ARTIFICIAL
INTELLIGENGE

o g .
}7/ Couosod

ARTIFICIAL INTELLIGENCE

Third Edition =~ ™

ABOUT THE AUTHORS

Elaine Rich received her PhD in Computer Science from Carnegie-Melion in 1979 after
which she served as a faculty at the Department of Computer Science, University of Texas.
Later, she joined the Microelectronic and Computing Technology Corporation (MCC) to
become the Director of the Artificial Intelligence Lab. In 1998, Dr Rich returned to the CS
department at the University of Texas at Austin as a Sentor Lecturer and has been teaching
Automata Theory, Artificial Intelligence and Natural Language Processing. In 1991,
Dr Rich was elected a Fellow of the American Association for Artificial Intelligence.
Dr Rich has also published a book entitled, “Automata, Computability and Complexity:
Theory and Applications” in 2007,

Kevin Knight received his B.A. in Computer Science from Harvard University and his
PhD in Computer Science from Carnegie Mellon University. Presently, he is Senior Research
Scientist and I1S1 Fellow at Information Sciences Institute, University of Southern California.
He is also Research Associate Professor in the Computer Science Department at the same
university. His research interests include machine translation, natural language processing,
artificial intelligence, semantics, statistical modeling, heuristic search, and decipherment.

Shivashankar B Nair received his Master’s and Doctoral degrees in Engineering from
Amravati University, Amravati, where he served as a faculty member from 1986 to 1998.
He later joined the Indian Institute of Technology Guwahati, where he is an Associate
Professorin Computer Science and Engineering. Presently, he is on a sabbatical as a Visiting
Professor (Korean Brain Pool) at the Human-Centred Advanced Research Education Centre,
Hanbat National University, Daejeon, South Korea. His major areas of interest include real-
world Artificial Immune System Applications, Intelligent and Emotional Robotics, Natural
Language Processing, Genetic Algorithms and Mobile Agent Systems.

ARTIFICIAL INTELLIGENCE

Third Edition

Elaine Rich
Senior Lecturer
The University of Texas at Austin

Kevin Knight

Senior Research Scientist
and ISI Fellow
Information Sciences Institute
University of Southern California

Shivashankar B Nair
Indian Institute of Technology Guwahati

BHANDARKARS' COLLEGE LIBRARY
00

g
N4

—

Tata McGraw Hill Education Private Limited

NEW DELHI
McGraw-Hill Offices :
New Delhl New York Stlouis San Francisco Auckland Bogota Caracas
Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal
San Juan Santiago Singapore Sydney Tokyo Toronto

v

j SdAN

O T hsiDAET 4
C-";:-.JMT‘:&PO(JF } I ;
wall ,. oo e 41‘59 [)/c" ;

Vo ke S

b, NP m-’--u-ﬁ-uJ ‘
Dawe + Aory -

N e s e

T i e e an

Copyright © 2009 by Tata McGraw Hill Education Private Limited

Tata McGraw-Hill

Fourth reprint 2010
DZXCRRDZRCXYA

No part of this publication may be reproduced or distributcd in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise or stored in a database or retrieval system without
the prior written permission of the publishers. The program listings (if any) may be entered, stored and
executed in a computer system, but they may not be reproduced for publication

This edition can be exported from India only by the publishers,
Tata McGraw Hill Education Private Limited

ISBN-13: 978-0-07-008770-5
ISBN-10: 0-07-008770-9

Managing Director: Ajay Shukla

General Manager: Publishing—SEM & Tech Ed: Vibha Mahajan
Sponsoring Editor: Skalini Jha

Ir. Sponsoring Editor: Nalanjan Chakravarty

Sr. Copy Editor: Dipika Dey

Sr. Production Manager: P 1. Pandiia

General Manager: Marketing—Higher Education & School: Michae! J Cruz
Product Manager: SEM & Tech Ed: Biju Ganesan

Controller—Production: Rajender P Ghansela
Asst. General Manager—Production: B £, Dogra

Information contained in this work has been obtained by Tata McGraw-Hill, from sources believed to
be reliable. However, neither Tata McGraw-Hill nor its authors guarantee the accuracy or completeness
‘of any information published herein, and neither Tata McGraw-Hill nor its authors shall be responsible
for any errors, omissions, or damages arising out of use of this information. This work is published with
the understanding that Tata McGraw-Hill and its authors are supplying information but are not attempting
to render engineering or other professional services. If such services are required. the assistance of an
appropriate professional should be sought

Published by Tata McGraw Hill Education Private Limited,
7 West Patel Nagar, New Delhi 110 008, typeset at Bukprint India, B-180A, Guru Nanak Pura,
Laxmi Nagar 110 092 and printed at Gopsons Papers Ltd., Noida 201 301

Cover: Gopsons Papers Ltd.

The McGraw-Hill companies

Dedicated to my
Dad and Mom
who would always lovingly tease me to possess just
Artificial Intelligence!
— Shivashankar B Nair

Contents

Preface to the Third Edition
Preface to the Second Edition

PART I: PROBLEMS AND SEARCH

What is Artificial Intelligence?

1.1 The Al Problems 4

1.2 The Underlying Assumption 6

1.3 What is an Al Technique? 7

I.4 The Level of the Model 18

1.5 Criteria for Success 20

1.6 Some General References 2/

1.7 One Final Word and Beyond 22
Exercises 24

Problems, Problem Spaces, and Search

2.1 Defining the Problem as a State Space Search 25
2.2 Production Systems 30
2.3 Problem Characteristics 36
2.4 Production System Characteristics 43
2.5 Issues in the Design of Search Programs 45
2.6 Additional Problems 47
Swmmary 48
Exercises 48

Heuristic Search Techniques

3.1 Generate-and-Test 50
3.2 Hill Climbing 52
3.3 Best-first Search 57
3.4 Problem Reduction 64
3.5 Constraint Satisfaction 68
3.6 Means-ends Analysis 72
Summary 74
Exercises 75

PART II: KNOWLEDGE REPRESENTATION

Knowledge Representation Issues

4.1 Representations and Muppings 79
4.2 Approaches to Knowledge Representation &2

xiif
Xvii

25

50

79

viii

4.3
44

Contents

R R

[ssues in Knowledge Representation 86
The Frame Problem 96
Summary 97

Using Predicate Logic

5.1
5.2
5.3
54
5.5

Representing Simple Facts in Logic 99
Representing Instance and 1S4 Relationships /03
Computable Functions and Predicates {05
Resolution JO&

Natural Deduction /24

Summary 25

Exercises {26

Representing Knowledge Using Rules

6.1
6.2
6.3
6.4
6.5

Procedural Versus Declarative Knowledge /29
Logic Programming {3/

Forward Versus Backward Reasoning /34
Matching /38

Control Knowledge {42

Summary 145

Exercises [45

Symbolic Reasoning Under Uncertainty

7.1
72
7.3
74
7.5
7.6

Introduction to Nonmonotonic Reasoning 747
Logics for Nenmonotonic Reasoning 750
Implementation Issues 157

Augmenting a Problem-solver 158
Implementation: Depth-first Search /60
Implementation: Breadth-first Search /06
Sunmmary 169

Exercises 170

Statistical Reasoning

8.1
82
8.3
8.4
8.5

Probability and Bayes” Theorem {72
Certainty Factors and Rule-based Systems /74
Bayesian Networks /79

Dempster-Shafer Theory 18/

Fuzzy Logic 184

Summary [85

Exercises 186

Weak Siot-and-Filler Structures

9.1
9.2

Semantic Nets /88
Frames [93
Exercises 205

to il

98

129

147

172

188

Contents

10. Strong Slot-and-Filler Structures

11.

10.1 Conceptual Dependency 207
10.2 Scripts 272
103 CYC 216

Exercises 220

Knowledge Representation Summary

1.1 Syntactic-semantic Spectrum of Representation 222
11.2 Logic and Slot-and-filler Structures 224
11.3 Other Representational Techniques 225
t1.4 Summary of the Role of Knowledge 227
Fxercises 227

PART I1I: ADVANCED TOPICS

12, Game Playing

2.1 Overview 23]

12.2 The Minimax Search Procedure 233

12.3 Adding Alpha-beta Cutoffs 236

12.4 Additional Refinements 240

12.5 lterative Deepening 242

12.6 References on Specific Games 244
Exercises 246

13. Planning

14.

15.

[3.1 Overview 247
13.2 An Example Domain: The Blocks World 250
13.3 Components of u Planning System 250
134 Goal Stack Planning 255
13.5 Nonlineur Planning Using Constraint Posting 262
13.6 Hierarchical Planning 268
13,7 Reactive Systems 269
13.8 Other Planning Techniques 209
Exercises 270

Understanding

14.1 What is Understanding? 272

14.2 What Makes Understanding Hard? 273

14.3 Understanding as Constraint Satis{action 278
Summary 283
Exercises 284

Natural Language Processing

15.1 Introduction 286
15.2 Syntactic Processing 297

ix

207

222

231

247

272

285

Bhartendu

X Contents

15.3 Semantic Analysis 300
15.4 Discourse and Pragmatic Processing 373
135 Statistical Natural Language Processing 321
15.6 Spell Checking 325

Summary 329

Exercises 331

16. Parallel and Distributed Al 333

16.1 Psychological Modeling 333
16.2 Parallelism in Reasoning Systems 334
16.3 Distributed Reasoning Systems 336
Summary 346
Exercises 346

17. Learning 347

17.1 What is Learning? 347

17.2 Rote Leaming 348

17.3 Leaming by Taking Advice 349

17.4 Learning in Problem-solving 35/

17.5 Learning from Examples: Induction 355

17.6 Explanation-based Learmning J&4

17.7 Discovery 367

17.8 Analogy 371

17.9 Formmal Learning Theory 372

17.10 Neural Net Learning and Genetic Learning 373
Summary 374
Exercises 375

, 18. Connectionist Models 376

18.1 Introduction: Hopfield Networks 377

18.2 Learning in Neural Networks 379

18.3 Applications of Neural Networks 396

18.4 Recurrent Networks 399

18.5 Distributed Representations 400

18.6 Connectionist Al and Symbolic AI 403
Exercises 405

19. Common Sense 408

19.1 Qualitative Physics 409

19.2 Common Sense Ontologies 417

19.3 Memory Organization 477

19.4 Case-based Reasoning 479
Exercises 421

20,

21,

22

23.

24.

Contents

e el

Expert Systems

20.1 Representing and Using Domain Knowledge 422
20.2 Expert System Shells 424
20.3 Explanation 425
204 Knowledge Acquisition 427
Summary 429
Exercises 430

Perception and Action

21.1 Real-time Search 433

21.2 Perception 434

213 Action 438

21.4 Robot Architectures 44/
Summary 443
Exercises 443

Fuzzy Logic Systems
22.1 Introduction 445
22.2 Crisp Sets #45
22.3 Furzy Sets 446
224 Some Fuzzy Terminology 446
22.5 Fuzzy Logic Control 447
22.6 Sugeno Style of Fuzzy Inference Processing 453
2277 Fuzzy Hedges 454
22.8 o Cut Threshold 454
22.9 Neuro Fuzzy Systems 455
22.10 Points to Note 455

Exercises 456

Genetic Algorithms: Copying Nature’s Approaches

23.1 A Peek into the Biological World 457
23.2 Genetic Algorithms (GAs) 438
23.3 Significance of the Genetic Operators 470
23.4 Termination Parameters 47/
23.5 Niching and Speciation 47/
23.6 Evolving Neural Networks 472
237 Theoretical Grounding 474
23.8 Ant Algorithms 476
23.9 Points to Ponder 477
Exercises 478

Artificial Immune Systems

24.1 Introduction 479
24.2 The Phenomenon of Immunity 479
24.3 Immunpity and Infection 480

xXi

422

431

445

457

479

Contents

24,4 The Innarc Immune System—The First Line of Delence 480
245 The Adaptive [mmune System-—The Second Line of Defence 48/

25,

24.6 Recognition 483
247 Clonal Selection 484
2477 Learning 445
248 Immune Network Theory 485
249 Mupping Immune Systems to Practical Applications 486
24.10 Other Applications 493
24.11 Points to Ponder 493
Exercises 493
Glossary of Biological Terms Used 494

Prolog—The Natural Language of Artificial Intelligence 496
25.1 Introduction 496
25.2 Converting English to Prolog Fucts and Rules 496
253 Goals 497
254 Prolog Terminology 499
25.5 Variables 499
25.6 Control Structures 500
25.7 Arithmetic Operators 501
25.8 Matching in Prolog 502
25.9 Bucktracking 503
25.10 Cuts 505
25.11 Recursion 506
2512 Lists 508
25.13 Dynamic Databases 5/2
25.14 Input/Output and Streams 5/5
25.15 Some Aspects Specitic to LPA Prolog 576
Summury 528
Fxercises 528
Conclusion 529
26.1 Components of an Al Program 529
26.2 Al Skeptics—An Open Argument 529
Exercises 530
References 533
Author Index 553
Subject Index 558

PREFACE TO THE THIRD EDITION

With the Internet and the World Wide Web penetrating all walks of life, the field of Artificial Intelligence (Al
has of late, seen a resurgence and an upward trend in the last decade. The earlier edition did cater well to the
needs of a basic course in Al and still does. But the need to add areas which have slowly and unknowingly glued
on to the field of Al has forced the birth of this new edition. While almost all the contents of the previous edition
have been retained, this book has been augmented by specific chapters describing the newer areas that have
found a variety of uses in a gamut of domains. It is envisaged that these areas, coupled with the classical Al
models should definitely motivate the reader to generate novel ideas for Al-based application scenarios.

Four new chapters find their way into this new edition, namely,
Fuzzy Logic Systems

Genetic Algorithms: Copying Nature’s Approaches
Artificial Immune Systemns

PROL.OG—The Natural Language of Artificial Intelligence

By =

Chapter 22 entitled Fuzzy Logic Systems. highlights aspects of the conventional crisp sets and introduces
the concept of fuzzy sets. It describes the design methodology of a fuzzy air cooler through a real-world
application. Some relevant aspects of how memberships can be tweaked (Fuzzy Hedges) are also descrihed.
A fuzzy system augmented with neural technology to achieve neuro-fuzzy conurol is explained in this chapter.

Chapter 23 deals with Nature’s own method of optimization and is thus entitled Genetic Algorithms: Copying
Mature’s Approaches. It elucidates the use of Genetic Algorithms (GA) in optimization and learning. A typical
case of optimization with constraints using the example of allocating employees based on their skilis has been
described. As a tail-ender to this section. the reader is made aware of the ways to juggle the algorithm so as to
avoid getting trapped in a local optimum. Further, the use of GAs to evolve neural networks is also explained.
The chapter also discusses the Schema theorem-—the basis for this algorithm. Though not direcily related to
GAs, the chapter concludes by igniting the reader’s interest on Ant algorithms.

Chapter 24 discusses a relatively new and emerging area of bio-inspired systems—the Artificial Immune
System (AIS). It may be worth mentioning that the field by itself. to date, has seen only seven international
conferences; the last one (ICARIS 2008) was held at Phuket, Thailand in August 2008. The chapter initially
takes the reader on a tour of the general aspects of immunology. Since most of the readers are new to this field,
this part has been emphasised in as technical a way as was possible. Two of the major theories—The Clonal
Selection and the Network or Idiotypic theory—in immunology have been described. Aspects on how one
can go about modelling an Artificial Immune System based on its natural counterpart have also been explained.
Two diverse real-world applications conclude the chapter. A special glossary of terms is appended to ease the
comprehension of specific biological terms used therein.

Chapter 25 deals with PROLOG—The Natural Language of Artificial Intelligence. The chapter has been
included to assist the reader in daring to implement Al-based applications. The previous edition did not give
much thought to a language and assumed that the reader would write programs to see how well the content of
the book works in the real world. Implementing Al to comprehend its feasibility in the real world is of utmost
importance. History stands witness to the initial failures, thanks to the notion that Al-based techniques once
coded could be easily bolted onto existing general-purpose hardware. Robotics is one domain where such
failures were prominently seen. Resources in terms of computing speed, memory, time and speed of the

Xiv Preface to the Third Edition

actuating device—all play a vital role in embedding Al into the real world. This chapter is thus aimed at instilling
cortidence and motivating the reader (student) to implement what he has learnt from the book. Tt describes the
use ol Prolog and its syntax using typical programs. The new world is the world of intelligent agents. This
chapter describes LPA Prolog’s Chimera Agent Engine and its use to realise a multi-agent scenario, Readers can
now use the Al methodologies discussed in this book to tweak and make these agent programs intelligent.

Apart from the addition of these four chapters, some changes have heen made to a few existing ones of the
older edition.

Chapter 1 now talks of Stevan Harnad’s point of Symbol Grounding—trying to put down the concept of a
symbol in the Physical Symbol System Hypothesis, Some arguments are provided to enlighten the user that the
hypothesis does not seem to be the ultimate. Chapter 15 on Natural Language Processing has now two
sections, one describing Statistical Approaches 1o Language Processing and another on Spell Checking. These
sections help the reader to think beyond just grammar-based language-processing systems and explore
techniques which seem more akin to how human beings learn a language. Chapter 18 on Connectionist
Models has an additional modest section on Kohonen Networks,

The new edition caters broadly to undergraduate students in Computer Science who are new to the concept
of Al. Al novices are encouraged to read Parts I and II and also Chapter 25 to initially aid them commence
experimentation in the laboraiory. Postgraduate students will especially benefit from Part III and the new
chapters added therein. Laboratory implementations of these could be worked out either in Prolog or some
other familiar language. Al is not a field confined to Computer Science alone; its applications find their way
into a variety of domains. Thus, those engaged in interdisciplinary studies will find possibilities of new
approaches to a wide variety of research-oriented programmes in this edition.

The Online Learning Center for this book includes a wealth of supplements for learning and teaching.

For the Student
e Source Code for the GA program described in Chapter 23
¢ Source Code for PROLOG programs in Chapter 25

For the Instructor
* PowerPoint Slides
e Soltutions to the Exercises

ACKNOWLEDGEMENTS

While the acknowledgements made by the authors of the previous edition stand for all purposes, I venture to
add some of mine for the additions made.

The making of this revised edition has been a slightly long-drawn affair, thanks to so many eventful and
uneventful situations I went through during the last three years. I must thank the publishers, McGraw-Hill
Education Indiz, for having been extremely understanding and allowing me all the time to complete this edition.

From the technical perspective, I thank the previous authors Elaine Rich and Kevin Wright for their valuable
comments in the making of this book. Pradip K Das of iny department has been kind 1o spare his valuable
time. both in-flights and out, to help me with his invaluable statistical and logical inputs. There have been
long-drawn discussions, especially on fuzzy logic and statistical language processing, for which I sincerely
thank him. The GA program described for skill allocation is adapted from an Al project assignment carried
out by my ex-student Dipti Gagneja, currently pursuing her doctoral degree in Computational Biology and
Bioinformatics at the University of Southern California. She has, at my behest, spent a considerable amount
of time at the Indian Institute of Technology Guwahati, to see that the relaled figures and graphs portray the
significance of the problem. I thank her too for this. I also owe my gratitude to a number of my students who
have contributed in some way or the other in the making of this edition.

Preface to the Third Edition Xv

Had my late mother been with me for a little longer, this book would have been published way back in
2006. A retired professor in English, she had promised to edit and review this edition. Hers, as.also my
father’s spirits, have yet finally coaxed me into finishing this book. I thank my sisters for having encouraged
and supported me during bouts of uncertainty. ‘

My wife, Priya, and son, Jayprakash, have and continue to be my driving forces and thus figure in some
logical form in this book. While the former has always found time to crack what I have written from the point
of view of a third party, the latter has been the source of my Al-based ideas! Thanking them would thus never
be enough. I also thank my in-laws for all the assistance they provided in the making of this book.

SHIVASHANKAR B Nair

A note of acknowledgement is due to the following reviewers who have contributed to the shaping of the
book by providing their valuable suggestions.

R C Joshi

Kamlesh Dutta

RP Arora

J P Singh

D R Desai

Kishore Bhoyar

L MR J Lobo

S Fatima

S V Gangashetty

Kamalini Martin

Department of Electronics and Computer Engineering,
Indian Institute of Technology Roorkee,
Roorkee

Department of Computer Science,
National Institute of Technology,
Hamirpur

Department of Computer Science and Engineering,
Dehradoon Institute of Technology,
Dehradoon

Department of Information Technology,
Academy of Technology,
Hooghly

Department of Computer Science and Engineering,
Modemn Engineering College,
Pune

Department of Computer Technology/IT,
Yeshwantrao Chavan Coliege of Engineering,
Nagpur

Department of Computer Science and Engineering,
Walchand Institute of Technology,
Sangli

Department of Computer Science and Engineering,
College of Engineering, Osmania University,
Hyderabad

Language Technology Research Center,
Indian Institute of Information Technology,
Hyderabad

Department of Electrical Sciences
Karunya Institute of Technology and Sciences,
Coimbatore

PREFACE TO THE SECOND EDITION

In the years since the first edition of this book appeared, Artificial Intelligence (AI) has grown from a small-
scale laboratory science into a technological and industrial success. We now possess an arsenal of techniques
for creating computer programs that control manufacturing processes, diagnose computer faults and human
diseases, design computers, do insurance underwriting, play grandmaster-level chess, and so on. Basic research
in Al has expanded enormously during this period. For the student, extracting theoretical and practical
knowledge from such a large body of scientific knowledge is a daunting task. The goal of the first edition of
this book was to provide a readable introduction to the problems and techniques of AL In this edition, we have
tried to achieve the same goal for the expanded field that Al bas become. In particular, we have tried to
present both the theoretical foundations of Al and an indication of the ways that current techniques can be
used in application programs,

As a result of this effort, the book has grown. It is probably no longer possible to cover everything in a
single semester. Because of this, we bave structured the book so that an instructor can choose from a variety
of paths through the chapters. The book is divided into three parts:

PartI. Problems and Search.
Part II. Knowledge Representation.
Part If1. Advanced Topics.

Part I introduces Al by examining the nature of the difficult problems that Al seeks to solve. It then
develops the theory and practice of heuristic search, providing detailed algorithms for standard search methods,
including best-first search, hill climbing, simulated annealing, means-ends analysis, and constraint satisfaction,

The last thirty years of Al have demonstrated that intelligence requires more than the ability to reason. It
also requires a great deal of knowledge about the world. So Part II explores a variety of methods for encoding
knowledge in computer systems. These methods include predicate logic, production rules, semantic networks,
frames, and scripts. There are also chapters on both symbolic and numeric technigues for reasoning under
uncertainty. In addition, we present scme very specific frameworks in which particular commitments to a set
of representational primitives are made.

Parts 1 and I should be covered in any basic course in Al. They provide the foundation for the advanced
topics and applications that are presented in Part 111. While the chapters in Parts [and II should be covered in
order since they build on each other, the chapters in Part III are, for the most part, independent and can be
covered in almost any combination, depending on the goals of a particular course. The topics that are covered
include; game playing, planning, understanding, natural language processing (which depends on the
understanding chapter), parallel and distributed Al (which depends on planning and natural language), learning,
connectionist models, common sense, expert systems, and perception and action.

To use this book effectively, students should have some background in both computer science and
mathematics. As computer science background, they should have experience programming and they should
feel comfortable with the material in an undergraduate data structures course. They should be familiar with
the use of recursion as a program control structure, And they should be able to do simple analyses of the time
complexity of algorithms. As mathematical background, students should have the equivalent of an
undergraduate coarse in logic, including predicate logic with quantifiers and the basic notion of a decision
procedure.

xviii Preface to the Second Edition

This book contains, spread throughout it, many references to the Al research literature. These references
are important for two reasons. First, they make it possible for the student to pursue individual topics in greater
depth than is possible within the space restrictions of this book. This is the common reason for including
references in a survey text. The second reason that these references have been included is more specific to the
content of this book. Al is a relatively new discipline. In many areas of the field there is still pot complete
agreement on how things should be done. The references to the source literature guarantee that students have
access not just to one approach, but to as many as possible of those whose eventual success still needs to be
determined by further research, both theoretical and empirical.

Since the ultimate goal of Al is the construction of programs that solve hard problems, no study of Al is
complete without some experience writing programs. Most Al programs are written in LISP, PROLOG, or
some specialized Al shell. Recently though, as Al has spread out into the mainstream computing world, Al
programs are being written in a wide variety of programming languages. The algorithms presented in this
book are described in sufficient detail to enable students to exploit them in their programs, but they are not
expressed in code. This book should probably be supplemented with a good book on whatever language is
being used for programming in the course.

This book would not have happened without the help of many people. The content of the manuscript has
been greatly improved by the comments of Srinivas Akella, Jim Blevins, Clay Bridges, R. Martin Chavez,
Alan Cline, Adam Farquar, Anwar Ghuloum, Yolanda Gil, R. V. Guha, Lucy Hadden, Ajay Jain, Craig Knoblock,
John Laird, Clifford Mercer, Michael Newton, Charles Petrie, Robert Rich, Steve Shafer, Reid Simmons,
Herbert Simon, Munindar Singh, Milind Tambe, David Touretzky, Manuela Veloso, David Wroblewski, and
Marco Zagha.

Special thanks to Yolanda Gil and Alan Cline for help above and beyond. Yolanda kept the project going
under desperate circumstances, and Alan spent innumerable hours designing the cover and bringing it into the
world. We hank them for these things and much, much more.

Linda Mitchell helped us put together many draft editions along the way. Some of those drafts were used
in actual courses, where students found innumerable bugs for us. We would iike to thank them as well as their
instructors, Tom Mitchell and Jean Scholtz. Thanks also to Don Speray for his help in producing the cover.

David Shapiro and Joe’Murphy deserve credit for superb editing, and for keeping us on schedule.

We would also like to thank Nicole Vecchi for her wisdom and patience in the world of high resolution
printing. Thanks to David Long and Lily Mummert for pointing us to the right fonts.

Thanks to the following reviewers for their comments; Yigal Arens, University of Southern California;
Jaime Carbonell, Carnegie Mellon University; Charles Dyer, University of Wisconsin, Madison; George
Ernst, Case Western Reserve University; Pat Langley, University of California, Irvine; Brian Schunck,
University of Michigan; and James Slagle, University of Minnesota.

Camegie Mellon University and MCC provided us the environment in which we could write and produce
this book. We would like to thank our colleagues, particularly Jim Barnett and Masaru Tomita, for putting up
with us while we were writing this book instead of doing the other things we were supposed to be doing.

Elaine Rich
Kevin Knight

PART I

PROBLEMS AND SEARCH

CHAPTER

1

WHAT IS ARTIFICIAL INTELLIGENCE?

There are three Kinds of intelligence: one Kind understands things for itself, the other appreciates what
others can understand, the third understands neither for itself nor through others. This first Kind is
excellent, the second good, and the third Kind useless.

—Niccolo Machiavelli
(1469-1527), Italian diplomat, political philosopher,
musician, poet and playwright

What exactly is artificial intelligence? Although most attempts to define complex and widely used terms
precisely are exercises in futility, it is useful to draw at least an approximate boundary around the concept to
provide a perspective on the discussion that follows., To do this, we propose the following by no means
universally accepted definition. Artificial intelligence (Al) 1s the study of how to make computers do things
which, at the moment, people do better. This definition is, of course, somewhat ephemeral because of its
reference to the current state of computer science. And it fails to include some areas of potentially very large
impact, namely problems that cannot now be solved well by either computers or people. But it provides a

. good outline of what constitutes artificial intelligence, and it avoids the philosophical issues that dominate

attempts to define the meaning of either artificial ot intelligence. Interestingly, though, it suggests a similarity
with philosophy at the same time it is avoiding it. Philosophy has always been the study of those branches of
knowledge that were so poorly understood that they had not yet become separate disciplines in their own
right. As fields such as mathematics or physics became more advanced, they broke off from philosophy.
Perhaps if Al succeeds it can reduce itself to the empty set. As on date this has not happened. There are signs
which seem to suggest that the newer off-shoots of Al together with their real world applications are gradually
overshadowing it. As Al migrates 1o the real world we do not seem to be satisfied with just a computer playing
a chess game. Instead we wish a robot would sit opposite to us as an opponent, visualize the real board and
make the right moves in this physical world. Such notions seem to push the definitions of Al to a greater
extent. As we read on, there will be always that lurking feeling that the definitions propounded so far are not
adequate. Only what we finally achieve in the future will help us propound an apt definition for Al! The
feeling of intelligence is a mirage, if you achieve it, it ceases to make yol feel so. As somebody has apity put
it — Al is Artificial Intelligence till it is achieved; after which the acronym reduces to Already Implemented.

4 Artificial Intelligence

One must also appreciate the fact that comprehending the concept of Al also aids us in understanding how
natural intelligence works. Though a complete comprehension of its working ynay remain a mirage. the very
attempt will definitely assist in unfolding mysteries one by one.

