurrences with
respect to time.

7.6 Describe the following terms:
(1) Operational profile (11) Input space
(111) MTBF (1v) MTTF
(v) Failure intensity.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 20

Exercises

7.7 What are uses of reliability studies? How can one use software reliability
measures to monitor the operational performance of software?

7.8 What is software quality? Discuss software quality attributes.

7.9 What do you mean by software quality standards? Illustrate their essence
as well as benefits.

7.10 Describe the McCall software quality model. How many product quality
factors are defined and why?

7.11 Discuss the relationship between quality factors and quality criteria in
McCall’s software quality model.

7.12 Explain the Boehm software quality model with the help of a block
diagram.

7.13 What 1s ISO9126 ? What are the quality characteristics and attributes?

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 21

Exercises

7.14 Compare the ISO9126 with McCall software quality model and
highlight few advantages of ISO9126.

7.15 Discuss the basic model of software reliability. How Au and At can be
calculated.

7.16 Assume that the initial failure intensity is 6 failures/CPU hr. The failure
intensity decay parameter i1s 0.02/failure. We assume that 45 failures
have been experienced. Calculate the current failure intensity.

7.17 Explain the basic & logarithmic Poisson model and their significance in
reliability studies.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 22

Exercises

7.18 Assume that a program will experience 150 failures in infinite time. It
has now experienced 80. The initial failure intensity was 10 failures/CPU
hr.

(1) Determine the current failure intensity

(11) Calculate the failures experienced and failure intensity after 25 and
40 CPU hrs. of execution.

(111) Compute additional failures and additional execution time required
to reach the failure intensity objective of 2 failures/CPU hr.

Use the basic execution time model for the above mentioned
calculations.

7.19 Write a short note on Logarithmic Poisson Execution time model. How
can we calculate Ay & A7 ?

7.20 Assume that the initial failure intensity is 10 failures/CPU hr. The
failure intensity decay parameter is 0.03/failure. We have experienced 75
failures upto this time. Find the failures experienced and failure intensity

after 25 and 50 CPU hrs. of execution.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 23

Exercises

7.21 The following parameters for basic and logarithmic Poisson models are

given:
Basic execution Logarithmic Poisson execution
time model time model
lﬂ = 5 failures/CPU hr }HU = 25 failures/CPU hr
VD = 125 failures 6 = 0.3/failure

Determine the additional failures and additional execution time required
to reach the failure intensity objective of 0.1 failure/CPU hr. for both
models.

7.22 Quality and reliability are related concepts but are fundamentally
different in a number of ways. Discuss them.

7.23 Discuss the calendar time component model. Establish the relationship
between calendar time to execution time.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 24

Exercises

7.24 A program is expected to have 250 faults. It is also assumed that one
fault may lead to one failure. The initial failure intensity is 5 failure/CPU
hr. The program is released with a failure intensity objective of 4
failures/10 CPU hr. Calculate the number of failures experienced before
release.

7.25 Explain the Jelinski-Moranda model of reliability theory. What is the
relation between ‘t’ and 'A'?

7.26 Describe the Mill’s bug seeding model. Discuss few advantages of this
model over other reliability models.

7.27 Explain how the CMM encourages continuous improvement of the
software process.

7.28 Discuss various key process areas of CMM at various maturity levels.

7.29 Construct a table that correlates key process areas (KPAs) in the CMM
with ISO9000.

7.30 Discuss the 20 clauses of ISO9001 and compare with the practices in the
CMM.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 25

Exercises

7.31 List the difference of CMM and ISO9001. Why 1is it suggested that
CMM is the better choice than ISO90017?

7.32 Explain the significance of software reliability engineering. Discuss the
advantage of using any software standard for software development?

7.33 What are the various key process areas at defined level in CMM?
Describe activities associated with one key process area.

7.34 Discuss main requirements of ISO9001 and compare it with SEI
capability maturity model.

7.35 Discuss the relative merits of ISO9001 certification and the SEI CMM
based evaluation. Point out some of the shortcomings of the ISO9001
certification process as applied to the software industry.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 26

Software
Testing

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1

Software Testing

* What is Testing?

Many people understand many definitions of testing :

1. Testing is the process of demonstrating that errors are not present.

2. The purpose of testing is to show that a program performs its intended
functions correctly.

3. Testing is the process of establishing confidence that a program does
what it is supposed to do.

These definitions are incorrect.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 2

Software Testing

A more appropriate definition is:

“Testing is the process of executing a program with
the intent of finding errors.”

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 3

Software Testing

* Why should We Test ?

Although software testing is itself an expensive activity, yet launching of
software without testing may lead to cost potentially much higher than that
of testing, specially in systems where human safety is involved.

In the software life cycle the earlier the errors are discovered and removed,
the lower is the cost of their removal.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 4

Software Testing

* Who should Do the Testing ?

o Testing requires the developers to find errors from their software.

o It is difficult for software developer to point out errors from own
creations.

o Many organisations have made a distinction between development
and testing phase by making different people responsible for each
phase.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 5

Software Testing

« What should We Test ?

We should test the program’s responses to every possible input. It means,
we should test for all valid and invalid inputs. Suppose a program requires
two 8 bit integers as inputs. Total possible combinations are 28x28. If only
one second it required to execute one set of inputs, it may take 18 hours to
test all combinations. Practically, inputs are more than two and size is also
more than 8 bits. We have also not considered invalid inputs where so
many combinations are possible. Hence, complete testing is just not
possible, although, we may wish to do so.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 6

Software Testing

= 20 times

20 times

Fig. 1: Control flow graph

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Testing

The number of paths in the example of Fig. 1 are 10" or 100 trillions. It is
computed from 520 + 519 4+ 518 + ... + 5'; where 5 is the number of paths
through the loop body. If only 5 minutes are required to test one test path, it
may take approximately one billion years to execute every path.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 8

Software Testing

Some Terminologies

» Error, Mistake, Bug, Fault and Failure

People make errors. A good synonym is mistake. This may be a syntax
error or misunderstanding of specifications. Sometimes, there are logical

errors.
When developers make mistakes while coding, we call these mistakes
“bugsﬂ.

A fault is the representation of an error, where representation is the mode
of expression, such as narrative text, data flow diagrams, ER diagrams,

source code etc. Defect is a good synonym for fault.

A failure occurs when a fault executes. A particular fault may cause
different failures, depending on how it has been exercised.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Testing

» Test, Test Case and Test Suite

Test and Test case terms are used interchangeably. In practice, both are
same and are treated as synonyms. Test case describes an input
description and an expected output description.

‘ Test Case ID \

Purpose : Execution History:

Pre condition: (If any) Result:

Inputs: If fails, any possible reason (Optional);
Expected Outputs: Any other observation:

Post conditions: Any suggestion:

Written by: Run by:

Date: Date:

Fig. 2: Test case template

The set of test cases is called a test suite. Hence any combination of test
cases may generate a test suite.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 O

Software Testing

» Verification and Validation

Verification is the process of evaluating a system or component to
determine whether the products of a given development phase satisfy the
conditions imposed at the start of that phase.

Validation is the process of evaluating a system or component during or at
the end of development process to determine whether it satisfies the
specified requirements .

Testing= Verification+Validation

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1

Software Testing

» Alpha, Beta and Acceptance Testing

The term Acceptance Testing is used when the software is developed for
a specific customer. A series of tests are conducted to enable the customer
to validate all requirements. These tests are conducted by the end user /
customer and may range from adhoc tests to well planned systematic
series of tests.

The terms alpha and beta testing are used when the software is developed
as a product for anonymous customers.

Alpha Tests are conducted at the developer’'s site by some potential
customers. These tests are conducted in a controlled environment. Alpha
testing may be started when formal testing process is near completion.

Beta Tests are conducted by the customers / end users at their sites.
Unlike alpha testing, developer is not present here. Beta testing is
conducted in a real environment that cannot be controlled by the developer.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 2

Software Testing

Functional Testing

Input Output
domain domain
Input test Output
data test data

Software Engineering (3

Fig. 3: Black box testing

" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

13

Software Testing

Boundary Value Analysis

Consider a program with two input variables x and y. These input variables

have specified boundaries as:

Input domain

a b
X >

Fig.4: Input domain for program having two input variables

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

14

Software Testing

The boundary value analysis test cases for our program with two inputs
variables (x and y) that may have any value from 100 to 300 are: (200,100),
(200,101), (200,200), (200,299), (200,300), (100,200), (101,200), (299,200) and
(300,200). This input domain is shown in Fig. 8.5. Each dot represent a test case

and inner rectangle is the domain of legitimate inputs. Thus, for a program of n
variables, boundary value analysis yield 4n + 1 test cases.

Input domain

400

4 300+ .

y 200+ ge o o +
100+ 5

| | |
0 100 200 300 400
— x>
Fig. 5: Input domain of two variables x and y with
boundaries [100,300] each

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 5

Software Testing

Example- 8.1

Consider a program for the determination of the nature of roots of a
quadratic equation. lts input is a triple of positive integers (say a,b,c) and
values may be from interval [0,100]. The program output may have one of

the following words.
[Not a quadratic equation; Real roots; Imaginary roots; Equal roots]

Design the boundary value test cases.

16

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Testing

Solution

Quadratic equation will be of type:
ax?+bx+c=0
Roots are real if (b%-4ac)>0
Roots are imaginary if (b%-4ac)<0
Roots are equal if (b*-4ac)=0

Equation is not quadratic if a=0

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

17

Software Testing

The boundary value test cases are :

Test Case a b c Expected output
1 0 50 30 Not Quadratic
2 1 50 50 Real Roots
3 50 50 30 Imaginary Roots
4 99 50 50 Imaginary Roots
3} 100 50 50 Imaginary Roots
6 50 0 50 Imaginary Roots
7 50 1 50 Imaginary Roots
8 50 99 50 Imaginary Roots
9 50 100 30 Equal Roots
10 50 50 0 Real Roots
11 50 50 1 Real Roots
12 50 50 99 Imaginary Roots
13 50 50 100 Imaginary Roots

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Testing

Example — 8.2

Consider a program for determining the Previous date. lts input is a triple of
day, month and year with the values in the range

1 <month <12
1 <day = 31
1900 < year < 2025

The possible outputs would be Previous date or invalid input date. Design the
boundary value test cases.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 9

Software Testing

Solution

The Previous date program takes a date as input and checks it for validity.
If valid, it returns the previous date as its output.

With single fault assumption theory, 4n+1 test cases can be designed and
which are equal to 13.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

20

Software Testing

The boundary value test cases are:

Test Case Month Day Year Expected output
1 6 15 1900 14 June, 1900
2 6 15 1901 14 June, 1901
3 6 15 1962 14 June, 1962
4 6 15 2024 14 June, 2024
5 6 15 2025 14 June, 2025
6 6 1 1962 31 May, 1962
7 6 2 1962 1 June, 1962
8 6 30 1962 29 June, 1962
9 6 31 1962 Invalid date
10 1 15 1962 14 January, 1962
11 2 15 1962 14 February, 1962
12 11 15 1962 14 November, 1962
13 12 15 1962 14 December, 1962

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Testing

Example — 8.3

Consider a simple program to classify a triangle. lts inputs is a triple of
positive integers (say X, y, z) and the date type for input parameters ensures
that these will be integers greater than 0 and less than or equal to 100. The
program output may be one of the following words:

[Scalene; Isosceles; Equilateral; Not a triangle]

Design the boundary value test cases.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 22

Solution

Software Testing

The boundary value test cases are shown below:

Test case X y z Expected Output

1 50 50 1 Isosceles

2 50 50 2 Isosceles

3 50 50 50 Equilateral
4 50 50 99 Isosceles

5 50 50 100 Not a triangle
6 50 1 50 Isosceles

7 50 2 50 Isosceles

8 50 99 50 Isosceles

9 50 100 50 Not a triangle
10 1 50 30 Isosceles
11 2 50 20 Isosceles
12 99 50 30 Isosceles
13 100 50 S0 Not a triangle

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

23

Software Testing

Robustness testing

It is nothing but the extension of boundary value analysis. Here, we would
like to see, what happens when the extreme values are exceeded with a
value slightly greater than the maximum, and a value slightly less than
minimum. It means, we want to go outside the legitimate boundary of input
domain. This extended form of boundary value analysis is called

robustness testing and shown in Fig. 6

There are four additional test cases which are outside the legitimate input
domain. Hence total test cases in robustness testing are 6n+1, where n is
the number of input variables. So, 13 test cases are:

(200,99), (200,100), (200,101), (200,200), (200,299), (200,300)
(200,301), (99,200), (100,200), (101,200), (299,200), (300,200), (301,200)

24

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Testing

>

I

S

—

|

1
X X

-
&
e

l
|
X N)

0 100 200 300 400

X —>

Fig. 8.6: Robustness test cases for two variables x
and y with range [100,300] each

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 25

Software Testing

Worst-case testing

If we reject “single fault” assumption theory of reliability and may like to see
what happens when more than one variable has an extreme value. In
electronic circuits analysis, this is called “worst case analysis”. It is more
thorough in the sense that boundary value test cases are a proper subset
of worst case test cases. It requires more effort. Worst case testing for a
function of n variables generate 5" test cases as opposed to 4n+1 test
cases for boundary value analysis. Our two variables example will have
52=25 test cases and are given in table 1.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 26

Table 1: Worst cases test inputs for two variables example

Software Testing

Test case Inputs Test case Inputs

1 100 100 14 200 299
2 100 101 15 200 300
3 100 200 16 299 100
4 100 299 17 299 101
5 100 300 18 299 200
6 101 100 19 299 299
7 101 101 20 299 300
8 101 200 21 300 100
9 101 299 22 300 101
10 101 300 23 300 200
11 200 100 24 300 299
12 200 101 25 300 300
13 200 200 --

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

27

Software Testing

Example - 8.4

Consider the program for the determination of nature of roots of a quadratic
equation as explained in example 8.1. Design the Robust test case and worst

test cases for this program.

28

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Testing

Solution

Robust test cases are 6n+1. Hence, in 3 variable input cases total number
of test cases are 19 as given on next slide:

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 29

S oﬁware Testing
[Testcase | a [b [¢ [ExpectedOuput |

1 -1 50 50 Invalid input
2 0 50 50 Not quadratic equation
3 1 50 50 Real roots

4 50 50 50 Imaginary roots
5 99 50 50 Imaginary roots
6 100 50 50 Imaginary roots
7 101 50 50 Invalid input

8 50 -1 50 Invalid input

9 50 0 50 Imaginary roots
10 50 1 50 lmaginary roots
11 50 Q9 50 Imaginary roots
12 90 100 90 Equal roots
13 50 101 50 Invalid input
14 50 50 -1 Invalid in;ut
15 50 50 0 Real roots
16 50 50 1 Real roots
17 50 50 99 Imaginary roots
18 30 50 100 Imaginary roots
19 50 50 101 Invalid input

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 30

Software Testing

Test Case a b c Expected output
1 0 0 0 Not Quadratic
2 0 0 1 Not Quadratic
3 0 0 50 Not Quadratic
4 0 0 99 Not Quadratic
5 0 0 100 Not Quadratic
6 0 1 0 Not Quadratic
7 0 1 1 Not Quadratic
8 0 1 50 Not Quadratic
9 0 1 99 Not Quadratic
10 0 1 100 Not Quadratic
11 0 50 0 Not Quadratic
12 0 50 1 Not Quadratic
13 0 50 50 Not Quadratic
14 0 50 99 Not Quadratic

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

In case of worst test case total test cases are 5". Hence, 125 test cases will be
generated in worst test cases. The worst test cases are given below:

(Contd.)...