1.1 THE Al PROBLEMS

What then are some of the problems contained within Al? Much of the early work in the field focused on
formal tasks, such as game playing and theorem proving. Samuel wrote a checkers-playing program that not
only played games with opponents but also used its experience at those games to improve its [ater performance.
Chess also received a good deal of attention. The Logic Theorist was an early attempt to prove mathematical
theorems. It was able to prove several theorems from the first chapter of Whitehead and Russell’s Principia
Mathematica. Gelemter’s theorem prover explored another area of mathematics: geometry. Game playing
and theorem proving share the property that people who do them well are considered to be displaying
intelligence. Despite this, it appeared initially that computers could perform well at those tasks simply by
being fast at exploring a large number of solution paths and then selecting the best one. It was thought that this
process required very little knowledge and could therefore be programmed ecasily. As we will see later, thisy
assumption turned out to be false since no computer is fast enough to overcome the combinatorial explosion
generated by most problems.

Another early foray into Al focused on the sort of problem solving that we do every day when we decide
how to get to work in the morning, often called commeonsense reasoning. 1t includes reasoning about physical
objects and their relationships to each other (e.g., an object can be in only one place at a time), as well as
reasoning about actions and their consequences (e.g., if you let go of something, it will fail o the floor and
maybe break). To investigate this sort of reasoning, Newell. Shaw, and Simon built the General Problem
Solver (GPS), which they applied to several commonsense tasks as well as to the problem of perforniing
symbolic manipulations of logical expressions. Again, no attempt was made to create a program with a large
amount of knowledge about a particular problem domain. Only simple tasks were selected.

As Alresearch progressed and techniques for handling larger amounts of world knowledge were developed,
some progress was made on the tasks just described and new tasks could reasonably be attempted. These
include perception (vision and speech), natural language understanding, and problem solving in specialized
domains such as medical diagnosis and chemical analysis.

Perception of the world around us is crucial to our survival. Animals with much less inteiligence than
people are capable of more sophisticated visual perception than are current machines. Perceplual tasks are
difficult because they involve analog (rather than digital) signals; the signals are typically very noisy and
usually a large number of things (some of which may be partially obscuring others) must be perceived at once.
The problems of perception are discussed in greater detail in Chapter 21.

The ability to use language to communicate a wide variety of ideas is perhaps the most important thing that
separates humans from the other animals. The problem of understanding spoken language is a perceptual
problem and is hard to solve for the reasons just discussed. But suppose we simplify the problem by restricting
it to written language. This problem, usually referred to as natural language understanding, s still extremety
difficult. In order to understand sentences about a topic, it is necessary to know not only a lot about the
language itself (its vocabulary and grammar) but also a good deal about the topic so that unstated assumptions
can be recognized. We discuss this problem again later in this chapter and then in more detail in Chapter 15.

In addition to these mundane tasks, many people can also perform one or maybe more specialized tasks in
which carefully acquired expertise is necessary. Examples of such tasks include engineering design. scientific
discovery, medical diagnosis, and financial planning. Programs that can solve problems in these domains also fall
under the aegis of artificial intelligence. Figure 1.1 lists some of the tasks that are the targets of work in Al

What is Artificial Intelligence? 5

A person who knows how to perform tasks from several of the categories shown in the figure learns the
necessary skills in a standard order. First, perceptual, linguistic, and commonsense skills are learned. Later
{and of course for some people, never) expert skills such as engineering, medicine, or finance are acquired. It
might seem to make sense then that the earlier skills are easier and thus more amenable to computerized
duplication than are the later, more specialized ones. For this reason, much of the initial Al work was
concentrated in those early areas. But it tumns out that this naive assumption is not right. Although expert skills
require knowledge that many of us do not have, they often require much less knowledge than do the more
mundane skills and that knowledge is usually easier to represent and deal with inside programs.

Mundane Tasks
* Perception
- Vision
- Speech
« Natural language
- Understanding
- Generation
- Translation
«» Commonsense reasoning
Robot control

Formal Tasks
¢ Games
- Chess
- Backgammon
- Checkers -Go
¢ Mathematics
- Geometry
- Logic
- Integral calculus
- Proving properties of programs

Expert Tasks

e Engineering

- Design

- Fault finding

- Manufacturing planning
» Scientific analysis

Medical diagnosis

» Financial analysis

Fig. 1.1 Some of the Task Domains of Artificial Intelligence

As a result, the problem areas where Al is now flourishing most as a practical discipline (as opposed to a
purely research one) are primarily the domains that require only specialized expertise without the assistance
of commonsense knowledge. There are now thousands of programs called expert systems in day-to-day
operation throughout all areas of industry and government. Each of these systems attempts to solve part, or
perhaps all, of a practical, significant problem that previously required scarce human expertise. In Chapter 20
we examine several of these systems and explore techniques for constructing them.

6 Artificial Intelligence

Before embarking on a study of specific Al problems and solution techniques, it is important at least to
discuss, if not to answer, the following four questions:

1. What are our underlying assumptions about intelligence?

2. What kinds of techniques will be useful for solving Al problems?

3. At what level of detail, if at all, are we trying to model human intelligence?

4. How will we know when we have succeeded in building an intelligent program?

The next four sections of this chapter address these questions. Following that is a survey of some Al books
that may be of interest and a summary of the chapter.

1.2 THE UNDERLYING ASSUMPTION

At the heart of research in artificial intelligence lies what Newell and Simon [1976] call the physical symbol
system hypothesis. They define a physical symbol system as follows:

A physical symbol systern consists of a set of entities, called symbols, which are physical patterns that can occur as
components of another type of entity called an expression (or symbol structure). Thus, a symbeol structure is composed
of a number of instances {or tokens) of symbols related in some physical way (such as one token being next to
another). At any instant of time the system will contain a collection of these symbol structures. Besides these
structures, the system also contains a collection of processes that operate on expressions to produce other expressions:
processes of creation, modification, reproduction and destruction. A physical symbol system is a inachine that
produces through time an evolving collection of symbol structures. Such a system exists in a world of objects wider
than just these symbolic expressions themselves.

They then state the hypothesis as

The Physical Symbol System Hypothesis. A physical symbol system has the necessary and sufficient means for
general intelligent action.

This hypothesis is only a hypothesis. There appears to be no way to prove or disprove it on logical grounds.
So it must be subjected to empirical validation. We may find that it is false. We may find that the bulk of the
evidence says that it is true, But the only way to determine its truth is by experimentation.

Computers provide the perfect medium for this experimentation since they can be programmed to simulate
any physical symbol system we like. This ability of computers to serve as arbitrary symbol manipulators was
noticed very early in the history of computing. Lady Lovelace made the following observation about Babbage’s
proposed Analytical Engine in 1842.

The operating mechanism can even be thrown into action independently of any object to operate upon (although of
course no result could then be developed). Again, it might act upon other things besides numbers, were objects
found whose mutual fundamental relations could be expressed by those of the abstract science of operations, and
which should be also susceptible of adaptations to the action of the operating notation and mechanism of the
engine, Supposing, for instance, that the fundamental relations of pitched sounds in the science of harmony and of
musical composition were susceptible of such expression and adaptations, the engine might compose elaborate and
scientific pieces of music of any degree of complexity or extent. [Lovelace, 1961]

As it has become increasingly easy to build computing machines, so it has become increasingly possible to
conduct empirical investigations of the physical symbol system hypothesis. In each such investigation, a
particular task that might be regarded as requiring intelligence is selected. A program to perform the task is
proposed and then tested. Although we have not been completely successful at creating programs that perform

What is Artificial Intelligence? 7

all the selected tasks, most scientists believe that many of the problems that have been encountered will
ultimately prove to be surmountable by more sophisticated programs than we have yet produced.

Evidence in support of the physical symbol system hypothesis has come not only from areas such as game
playing, where one might most expect to find it, but also from areas such as visual perception, where it is more
tempting to suspect the influence of subsymbolic processes. However, subsymbolic models (for example,
neural networks) are beginning to challenge symbolic ones at such low-level tasks. Such models are discussed
in Chapter 18. Whether certain subsymbolic models conflict with the physical symbol system hypothesis is a
topic still under debate (e.g., Smolensky [1988] }. And itis important to note that even the success of subsymbolic
systems is not necessarily evidence against the hypothesis. It is often possible to accomplish a task in more
than one way.

One interesting attempt to reduce a particularly human activity, the understanding of jokes, to a process of
symbol manipulation is provided in the book Mathematics and Humor [Paulos, 1980]. It is, of course, possible
that the hypothesis will turn out to be only partially true. Perhaps physical symbol systems will prove able to
model some aspects of human intelligence and not others. Only time and effort will tefl.

The importance of the physical symbol system hypothesis is twofold. It is a significant theory of the nature
of human intelligence and so is of great interest to psychologists. It also forms the basis of.the belief that it is
possible to build programs that can perform intelligent tasks now performed by people. Our major concern
here is with the latter of these implications, although as we will soon see, the two issues are not unrelated.

1.3 WHAT IS AN Al TECHNIQUE?

Artificial intelligence problems span a very broad spectrum. They appear to have very little in common
except that they are hard. Are there any techniques that are appropriate for the solution of a variety of these
problems? The answer to this question is yes, there are. What, then, if anything, can we say about those
techniques besides the fact that they manipulate symbols? How could we tell if those techniques might be
useful in solving other problems, perhaps ones not traditionally regarded as Al tasks? The rest of this book is
an attempt to answer those questions in detail. But before we begin examining closely the individual techniques,
it is enlightening to take a broad look at them to see what properties they ought to possess.

One of the few hard and fast results to come out of the first three decades of Al research is that intelligence
reguires knowledge. To compensate for its one overpowering asset, indispensability, knowledge possesses
some less desirable properties, including:

¢ It is voluminous.

e It is hard to characterize accurately.

o lt is constantly changing.

¢ [t differs from data by being organized in a way that corresponds to the ways it will be used.

So where does this leave us in our attempt to define Al techniques? We are forced to conclude that an Al
technique is a method that exploits knowledge that should be represented in such a way that:

s The knowledge captures generalizations. In other words, it is not necessary to represent separately
each individual situation. Instead, situations that share important properties are grouped together. If
knowledge does not have this property, inordinate amounts of memory and updating will be required.
So we usually call something without this property “data” rather than knowledge.

e [t can be understood by people who must provide it. Although for many programs, the bulk of the data
can be acquired automatically (for example, by taking readings from a variety of instruments), in many
Al domains, most of the knowledge a program has must ultimately be provided by people in terms they
understand.

8 Artificial Intelligence

s [t can easily be modified to correct errors and to reflect changes in the world and in our world view.

¢ [t can be used in a great many situations even if it is not totally accurate or complete.

¢ [t can be used to help overcome its own sheer bulk by helping to narrow the range of possibilities that
must usually be considered.

Although AT techniques must be designed in keeping with these constraints imposed by Al problems, there
is some degree of independence between problems and problem-solving techniques. 1t is possible to solve Al
problems without using Al techniques (although, as we suggested above, those solutions are not likely to be
very good). And it is possible to apply Al techniques to the solution of non-Al problems. This is likely to be
a good thing to do for problems that possess many of the same characteristics as do Al problems. In order to
try to characterize Al techniques in as problem-independent a way as possible, let’s took at two very different
problems and a series of approaches for solving each of them.

1.3.1 Tic-Tac-Toe
In this section, we present a series of three programs to play tic-tac-toe. The programs in this series increase in:

» Their complexity

¢ Their use of generalizations

» The clarity of their knowledge

» The extensibility of their approach. Thus, they move toward being representations of what we call Al

techniques.
Program 1

Data Structures
Board A nine-element vector representing the board, where the elements of the vector correspond
to the board positions as follows:
1 2
4 5 6
7 8 9 .
An element contains the value 0 if the corresponding square is blank, | if it is filled with
an X, or 2 if it is filled with an O.
Movetable A large vector of 19,683 elements 3%, each element of which is a nine-element vector.
The contents of this vector are chosen specifically to allow the algorithm to work.

)

The Algorithm
To make a move, do the following:
1. View the vector Board as a ternary (base three) number. Convert it to a decimal number.
2. Use the number computed in step 1 as an index into Movetable and access the vector stored there.
3. The vector selected in step 2 represents the way the board will look after the move that should be made.
So set Board equal to that vector.

Comments
This program is very efficient in terms of time. And, in theory, it could play an optimal game of tic-tac-toe.
But it has several disadvantages:

What is Artificial Intelligence? 9

Fhat s, A FEEVRRSE ead i i

o It takes a lot of <pace to store the table that specifies the correct meve to make froms euch boaot

LOSIEGN,

s Someone will have (o doa by ol ok speityiog nfl the Ceirios o e movel.ble,

@ li iy very vidihely that all the soguored moveiable entries can be detevinined and enfeood vadang o

CITOrS,

e If we want 10 extend the game. say to three dimensions. we would have to stait from scratch, and in fact
this technigue would no fonger work at all, since 377 board positions would have to be stored. thas
overwhelming present computer memosies,

The technique embaodied in this program does nol appear to meet any of our requirements for a good Al
technigue. Let’s see if we can do better.

Data Structures
Board

Turn

The Algorithm

[Programj_)

A ning-element vector representing the board, as described for Program 1. But wstead of
using the numbers 0,1, or 2 0 each element. we store 2 (indicuiing blank). 3 {ndicaring X
or 5 {indicaiing O).

An integer indicating which move ol the gane is about to be played: |indicater. the fitad
move, 9 the last.

The main algorithm uses three subprocedures:

Make 2

Posswin(p)}

Golny

Returns 5 if the center square of the board s biank, that is, 17 Bourd{ 5] = 2. Otherwe,
this function returns any blank noncorner square (2, 4, 0, or 8).

Returns O if player p cannot win on his next move: otherwise, it returns the number o i
square that constitutes a winning move. This function will enable the procram tah o
win and to block the opponent’s win. Posswin operales by checking. one at a tivwe, each
of the rows. columns, and diagonals. Because of the way values are numboered, ifcon tos
an entire row (cotumn or diagonal) 1o see if it is 2 possible win by mulipiying the ol
of its squares together. If the product is F8 (3 x 3 x 2). then X can win. H the product i 540
(5 x 5 x 2} then O can win. If we find a winning row, we determine which clovent o
blank, and return the number of that square.

Makes a move in square #. This procedure sets Board{n| to 3 if Tern is odd. e 518 Tuy
15 even. It also increments Turn by one.,

The algorithm has a built-in strategy for each move it may have to make. It makes the odd-numbered
moves if it is playing X, the even-numbered moves if it is playing O. The strategy for each turn is as follows

Turn=1
Turn=2
Turn=3
Turn=4
Turn=5

Gol) (upper lett <orner).

I Board{5] is blank, Go(5). else Go(l),

If Board)9} is blank, Go(9), else Go(3).

if Posswin(X) is not), then Go(Posswin(X)) {i.e., block opponent’s wini. clse CoiMahe 21
If Posswin(X) is not 0 then Go(Posswin{ X)) [i.e.. win| else if Posswinf(is not O then
Gof{Posswin(O)) [i.c.. biock win}, else if Board[7] is blank, then o7 elve Gofldn
{Here the program is tryving to make a fork.|

10 Artificial Intelligence

Turn=6 If Posswin(O} is not 0O then Go {Posswin(O)). else if Posswin(X) is not 0, then
Go(Posswin(X)), else Go(Make2).

Turn=7 If Posswin(X) is not O then Go(Posswin{X};. else if Posswin{Q) is not 0, then
Go{Posswin{O}). else go anywhere that is blank.

Turn=8 If Posswin(O) is not O then Go(Posswin(Q)), else if Posswin(X) is not 0, then
Go(Posswin(X», else go anywhere that is biank.

Turn=% Same as Tum=7.

Comments

This program is not quite as efficient in terms of time as the first one since it has to check several conditions
before making each move. But it is a lot more efficient in terms of space. It is also a lot easier to understand the
program’s strategy or to change the strategy if desired. But the total strategy has still been figured out in
advance by the programmer. Any bugs in the programmer’s tic-tac-toe playing skill will show up in the
program’s play. And we still cannot generalize any of the program’s knowledge to a different domain, such as

three-dimensional tic-tac-toe.
Program 2’

This program is identical to Program 2 except for one change in the representation of the board. We again
represent the board as a nine-element vector, but this time we assign board positions to vector elements as
follows:

8 3 4
1 5 9
6 7 2

Notice that this numbering of the board produces a magic square: all the rows, columns, and diagonals sum
up to 15. This means that we can simplify the process of checking for a possible win. In addition to marking
the board as moves are made, we keep a list, for each player, of the squares in which he or she has played. To
check for a possible win for one player, we consider each pair of squares owned by that player and compute
the difference between 15 and the sum of the two squares. If this difference is not positive or if it is greater
than 9, then the original two squares were not collinear and so can be ignored. Otherwise, if the square
representing the difference is blank, a move there will produce a win. Since no player can have more than four
squares at a time, there will be many fewer squares examined using this scheme than there were using the
more straightforward approach of Program 2. This shows how the choice of representation can have a major
impact on the efficiency of a problem-solving program.

Comments

This comparison raises an interesting question about the relationship between the way people solve problems
and the way computers do. Why do people find the row-scan approach easier while the number-counting
approach is more efficient for a computer? We do not know enough about how people work to answer that
question completely. One pact of the answer is that people are parallel processors and can look at several parts
of the board at once, whereas the conventional computer must look at the squares one at a time. Sometimes an
investigation of how people solve problems sheds great light on how computers should do so. At other times,
the differences in the hardware of the two seem so great that different strategies seem best. As we learn more
about problem solving both by people and by machines, we may know better whether the same representations
and algorithms are best for both people and machines. We will discuss this question further in Section 1.4,

What is Artificial Intelligence? 11

Data Structures

BoardPosition A structure conlaining a nine-element vector representing the board, a list of board positions
that couid result from the next move, and a number representing an estimate of how
likely the board position is to lead to an ultimate win for the player to move.

The Algorithm

To decide on the next move, look ahead at the board positions that result from each possible move. Decide
which position is best (as described below), make the move that leads to that position, and assign the rating of
that best move to the current position.

To decide which of a set of hoard positions is best, do the following for each of them:

I. Seeif it is a win. If so, call it the best by giving it the highest possible rating.

2. Otherwise, consider all the moves the opponent could make next. See which of them is worst for us (by
recursively calling this procedure). Assume the opponent will make that move. Whatever rating that
move has, assign it to the node we are considering.

3. The best node is then the one with the highest rating,

This algorithm will look ahead at various sequences of moves in order to find a sequence that leads to a
win. It attempts to maximize the liketihood of winning, while assuming that the opponent will try to minimize
that likelihood. This algorithm is called the minimax procedure, and it is discussed in detail in Chapter 12.

Comments

This program will require much more time than either of the others since it must search a tree representing all
possible move sequences before making each move. But it is superior to the other programs in one very big
way; It could be extended to handle games more complicated than tic-tac-toe, for which the exhaustive
enumeration approach of the other programs would completely fall apart. It can also be augmented by a
variety of specific kinds of knowledge about games and how to play them. For example, instead of considering
all possible next moves. it might consider only a subset of them that are determined, by some simple algorithm,
to be reasonable. And. instead of following each series of moves until one player wins, it could search for a
limited time and evaluate the merit of each resulting board position using some static function.

Program 3 is an example of the use of an Al technique. For very small problems, it is less efficient than a
variety of more direct methods. However, it can be used in situations where those methods would fait,

1.3.2 Question Answering

In this section we look at a series of programs that read in English text and then answer questions, also stated
in English. about that text. This task differs from the last one in that it is more difticult now to state formally
and precisely what our problem is and what constitutes correct solutions to it. For example, suppose that the
input text were just the single sentence

Russia massed troops on the Czech border.

Then either of the following question-answering dialogues might occur (and in fact did occur with the
POLITICS program [Carbonell, 19801):

e

12 Artificial Intelligence

R T TR B o s N B

Dialogue 1

Q. Why did Russia do this?

At Becaase Russaa thought that it could take political control of Crechoslovakia by sending troops.
J: What should the United States do?

Ar The Paited States should intervene militarily.

R —

E Dialogue 2 |

: Why did Russia do this?

Buecause Russia wanted to increase its political influence over Czechoslovakia.
What should the United States do?

: The United States should denounce the Russian action in the United Nations.

e

In the POLITICS program, answers were constructed by considering hoth the input text and a separate
model of the beliefs and actions of various political entities. including Russia. When the model js changed. ax
it was between these two dialogues, the sysiem’s answers also change. In this example. the first dialogue was
praeduced when POLITICS was given a model that was intended 1o correspond to the beliefs of a typical
American conservative {circa 1977). The second dialogue occurred when POLITICS was given a model that
was intended to correspend to the beliels of a typical American liberal (ol the same vintage).

The general point here is that defining what it means Lo produce a correct answer to a question may be very
hard., Usuaily. question-answering programs define what it means to be an answer by the procedure that is
used to compuie the answer. Then their authors appeal to other people to agree that the answers found by the
program “mike sense” und so to confirm the model of question answering defined in the program. This is not
completelv satisfactory. but ne better way of defining the prohlem has yet been found. For lack ot u better
method. we will do the same here and illustrate three definitions of question answering, each with a
correspendimg progrum that implements the definition.

In order to be able to compare the three programs, we ttlustrate all of them using the following text:

Mary went shopping for a new coat. She found a red one she really liked. When she got it home, she discovered that
it went perfectiy with her favorite dress.

We wili also attempr to answer each of the following questions with euch program:

QI: What did Mary go shopping for?
Q2: What did Mary find that she liked?

Q3: Did Mary buy anything?
Program 1

This program attempts to answer questions using the literal input text. It simyply matches text fragments 1n the
questions against the input text.

Data Structures
QuestionPattems A set of templates that match common question forms and produce patterns te he used to
match against inputs. Templates and patterns (which we call rext patternsj are paired so
that if a template matches successfully against an input question then its associated text

What is Art;f' cial Inrellrgence? 13

= & © o aepBdeesie GECIRENEREATSigeRgNg

patterns are used to try to find appropriate answers in the text. For example, if the template
. “Who did x y" matches an input question, then the text pattern “x v z” is matched against
the input text and the value of 7 is given as the answer to the question.

Text The input text stored simply as a long character string.
Question The current question also stored as a character string,
The Algorithm

To answer a question, do the following:

1. Compare each element of QuestionPatterns against the Question and use all those that match successfully
to generate a set of lext patterns.

2. Pass each of these patterns through a substitution process that generates alternative forms of verbs so
that, for example, “go” in a question might match “went” in the text. This step generates a new, expanded
set of text patterns.

3. Apply each of these text patterns to Text, and collect all the resulting answers.

4. Reply with the set of answers just collected.

Examples

QI: The template “What did x v” matches this question and generates the text pattern “Mary go shopping
for z.” After the pattern-substitution step, this pattern is expanded to a set of patterns including
“Mary goes shopping for z,” and “Mary went shopping for z.” The latter pattern matches the input
text; the program, using a convention that variables match the longest possible string up to a sentence
delimiter (such as a period), assigns z the value, “a new coat,” which is given as the answer.

Q2: Unless the template set is very large, allowing for the insertion of the object of “find” between it and
the modifying phrase “that she liked,” the insertion of the word “really” in the text, and the substitution
of “she” for “Mary,” this question is hot answerable, I all of these variations are accounted for and
the question can be answered, then the response is “a red one.”

Q3: Since no answer to this question is contained in the text, no answer will be found.

Comments

This approach is clearly inadequate to answer the kinds of questions people could answer after reading a
simple text. Even its ability to answer the most direct questions is delicately dependent on the exact form in
which questions are stated and on the variations that were anticipated in the design of the templates and the
pattern substitutions that the system uses. In fact, the sheer inadequacy of this program to perform the task
may make you wonder how such an approach could even be proposed. This program is substantially farther
away from being vseful than was the initial program we looked at for tic-tac-toe. Is this just a strawman
designed to make some other technique look good in comparison? In a way, yes, but it is worth mentioning
that the approach that this program uses, namely matching patterns, performing simple text substitutions, and
then forming answers using-straightforward combinations of canned text and sentence fragments located by
the matcher, is the same approach that is used in one of the most famous “Al” programs ever written—
ELIZA, which we discuss in Section 6.4.3. But, as you read the rest of this sequence of prngrams, it shouid
become clear that what we mean by the term “artificial intelligence” does not include programs such as this
except by a substantial stretching of definitions.

This program first converts the input text into a structured internal form that attempts to capture the meaning
of the sentences. It also converts questions into that form. It finds answers by matching structured forms
against each other.

-

14

Data Structures
EnglishKnow

InputText
StructuredText

Artificial Intelligence

A description of the words, grammar, and appropriate semantic interpretations of a large
enough subset of English fo account for the mput texts that the system will see. This
knowledge of English is used both to map input sentences into an internzl, meaning-
oriented Form ard to map from such internal forms back into English. The former process
is used when English text is being read; the latter is used to generate English answers
from the meaning-oriented form that constitutes the program’s knowledge base.

The input text in character form.

A structured representation of the content of the input text. This structure attempts to
capture the essential knowledge contained in the text, independently of the exact way
that the knowledge was stated in English. Some things that were not explicit in the English
text, such as the referents of pronouns, have been made explicit in this form. Representing
knowledge such as this is an important issue in the design of almost all Al programs.
Existing programs exploit a variety of frameworks for doing this. There are three important
families of such knowledge representation systems: production rules (of the form “if x
then y), slot-and-filler structures, and statements in mathematical logic. We discuss all
of these methods later in substantial detail, and we look at key questions that need to be
answered in order to choose a method for a particular program’. For now though, we just
pick one arbitrarily. The one we’ve chosen is a slot-and-filler structure. For example, the
sentence “She found a red one she really liked.” might be represented as shown in
Fig. 1.2. Actually, this is a simplified description of the contents of the sentence. Notice
that it is not very explicit about temporal relationships (for example. events are just marked
as past tense) nor have we made any real attemnpt to represent the meaning of the qualifier
“really.” It should, however, illustrate-the basic form that representations such as this
take. One of the key ideas in this sort of representation is that entities in the representation
derive their meaning from their connections to other entities. In the figure, only the entities
defined by the sentence are shown. But other entities, corresponding to concepts that the
program knew about before it read this sentence, also exist in the representation and can
be re- ferred to within these new structures. In this example, for instance, we teler to the
entities Mary, Coar (the general concept of a coat of which Thing{ is a specific instance),
Liking {the general concept of liking), and Finding (the general concept of finding).

Event 2
instance : Finding
tense: FPast
agent ! Mary
object: Thingl
Thingl
instance: Coat
color: Red
Even:2
instance: Liking
tense : FPast
modifier: Much
obhject: Thingl

Fig. 1.2 A Structured Representation of a Sentence

What is Artificial Intelligence? 15

InputQuestion The input question in character form.
StructQuestion A structured representation of the content of the user’s question. The structure is the
same as the one used to represent the content of the input text.

The Algorithm

Convert the InputText into structured form using the knowledge contained in EnglishKnow. This may require
considering several different potential structures, for a variety of reasons, including the fact that English
words can be ambiguous, English grammatical structures can be ambigucus, and pronouns may have several
possible antecedents, Then, to answer a question, do the following:

1. Convert the question to structured form, again using the knowledge contained in EnglishKnow. Use
some special marker in the structure to indicate the part of the structure that should be returned as the
answer. This marker will often correspond to the occurrence of a gquestion word (like “who” or “what”)
in the sentence. The exact way in which this marking gets done depends on the form chosen for
representing StructuredText. If a slot-and-filler structure, such as ours, is used, a special marker can be
placed in one or more slots. If a logical system is used, however, markers will appear as variables in the
logical formulas that represent the question.

2. Match this structured form against StructuredText.

3. Return as the answer those parts of the text that match the requested segment of the question.

Examples
QI: This question is answered straightforwardly with, “‘a new coat”.
Q2: This one also is answered successfully with, “a red coat”.
Q3: This one, though, cannot be answered. since there is no direct response to it in the text.

Comments

This approach is substantially more meaning (knowledge)-based than that of the first program and so is more
effective. It can answer most questions to which replies are contained in the text. and it is much less brittle
than the first program with respect to the exact forms of the text and the questions. As we expect, based on our
experience with the pattem recognition and tic-tac-toe programs, the price we pay for this increased flexibility
is time spent searching the various knowledge bases (i.e., EnglishKnow, StructuredText).