31

Software Testing

Test Case A b c Expected output
15 0 50 100 Not Quadratic
16 0 99 0 Not Quadratic
17 0 99 1 Not Quadratic
18 0 99 50 Not Quadratic
19 0 99 99 Not Quadratic
20 0 99 100 Not Quadratic
21 0 100 0 Not Quadratic
22 0 100 1 Not Quadratic
23 0 100 50 Not Quadratic
24 0 100 99 Not Quadratic
25 0 100 100 Not Quadratic
26 1 0 0 Equal Roots
27 1 0 1 Imaginary
28 1 0 50 Imaginary
29 1 0 99 Imaginary
30 1 0 100 Imaginary
31 1 1 0 Real Roots

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...
32

Software Testing

Test Case A b (04 Expected output
32 1 1 1 Imaginary
33 1 1 50 Imaginary
34 1 1 99 Imaginary
35 1 1 100 Imaginary
36 1 50 0 Real Roots
37 1 50 1 Real Roots
38 1 50 50 Real Roots
39 1 50 99 Real Roots
40 1 50 100 Real Roots
41 1 99 0 Real Roots
42 1 99 1 Real Roots
43 1 99 50 Real Roots
44 1 99 99 Real Roots
45 1 99 100 Real Roots
46 1 100 0 Real Roots
47 1 100 1 Real Roots
48 1 100 50 Real Roots

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...
33

Software Testing

Test Case A b (04 Expected output
49 1 100 99 Real Roots
50 1 100 100 Real Roots
51 50 0 0 Equal Roots
52 50 0 1 Imaginary
53 50 0 50 Imaginary
54 50 0 99 Imaginary
55 50 0 100 Imaginary
56 50 1 0 Real Roots
57 50 1 1 Imaginary
58 50 1 50 Imaginary
59 50 1 99 Imaginary
60 50 1 100 Imaginary
61 50 50 0 Real Roots
62 50 50 1 Real Roots
63 50 50 50 Imaginary
64 50 50 99 Imaginary
65 50 50 100 Imaginary

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...
34

Software Testing

Test Case A b (04 Expected output
66 50 99 0 Real Roots
67 50 99 1 Real Roots
68 50 99 50 Imaginary
69 50 99 99 Imaginary
70 50 99 100 Imaginary
71 50 100 0 Real Roots
72 50 100 1 Real Roots
73 50 100 50 Equal Roots
74 50 100 99 Imaginary
75 50 100 100 Imaginary
76 99 0 0 Equal Roots
77 99 0 1 Imaginary
78 99 0 50 Imaginary
79 99 0 99 Imaginary
80 99 0 100 Imaginary
81 99 1 0 Real Roots
82 99 1 1 Imaginary

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...

Software Testing

Test Case A b (04 Expected output
83 99 1 50 Imaginary
84 99 1 99 Imaginary
85 99 1 100 Imaginary
86 99 50 0 Real Roots
87 99 50 1 Real Roots
88 99 50 50 Imaginary
89 99 50 99 Imaginary
90 99 50 100 Imaginary
91 99 99 0 Real Roots
92 99 99 1 Real Roots
93 99 99 50 Imaginary Roots
94 99 99 99 Imaginary
95 99 99 100 Imaginary
96 99 100 0 Real Roots
97 99 100 1 Real Roots
98 99 100 50 Imaginary
99 99 100 99 Imaginary
100 99 100 100 Imaginary

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...

Software Testing

Test Case A b (04 Expected output
101 100 0 0 Equal Roots
102 100 0 1 Imaginary
103 100 0 50 Imaginary
104 100 0 99 Imaginary
105 100 0 100 Imaginary
106 100 1 0 Real Roots
107 100 1 1 Imaginary
108 100 1 50 Imaginary
109 100 1 99 Imaginary
110 100 1 100 Imaginary
111 100 50 0 Real Roots
112 100 50 1 Real Roots

[13 | 10 | 5 | 5 | Imagnay |
114 100 50 99 Imaginary
115 100 50 100 Imaginary
116 100 99 0 Real Roots
117 100 99 1 Real Roots
118 100 99 50 Imaginary

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...

Software Testing

Test Case A b (04 Expected output
119 100 99 99 Imaginary
120 100 99 100 Imaginary
121 100 100 0 Real Roots
122 100 100 1 Real Roots
123 100 100 50 Imaginary
124 100 100 99 Imaginary
125 100 100 100 Imaginary

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

38

Software Testing

Example — 8.5

Consider the program for the determination of previous date in a calendar as
explained in example 8.2. Design the robust and worst test cases for this

program.

39

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Testing

Solution

Robust test cases are 6n+1. Hence total 19 robust test cases are designed
and are given on next slide.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 40

S oﬁware Testing
[Testcase [monn | Day [vear | ExpectedOutpur |

1 6 15 1899 Invalid date (outside range)
2 6 15 1900 14 June, 1900

3 6 15 1901 14 June, 1901

4 6 15 1962 14 June, 1962

5 6 15 2024 14 June, 2024

6 6 15 2025 14 June, 2025

7 6 15 2026 Invalid date (outside range)
8 6 0 1962 Invalid date

9 6 1 1962 31 May, 1962

10 6 2 1962 1 June, 1962

11 6 30 1962 29 June, 1962

12 6 31 1962 Invalid date

13 6 32 1962 Invalid date

14 0 15 1962 Invalid date

15 1 15 1962 14 January, 1962

16 2 15 1962 14 February, 1962

17 11 15 1962 14 November, 1962
18 12 15 1962 14 December, 1962
19 13 15 1962 Invalid date

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 41

Software Testing

In case of worst test case total test cases are 5". Hence, 125 test cases will be
generated in worst test cases. The worst test cases are given below:

Test Case Month Day Year Expected output
1 1 1 1900 31 December, 1899
2 1 1 1901 31 December, 1900
3 1 1 1962 31 December, 1961
4 1 1 2024 31 December, 2023
5 1 1 2025 31 December, 2024
6 1 2 1900 1 January, 1900
7 1 2 1901 1 January, 1901
8 1 2 1962 1 January, 1962
9 1 2 2024 1 January, 2024
10 1 2 2025 1 January, 2025
11 1 15 1900 14 January, 1900
12 1 15 1901 14 January, 1901
13 1 15 1962 14 January, 1962
14 1 15 2024 14 January, 2024

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...

42

Software Testing

Test Case A b c Expected output
15 1 15 2025 14 January, 2025
16 1 30 1900 29 January, 1900
17 1 30 1901 29 January, 1901
18 1 30 1962 29 January, 1962
19 1 30 2024 29 January, 2024
20 1 30 2025 29 January, 2025
21 1 31 1900 30 January, 1900
22 1 31 1901 30 January, 1901
23 1 31 1962 30 January, 1962
24 1 31 2024 30 January, 2024
25 1 31 2025 30 January, 2025
26 2 1 1900 31 January, 1900
27 2 1 1901 31 January, 1901
28 2 1 1962 31 January, 1962
29 2 1 2024 31 January, 2024
30 2 1 2025 31 January, 2025
31 2 2 1900 1 February, 1900

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...

43

Software Testing

Test Case Month Day Year Expected output
32 2 2 1901 1 February, 1901
33 2 2 1962 1 February, 1962
34 2 2 2024 1 February, 2024
35 2 2 2025 1 February, 2025
36 2 15 1900 14 February, 1900
37 2 15 1901 14 February, 1901
38 2 15 1962 14 February, 1962
39 2 15 2024 14 February, 2024
40 2 15 2025 14 February, 2025
41 2 30 1900 Invalid date
42 2 30 1901 Invalid date
43 2 30 1962 Invalid date
44 2 30 2024 Invalid date
45 2 30 2025 Invalid date
46 2 31 1900 Invalid date
47 2 31 1901 Invalid date
48 2 31 1962 Invalid date

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...
44

Software Testing

Test Case Month Day Year Expected output
49 2 31 2024 Invalid date
50 2 31 2025 Invalid date
51 6 1 1900 31 May, 1900
52 6 1 1901 31 May, 1901
53 6 1 1962 31 May, 1962
54 6 1 2024 31 May, 2024
55 6 1 2025 31 May, 2025
56 6 2 1900 1 June, 1900
57 6 2 1901 1 June, 1901
58 6 2 1962 1 June, 1962
59 6 2 2024 1 June, 2024
60 6 2 2025 1 June, 2025
61 6 15 1900 14 June, 1900
62 6 15 1901 14 June, 1901
63 6 15 1962 14 June, 1962
64 6 15 2024 14 June, 2024
65 6 15 2025 14 June, 2025

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...
45

Software Testing

Test Case Month Day Year Expected output
66 6 30 1900 29 June, 1900
67 6 30 1901 29 June, 1901
68 6 30 1962 29 June, 1962
69 6 30 2024 29 June, 2024
70 6 30 2025 29 June, 2025
71 6 31 1900 Invalid date
72 6 31 1901 Invalid date
73 6 31 1962 Invalid date
74 6 31 2024 Invalid date
75 6 31 2025 Invalid date
76 11 1 1900 31 October, 1900
77 11 1 1901 31 October, 1901
78 11 1 1962 31 October, 1962
79 11 1 2024 31 October, 2024
80 11 1 2025 31 October, 2025
81 11 2 1900 1 November, 1900
82 11 2 1901 1 November, 1901

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...
46

Software Testing

Test Case Month Day Year Expected output
83 11 2 1962 1 November, 1962
84 11 2 2024 1 November, 2024
85 11 2 2025 1 November, 2025
86 11 15 1900 14 November, 1900
87 11 15 1901 14 November, 1901
88 11 15 1962 14 November, 1962
89 11 15 2024 14 November, 2024
90 11 15 2025 14 November, 2025
91 11 30 1900 29 November, 1900
92 11 30 1901 29 November, 1901
93 11 30 1962 29 November, 1962
94 11 30 2024 29 November, 2024
95 11 30 2025 29 November, 2025
96 11 31 1900 Invalid date
97 11 31 1901 Invalid date
98 11 31 1962 Invalid date
99 11 31 2024 Invalid date
100 11 31 2025 Invalid date

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...

47

Software Testing

Test Case Month Day Year Expected output
101 12 1 1900 30 November, 1900
102 12 1 1901 30 November, 1901
103 12 1 1962 30 November, 1962
104 12 1 2024 30 November, 2024
105 12 1 2025 30 November, 2025
106 12 2 1900 1 December, 1900
107 12 2 1901 1 December, 1901
108 12 2 1962 1 December, 1962
109 12 2 2024 1 December, 2024
110 12 2 2025 1 December, 2025
111 12 15 1900 14 December, 1900
112 12 15 1901 14 December, 1901
113 12 15 1962 14 December, 1962
114 12 15 2024 14 December, 2024
115 12 15 2025 14 December, 2025
116 12 30 1900 29 December, 1900
117 12 30 1901 29 December, 1901
118 12 30 1962 29 December, 1962

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...
48

Software Testing

Test Case Month Day Year Expected output
119 12 30 2024 29 December, 2024
120 12 30 2025 29 December, 2025
121 12 31 1900 30 December, 1900
122 12 31 1901 30 December, 1901
123 12 31 1962 30 December, 1962
124 12 31 2024 30 December, 2024
125 12 31 2025 30 December, 2025

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

49

Software Testing

Example — 8.6

Consider the triangle problem as given in example 8.3. Generate robust and
worst test cases for this problem.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 50

Software Testing

Solution

Robust test cases are given on next slide.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

51

S oﬁware Testing
[T =« T v [= [Exwectedoupur |

1 50 50 0 Invalid input’
2 50 50 1 Isosceles

3 50 50 2 Isosceles

4 50 50 50 Equilateral
5 30 50 99 Isosceles

6 50 50 100 Not a triangle
7 50 50 101 Invalid input
8 30 0 50 Invalid input
9 50 1 50 Isosceles
10 50 2 50 Isosceles
11 50 99 50 Isosceles
12 50 100 50 Not a triangle
13 50 101 50 Invalid input
14 0 50 50 Invalid input
15 1 50 50 Isosceles
16 2 50 50 Isosceles
17 99 50 50 Isosceles
18 100 50 50 Not a triangle
19 100 50 50 Invalid input

V111158 5112 111 I 1y S w0 0 4 00 67 RO P e B v 52

Software Testing

Worst test cases are 125 and are given below:

Test Case X y z Expected output
1 1 1 1 Equilateral
2 1 1 2 Not a triangle
3 1 1 50 Not a triangle
4 1 1 99 Not a triangle
5 1 1 100 Not a triangle
6 1 2 1 Not a triangle
7 1 2 2 Isosceles
8 1 2 50 Not a triangle
9 1 2 99 Not a triangle
10 1 2 100 Not a triangle
11 1 50 1 Not a triangle
12 1 50 2 Not a triangle
13 1 50 50 Isosceles
14 1 50 99 Not a triangle

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...
53

Software Testing

Test Case A b c Expected output
15 1 50 100 Not a triangle
16 1 99 1 Not a triangle
17 1 99 2 Not a triangle
18 1 99 50 Not a triangle
19 1 99 99 Isosceles
20 1 99 100 Not a triangle
21 1 100 1 Not a triangle
22 1 100 2 Not a triangle
23 1 100 50 Not a triangle
24 1 100 99 Not a triangle
25 1 100 100 Isosceles
26 2 1 1 Not a triangle
27 2 1 2 Isosceles
28 2 1 50 Not a triangle
29 2 1 99 Not a triangle
30 2 1 100 Not a triangle
31 2 2 1 Isosceles

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...
54

Software Testing

Test Case A b (04 Expected output
32 2 2 2 Equilateral
33 2 2 50 Not a triangle
34 2 2 99 Not a triangle
35 2 2 100 Not a triangle
36 2 50 1 Not a triangle
37 2 50 2 Not a triangle
38 2 50 50 Isosceles
39 2 50 99 Not a triangle
40 2 50 100 Not a triangle
41 2 99 1 Not a triangle
42 2 99 2 Not a triangle
43 2 99 50 Not a triangle
44 2 99 99 Isosceles
45 2 99 100 Scalene
46 2 100 1 Not a triangle
47 2 100 2 Not a triangle
48 2 100 50 Not a triangle

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...
55

Software Testing

Test Case A b (04 Expected output
49 100 50 Scalene
50 100 99 Isosceles
51 50 1 100 Not a triangle
52 50 1 Not a triangle
53 50 1 2 Isosceles
54 50 1 50 Not a triangle
55 50 1 99 Not a triangle
56 50 2 100 Not a triangle
57 50 2 1 Not a triangle
58 50 2 2 Isosceles
59 50 2 50 Not a triangle
60 50 2 99 Not a triangle
61 50 50 100 Isosceles
62 50 50 1 Isosceles
63 50 50 2 Equilateral
64 50 50 50 Isosceles
65 50 50 99 Not a triangle

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...
56

Software Testing

Test Case A B (04 Expected output
66 50 99 1 Not a triangle
67 50 99 2 Not a triangle
68 50 99 50 Isosceles
69 50 99 99 Isosceles
70 50 99 100 Scalene
71 50 100 1 Not a triangle
72 50 100 2 Not a triangle
73 50 100 50 Not a triangle
74 50 100 99 Scalene
75 50 100 100 Isosceles
76 50 1 1 Not a triangle
77 99 1 2 Not a triangle
78 99 1 50 Not a triangle
79 99 1 99 Isosceles
80 99 1 100 Not a triangle
81 99 2 1 Not a triangle
82 99 2 2 Not a triangle

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...

J I

Software Testing

Test Case A b (04 Expected output
83 99 2 50 Not a triangle
84 99 2 99 Isosceles
85 99 2 100 Scalene
86 99 50 1 Not a triangle
87 99 50 2 Not a triangle
88 99 50 50 Isosceles
89 99 50 99 Isosceles
90 99 50 100 Scalene
91 99 99 1 Isosceles
92 99 99 2 Isosceles
93 99 99 50 Isosceles
94 99 99 99 Equilateral
95 99 99 100 Isosceles
96 99 100 1 Not a triangle
97 99 100 2 Scalene
98 99 100 50 Scalene
99 99 100 99 Isosceles
100 99 100 100 Isosceles

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...