One word of warning is appropriate here. The problemn of producing a knowledge base for English that is
powerful enough to handle a wide range of English inputs is very difficult. It is discussed at greater length in
Chapter 15. In addition, it is now recognized that knowledge of English alone is not adequate in general to
enable a program to build the kind of structured representation shown here. Additional knowledge about the
world with which the text deals is often required to support lexical and syntactic disambiguation and the
correct assignment of antecedents to pronouns, among other things. For example, in the text

Mary walked up to the salesperson. She asked where the toy department was.

it ts not possible to determine what the word *“she” refers to without knowledge about the roles of customers
and sales people in stores. To see this, contrast the correct antecedent of “she” in that text with the correct
antecedent for the first occurrence of “she” in the following example:

Mary walked up to the sales person. She asked her if she needed any help.

In the simple case illustrated in our coat-buying example, it is possible to derive correct answers to our first
two questions without any additional knowledge about stores or coats, and the fact that some such additional
information may be necessary to support question answering has already been illustrated by the failure of this

16

Artificiol Intelligence

program to find an answer to question 3. Thus we see that although extracting a structured representation of
the meaning of the input text is an improvement over the meaning-free approach of Program 1, it is by no
means sufficient in general. So we need to look at an even more sophisticated (i.c., knowledge-rich) approach,
which is what we do next.

This program converts the input text into a structured form that contains the meanings of the sentences in the
text, and then it combines that form with other structured forms that describe prior knowledge about the
objects and situations involved in the text. It answers questions using this augmented knowledge structure.

Data Structures
WorldModel

EnglishKnow
InputText

A structured representation of background world knowledge. This structure contains
knowledge about objects, actions and situations that are described in the input text. This
structure is used to construct IntegratedText from the input text. For example, Figure 1.3
shows an example of a structure that represents the system’s knowledge about shopping.
This kind of stored knowledge about stereotypical events is called a script and is discussed
in more detail in Section 10.2. The notation used here differs from the one normally used
in the literature for the sake of simplicity. The prime notation describes an object of the
same type as the unprimed symbol that may or may not refer to the identical object. In the
case of our text, for example, M is a coat and M’ is a red coat. Branches in the figure
describe alternative paths through the script.

1.Centers L

2. C begins looking around
-

3. C looks f?" a specific M 4. C looks for any interesting M
5.C asksi’ for help

y

6.
|-
7. C finds M’ 8. C fails to find M
3 T
9. C lsaves L 10. Cbuys M" 11. C leaves L 12. goto step 2
13.C leaves L
14. C takes M’

Fig. 1.3 A Shopping Script

Same as in Program 2.
The input text in character form.

What is Artificial Intelligence? 17

IntegratedText A structured representation of the knowledge contained in the in- put text (similar to the
- structured description of Program 2) but combined now with other background, related
knowledge.
InputQuestion The input question in character form.
StructQuestion A structured representation of the question.

The Algorithm

Convert the InputText into structured form using both the knowledge contained in EnglishKnow and that
contained in WorldModel. The number of possible structures will usually be greater now than it was in
Program 2 because so much more knowledge is being used. Sometimes, though, it may be possible to consider
fewer possibilities by using the additional knowledge to filter the alternatives.

Shopping Script:

roles: C {customer), S (salesperson)

props: M (merchandise), D (dollars)

{ocation: L (a store)

To answer a guestion, do the following:

1. Convert the question to structured form as in Program 2 but use WorldModel iT necessary to resolve
any ambiguities that may arise.

2. Match this structured form against IntegratedText.

3. Return as the answer those parts of the text that match the requested segment of the question.

Examples

Ql: Same as Program 2.

Q2: Same as Program 2.

Q3: Now this question can be answered. The shopping script is instantiated for this text, and because of
the last sentence, the path through step 14 of the script is the one that is used in forming the
representation of this text. When the script is instantiated M’ is bound to the structure representing
the red coat (because the script says that M’ is what gets taken home and the text says that a red coat
is what got taken home). After the script has been instantiated, IntegratedText contains several
events.that are taken from the script but that are not described in the original text, including the event
“Mary buys a red coat” (from step 10 of the script). Thus, using the integrated text as the basis for
question answering allows the program to respond “She bought a red coat.”

Comments

This program is more powerful than either of the first two because it exploits more knowledge. Thus, like the
final program in each of the other two sequences we have examined, it is exploiting what we call Al techniques.
But, again, a few caveats are in order. Even the techniques we have exploited in this program are not adequate
for complete English question answering. The most important thing that is missing from this program is a
general reasoning (inference) mechanism to be used when the requested answer is not contained explicitly
even in IntegratedText, but that answer does follow logically from the knowledge that is there. For example,
given the text

Saturday morning Mary went shopping. Her brother tried to call her then, but he couldn’t get hold of her.

it should be possible to answer the question

18 Artificial Intelligence

Why couldn’t Mary’s brother reach her?

with the reply
Because she wasn't home.

But to do so requires knowing that one cannot be at two places at once and then using that fact to conclude
that Mary could not have been home because she was shopping instead. Thus, although we avoided the
inference problem temporarily by building IntegratedText, which had some obvious inferences built into it,
we cannot avoid it forever. It is simply not practical to anticipate all legitimate inferences. In later chapters, we
look at ways of providing a general inference mechanism that could be used to support a program such as the
last one in this series.

This limitation does not contradict the main point of this example though. In fact, it is additional evidence
for that point, namely, an effective question-answering procedure must be one based soundly on knowledge
and the computational use of that knowledge. The purpose of Al techniques is to support this effective use of
knowledge.

With the advent of the Internet and the vast amount of knowledge in the ever increasing websites and
associated pages, came the Web based Question Answering Systems. Try for instance the START natural
language question answering system (http://start.csail. mit.edu/). You will find that both the questions — What
is the capital of India? and Is Delhi the capiral of India? yield the same answers, viz. New Delhi is the capital
of India. On the contrary the question — Are there wolves in Korea? yields I don't know if there are wolves in
Karea. which looks quite natural.

1.3.3 Conclusion

We have just examined two series of programs to solve two very different problems. In each series, the final
program exemplifies what we mean by an Al technique. These two programs are slower to execute than the
earlier ones in their respective series, but they illustrate three important Al technigues:

* Search-—Provides a way of solving problems for which no more direct approach is available as well as
a framework into which any direct techniques that are available can be embedded..

* Use of Knowledge—Provides a way of solving complex problems by exploiting the structures of the
objects that are involved.

¢ Abstraction—Provides a way of separating important features and vartations from the many unimportant
ones that would otherwise overwhelm any process.

For the solution of hard problems, programs that exploit these techniques have several advantages over
those that do not. They are much less fragile; they will not be thrown off completely hy a small perturbation
in their input. People can easily understand what the program’s knowledge is. And these techniques can work
for large problems where more direct methods break down.

We have still not given a precise definition of an Al technique. It is probably not possible to do so. But we
have given some examples of what one is and what one is not. Throughout the rest of this book, we talk in
great detail about what one is The definition should then become a bit clearer, or less necessary.

1.4 THE LEVEL OF THE MODEL

Before we set out to do something, it is a good idea to decide exactly what we are trying to do. So we must ask
ourselves, “What is our goal in trying to produce programs that do the intelligent things that people do?” Are
we trying to produce programs that do the tasks the same way people do? Or, are we attempting to produce

What is Artificial Intelligence? 19

programs that simply do the tasks in whatever way appears easiest? There have been Al projects motivated by
each of these goals.

Efforts to build programs that perform tasks the way people do can be divided into two classes. Programs
in the first class attempt to solve problems that do not really fit our definition of an Al task. They are problems
that a computer could easily solve, although that easy solution would exploit mechanisms that do not seem to
be available to people. A classical example of this class of program is the Elementary Perceiver and Memorizer
(EPAM) [Feigenbaum, 1963], which memorized associated pairs of nonsense syllables. Memorizing pairs of
nonsense syllables is easy for a computer. Simply input them. To retrieve a response syllable given its associated
stimulus one, the computer just scans for the stimulus syllable and responds with the one stored next to it. But
this task is hard for people. EPAM simulated one way people might perform the task. It built a discrimination
net through which it could find images of the syllables it had seen. It also stored, with each stimulus image, a
cue that it could later pass through the discrimination net to try to find the correct response image. But it
stored as a cue only as much information about the response syllable as was necessary to avoid ambiguity at
the time the association was stored. This might be just the first letter, for example: But, of course, as the
discrimination net grew and more syllables were added, an old cue might no longer be sufficient to identify a
response syllable uniquely. Thus EPAM, like people, sometimes “forgot” previously learned responses. Many
people regard programs in this first class to be uninteresting, and to some extent they are probabiy right.
These programs can, however, be useful tools for psychologists who want to test theories of human performance.

The second class of programs that attempt to model human performance are those that do things that fail
more clearly within our definition of Al tasks; they do things that are not trivial for the computer. There are
several reasons one might want to model human performance at these sorts of tasks:

1. To test psychological theories of human performance. One example of a program that was written for
this reason is PARRY [Colby, 1975], which exploited a model of human paranoid behavior to simulate
the conversational behavior of a paranoid person. The model was good enough that when several
psychologists were given the opportunity to converse with the program via a terminal, they diagnosed
its behavior as paranoid.

2. To enable computers to understand human reasoning. For example, for a computer to be able to read a
newspaper story and then answer a question, such as “Why did the terrorists kill the hostages?” its
program must be able to simulate the reasoning processes of people.

3. To enable people to understand computer reasoning. In many circumstances, people are reluctant to
rely on the output of a computer unless they can understand how the machine arrived at its result. If the
computer’s reasoning process is similar to that of people, then producing an acceptable explanation is
much easier.

4. To exploit what knowledge we can glean from people. Since people are the best-known performers of
most of the tasks with which we are dealing, it makes a lot of sense to look to them for clues as to how
to proceed.

This last motivation is probably the most pervasive of the four. It motivated several very early systems that
attemnpted to produce intelligent behavior by imitating people at the level of individual neurons. For examples
of this, see the early theoretical work of McCulloch and Pitts [1943], the work on perceptrons, originally
developed by Frank Rosenblatt but best described in Perceptrons [Minsky and Papert, 1969] and Design for
a Brain [Ashby, 1952]. It proved impossible, however, to produce even minimally intelligent behavior with
such simple devices. One reason was that there were severe theoretical limitations to the particular neural, net
architecture that was being used. More recently, several new neural net architectures have been proposed.
These structures are not subject to the same theoretical limitations as were perceptrons. These new architectures
are loosely called connectionist, and they have been used as a basis for several leaming and problem-solving
programs. We have more to say about them in Chapter 18. Also, we must consider that while human brains are

20 Artificial Intelligence

highly paralle]l devices, most cutrrent computing systems are essentially serial engines. A highly successful
parallel technique may be computationally intractable on a serial computer. But recently, partly because of the
existence of the new family of parallel cognitive models, as well as because of the general promise of parallel
computing, there is now substantial interest in the design of massively parallel machines to support Al programs.

Human cognitive theories have also influenced Al to look for higher-level (i.e., far above the neuron level)
theories that do not require massive parallelism for their implementation. An early example of this approach
can be seen in GPS, which are discussed in more detail in Section 3.6. This same approach can also be seen in
much current work in natural language understanding. The failure of straightforward syntactic parsing
mechanisms to make much of a dent in the problem of interpreting English sentences has led many people
who are interested in natural language understanding by machine to look seriously for inspiration at what
little we know about how people interpret language. And when people who are trying to build programs to
analyze pictures discover that a filter function they have developed is very similar to what we think people
use, they take heart that perhaps they are on the right track.

As you can see, this last motivation pervades a great many areas of Al-research. In fact, it, in conjunction. with
the other motivations we mentioned, tends to make the distinction between the goal of simulating human
performance and the goal of building an intelligent program any way we can seem much less different than
they at first appeared. In either case, what we really need is a good mbdel of the processes involved in
intelligent reasoning. The field of cognitive science, in which psychologists, linguists, and computer scientists
all work together, has as its goal the discovery of such a model. For a good survey of the variety of approaches
contained within the field, see Norman [1981], Anderson [1985], and Gardner [1985].

1.5 CRITERIA FOR SUCCESS

One of the most important questions to answer in any scientific or engineering research project is “How will
we know if we have succeeded?” Artificial intelligence is no exception. How will we know if we have
constructed a machine that is intelligent? That question is at least as hard as the unanswerable question “What
is intelligence?” But can we do anything to measure our progress?

In 1950, Alan Turing proposed the following method for determining whether a machine can think. His
method has since become known as the Turing Test. To conduct this test, we need two people and the machine
to be evaluated. One person plays the role of the interrogator, who is in a separate room from the computer
and the other person. The interrogator can ask questions of either the persen or the computer by typing
questions and receiving typed responses. However, the interrogator knows them only as A and B and aims to
determine which is the person and which is the machine. The goal of the machine is to fool the interrogator
into believing that it is the person. If the machine succeeds at this, then we will conclude that the machine can
think. The machine is allowed to do whatever it can to fool the interrogator. So, for example, if asked the
question “How much is 12,324 times 73,9817” it could wait several minutes and then respond with the wrong
answer [Turing, 1963].

The more serious issue, though, is the amount of knowledge that a machine would need to pass the Turing
test. Turing gives the following example of the sort of dialogue a machine would have to be capable of:

Interrogator: In the first line of your sonnet which reads “Shall 1 compare thee to a summer’s day,”
would not “a spring day” do as well or better?

A It wouldn’t scan.

Interrogator: How about “a winter’s day.” That would scan all right.

A Yes, but nobody wants to be compared to a winter’s day.

Interrogator: Would you say Mr. Pickwick reminded you of Christmas?

A: In a way.

What is Artificial Intelligence? 21

Interrogator: Yet Christmas is a winter’s day, and 1 do not think Mr. Pickwick would mind the
- comparison.
A: I den’t think you're serious. By a winter’s day one means a typical winter’s day, rather

than a special one like Christmas.

It will be a long time before a computer passes the Turing test. Some people believe none ever will. But
suppose we are willing to settle for less than a complete imitation of a person. Can we measure the achievement
of Al in more restricted domains?

Often the answer to this question is yes. Sometimes it is possible to get a fairly precise measure of the
achievement of a program. For example, a program can acquire a chess rating in the same way as a human
player. The rating is based on the ratings of players whom the program can beat. Already programs have
acquired chess ratings higher than the vast majority of human players. For other problem domains, a less
precise measure of a program’s achievement is possible. For example, DENDRAL is a program that analyzes
organic compounds to determine their structure, Tt is hard to gel a precise measure of DENDRAL's level of
achievernent compared to human chemists, but it has produced analyses that have been published as original
research results. Thus it is certainly performing competently.

In other technical domains, it is possible to compare the time it takes for a program to complete a task to the
time required by a person to do the same thing. For example, there are several programs in use by computer
companies to configure particular systems to customers’ needs (of which the pioneer was a program calied
R1). These programs typically require minutes to perform tasks that previously required hours of a skilled
engineer’s time. Such programs are usually evaluated by looking at the bottom line— whether they save (or
make) money.

For many everyday tasks, though, it may be even harder to measure a program’s performance. Suppose,
for example, we ask a program to paraphrase a newspaper story. For problems such as this, the best test is
usually just whether the program responded in a way that a person could have.

If our goal in writing a program is to simulate human performance at a task, then the measure of success is
the extent to which the program’s behavior corresponds to that performance, as measured by varicus kinds of
experiments and protocol analyses. In this we do not simply want a program that does as well as possible. We
want one that fails when people do. Various techniques developed by psychologists for comparing mdmdua]q
and for testing models can be used to do this analysis.

We are forced to conclude that the question of whether a machine has intelligence or can think is too
nebulous to answer precisely. But it is often possible to construct a computer program that meets some
performance standard for a particular task. That does not mean that the program does the task in the best
possible way. It means only that we understand at least one way of doing at least part of a task. When we set
out to design an Al program, we should attempt to specify as well as possible the criteria for success for that
particular program functioning in its restricted domain, For the moment, that is the best we can do.

1.6 SOME GENERAL REFERENCES

There are a greal many sources of information about artificial intelligence. First, some survey books: The
broadest are the multi-volume Handbook of Artificial Intelligence [Barr et al.. 1981] and Encyclopedia of
Artificial Intelligence [Shapiro and Eckroth, 1987], both of which contain articles on each of the major topics
in the field. Four other books that provide good overviews of the field are Artificial Intelligence [Winston,
1984], Introduction to Artificial Intelligence [Charniak and McDermott, 1985], Logical Foundations of Artificial
Intelligence [Genesereth and Nilsson, 1987], and The Elements of Artificial Intelligence [Tanimoto, 1987]. Of
more restricted scope is Principles of Artificial Intelligence [Nilsson, 1980], which contains a formal treatment
of some general-purpose Al techniques.

22 Artificial Intelligence

The history of research in artificial intelligence is a fascinating story, related by Pamela McCordiick [1979]
in her book Machires Who Think. Because almost all of what we call Al has been developed over the last 30
years, McCorduck was able to conduct her research for the book by actually interviewing almost all of the
people whose work was influential in forming the field.

Most of the work conducted in Al has been originally reported in journa} articles, conference proceedings,
or technical reports. But some of the most interesting of these papers have later appeared in special collections
published as books. Computers and Theught [Feigenbaum and Feldman, 1963] is a very early collection of
this sort. Later ones include Simon and Siklossy [1972], Schank and Colby [1973], Bobrow and Collins
[1975], Waterman and Hayes-Roth [1978), Findler [1979], Webber and Nilsson [1981], Halpern [1986],
Shrobe [1988], and several others that are mentioned in later chapters in connection with specific topics.For
newer Al paradigms the book Fundamentals of the New Artificial lntelligence [Toshinori Munakata, 1998] is
a good one.

The major journal of Al research is called simply Artificial Intelligence. 1n addition, Cognitive Science is
devoted to papers dealing with the overlapping areas of psychology, linguistics, and artificial intelligence. Al
Magazine is a more ephemeral, less technical magazine that is published by the American Association for
Artificial Intelligence (AAAI). IEEE Fxpert, IEEE Transactions on Systems, Man and Cybernetics, IEEE
Transactions on Neural Networks and several other journals publish papers on a broad spectrum of Al
application domains.

Since 1969, there has been a major Al conference, the Internationai Joint Conference on Artificial Intelligence
(IJCAI), held every two years. The proceedings of these conferences give a good picture of the work that was
taking place at the time. The other important Al conference, held three out of every four years starting in
1980, is sponsored by the AAAI and its proceedings, too, are published.

In addition to these general references, there exists a whole array of papers and books describing individual
Al projects. Rather than trying to list them all here, they are referred to as appropriate throughout the rest of
this book.

1.7 ONE FINAL WORD AND BEYOND

What conclusions can we draw from this hurried introduction to the major questions of AI? The problems are
varied, interesting, and hard. If we solve them, we will have useful programs and perhaps a better understanding
of human thought. We should do the best we can to set criteria so that we can tell if we have solved the
problems, and then we must try to do so.

How actually to go about solving these problems is the topic for the rest of this book. We need methods to
help us solve AT’s serious dilemma:

1. An Al system must contain a lot of knowledge if it is to handle anything but trivial toy problems.

2. But as the amount of knowledge grows, it becomes harder to access the appropriate things when
needed, so more knowledge must be added to help. But now there is even more knowledge to manage,
$0 more must be added, and so forth.

Our goal in Al is to construct working programs that solve the problems we are interested in. Throughout
most of this book we focus on the design of representation mechanisms and algorithms that can be used by
programs to solve the problems. We do not spend much time discussing the programming process required to
turn these designs into working programs. In theory, it does not matter how this process is carried out, in what
language it is done, or on what machine the product is run. In practice, of course, it is often much easier to
preduce a program using one system rather than another. Specifically, Al programs are easiest to build using
languages that have been designed to support symbolic rather than primarily numeric computation.

What is Artificial Intetligence? 23

For a variety of reasons, LISP has historically been the most commonly used language for Al programming.
We say little explicitly about L1SP in this book, although we occasionally rely on it as 2 notation. There used
to be several competing dialects of LISP, but Common Lisp is now accepted as a standard. If you are unfarniliar
with LISP, consult any of the folowing sources: LISP [Winston and Hom. 1989], Common Lisp [Hennessey,
1989, Common LISPcraft [Wilensky, 1986], and Common Lisp: A Gentle Introduction to Symbolic
Computation [Touretzky, 1989a]. For a complete description of Common Lisp, see Common Lisp: The Reference
[Steele, 19904,

Another language that is often used for Al programming is PROLOG, which is described in Chapter 25
And increasingly, as Al makes its way into the conventional programming world, Al systems are being
written in general purpose programming languages such as C. One reason for this is that Al programs are
ceasing to be standalone systems; instead, they are becoming components of larger systems, which may
include conventional programs and databases of various forms. Real code does not form a big part of this
book precisely because it is possible to implement the techniques we discuss in any of several languages and
it is important not to confuse the ideas with their specific implementations. But you should keep in mind as
you read the rest of this book that both the knowledge structures and the problem-solving strategies we
discuss must ultimately be coded and integrated into a working program. This process will definitely throw
more light into real world problems faced in the implementation of Al techniques. It is for this reason we have
introduced Prolog to ensure that you do not end up just reading and believing.

Al is siill a young discipline possibly in the sense that little has been achieved as compared to what was
expected. However one must admit a lot more has been learnt about it. We have learnt many things, some of
which are presented in this book. But it is still hard to know exactly the perspective from which those things
should be viewed. We cannot resist quoting an observation made by Lady Lovelace more than 100 years ago:

In considering any new subject, there is frequently a tendency, first, to overrate what we find to be already
interesting or remarkable; and, secondly, by a sort of natural reaction, to undervalue the true state of the case,
when we do discover that our notions have surpassed those that were really tenable. [Lovelace, 1961]

She was talking.about Babbage’s Analytical Engine. But she could have been describing artificial
intelligence.

While defining Al in terms of symbol processing it would only be right for us to inspect the problem of
Symbol Grounding [Stevan Harnad, 1990, The Symbol Grounding Problem, Physica, D42, 335-346] and not
forget about it while grasping any of the concepts discussed in this book. Harnad defines the symbol grounding
problem citing the example of the Chinese Room [Searle, 1980]. The basic assumption of symbolic Al is that
if a symbol system is able to exhibit behaviors which are indistinguishable from those made by a human
being, then it has a mind. Imagine such a system subjected to the Turing test in Chinese. If the system can
respond to all Chinese symbol string inputs in just the manner as a native Chinese speaker, then it means
{seems) that the system is able to comprehend the meaning of the Chinese symbols just the way we all
comprehend our native languages. Searle argues that this cannot be and poses the question — If he (who
knows none of Chinese} is given the same strings and does exactly what the computer did {maybe execute the
program manually!), would he be understanding Chinese? The rhetoric only leads to one unambiguous inference
— The computer does not understand a thing. It is thus imponant to note that the symbols by themselves do
not have any inwrinsic meaning (like the symbols in a book). They derive their meanings only when we read
and the brain comprehends it. It goes to say that if the meaning of the symbols used in a symbol system are
extrinsic, unlike the meanings in our heads, then the model itself has no meaning. As the symbols themselves
have no meaning and depend on other symbols whose meanings are also extrinsic, we seem to be reasoning
around meaningless entities which itself is a meaningless affair! This is the symbol grounding problem.

In the context of the meaninglessness of the use of symbols, Harnad provides a classic example of learning
Chinese. Assume you do not know Chinese and had to learn it using a Chinese to Chinese dictionary. You

24 Artificial Intelligence

would compare character by character of a given word and find the comresponding word in the dictionary only
to tind many more (meanings) written in the same language alongside, for which you would repeat the same
task. The process would put you on an endless merry-go-round. It would be only by translating it to a language
that you understand that your brain can finally perceive what it means. The Chinese symbols in the present
case are not grounded to its meaning. The moral of the example is simple — You cannot ground the meaning
of a symbol with other meaningless symbols. Hamad also cites that cryptologists are able to comprehend
ancient languages and symbols because their efforts are grounded in their real world domain knowledge as
also on some previous language that forms its basis.

Robots form the ultimate test-bed for Al While Al researchers have brought forth a reasonably large
repository of techniques and programs that are based on the symbol system, implementing them on robots
have posed several problems. Though this'may be beyond the scope of this book we must exercise caution
while implementing symbolic Al. For instance on board a robot a symbel ‘red” has to be actually grounded to
some values reported by the camera or a colour sensor.

Finally one should not forget that research in Al is multidisciplinary. People have been using Al technigues
to reap benefits in a gamut of applications. There are still a ot more untrodden paths to be discovered. In the
quest to find better techniques, the reader is advised to give imagination a free run so that the marginal and the
peripheral are accommodated without losing the grounding of each symbol.

EXERCISES

tmiwe JUItila L LLTEEYIIRSNGREYCe wy geca ol e fITETRIRSHITERE S TR S TS L= b GECEE A IeRfes s et ek gadecystei,ad 0 POt ee® s ie nanl e SDED

1. Pick a specific topic within the scope of Al and use the sources described in this chapter to do a
preliminary literature search to determine what the current state of understanding of that topic is. If you
cannot think of a more novel topic, try one of the following: expert systems for some specific domain
{e.g., cancer therapy, computer design, financial planning), recognizing motion in images, using natural
(i.e., humanlike) methods for proving mathematical theorems, resolving pronominal references in natural
language texts, representing sequences of events in time, or designing a memory organization scheme
for knowledge in a computer system based on our knowledge of human memory organization.

2. Explore the spectrum from static to Al-based techniques for a problem other than the two discussed in
this chapter. Think of your own problem or use one of the following:
s Translating an English sentence into Japanese
¢ Teaching a child to subtract integers
+ Discovering patterns in empirical data taken from scientific cxpenmems and suggesting further

experiments to find more patterns -

3. Imagine that you had been to an aquarium and seen a shark and an octopus. Describe these to a child
who has never seen one. What resources and mechanisms does the child use to comprehend the nature
of these marine animals?

CHAPTER

PROBLEMS, PROBLEM SPACES, AND SEARCH

15 not that ['m so smart, its just that [stay with problems lovger.

-—Albert Einstein
(1879 —-1955), German-born theoretical physicist

In the last chapter, we gave a brief description of the kinds of problems with which Al is typicaliy concemed,
as well as a couple of examples of the techniques it offers to solve those problems. To build a system to solve
a particular problem, we need to do four things:

1. Define the problem precisely. This definition must include precise specifications of what the initial
situation (s) will be as well as what final situations constitute acceptable solutions to the problem.

2. Analyze the problem. A few very important features can have an immense impact on the appropriateness
of various possible techniques for solving the problem.

3. Isolate and represent the task knowledge that is necessary to solve the problem.

4. Choose the best problem-solving technique(s) and apply it (them) to the particular problem.

In this chapter and the next, we discuss the first two and the last of these issues. Then, in the chapters in
Part 11, we focus on the issue of knowledge representation.

2.1 - DEFINING THE PROBLEM AS A STATE SPACE SEARCH

Suppose we start with the problem statement “Play chess”. Although there are a lot of people to whom we
could say that and reasonably expect that they will do as we intended, as our request now stands it is a very
incomplete statement of the problem we want solved. To build a program that could “Piay chess,” we would
first have to specify the starting position of the chess board, the rules that define the legal moves, and the
board positions that represent a win for one side or the other. In addition, we must make explicit the previously
implicit goal of not only playing a legal game of chess but also winning the game, if possible.

For the problem “Play chess,” it is fairly easy to provide a formal and complete problem description. The
starting position can be described as an 8 x § array where each position contains a symbol standing for the
appropriate piece in the official chess opening position. We can define as our goal any board position in which
the opponent does not have a legal move and his or her kipg is under attack. The legal moves provide the way
of getting from the initial state to a goal state. They can be described easily as a set of nules consisting of two
parts: a left side that serves as a pattern to be matched against the current board position and a right side that

o

26 Artificial Intelligence

describes the change to be made to the board position to reflect the move. There are several ways in which
these rules can be written. For example, we could write a rule such as that shown in Fig. 2.1.

BB SK S SE 2R JF SR 1B | I4 k¥ W9 i al

714|222 12|2|2 2 412 222 1212 2

s ‘

5 —

4 &

3

2|1R|A R|R|A[R|A|A AIRIA|A RI&|A

1109 B (¥[8 Jla/aix$&|all

a b cd e f 9 h a b cd e f 9 h
White White

Fig. 2.1 One Legal Chess Move

However, if we write rules like the one above, we have to write a very large number of them since there has
to be a separate rule for each of the roughly 10'? possible board positions. Using so many rules poses two
serious practical difficulties:

* No person could ever supply a complete set of such rules. It would take too long and could certainly
not be done without mistakes.

» No program could easily handle ali those rules. Although a hashing scheme could be used to find the
relevant rules for each move fairly quickly, just storing that many rules poses serious difficulties.