58

Software Testing

Test Case A b (04 Expected output
101 100 1 1 Not a triangle
102 100 1 2 Not a triangle
103 100 1 50 Not a triangle
104 100 1 99 Not a triangle
105 100 1 100 Isosceles
106 100 2 1 Not a triangle
107 100 2 2 Not a triangle
108 100 2 50 Not a triangle
109 100 2 99 Scalene
110 100 2 100 Isosceles
111 100 50 1 Not a triangle
112 100 50 2 Not a triangle
113 100 50 50 Not a triangle
114 100 50 99 Scalene
115 100 50 100 Isosceles
116 100 99 1 Not a triangle
117 100 99 2 Scalene
118 100 99 50 Scalene

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...
oY

Software Testing

Test Case A b (04 Expected output
119 100 99 99 Isosceles
120 100 99 100 Isosceles
121 100 100 1 Isosceles
122 100 100 2 Isosceles
123 100 100 50 Isosceles
124 100 100 99 Isosceles
125 100 100 100 Equilateral

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

60

Software Testing

Equivalence Class Testing

In this method, input domain of a program is partitioned into a finite number of
equivalence classes such that one can reasonably assume, but not be
absolutely sure, that the test of a representative value of each class is
equivalent to a test of any other value.

Two steps are required to implementing this method:

1. The equivalence classes are identified by taking each input condition and
partitioning it into valid and invalid classes. For example, if an input
condition specifies a range of values from 1 to 999, we identify one valid
equivalence class [1<item<999]; and two invalid equivalence classes
[item<1] and [item>999].

2. Generate the test cases using the equivalence classes identified in the
previous step. This is performed by writing test cases covering all the valid
equivalence classes. Then a test case is written for each invalid equivalence
class so that no test contains more than one invalid class. This is to ensure
that no two invalid classes mask each other.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 61

Software Testing

Invalid input

Valid System

inputs under test Sl
Input domain Output domain

Fig. 7: Equivalence partitioning

Most of the time, equivalence class testing defines classes of the input domain.
However, equivalence classes should also be defined for output domain.

Hence, we should design equivalence classes based on input and output
domain.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 62

Software Testing

Example 8.7

Consider the program for the determination of nature of roots of a quadratic
equation as explained in example 8.1. Identify the equivalence class test

cases for output and input domains.

63

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Output domain equivalence class test cases can be identified as follows:

Software Testing

O,={<a,b,c>:Not a quadratic equation if a = 0}

O,={<a,b,c>:Real roots if (b*-4ac)>0}

O,={<a,b,c>:Imaginary roots if (b*-4ac)<0}

O,={<a,b,c>:Equal roots if (b?-4ac)=0}

The number of test cases can be derived form above relations and shown

below:

1 0 50 50 Not a quadratic equation
2 1 50 50 Real roots

3 50 50 50 Imaginary roots

4 50 100 50 Equal roots

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Testing

We may have another set of test cases based on input domain.

l,={a:a =0}

l,= {a: a < 0}
l,={a: 1 <a <100}
l,={a:a> 100}
l.={b: 0 <b <100}
ls= {b: b < 0}

l.= {b: b > 100}
lg={c:0=c= 100}
ly= {c: ¢ < 0}

l,,={c: ¢ > 100}

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

65

Software Testing

Test Case a b c Expected output
1 0 50 50 Not a quadratic equation
2 -1 50 30 Invalid input
3 50 50 30 Imaginary Roots
4 101 50 50 invalid input
5 50 50 50 Imaginary Roots
6 50 -1 50 invalid input
7 50 101 50 invalid input
8 50 50 50 Imaginary Roots
9 50 50 -1 invalid input

10 50 50 101 invalid input

Here test cases 5 and 8 are redundant test cases. If we choose any value other
than nominal, we may not have redundant test cases. Hence total test cases are
10+4=14 for this problem.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 66

Software Testing

Example 8.8

Consider the program for determining the previous date in a calendar as
explained in example 8.3. Identify the equivalence class test cases for output

& input domains.

67

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Testing

Solution

Output domain equivalence class are:

O,={<D,M,Y>: Previous date if all are valid inputs}

O,={<D,M,Y>: Invalid date if any input makes the date invalid}

Test case D Y Expected output
1 15 1962 14 June, 1962
2 31 1962 Invalid date

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

68

Software Testing

We may have another set of test cases which are based on input domain.

={month: 1 =m <12}
month: m < 1}
month: m > 12}
day: 1 <D < 31}

{
{
{
{
={day: D < 1}
{
{
{
{

w

|
|2=
|
|

o

year: 1900 <Y < 2025}
year: Y < 1900}
year: Y > 2025}

_ _ \l_ _ _

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

69

Software Testing

Inputs domain test cases are :

Test Case M D Y Expected output
1 6 15 1962 14 June, 1962
2 -1 15 1962 Invalid input
3 13 15 1962 invalid input
4 6 15 1962 14 June, 1962
3} 6 -1 1962 invalid input
6 6 32 1962 invalid input
7 6 15 1962 14 June, 1962
8 6 15 1899 invalid input (Value out of range)
9 6 15 2026 invalid input (Value out of range)

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

70

Software Testing

Example — 8.9

Consider the triangle problem specified in a example 8.3. Identify the
equivalence class test cases for output and input domain.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 71

Software Testing

Solution

Output domain equivalence classes are:

O,={<x,y,z>: Equilateral triangle with sides x,y,z}
O,={<x,y,z>: Isosceles triangle with sides x,y,z}
O,={<x,y,z>: Scalene triangle with sides x,y,z}
O,={<x,y,z>: Not a triangle with sides x,y,z}

The test cases are:

1 50 50 50 Equilateral
2 50 50 99 Isosceles

3 100 99 50 Scalene

4 50 100 50 Not a triangle

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Testing

Input domain based classes are:

l.={x: x < 1}

l,.={x: x > 100}

l.={x: 1 <x <100}
l,={y:y <1}
l={y: y > 100}

l.={y: 1 <y <100}
l.={z: z < 1}

l.={z: z > 100}

l,.={z: 1 <z<100}

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

73

Software Testing

Some inputs domain test cases can be obtained using the relationship amongst x,y
and z.

o=l Xy, z>x =y =2}
=< Xy, z>Xx=Y,X# 2}
H={< XY, 2> X =2, X#Y}

=< XY, Z>IXFY, XFZ, Y F 2}

I

I

I

l={<Xy,z>y=2 X#Y}
I

I

L=< X,y,Zz>: X >y +Z}

I

=< XY,z >y =X +2}

{
{
{
{
{

s XY,Z>IX =Y + Z}
{
{

1=t XY, 2>y > X + 2}
{
{

I
Lg={< Xy, Zz>:1Z =X +Y}
lLo={< X,y,Z > Z > X +y}

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 74

Software Testing

Test cases derived from input domain are:

Test case X y z Expected Output
1 0 50 50 Invalid input
2 101 50 50 Invalid input
3 50 50 50 Equilateral
4 50 0 50 Invalid input
5 50 101 50 Invalid input
6 30 50 50 Equilateral
7 50 50 0 Invalid input
8 50 50 101 Invalid input
9 50 50 30 Equilateral
10 60 60 60 Equilateral
11 50 50 60 Isosceles
12 50 60 50 Isosceles
13 60 50 30 Isosceles

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...
/o

Software Testing

Test case X y z Expected Output

14 100 99 50 Scalene

15 100 50 50 Not a triangle
16 100 50 25 Not a triangle
17 50 100 50 Not a triangle
18 50 100 25 Not a triangle
19 50 50 100 Not a triangle
20 25 50 100 Not a triangle

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

76

Software Testing

Decision Table Based Testing

Condition Entry
Stub
True False
C,
True False True False
C,
True False True False True False

Action a, X X X
Stub

a X X X

as X X

4 X X X

Table 2: Decision table terminology

Software Engineering (3 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Testing

Test case design

C,:x,y,z are sides of a triangle? N Y

Cyx =y? -- Y N

Cyix =27 -- Y N Y N

a,: Not a triangle X

a,: Scalene X
a,: Isosceles X X X

a,: Equilateral X

a.: Impossible X X X

Table 3: Decision table for triangle problem

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 78

Software Testing

Conditions F T T T T T T T T T T
C,:x<y+2z?

C,iy<x+z? - F T T T T T T T T T
C,iz<x+y? - - F T T T T T T T T
Ciix=y? = - - T T T T F F F F
C,:x=2? - - - T T F F T T F F

a, : Not a triangle X X X

a, : Scalene X

a, : Isosceles X X X

a, : Equilateral X

a, : Impossible X X X

Table 4: Modified decision table

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Testing

Example 8.10

Consider the triangle program specified in example 8.3. Identify the
test cases using the decision table of Table 4.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

80

Software Testing

Solution

There are eleven functional test cases, three to fail triangle property, three
impossible cases, one each to get equilateral, scalene triangle cases, and
three to get on isosceles triangle. The test cases are given in Table 5.

1 4 1 2 Not a triangle
2 1 4 2 Not a triangle
3 1 2 4 Not a triangle
4 5 5 5 Equilateral
5 ? ? ? Impossible
6 ? ? ? Impossible
7 2 2 3 Isosceles

8 ? ? ? Impossible
9 2 3 2 Isosceles
10 3 2 2 Isosceles
11 3 4 5 Scalene

Test cases of triangle problem using decision table

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 81

Software Testing

Example 8.11

Consider a program for the determination of Previous date. Its input is a triple of day,
month and year with the values in the range

1 <month<12
1 <day < 31
1900 < year < 2025

The possible outputs are “Previous date” and “Invalid date”. Design the test cases
using decision table based testing.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 82

Software Testing

Solution

The input domain can be divided into following classes:

M,: month has 30 days}

{
{M,: month has 31 days except March, August and January}
{M;: month is March}
= {M,: month is August}

l:= {M.: month is January}
{
{
{
{

Mg: month is February}
|.={D,: day = 1}
lg= {D,: 2 < day =< 28}
l;= {D,: day = 29}
l,,={D,: day = 30}
l,,={Ds: day = 31}
l,,.={Y,: year is a leap year}
l,,={Y,: year is a common year}

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

83

Software Testing

The decision table is given below:

Sr.No. 1 21 3|4 |56 |7|8|9|10|11]|12 |13 |14 |15
C,: Months in M, | M, | M, | M| M| M| M| MMM, MMM, M, M,
C,: days in p,|pb,|D|(D,|D|D,| D, |D,|Ds | D;|D,|D,|D,| D, | D
C;: year in Y, [Y | Y, [Y | Y, [Yo | Yy | Yo [Yy | Yo | Y| Y | Y, Y, |,
a,: Impossible X | X
a,: Decrement day X | X[X | X[X]| X X | X | X
a;: Reset day to 31 X1 X
a,: Reset day to 30 X [X

as: Reset day to 29

ag: Reset day to 28

a;: decrement month X | X X | X

ag: Reset month to December

aq: Decrement year

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 84

Software Testing

Sr.No. 16 (17 |18 |19 |20 | 21 (22 |23 (24 |25 |26 | 27 | 28 | 29 | 30

C,: Months in M, | M, [M, | M, [M, | My | Mg | M | My [M, | M, [M, | M, [M, | M,
C,: days in p,|pb |D |D| D |D |D,|D,|D,| D;|D,| D,| D | Dy | Ds
C,;: year in Y, [Yy | Y [Y, | Y | Y [Y | Y [Y | Y | Y | Y| Y[Y| Y,

a,: Impossible

a,: Decrement day

az: Reset day to 31

a,: Reset day to 30

as: Reset day to 29

ag: Reset day to 28

a;: decrement month

ag: Reset month to December

aq: Decrement year

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

85

Software Testing

Sr.No. 3132|3334 |35(36|37 (3839|140 (41|42 (43|44 |45

C,: Months in M, [M, [M, [M, [M, [MM M| MM, MM | M, [M| M,
C,: days in p,|b|D|(D,|D,|D,|D,|D,|Ds | D;|D,| D, | D, | D, | D
C,;: year in Y, [Y | Y, [Y | Yy [Yo | Yy | Yo [Yy | Yo | Y| Y | Y, Y, |,

a,: Impossible

a,: Decrement day

az: Reset day to 31

a,: Reset day to 30

as: Reset day to 29

ag: Reset day to 28

a;: decrement month

ag: Reset month to December

ay: Decrement year

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

86

Software Testing

Sr.No. 46 | 47 | 48 |49 | 50 [51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60
C,: Months in M, [Mg | M, | M | M, [M [M | M | M | M | M [M | M| M, | M,
C,: days in p,|pb,|D, (D |Dg|D,|D |D,|D,|D;| D, | D| D | Dy | Dsg
C,: year in Y, | Y, [Y [Y, | Y | Y Y | Y Y | Y Y Y Y Y, Y,
a,: Impossible X | X | X | X | X
a,: Decrement day X | X[X | X [X X | X | X
az: Reset day to 31 X | X
a,: Reset day to 30
as: Reset day to 29
ag: Reset day to 28
a;: decrement month X | X
ag: Reset month to December
aq: Decrement year
Software Engineering (3 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 87

Software Testing

1 June 1 1964 31 May, 1964
2 June 1 1962 31 May, 1962
3 June 15 1964 14 June, 1964
4 June 15 1962 14 June, 1962
5 June 29 1964 28 June, 1964
6 June 29 1962 28 June, 1962
7 June 30 1964 29 June, 1964
8 June 30 1962 29 June, 1962
9 June 31 1964 Impossible

10 June 31 1962 Impossible

11 May 1 1964 30 April, 1964
12 May 1 1962 30 April, 1962
13 May 15 1964 14 May, 1964
14 May 15 1962 14 May, 1962
15 May 29 1964 28 May, 1964

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 88

Software Testing

16 May 29 1962 28 May, 1962
17 May 30 1964 29 May, 1964
18 May 30 1962 29 May, 1962
19 May 31 1964 30 May, 1964
20 May 31 1962 30 May, 1962
21 March 1 1964 29 February, 1964
22 March 1 1962 28 February, 1962
23 March 15 1964 14 March, 1964
24 March 15 1962 14 March, 1962
25 March 29 1964 28 March, 1964
26 March 29 1962 28 March, 1962
27 March 30 1964 29 March, 1964
28 March 30 1962 29 March, 1962
29 March 31 1964 30 March, 1964
30 March 31 1962 30 March, 1962

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

89

Software Testing

31 August 1 1964 31 July, 1962
32 August 1 1962 31 July, 1964
33 August 15 1964 14 August, 1964
34 August 15 1962 14 August, 1962
35 August 29 1964 28 August, 1964
36 August 29 1962 28 August, 1962
37 August 30 1964 29 August, 1964
38 August 30 1962 29 August, 1962
39 August 31 1964 30 August, 1964
40 August 31 1962 30 August, 1962
41 January 1 1964 31 December, 1964
42 January 1 1962 31 December, 1962
43 January 15 1964 14 January, 1964
44 January 15 1962 14 January, 1962
45 January 29 1964 28 January, 1964

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

90

Software Testing
[Testcase] Month [Day | vear [Expectedoutput]

46 January 29 1962 28 January, 1962
47 January 30 1964 29 January, 1964
48 January 30 1962 29 January, 1962
49 January 31 1964 30 January, 1964
50 January 31 1962 30 January, 1962
51 February 1 1964 31 January, 1964
52 February 1 1962 31 January, 1962
53 February 15 1964 14 February, 1964
54 February 15 1962 14 February, 1962
55 February 29 1964 28 February, 1964
56 February 29 1962 Impossible
57 February 30 1964 Impossible
58 February 30 1962 Impossible
59 February 31 1964 Impossible
60 February 31 1962 Impossible

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Testing

Cause Effect Graphing Technique
= Consider single input conditions

= do not explore combinations of input circumstances
Steps
1. Causes & effects in the specifications are identified.

A cause is a distinct input condition or an equivalence class of input conditions.

An effect is an output condition or a system transformation.

2. The semantic content of the specification is analysed and transformed into a
boolean graph linking the causes & effects.

3. Constraints are imposed

4. graph — limited entry decision table

Each column in the table represent a test case.

5. The columns in the decision table are converted into test cases.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 92

Software Testing

The basic notation for the graph is shown in fig. 8

|dentity NOT

o or o AND
OO _BC
) ()

Fig.8. 8 : Basic cause effect graph symbols

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 93

Software Testing

Myers explained this effectively with following example. “The characters in column 1
must be an A or B. The character in column 2 must be a digit. In this situation, the
file update is made. If the character in column 1 is incorrect, message x is issued. If
the character in column 2 is not a digit, message y is issued”.