In order to minimize such problems, we should look for a way to write the rules describing the legal moves
in as general a way as possible. To do this, it is useful to introduce some convenient notation for describing
patterns and substitutions. For example, the rule described in Fig. 2.1, as well as many like it, could be written
as shown in Fig. 2.2.! In general, the more succinctly we can describe the rules we need. the less work we will
have to do to provide them and the more efficient the program that uses them can be.

White pawn at
Square(file e, rank 2)

AND move pawn from
Square(file e, rank 3) — Square(file e, rank 2)
is empty to Square(file e, rank 4)
AND
Square(file e, rank 4)
is empty

Fig. 2.2 Another Way to Describe Chess Moves

We have just defined the problem of playing chess as a problem of moving around in a slate space, where
each state corresponds to a legal position of the board. We can then play chess by starting at an initial state,
using a set of rules to move from one state to another, and attempting to end up in one of a set of final states.
This state space representation seems natural for chess because the set of states, which corresponds to the set
of board positions, is artificial and well-organized. This same kind of representation is also useful for naturally
occurring, less well-structured problems, although it may be necessary to use more complex structures than a

' To be compiletely accurate, this rule should include a check for pinned pieces, which have been ignored here.

Problems, Problem Spaces, and Search 27

matrix to describe an individual state. The state space representation forms the basis of most of the Al methods
we discuss here. Its structure corresponds to the structure of problem solving in two important ways:

e [t allows for a formal definition of a problem as the need to convert some given situation into some
desired situation using a set of permissible operations.

» [t permits us to define the process of solving a particular problem as a combination of known techniques
(each represented as a rule defining a single step in the space) and search, the general technique of
exploring the space to try to find some path from the current state to a goal state. Search is a very
important process in the solution of hard problems for which no more direct techniques are available.

In order to show the generality of the state space representation, we use it to deseribe a problem very
different from that of chess.

A Water Jug Problem: You are given two jugs, a 4-gallon one and a 3-gallon one. Neither has any measuring
markers on it. There is a pump that can be used to fill the jugs with water. How can you get exactly 2 gallons of
water into the 4-gallon jug?

The state space for this problem can be described as the set of ordered pairs of integers (x, y), such that.x =
0.1,2.3, ord4and y =0, 1, 2, or 3; x represents the number of gallons of water in the 4-gallon jug, and y
represents the quantity of water in the 3-gallon jug. The start state is (0, 0}, The goal state is (2, n) for any
value of # (since the problem does not specify how many gallons need to be in the 3-gallon jug).

The operators” to be used to solve the problem can be described as shown in Fig. 2.3. As in the chess
problem, they are represented as rules whose left sides are matched against the current state and whose right
sides describe the new state that results from applying the rule. Notice that in order to describe the operators
completely, it was necessary to make explicit some assumptions not mentioned in the problem statement. We
have assumed that we can fill a jug from the pump, that we can pour water out of 4 jug onto the ground, that
we can pour water from one jug to another, and that there are no other measuring devices available. Additional
assumptions such as these are almost always required when converting from a typical problein statement
given in English to a formal representation of the problem suitable for use by a program.

To solve the water jug problem, all we need, in addition to the problem description given above, is a
control structure that loops through a simple cycle in which some rule whose left side matches the current
state is chosen, the appropriate change to the state is made as described in the corresponding right side, and
the resulting state is checked to see if it corresponds to a goal state. As long as it does not, the cycle continues.
Clearly the speed with which the problem gets solved depends on the mechanism that is used to select the next
operation to be performed. In Chapter 3, we discuss several ways of making that selection.

For the water jug problem, as with many others, there are several sequences of operators that solve the
problem. One such sequence is shown in Fig. 2.4. Often, a problem contains the explicit or implied statement that
the shortest {or cheapest) such sequence be found. If present, this requirement will have a significant effect on the
choice of an appropriate mechanism fo guide the search for a solution. We discuss this issue in Section 2.3.4.

Several issues that often arise in converting an informal problem statement into a formal problem description
are illustrated by this sample water jug problem. The first of these issues concerns the role of the conditions
that occur in the left sides of the rules. All but one of the rules shown in Fig. 2.3 contain conditions that must
be satisfied before the operator described by the rule can be applied. For example, the first rule says, “If the 4-
gallon jug is not already full, fill it.” This rule could, however, have been written as, “Fill the 4-gallon jug,”
since it is physically possible to fill the jug even if it is already full. It is stupid to do so since no change in the
problern state results, but it is possible. By encoding in the left sides of the rules constraints that are not strictly
necessary but that restrict the application of the rules to states in which the rules are most likely to lead to a
solution, we can generally increase the efficiency of the problem-solving program that uses the rules.

% The word “operator” refers to some representation of an action. An operator usually includes information about what
must be true in the world before the action can take place, and how the world is changed by the action.

28

Artificial Intelligence

(x, ¥)
ifxe<4d
(x.)
ify<3
(x. y)
fx>0
(x, ¥
ify>0
(x. ¥}
ifx>0
(x. y)
ify>0
(% ¥
ifx+y=>2d4andy>0

(x, »
ifx+yz3andx>0

(x, ¥)
ifr+y<4andy>0

(x y)
ifx+y<3andx>0

(0, 2)

—)

—

—_

4. »
(% 3)
(x-d.y)
(x,y-d)
0, »n
{x, 0)

4. y-(4-xn

x-(3-y.3)

(x+y.0)

O, x+y)

2.0

(Y]

Fill the 4-gallon jug
Fill the 3-gallon jug

Pour some water out of
the 4-galion jug
Pour some water out of
the 3-gallon jug
Empty the 4-gallon jug
on the ground
Empty the 3-gailon jug
on the ground
Pour water from the
3-gallon jug into the
4-gallon jug until the
4-gallon jug is full
Pour water from the
4-gallon jug into the
3-gallon jug until the
3-galion jug is full
Pour all the water
from the 3-gallon jug
into the 4-gallon jug
Pour all the water
from the 4-gallon jug
into the 3-gallon jug
Pour the 2 gallons
from the 3-gallon jug
into the 4-gallon jug
Empty the 2 gallons in
the 4-gallon jug on
the ground

Fig. 2.3 Production Rules for the Water fug Probiem

Gallons in the
4-Gallon Jug
0
0
3
3
4
0

2

Gallons in the
3-Gallon Jug
0

2

0

Rule Applied

2

9

2

7
Sorli2

9or il

Fig. 2.4 One Solution to the Water Jug Problem

SRR I

pol & he Problems, Problem Spaces, and Séarch- S 29
Rig

The extreme of this approach is shown in the first tic-tac-toe program of Chapter 1. Each entry in the move
vector corresponds to a rule that describes an operation, The left side of each rule describes a board configuration
and is represented implicitly by the index position. The right side of each rule describes the operation to be
performed and is represented by a nine-element vector that corresponds to the resulting board configuration.
Each of these rules is maximally specific; it applies only to a single board configuration, and, as a result, no
search is required when such rules are used. However, the drawback to this extreme approach is that the
problem solver can take no action at atl in a novel situation. In fact, essentially no problem sofving ever really
occurs. For a tic-tac-toe playing program, this is not a serious problem, since it is possible to enumerate all the
situations (i.e., board configurations) that may occur. But for most problems, this is not the case. In order to
solve new problems, more general rules must be available.

A second issue is exemplified by rules 3 and 4 in Fig. 2.3. Should they or should they not be included in the
list of available operators? Emptying an unmeasured amount of water onto the ground is certainly allowed by
the problem statement. But a superficial preliminary analysis of the problem makes it clear that doing so will
never get us any closer to a solution. Again, we see the tradeoff between writing a set of rules that describe
just the problem itself, as opposed to a set of rules that describe both the problem and some knowledge about
its solution.

Rules 11 and 12 illustrate a third issue. To see the problem-solving knowledge that these rules represent,
look at the last two steps of the solution shown in Fig, 2.4. Once the state {4, 2) is reached, it is obvious what
to do next. The desired 2 gallons have been produced, but they are in the wrong jug. So the thing to do is to

‘move them (rule 11). But before that can be done, the water that is already in the 4-gallon jug must be emptied
out (rule 12}. The idea behind these special-purpose rules is to capture the special-case knowledge that can be
used at this stage in solving the problem. These rules do not actually add power to the system since the
operations they describe are already provided by rule 9 (in the case of rule 11) and by rule 5 (in the case of rule
12). In fact, depending on the control strategy that is used for selecting rules to use during problem solving,
the use of these rules may degrade performance. But the use of these rules may also improve performance if
preference is given to special-case rules (as we discuss in Section 6.4.3).

We have now discussed two quite different problems, chess and the water jug problem. From these
discussions, it should be clear that the first step toward the design of a program to solve a problem must be the
creation of a formal and manipuiable description of the problem itself. Ultimately, we would like to be able to
write programs that can themselves produce such formal descriptions from informal ones. This process is
called operationalization. 1t is not at al! well-understood how to construct such programs, but see Section
17.3 for a description of one program that solves a piece of this problem. Until it becomes possible to automate
this process, it must be done by hand, however. For simple problems, such as chess or the water jug, this is not
very difficult. The problems are artificial and highly structured. For other problems, particularly naturally-
occurring ones, this step is much more difficult. Consider, for example, the task of specifying precisely what
it means to understand an English sentence. Although such a specification must somehow be provided before
we can design a program to solve the problem, producing such a specification is itself a very hard problem.
Although our ultimate goal is to be able to solve difficult, unstructured problems, such as natural language
understanding, it is useful to explore simpler problems, such as the water jug problem, in order to gain insight
into the details of metheds that can form the basis for solutions to the harder problems.

Summarizing what we have just said, in order to provide a formal description of a problem, we must do the
following;

1. Define a state space that contains all the possible configurations of the relevant objects (and perhaps

some impossible ones). It is, of course, possible to define this space without explicitly enumerating all
of the states it contains,

30 Artificial Intelligence

2. Specify one or more states within that space that describe possible situations from which the problem-
solving process may start. These states are called the initial states.

3. Specify one or more states that would be acceptable as solutions to the problem. These states are called
goal states.

4, Specify o set of rules that describe the actions (operators) available. Doing this will require giving
thought to the following issues:
e What unstated assumptions are present in the informat problem description?
* How general should the rules be?
« How much of the work required to solve the problem should be precomputed and represented in the

rules?

The problem can then be solved by using the rules, in combination with an appropriate control strategy, to
move through the problem space until a path from an initial state to a goal state is found. Thus the process of
search is fundamental to the problem-solving process. The fact that search provides the basis for the process
of problem-solving does not, however, mean that other, more direct approaches cannot also be exploited.
Whenever possible. they can be included as steps in the search by encoding them into the rules. For example,
in the water jug problem, we use the standard arithmetic operations as single steps in the rules. We do not use
search to find a number with the property that it is equal to ¥y — (4 — x). Of course, for complex problems,
more sophisticated computations will be needed. Search is a general mechanism that can be used when no
more direct method is known. At the same time, it provides the framework into which more direct methods for
solving subparts of a problem can be embedded.

2.2 PRODUCTION SYSTEMS

Since search forms the core of many intelligent processes, it is useful to structure Al programs in a way that
facilitates describing and performing the search process. Production systems provide such structures. A
definition of a production system is given below. Do not be confused by other uses of the word production,
such as to describe what is done in factories. A production system consists of:

* A set of rules, each consisting of a left side (a pattern) that determines the applicability of the rule and
a right side that describes the operation to be performed if the rule is applied.?

» One or more knowledge/databases that contain whatever information is appropri- ate for the particuiar
task. Some parts of the database may be penmanent, while other parts of it may pertain only to the solution
of the current problem. The information in these datahases may be structured in any appropriate way.

» A control strategy that specifies the order in which the rules will be compared to the database and a
way of resolving the conflicts that arise when several rules match at once.

¢ A ule applier.

So far, our definition of a production system has been very general. It encompasses a great many systems,
including our descriptions of both a chess player and a water jug problem solver. It also encompasses a family
of general production system interpreters, including:

* Basic production system languages, such as OPS5 [Brownston et @i., 1985} and ACT* [Anderson, 19831.

¢ More complex, often hybrid systems called expert system shells, which provide complete (relatively
speaking) environments for the construction of knowledge- based expert systems.

¢ General problem-solving architectures like SOAR [Laird ef af., 1987], a system based on a specific set
of cognitively motivated hypotheses about the nature of problem-solving.

* This convention for the use of left and right sides is natural for forward rules. As we will see later, many backward rule
systems reverse the sides.

Problems, Problem Spaces, and Search 31

All of these systems provide the overall architecturc of a production system and allow the programmer to write
rules that-define particular problems to be solved. We discuss production system issues further in Chapter 6.

We have now seen that in order to solve a problem, we must first reduce it to one for which a precise
statement can be given. This can be done by defining the problem’s state space (including the start and goal
states) and a set of operators for moving in that space. The problem can then be solved by searching for a path
through the space from an initial state to a goal state. The process of solving the problem can usefully be
modeled as a production system. In the rest of this section, we look at the problem of choosing the appropriate
control structure for the production system so that the search can be as efficient as possible.

2.2.1 Control Strategies

So far, we have completely ignored the question of how to decide which rule to apply next during the process
of searching for a solution to a problem. This question arises since often more than one rule {and sometimes
fewer than one rule) will have its left side match the current state. Even without a great deal of thought, it is
clear that how such decisions are made will have a crucial impact on how quickly, and even whether, a
problem is finally solved.

o The first requirement of a good control strategy is that it causes motion. Consider again the water jug
problem of the last section. Suppose we implemented the siinple control strategy of starting each time
at the top of the list of rules and choosing the first applicable one. If we did that, we would never solve
the problem. We would continue indefinitely filling the 4-gallon jug with water Contro! strategies that
do not cause motion will never lead to a solution.

e The second requirement of a good control strategy is that it be systematic. Here i1s another simple
control strategy for the water jug problem: On each cycle, choose at random from among the applicable
rules. This strategy is better than the first. It causes motion. It will lead to a solution eventually. But we
are likely to arrive at the same state several times during the process and to use many more steps than
are necessary. Because the control strategy is not systematic, we may explore a particular useless
sequence of operators several times before we finally find a solution. The requirement that a control
strategy be systematic corresponds to the need for global motion (over the course of several steps) as
well as for Jocal motion (over the course of a single step). One systematic control strategy for the water
jug problem is the folowing. Construct a tree with the initial state as its root. Generate all the offspring
of the root by applying each of the applicable rules to the initial state. Fig. 2.5 shows how the tree looks
at this point. Now for each leaf node, generate all its successors by applying all the rules that are
appropriate. The tree at this point is shown in Fig. 2.6.* Continue this process until some rule produces
a goal state. This process, called breadth-first search, can be described precisely as follows.

o] [19] (@] [69] [69)]

Fig. 2.5 One Level of a Breadth- Fig.2.6 Two Levels of a Breadth-
First Search Tree First Search Tree

(1,3)

“Rule 3,4, 11, and 12 have been ignored in constructing the search tree.

32 Artificial Intelligence

Algorithm: Breadth-First Search

1. Create a variable called NODE-LIST and set it to the initial state.
2. Until a goal state is found or NODE-LIST is empty:
(a) Remove the first element from NODE-LIST and call it £, If NODE-LIST was empty. quit.
(b) For each way that each rule can match the state described in £ do:
(i) Apply the rule to generate a new state,
(ii) If the new state is a goal state. quit and return this state.
(iii) Otherwise, add the new state to the end of NODE-LIST.

Other systematic control strategies are also available. For example, we could pursue a single branch of the
tree until it yields a solution or uniil a decision 1o terminate the path is made. It makes sense to terminate a path
if it reaches a dead-end, produces a previous state, or becomes longer than some prespecified “futility” limit.
In such a case, backtracking occurs. The most recently created state from which alternative moves are available
will be revisited and a new state will be created. This form of backtracking is called chronological backtracking
because the order in which steps are undone depends anly on the temporal sequence in which the steps were
originally made. Specifically, the most recent step is always the first o be undone. This form of hacktracking
is what is usually meant by the simple term hacktracking. But there are other ways of retracting steps of a
computation. We discuss one important such way, dependency-directed backtracking. in Chapter 7. Until
then, though, when we use the term backtracking, it means chronological backtracking.

The search procedure we have just described is also called deprh-first search. The following algorithm
describes this precisely.

Algorithm: Depth-First Search
1. If the initial state is a goal state, quit and return success.
2. Otherwise, do the following until success or failure is signaled:
(a) Generate a successor, E, of the initial state. If there are no more successors, signal failure.
(b) Call Depth-First Search with Easthe initial state.
(c) If success is returned, signal success. Otherwise continue in this loop.

Figure 2.7 shows a snapshot of a depth-first search for the water jug problem. A comparison of these two
simple methods produces the following observations:

L4

Fig. 2.7 A Depth-First Search Tree

Advantages of Depth-First Search

¢ Depth-first search requires less memory since only the nodes on the current path are stored. This
contrasts with breadth-first search, where all of the tree that has so far been generated must be stored.

e By chance (or if care is taken in ordering the alternative successor states), depth-first search may find
a solution without examining much of the search space at all. This contrasts with breadth-first search in
which all parts of the tree must be examined to level n before any nodes on level #n + 1 can be examined.
This is particularly significant it many acceptable solutions exist. Depth-first search can stop when one
of them is found.

Problems, Problem Spaces, and Search 33

Advantages of Breadth-First Search

+ Bereadth-first search will not get irapped exploring a blind aliey. This contrasts with depth-{irst searching,
which may follow a single, unfruitful path tor a very long time, perhaps forever, before the path actually
terminates in a state that has no successors, This is a particular problem in depth-first search if there are
loops (i.e., a state has a successor that is also one of its anccstors) unless special care is expended to test
for such a situation. The example in Fig. 2.7, if it continues always choosing the first (in numerical
sequence) rule that applies, will have exactly this problem.

o If there is a solution, then breadth-first search is guaranteed to find it. Furthermore, if there are multiple
solutions, then a minimal solution (i.e., one that requires the minimum number of steps) will be found.
This is guaranteed by the fact that longer paths are never explored until all shorter ones have already
been examined. This contrasts with depth-first search, which may find & long path to a solution in one
part of the tree, when a shorter path exists in some other. unexplored part of the tree.

Clearly what we would like is a way to combine the advantages of both of these methods. In Section 3.3 we
will talk about one way of doing this when we have some additional information. Later, in Section 12.5, we
will describe an uninformed way of doing so.

For the water jug problem, most control strategics that cause motion and are systematic will lead to an
answer. The problem is sitnple. But this is not always the case. ln order to solve some problems during our
lifetime, we must also demand a control structure that is efficient.

Consider the following problem.

The Traveling Salesman Problem: A salesman has a list of cities, cach of which he must visit exactly once, There
are direct roads between each pair of cities on the fist. Find the route the salesman should follow for the shortest
possible round trip that both starts and finishes at any one ol the cities.

A simple, motion-causing and systernatic controf siructure could, in principle, solve this problem. 1t would
simply explore all possible paths in the tree and return the one with the shortest length. This approach will
even work in practice for very short lists of cities. But it breaks down quickly as the number of cities grows.
If there are N cities, then the number of different paths among them is 1.2...(N - 1), or (N — 1)!. The time to
examine a single path is proportional to V. So the total time required to perform this search is proportional to
NI Assuming there are only 10 cities, 10! is 3,628,800, which is a very large number. The salesman could
easily have 25 cities to visit. To solve this problem would take more time than he would be willing to spend.
This phenomenon is called combinatorial explosion. To combat it. we need a new control strategy.

‘We can beat the simple strategy outlined above using a technique called branch- and-bound. Begin generating
complete paths, keeping track of the shortest path found so far. Give up exploring any path as soon as its
partial length becomes greater than the shortest path found so far. Using this technique, we are still guaranteed
to find the shortest path. Unfortunately, although this algorithm is more efficient than the first one, it still
requires exponential time. The exact amount of rime it saves for a particular problem depends on the order in
which the paths are explored. But it is still inadequate for solving large problems.

2.2.2 Heuristic Search

In order to solve many hard problems efficiently, it is often necessary 10 compromise the requirements of
mobility and systematicity and to construct a control structure that is no longer guaranteed to find the best
answer but that will almost always find a very good answer. Thus we introduce the idea of a heuristic.” A

3 The word heuristic comes from the Greek word heuriskein, meaning “1o discover,” which is also the origin of ewreka,
derived from Archimedes’ reputed exclamation, fewrike (for *1 have found™), uttered when he had discovered a method
for determining the purity of gold.

34 Artificial Intelligence

heuristic is a technique that improves the efficiency of a search process, possibly by sacrificing claims of
completeness. Heuristics are like tour guides. They are good to the extent that they point in generally interesting
directions; they are bad to the extent that they may miss points of interest to particular individuals. Some
heuristics help to guide a search process without sacriticing any claims to completeness that the process might
previously have had. Others (in fact, many of the best ones) may occasionally cause an excellent path to be
overlooked. But, on an average, they improve the quality of the paths that are explored. Using good heuristics,
we can hope to get good (though possibly nonoptimal) solutions to hard problems, such as the traveling
salesman, in less than exponential time. There are some good general-purpose heuristics that are useful in a
wide variety of problem domains. In addition, it is possible to construct special-purpose heuristics that exploit
domain-specific knowledge to solve particular problems.

One example of a good general-purpose heuristic that is useful for a variety of combinatorial problems is
the nearest neighbor heuristic, which works by selecting the locally superior altemative at each siep. Applying
it to the traveling salesman problem, we produce the following procedure:

1. Arbitrarily select a starting city.

2. To select the next city, look at all cities not yet visited, and select the one closest to the current city. Go
to it next,

3. Repeat step 2 until all cities have been visited.

This procedure executes in time proportional to N2, a significant improvement over !, and it is possible to
prove an upper bound on the error it incurs. For general-purpose heuristics, such as nearest neighbor, it is
often possible to prove such error bounds, which provides reassurance that one is not paying too high a price
in accuracy for speed.

In many AI problems, however, it is not possible to produce such reassuring bounds. This is true for two
reasonsh

¢ For real world problems, it is ot~ hard to measure precisely the value of a particular solution. Although
the length of a trip to several cities .+ a precise notion, the appropriateness of a particular response to
such questions as “Why has inflation wncreased?” is much less so.

s For real world problems, it is often useful to introduce heuristics based on relatively unstructured
knowledge. It is often impossible to define this knowledge in such a way that a mathematical analysis
of its effect on the search process can be performed.

There are many heuristics that, although they are not as general as the nearest neighbor heuristic, are
nevertheless useful in a wide variety of domains. For example, consider the task of discovering interesting
ideas in some specified area. The following heuristic [Lenat, 1983b] is often useful:

H there is an interesting function of two arguments f(x, y), look at what happens if the two arguments are
identical.

In the domain of mathematics, this heuristic leads to the discovery of squaring iff is the multiplication
function, and it leads to the discovery of an identity function if f is the function of set union. In less formal
domains, this same heuristic leads to the discovery of introspection if fis the function contemplate or it leads
to the notion of suicide iff is the function kill.

Without heuristics, we would become hopelessly ensnarled in a combinatorial ex-plosion. This alone might
be a sufficient argument in favor of their use. But there are other arguments as well:

e Rarely do we actually need the optimum solution; a good approximation will usually serve very well. In
fact, there is some evidence that people, when they solve problems, are not optimizers but rather are
satisficers [Simon, 1981]. In other words, they seck any solution that satisfies some set of requirements,
and as soon as they find one they quit. A good example of this is the search for a parking space. Most
people stop as soon as they find a fairly good space, even if there might be a slightly better space up ahead.

Problems, Problem Spaces, and Search 35

» Although the approximations produced by heuristics may not be very good in the worst case, worst
cases rarely arise in the real world. For example, although many graphs are not separable (or even
nearly so) and thus cannot be considered as a set of small problems rather than one large one, a lot of
graphs describing the real world are.®

» Trying to understand why a heuristic works, or why it doesn’t work, often leads to a deeper understanding
of the problem.

One of the best descriptions of the importance of heuristics in solving interesting problems is How to Solve
it [Polya, 1957}. Although the focus of the bogk-is the solution of mathematical problems, many of the
techniques it describes are more generally applicable. For example, given a problem to solve, look for a
similar problem you have solved before. Ask whether you can use either the solution of that problem or the
method that was used to obtain the solution to help solve the new problem. Polya’s work serves as an excellent
guide for people who want to become better problem solvers. Unfortunately, it is not a panacea for Al for a
couple of reasons. One is that it relies on human abilities that we must first understand well enough to build
into a program. For example, many of the problems Polya discusses are geomeiric ones in which once an
appropriate picture is drawn, the answer can be seen immediately. But to exploit such techniques in programs,
we must develop a good way of representing and manipulating descriptions of those Fig.s. Another is that the
rules are very general.

They have extremely underspecified left sides, so it is hard to use them to guide a search—too many of
them are applicable at once. Many of the rules are really only useful for looking back and rattonalizing a
solution after it has been found. In essence, the problem is that Polya’s rules have not been operationalized.

Nevertheless, Polya was several steps ahead of Al. A comment he made in the preface to the first printing
(1944) of the book is interesting in this respect:

The following pages are written somewhat concisely, but as simply as possible, and are based on a long
and serious study of methods of solution. This sort of study, called heuristic by some writers, is not in fashion
nowadays but has a long past and, perhaps, some future.

There are two major ways in which domain-specific, heuristic knowledge can be incorporated into a rule-
based search procedure:)

¢ In the rules themselves. For examiple, the rules tor a chess-playing system might describe not simply
the set of legal moves but rather a set of “sensible” moves, as determined by the rule writer.
* Ags a heuristic function that evaluates individual problem states and determines how desirable they are.

A heuristic function is a function that maps from problem state descriptions to measures of desirability,
usually represented as numbers. Which aspects of the problem state are considered, how those aspects are
evaluated, and the weights given to individual aspects are chosen in such a way that the value of the heuristic
function at a given node in the search process gives as good an estimate as possible of whether that node is on
the desired path to a solution.

Well-designed heuristic functions can play an important part in efficiently guiding a search process toward
a solution. Sometimes very simple heuristic functions can provide a fairly good estimate of whether a path is
any good or not, In other situations, more complex heuristic functions should be employed. Fig. 2.8 shows
some simple heuristic functions for a few problems. Notice that sometimes a high value of the heuristic
function indicates a relatively good position (as shown for chess and tic-tac- toe), while at other times a low
value indicates an advantageous situation (as shown for the traveling salesman). It does not matter. in general,
which way the function is stated. The program that uses the values of the function can attempt to minimize it
or to maximize it as appropriate.

% For arguments in support of this, see Simon [1981].

36 Artificigl Intelligence

WEETTNIST e R R R URE T b R e T

Chess the material advantage of our side
over the opponent

Traveling Salesman the suin of the distances so far

Tic-Tac-Toe | for each row in which we could win

and in which we already have one
piece plus 2 for each such row in
which we have two pieces

Fig. 2.8 Some Simple Heuristic Functions

The purpose of a heuristic function is to guide the search process in the most profitable direction by
suggesting which path to follow first when more than one is available. The more accurately the heuristic
function estimates the true merits of each node in the search tree (or graph), the more direct the solution
process. In the extreme, the heuristic function would be so good that essentially no search would be required.
The system would move directly to a solution. But for many problems, the cost of computing the value of
such a function would outweigh the effort saved in the search process, After all, it would be possible to
compute a perfect heuristic function by doing a complete search from the node in question and determining
whether it leads to a good solution. In general, there is a trade-off between the cost of evaluating a heuristic
function and the savings in search time that the function provides.

In the previous section. the solutions to Al problems were described as centering on a search process.
From the discussion in this section, it should be clear that it can more precisely be described as a process of
heuristic search. Some heuristics will be used to define the control structure that guides the application of
rules in the search process. Others. as we shall see, will be encoded in the rules themselves. In both cases, they
will represent either general or specific world knowledge that makes the solution of hard problems feasible.
This leads to another way that one could define artificial intelligence: the study of techniques for solving
exponentially hard problems in polynomial time by exploiting knowledge about the problem domain.

2.3 PROBLEM CHARACTERISTICS

Heuristic search is a very general method applicable to a large class of problems. It encompasses a variety of
specific techniques, each of which is particularly effective for a small class of problems. In order to choose the
most appropriate method (or combination of methods) for a particular problem, it is necessary to analyze the
problem along several key dimensions:
¢ 15 the problem decomposable into a set of (nearly) independent smaller or easier subproblems?
e (Can solution steps be ignored or at least undone if they prove unwise?
¢ [s the problem’s universe predictable?
s Is a good solution to the problem obvious without comparison to all other possible solutions?
¢ 15 the desired solution a state of the world or a path to a state?
¢ Is a large amount of knowledge absolutely required to solve the problem, or is knowledge important
only to constrain the search?
o (Can a computer that is simply given the problem return the solution, or will the solution of the problem
require interaction between the computer and a person?
In the rest of this section, we examine each of these questions in greater detail. Notice that some of these
questions involve not just the statement of the problem itself but also characteristics of the solution that is
desired and the circumstances under which the solution must take place,

Problems, Problem Spaces, and Search 37

! Rl E R o &k

2.3.1 Is the Problem Decomposable?

Suppose we want (0 solve the problem of computing the expression

J(xz + 3x + sin’* - cosiv) dx IX2 + 3x + sin? x cos? x dx
We can solve this problem l?y preaklng it down into sz dx jBx dx Isinzx Cosx dx
three smaller problems, each of which we can then solve | |
by using a small collection of specific rules. Figure 2.9 ¥ 3] x dx I(1 — cos? x) cos?x dx
shows the problem tree that will be generated by the 3 |)
. o C o . ; Ix
process of problem decomposition as it can be exploited =5 j cos2x dx I 0954 X dx

by a simple recursive integration program that works as | :
follows: Ateach step, it checks to see whether the prob-

lent it is working on is immediately solvable. If so, then
the answer is returned directly. 1f the problem is not

I—; (1 + cos 2x) dx

i 1
easily solvable, the integrator checks to sce whether it H'i.[1| dx _2.[€08 2x dx
can decompose the problem into smaller problems. If it | -
can, it creates those problems and calls itsclf recursively X —3 5in 2

on them. Using this technique of problem decomposi-
tion. we can often solve very large problems easily.
Now consider the problem illustrated in Fig. 2.10. This problem is g,

Fig. 2.9 A Decomposable Problem

drawn from the domain often referred to in Al literature as the blocks
world. Assume that the following operators are available: B]
1. CLEAR (x} |biock x has nothing on it] — ON (x, Table) [pick ON(C,A) ON(B.C) and ON(A,B)
up x and put it on the table] Fig. 2.10 A Simple Blocks World
2. CLEAR (x) and CLEAR () — ON (x, y) {put x on y] Problem

Applying the technique of problem decomposition to this simple blocks world example would lead to a
solution tree such as that shown in Fig. 2.11. In the figure, goals are underlined. States that have been achieved
are not underlined. The idea of this solution is to reduce the problem of getting B on C and A on B to two
separate problems. The first of these new prohlems, getting B on C, is simple, given the start state. Simply put
B on C. The second subgoal is not quile so .\'jlmplc. Since the [ON(B,C)and ON (A] |
only operators we have altow us to pick up single blocks at a
time, we have to clear off A by removing C before we can
pick up A and put it on B. This can casily be done. However,
if we now try to combine the two subsolutions into one
solution, we will fail. Regardless of which one we do first, we
will not be able to do the second as we had planned. In this
problem, the two subproblems are not independent. They
interact and those interactions must be considered in order to ~ Fig. 2.11 A Proposed Solution for the Blocks
arrive at a solution for the entire problem. Problem

These two examples, symbolic integration and the blocks world, illustrate the difference between
decomposable and nondecomposable problems. In Chapter 3, we present a specific algorithm for problem
decomposition, and in Chapter 13, we look at what happens when decomposition is impossible.

ON(A.B)

PutBonC

PutAcnB
ON(A,B)

Move A to table

2.3.2 Can Solution Steps Be Ignored or Undone?

Suppose we are trying to prove a mathematical theorem. We proceed by first proving a lemma that we think
will be useful. Eventually, we realize that the lemma is no help at all. Are we in trouble?

38 Artificial Intelligence

No. Everything we need to know to prove the theorem is still true and in memory, if it ever was. Any rules
that could have been applied at the outset can still be applied. We can just proceed as we should have in the
first place. All we have lost is the effort that was spent exploring the blind alley.

Now consider a ditferent problem.

The 8-Puzzle; The 8-puzzle is a square tray in which are placed, eight square tiles. The remaining ninth square is
uncovered. Each tile has a number on it. A tile that is adjacent to the blank space can be slid into that space. A game
consists of a starting position and a specified goal position. The goal is to transform the starting position into the
goal position by sliding the tiles around.

A sample game using the 8-puzzle is shown in Fig. 2.12. In attempting to solve Start Goal
the 8-puzzle, we might make a stupid move. For example, in the game shown 283 11213
above, we might start by sliding tile 5 into the empty space. Having done that, we |4 g | 4 8 4
cannot change our mind and immediately slide tile 6 into the empty space since |7 5 7165

the empty space will essentially have moved. But we can backtrack and undo the
first move, sliding tile 5 back to where it was, Then we can move tile 6. Mistakes
can still be recovered from but not quite as easily as in the theorem-proving
problem. An addittonal step must be performed to undo each incorrect step, whereas no action was required
to “undo” a useless lemma. In addition, the control mechanism for an 8-puzzle solver must keep track of the
order in which operations are performed so that the operations can be undone one at a time if necessary. The
control structure for a theorem prover does not need to record all that information.

Now consider again the problem of playing chess. Suppose a chess-playing program makes a stupid move
and realizes it a couple of moves later. It cannot simply play as though it had never made the stupid move. Nor
can it simply back up and start the game over from that point. All it can do is to try to make the best of the
current situation and go on from there.

These three problems—theorem proving, the 8-puzzle, and chess—illustrate the differences between three
important classes of problems:

Fig. 2.12 An Example of
the 8-Puzzie

* Ignorable {e.g., theorem proving). in which solution steps can be ignored
+ Recoverable (e.g., 8-puzzle), in which solution steps can be undone
* Irrecoverable (e.g., chess), in which solution steps cannot be undone

These three definittons make reference to the steps of the solution to a problem and thus may appear to
characterize particular production systems for solving a problem rather than the problem itself. Perhaps a
different formulation of the same problem would lead to the problem being characterized differently. Strictly
speaking, this is true. But for a great many problems, there is only one (or a small number of essentially
equivalent) formulations that naturally describe the problem. This was true for each of the problems used as
examples above. When this is the case, it makes sense to view the recoverability ot a problem as equivalent to
the recoverability of a natural formulation of it.

The recoverahility of a problein plays an important role in determining the complexity of the control
structure necessary for the problem’s solution. Ignorable problems can be solved using a simple control
structure that never backtracks. Such a control structure is easy to implement. Recoverable problems can be
solved by a slightly more complicated contro! strategy that does sometimes make mistakes, Backtracking will
be necessary to recover from such mistakes, so the control structure must be implemented using a push-down
stack, in which decisions are recorded in case they need to be undone later. Irrecoverable problems, on the
other hand, will need to be solved by a system that expends a great deal of effort making each decision since
the decision must be final. Some irrecoverable problems can be solved by recoverable style methods used in
a planning process. in which an entire sequence of steps is analyzed in advance to discover where it will lead
before the first step is actually taken. We discuss next the kinds of problems in which this is possible.

Problems, Problem Spaces, and Search 39

2.3.3 1Is the Universe Predictable?

Again suppose that we are playing with the 8-puzzie. Every time we make a move, we know exactly what will
happen. This means that it is possible to plan an entire sequence of moves and be confident that we know what
the resulting state will be. We can use planning to avoid having to undo actual moves, although it will still be
necessary to backtrack past those moves one at a time during the planning process. Thus a control structure
that allows backtracking will be necessary.

However, in games other than the 8-puzzle, this planning process may not be possible. Suppose we want to
play bridge. One of the decisions we will have to make is which card to play on the first trick. What we would
like to do is to plan the entire hand before making that first play. But now it is not possible to do such planning
with certainty since We cuannot know exactly where all the cards are or what the other players will do on their
turns. The best we can do is to investigate several plans and use probabilities of the various outcomes to
choose a plan that has the highest estimated probability of leading to a good score on the hand.

These two games illustrate the difference between certain-outcome (e.g., 8-puzzle) and uncertain-outcome
(e.g., bridge) problems. One way of describing planning is that it is problem-solving without feedback from
the environment. For solving certain-outcome problems, this open-loop approach will work fine since the
result of an action can be predicted perfectly. Thus, planning can be used to generate a sequence of operators
that is guaranteed to lead to a solution. For uncertain-outcome problems, however, planning can at best generate
a sequence of operators that has a good probability of lcading to a solution. To solve such problems, we need
to allow for a process of plan revision to take place as the plan is carried out and the necessary feedback is
provided. In addition to providing no guarantee of an actual solution, planning for uncertain-outcome problems
has the drawback that it is often very expensive since the number of solution paths that need to be explored
increases cxponentially with the; number of points at which the outcome cannot be predicted.

The tast two problem characteristics we have discussed, ignorable versus recoverable versus irrecoverable
and certain-outcome versus uncertain-outcome, interact in an interesting way. As has already been mentioned,
one way to solve irrecoverable problems is to plan an entire solution before embarking on an implementation
of the plan. But this planning process can only be done effectively for certain-outcome problems. Thus one of
the hardest types of problems to solve is the irrecoverable, uncertain-outcome. A few examples of such
problems are:

+ Playing bridge. But we can do fairly well since we have available accurate estimates of the probabilities
of each of the possible outcomes.

+ Controlling a robot arm. The outcome is uncertain for a variety of reasons. Someone might move
something into the path of the arm. The gears of the arm might stick. A slight error could cause the arm
to knock over a whole stack of things.

» Helping a lawyer decide how to defend his client against a murder charge. Here we probably cannot
even list all the possible outcomes, much less assess their probabilities.

2.3.4 Is a Good Solution Absolute or Relative?
Consider the problem of answering questions based on a database of simple facts, such as the following:

1. Marcus was a man.

Marcus was a Pompeian.

Marcus was borm in 40 A.D.

All men are mortal.

All Pompeians died when the volcano erupted in 79 A.D.
No mortal lives longer than 150 years.

It is now 1991 A.D.

S

40 Artificial Intelligence

Suppose we ask the question “Is Marcus alive?” By representing each of these facts in a formal language, such
as predicate logic, and then using formal inference methods we can fairly easily derive an answer to the
question.” In fact, either of two reasoning paths will lead to the answer, as shown in Fig. 2.13. Since alt we are
interested in is the answer to the question, it does not matter which path we fotlow. If we do follow one path
successfully to the answer, there is no reason to go back and see if some other path might also lead to a solution.

Justification

1. Marcus was a man. axtom |
4. All men are mortal, axiom 4
8. Marcus is mortal. 1,4

3. Marcus was born in 40 A.D. axiom 3
7. Itis now 1991 A D, axiom 7
9. Marcus’ age is 1951 years, 3.7

6. No mortal lives longer than 150 years. axiom 6
£0. Marcus is dead. 8,6,9

OR

7. Itisnow 1991 A.D, axiom 7
5. All Pompeians died in 79 A.D, axiom 5
11. All Pompeians are dead now. 7.5

2. Marcus was a Pompeian. axiom 2
12. Marcus is dead. 11,2

Fig. 2.13 Two Ways of Deciding That Marcus Is Dead

But now consider again the traveling salesman problem. Our goal is to find the shortest route that visits each
city exactly once. Suppose the cities to be visited and the distances between them are as shown in Fig. 2.14.

Boston [New York| Miami Dallas SE

. Boston 250 1450 1700 3000

New York 250 1200 1500 2900

Miami 1450 1200 1600 3300

Daltas 1700 1500 1600 1700
S.E 3000 2900 3300 1700

Fig. 2.14 An Instance of the Traveling Salesman Problem

One place the salesman could start is Boston. In that case, one path that might be followed is the one shown
in Fig. 2.15, which is 8850 miles fong. But is this the solution to the problem? The answer is that we cannot
be sure uniess we also try all other paths to make sure that none of them is shorter. In this case, as can be seen
from Fig. 2.16, the first path is definitely not the solution to the salesman’s problem.

These two examples illustrate the difference between any-path problems and best- path problems. Best-
path problems are, in general, computationally harder than any-path problems. Any-path problems can often
be solved in a reasonable amount of time by using heuristics that suggest good paths to explore. (See the
discussion of best-first search in Chapter 3 for one way of doing this.) If the heuristics are not perfect, the
search for a solution may not be as direct as possible, but that does not matter. For true best-path problems,
however, no heuristic that could possibly miss the best solution can be used. So a much more exhaustive
search will be performed.

7 Of course, representing these statements so that a mechanica! procedure could exploit them to answer the question also
requires the explicit mention of other facts, such as *‘dead implies not alive.” We do this in Chapter 3.

Problems, Problem Spares, and Search 41

bt e M i W

Bosten |
) P

(Boson] (3000 250}
(3000) o MSan Francisco] |New York]

[San Francisco (1700) m_‘\ﬂzom

[[Dallas | [Miami_|

1500} N\ (1600
{) A ()
New York Dallas

(1200) (1700)

[San Frangi—sL—ol

(1450) / (1450) ; (3000)
| Boston
Total: (8850) Total: (8850) Total: (7750)
Fig. 2.15 One Path among the Cities Fig. 2.16 Two Paths Among the Cities

2.3.5 Is the Solution a State or a Path?

Consider the problem of finding a consistent interpretation for the sentence
The bank president ate a dish of pasta salad with the fork.

There are several components of this sentence, each of which, in isolation, may have more than one
interpretation. But the components must form a coherent whole. and so they constrain each other’s
interpretations. Some of the sources of ambiguity in this sentence are the following:

The word “hank’™ may refer either to a financial institution or to a side of a river. But only one of these may
have a president.

+ The word “dish” is the object of the verb “eat.” It is possible that a dish was eaten. But it is more likely
that the pasta salad in the dish was caten.

+ Pasta salad is a salad containing pasta. Buti there are other ways meanings can be formed from pairs of
nouns. For examiple, dog food does not normally contain dogs.

* The phrase “with the fork” could modify several parts of the sentence. In this case, it modifies the verb
“eat.” But, if the phrase had been “with vegetables,” then the modification structure would be different,
And if the phrase had been “with her friends,” the structure would be different stiil.

Because of the interaction among the interpretations of the constituents of this sentence, some search may
be required to find a complete interpretation for the sentence. But to solve the problem of finding the
interpretation we need to produce only the interpretation itself. No record of the processing by which the
interpretation was found is necessary.

Contrast this with the water jug problem. Here it is not sufficient to report that we have solved the problem
and that the final state is (2, 0). For this kind of problem, what we really must report is not the final state but
the path that we found to that state. Thus a staterment of a solution to this problem must be a sequence of
operations (sometimes called apian) that produces the final state. ‘ .

These two examples, natural language understanding and the water jug problem, illustrate the difference
between problems whose solution is a state of the world and problems whose solution is a path to a state, At
one level, this difference can be ignored and all problems can be formulated as ones in which only a state is
required to be reported. If we do this for problems such as the water jug, then we must redescribe our states so
that each state represents a partial path to a solution rather than just a single state of the world. So this question

+

42 Artificial Intelligence

is not a fortnally significant one. But, just as for the question of ignorability versus recoverability, there is
often a natural (and economical) formulation of a problem in which problem states correspond to situations in
the world, not sequences of operations. In this case, the answer to this question tells us whether it is necessary
to record the path of the problem-solving process as it proceeds.

2.3.6 What s the Role of Knowledge?

Consider again the problem of playing chess. Suppose you had unlimited computing power available. How
much knowledge would be required by a perfect program? The answer to this question is very little—just the
rules for determining legal moves and some simple control mechanism that implements an appropnate search
procedure. Additional knowledge about such things as good strategy and tactics could of course help’
considerably to constrain the search and speed up the execution of the program.

But now consider the problem of scanning daily newspapers to decide which are supporting the Democrats
and which are supporting the Republicans in some upcoming election. Again assuming unlimited computing
power, how much knowledge would be required by a computer trying to solve this problem? This time the
answer is a great deal. It would have to know such things as:

= The names of the candidates in each party.

* The fact that if the major thing you want to see done is have taxes lowered, you are probably supporting
the Republicans.

e The fact that if the major thing you want to see done is improved education for minority students, you
are probably supporting the Democrats.

+ The fact that if you are opposed to big government, you are probably supporting the Republicans.

* Andsoon ..

These two problems, chess and newspaper story understanding, illustrate the difference between problems
for which a lot of knowledge is important only to constrain the search for a solution and those for which a lot
of knowledge is required even to be able to recognize a solution.

2.3.7 Does the Task Require Interaction with a Person?

Sometimes it is useful to program computers to sclve problems in ways that the majority of people would not

be able to understand. This is fine if the level of the interaction between the computer and its human users is

problem-in solution-out. But increasingly we are building programs that require intermediate interaction with

people, both to provide additional input to the program and to provide additional reassurance to the user,
Consider, for example, the problem of proving mathematical theorems. If

1. All we want is to know that there is a proof
2. The program is capable of finding a proof by itself

then it does not matter what strategy the program takes to find the proof. It can use, for example, the resolution
procedure (see Chapter 5), which can be very efficient but which does not appear natural to people. But if
either of those conditions is violated, it may matter very much how a proof is found. Suppose that we are
trying to prove some new, very difficult theorem, We might demand a proof that follows traditional patterns
so0 that a mathematician can read the proof and check to make sure it is correct. Alternatively, finding a proof
of the theorem might be sufficiently difficult that the program does not know where to start. At the moment,
people are still better at doing the high-level strategy required for a proof. So the computer might like to be
able to ask for advice. For example, it is often much easier to do a proof in geometry if someone suggests the
right line to draw into the Fig.. To exploit such advice, the computer’s reasoning must be analogous to that of
its human advisor, at least on a few levels. As computers move into areas of great significance to human lives,
such as medical diagnosis, people will be very unwilling to accept the verdict of a program whose reasoning
they cannot follow. Thus we must distinguish between two types of problems:

Problems, Problem Spaces, and Search 43

* Solitary, in which the computer is given a problem description and produces an answer with no
intermediate communication and with no demand for an explanation of the reasoning proce..s

= Conversational, in which there is intermediate communication between a person and the computer, either
to provide additional assistance to the computer or to provide additional information to the user, or both

Of course, this distinction is not a strict one describing particular problem domains. As we just showed,
mathematical theorem proving could be regarded as either. But for a particular application, one or the other of
these types of systems wili usually be desired and that decision will be important in the choice of a problem-
solving method.

2.3.8 Problem Classification

When actual problems are examined from the point of view of all of these questions, it becomes apparent that
there are several broad classes into which the problems fall. These classes can each be associated with a
generic control strategy that is appropriate for solving the problem. For example, consider the generic problem
of classification. The task here is to examine an input and then decide which of a set of known classes the
input is an instance of. Most diagnostic tasks, including medical diagnosis as well as diagnosis of faults in
mechanical devices, are examples of classification. Another example of a generic strategy is propose and
refine. Many design and planning problems can be attacked with this strategy.

Depending on the granularity at which we attempt to classify problems and control strategies, we may
come up with different lists of generic tasks and procedures. See Chandrasekaran [1986] and McDermott
[1988] for two approaches to constructing such lists. The important thing to remember here, though, since we
are about to embark on a discussion of a variety of problem-solving methods, is that there is no cne single way
of solving all problems. But neither must each new problem be considered totally ab initio. lnstead, il we
analyze our problems carefully and sort our problem-selving methods by the kinds of problems for which
they are suitable, we will be able to bring to each new problem much of what we have learned from solving
other, similar problems.

2.4 PRODUCTION SYSTEM CHARACTERISTICS

We have just examined a set of characteristics that distinguish various classes of problems. We have also
argued that production systems are a good way to describe the operations that can be performed in a search for
a solution to a problem. Two questions we might reasonably ask at this point are:

1. Can production systems, like problems, be described by a set of characteristics that shed some light on
how they can easily be implemented?

2. If so, what relationships are there between problem types and the types of pro- duction systems best
suited to solving the problems?

The answer to the first question is yes. Consider the following definitions of classes of production systems.
A monotonic production system is a production system in which the application of a rule never prevents the
later application of another rule that could also have been applied at the time the first rule was selected. A
nonmonotonic production system is one in which this is not true. A partially commutative production systein
is a production system with the property that if the application of a particular sequence of rules transforms
state x into state v, then any permutation of those rules that is allowable (i.e., each rule’s preconditions are
satisfied when it is applied) also transforms state x into state y, A commutative production system is a production
system that is both monotonic and partially commutative.

¥ This comresponds to the definition of a commutative production system given in Nilsson [1980].

44 Artificial Intelligence

ity

The significance of these categories of produciion systerns lies in the relationship between the calegories
and appropriate implementation strategies. But before discussing that relationship, it may be helpful to make
the meanings of the definitions clearer by showing how they relate to specific problems.

Thus we arrive at the second question above, which asked whether there is an interesting relationship
between classes of production systems and classes of problems. For any solvable problem, there exist an
infinite number of production systems that describe ways to find solutions. Some will be more natural or
efficient than others. Any probiem that can be solved by any production system can oe solved by a commutative
one (our most restricted class), but the commmutative one may be so unwieldy as to be practically useless. It
may use individual states to represeni entire sequences of applications of rules of a simpler, noncommutative
systemn, So in a formal sense, there is no relationship between kinds of problems and kinds of production
systerns since ail problems can be solved by all kinds of systems. But in a practicai sense. there definitely is
such a relationship between kinds of problems and the kinds of systems that lend thewmselves naturaily to
describing those problems. To see this, let us look at a few examples. Fig. 2.17 shows (he four categories of
production systems produced by the two dichotomies, monotenic versus nonmonotonic and partially
commutative versus

Monotonic Nonmonnotonic

Partially Theorem proving Robot navigation
commutative

Not partiadly Chemical synthesis [Bridge
| commutative

¥ig. 2.17 The Four Categories of Production Systems

sonpartially commuative, ajong with some problems that can naturally be solved by each type of system.
The upper left corner represents commutative aystems.

Partially commuuative, monotonic production systemns are useful for solving ignurable prablems. This is
nat sarprising since the definitions of the two are essentially the same. But recall that ignorable probleins are
those for which a narural formulation leads to solution steps that can be 1gnored. Such a natural! formuiation
wiil then be a partially commutative, monotonic system. Problems that involve creating new things rather
than changing oid ones are renerally ignorable. Theorem proving, as we have described it, is one example of
such a creaiive process. Making deductions from some known facts is a similar creative process. Both of
thuese processes can easily be implemented with a partially commutative. monotonic system.

Partially commutative, monotonic production systems are important from an impleinentation standpoint
because they can be impiemented without the ability to backtrack to previous states when it is discovered that
an incorrect path has been foliowed. Although it is otten useful to inplement such systems with backiracking
in order to guarantee a systemat. scarch, the actual database representing the probiem state need not be
restored. This often results in a copsiderable increase in efficiency, particularly because, since the database
will never have to be restored. it is not necessary to keep track of where in the search process every change
was made. :

We have now discussed partially commutative production systems that are also monotonic. They are good
for prokicms where things do not change; new things get created. Nonmonotonic, partially comrutative
systems, o the other hand, are useful for problems in which changes occur but can be reversed and in which
order of operations is not critical. This is usually the case in physical manipulation problems, such as robot
nivigation on a flat plane. Supposc that a robot has the following operators: go north (N), go cast (E), go south
53, and 2o west (W), To reach its goal. it does not matter whether the robot execites N-N-E or N-E-N.

Probiems, Problem Spaces, and Search 45

Depending on how the operators are chosen, the 8-Puzzle and the blocks world problem can also b coridered
partially. commutative.

Both types of partially commutative production systems are significant from an implementation point of
view because they tend to lead to many duplications of individual states during the search process. This is
discussed further in Section 2.5.

Production systems that are not partially commutative are useful for many problems in which irreversible
changes occur. For example, consider the problem of determining a process to produce a desired chemical
compound. The operators available include such things as “Add chemical « w the pol or "Change the
temperature to r degrees.” These operators may cause irreversible changes to the potion being brewed. The
order in which they are performed can be very important in determining the final output. It is possible that if
x 15 added to y, a stable compound will be formed, so later addition of z will have no effect; if z is added to y,
however, a different stable compound may be formed, so later addition of x will have no effect. Nonpartially
commutative production systems are less likely to produce the same node many times in the search process.
When dealing with ones that describe irreversible processes, it is particularly important to make correct
decisions the first time, although if the universe is predictable, planning can be used to make that less important.

2.5 ISSUES IN THE DESIGN OF SEARCH PROGRAMS

Every search process can be viewed as a traversal of a tree structure in which each node represents a problem
state and each arc represents a relationship between the states represented by the nodes it connects. For
example, Fig. 2.18 shows part of a search tree for a water jug problem. The arcs have not been labeled in the
Fig., but they correspond to particular water-pouring operations. The search process must find a path or paths
through the tree that connect an initial state with one or more final states. The tree that must be searched could,
in principle, be constructed in its entirety from the rules that define allowable moves in the problem space.
But, in practice, most of it never is. It is too large and most
of it need never be explored. Instead of first building the
tree explicitly and then searching it, most search programs
represent the tree implicit!v in the rules and generate
explicitly only those parts that they decide to explore.
Throughout our discussion of search methods, it is
important to keep in mind this distinction between implicit
search trees and the explicit partial search trees that are
actually constructed by the search program.

In the next chapter, we present a family of generai-purpose search techniques. But before doing so we need
to mention some important issues that arise in all of them:

[(13) (0.0)

Fig. 2,18 A Search Tree for the Water Jug Problem

= The direction in which to conduct the search (forward versus hackward reasoning). We can search forward
through the state space from the start state to a goal state, or we can search backward from the goal.

* How toselect applicable rules (rmuarching). Production systems typically spend most of their time looking
for rules to apply, so it is critical to have efficient procedures for matching rules against states.

* How to represent cach node of the search process (the knowledge representation problem and the
Jrame problem). For problems like chess, a node can be fully represented by a siniple array. In more
complex problem solving, however, it is inefficient and/or impossible to represent all of the facts in the
world and to determine all of the side effects an action may have.

We discuss the knowledge representation and frame problems further in Chapter 4. We investigate matching
and forward versus backward reasoning when we return to production systems in Chapter 0.

46) Artificial Intelligence

One other issue we should consider at this point is that of search trees versus search graphs. As mentioned
above, we can think of production rules as generating nodes in a search tree. Each node can be expanded in
turn, generating a set of successors. This process continues until a node representing a solution is found.
Implementing such a procedure requires little bookkeeping. However, this process often results in the same
node being generated as part of several paths and so being processed more than once. This happens because
the search space may really be an arbitrary directed graph rather than a tree.

For example, in the tree shown in Fig. 2.18, the node (4,3), representing 4-gallons of water in one jug and
3 gallons in the other, can be generated either by first filling the 4-gallon jug and then the 3-gallon one or by
filling them in the opposite order. Since the order does not matter, continuing to process both these nodes
would be redundant. This example also illustrates another problem that often arises when the search process
operates as a tree walk. On the third level, the node (0, 0) appears. (In fact, it appears twice.) But this is tha

same as the top node of the tree, which has already been expanded. ~[0.0) |«
Those two paths have not gotten Us anywhere. So we would like
to eliminate them and continue only along the other branches.
The waste of effort that arises when the same node is generated {4.0) m?i‘
more than once can be avoided at the price of additional
bookkeeping. Instead of traversing a search tree, we lraverse a e (4.3) 3.0)

directed graph. This graph differs from a tree in that several paths
may come together at a node. The graph corresponding to the
tree of Fig. 2.18 is shown in Fig. 2.19,

Any tree search procedure that keeps track of all the nodes that have been generated so far can be converted
to a graph search procedure by modifying the action performed each time a node is generated. Notice that of
the two systematic search procedures we have discussed so far, this requirement that nodes be kept track of is
met by breadth-first search but not by depth-first search. But, of course, depth-first search counid be modified,
at the expense of additional storage, to retain in memory nodes that have been expanded and then backed-up
over. Since all nodes are saved in the search graph, we must use the following algorithm instead of simply
adding a new node to the graph.

Fig. 2.19 A Search Graph for the Water
fug Problem

Algorithm: Check Duplicate Nodes

1. Examine the set of nodes that have been created so far to see if the new node already exists.
2. 1f it does not-simply add it to the graph just as for a tree.
3. If it does already exist, then do the following:

(a) Set the node that i1s being expanded to point to the already existing-node corresponding to its
successor rather than to the new one. The new one can simply be thrown away.

{b) If you are keeping track of the best (shortest or otherwise least-cost) path to each node, then check
to see if the new path is better or worse than the old one, If worse, do nothing. If better, record the
new path as the correct path to use to get to the node and propagate the corresponding change in
cost down through successor nodes as necessary,

One problem that may arise here is that cycles may be introduced into the search graph. A cycle is a path
through the graph in which a given node appears more than once. For example, the graph of Fig. 2.19 contains
two cycles of length two. One includes the nodes (0, 0) and (4, 0); the other includes the nodes (0, 0) and (0,
3). Whenever there is a cycle, there can be paths of arbitrary length. Thus it may become more difficult to
show that a graph traversal algorithm is guaranteed to terminate.