The causes are
c,: character in column 1 is A
C,: character in column 1 is B

C5: character in column 2 is a digit

and the effects are
e,: update made
e,. message x is issued

e,: message y is issued

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 94

Software Testing

= o

Fig. 9: Sample cause effect graph

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

95

Software Testing

The E constraint states that it must always be true that at most
one of ¢, or ¢, can be 1 (c, or c, cannot be 1 simultaneously). The
| constraint states that at least one of c, ¢, and c; must always be
1 (c4, C, and c,; cannot be 0 simultaneously). The O constraint
states that one, and only one, of ¢, and c, must be 1. The
constraint R states that, for ¢, to be 1, c, must be 1 (i.e. it is
impossible for ¢, to be 1 and ¢, to be 0),

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 96

Software Testing

-
ER
e

o
Exclusive @
S
S

One and only one

Fig. 10: Constraint symbols

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

97

Software Testing

Fig. 11: Symbol for masks constraint

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

98

Software Testing

Fig. 12 : Sample cause effect graph with exclusive constraint

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

99

Software Testing

Example 8.12
Consider the triangle problem specified in the example 8.3. Draw the Cause
effect graph and identify the test cases.

100

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Testing

Solution
The causes are

c,. side x is less than sum of sides y and z
C,. sidey is less than sum of sides x and y
C;. side z is less than sum of sides x and y
c,. side x is equal to side y
Cs: side x is equal to side z
Cs. Side y is equal to side z

and effects are
e,: Not a triangle
e,: Scalene triangle
e,: Isosceles triangle
e,: Equilateral triangle
es;: Impossible stage

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 01

Software Testing

The cause effect graph is shown in fig. 13 and decision table is shown in table 6.
The test cases for this problem are available in Table 5.

Conditions
Ciix<y+2z?

Cory<x+2z?

Cyiz<x+y?

—t | b | b | b [b
O | =t | =t | =k | =k
-t | O | k| =k | -k
—t | ek | | -k | -,

(@)

=Y

Py

]|

<

D
=EIX[X[X[X|X]| ©
=IX|[X[X[X]|O©
=IX|X|X|Oo|=

e,: Not a triangle

e,: Scalene 1

e,: Isosceles 1 1 1

e,: Equilateral 1

e;: Impossible 1 1 1

Table 6: Decision table

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 02

Software Testing

Fig. 13: Cause effect graph of triangle problem

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 03

Software Testing

Structural Testing

A complementary approach to functional testing is called structural / white box
testing. It permits us to examine the internal structure of the program.

Path Testing

Path testing is the name given to a group of test techniques based on judiciously
selecting a set of test paths through the program. If the set of paths is properly
chosen, then it means that we have achieved some measure of test thoroughness.

This type of testing involves:

1. generating a set of paths that will cover every branch in the program.

2. finding a set of test cases that will execute every path in the set of program
paths.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 04

Software Testing

Flow Graph

The control flow of a program can be analysed using a graphical representation
known as flow graph. The flow graph is a directed graph in which nodes are either
entire statements or fragments of a statement, and edges represents flow of control.

PP

(Sequence) (If-then-else) (While loop) (Repeat-until loop) (Switch statement)

Fig. 14: The basic construct of the flow graph

105

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Testing

/* Program to generate the previous date given a date, assumes data

given as dd mm yyyy separated by space and performs error checks on the
validity of the current date entered. */

#include <stdio.h=

#include =<conio.hs

1
2

Lol

wWoom =] 3 N e

10
11

{

int main()

int day, month, year, validDate = 0;
/*Date Entry*/

printf (“"Enter the day wvalue: ");
scanf (*%d”, &day);

printf (“"Enter the month wvalue: ");
gcanf (“sd”, &month);

printf (“"Enter the wyear wvalue: ");

scanf (“&d”, &year) ;

/*Check Date Validity */

if (year == 1900 && year <= 2025 {

if (month == 1 || month == 2 || month
month == 8 || month == 10 || month

(Contd.). ..

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 06

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Software Testing

if (day »= 1 && day <= 31) |
validDate = 1;

}
else {
validDate = 0;
}
}
else if (month == 2) {
int rval=0;
if (year%4 == 0) {
rval=1;
if ((year%$100)==0 && (year % 400) !=0) {
rVal=0;
}
if (rval ==1 && (day »>=1 && day <=29)) {

validDate = 1;

}

else if (day >=1 && day <= 28) /{
validDate = 1;

}

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(Contd.)...

107

33
34
35
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52

Software Testing

else {
validDate = 0;

}

elze if {(month == 1 && month <= 12)

validDate = 1;

}

else {
validDate = 0;

}

/*Prev Date Calculation*/

if (validpate) {

if (day == 1) {
if (month == 1) {
year--;
day=31;
month=12;
}
else if (month == 3)

int rvVal=0;

(day >= 1 && day <= 30))

(Contd.)...

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 08

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69
70

Software Testing

if (year%4 == 0]

rval=1;

if ((year%l00)==0 &&

rval=0;

else if (month ==

month == 11) {
day = 31;

month--;

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(year % 400)

| | month | | month

|| month == | |

(Contd.)...

Software Testing

71 }

72 else |

73 day=30;

74 month--;

75 }

76 1

7 else {

78 day--;

79 }

80 printf (“"The next date is: %d-%d-%d”,day,month,year) ;
81 }

82 else {

83 printf ("The entered date (%d-%d-%d) is invalid”,day,month, year);
84 }

85 getche ();

86 return 1;

87 }

Fig. 15: Program for previous date problem

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 O

Software Testing

Fig. 16: Flow graph of previous date
problem |

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 1

DD Path Graph

Software Testing

Table 7: Mapping of flow graph nodes and DD path nodes

Flow graph DD Path graph Remarks
nodes corresponding
node
1109 Ny There is a sequential flow from node 1 to 9
10 N, Decision node, if true go to 13 else go to 44
11 N3 Decision node, if true go to 12 else go to 19
12 Ny Decision node, if true go to 13 else go to 15
13,14 Ns Sequential nodes and are combined to form new node ng
15,16,17 Ng Sequential nodes
18 n, Edges from node 14 to 17 are terminated here
19 Ng Decision node, if true go to 20 else go to 37
20 Ng Intermediate node with one input edge and one output edge
21 N1o Decision node, if true go to 22 else go to 27
22 Ny Intermediate node
23 Nys Decision node, if true go to 24 else go to 26

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cont.112

Software Testing

Flow graph DD Path graph Remarks
nodes corresponding
node
24,25 Ni3 Sequential nodes
26 Ni4 Two edges from node 25 & 23 are terminated here
27 Nys Two edges from node 26 & 21 are terminated here. Also a decision node
28,29 Nig Sequential nodes
30 Ny7 Decision node, if true go to 31 else go to 33
31,32 Nig Sequential nodes
33,34,35 Nig Sequential nodes
36 Nog Three edge from node 29,32 and 35 are terminated here
37 Ny Decision node, if true go to 38 else go to 40
38,39 Noy Sequential nodes
40,41,42 Nos Sequential nodes
43 Nog Three edge from node 36,39 and 42 are terminated here

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cont....
113

Software Testing

Flow graph DD Path graph Remarks
nodes corresponding
node
44 Nos Decision node, if true go to 45 else go to 82. Three edges from 18,43 & 10
are also terminated here.
45 Nog Decision node, if true go to 46 else go to 77
46 Ny Decision node, if true go to 47 else go to 51
47,48,49,50 Nog Sequential nodes
51 Nog Decision node, if true go to 52 else go to 68
52 N3 Intermediate node with one input edge & one output ege
53 N3y Decision node, if true go to 54 else go to 59
54 N3p Intermediate node
55 N33 Decision node, if true go to 56 else go to 58
56,57 N34 Sequential nodes
58 N3s Two edge from node 57 and 55 are terminated here
59 N3g Decision node, if true go to 60 else go to 63. Two edge from nodes 58 and
53 are terminated.

Cont....

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 4

Software Testing

Flow graph DD Path graph Remarks
nodes corresponding
node
60,61,62 N37 Sequential nodes
63,64,65,66 N3g Sequential nodes
67 N3g Two edge from node 62 and 66 are terminated here
68 N4 Decision node, if true go to 69 else go to 72
69,70,71 Ny Sequential nodes
72,73,74,75 Ny Sequential nodes
76 Ny3 Four edges from nodes 50, 67, 71 and 75 are terminated here.
77,78,79 Ny4 Sequential nodes
80 Nys Two edges from nodes 76 & 79 are terminated here
81 N4g Intermediate node
82,83,84 Ny7 Sequential nodes
85 N4g Two edges from nodes 81 and 84 are terminated here
86,87 N4g Sequential nodes with exit node

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

115

Software Testing

Fig. 17: DD path graph
of previous date
problem

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 6

Software Testing

Independent paths of previous date problem

1 iy, Mg, Mog, Ty, Myg: Myg
2 1, g, g, Ny, g, Ny, Nag, My7, Myg, Nag
3 Ny, Mg, Mg, Ny, Mg, Mg, Mas, Nyo, Mg, Nyg
4 iy, Mg, Mg, Mg, Moy, Mo, Moy, Mag, Myg, Mg, Myg
5 Tys Mg, Ng, Mg, Moy, MNag, Moy, Mag, Myg, Nyg, Nyg
6 y, Ng, Ng, Ng, Mg, Mg, M15 M17: 19, Pop, Moy, Rag M7 My Mg
7 iy, Mo, Mg, Mg, Mg, Mg, My, Tygs Mg, Map, Moy, Mag, My Myg Myg
8 Tys Mg, Tlg, Mg, Mg, Myp, My, My, Nyg, My, Ryg, Mg, Mg Mo, Moy, Mog, Mg Myg, Nyg
9 My, Mg, Mg, Ng, Mg, M. Nyy, Mo, My, Mg, My Mg Mog, Moy, Mag, Tlyp, Myg, Mg
10 . g, Mg, Mg, Mg, Mg, M5 Mg Mogs Moge Mog. Myp My Myg
11 iy, Mg, Mg, Ng, Mg, Mp, M5, Mg Mag, Moy, Moy, Mag, My, Mys, Ty, Mgz Mg
12 Tlys Mg, Tlg, Mg, Mg, Ty, Mg, Mgy, s, Mg, Mag, Moy, Mog, Nag, Mag, Mog, Ty, Mys, Mg, Mg Nyg
13 iy, Mg, Mg, Mg, Mg, Ty, M7, M9, My, Mg Mg Mops Moy, Mas: Mag, Moy, Mag, Myp, My, Ty, Mg, Mg
Meg: Myg
14 Thys Mgs Tlg, Mg, Thg, Tlyge Thyys Tyge Myyge Thygs Thyge Mage Moy Mag: Tlog: Mog Tags Myg: Myg: Mygs Mg My
Mig: Tyg
15 My, Mg, Mg, Mg, Moy, Nag, Moy, Mag, Mag, Moy, Mags Mggs Ma1: Mge Mass Magr Mage Tas Mag Mags Mag
16 My, Mg, Mg, Ng, Moy, Mo, Moy, Moz, Mog, Moy, Mog. Mgy, Mgy, Ngg Mgy, g, Myg, Ty, Mg, Myg, Myg
17 iy, Mg, Mg, Mg, Moy, Moo, Moy, Mog, Mag, Moy, Mag, g, Mgy, Mgs, Mgy, Mgy, Mgy, Tlgg, Mgy, Mgy, Mys, My,
Mg Myg: Myg
13

ny, Ny, Mg, Mg,

Mag Mg

o912 Mags Moy Mag, Mogs Tops Mags Mgy T3y, Mggs Mggs Mgge Mag

Mgy Mgy Thyg: Thys Tyg

Fig. 18: Independent paths of previous date problem

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

117

Software Testing

Example 8.13

Consider the problem for the determination of the nature of roots of a quadratic
equation. Its input a triple of positive integers (say a,b,c) and value may be from
interval [0,100].

The program is given in fig. 19. The output may have one of the following words:
[Not a quadratic equation; real roots; Imaginary roots; Equal roots]

Draw the flow graph and DD path graph. Also find independent paths from the DD
Path graph.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1 8

Software Testing

Hinclude <conio.hs

#include <math.h->

1 int mainf()

2

3 int a,b,c,validlInput=0,d;

4 double D;

5 printf ("Enter the ‘a’ wvalues: ");

& acanf (“%d", &a) ;

7 printf ("Enter the ‘b’ wvalue: ");

8 gcanf ("%4d", &b) ;

9 printf ("Enter the ‘¢’ wvalues: ");

10 acanf (“%d", &c) ;

11 if ((a >= 0) && (a == 100) && (b »>= 0) && (b <= 100) && (o >= 0)
&& (¢ <= 100)) {

12 validInput = 1;

13 if {a == 0) {

14 validInput = -1;

15]

16]

17 if (validInput==1) {

18 d = b*b - 4*%g*c;

19 if {d == 0) {

20 printf (“The roots are equal and are rl = r2 = %f\n",

b/ (2% (flocat) a));

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

—r
-l
n

21
22
23
24

25
26
27
28

29
30
31
32
33
34
35
36
37
38
39

Software Testing
}

else if (d > 0) |
D=sgrt (d) ;

printf ("The roots are real and are rl = %f and r2 = %f\n”,
(-b-D) /(2% a), (-b+D)/(2* a));

}

else {
D=ggrt (-d)/(2*a);
printf (“"The roots are imaginary and are rl = (%f£,%f) and
r2 = (%f,%f)\n”, -b/(2.0%a),D,-b/(2.0%a),-D);
}
}
else if (validInput == -1) {

printf (“"The wvlaues do not constitute a Quadratic eguation.”) ;

}

else |

printf (“The inputs belong to invalid range.");

}

getche () ;

return 1;

Fig. 19: Code of quadratic equation problem

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

120

Software Testing

Solution @*5‘

Mo

Fig. 19 (a) : Program flow
graph

@_9 Exit

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 21

Software Testing

Fig. 19 (b) : DD Path graph

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 22

Software Testing

The mapping table for DD path graph is:

1t010 A Sequential nodes
11 B Decision node
12 C Intermediate node
13 D Decision node

14,15 E Sequential node
16 F Two edges are combined here
17 G Two edges are combined and decision node
18 H Intermediate node
19 I Decision node

20,21 J Sequential node
22 K Decision node

23,24,25 L Sequential node

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cont....

123

Software Testing

26,27,28,29 M Sequential nodes
30 N Three edges are combined
31 @] Decision node
32,33 P Sequential node
34,35,36 Q Sequential node
37 R Three edges are combined here
38,39 S Sequential nodes with exit node

Independent paths are:

() ABGOQRS (i) ABGOPRS

(i) ABCDFGOQRS (iv) ABCDEFGOPRS
(v) ABGHIJNRS (vi) ABGHIKLNRS
(vi) ABGHIKMNRS

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 24

Software Testing

Example 8.14

Consider a program given in Fig.8.20 for the classification of a triangle. Its input is a

triple of positive integers (say a,b,c) from the interval [1,100]. The output may be
[Scalene, Isosceles, Equilateral, Not a triangle].

Draw the flow graph & DD Path graph. Also find the independent paths from the DD
Path graph.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 25

Software Testing

#include =<gtdio.h=

$include =<=conio.h=

1

[V SO = S N LS 5 [T -SSR V% R %

A A N e el e e
= T B <TG R /O B VR S I

int main ()

{

int a,b,c,validInput=0;

printf {"Enter the =side ‘*a’ walue: ") ;
gscanf (“sd”, &a) ;

printf ("Enter the side ‘b’ walue: ")

gscanf (“sd”, &b) ;

printf (“"Enter the side ‘o’ walue:");

gscanf (“%4d”, &c) ;

if ((a = 0) && (a == 100) && (b = 0) && (b == 100) && (c = 0)
& (o <= 100)) {
if ((a + b) = ¢) && ({c + a) = b) && ((b +) = a)) {
validInput = 1;

}

else {
validInput = -1;
1
If (validInput==1) [{
If ((a==b) && (b==c)) |
printf({*"The trinagle isg equilateral”™) ;

}

else if ((a == b) || (b == <) || (c

a)) {

(Contd._)...