Treating the search process as a graph search rather than as a tree search reduces the amount of effort that
is spent exploring essentially the same path several times. But it requires additional effort each time a node is

Problems, Problem Spaces, and Search 47

generated to see if it has been generated before. Whether this effort is justified depends on the particular
problem: If it is very likely that the same node will be generated in several different ways, then it is more
worthwhile to use a graph procedure than if such duplication will happen only rarely.

Graph search procedures are especially useful for dealing with partially commutative production systems
in which a given set of operations will produce the same result regardiess of the order in which the operations
are applied. A systematic search procedure will try many of the permutations of these operators and so will
generate the same node many times. This is exactly what happened in the water jug example shown above.,

2.6 ADDITIONAL PROBLEMS

Several specific problems have been discussed throughout this chapter, Other problems have not yet been
mentioned, but are common throughout the Al literature. Some have become such classics that no Al book
couid be complete without them, so we present them in this section. A useful exercise, at this point. would be
to evaluate each of them in light of the seven problein characteristics we have just discussed.

A brief justification is perhaps required before this parade of toy problems is presented. Artificial intelligence
is not merely a science of toy problems and microworlds (such as the blocks world). Many of the techniques
that have been developed for these problems have become the core of systems that solve very nontoy problems.
So think about these problems not as defining the scope of Al but rather as providing a core from which much
more has developed.

The Missionaries and Cannibals Problem

Three missionaries and three cannibals find themselves on one side of a river, They have agreed that they
would all like to get to the other side. But the missionaries are not sure what else the cannibals have agreed to.
So the missionaries want to manage the trip across the river in such 2 way that the number of missionaries on
either side of the river is never less than the number of cannibals who are on the same side. The only boat
available holds only two people at a time. How can everyone get across the river without the missionaries
risking being eaten?

The Tower of Hanoi
Somewhere near Hanoi there is a monastery whose monks devote their lives to a very important task. In their
courtyard are three tal) posts. On these posts is a set of sixty-four disks, each with a hole in the center and each
of a different radius. When the monastery was established, all of the disks were on one of the posts, each disk
resting on the one just larger than it. The monks’ task is to move all of the disks to one of the other pegs. Only
one disk may be moved at a time, and all the other disks must be on one of the pegs. In addition, at no time
during the process may a disk be placed on top of a smailer disk. The third peg can, of course, be used as a
temporary resting place for the disks. What is the quickest way for the monks to accomplish their mission?
Even the best solution to this problem will take the monks a very long time. This is fortunate, since legend
has it that the world will end when they have finished.

The Monkey and Bananas Problem

A hungry monkey finds himself in a room in which a bunch of bananas is hanging from the ceiling. The
monkey, unfortunately, cannot reach the bananas. However, in the room there are also a chair and a stick. The
ceiling is just the right height so that a monkey standing on a chair could knock the bananas down with the
stick. The monkey knows how to move around, carry other things around, reach for the bananas, and wave a
stick in the air. What is the best sequence of actions for the monkey to take to acquire lunch?

48 Artificial Intelligence

SEND DONALD CROSS
+MORE +GERALD +ROADS
MONEY ROBERT DANGER

Fig. 2.20 Some Cryptarithmetic Problems

Cryptarithmetic
Consider an arithmetic problem represented in letters, as shown iff the examples in Fig. 2.20. Assign a decimal
digit to each of the letters in such a way that the answer to the problem is correct. If the same letter occurs
more than once, it must be assigned the same digit each time, No two different letters may be assigned the
same digit.

People’s strategies for solving cryptarithmetic problems have been, studied intensively by Newell and
Simon [1972].

sEe e - . se R = : ~ R P A L SER Lt v
. - N - S onend $EOBTREEN PG D00 ARBag. UEREOLN APepeltic FLEFE rma sge THITe0 ulimer WEERBIERRAnEaf a0 g H T VAP0 0adl THY Py pr ol i B NE

In this chapter, we bave discussed the first two steps that must be taken toward the design of a program to
solve a particular problem:

1. Define the problem precisely. Specify the problem space, the operators for moving within the space,
and the starting and goal state(s).
2. Analyze the problem to determine where it falls with respect to seven important issues.

The last two steps for developing a program to solve that problem are, of course:
3. Identify and represent the knowledge required by the task,
4. Choose one or more techniques for problem solving, and apply those techniques to the problem.

Several general-purpose, problem-solving techniques are presented in the next chapter, and several of
them have already been alluded to in the discussion of the problem characteristics in this chapter. The
relationships between problem characteristics and specific technigues should become even clearer as we go
on. Then, in Part 11, we discuss the issue of how domain knowledge is to be represented.

EXERCISES
: - - B TR pwaTpEetITIY PeErdpas R P Ee el IREERAST ow s REITES v pe ek iR R ORD banl POTEPRRG 4
1. In this chapter, the following problems were mentioned:
¢ Chess : * Water jug
* Z-puzzle * Traveling salesman
+ Missionaries and cannibals » Tower of Hanoi
e Monkey and bananas s Cryptarithmetic
s Bridge

Analyze each of them with respect to the seven problem characteristics discussed in Section 2.3.

2. Before we can solve a problem using state space search, we must define an appropriate state space. For
each of the problems mentioned above for which it was not done in the text, find a good state space
representation.)

3. Describe how the branch-and-bound technique could be used to find the shortest solution to a water
jug problem.

Problems, Problem Spaces, and Search 49

. For each of the following types of problems, try to describe a good heuristic function:

(a) Blocks world

(b) Theorem proving

{c) Missionaries and cannibals

. Give an exampie of a problem for which breadth-first search would work better than depth-first search.
Give an example of a problem for which depth-first search would work better than breadth-first search.
. Write an algorithm to perform breadth-first search of a problem graph. Make sure your algorithm
works properly when a single node is generated at more than one level in the graph.

. Try to construct an algorithm for solving blocks world problems, such as the one in Fig. 2.10. Do not
cheat by locking ahead to Chapter 13,

CHAPTER

3

HEURISTIC SEARCH TECHNIQUES

Failure is the opportunity to begin again more intelligently.

-—Moshe Arens
(1925-), Israeli politician

In the last chapter, we saw that many of the problems that fall within the purview of artificial intelligence are
too complex to be solved by direct techniques; rather they must be attacked by appropriate search methods
armed with whatever direct techniques are available to guide the search. In this chapter, a framework for
describing search methods is provided and several general-purpose search techniques are discussed. These
methods are all varieties of heuristic search. They can be described independently of any particular task or
problem domain. But when applied to particular problems, their efficacy is highly dependent on the way they
exploit domain-specific knowledge since in and of themselves they are unable to overcome the combinatorial
explosion to which search processes are so vulnerable. For this reason, these techniques are often called weak
methods. Although a realization of the limited effectiveness of these weak methods to solve hard problems by
themselves has been an important result that emerged from the last three decades of Al research, these techniques
continue to provide the framework inte which domain-specific knowledge can be placed, either by hand or as
a result of automatic learning. Thus they continue to form the core of most Al systems. We have already
discussed two very basic search strategies:

¢ Depth-first search * Breadth-first search
In the rest of this chapter, we present some others:
¢ (enerate-and-test + Hill climbing » Besi-first search
e Problem reduction ¢ (Constraint satisfaction e Means-ends analysis

3.1 GENERATE-AND-TEST
The generate-and-lest strategy is the simplest of all the approaches we discuss. It consists of the following steps:

Algorithm: Generate-and-Test

1. Generate a possible solution. For some problems, this means generating a particular point in the problem
space. For others, it means generating a path from a start state,

Heuristic Search Techniques 51

2. Test to see if this is actually a solution by comparing the chosen point or the endpoint of the chosen
path to the set of acceptable goal states.
3. If a solution has been found, quit. Otherwise, return to step 1.

If the generation of possible solutions is done systematically, then this procedure will find a solution
eventually, if one exists, Unfortunately, if the problem space is very large, “eventually” may be a very long time.

The generate-and-test algorithm is a depth-first search procedure since complete solutions must be generated
before they can be tested. Tn its most systematic form, it is simply an exhaustive search of the problem space.
Generate-and-test can, of course, also operate by generating solutions randomly, but then there is no guarantee
that a solution will ever be found. In this form, it is also known as the British Museum algorithm, a reference
to a method for finding an object in the British Museum by wandering randoinly.! Between these two extremes
fies a practical middle ground in which the search process proceeds systematically, but some paths are not
considered because they seem unlikely to lead to a solution. This evaluation is performed by a heuristic
function, as described in Section 2.2.2.

The most straightforward way to implement systematic generate-and-test is as a depth-first search tree
with backtracking. If some intermediate states are likely to appear often in the tree, however, it may be better
to modify that procedure, as described above, to traverse a graph rather than a tree.

For simple problems, exhaustive generate-and-test is often a reasonable technique. For example, consider
the puzzie that consists of four six-sided cubes, with each side of each cube painted one of four colors. A
solution to the puzzle consists of an arrangement of the cuhes in a row such that on all four sides of the row
one block face of each color is showing. This problem can be solved hy a person {who is a much slower
processor for this sort of thing than even a very cheap computer) in several minutes by systematically and
exhaustively trying all possibilities. It can be solved even more quickly using a heuristic generate-and-test
procedure. A quick glance at the four blocks reveals that there are more, say, red faces than there are of other
colors. Thus when placing a block with several red faces, it would be a good idea to use as few of them as
possible as outside faces. As many of them as possible should be placed to abut the next block. Using this
heuristic, many configurations need never be explored and a solution can be found quite quickly.

Unfortunately, for problems much harder than this, even heuristic generate-and-test, all by itself, is not a
very effective technique. But when combined with other techniques to restrict the space in which to search
even further, the technique can be very effective.

For example, one early example of a successful Al program is DENDRAL. [Lindsay et al., 1980], which
infers the structure of organic compounds using mass spectrogram and nuclear magunetic resonance (NMR)
data. it uses a strategy called plan-generare-test in which a planning process that uses constraini-satisfaction
techniques (see Section 3.5) creates lists of recommended and contraindicated substructures. The generate-
and-test procedure then uses those lists so that it can explore only a fairly limited set of structures. Constrained
in this way, the generate-and-test procedure has proved highly effective.

This combination of planning, using one problem-solving method (in this case,. constraint satisfaction)
with the use of the plan by another problem-solving method, generate-and-test, is an excellent example of the
way techniques can be combined to overcome the limitations that each possesses individually. A major weakness
of planning is that it often produces somewhat inaccurate solutions since there is no feedback from the world.
But by using it only to produce pieces of solutions that will then be exploited in the generate-and-test process,
the lack of detailed accuracy becomes unimportant. And, at the same time, the combinatorial probiems that
arise in simple generate-and-test are avoided by judicious reference to the plans.

1'Or, as another story goes, if a sufficient number of monkeys were placed in front of a set of typewriters and left alone
long encugh, then they would eventually produce all of the works of Shakespeare.

52 Artificial Intelligence

3.2 HILL CLIMBING

Hill climbing is a variant of generate-and-test in which feedback from the test procedure is used to help the
generator decide which direction to move in the search space. In a pure generate-and-test procedure, the test
function responds with only a yes or no. But if the test function is augmented with a heuristic function® that
provides an estimate of how close a given state is to a goal state, the generate procedure can exploit it as
shown in the procedure below. This is particularly nice because often the computation of the heuristic function
can be done at almost no cost at the same time that the test for a solution is being performed. Hill climbing is
often used when a good heuristic function is available for evaluating states but when no other useful knowledge
is available. For example, suppose you are in an unfamiliar city without a map and you want to get downtown.
You simply aim for the tal) buildings. The heuristic function is just distance between the current location and
the location of the tall buildings and the desirable states are those in which this distance is minimized.

Recall from Section 2.3.4 that one way to characterize problems is according to their answer to the question,
“Ts a good solution absolute or relative?” Absolute solutions exist whenever it is possible to recognize a goal
state just by examining it. Getting downtown is an example of such a problem. For these problems, hill
climbing can terminate whenever a goal state is reached. Only relative solutions exist, however, for maximization
(or minimization) problems, such as the traveling salesman problem. In these problems, there is no a priori
goal state. For problems of this sort, it makes sense to terminate hill climibing when there is no reasonable
alternative state © move to.

3.2.1 Simple Hill Climbing

The simplest way to implement hill climbing is as follows.

Algorithm: Simple Hill Climbing
1. Evaluate the initial state. If it is also a goal state. then return it and quit. Otherwise, continue with the
initial state as the current state.
2. Loop until a solution is found or until there are no new operators left to be applied in the current state:
(a) Select an operator that has not yet been applied to the current state and apply it to produce a new state.
{b) Evaluate the new state.
(i) If it is a goal state, then return it and quit.
(1) If it is not a goal state but it is better than the current state, then make it the current state.
(iii) If it is not better than the current state, then continue in the loop.

The key difference between this algorithm and the one we gave for generate-and-test is the use of an
evaluation function as a way to inject task-specific knowledge into the control process. It is the use of such
knowledge that makes this and the other inethods discussed in the rest of this chapter Aeuristic search methods,
and it is that same knowledge that gives these miethods their power to solve some otherwise intractable problems.

Notice that in this algorithm, we have asked the relatively vague question, “‘Is one state betfer than another?”
For the algorithm to work, a precise definition of berter must be provided. In some cases, it means a higher
value of the heuristic function. In others, it means a lower value. It does not matter which, as long as a
particular hill-climbing program is consistent in its interpretation.

To see how hill climbing works, let's return to the puzzle of the four colored blocks. To solve the problem,
we first need to define a heuristic function that describes how close a particular configuration is to being a
solution. One such function is simply the sum of the number of different colors on each of the four sides. A
solution to the puzzle will have a value of 16. Next we need to define a set of rules that describe ways of
transforming one configuration into another. Actually, one rule will suffice. It says simply pick a-block and

2 What we are calling the heuristic function is sometimes also called the objective function, particularly in the literature of
mathematical optimization.

Heuristic Search Techniques 53

rotate it 90 degrees in any direction. Having provided these definitions, the next step is to generate a starting
configuration. This can either be done at random or with the aid of the heuristic function described in the last
section. Now hill climbing can begin. We generate a new state by selecting a bloek and rotating it. If the
resulting state is better, then we keep it. If not, we return to the previous state and try a different perturbation,

3.2.2 Steepest-Ascent Hill Climbing

A useful variation on simple hill climbing considers ail the moves from the current state and selects the best
one as the next state. This method is called steepest-ascent hill climbing or gradient search. Notice that this
contrasts with the basic method in which the first state that is better than the current state is selected. The
algorithm works as follows.

Algorithm: Steepest-Ascent Hill Climbing
1. Evaluate the initial state. If it is also a goal state, then return it and quit. Otherwise, continue with the
initial state as the current state.
2. Loop until a solution is found or until a complete iteration produces no change to current state:
{a) Let SUCC be a state such that any possible successor of the current state will be better than SUCC.
(b} For each operator that applies to the current state do:
(i} Apply the operator and generate a new state.
{ii) Evaluaie the new state. If it is a goal state, then return it and quit. If not, compare it to SUCC.
If it is better, then set SUCC to this state. If it is not better, leave SUCC alone.
(c) If the SUCC is better than current state, then set current state to SUCC.

To apply steepest-ascent hill climbing to the colored blocks problem, we must consider all perturbations of
the initial state and choose the best. For this problem, this is difficult since there are so many possible moves.
There is a trade-off between the time required to select a move (usually longer for steepest-ascent hill climbing)
and the number of moves required to get to a solution (usually longer for basic hill climbin+) that must be
considered when deciding which method will work better for a particular problem.

Both basic and steepest-ascent hill climbing may fail to find a solution. Either algorithm may terminate not
by finding a goal state but by getting to a state from which no better states can be generated. This will happen
if the program has reached either a local maximum, a plateau, or a ridge.

A local maximum is a state that is better than all its neighbors but is not better than some other states farther away.
At a local maximum, all moves appear to make things worse. Local maxima are particularly frustrating because
they often occur almost within sight of a solution. In this case, they are called foothills.

A plateau is a flat area of the search space in which a whole set of neighboring states have the same value. On a
platean, it is not possible to determine the best direction in which to move by making tocal comparisons,

A ridge is a special kind of local maximum. It is an area of the search space that is higher than surrounding areas and
that itself has a slope (which one would like to climb). But the orientation of the high region, compared to the set of
availahle moves and the directions in which they move, makes it impossible to traverse a ridge By single moves,

There are some ways of dealing with these problems, although these methods are by no means guaranteed:

¢ Backtrack to some earlier node and try going in a different direction. This is particularly reasonable if at
that node there was another direction that looked as promising or almost as promising as the one that was
chosen earlier. To implement this strategy, maintain a list of paths almost taken and go back to one of them
if the path that was taken leads to a dead end. This is a fairly good way of dealing with local maxima.

o Make a big jump in some direction to try to get to a new section of the search space. This is a particularly
good way of dealing with plateaus. If the only rules available describe single small steps, apply them
several times in the same direction.

s Apply two or more rules before doing the test. This corresponds to moving in several directions at
once. This is a particularly good strategy for dealing with ridges.

54 Artificial Intelligence

Even with these first-aid measures, hill climbing is not always very effective. It is particularly unsuited to
problems where the value of the heuristic function drops off suddenly as you move away from a sotution. This
1s often the case whenever any sort of threshold effect is present. Hill climbing is a local method, by which we
mean that it decides what to do next by looking only at the “immediate” consequences of its choice rather than
by exhaustively exploring all the consequences. It shares with other local methods,

such as the nearest neighbor heuristic described in Section 2.2.2, the advantage A [H]
of being less combinatorially explosive than comparable global methods. But it —g— %
also shares with other local methods a lack of a guarantee that it will be effective. ﬂ E|
Although it is true that the hill-climbing procedure itself looks only one move E D
ahead and not any farther, that examination may in fact exploit an arbitrary amount E C]
of global information if that information is encoded in the heuristic function. 1C 1B
Consider the blocks world problem shown in Fig. 3.1. Assume the same operators B A
(i.e., pick up one block and put it on the table; pick up one block and put it on ~ 1fitiatstate goal state
another one) that were used in Section 2.3.1. Suppose we use the following ~Fig 3.1 /; H:;-Cﬁmbing
roblem

heuristic function:

Local: Add one point for every block that is resting on the thing it is supposed to be resting on. Suhtract one point
{or every block that is sitting on the wrong thing.

Using this function, the goal state has a score of 8. The initial state has a score of 4 (since it gets one point
added for blocks C, I, E, F, G, and H and one point subtracted for blocks A and B}). There is only one move
from the initial state, namely to move block A to the table. That produces a state with a score of 6 (since now
A’s position causes a point to be added rather than subtracted). The hill-climbing procedure will accept that
move. From the new state, there are three possible moves, leading

- A
to the three states shown in Fig, 3.2. These states have the scores: g
(a) 4, (b) 4, and (c) 4. Hill climbing will halt because all these G|
states have lower scores than the current state. The process has E
reached a local maximum that is not the global maximum. The 1E]| E]
problem is that by purely local examination of support structures, 1D/ D!
the current state appears to be better than any of its successors € €
)) B [Al[H][B
because more blocks rest on the correct objects. To solve this @ ©
a c

problem, it is necessary to disassembie a good local structure (the
stack B through H) because it is in the wrong global context. Fig. 3.2 Three Possible Moves

We could blame hili climbing itself for this failure to look far enough ahead to find a solution. But we could
also blame the heuristic function and try to modify it. Suppose we try the following heuristic function in place
of the first one:

Global: For each block that has the correct support structure (i.e.. the complete structure underneath it is exactly as
it should be), add one point for every block in the support structure, For each block that has an incorrect support
structure, subtract one point for every block in the existing support structure.

Using this function, the goal state has the score 28 (! for B, 2 for C, etc.). The initial state has the score —
28. Moving A to the table yields a state with a score of —21 since A no longer has seven wrong blocks under
it. The three states that can be produced next now have the following scores: (a) -28, (b) -16, and (c) -15.
This time, steepest-ascent hill ciimbing will choose move (¢), which is the correct one. This new heuristic
function captures the two key aspects of this problem: incorrect structures are bad and should be taken apart;

Heuristic Search Techniques 55

and correct structures are good and should be built up. As a result, the same hill climbing procedure that failed
with the eariier heuristic function now works perfectly.

Unfortunately, it is not always possible to construct such a perfect heuristic function. For example, consider
again the problem of driving downtown. The perfect heunistic function would need to have knowledge about
one-way and dead-end streets, which, in the case of a strange city, is not always available. And even if perfect
knowledge is, in principle, available, it may not be computationally tractable 10 use. As an extreme example,
imagine a heuristic function that computes a value for a state by invoking its own problem-solving procedure
to look ahead from the state it is given to find a solution. It then knows the exact cost of finding that solution
and can return that cost as its value. A heuristic function that does this convests the local hill-climbing procedure
into a global methoed by embedding a global method within it. But now the computational advantages of a
local method have been lost. Thus it is still true that hitl climbing can be very inefficient in a large, rough
problem space. But it is often useful when combined with other methods that get it started in the right general
neighborhood.

3.2.3 Simulated Annealing

Simulated annealing is 4 vadation of hill climbing in which, at the beginning of the process, some downhill
moves may be made. The idea is to do enough exploration of the whole space early on so that the final
solution is relatively insensitive to the starting state. This should lower the chances of getting caught at a local
maximum, a plateau, or a ridge.

In order to be compatible with standard usage in discussions of simulated annealing, we make two notational
changes for the duration of this section. We use the term objective function in place of the term heuristic function.

And we attempt to minimize rather than maximize the valvue of the objective function. Thus we actvally
descnbe a process of valley descending rather than hill climbing.

Simulated annealing [Kirkpatrick er «l., 1983] as a computational process is patterned after the physical
process of annealing, in which physical substances such as metals are melted (i.e., raised to high energy
levels) and then gradually cooled until some solid state is reached. The goal of this process is to produce a
minimal-energy final state. Thus this process is one of valley descending in which the objective function is
the energy level. Physical substances usually move from higher energy configurations to lower ones, so the
valley descending occurs naturally. But there is some probability that a transition to a higher energy state wil
occur. This probability is given by the function

p = e AEAT

where A £ is the positive change in the energy level T'is the temperature, and & is Boltzmann’s constant. Thus,
in the physical valley descending that occurs during annealing, the probability of a large uphill move is lower
than the probability of a small one. Also, the probability that an uphill move will be made decreases as the
temperature decreases. Thus such moves are more likely during the beginning of the process when the
temperature is high. and they become less likely at the end as the temperature becomes lower. One way to
characterize this process is that downhill moves are alliowed anytime. Large upward moves may occur early
on, but as the process progresses. only relatively small upward moves are allowed until finally the process
converges to a local minimum configuration.

The rate at which the system is cooled is called the annealing schedule. Physical annealing processes are
very sensitive to the annealing schedule. If cooling occurs too rapidly, stable regions of high energy will form.
In other words, a local but not global minimum is reached. If. however, a slower schedule is used, a uniform
crystalline structure, which corresponds to a global minimum, is more likely to develop. But, if the schedule
is too slow, time is wasted. At high temperatures, where essentially random motion is allowed, nothing useful
happens. At low temperatures a lot of time may be wasted after the final structure has already been formed.
The optimal annealing schedule for each particular annealing problem must usually be discovered empiricalty.

56 Artificial Intelligence

These properties of physical annealing can be used to define an analogous process of simulated annealing,
which can be used (although not always effectively) whenever simple hill climbing can be used. In this
analogous process, AF is generalized so that it represents not specifically the change in energy but more
generally, the change in the value of the objective function, whatever it is. The anatogy for kT is slightly less
straightforward. In the physical process, temperature is a well-defined notion, measured in standard units.
The variable k describes the correspondence between the units of temperature and the units of energy. Since,
in the analogous process, the units for both E and T are anificial, it makes sense to incorporate & into T,
selecting values for T that produce desirable behavior on the part of the algorithm. Thus we use the revised
probability formula

p' = ¢ AEIT

But we still need to choose a scheduie of values for T (which we still call temperature). We discuss this
briefly below after we present the simulated annealing algorithm.

The algorithm for simulated annealing is only slightly different from the simple hill-climbing procedure.
The three differences are:

¢ The annealing schedule must be maintained.

* Moves to worse states may be accepted.

¢ ltisa good idea to maintain, in addition to the current state, the best state found so far. Then, if the final
state is worse than that earlier state (because of bad luck in accepting moves to worse states), the earlier
state is still available.

Algorithm: Simulated Annealing
1. Evaluate the initial state. If it is also a goal state, then return it and quii. Otherwise, continue with the
initial state as the current state.
2. Initialize BEST-SO-FAR to the current state.
. Initiatize 7 according to the annealing schedule.
4. Loop unti] a solution is found or untii there are no new operators left to be applied in the current state.
{a) Select an operator that has not yet been applied to the current state and apply it to produce a new
state.
{b) Evaluate the new state. Compute
AF = (value of current) — (value of new state)

s [f the new state is a goal state, then retum it and quit.

« Ifitis not a goal state but is better than the current state, then make it the current state. Also set
BEST-SO-FAR 1o this new state.

o If it is not better than the current state, then make it the current state with probability p’ as
defined above. This step is usually implemented by invoking a random number generator to
produce a number in the range [0,1]. If that number is less than p’, then the move is accepted.
Otherwise, do nothing.

(c) Revise T as necessary according to the annealing schedule.
5. Return BEST-SO-FAR, as the answer.

To implement this revised algorithm, it is necessary to select an annealing schedule, which has three
components. The first is the initiai value to be used for temperature. The second is the criteria that will be used to
decide when the temperature of the system should be reduced. The third is the amount by which the temperature
will be reduced each time it is changed. There may also be a fourth component of the schedule, namely, when to
quit. Simulated annealing is often used to solve problems in which the number of moves from a given state is very

(¥

Heuristic Search Techniques 57

large (such as the number of permutations that can be made to a proposed traveling salesman route). For such
problems, tt may not make sense to try all possible moves. Instead, it may be useful to Cxpioit. soine criterion
involving the number of moves that have been tried since an improverment was found.

Experiments that have been done with simulated annealing on a variely of problems suggest that the best
way to select an annecaling schedule is by trying several and observing the effect on both the quality of the
solution that is found and the rate at which the process converges. To begin to get a feel for how to come up
with a schedule, the first thing to notice is that as T approaches zero, the probability of accepling a move to a
worse state goes to zero and simulated annealing becomes identical to simple hill climbing. The second thing
to notice is that what really matters in computing the probability of accepting a move is the ratio AE/T. Thus
it is important that vaiues of T be scaled so that this ratio is meaningful. For example, T could be initialized to
a value such that, for an average AE, p” would be 0.5.

Chapter 18 returns to simulated annealing in the context of neural networks.

3.3 BEST-FIRST SEARCH

Until now, we have really only discussed two systematic control strategies, breadth-first search and depth-
first search (of several varieties). In this section, we discuss a new method, best-first search, which is a way of
combining the advantages of both depth-first and breadth-first search into a single method.

3.3.1 OR Graphs

Depth-first search is good because it allows a solution to be found without all competing branches having to
be expanded. Breadth-first search is good because it does not get trapped on dead-end paths. One way of
combining the two is to follow a single path at a time, but switch paths whenever some competing path looks
more promising than the current one does.

At each step of the best-first search process, we select the most promising of the nodes we have generated
s0 far. This is done by applying an appropriate heuristic function to each of them. We then expand the chosen
node by using the rules to generate its successors. If one of them is a solution, we can quit. If not, all those new
nodes are added to the set of nodes generated so far. Again the most promising node is selected and the
process continues. Usually what happens is that a bit of depth-first searching occurs as the most promising
branch is explored. But eventually, if a solution is not found. that branch will start to look less promising than
one of the top-level branches that had been ignored. At that peint, the now more promising, previously
ignored branch will be explored. But the old branch is not forgotten.. Its last node remains in the set of
generated but unexpanded nodes. The search can return to it whenever all the others get bad enough that it is
again the most promising path.

Figure 3.3 shows the beginning of a best-first scarch procedure. Initially, there is only one node, so it will
be expanded. Doing so generates three new nodes. The heuristic function, which, in this example. is an
estimate of the cost of getting to a solution from a given node, is applied to each of these new nodes. Since
node D is the most promising. it is expunded next, producing two successor nodes, E and F. But then the
heuristic function is applied to them. Now another path, that going through node B, looks more promising, so
itis pursued, generating nodes G and H. But again when these new nodes are evaluated they look less promising
than another path, so attention is returned to the path through D to E. E is then expanded, yielding nodes [and
J. At the next step, J will be expanded, since it is the most promising. This process can continue undl a
solution is found,

Notice that this procedure is very similar to the procedure for steepest-ascent hill ¢limbing, with two
exceptions. In hill climbing, one move is selected and all the others are rejected, never.to be reconsidered.
This produces the straightline behavior that is characteristic of hill climbing. In best-first search, one move is
selected, but the others are kept around so that they can be revisited later if the selected path becomes less

58 Artificial Intelligence

tep 1 Step 2 Step 3

e
[El@ [6)6) (Bl lj(s) i_LI(o} 5
@ [F]®

L]

B3t

Fig. 3.3 A Best-First Search

promising.® Further, the best available state is selected in best-first search, even if that state has a value that is
fower than the value of the state that was just explored. This contrasts with hill climbing, which will stop if
there are no successor states with better values than the current state.