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

126

23
24
25
26
27
28
25
30
3l
32
33
34
325
36
37

Software Testing

printf ("The triangle is isoscelesz”);

}

else |
printf ("The trinagle is scalens”);

}

elge if (validInput == 0) {
printf ("The waluss do not constitute a Triangle”);

}

else {
printf ("The inputse belong to invalid range”);

J

getche () ;
return 1;

Fig. 20 : Code of triangle classification problem

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

127

Software Te esting

Solution : M’@—'@—’O—’O—@

w

Flow graph of
triangle problem is:

Fig.8. 20 (a): Program flow graph (;\
7) Exit node

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 28

Software Testing

The mapping table for DD path graph is:

Flow graph DD Path graph Remarks
nodes corresponding
node
1TO9 A Sequential nodes
10 B Decision node
11 C Decision node
12,13 D Sequential nodes
14 E Two edges are joined here
15,16, 17 F Sequential nodes
18 G Decision nodes plus joining of two edges
19 H Decision node
20, 21 | Sequential nodes
22 J Decision node
23, 24 K Sequential nodes
25, 26, 27 L Sequential nodes

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cont....

129

Software Testing

Flow graph DD Path graph Remarks
nodes corresponding
node
28 M Three edges are combined here
29 N Decision node
30, 31 O Sequential nodes
32, 33, 34 P Sequential nodes
35 Q Three edges are combined here
36, 37 R Sequential nodes with exit node

Fig. 20 (b): DD Path graph

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

130

Software Testing

DD Path graph is given in Fig. 20 (b)

() ABFGNPQR

i) ABFGNOQR
i) ABCEGNPQR
iv) ABCDEGNOQR
v) ABFGHIMQR
vi) ABFGHJKMQR
vi) ABFGHJMQR

(B)
e o Independent paths are:
o‘
(E)

(
(
(
(
(
(

Fig. 20 (b): DD Path graph

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

131

Software Testing

Cvclomatic Complexity

McCabe’s cyclomatic metric V(G) = e — n + 2P.

For example, a flow graph shown in in Fig. 21 with entry node ‘a and exit node ‘f.

Fig. 21: Flow graph

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 32

Software Testing

The value of cyclomatic complexity can be calculated as :
VG)=9-6+2=5
Here e=9,n=6andP =1

There will be five independent paths for the flow graph illustrated in Fig. 21.
Path 1: acf

Path 2 : abef

Path 3 : adcf

Path 4 : abeacfor abeabef
Path 5 : abebef

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 33

Software Testing

Several properties of cyclomatic complexity are stated below:

1. V(G) =1

2. V (G) is the maximum number of independent paths in graph G.

3. Inserting & deleting functional statements to G does not affect V(G).
4. G has only one path if and only if V(G)=1.

5. Inserting a new row in G increases V(G) by unity.

6. V(G) depends only on the decision structure of G.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 34

Software Testing

The role of P in the complexity calculation V(G)=e-n+2P is required to be understood
correctly. We define a flow graph with unique entry and exit nodes, all nodes
reachable from the entry, and exit reachable from all nodes. This definition would
result in all flow graphs having only one connected component. One could, however,

imagine a main program M and two called subroutines A and B having a flow graph
shown in Fig. 22.

Fig. 22

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 35

Software Testing

Let us denote the total graph above with 3 connected components as
VIMUAUB)=e—n+2P

= 13-13+2"3
=6

This method with P # 1 can be used to calculate the complexity of a
collection of programs, particularly a hierarchical nest of subroutines.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 36

Software Testing

Notice that V(M WAUB)=V(M)+V(A)+V(B)=6 . Ingeneral, the
complexity of a collection C of flow graphs with K connected components is

equal to the summation of their complexities. To see this let C,,1 < 1 <K
denote the k distinct connected component, and let e, and n, be the number of edges
and nodes in the ith-connected component. Then

V(C)=e—n+2p=Zk:ei —Zk:ni +2K
i=1

i=1

= Zk:(ei —n,+2)= Zk:V(Ci)

i=1

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 37

Software Testing

Two alternate methods are available for the complexity calculations.

1.

Cyclomatic complexity V(G) of a flow graph G is equal to the number of
predicate (decision) nodes plus one.

V(G)=I1+1
Where] is the number of predicate nodes contained in the flow graph
G.

Cyclomatic complexity is equal to the number of regions of the flow
graph.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 38

Software Testin

Example 8.15

Consider a flow graph given in Fig. 23 and calculate the cyclomatic
complexity by all three methods.

Fig. 23

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 39

Software Testing

Solution

Cyclomatic complexity can be calculated by any of the three methods.

1. V(G) =e—n+2P
=13-10+2=5

2. V(Q) =TT+ 1
=4+1=5

3. V(G) = number of regions
=5

Therefore, complexity value of a flow graph in Fig. 23 is 5.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 40

Software Testing

Example 8.16

Consider the previous date program with DD path graph given in Fig. 17.
Find cyclomatic complexity.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 41

Software Testing

Solution

Number of edges (e) = 65

Number of nodes (n) =49

i) V(G =e—-n+2P=65-49+2=18
i) V@ =m+1=17+1=18

(ii) V(G) = Number of regions = 18

The cyclomatic complexity is 18.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 42

Software Testing

Example 8.17

Consider the quadratic equation problem given in example 8.13 with its DD
Path graph. Find the cyclomatic complexity:

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 43

Software Testing

Solution

Number of nodes (n) = 19

Number of edges (e) = 24

(i) VGQ)=e—n+2P=24-19+2=7
i) V@) =m+1=6+1=7

(iii) V(G) = Number of regions = 7

Hence cyclomatic complexity is 7 meaning thereby, seven
independent paths in the DD Path graph.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 44

Software Testing

Example 8.18

Consider the classification of triangle problem given in example 8.14. Find
the cyclomatic complexity.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 45

Software Testing

Solution

Number of edges (e) = 23

Number of nodes (n) =18

(i) VG)=e—-n+2P=23-18+2=7
i) V@) =m+1=6+1=7

(iii) V(G) = Number of regions = 7

The cyclomatic complexity is 7. Hence, there are seven independent paths
as given in example 8.14.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 46

Software Testing

Graph Matrices

A graph matrix is a square matrix with one row and one column for every node in the
graph. The size of the matrix (i.e., the number of rows and columns) is equal to the
number of nodes in the flow graph. Some examples of graphs and associated
matrices are shown in fig. 24.

1 2
1
2
3 b
4 d

Graph Matrix

(a)

Flow graph

Fig. 24 (a): Flow graph and graph matrices (Contd.)...

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 47

Software Testing

1 2 3
11 a d
2|b+e
3 C

Graph Matrix

Flow graph (b)

Fig. 24 (b): Flow graph and graph matrices (Contd.)...

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 48

Software Testing

1 2 3 4 5 6 7 8

1 a | i

2

3 b h

4]

5 m

6 c|1|d
o ? e

8 f k g

Graph Matrix

e

f
) ©
Flow graph

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 49

Software Testing

Connections

1 1-1=0

1 1 1 3—-1=2

6+1=7

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 50

Software Testing

1 2 3 4 1 z 3 4
1 a c 1 ab + cd
2 2
3 b 3
4 d 4
[A])

The square matrix represent that there are two path ab and cd from node 1 to
node 2.

151

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Testing

Example 8.19

Consider the flow graph shown in the Fig. 26 and draw the graph & connection
matrices. Find out cyclomatic complexity and two / three link paths from a node to

any other node.

Fig. 26 : Flow graph

152

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Testing

Solution

The graph & connection matrices are given below :

1 2 3 4 5 1 2 3 4 5 Connections
1 a 1 1 1-1=0
2 2
3 d b 3 1 1 2-1=1
4 c f 4 1 1 2-1=1
5 g g h 5 1 1 1 3-1=2
Graph Matrix (A) Connection Matrix 4+1=2

To find two link paths, we have to generate a square of graph matrix [A] and for three
link paths, a cube of matrix [A] is required.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 53

Software Testing

2 3 4 5
ad ab
be bf
fg fe fh
ed+hg| he | eb | p
A7)

Software Eng

2 3 4 5
abc afb
bfg bfe bfh
fed + fhg fhe | feb |
ebc+hed+h'g | h% | heb |ebf+h

Ly

ineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

154

Software Testing

Data Flow Testing

Data flow testing is another from of structural testing. It has nothing to do with data
flow diagrams.

i. Statements where variables receive values.

ii. Statements where these values are used or referenced.

As we know, variables are defined and referenced throughout the program. We
may have few define/ reference anomalies:

I. A variable is defined but not used/ referenced.

ii. A variable is used but never defined.

ii. A variable is defined twice before it is used.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 55

Software Testing

Definitions

The definitions refer to a program P that has a program graph G(P) and a set of
program variables V. The G(P) has a single entry node and a single exit node. The
set of all paths in P is PATHS(P)

(i) Defining Node: Node n € G(P) is a defining node of the variable v € V,
written as DEF (v, n), if the value of the variable v is defined at the statement
fragment corresponding to node n.

(i) Usage Node: Node n € G(P) is a usage node of the variable v € V, written as
USE (v, n), if the value of the variable v is used at statement fragment
corresponding to node n. A usage node USE (v, n) is a predicate use (denote
as p) if statement n is a predicate statement otherwise USE (v, n) is a
computation use (denoted as c).

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 56

Software Testing

(11i) Definition use: A definition use path with respect to a variable v (denoted
du-path) is a path in PATHS(P) such that, for some v € V, there are define and
usage nodes DEF(v, m) and USE(v, n) such that m and n are initial and final
nodes of the path.

(iv) Definition clear : A definition clear path with respect to a variable v (denoted
dc-path) is a definition use path in PATHS(P) with initial and final nodes DEF
(v, m) and USE (v, n), such that no other node in the path is a defining node of v.

The du-paths and dc-paths describe the flow of data across source statements from
points at which the values are defined to points at which the values are used. The
du-paths that are not definition clear are potential trouble spots.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 57

Software Testing

Hence, our objective is to find all du-paths and then identity those du-paths which are

not dc-paths. The steps are given in Fig. 27. We may like to generate specific test
cases for du-paths that are not dc-paths.

Draw the program

flow graph

Find the DD

path graph

Prepare a table for

define/use status of
all variable

Find all

du-paths

Identify-du paths
that are not dc
paths

Fig. 27 : Steps for data flow testing

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

158

Software Testing

Example 8.20

Consider the program of the determination of the nature of roots of a quadratic
equation. Its input is a triple of positive integers (say a,b,c) and values for each of
these may be from interval [0,100]. The program is given in Fig. 19. The output may
have one of the option given below:

i) Not a quadratic program

(
(i) real roots

(ilf) imaginary roots
(iv) equal roots

(v) invalid inputs

Find all du-paths and identify those du-paths that are definition clear.

159

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Testing

Solution

Step I: The program flow graph is given in Fig. 19 (a). The variables used in the

program are a,b,c,d, validin

put, D.

Step II: DD Path graph is given in Fig. 19(b). The cyclomatic complexity of this graph

is 7 indicating there are seven independent paths.

Step llI: Define/use nodes for all variables are given below:

Variable Defined at node Used at node
a 6 11,13,18,20,24,27,28
b 8 11,18,20,24,28
C 10 11,18
d 18 19,22,23,27
D 23, 27 24,28
Validinput 3,12, 14 17,31

Software Engineering (39 e

d.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

160

Software Testing

Step IV: The du-paths are identified and are named by their beginning and ending
nodes using Fig. 19 (a).

Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes

-

-

-

-

-

-

- - -

-

NN == DO ===

0O 000000 OO0 O OO0 OO
OPr~rhOOO—= ONPOOOW=—=

-

(Contd_). .

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 61

Software Testing

c 10, 11 Yes
10, 18 Yes
d 18, 19 Yes
18, 22 Yes
18, 23 Yes
18, 27 Yes
D 23, 24 Yes
23, 28 Path not possible
27,24 Path not possible
27,28 Yes
. 3,17 no
validinput 3. 31 10
12,17 no
12, 31 no
14,17 yes
14, 31 yes

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

162

Software Testing

Example 8.21

Consider the program given in Fig. 20 for the classification of a triangle. Its
input is a triple of positive integers (say a,b,c) from the interval [1,100]. The
output may be:

[Scalene, Isosceles, Equilateral, Not a triangle, Invalid inputs].

Find all du-paths and identify those du-paths that are definition clear.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 63

Software Testing

Solution

Step I: The program flow graph is given in Fig. 20 (a). The variables used in
the program are a,b,c, valid input.

Step Il: DD Path graph is given in Fig. 20(b). The cyclomatic complexity of
this graph is 7 and thus, there are 7 independent paths.

Step llI: Define/use nodes for all variables are given below:

Variable Defined at node Used at node
a 6 10, 11, 19, 22
b 7 10,11, 19, 22
C 9 10, 11,19, 22

valid input 3,13, 16 18, 29

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 64

Software Testing

Step IV: The du-paths are identified and are named by their beginning and ending
nodes using Fig. 20 (a).

5,10 Yes

a 5, 11 Yes
5,19 Yes

5, 22 Yes

, Yes

b 7,11 Yes
7,19 Yes

, Yes

(Contd_). .

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 65

Software Testing

9,10 Yes

¢ 9, 11 Yes
9,19 Yes

9, 22 Yes

valid input g’;g Eg
12,18 no

12, 29 no

16, 18 Yes

16, 29 Yes

Hence total du-paths are 18 out of which four paths are not definition clear

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

166

Software Testing

Mutation Testing

Mutation testing is a fault based technique that is similar to fault seeding, except that
mutations to program statements are made in order to determine properties about
test cases. it is basically a fault simulation technique.

Multiple copies of a program are made, and each copy is altered; this altered copy is
called a mutant. Mutants are executed with test data to determine whether the test
data are capable of detecting the change between the original program and the
mutated program.

A mutant that is detected by a test case is termed “killed” and the goal of mutation
procedure is to find a set of test cases that are able to kill groups of mutant
programs.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 67

Software Testing

When we mutate code there needs to be a way of measuring the degree to which the
code has been modified. For example, if the original expression is x+1 and the
mutant for that expression is x+2, that is a lesser change to the original code than a
mutant such as (c*22), where both the operand and the operator are changed. We
may have a ranking scheme, where a first order mutant is a single change to an
expression, a second order mutant is a mutation to a first order mutant, and so on.
High order mutants becomes intractable and thus in practice only low order mutants
are used.

One difficulty associated with whether mutants will be killed is the problem of
reaching the location; if a mutant is not executed, it cannot be killed. Special test
cases are to be designed to reach a mutant. For example, suppose, we have the
code.

Read (a,b,c);
If(a>b) and (b=c) then

x:=a*b*c; (make mutants; m,, m,, m,)

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 68

Software Testing

To execute this, input domain must contain a value such that a is greater than b and
b equals c. If input domain does not contain such a value, then all mutants made at
this location should be considered equivalent to the original program, because the
statement x:=a*b*c is dead code (code that cannot be reached during execution). If
we make the mutant x+y for x+1, then we should take care about the value of y
which should not be equal to 1 for designing a test case.

The manner by which a test suite is evaluated (scored) via mutation testing is as
follows: for a specified test suite and a specific set of mutants, there will be three
types of mutants in the code i.e., killed or dead, live, equivalent. The sum of the
number of live, killed, and equivalent mutants will be the total number of mutants
created. The score associated with a test suite T and mutants M is simply.

#killed
#total—# equivalent

X100%

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 69

Levels of Testing

Software Testing

There are 3 levels of testing:

i. Unit Testing

ii. Integration Testing

iii. System Testing

O
O

O
O
O

O
O
O

O O

UNIT TESTING

+H
0%

O O O

INTEGRATION TESTING

SYSTEM TESTING

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

170

Software Testing

Unit Testing

There are number of reasons in support of unit testing than testing the entire product.

1. The size of a single module is small enough that we can locate an error
fairly easily.

2. The module is small enough that we can attempt to test it in some
demonstrably exhaustive fashion.

3. Confusing interactions of multiple errors in widely different parts of the
software are eliminated.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 71

Software Testing

There are problems associated with testing a module in isolation. How do we run a
module without anything to call it, to be called by it or, possibly, to output
intermediate values obtained during execution? One approach is to construct an
appropriate driver routine to call if and, simple stubs to be called by it, and to insert
output statements in it.

Stubs serve to replace modules that are subordinate to (called by) the module to be
tested. A stub or dummy subprogram uses the subordinate module’s interface, may
do minimal data manipulation, prints verification of entry, and returns.

This overhead code, called scaffolding represents effort that is import to testing, but
does not appear in the delivered product as shown in Fig. 29.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 72

Software Testing

User

input

and
output

Parameter out

Test
module

Mark’s scaffolding T !

Fig. 29 : Scaffolding required testing a program unit (module)

Parameter back

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 73

Software Testing

Integration Testing

The purpose of unit testing is to determine that each independent module is
correctly implemented. This gives little chance to determine that the interface
between modules is also correct, and for this reason integration testing must be
performed. One specific target of integration testing is the interface: whether
parameters match on both sides as to type, permissible ranges, meaning and
utilization.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 74

Software Testing

Top-down integration Bottom-up integration

Sandwich integration
Fig. 30 : Three different integration approaches

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 75

Software Testing

System Testing

Of the three levels of testing, the system level is closet to everyday experiences.
We test many things; a used car before we buy it, an on-line cable network
service before we subscribe, and so on. A common pattern in these familiar
forms is that we evaluate a product in terms of our expectations; not with
respect to a specification or a standard. Consequently, goal is not to find faults,
but to demonstrate performance. Because of this we tend to approach system
testing from a functional standpoint rather than from a structural one. Since it is
so intuitively familiar, system testing in practice tends to be less formal than it
might be, and is compounded by the reduced testing interval that usually
remains before a delivery deadline.

Petschenik gives some guidelines for choosing test cases during system testing.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 76

Software Testing

During system testing, we should evaluate a number of attributes of the
software that are vital to the user and are listed in Fig. 31. These represent the
operational correctness of the product and may be part of the software

specifications.

Is the product convenient, clear, and predictable?

Is access to sensitive data restricted to those with authorization?

Will the product work correctly in conjunction with existing data,
software, and procedures?

Do adequate safeguards against failure and methods for recovery
exist in the product?

Are manuals complete, correct, and understandable?

Fig. 31 : Attributes of software to be tested during system testing

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

177

Software Testing

Validation Testing

o It refers to test the software as a complete product.
o This should be done after unit & integration testing.

o Alpha, beta & acceptance testing are nothing but the various ways of involving
customer during testing.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 78

Software Testing

Validation Testing

o |EEE has developed a standard (IEEE standard 1059-1993) entitled “ IEEE guide
for software verification and validation “ to provide specific guidance about
planning and documenting the tasks required by the standard so that the
customer may write an effective plan.

o Validation testing improves the quality of software product in terms of functional
capabilities and quality attributes.

179

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Testing

The Art of Debugging

The goal of testing is to identify errors (bugs) in the program. The process of
testing generates symptoms, and a program’s failure is a clear symptom of the
presence of an error. After getting a symptom, we begin to investigate the cause
and place of that error. After identification of place, we examine that portion to
identify the cause of the problem. This process is called debugging.

Debugging Techniques
Pressman explained few characteristics of bugs that provide some clues.

1. “The symptom and the cause may be geographically remote. That is, the
symptom may appear in one part of a program, while the cause may actually be
located in other part. Highly coupled program structures may complicate this
situation.

2. The symptom may disappear (temporarily) when another error is corrected.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 80

Software Testing

. The symptom may actually be caused by non errors (e.g. round off inaccuracies).

. The symptom may be caused by a human error that is not easily traced.

. The symptom may be a result of timing problems rather than processing
problems.

. It may be difficult to accurately reproduce input conditions (e.g. a real time
application in which input ordering is indeterminate).

. The symptom may be intermittent. This is particularly common in embedded
system that couple hardware with software inextricably.

. The symptom may be due to causes that are distributed across a number of tasks
running on different processors”.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 81

Software Testing

Induction approach

» Locate the pertinent data
» Organize the data

» Devise a hypothesis

» Prove the hypothesis

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 82

Software Testing

Locate
pertinent
data

Organize
— | the data

Study the
relationships

Cannot

Devise a
hypothesis

l Can

Prove the
hypothesis

l Can

Fix the
error

Fig. 32 : The inductive debugging process

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cannot

183

Software Testing

Deduction approach

» Enumerate the possible causes or hypotheses
» Use the data to eliminate possible causes

» Refine the remaining hypothesis

» Prove the remaining hypothesis

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 84

Software Testing

Enumerate Use Refine Prove Fix
possible [g |processof | | remaining [| remaining Can the
causes elimination hypothesis hypothesis > error

A
None |eft Cannot
Collect
more -
data

Fig. 33 : The inductive debugging process

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 85

Software Testing

Testing Tools

One way to improve the quality & quantity of testing is to make the process as
pleasant as possible for the tester. This means that tools should be as concise,
powerful & natural as possible.

The two broad categories of software testing tools are :
> Static

» Dynamic

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 86

Software Testing

There are different types of tools available and some are listed below:

1. Static analyzers, which examine programs systematically and automatically.

2. Code inspectors, who inspect programs automatically to make sure they adhere
to minimum quality standards.

3. standards enforcers, which impose simple rules on the developer.
4. Coverage analysers, which measure the extent of coverage.

5. Output comparators, used to determine whether the output in a program is
appropriate or not.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 87

Software Testing

6. Test file/ data generators, used to set up test inputs.

7. Test harnesses, used to simplify test operations.

8. Test archiving systems, used to provide documentation about programs.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 88

Multiple Choice Questions

Note: Choose most appropriate answer of the following questions:

8.1 Software testing is:
(a) the process of demonstrating that errors are not present

(b) the process of establishing confidence that a program does what it is supposed
to do

(c) the process of executing a program to show it 1s working as per specifications
(d) the process of executing a program with the intent of finding errors

8.2 Software mistakes during coding are known as:

(a) failures (b) defects
(c) bugs (d) errors
8.3 Functional testing is known as:
(a) Structural testing (b) Behavior testing
(c) Regression testing (d) None of the above

8.4 For a function of n variables, boundary value analysis yields:
(a) 4n+3 test cases (b) 4n+1 test cases
(c) n+4 test cases (d) None of the above

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 89

Multiple Choice Questions

8.5 For a function of two variables, how many cases will be generated by
robustness testing?

(@) 9 (b) 13
(c) 25 (d) 42
8.6 For a function of n variables robustness testing of boundary value analysis yields:
(a) 4n+1 (b) 4n+3
(c) 6n+1 (d) None of the above
8.7 Regression testing is primarily related to:
(a) Functional testing (b) Data flow testing
(c) Development testing (d) Maintenance testing
8.8 A node with indegree=0 and out degree # O is called
(a) Source node (b) Destination node
(c) Transfer node (d) None of the above

8.9 A node with indegree # 0 and out degree=0 is called
(a) Source node (b) Predicate node
(c) Destination node (d) None of the above

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 90

Multiple Choice Questions

8.10 A decision table has
(a) Four portions (b) Three portions
(c) Five portions (d) Two portions

8.11 Beta testing is carried out by

(a) Users (b) Developers

(c) Testers (d) All of the above
8.12 Equivalence class partitioning is related to

(a) Structural testing (b) Blackbox testing

(c) Mutation testing (d) All of the above
8.13 Cause effect graphing techniques is one form of

(a) Maintenance testing (b) Structural testing

(¢) Function testing (d) Regression testing

8.14 During validation
(a) Process 1s checked (b) Product is checked
(c) Developer’s performance is evaluated (d) The customer checks the product

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 91

Multiple Choice Questions

8.15 Verification is
(a) Checking the product with respect to customer’s expectation

(b) Checking the product with respect to specifications

(¢) Checking the product with respect to the constraints of the project
(d) All of the above

8.16 Validation is
(a) Checking the product with respect to customer’s expectation
(b) Checking the product with respect to specifications
(c) Checking the product with respect to the constraints of the project
(d) All of the above

8.17 Alpha testing is done by

(a) Customer (b) Tester

(c) Developer (d) All of the above
8.18 Site for Alpha testing is

(a) Software company (b) Installation place

(¢) Any where (d) None of the above

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 92

Multiple Choice Questions

8.19 Site for Beta testing is

(a) Software company (b) User’s site

(¢) Any where (d) All of the above
8.20 Acceptance testing is done by

(a) Developers (b) Customers

(c) Testers (d) All of the above
8.21 One fault may lead to

(a) One failure (b) No failure

(¢c) Many failure (d) All of the above
8.22 Test suite is

(a) Set of test cases (b) Set of inputs

(¢) Set of outputs (d) None of the above

8.23 Behavioral specification are required for:
(a) Modeling (b) Verification
(c) Validation (d) None of the above

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 93

Multiple Choice Questions

8.24 During the development phase, the following testing approach is not adopted

(a) Unit testing (b) Bottom up testing

(¢) Integration testing (d) Acceptance testing
8.25 Which is not a functional testing technique?

(a) Boundary value analysis (b) Decision table

(c) Regression testing (d) None of the above

8.26 Decision table are useful for describing situations in which:
(a) An action 1s taken under varying sets of conditions.

(b) Number of combinations of actions are taken under varying sets of conditions

(¢) No action is taken under varying sets of conditions
(d) None of the above

8.27 One weakness of boundary value analysis and equivalence partitioning is
(a) They are not effective
(b) They do not explore combinations of input circumstances
(c) They explore combinations of input circumstances
(d) None of the above

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 94

Multiple Choice Questions

8.28 In cause effect graphing technique, cause & effect are related to

(a) Input and output (b) Output and input
(c) Destination and source (d) None of the above
8.29 DD path graph is called as
(a) Design to Design Path graph (b) Defect to Defect Path graph

(c) Destination to Destination Path graph (d) Decision to decision Path graph

8.30 An independent path is
(a) Any path through the DD path graph that introduce at least one new set of
processing statements or new conditions
(b) Any path through the DD path graph that introduce at most one new set of
processing statements or new conditions

(¢c) Any path through the DD path graph that introduce at one and only one new
set of processing statements or new conditions

(d) None of the above

8.31 Cyclomatic complexity i1s developed by
(a) B.W.Boehm (b) T.J.McCabe
(c) B.W .Lettlewood (d) Victor Basili

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 95

Multiple Choice Questions

8.32 Cyclomatic complexity is denoted by
(a) V(G)=e-n+2P (b) V(G)=]] +1
(¢) V(G)=Number of regions of the graph (d) All of the above

8.33 The equation V(G)=[] +1 of cyclomatic complexity is applicable only if
every predicate node has

(a) two outgoing edges (b) three or more outgoing edges
(¢) no outgoing edges (d) none of the above

8.34 The size of the graph matrix is
(a) Number of edges in the flow graph

(b) Number of nodes in the flow graph
(¢) Number of paths in the flow graph
(d) Number of independent paths in the flow graph

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 96

Multiple Choice Questions

8.35 Every node is represented by
(a) One row and one column in graph matrix

(b) Two rows and two columns in graph matrix
(¢) One row and two columns in graph matrix

(d) None of the above
8.36 Cyclomatic complexity is equal to
(a) Number of independent paths (b) Number of paths
(¢) Number of edges (d) None of the above
8.37 Data flow testing is related to
(a) Data flow diagrams (b) E-R diagrams
(c) Data dictionaries (d) none of the above

8.38 In data flow testing, objective is to find
(a) All dc-paths that are not du-paths (b) All du-paths
(c) All du-paths that are not dc-paths (d) All dc-paths

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 97

Multiple Choice Questions

8.39 Mutation testing is related to

(a) Fault seeding (b) Functional testing

(¢) Fault checking (d) None of the above
8.40 The overhead code required to be written for unit testing is called

(a) Drivers (b) Stubs

(¢) Scaffolding (d) None of the above
8.41 Which is not a debugging techniques

(a) Core dumps (b) Traces

(c) Print statements (d) Regression testing

8.42 A break in the working of a system 1s called
(a) Defect (b) Failure
(c) Fault (d) Error

8.43 Alpha and Beta testing techniques are related to
(a) System testing (b) Unit testing
(c) acceptance testing (d) Integration testing

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 98

Multiple Choice Questions

8.44 Which one is not the verification activity

(a) Reviews (b) Path testing

(¢) Walkthrough (d) Acceptance testing
8.45 Testing the software is basically

(a) Verification (b) Validation

(c) Verification and validation (d) None of the above
8.46 Integration testing techniques are

(a) Topdown (b) Bottom up

(¢) Sandwich (d) All of the above
8.47 Functionality of a software is tested by

(a) White box testing (b) Black box testing

(c) Regression testing (d) None of the above

8.48 Top down approach is used for
(a) Development (b) Identification of faults
(c) Validation (d) Functional testing

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 99

Multiple Choice Questions

8.49 Thread testing is used for testing

(a) Real time systems (b) Object oriented systems
(c) Event driven systems (d) All of the above
8.50 Testing of software with actual data and in the actual environment is called
(a) Alpha testing (b) Beta testing
(c) Regression testing (d) None of the above

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 200

Exercises

8.1 What 1s software testing? Discuss the role of software testing during
software life cycle and why is it so difficult?

8.2 Why should we test? Who should do the testing?

8.3 What should we test? Comment on this statement. Illustrate the
importance of testing

8.4 Defined the following terms:
(1) fault (11) failure
(111) bug (iv) mistake

8.5 What is the difference between
(1) Alpha testing & beta testing
(11) Development & regression testing
(111) Functional & structural testing

8.6 Discuss the limitation of testing. Why do we say that complete testing is
1mpossible?

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 201

Exercises

8.7 Briefly discuss the following
(1) Test case design, Test & Test suite
(i1) Verification & Validation
(111) Alpha, beta & acceptance testing

8.8 Will exhaustive testing (even if possible for every small programs)
guarantee that the program 1s 100% correct?

8.9 Why does software fail after it has passed from acceptance testing?
Explain.

8.10 What are various kinds of functional testing? Describe any one in detail.

8.11 What 1s a software failure? Explain necessary and sufficient conditions
for software failure. Mere presence of faults means software failure. Is it
true? If not, explain through an example, a situation in which a failure
will definitely occur.

8.12 Explain the boundary value analysis testing techniques with the help of
an example.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 202

Exercises

8.13 Consider the program for the determination of next date in a calendar.
Its input 1s a triple of day, month and year with the following range

1 <month <12
1 <day <31
1900 1 <year <2025

The possible outputs would be Next date or invalid date. Design
boundary value, robust and worst test cases for this programs.

8.14 Discuss the difference between worst test case and adhoc test case
performance evaluation by means of testing. How can we be sure that the
real worst case has actually been observed?

8.15 Describe the equivalence class testing method. Compare this with
boundary value analysis techniques

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 203

Exercises

8.16 Consider a program given below for the selection of the largest of
numbers

maini()
{
fleocat A,B,C;
printf (*Enter three wvalues\n”);
gcanf (“$E£%£%£f”, &A,&B,&C);
printf({*\n Largest wvalue is");

if (A=E)
{
if (AsC)
printf (“%f\n” ,A) ;
else
printf (“%f\n",c) ;
}
else
{
if (C>E)
printf (“%£f\n"”,C) ;
else

printf (“%f\n" ,B) ;

)

Software Engineering (o eq.), by K.\ Aggarwal o 10gesn SIngn, COpYyrignt v INew Age miernauondl ruonsners, 2007

204

Exercises

(1) Design the set of test cases using boundary value analysis technique and
equivalence class testing technique.

(11) Select a set of test cases that will provide 100% statement coverage.
(111) Develop a decision table for this program.

8.17 Consider a small program and show, why 1s 1t practically impossible to
do exhaustive testing?

8.18 Explain the usefulness of decision table during testing. Is it really
effective? Justify your answer.

8.19 Draw the cause effect graph of the program given in exercise 8.16.
8.20 Discuss cause effect graphing technique with an example.