Although the exarnple shown above illustrates a best-first search of a tree, it is sometimes important to
search a graph instead so that duplicate paths will not be pursued. An algorithm to do this will operate by
searching a directed graph in which each node represents a point in the problem space. Each node will contain,
in addition lo a description of the problem state it represents, an indication of how promising it is, a parent link
that points back to the best node from which it came, and a list of the nodes that were generated from ii. The
parent link will make it possible to recover the path to the goal once the goal is found. The list of successors
will make it possible, if a better path is found to an already existing node, to propagate the improvement down
to its successors. We will call a graph of this sort an OR graph, since each of its branches represents an
wlternative problem-solving path.

To implement such a graph-search procedure, we will need to use two lists of nodes:

¢ (PEN — nodes that have been generated and have had the heuristic function applied to them but which
have not yet been examined (i.e., had their successors generated). OPEN is actually a priority queue in
which the elements with the highest priority are those with the most promising value of the heuristic
function. Standard techniques for manipulating priority queunes can be used to manipulate the list.

o CLOSED — nodes that have already been examined. We need to keep these nodes in memory if we
want to search a graph rather than a tree, since whenever a new node is generated, we need to check
whether it has been generated before.

We will alse need a heuristic function that estimates the merits of each node we generate. This will enable the
algorithm to search more promising paths first. Call this function f’(to indicate that it is an approximation to a

¥In a variation of best-first search, called beam search, only the n most promising states are kept for future consideration.
This procedure is more efficient with respect to memory but introduces the possibility of missing a solution altogether by
pruning the search tree too early.

Heuristic Search Techniques 59

function/that gives the true evaluation of the node). For many applications, it is convenient to define this function
as the sum of two components that we call g and #". The function g is a measure of the cost of getting from the
initial state to the current node. Note that g is not an estimate of anything; it is known to be the exact sum of the
costs of applying each of the rules that were applied along the best path to the node. The function &’ is an estimate
of the additional cost of getting from the current node to a goal state. This is the place where knowledge about the
problem domain is exploited. The combined function f, then. represents an estimate of the cost of getting from
the initial state 1o a goal state along the path that generated the current node. If more than one path generated the
node, then the algorithm will record the best one. Note that because g and £” must be added, it is important that A’
be a measure of the cost of getting from the node to a solution (i.e., good nodes get low values; bad nodes get hich
values) rather than a measure of the goodness of a node (i.e., good nodes get high values). But thar is easy to
arrange with judicious placement of minus signs. It is also important that g be nonnegative. If this is not true. then
paths that traverse cycles in the graph will appear to get better as they get longer.

The actual operation of the algorithm is very simple. It proceeds in steps, expanding one node at each step,
until it generates a node that corresponds to a goal state. At each step, it picks the most promising of the nodes
that have so far been generated but not expanded. It generates the successors of the chosen node, applies the
heuristic function to them, and adds them to the list of open nodes, after checking to see if any of them have
been generated before. By doing this check. we can guarantee that each node only appears once in the graph,
although many nodes may point to it as a successor. Then the next step begins.

This process can be summarized as follows.

Algorithm: Best-First Search
1. Start with OPEN containing just the initial state.
2. Until a goal is found or there are no nodes left on OFPEN do:
{a) Pick them best node on OPEN.
{b) Generate its successors.
(¢) For each successor do:

(t) If it has not been penerated before, evaluate it, add it to OPEN, and record its parent.

(1) If it has been generated before, change the parent if this new path is better than the previous
one. In that case, update the cost of getting to this node and to any successors that this node
may already. have.

The basic idea of this algorithm is simple. Unfortunately, it is rarely the case that graph traversal algorithms
are simple to write correctly. And it is even rarer that it is simple to guarantee the correctness of such algorithms,
In the section that follows, we describe this algorithm in more detail as an example of the design and analysis
of a graph-search program.

3.3.2 The A* Algorithm

The best-first search algorithm that was just presented is a simplification of an algorithm called A*, which
was first presented by Hart er al. [1968; 1972]. This algorithm uses the same f*, g, and A’ functions, as well as
the lists OPEN and CLOSED, that we have already described.

Algorithm: A*

L. Start with OPEN containing only the initial node. Set that node’s g value to 0, its A" value to whatever
itis, and its f* value to A" + 0, or #". Set CLOSED 1o the empty list.

2. Until a goal node is found, repeat the following procedure: If there are no nodes on OPEN, report
failure. Otherwise, pick the node on OPEN with the lowest £ value, Call it BESTNODE. Remove it
from OPEN. Place it on CLOSED. See if BESTNODE is a goal node. If so0, exit and report a solution
(either BESTNODE if all we want is the node or the path that has been created between the initial state

60

Artificial Inteliigence

and BESTNODE if we are interested in the path). Otherwise, generate the successors of BESTNODFE
but do not set BESTNODE to point to them yet. (First we need to see if any of them have already been
generated.) For each such SUCCESSOR, do the following:

(a)
(b)

(<)

(d)

{e)

Seit SUCCESSOR to point back to BESTNODE. These backwards finks will make it possible to
recover the path once a solution is found.

Compute g{SUCCESSOR) = g{BESTNODE) + the cost of getting from BESTNODE to
SUCCESSOR.

See if SUCCESSOR is the same as any node on OPEN (i.e., it has already been generated but not
processed). If so, call that node OLD. Since this node already exists in the graph, we can throw
SUCCESSOR away and add QLD to the list of BESTNODE’s successors. Now we must decide
whether OLD's parent link should be reset to point to BESTNODE. Tt should be if the path we have
just found to SVCCESSOR is cheaper than the current best path to OLD (since SUCCESSOR and
OLD are really the same node). So see whether it is cheaper to get to QLD via its current parent or
to SUCCESSOR via BESTNODE by comparing their g values, If OLD is cheaper (or just as cheap),
then we need do nothing, If SUCCESSOR is cheaper. then reset QLDs parent link to point to
BESTNODE, record the new cheaper path in g{OLD), and update f'(OLD).

If SUCCESSOR was not on OPEN, see if it is on CLOSED. If so, call the node on CLOSED OLD
and add QLI to the list of BESTNODEs, successors. Check to see if the new path or the old path
is better just as in step 2(c), and set the parent link-and g and f* values appropriately. If we have
just found a better path to OLD, we must propagate the improvement to OLD’s successors. This is
a bit tricky. QLD points to its successors. Each successor in turn points to its successors. and so
forth, until each branch terminates with a node that either 1s still on QPEN or has no successors. So
to propagate the new cost downward, do a depth-first traversal of the tree starting at OLD, changing
each node’s g value {(and thus also its f” value), terminating each branch when you reach either a
node with no successors or a node to which an equivalent or better path has already been found.*
This condition is easy to check for. Each node’s parent link points back to its best known parent.
As we propagate down to a node, see if its parent points to the node we are coming from. If so,
continue the propagation. If not, then its g value already reflects the better path of which it is part.
So the propagation may stop here. But it is possible that with the new value of g being propagated
downward, the path we are following may become better than the path through the current parent.
So compare the two. If the path through the current parent is still better, stop the propagation. If the
path we are propagating through is now better, reset the parent and continue propagation.

If SUCCESSOR was not already on either OPEN or CLOSED, then put it on QPEN, and add it to
the list of BESTNODE’s successors, Compute f'((SUCCESSOR) = g{SUCCESSOR) +
K (SUCCESSOR).

Several interesting observations can be made about this algorithm. The first concerns the role of the g
function. It lets us choose which node to expand next on the basis not only of how good the node itself looks (as
measured by /"), but also on the basis of how good the path to the node was. By incorporating g into f*. we will
not always choose as our next node to expand the node that appears to be closest to the goal. This is useful if we
care about the path we find. If, on the other hand, we only care about getting to a solution somehow, we can define
g always to be 0, thus always choosing the node that seems closest to a goal. If we want to find a path involving
the fewest number of steps, then we set the cost of going from a node to its successor as a constant. usually 1. if,
on the other hand, we want to find the cheapest path and some operators cost more than others, then we set the

* This second check guarantees that the algorithm will terminate even if there are cycles in the graph. If there is a cycle.
then the second time that a given node is visited, the path will be no better than the first time and so propagation will stop.

Heuristic Search Technigues 61

xxxxx N -

cost of going from one node to another to reflect those costs. Thus the A* algorithm can be used whether we are
interested in finding a minimal-cost overall path or simply any path as quickly as possible.

The second observation involves /', the estimator of /4, the distance of a node to the goal. If 4’ is a perfect
estimator of /, then A* will converge inmediately to the goal with no search. The better /i is, the closer we
will get to that direct approach. If, on the other hand, the value of 4’ is always 0, the search will be controlled
by g. If the value of g is also 0, the search strategy will be random. If the value of g is always 1, the search will
be breadth first. All nodes on one level will have lower g values, and thus lower £ values than will all nodes
on the next level. What if, on the other hand, /" is neither perfect nor (07 Can we say anything interesting about
the behavior of the search? The answer is ves if we can guarantee that A" never overestimates /4. In that case,
the A* algorithm is guaranteed to find an optimal (as determined by g) path to a goal, if one exists. This can
easily be seen from a few examples.®

Consider the situation shown in Fig. 3.4. Assume that the cost of all
arcs is 1. Initially, all nodes except A are on OPEN (although the Fig.
shows the situation two steps later, after B and E have been expanded).
For each node, f' is indicated as the sum of #” and g. In this example,
node B has the lowest f', 4, so it is expanded first. Suppose it has only
one successor E, which also appears to be three moves away from a goal.
Now f'(E} is 5, the same asf’(C). Suppose we resolve this in favor of the
path we are currently following. Then we will expand E next. Suppose it
too has a single successor F, also judged to be three moves from a goal. Fig. 3.4 h’Underestimates h
We are clearly using up moves and making no progress. But f'(F) = 6,
which is greater than f'(C). So we will expand C next. Thus we see that by underestimating #'(B) we have
wasted some effort. But eventually we discover that B was farther away than we thought and we go back and
try another path.

Now consider the situation shown in Fig. 3.5. Again we expand B
on the first step. On the second step we again expand E. At the next
step we expand F, and finally we generate G, for a solution path of
length 4, But suppose there is a direct path from D to a solution, giving
a path of length 2. We will never find it. By overestimating 4'(D) we
make D look so bad that we may find some other, worse solution without
ever expanding D. In general, if #” might overestimate k&, we cannot be
guaranteed of finding the cheapest path solution unless we expand the
entire graph until all paths are longer than the best solution. An
interesting question is, “Of what practical significance is the theorem
that if #/ never overestimates 4 then A* is admissible?” The answer is,
“almost none,” because, for most real problems, the only way to guarantee that Ai never overestimates £ is to
set it to zero. But then we are back to breadth-first search, which is admissible but not efficient. But there is a
coroltary to this theorem that is very useful. We can state it loosely as follows:

(0+4)
Fig. 3.5 h’Overestimates h

Graceful Decay of Admissibility: If 4 rarely overestimates k£ by more than &, then the A* algorithm will rarely
find a solution whose cost is more than & greater than the cost of the optimal solution.

The formalization and proof of this corollary will be left as an exercise,
The third observation we can make about the A* algorithm has to do with the relationship between trees
and graphs. The algorithm was stated in its most general form as it applies to graphs. It can, of course, be

3 A search algorithm that is guaranteed to find an optimal path to a goal, if one exists, is called admissible [Nilsson, 1980].

62 Artificial Intelligence

simplified to apply to trees by not bothering to check whether a new node is already on OPEN or CLOSED.
This makes it faster to generate nodes but may result in the same search being conducted many times if nodes
are often duplicated. .

Under certain conditions, the A* algorithm can be shown to be optimal in that it generates the fewest nodes
in the process of finding a solution to a problem. Under other conditions it is not optimal. For formal discussions
of these conditions, see Gelperin [1977) and Martelti [1977].

3.3.3 Agendas

In our discussion of best-first search in OR graphs, we assumed that we could evaluate multiple paths to the
same node independently of each other. For example, in the water jug problem, it makes no difference to the
evaluation of the merit of the position (4, 3) that there are at least two separate paths by which it could be
reached. This is not true, however, in all situations, e.g., especially when there is no single, simple heuristic
function that measures the distance between a given node and a goal.

Consider, for example, the task faced by the mathematics discovery program AM, written by Lenat | 1977;
1982]. AM was given a small set of starting facts about number theory and a set of operators it could use to
develop new ideas. These operators included such things as “Find examples of a concept you already know.”
AM’s goal was to generate new “interesting” mathematical concepts. It succeeded in discovering such things
as prime numbers and Goldbach’s conjecture.

Armed solely with its basic operators, AM would have been able to create a great many new concepts,
most of which would have been worthless. It needed a way to decide intelligently which rules to apply. For
this it was provided with a set of heuristic rules that said such things as “The extreme cases of any concept are
likely to be interesting.” “'Interest” was then used as the measure of merit of individual tasks that the system
could perform. The system operated by selecting at each cycle the most interesting task, doing it, and possibly
generating new tasks in the process. This corresponds to the selection of the most promising node in the best-
first search procedure. But in AM’s situation the fact that several paths recommend the same task does matter.
Each contributes a reason why the task would lead to an interesting result. The more such reasons there are,
the more likely it is that the task really wouid Iead to something good. So we need a way to record proposed
tasks along with the reasons they have been proposed. AM used a task agenda. An agenda is a list of tasks a
system could perform. Associated with each task there are usually two things: a list of reasons why the task 1s
being proposed (often called justifications) and a rating representing the overall weight of evidence suggesting
that the task would be useful. '

An agenda-driven system uses the following procedure.

Algorithm: Agenda-Driven Search

1. Do until a goal state is reached or the agenda is empty:

(a) Choose the most promising task from the agenda. Notice that this task can be represented in any
desired form. It can be thought of as an explicit statement of what to do next or simply as an
indication of the next node to be expanded.

(b) Execute the task by devoting to it the number of resources determined by its importance. The
important resources to consider are time and space. Executing the task will probably generate
additional tasks (successor nodes). For each of them, do the following:

(i) See if it is already on the agenda. If so, then see if this same reason for doing it is already on
its list of justifications. If so, ignore this current evidence. If this justification was not already
present, add it to the list. If the task was not on the agenda, insert it.

(ii) Compute the new task’s rating, combining the evidence from all its justifications. Not all
justifications need have equal weight. It is often useful to associate with each justification a
measure of how strong a reason it is. These measures are then combined at this step to produce
an overall rating for the task.

Heuristic Search Techniques 63

One important question that arises in agenda-driven systems is how to find the most promising task on
each cycle. One way to do this is simple. Maintain the agenda sorted by rating. When a new task is created,
insert it into the agenda in its proper place. When a task has its justifications changed, recompute its rating and
move it to the correct place in the list. But this method causes a great deal of time to be spent keeping the
agenda in perfect order. Much of this time is wasted since we do not need perfect order. We only need to know
the proper first element. The following modified strategy may occasionally cause a task other than the best to
be executed, but it is significantly cheaper than the perfect method. When a task is proposed, or a new
Jjustification is added to an existing task, compute the new rating and compare it against the top few {(e.g., five
or ten) elements on the agenda. If it is better, insert the node into its proper position at the top of the list.
Otherwise, leave it where it is or simply insert it at the end of the agenda. At the beginning of each cycle,
choose the first task on the agenda. In addition, once in a while, go through the agenda and reorder it properly.

An agenda-driven control structure is also useful if some tasks (or nodes) provide negative evidence about
the merits of other tasks (or nodes). This can be represented by justifications with negative weightings. If
these negative weightings are used, it may be important to check not only for the possibility of moving a task
to the head of the agenda but also of moving a top task to the bottom if new, negative justifications appear. But
this is easy to do.

As you can see, the agenda mechanism provides a good way of focusing the attention of a complex system
in the areas suggested by the greatest number of positive indicators. But the overhead for each task executed
may be fairly high. This raises the question of the proper grain size for the division of the entire problem-
solving process into individual tasks. Suppose each task is very small. Then we will never do even a very
small thing unless it really is the best thing to do. But we will spend a large percentage of our total effort on
figuring out what to do next. If, on the other hand, the size of an individual task is very large, then some effort
may be spent finishing one task when there are more promising ones that could be done. But a smaller
percentage of the total time will be spent on the overhead of figuring out what to do. The exact choice of task
size for a particular system depends on the extent to which doing one small thing really means that a set of
other small things is likely to be very good to do too. It often requires some experimentation to get right.

There are some problem domains for which an agenda mechanism is inappropriate. The agenda mechanism
assumes that if there is good reason to do something now, then there will also be the same good reason to do
something later unless something better comes along in the interim. But this is not always the case, particularly
for systems that are interacting with people. The following dialogue would not be acceptable to most people:

Person: I don’t want to read any more about China. Give me something else.
Computer: OK. What else are you interested in?

Person: How about Italy? I think I'd find Italy fascinating.

Computer: What things about Italy are you interested in reading about?

Person: [think I'd like to start with its history.

Computer; Why don’t you want to read any more about China?

It would have been fine to have tried to find out why the person was no longer interested in China right
after he or she mentioned it. The computer chose instead to try to find a new area of positive interest, also a
very reasonable thing to do. But in conversations, the fact that something is reasonable now does not mean
that it will continue to be so after the conversation has proceeded for a while. So it is not a good idea simply
to put possible staternents on an agenda, wait until a later lull, and then pop out with them. More precisely,
agendas are a good way to implement monotonic production systems (in the sense of Section 2.4) and a poor
way to implement nonmonotonic ones.

Despite these difficulties, agenda-driven contro! structures are very useful. They provide an excellent way
of integrating information from a variety of sources into one program since each source simply adds tasks and

64 Artificial Intelligence

justifications to the agenda. As Al programs become more complex and their knowledge bases grow, this
becomes a particularly significant advantage.

3.4 PROBLEM REDUCTION

So far, we have considered search strategies for OR graphs through which we want to find a single, path to a
goal. Such structures represent the fact that we will know how to get from a node to a goal state if we can
discover how to get from that node to a goal state along any one of the branches leaving it.

3.4.1 AND-OR Graphs

Another kind of structure, the AND-OR graph (or tree), is useful for representing the solution of problems
that can be solved by decomposing them into a set of smaller problems, all of which must then be solved. This
decomposition, or reduction, generates arcs that we call AND arcs. One AND arc may point to any number of
successor nodes, all of which must be solved in order for the arc to point to a solution. Just as in an OR graph,
several arcs may emerge from a single node, indicating a variety of ways in which the briginal problem might
be solved. This is why the structure is called not simply an AND graph but rather an AND-OR graph. An
example of an AND-OR graph (which also happens to be an AND-OR tree) is given in Fig. 3.6. AND arcs are
indicated with a line connecting all the components.

LGoal: Acquire TV it—]

| Goal Steal TV set | | Goal: Earn some money | | Goal: Buy TV set |

Fig. 3.6 A Simple AND-OR Graph

In order to find solutions in an AND-OR graph, we need an algorithm similar to best-first search but with
the ability to handle the AND arcs appropriately. This algorithm should find a path from the starting node of
the graph to a set of nodes representing solution states. Notice that it may be necessary to get to more than one
solution state since each arm of an AND arc must lead to its own solution node.

To see why our best-first search algorithm is not adequate for searching AND-OR graphs, consider
Fig. 3.7(a). The top node, A, has been expanded, producing two arcs, one leading to B and one leading to C and
D. The numbers at each node represent the value of f” at that node. We assume, for simplicity, that every operation
has a uniform cost, so each arc with a single successor has a cost of 1 and each AND arc with multiple successors
has a cost of 1 for each of its components. If we look just at the nodes and choose for expansion the one with the
lowest f* value, we must select C. But using the information now available, it would be better to explore the path
going through B since to use C we must also use D, for a total cost of 9 (C + D + 2) compared to the cost of 6 that
we get by going through B. The problem is that the choice of which node to expand next must depend not only on

(5) (3) (4)

{5 (10) (3) 4 (15 (10)
(a) b
Fig. 3.7 AND-OR Graphs

Heuristic Search Techniques 65

the £ value of that node but also on whether that node is part of the current best path from the initial node. The
tree shown in Fig. 3.7(b) makes this even clearer. The most promising single node is G with an £ value of 3. Itis
even part of the most promising arc G-H, with a total cost of 9. But that arc is not part of the currenit best path since
t0 use it we must also use the arc I-J, with a cost of 27. The path from A, through B, to E and F 1s better, with a total
cost of 18. So we should not expand G next; rather we should examine either E or F.

In order to describe an algorithm for searching an AND-OR graph, we need to exploit a value that we call
FUTILITY. If the estimated cost of a solution becomes greater than the value of FUTILITY, then we abandon
the search. FUTILITY should be chosen to correspond to a threshold such that any solution with a cosflibove
it is too expensive 1o be practical, even if it could ever be found. Now we can state the algorithm.

Algorithm: Problem Reduction

1. Initialize the graph to the starting node.
2. Loop until the starting node is labeled SOLVED or until its cost goes above FUTILITY:

(a) Traverse the graph, starting at the initial node and following the current best path, and accumulate
the set of nodes that are on that path and have not yet been expanded or labeled as solved.

{b) Pick one of these unexpanded nodes and expand it. If there are no successors, assign FUTILITY as
the value of this node. Otherwise, add its successors to the graph and for each of them compute f
(use only k" and ignore g, for reasons we discuss below). If of any node is 0, mark that node as
SOLVED.

{c) Change the " estimate of the newly expanded node to reflect the new information provided by its
successors. Propagate this change backward through the graph. If any node contains a successor
arc whose descendants are all solved, label the node itself as SOLVED. At each node that is visited
while going up the graph, decide which of its successor arcs is the most promising and mark it as
part of the current best path. This may cause the current best path to change. This propagation of
revised cost estimates back up the tree was not necessary in the best-first search algorithm because
only unexpanded nodes were examined. But now expanded nodes must be reexamined so that the
best current path can be selected. Thus it is important that their f* values be the best estimates
available.

This process is illustrated in Fig. 3.8. At step 1, A is the only node, so it is at the end of the current best path.
It is expanded, yielding nodes B, C, and D. The arc to D is labeled as the most promising one emerging from
A, since it costs 6 compared to B and C, which costs 9. (Marked arcs are indicated in the Fig.s by arrows.) In
step 2, node D) is chosen for expansion. This process produces one new arc, the AND arc to E and F, with a
combined cost estimate of 10. So we update the £ value of D to 10, Going back one more level, we see that
this makes the AND arc B-C better than the arc to D, so it is labeled as the current best path. At step 3, we
traverse that arc from A and discover the unexpanded nodes B and C. If we are going to find a solution along
this path, we will have to expand both B and C eventually, so let’s choose to explore B first. This generates
two new arcs, the ones to G and to H. Propagating their f* values backward, we update f” of B to 6 (since that
is the best we think we can do, which we can achieve by going through (). This requires updating the cost of
the AND arc B-C to 12 (6 + 4 + 2). After doing that, the arc to D is again the better path from A, so we record
that as the current best path and either node E or node F will be chosen for expansion at step 4. This process
continues until either a solution is found or all paths have led to dead ends, indicating that there is no solution.

In addition to the difference discussed above, there is a second important way in which an algorithm for
searching an AND-OR graph must differ from one for searching an OR graph. This difference, too, arises
from the fact that individual paths from node to node cannot be considered independently of the paths through
other nodes connected to the original ones by AND arcs. In the best-first search algorithm, the desired path

66 Artificial Intelligence

Before step 1 Before step 2

[Al6)

Before step 3

4) 4
Fig. 3.8 The Operation of Problem Reduction .

from one node to another was always the one with the lowest cost. But this is not always the case when
searching an AND-OR graph.

Consider the example shown in Fig. 3.9(a). The nodes were generated in alphabetical order. Now suppose
that node J is expanded at the next step and that one of its successors is node E, producing the graph shown in
Fig. 3.9(b). This new path to E is longer than the previous path to E going through C. But since the path
through C will only lead to a solution if there is also a solution to D, which we know there is not, the path
through J is better.

Unsolvable

Fig. 3.9 A Longer Poth May Be Better

There is one important limitation of the algorithm we have just described. It fails to take into account any
interaction between subgoals. A simple example of this failure is shown in Fig. 3.10. Assuming that both
node C and node E ultimately lead to a solution, our algorithm will report a complete
solution that includes both of them. The AND-OR graph states that for A to be solved,
both C and I} must be solved. But then the algorithm considers the solution of D as a
completely separate process. from the solution of C. Looking just at the alternatives
from D, E is the best path. But it turns out that C is necessary anyway, so it would be
better also to use it to satisfy D. But since our algorithm does not consider such (g) @
interactions, it will find a nonoptimal path. In Chapter 13, problem-solving methods gig 310 interocting
that can consider interactions among subgoals are presented. Subgouls

Heuristic Search Techniques 67

3.4.2 The AO* Algorithm

The problem reduction algorithm we just described is a simplification of an algorithm described in Martelli
and Montanari [1973], Martelli and Montanari [1978], and Nilsson [1980]. Nilsson calls it the AO* algorithm,
the name we assume.

Rather than the two lists, OPEN and CLOSED, that were used in the A* algorithm, the AO* algorithm will
use a single structure GRAPH, representing the part of the search graph that has been explicitly generated so
far. Each node in the graph will point both down to its immediate successors and up to its immediate
predecessors. Each node in the graph will also have associated with it an A" value, an estimate of the cost of a
path from itself to a set of solution nodes. We. will not store g (the cost of getting from the start node to the
current node) as we did in the A* algorithm. It is not possible to compute a single such value since there may
be many paths to the same state. And such a value is not necessary because of the top-down traversing of the
best-known path, which guarantees that only nodes that are on the best path will ever be considered for
expansion. So A" will serve as the estimate of goodness of a node.

Algorithm: AO*
1. Let GRAPH consist only of the node representing the initial state. (Calt this node INIT.}) Compute

H(INIT) ,

2. Until INIT is labeled SOLVED or until INIT'’s £’ value becomes greater than FUTILITY, repeat the
following procedure:

(a) Trace the labeled arcs from /VIT and select for expansion one of the as yet unexpanded nodes that
occurs on this path. Call the selected node NODE.

{b) Generate the successors of NODE. If there are none, then assign FUTILITY as the &' value of
NQODE. This is equivalent to saying that NODE is not solvable. If there are successors, then for
each one (called SUCCESSOR) that is not also an ancestor of NODE do the following:

(i) Add SUCCESSOR to GRAPH,

(ii) If SUCCESSOR is a terminai node, label it SOLVED and assign it an A" value of 0.

(iit) If SUCCESSOR is not a terminal node, compute its /" value,

{c) Propagate the newly discovered information up the graph by doing the following: Let S be a set of
nodes that have been labeled SOLVED or whose A’ values have been changed and so need to have
values propagated back to their parents. Initialize 5 to NODE. Until § is empty, repeat the, following
procedure:

(i) If possible, select from § a node none of whose descendants in GRAPH occurs in §. If there is
no such node, select any node from S. Call this node CURRENT, and remove it from S.

(i1) Compute the cost of each of the arcs emerging from CURRENT. The cost of each arc is equal
to the sum of the 4" values of each of the nodes at the end of the arc plus whatever the cost of
the arc itself is. Assign as CURRENT’S new h’ value the minimi of the costs just computed
for the arcs emerging from it.

(iti) Mark the best path out of CURRENT by marking the arc that had the minimum cost as computed
in the previous step.

{iv) Mark CURRENT SOLVED if all of the nodes connected to it through the new labeled arc have
been labeled SOLVED.

{v) If CURRENT has been labeled SOLVED or if the cost of CURRENT was just changed, then its
new status must be propagated back up the graph. So add all of the ancestors of CURRENT to §.