8.21 Determine the boundary value test cases the extended triangle problem
that also considers right angle triangles.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 205

Exercises

8.22 Why does software testing need extensive planning? Explain.

8.23 What 1s meant by test case design? Discuss its objectives and indicate
the steps involved in test case design.

8.24 Let us consider an example of grading the students in an academic
institution. The grading is done according to the following rules:

Markz obtained Grade
80-100 Distinction
60-79 First division
50-59 Second division
40-49 Third division

0-39 Fail

Generate test cases using equivalence class testing technique

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 206

Exercises

8.25 Consider a program to determine whether a number is ‘odd’ or ‘even’
and print the message

NUMBER IS EVEN
Or
NUMBER IS ODD
The number may be any valid integer.
Design boundary value and equivalence class test cases.

8.26 Admission to a professional course is subject to the following

conditions:
() Marks in Mathematics >= 60
(b) Marks in Physics >= 50
(¢) Marks in Chemistry »= 40
(d) Total in all three subjects == 200
Or

Total in Mathematics and Physics == 150

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 207

Exercises

If aggregate marks of an eligible candidate are more than 225, he/she will be
eligible for honors course, otherwise he/she will be eligible for pass course.
The program reads the marks in the three subjects and generates the
following outputs:

(a) Not Eligible

(b) Eligible to Pass Course

(¢) Eligible to Honors Course

Design test cases using decision table testing technique.

8.27 Draw the flow graph for program of largest of three numbers as shown
in exercise 8.16. Find out all independent paths that will guarantee that
all statements 1n the program have been tested.

8.28 Explain the significance of independent paths. Is it necessary to look for
a tool for flow graph generation, if program size increases beyond 100
source lines?

8.29 Discuss the structure testing. How is it different form functional testing?

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 208

Exercises

8.30 What do you understand by structural testing? Illustrate important
structural testing techniques.

8.31 Discuss the importance of path testing during structural testing.
8.32 What is cyclomatic complexity? Explain with the help of an example.

8.33 Is it reasonable to define ‘“‘thresholds” for software modules? For
example, is a module acceptable if its V(G) < 10? Justify your answer.

8.34 Explain data flow testing. Consider an example and show all “du” paths.
Also identify those “du” paths that are not “dc” paths.

8.35 Discuss the various steps of data flow testing.

8.36 If we perturb a value, changing the current value of 100 by 1000, what
is the effect of this change? What precautions are required while
designing the test cases?

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 209

Exercises

8.37 What 1s the difference between white and black box testing? Is
determining test cases easier in back or white box testing? Is it correct to
claim that if white box testing is done properly, it will achieve close to
100% path coverage?

8.38 What are the objectives of testing? Why is the psychology of a testing
person important?

8.39 Why does software fail after it has passed all testing phases? Remember,
software, unlike hardware does not wear out with time.

8.40 What is the purpose of integration testing? How is it done?

8.41 Differentiate between integration testing and system testing.

8.42 Is unit testing possible or even desirable in all circumstances? Provide
examples to Justify your answer?

8.43 Peteschenik suggested that a different team than the one that does
integration testing should carry out system testing. What are some good
reasons for this?

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 2 1 O

Exercises

8.44 Test a program of your choice, and uncover several program errors.
Localise the main route of these errors, and explain how you found the
courses. Did you use the techniques of Table 8? Explain why or why not.

8.45 How can design attributes facilitate debugging?

8.46 List some of the problem that could result from adding debugging
statements to code. Discuss possible solutions to these problems.

8.47 What are various debugging approaches? Discuss them with the help of
examples.

8.48 Researchers and practitioners have proposed several mixed testing
strategies 1ntended to combine advantages of various techniques
discussed in this chapter. Propose your own combination, perhaps also
using some kind of random testing at selected points.

8.49 Design a test set for a spell checker. Then run it on a word processor
having a spell checker, and report on possible inadequacies with respect
to your requirements.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 2 1 1

Exercises

8.50 4 GLs represent a major step forward in the development of automatic
program generation. Explain the major advantage & disadvantage in the
use of 4 GLs. What are the cost impact of applications of testing and how
do you justify expenditures for these activities.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 2 1 2

Software
Maintenance

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1

Software Maintenance

What is Software Maintenance?

Software Maintenance is a very broad activity that includes error
corrections, enhancements of capabilities, deletion of obsolete capabilities,
and optimization.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 2

Software Maintenance

Categories of Maintenance

= Corrective maintenance

This refer to modifications initiated by defects in the software.

= Adaptive maintenance

It includes modifying the software to match changes in the ever changing
environment.

= Perfective maintenance

It means improving processing efficiency or performance, or restructuring
the software to improve changeability. This may include enhancement of
existing system functionality, improvement in computational efficiency etc.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 3

Software Maintenance

Other types of maintenance

There are long term effects of corrective, adaptive and perfective changes.
This leads to increase in the complexity of the software, which reflect
deteriorating structure. The work is required to be done to maintain it or to

reduce it, if possible. This work may be named as preventive
maintenance.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 4

Software Maintenance

O Perfective
B Adaptive

HE Preventive
O Corrective

Fig. 1: Distribution of maintenance effort

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Maintenance

Problems During Maintenance

» Often the program is written by another person or group of persons.

» Often the program is changed by person who did not understand it
clearly.

Program listings are not structured.
High staff turnover.

Information gap.

v VvV V VY

Systems are not designed for change.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 6

Software Maintenance

Maintenance is Manageable

A common misconception about maintenance is that it is not manageable.

Report of survey conducted by Lientz & Swanson gives some interesting
observations:

1 Emergency debugging 12.4%
2 Routine debugging 9.3%
3 Data environment adaptation 17.3%
4 Changes in hardware and OS 6.2%
5 Enhancements for users 41.8%
6 Documentation Improvement 9.5%
7 Code efficiency improvement 4.0%
8 Others 3.5%

Table 1: Distribution of maintenance effort

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 7

Software Maintenance

Kinds of maintenance requests

1 New reports 40.8%
2 Add data in existing reports 27.1%
3 Reformed reports 10%

4 Condense reports 5.6%
5 Consolidate reports 6.4%
6 Others 10.1%

Table 2: Kinds of maintenance requests

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Maintenance

Potential Solutions to Maintenance Problems

» Budget and effort reallocation

» Complete replacement of the system

» Maintenance of existing system

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Maintenance

The Maintenance Process

Cormrect program error

]‘ i
_ _ ; Add new capahbilities
Determine maintenance
objective -? Delete obsolete features
T Cptimization
Fhase 1
Complexit
T / 4 ¥
Program l————————— Documentation

undersianding
|
Phase 2

Self descriptiveness

L |

Generate particular
maintenance proposal ——— Extensibility

I
| Phase 3
L

Account for ripple |———— Stahility
effact

T
Phase 4
Y

Fig. 2: The software
maintenance process

Testing

Testahility

Pass tesfing

y Yes

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Maintenance

= Program Understanding

The first phase consists of analyzing the program in order to understand.

= (Generating Particular Maintenance Proposal

The second phase consists of generating a particular maintenance
proposal to accomplish the implementation of the maintenance objective.

= Ripple Effect

The third phase consists of accounting for all of the ripple effect as a
consequence of program modifications.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 1

Software Maintenance

= Modified Program Testing

The fourth phase consists of testing the modified program to ensure that
the modified program has at least the same reliability level as before.

= Maintainability
Each of these four phases and their associated software quality attributes
are critical to the maintenance process. All of these factors must be

combined to form maintainability.

12

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Maintenance

Maintenance Models
= Quick-fix Model
This is basically an adhoc approach to maintaining software. It is a fire

fighting approach, waiting for the problem to occur and then trying to fix it
as quickly as possible.

Problem
found

Fix it

Fig. 3: The quick-fix model

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 3

Software Maintenance

lterative Enhancement Model

» Analysis

» Characterization of proposed modifications

» Redesign and implementation

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

14

Software Maintenance

Analyze existing system

Redesign current Characterize
version and proposed
implementation modifications

Fig. 4: The three stage cycle of iterative enhancement

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

15

Software Maintenance

= Reuse Oriented Model
The reuse model has four main steps:

1. Identification of the parts of the old system that are candidates for
reuse.

2. Understanding these system parts.

3. Modification of the old system parts appropriate to the new
requirements.

4. Integration of the modified parts into the new system.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

16

Software Maintenance

Old system New system

A

Requirements analysis

>

Requirements analysis

> < >
Design Corlrilg:;r:snts Design
> < >
Source code Source code
> < >
Test data Test data

Fig. 5: The reuse model

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

17

Software Maintenance

= Boehm’s Model

Boehm proposed a model for the maintenance process based upon
the economic models and principles.

Boehm represent the maintenance process as a closed loop cycle.

18

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Maintenance

Management decisions

Proposed changes Approved changes
: Change
Evaluation implementation
Results New version of
software

Fig. 6: Boehm’s model

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 1 9

Software Maintenance

= Taute Maintenance Model

It is a typical maintenance model and has eight phases in cycle fashion. The
phases are shown in Fig. 7

v

Change request

v

Estimate

v

Schedule

v

Program Operation
¢ A
Test

v

Documentation ——» Release

Fig. 7: Taute maintenance model

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Maintenance

Phases :

1.

® N o O A W N

Change request phase
Estimate phase
Schedule phase
Programming phase
Test phase
Documentation phase
Release phase

Operation phase

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

21

Software Maintenance

Estimation of maintenance costs

Phase Ratio
Analysis 1
Design 10
Implementation 100

Table 3: Defect repair ratio

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

22

Software Maintenance

= Belady and Lenman Model

M=P + Ke(d

where

M : Total effort expended

P : Productive effort that involves analysis, design, coding, testing and
evaluation.

K : An empirically determined constant.
c : Complexity measure due to lack of good design and documentation.

d : Degree to which maintenance team is familiar with the software.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 23

Software Maintenance

Example — 9.1

The development effort for a software project is 500 person months. The
empirically determined constant (K) is 0.3. The complexity of the code is
quite high and is equal to 8. Calculate the total effort expended (M) if

(i) maintenance team has good level of understanding of the project (d=0.9)

(i) maintenance team has poor understanding of the project (d=0.1)

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 24

Software Maintenance

Solution
Development effort (P) = 500 PM
K=0.3
C=8
(i) maintenance team has good level of understanding of the project (d=0.9)
M=P + Ke (cd
=500 + 0.3e(809)
= 500 + 363.59 = 863.59 PM

(i) maintenance team has poor understanding of the project (d=0.1)

M =P + Ke 9
- 500 + 0.36(8:0-1)
- 500 + 809.18 = 1309.18 PM

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 25

Software Maintenance

= Boehm Model
Boehm used a quantity called Annual Change Traffic (ACT).

“The fraction of a software product’s source instructions which undergo
change during a year either through addition, deletion or modification”.

KL OCadded + KL OCdeleted
KLOC

ACT =

total

AME = ACT x SDE

Where, SDE : Software development effort in person months
ACT : Annual change Traffic
EAF : Effort Adjustment Factor

AME = ACT * SDE * EAF

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 26

Software Maintenance

Example — 9.2

Annual Change Traffic (ACT) for a software system is 15% per year. The
development effort is 600 PMs. Compute estimate for Annual Maintenance
Effort (AME). If life time of the project is 10 years, what is the total effort of

the project ?

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

27

Software Maintenance

Solution

The development effort = 600 PM
Annual Change Traffic (ACT) = 15%
Total duration for which effort is to be calculated = 10 years

The maintenance effort is a fraction of development effort and is assumed to
be constant.

AME = ACT x SDE
= 0.15 x 600 = 90 PM

Maintenance effort for 10 years =10x90 =90 PM
Total effort =600 + 900 = 1500 PM

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 28

Software Maintenance

Example — 9.3

A software project has development effort of 500 PM. It is assumed that 10%
code will be modified per year. Some of the cost multipliers are given as:

s W o=

5.

Required software Reliability (RELY) : high

Date base size (DATA) : high

Analyst capability (ACAP) : high

Application experience (AEXP) : Very high
Programming language experience (LEXP) : high

Other multipliers are nominal. Calculate the Annual Maintenance Effort
(AME).

29

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Maintenance

Solution

Annual change traffic (ACT) = 10%
Software development effort (SDE) = 500 Pm

Using Table 5 of COCOMO model, effort adjustment factor can be
calculated given below :

RELY =1.15
ACAP = 0.86
AEXP = 0.82
LEXP = 0.95
DATA =1.08

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

30

Software Maintenance

Other values are nominal values. Hence,

EAF =1.15x0.86 x0.82x 0.95x 1.08 =0.832
AME = ACT * SDE * EAF

= 0.1 * 500 * 0.832 = 41.6 PM
AME =41.6 PM

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

31

Software Maintenance

Regression Testing

Regression testing is the process of retesting the modified parts of the
software and ensuring that no new errors have been introduced into
previously test code.

“Regression testing tests both the modified code and other parts of the
program that may be affected by the program change. It serves many
pUrposes :

>

>
>
>

increase confidence in the correctness of the modified program
locate errors in the modified program
preserve the quality and reliability of software

ensure the software’s continued operation

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 32

Software Maintenance

Development Testing Versus Regression Testing

Sr.
No.

Development testing

Regression testing

We create test suites and test plans

We can make use of existing test suite and
test plans

2. | We test all software components We retest affected components that have
been modified by modifications.
3. Budget gives time for testing Budget often does not give time for
regression testing.
4. | We perform testing just once on a We perform regression testing many times
software product over the life of the software product.
5. | Performed under the pressure of Performed in crisis situations, under greater

release date of the software

time constraints.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 33

Software Maintenance

= Regression Test Selection

Regression testing is very expensive activity and consumes significant
amount of effort / cost. Many techniques are available to reduce this effort/

cost.

1. Reuse the whole test suite

2. Reuse the existing test suite, but to apply a regression test
selection technique to select an appropriate subset of the test suite

to be run.

34

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Maintenance

Fragment A

Fragment B
(modified form of A)

S, y=XX-1)*(x+1) S |y=(x-1)"(x+1)
82 |f (y = O) 82, |f (y = O)
S; | return (error) Sg' | return (error)
S, |else S, |else
1 , 1
S; | return (—j Sg' | return (—)
Y y=3

Fig. 8: code fragment A and B

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

35

Software Maintenance

Test number Input Execution History
t, X =1 S, S, S,
t, X = -1 S, S, S,
ty X=2 Si, Sy, Si
t, x=0 Si, S, S5

Fig. 9: Test cases for code fragment A of Fig. 8

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Maintenance

If we execute all test cases, we will detect this divide by zero fault. But we
have to minimize the test suite. From the fig. 9, it is clear that test cases t,
and t, have the same execution history i.e. S,, S,, S;. If few test cases have
the same execution history; minimization methods select only one test case.
Hence, either t; or t, will be selected. If we select t, then fine otherwise fault
not found.

Minimization methods can omit some test cases that might expose fault in
the modified software and so, they are not safe.

A safe regression test selection technique is one that, under certain
assumptions, selects every test case from the original test suite that can
expose faults in the modified program.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 37

Software Maintenance

= Selective Retest Techniques

Selective retest techniqgues may be more economical than the “retest-all”
technique.

Selective retest techniques are broadly classified in three categories :

1. Coverage techniques : They are based on test coverage criteria.
They locate coverable program components that have been modified,
and select test cases that exercise these components.

2. Minimization techniques: They work like coverage techniques,
except that they select minimal sets of test cases.

3. Safe techniques: They do not focus on coverage criteria; instead they
select every test case that cause a modified program to produce
different output than its original version.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 38

Software Maintenance

Rothermal identified categories in which regression test selection
techniqgues can be compared and evaluated. These categories are:

Inclusiveness measures the extent to which a technique chooses test
cases that will cause the modified program to produce different output than
the original program, and thereby expose faults caused by modifications.

Precision measures the ability of a technique to avoid choosing test cases
that will not cause the modified program to produce different output than
the original program.

Efficiency measures the computational cost, and thus, practically, of a
technique.

Generality measures the ability of a technique to handle realistic and
diverse language constructs, arbitrarily complex modifications, and realistic
testing applications.

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 39

Software Maintenance

Reverse Engineering

Reverse engineering is the process followed in order to find difficult,
unknown and hidden information about a software system.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 40

Software Maintenance

= Scope and Tasks

The areas there reverse engineering is applicable include (but not limited to):

1. Program comprehension

Redocumentation and/ or document generation

o

Recovery of design approach and design details at any level of
abstraction

|dentifying reusable components
|dentifying components that need restructuring

Recovering business rules, and

N o O &

Understanding high level system description

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 41

Software Maintenance

Reverse Engineering encompasses a wide array of tasks related to understanding

and modifying software system. This array of tasks can be broken into a number of
classes.

» Mapping between application and program domains

Problem/

application domain

Mapping

Programming/
implement domain

Fig. 10: Mapping between application and domains program

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 42

Software Maintenance

Mapping between concrete and abstract levels
Rediscovering high level structures

Finding missing links between program syntax and
semantics

To extract reusable component

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 43

Software Maintenance

= |evels of Reverse Engineering

Reverse Engineers detect low level implementation constructs and replace
them with their high level counterparts.

The process eventually results in an incremental formation of an overall
architecture of the program.

44

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Maintenance

Abstraction level Lifecycle phase
High _— [Specification]D Redocumentation
A
A

Intermediary 2 Specification

recovery

Design J :) Redocumentation Reverse
engineering
Intermediary ——-
"{ Design recovery

Low R Implementation] :) Redocumentation

Fig. 11: Levels of abstraction

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

45

Software Maintenance

Redocumentation

Redocumentation is the recreation of a semantically equivalent
representation within the same relative abstraction level.

Design recovery

Design recovery entails identifying and extracting meaningful higher level
abstractions beyond those obtained directly from examination of the source
code. This may be achieved from a combination of code, existing design
documentation, personal experience, and knowledge of the problem and
application domains.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 46

Software Maintenance

Software RE-Engineering

Software re-engineering is concerned with taking existing legacy systems
and re-implementing them to make them more maintainable.

The critical distinction between re-engineering and new software
development is the starting point for the development as shown in Fig.12.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 47

Software Maintenance

Existing
software
system

System
specification

Design and Unde;sr:gndmg
S transformation

Re-engineered
system

Fig. 12: Comparison of new software development with re-engineering

Software Engineering (37 ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Maintenance

The following suggestions may be useful for the modification of the legacy

code:

v

AN NN Y N NN

Study code well before attempting changes

Concentrate on overall control flow and not coding

Heavily comment internal code

Create Cross References

Build Symbol tables

Use own variables, constants and declarations to localize the effect
Keep detailed maintenance document

Use modern design techniques

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 49

Software Maintenance

= Source Code Translation

1.

Hardware platform update: The organization may wish to
change its standard hardware platform. Compilers for the original
language may not be available on the new platform.

Staff Skill Shortages: There may be lack of trained
maintenance staff for the original language. This is a particular
problem where programs were written in some non standard
language that has now gone out of general use.

Organizational policy changes: An organization may decide to
standardize on a particular language to minimize its support
software costs. Maintaining many versions of old compilers can
be very expensive.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 50

Software Maintenance

Program Restructuring

1.

Control flow driven restructuring: This involves the imposition
of a clear control structure within the source code and can be
either inter modular or intra modular in nature.

Efficiency driven restructuring: This involves restructuring a
function or algorithm to make it more efficient. A simple example
is the replacement of an IF-THEN-ELSE-IF-ELSE construct with
a CASE construct.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 51

Software Maintenance

IF Score = = 76 THEN Grade: = A’
ELSE IF Score = = 60 THEN Grade:
ELSE IF Score = = 50 THEN Grade:
ELSE IF Score > = 40 THEN Grade:
ELSE IF Grade = °F’

END

(a)

=

=

CASE Score of

75, 100: Grade: = A’
60, 74: Grade: = ‘B";
50, 59: Grade: = °C";
40, 49: Grade: = ‘D";
ELSE Grade: = °'F
END

(b)

Fig. 13: Restructuring a program

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

52

Software Maintenance

3. Adaption driven restructuring: This involves changing the
coding style in order to adapt the program to a new programming
language or new operating environment, for instance changing
an imperative program in PASCAL into a functional program in
LISP.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

53

Software Maintenance

Configuration Management

The process of software development and maintenance is controlled is
called configuration management. The configuration management is
different in development and maintenance phases of life cycle due to
different environments.

= (Configuration Management Activities
The activities are divided into four broad categories.

1. The identification of the components and changes
The control of the way by which the changes are made

Auditing the changes

> W N

Status accounting recording and documenting all the activities
that have take place

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 54

Software Maintenance

The following documents are required for these activities

D N N N N N

Project plan
Software requirements specification document

Software design description document

Source code listing

Test plans / procedures / test cases

User manuals

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

55

Software Maintenance

= Software Versions

Two types of versions namely revisions (replace) and variations (variety).

Version Control :

A version control tool is the first stage towards being able to manage
multiple versions. Once it is in place, a detailed record of every version of

the software must be kept. This comprises the

v Name of each source code component, including the variations and
revisions

v" The versions of the various compilers and linkers used

v" The name of the software staff who constructed the component

v" The date and the time at which it was constructed

56

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software Maintenance

= (Change Control Process

Change control process comes into effect when the software and
associated documentation are delivered to configuration management
change request form (as shown in fig. 14), which should record the
recommendations regarding the change.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 57

Software Maintenance

CHANGE REQUEST FOEM
Project IDx:
Change Requester with date:
Requested change with date:
Change analyzer:
Components affected:
Assoriated components:
Estimated change costs:
Change priority:
Change assessment:
Change implementation:
Date submitted to CCA:
Date of CCA decision:
CCA decision:
Change implementer:
Date submitted to QA:
Date of implementation:
Date submitted to CM:
QA decizion:

Fig. 14: Change request form

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

58

Software Maintenance

Documentation

Software documentation is the written record of the facts about a
software system recorded with the intent to convey purpose, content
and clarity.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 59

User Documentation

Software Maintenance

S.No. Document Function

1. System Overview Provides general description of system’s functions.

2. Installation Guide Describes how to set up the system, customize it to
local hardware needs and configure it to particular
hardware and other software systems.

3. Beginner’s Guide Provides simple explanations of how to start using
the system.

4. Reference Guide Provides in depth description of each system facility
and how it can be used.

d. Enhancement Booklet Contains a summary of new features.

6. Quick reference card Serves as a factual lookup.

/. Provides information on services such as net-

System administration

working, security and upgrading.

Table 5: User Documentation

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

60

Software Maintenance

= System Documentation

It refers to those documentation containing all facets of system, including
analysis, specification, design, implementation, testing, security, error
diagnosis and recovery.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 61

Software Maintenance

System Documentation

S.No. Document Function

1. System Rationale Describes the objectives of the entire system.

2. SRS Provides information on exact requirements of
system as agreed between user and developers.

3. Specification/ Design Provides description of:
(i) How system requirements are implemented.
(i) How the system is decomposed into a set of

interacting program units.

(iii) The function of each program unit.

4.

Implementation

Provides description of:

(i) How the detailed system design is expressed in
some formal programming language.

(i) Program actions in the form of intra program
comments.

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007 62

Software Maintenance

S.No. Document Function
S. System Test Plan Provides description of how program units are
tested individually and how the whole system is
tested after integration.
6. Acceptance Test Plan Describes the tests that the system must pass
before users accepit it.
7. Data Dictionaries Contains description of all terms that relate to the

software system in question.

Table 6: System Documentation

Software Engineering (3" ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Note: Choose most appropriate answer of the following questions:

9.1

9.2

9.3

9.4

9.5

Multiple Choice Questions

Process of generating analysis and design documents is called
(a) Inverse Engineering (b) Software Engineering
(c) Reverse Engineering (d) Re-engineering

Regression testing is primarily related to
(a) Functional testing (b) Data flow testing
(c) Development testing (d) Maintenance testing

Which one is not a category of maintenance ?
(a) Corrective maintenance (b) Effective maintenance
(c) Adaptive maintenance (d) Perfective maintenance

The maintenance initiated by defects in the software is called
(a) Corrective maintenance (b) Adaptive maintenance
(c) Perfective maintenance (d) Preventive maintenance

Patch is known as
(a) Emergency fixes (b) Routine fixes
(c) Critical fixes (d) None of the above

Software Engineering, By K.K Aggarwal & Yogesh Singh, New Age International Publishers

64

Multiple Choice Questions

9.6 Adaptive maintenance is related to
(a) Modification in software due to failure
(b) Modification in software due to demand of new functionalities
(c) Modification in software due to increase in complexity
(d) Modification in software to match changes in the ever-changing environment.

9.7 Perfective maintenance refers to enhancements
(a) Making the product better
(b) Making the product faster and smaller

(c) Making the product with new functionalities
(d) All of the above

9.8 As per distribution of maintenance effort, which type of maintenance has
consumed maximum share?

(a) Adaptive (b) Corrective
(c) Perfective (d) Preventive
9.9 As per distribution of maintenance effort, which type of maintenance has
consumed minimum share?
(a) Adaptive (b) Corrective
(c) Perfective (d) Preventive
Software Engineering, By K.K Aggarwal & Yogesh Singh, New Age International Publishers 65

Multiple Choice Questions

9.10 Which one 1s not a maintenance model ?

(a) CMM (b) Iterative Enhancement model
(¢) Quick-fix model (d) Reuse-Oriented model
9.11 In which model, fixes are done without detailed analysis of the long-term effects?
(a) Reuse oriented model (b) Quick-fix model
(¢) Taute maintenance model (d) None of the above

9.12 Iterative enhancement model 1s a
(a) three stage model (b) two stage model
(c) four stage model (d) seven stage model

0.13 Taute maintenance model has

(a) Two phases (b) six phases
(c) eight phases (d) ten phases
9.14 In Boehm model, ACT stands for
(a) Actual change time (b) Actual change traffic
(¢) Annual change traffic (d) Annual change time

Software Engineering, By K.K Aggarwal & Yogesh Singh, New Age International Publishers 66

Multiple Choice Questions

9.15 Regression testing is known as
(a) the process of retesting the modified parts of the software
(b) the process of testing the design documents
(c) the process of reviewing the SRS
(d) None of the above

9.16 The purpose of regression testing is to

(a) increase confidence in the correctness of the modified program
(b) locate errors in the modified program

(c) preserve the quantity and reliability of software

(d) All of the above

9.17 Regression testing is related to
(a) maintenance of software (b) development of software
(c) both (a) and (b) (d) none of the above.

9.18 Which one is not a selective retest technique
(a) coverage technique (b) minimization technique
(¢) safe technique (d) maximization technique

Software Engineering, By K.K Aggarwal & Yogesh Singh, New Age International Publishers

67

Multiple Choice Questions

9.19 Purpose of reverse engineering is to

(a) recover information from the existing code or any other intermediate

document
(b) redocumentation and/or document generation

(c) understand the source code and associated documents
(d) All of the above

9.20 Legacy systems are

(a) old systems (b) new systems
(c) undeveloped systems (d) None of the above
9.21 User documentation consists of
(a) System overview (b) Installation guide
(c) Reference guide (d) All of the above
9.22 Which one 1s not a user documentations ?
(a) Beginner’s Guide (b) Installation guide
(c) SRS (d) System administration

Software Engineering, By K.K Aggarwal & Yogesh Singh, New Age International Publishers

68

Multiple Choice Questions

9.23 System documentation may not have
(a) SRS (b) Design document
(c) Acceptance Test Plan (d) System administration

9.24 The process by which existing processes and methods are replaced by new
techniques is:

(a) Reverse engineering (b) Business process re-engineering
(c) Software configuration management (d) Technical feasibility

9.25 The process of transforming a model into source code 1s

(a) Reverse Engineering (b) Forward engineering
(c) Re-engineering (d) Restructuring

Software Engineering, By K.K Aggarwal & Yogesh Singh, New Age International Publishers 69

Exercises

9.1 What 1is software maintenance? Describe various categories of
maintenance. Which category consumes maximum effort and why?

9.2 What are the implication of maintenance for a one person software
production organisation?

9.3 Some people feel that “maintenance i1s manageable”. What is your
opinion about this 1ssue?

9.4 Discuss various problems during maintenance. Describe some solutions
to these problems.

9.5 Why do you think that the mistake 1s frequently made of considering
software maintenance inferior to software development?

9.6 Explain the importance of maintenance. Which category consumes
maximum effort and why?

9.7 Explain the steps of software maintenance with help of a diagram.

9.8 What i1s self descriptiveness of a program? Explain the effect of this
parameter on maintenance activities.

Software Engineering, By K.K Aggarwal & Yogesh Singh, New Age International Publishers 70

Exercises

9.9 What is ripple effect? Discuss the various aspects of ripple effect and
how does it affect the stability of a program?

9.10 What 1s maintainability? What 1s its role during maintenance?

9.11 Describe Quick-fix model. What are the advantage and disadvantage of
this model?

9.12 How iterative enhancement model is helpful during maintenance?
Explain the various stage cycles of this model.

9.13 Explain the Boehm’s maintenance model with the help of a diagram.

9.14 State the various steps of reuse oriented model. Is it a recommended
model in object oriented design?

9.15 Describe the Taute maintenance model. What are various phases of this
model?

9.16 Write a short note on Boledy and Lehman model for the calculation of
maintenance effort.

Software Engineering, By K.K Aggarwal & Yogesh Singh, New Age International Publishers 71

Exercises

9.17 Describe various maintenance cost estimation model.s

9.18 The development effort for a project is 600 PMs. The empirically
determined constant (K) of Belady and Lehman model is 0.5. The
complexity of code is quite high and is equal to 7. Calculate the total
effort expended (M) if maintenance team has reasonable level of
understanding of the project (d=0.7).

9.19 Annual change traffic (ACT) in a software system is 25% per year. The
initial development cost was Rs. 20 lacs. Total life time for software is
10 years. What is the total cost of the software system?

9.20 What is regression testing? Differentiate between regression and
development testing?

9.21 What is the importance of regression test selection? Discuss with help of
examples.

9.22 What are selective retest techniques? How are they different from
“retest-all” techniques?

Software Engineering, By K.K Aggarwal & Yogesh Singh, New Age International Publishers 72

Exercises

9.23 Explain the various categories of retest techniques. Which one is not
useful and why?

9.24 What are the categories to evaluate regression test selection techniques?
Why do we use such categorisation?

9.25 What is reverse engineering? Discuss levels of reverse engineering.

9.26 What are the appropriate reverse engineering tools? Discuss any two
tools 1n detail.

9.277 Discuss reverse engineering and re-engineering.

9.28 What 1s re-engineering? Differentiate between re-engineering and new
development.

9.29 Discuss the suggestions that may be useful for the modification of the
legacy code.

9.30 Explain various types of restructuring techniques. How does
restructuring help in maintaining a program?

Software Engineering, By K.K Aggarwal & Yogesh Singh, New Age International Publishers 73

Exercises

9.31 Explain why single entry, single exit modules make testing easier during
maintenance.

9.32 What are configuration management activities? Draw the performa of
change request form.

9.33 Explain why the success of a system depends heavily on the quantity of
the documentation generated during system development.

9.34 What 1s an appropriate set of tools and documents required to maintain
large software product/

9.35 Explain why a high degree of coupling among modules can make
maintenance very difficult.

9.36 Is it feasible to specify maintainability in the SRS? If yes, how would
we specity it?

9.37 What tools and techniques are available for software maintenance?
Discuss any two of them.

Software Engineering, By K.K Aggarwal & Yogesh Singh, New Age International Publishers 74

Exercises

9.38 Why 1s maintenance programming becoming more challenging than
new development? What are desirable characteristics of a maintenance
programmer?

9.39 Why little attention is paid to maintainability during design phase?

9.40 List out system documentation and also explain their purpose.

Software Engineering, By K.K Aggarwal & Yogesh Singh, New Age International Publishers 75