It is worth noticing a couple of points about the operation of this algorithm. In step 2{c)v, the ancestors of
anode whose cost was altered are added to the set of nodes whose costs must also be revised. As stated, the
algorithm will insert all the node’s ancestors’ into the set, which may result in the propagation of the cost

68 Artificial Intelligence

change back up through a large number of paths that are already known not to be
very good. For example, in Fig. 3.11, it is clear that the path through C will
always be better than the path through B, so work expended on the path through
B is wasted. But if the cost of E is revised and that change is not propagated up
through B as well as through C, B may appear to be better. For example, if, as a
result of expanding node E, we update its cost to 10, then the cost of C will be
updated to 11. If this is all that is done, then when A is examined, the path through
B will have a cost of only 11 compared to 12 for the path through C, and it willbe gig 311 An Unnecessary
labeled erroneously as the most promising path. In this example, the mistake Backward
might be detected at the next step, during which D will be expanded. If its cost Propagation
changes and is propagated back to B, B’s cost will be recomputed and the new

cost of E will be used. Then the new cost of B will propagate back to A. At that point, the path through C will
again be better. All that happened was that some time was wasted in expanding . But if the node whose cost
has changed is farther down in the search graph,
the error may never be detected. An example of
this is shown in Fig. 3.12(a). If the cost of G is
revised as shown in Fig. 3.12(b) and if it is not
immediately propagated back to E, then the
change will never be recorded and a nonoptimal
solution through B may be discovered.

A second point concerns the termination of
the backward cost propagation of step 2(c).
Because GRAPH may contain cycles, there is no
guarantee that this process will terminate simply
because it reaches the “top” of the graph. It tumsg
out that the process can be guaranteed to terminate
for a different reason, though. One of the exercises
at the end of this chapter explores why.

{a) (M
Fig. 3.12 A Necessary Backward Prapagation

3.5 CONSTRAINT SATISFACTION

Many problems in Al can be viewed as problems of constraint satisfaction in which the goal is to discover
some problem state that satisfies a given set of constraints. Examples of this sort of problem include
cryptarithmetic puzzles (as described in Section 2.6) and many real-world perceptual labeling problems.
Design tasks can also be viewed as constraint-satisfaction problems in which a design must be created within
fixed limits on time, cost and materials.

By viewing a problem as one of constraint satisfaction, it is often possible to reduce substantially the
amount of search that is required as compared with a method that attempts to form partial solutions directly by
choosing specific values for components of the eventual solution. For example, a straightforward search
procedure to solve a cryptarithmetic problem might operate in a state space of partial solutions in which
letters are assigned particular numbers as their valuer. A depth-first control scheme could then follow a path
of assignments until either a solution or an inconsistency is discovered. In contrast, a constraint satisfaction
approach to solving this problem avoids making guesses on particular assignments of numbers to letters until
it has to, Instead, the initial set of constraints, which says that each number may correspond to only one letter
and that the sums of the digits must be as they are given in the problem, is first augmented to include restrictions
that can be inferred from the rules of arithmetic. Then, although guessing may still be required, the number of
allowable guesses is reduced and so the degree of search is curtailed.

Heuristic Search Techniques 69

Constraint satisfaction is a search procedure that operates in a space of constraint sets. The initial state
contains the constraints that are originally given in the problem description. A Goal State is any state that has
been constrained “enough,” where “enough™ must be defined for each problem. For example, for
cryptarithmetic, enough means that each letter has been assigned a unique numeric value. .

Constraint satisfaction is a two-step process. First, constraints are discovered and propagated as far as
possible throughout the system. Then, if there is still not a solution, search begins. A guess about something
is made and added as a new constraint. Propagation can then occur with this new constraint, and so forth.

The first step, propagation, arises from the fact that there are usually dependencies among the constraints.
These dependencies occur because many constraints involve more than one object and many objects participate
in more than one constraint. So, for example, assume we start with one constraint, N = E + 1. Then, if we
added the constraint N = 3, we could propagate that to get a stronger constraint on E. namely that E = 2,
Constraint propagation also arises from the presence of inference rules that allow additional constraints to be
inferred from the ones that are given. Constraint propagation terminates for one of two reasons. First, a
contradiction may be detected. If this happens, then there is no solution convistent with all the known constraints.
If the contradiction involves only those constraints that were given as part of the problem specification (as
opposed to ones that were guessed during problem solving), then no solution exists. The second possible
reason for termination is that the propagation has run out of steam and there are no further changes that can be
made on the basis of current knowledge. If this happens and a solution has not yet been adequately specified,
then search is necessary to get the process moving again.

At this point, the second step begins. Some hypothesis about a way to strengthen the constraints must be
made. In the case of the cryptarithmetic problem, for example, this usually means guessing a particular value
for some letter. Once this has been done, constraint propagation can begin again from this new state. If a
solution is found, it can be reported. If still more guesses are required, they can be made. If a contradiction is
detected, then backtracking can be used to try a different guess and proceed with it. We can <tate this procedure
more precisely as follows:

Algorithm: Constraint Satisfaction
1. Propagate available constraints, To do this, first set QPEN to the set of all objects that must have values
assigned to them in a complete solution. Then do until an inconsistency is detected or until OPEN is
empty:
(a) Select an object OB from OPEN. Strengthen as much as possible the set of constraints that apply
to OB.
(b) If this set is different from the set that was assigned the last time OB was examined or if this is the
first time OB has been examined, then add to QPEN all objects that share any constraints with OB.
{c) Remove OB from OPEN. ’
2. If the union of the constraints discovered above defines a solution, then quit and report the solution.
If the union of the constraints discovered above defines a contradiction, then return failure.
4. If neither of the above occurs, then it is necessary to make a guess at something in order to proceed. To
do this, loop until a solution is found or all possible solutions have been eliminated:
{a} Select an object whose value is not yet determined and select a way of strengthening the constraints
on that object.
{b) Recursively invoke constraint satisfaction with the current set of constraints augmented by the
strengthening constraint just selected.

w

This algorithm has been stated as generally as possible. To apply it in a particular problem domain requires
the use of two kinds of rules: rules that define the way constraints may validly be propagated and rules that
suggest guesses when guesses are necessary. It is worth noting, though, that in some problem domains guessing

|
|

70 . Artificial Intelligence

may not be required. For example, the Waltz algorithm for propagating line labels in a picture, which is
described in Chapter 14, is a version\of this constraint satisfaction algorithm with the guessing step eliminated.
In general, the more powerfu! the rules for propagating constraints, the less need there is for guessing.

.To see how this algorithm works, consider the cryptarithmetic problem shown in Fig. 3.13. The goal state
is a problem state in which all letters have been assigned a digit in such a way that all the initial constraints are
satisfied.

Problem:
SEND
+ MORE

MONEY
Initial State:
No two letters have the same value.
The sums of the digits must be as shown in
the problem.

Fig. 3.13 A Cryptarithmetic Problem

The solution process proceeds in cycles. At each cycle, two significant things are done (corresponding to
steps 1 and 4 of this algorithm):

1. Constraints are propagated by using rules that correspond to the properties of arithmetic.
2. A value is guessed for some letter whose value is not yet determined.

In the first step, it does not usually matter a great deal what order the propagation is done in, since ail
available propagations will be performed before the step ends. In the second step, though, the order in which
guesses are tried may have a substantial impact on the degree of search that is necessary. A few useful heuristics
can help to select the best guess to try first. For example, if there is a letter that has only two possible values
and another with six possible values, there is a better chance of guessing right on the first than on the second.
Another useful heuristic is that if there is a letter that participates in many constraints then it is a good idea to
prefer it to a letter that participates in a few. A guess on such a highly constrained letter will usvally lead
quickly either to a contradiction (if it is wrong) or to the generation of many additional constraints (if it is
right). A guess on a less constrained letter, on the other hand, provides less information. The result of the first
few cycles of processing this example is shown in Fig. 3.14. Since constraints never disappear at lower levels,
only the ones being added are shown for each level. It wiil not be much harder for the problem solver to access
the constraints as a set of lists than as one long list, and this approach is efficient both in terms of storage space
and the ease of backtracking. Another reasonable approach for this problem would be to store all the constraints
in one central database and also to record at each node the changes that must be undone during backtracking.
Cl, C2, C3, and C4 indicate the carry bits out of the columns, numbering from the right.

Initially, rules for propagating constraints generate the following additional constraints:

s M = |, since two single-digit numbers plus a carry cannot total more than 19,

e S=8o0r9,simce S +M +C3 > 9 (to generate the cary)and M= [, S+ 1+ C3>9,505+ C3> 8 and
C3is at most 1.

e O=0,since S + M(]) + C3 (<= 1) must be at least 10 to generate a carry and it can be at most 11, But
M is already 1, so O must be (.

¢ N=FEorE + 1, depending on the value of C2. But N cannot have the same value as E. SoN=E + 1 and
C2is 1.

¢
a

Heuristic Search Technigues 71

s In order for C2 to be 1, the sum of N + R + Cl must be greater than 9, so N + R must be greater than 8.
¢ N + R cannot be greater than 18, even with a carry in, so E cannot be 9.

At this point, let us assume that no more constraints can be generated. Then, to make progress from here,
we must guess. Suppose E is assigned the value 2. (We chose to guess a value for E because it occurs three
times and thus interacts highly with the other letters.) Now the next cycle begins. :

The constraint propagator now observes that:

o N=3 since N=E+ 1.

e R=80r9,since R+ N(3)+ Cl(1l or0)=2or 12, But since N is alre.dy 3, the sum of these nonnegative
numbers cannot be less than 3. Thus R+ 3+ (Dor1)=12 and R =8 or 9.

¢ 2+D=Yor2+D=10+Y, from the sum in the rightmost column.

Again, assuming no further constraints can be | siate @ SEND
generated, a guess is required. Suppose C1 is chosen to +MORE
guess a value for. If we try the value 1, then we eventually MONEY
reach dead ends, as shown in the Fig.. When this M=1
happens, the process will backtrack and try C1 = 0. gz%zﬁ 2 0=0

A couple of observations are worth making on this N=EorE+1—N=E+1
process. Notice that all that is required of the constraint Cz=1
propagation rules is that they do not infer spurious g:’z ; 8
constraints. They do not have to infer all legal ones. For
example, we could have reasoned through to the resuit E=2
that Cl equals 0. We could have done so by observing Y
that for CI to be 1, the following must hold: 2 + D =10 N=3
+ Y. For this to be the case, D would have to be 8 or 9. ;’Bio\; gr 24D = 10+Y
But both § and R must be either 8 or 9 and three letters
cannot share two values. So Cl cannot be 1. If we had C1=0 C1=1
realized this initially, some search could have been
avoided. But since the constraint propagation rules we | 2+D=Y 2+D = 10+Y
used were not that sophisticated, it took some search. | N*R=10+E D =8+Y

. R=9 D=8or9
Whether the search route takes more or less actual time | g-=g

than does the constraint propagation route depends on
how long it takes to perform the reasoning required for
constraint propagation.

A second thing to notice is that there are often two
kinds of constraints. The first kind is simple; they just
list possible values for a single object. The second kind is more complex; they describe relationships between
or among objects. Both kinds of constraints play the same role in the constraint satisfaction process, and in the
cryptarithmetic example they were treated identically. For some problems, however, it may be useful 1o represent
the two kinds of constraints differently. The simple, value-listing constraints are always dynamic, and so must
always be represented explicitly in each problem state. The more complicated, relationship-expressing
constraints are dynamic in the cryptarithmetic domain since they are different for each cryptarithmetic problem.
But in many other domains they are static. For example, in the Waltz line labeling atgorithm, the only binary
constraints arise from the nature of the physical world, in which surfaces can meet in only a fixed number of
possible ways. These ways are the same for all pictures that that algorithm may see. Whenever the binary
constraints are static, it may be computationally efficient not to represent them explicitly in the state description
but rather to encode them in the algorithm directly. When this is done, the only things that get propagated are
possible values. But the essential algorithm is the same in both cases.

Conflict Conflict
Fig. 3.14 Solving a Cryptarithmetic Problem

72 Artificial Intelligence

So lar, we have described a fairly simple algorithm for constraint satistaction in which chronological
backtracking is used when guessing leads to an inconsistent set of constraints. An alternative is to use a more
sophisticated scheme in which the specific cause of the inconsistency is identified and only constraints that
depend on that culprit are undone. Others, even though they may have been generated after the culprit, are left
alone if they are independent of the problem and its cause. This approach is called dependency-directed
backtracking (DDB). It is described in detail in Section 7.3.1.

3.6 MEANS-ENDS ANALYSIS

So far, we have presented a collection of search strategies that can reason either forward or backward, but for
a given problem, one direction or the other must be chosen. Often, however, a mixture of the two directions is
appropriate. Such a mixed strategy would make it possible to solve the major parts of a problem first and then
go back and solve the small problems that arise in “gluing” the big pieces together. A technique known as
reans-ends analysis allows us to do that.

The means-ends analysis process centers around the detection of differences between tbe current state and
the goal state. Once such a difference is isolated, an operator that can reduce the difference must be found. But
perhaps that operator cannot be applied to the current state. So we set up a subproblem of getting to a state in
which it can be applied. The kind of backward chaining in which operators are selected and then subgoals are
set up to establish the preconditions of the operators is called operator subgoaling. But maybe the operator
" does not produce exactly the goal state we want. Then we have a second subproblem of getting from the state
it does produce to the goal. But if the difference was chosen correctly and if the operator is really effective at
reducing the difference, then the two subproblems should be easier to solve than the original problem. The
means-ends analysis process can then be applied recursively. In order to focus the system’s attention on the
big problems first, the differences can be assigned priority levels. Differences of higher priority can then be
considered before lower priority ones.

The first Al program to exploit means-ends analysis was the General Problem Solver (GPS) [Newell and
Simon, 1963; Emst and Newell, 1969]. Its design was motivated by the observation that people often use this
technique when they solve problems. But GPS provides a good example of the fuzziness of the boundary
between building programs that simulate what people do and building programs that simply solve a problem
any way they can.

Just like the other problem-solving techniques we have discussed, means-ends analysis relies on a set of
rules that can transform one problem state into another. These rules are usually not represented with complete
state descriptions on each side, Instead, they are represented as a left side that describes the conditions that
must be met for the rule to be applicable (these conditions are called the rule’s preconditions} and a right side
that describes those aspects of the problem state that will be changed by the application of the rule. A separate
data structure called a difference table indexes the rules by the differences that they can be used to reduce.

Consider a simple household robot domain. The available operators are shown in Fig. 3.15, along with
their preconditions and results. Figure 3.16 shows the difference table that describes when each of the operators
is appropriate. Notice that sometimes there may be more than one operator that can reduce a given difference
and that a given operator may be able to reduce more than one difference.

Suppose that the robot in this domain were given the problem of moving a desk with two things on it from
one room to another, The objects on top must also be moved. The main difference between the start state and
the goal state would be the location of the desk. To reduce this difference, either PUSH or CARRY could be
chosen. If CARRY is chosen first, its preconditions must be met. This results in two more differences that
must be reduced: the location of the robot and the size of the desk. The location of the robot can be handled by
applying WALK, but there are no operators than can change the size of an object (since we did not include

Heuristic Search Techniques 73

Operator Preconditions Results
PUSH({ohi, loc) at(robot, obj)" atfoby, loc)”
large(obj)” atrobot, loc)
clear(obj)?
armempty
CARRY/(obj, loc) at{robot, obj)* at(obj, loc)®
small(obj) at(robot. loc)
WALK((lo¢) none at(robot, loc)
PICKUP(obj} at(robot, obj) holding(obj)
PUTDOWN(obj) holding(obj) —holding(obj)
PLACE(objl, obj2) at(robot, obj2)* on(obil, obj2)
holding(objl)

Fig. 3.15 The Robot’s Operators

Push | Carry | Walk | Pickup |Putdown Place

Move object * *

Move robot *

Clear object *

Get object on object

Get arm empty * *

Be holding object

Fig. 3.16 A Difference Tuble

SAW-APART). So this path leads to a dead-end. Following the other branch, we aftempt to apply PUSH.
Figure 3.17 shows the problem solver’s progress at this point. it has found a way of doing something useful.
But it is not yet in a position to do that thing. And the thing does not get A B C D
it quite to the goal state. So now the differences between A and B and i ' :
between C and D must be reduced. ‘ " Push |

PUSH has four preconditions, two of which produce differences Stert Goa
between the start and the goal states: the robot must be at the desk, and ~ Fig. 3.17 The Progress of the
the desk must be clear. Since the desk is aiready large, and the robot’s Means-Ends dnaiys's
arm is empty, those two preconditions can be ignored. The robot can be Method
brought to the correct location by using WALK. And the surface of the desk can be cleared by two uses of
PICKUP. But after one PICKUP. an attempt to do the second results in another difference-—the arm musi he
empty. PUTDOWN can be used to reduce that difference.

Once PUSH is performed, the problem state is close to the goal state, but not quite. The objects must be
placed back on the desk. PLACE will put them there. But it cannot be applied immediately. Another difference
must be eliminated, since the robot must be holding the objects. The progress of the problem solver at this
point is shown in Fig. 3.18.

A B C E D

|] | i i | |

["Push [Pick up [Put down| Pick up |Put down! Push | | Prace
Start Goal

Fig. 3.18 More Progress of the Means-Ends Method

74 Artificial Intelligence

The final difference between C and E can be reduced by using WALK to get the robot back to the objects,
- dnwed by PICKUP and CARRY.
‘i'he process we have just illustrated (which we call MEA for short) can be summarized as follows:

Algorithm: Means-Ends Analysis (CURRENT, GOAL)
1. Compare CURRENT to GOAL. If there are no differences between them then return.
2. Otherwise, select the most important difference and reduce it by doing the following until success or
failure is signaled:
(a} Select an as yet untried operator O that is applicable to the current difference. If there are no such
operators, then signal failure. _
(b} Attempt to apply O to CURRENT. Generate descriptions of two states: O-START, a state in which
(¥'s preconditions are satisfied and O-RESULT, the state that would result if O were applied in O-
START.
(cy If
{FIRST-PART « MEA(CURRENT, O-START))
and
(LAST-PART « MEMO-RESULT, GOAL))
are successful, then signal success and retumn the result of concatenating
FIRST-PART, O, and LAST-PART.

Many of the details of this process have been omitted in this discussion. In particular, the order in which
cifferences are considered can be critical. It is important that significant differences be reduced before less
critical ones. If this is not done, a great deal of effort may be wasted on situations that take care of themselves
once the main parts of the problem are solved.

The simple process we have described is usually not adequate for solving complex problems. The number
of permutations of differences may get too large. Working on one difference may interfere with the plan for
reducing ancther. And in complex worlds, the required difference tables would be immense. In Chapter 13 we
look at some ways in which the basic means-ends analysis approach can be extended to tackle some of these
problems. :

yulpioe L WAMLIEG MO w0 IR wa L T v e
R L e TR R R N L TN U LR P C I

SUMMAR

e S AR RARE SR LA b A S 1

In Chapter 2, we listed four steps that must be taken to design a program to solve an Al problem. The first two
steps were:
1. Define the problem precisely. Specify the problem space, the operators for moving within the space,
and the starting and goal state(s).

2. Analyze the problem to determine where it falls with respect to seven important issues.

The other two steps were to isolate and represent the task knowledge required, and to choose problem
solving techniques and apply them to the problem. In this chapter, we began our discussion of the last step of
this process by presenting some general-purpose, problem-solving methods. There are several important ways
in which these algorithms differ, including:

« What the states in the search space(s) represent. Sometimes the states represent complete potential
solutions (as in hill climbing). Sometimes they represent solutions that are partially specified (as in
constraint satisfaction).

In

Heuristic Search Techniques 75

How, at each stage of the search process, a state is selected for expansion.

How operators to be applied to that node are selected.

Whether an optimal solution can be guaranteed.

Whether a given state may end up being considered more than once.

How many state descriptions must be maintained throughout the Search process.
Under what circumstances should a particular search path be abandoned.

the chapters that follow, we talk about ways that knowledge about task domains can be encoded in

problem-solving programs and we discuss techniques for combining problem-solving techniques with
knowledge to solve several important classes of problems.

EXERCISES

I.
2.

LiTuie AS0ANRRIIRY INTY Qaisie ¢ ewao PAPRRS TG I RET et RARAS S SESIEEYE y e e ew v Ty 82

When would best-first search be worse than simple breadth-first search?

Suppose we have a problem that we intend to solve using a heuristic best-first search procedure. We
need to decide whether to implement it as a tree search or as a graph search. Suppose that we know that,
on the average, each distinct node will be generated N times during the search process. We also know
that if we use a graph, it will take, on the average, the same amount of time to check a node to see if it
has already been generated as it takes to process M nodes if no checking is done. How can we decide
whether to use a tree or a graph? In addition to the parameters N and M, what other assumptions must

be made? Start Goal
. Consider trying to solve the 8-puzzle using hill climbing. Can you find a [1]2]3 1]2]3

heuristic function that makes this work? Make sure it works on the following [8!56 4/5]6

example: 47 718

Describe the behavior of a revised version of the steepest ascent hill climbing algorithm in which step
2(c) is replaced by “set current state to best successor.”

Suppose that the first step of the operation of the best-first search algorithm

results in the following situation (g + b means that the value of 2" at a node is a

and the value of g i h): . . o Bl @+1) [CHa+1)
The second and third steps then result in the following sequence of situations:

Bl ¢4+1) [C13+1)

[D]{4+2)

(a) What node will be expanded at the next step?
{b) Can we guarantee that the best solution will be found?

Why must the A* algorithm work properly on graphs containing cycles? Cycles could be prevented if
when a new path is generated to an existing node, that path were
simply thrown away if it is no better than the existing recorded one.
If g is nonnegative, a cyclic path can never be better than the same
path with the cycle omitted. For example, consider the first graph
shown below, in which the nodes were generated in alphabetical
order. The fact that node D is a successor of node F could simply not
be recorded since the path through node F is longer than the one
through node B. This same reasoning would also prevent us from

E[(2+2) [D](4+2}

76

9,

10.

L1

12

13.

14.

15.

Artificial Intelligence

recording node E as a successor of node F, if such was the case. But what would happen in the situation
shown in the second graph below if the path from node G to node F were not recorded and, at the next
step, it were discovered that node G is a successor of node C?7

Formatize the Graceful Decay of Admissibility Corollary and prove that it is true of the A* algorithm.
in step 2(a) of the AO* algorithm, a random state at the end of the current best path is chosen for
expansion. But there are beuristics that can be vsed to influence this choice. For example, it may make
sense to cheose the state whose current cost estimate is the lowest. The argument for this is that for
such nodes, only & tew steps are required before either a solution is found or a revised cost estimate is
preduced. With nodes whose current cost estimate is large, on the other hand, many steps may be
required before any new information is obtained. How would the algorithm have to be changed to
implemeni this state-selection heuristic?

The hackward cost propagation step 2(c) of
the AQ* algorithim must be guaranteed to
terminate even on graphs containtng cycles.
How can we guarantee that it does? To help
answer this question, consider what happens
for the following two graphs, assuming in each case that node F is expanded

next und that its only successor is A: (6

(3O)(E] ([F1(10)

Also consider what happens in the following graph if the cost of node C is (6) [B]
changed to 3: (5)

The AO* algorithm, in step 2(c). requires that a node with no descendants in S be A
selecied from S, if possible. How should the manipulation of § be implemented so that
such a node can be chosen efficiently? Make sure that your technique works correctly

on the following graph, if the cost of node E is changed: Pl

Consider again the AO* algorithm. Under what circumstances will it happen that there are nodes in 5
but there are no nodes in S that have no descendants also in 87
Trace the constraint satisfaction procedure solving the following cryptarithmetic problem:
CROSS
+ ROADS

The constraint satisfaction procedure we have described performs depth-first search whenever some
kind of search is necessary. But depth-first is not the only way to conduct such a search (although it is
perhaps the stmplest).

(a} Rewrite the constraint satisfaction procedure to use breadth-first search.

{b) Rewrite the constraint satisfaction procedure to use best-first search.

Show how means-ends analysis could be used to solve the problem of getting from one place to another.
Assume that the available operators are walk, drive, take the bus, take a cab, and fly.

Imagine a robot trying t0 move from one place in a city to another. 1t has complete knowledge of the
connecting roads in the city. As it moves the road condition keep changing. If the robot is to reach its
destination within a prescribed time. suggest an algorithm for the same. (Hint: Split the road map into
a set of connected nodes and imagine that the costs of moving from one node to the other change based
on some time-dependent conditions).

PART II
KNOWLEDGE REPRESENTATION

CHAPTER

4

KNOWLEDGE REPRESENTATION ISSUES

In general we are least aware of what our minds do best.

—Marvin Minsky
(1927-), American cognitive scientist

In Chapter |, we discussed the role that knowledge plays in Al systems. In succeeding chapters up until now,
though, we have paid little attention to knowledge and its importance as we instead focused on basic frameworks
for building search-based problem-solving programs. These methods are sufficiently general that we have
been able to discuss them without reference to how the knowledge they need is to be represented. For example,
in discussing the best-first search algorithm, we hid all the references to domain-specific knowledge in the
generation of successors and the computation of the £’ function. Although these methods are useful and form
the skeleton of many of the methods we are about to discuss, their problem-solving power is limited precisely
because of their generality. As we look in more detail at ways of representing knowledge, it becomes clear
that particular knowlcdge representation models allow for more specific, more powerful problem-solving
mechanisms that operate on them. In this part of the book, we return to the topic of knowledge and examine
specific techniques that can be used for representing and manipulating knowledge within programs.

4.1 REPRESENTATIONS AND MAPPINGS

In order to solve the complex problems encountered in artificial intelligence, one needs both a large. amount
of knowledge and some mechanisms for manipulating that knowledge to create solutions to new problems. A
variety of ways of representing knowledge (facts) have been exploited in Al programs. But before we can talk
about them individually, we must consider the foliowing point that pertains to all discussions of representation,
namely that we are dealing with two different kinds of entities: C

s Facts: truths in some relevant world. These are the things we want to represent.

» Representations of facts in some chosen formalism. These are the things we will actually be able to

manipulate.

One way to think of structuring these entities is as two levels:

¢ The knowledge level, at which facts (including each agent’s behaviors and current goals) are described.

80 Artificial Intelligence

o The svmbol level, at which representations of objects at the knowledge level are defined in terms of
symbols that can be manipulated by programs.

Reasoning
See Newell [1982] for a detailed exposition of this view programs

: s : nle r P * I
in the C()nte)ft of agent:, and the1r.g0d1:, and behaviors. In '_chc Facts [- gfgrlasentations PR
rest of our discussion here, we will follow a model more like - x
the one shown in Fig. 4.1, Rather than thinking of one level English i English
on top of another, we will focus on facts, on representations, understanding generation
and on the two-way mappings that must exist between them. English
We will call these links representation mappings. The forward Representation
representation mapping mflps from _facts to representations. Fig. 4.1 Mappings between Facts and
The backward representation mapping goes the other way, Representations

from representations to facts.

One representation of facts is so common that it deserves special mention: natural language (particularly
English) sentences. Regardless of the representation for facts that we use in a program, we may also need to
be concerned with an English representation of those facts in order to facilitate getting information into and
out of the system. In this case, we must also have mapping functions from English sentences to the representation
we are actually going to use and from it back to sentences. Figure 4.1 shows how these three kinds of objects
relate to each other.

Let’s look at a simple example using mathematical logic as the representational formalism. Consider the
English sentence:

Spot is a dog.
The fact represented by that English sentence can also be represented in logic as:
dog(Spot)
Suppose that we also have a logical representation of the fact that all dogs have tails:
Vi : dog{x) — hastail{x}
Then, using the deductive mechanisms of logic, we may generate the new representation object:
hastail(Spor)
Using an appropriate backward mapping function, we could then generate the English sentence:
Spot has a tail.
Or we could make use of this representation of a new fact to cause us to take some appropriate action or to
derive representations of additional facts.
It is important to keep in mind that usually the available mapping functions are not one-to-one. In fact, they
are often not even functions but rather many-to-many relations, (In other words, each object in the domain
may map to several elements in the range, and several elements in the domain may map to the same element

of the range.) This is particularly true of the mappings involving English representations of facts. For example,
the two sentences “All dogs have tails” and “Every dog has a tail” could both represent the same fact, namely,

Knowledge Representation Issues 81

that every dog has at least one tail. On the other hand, the former could represent either the fact that every dog
has at least one tail or the fact that each dog has several tails. The latter may represent either the fact that every
dog has at least one tail or the fact that there is a tail that every dog has. As we will see shortly, when we try
to convert English sentences into some other representation, such as logical propositions, we must first decide
what facts the sentences represent and then convert those facts into the new representation.

The starred links of Fig. 4.1 are key components of the design of any knowledge-based program. To see
why, we need to understand the role that the internal representation of a fact plays in a program. What an Al
program does is to manipulate the internal representations of the facts it is given. This manipulation should
result in new structures that can also be interpreted as internal representations of facts. More precisely, these
structures should be the internal representations of facts that correspond to the answer to the problem described
by the starting set of facts.

Sometimes, a good representation makes the operation of a reasoning program not only correct but trivial.
A well-known example of this occurs in the context of the mutilated checker board problem, which can be
stated as follows:

The Mutilated Checker board Problem. Consider a normal checker board from which two squares, in opposite
corners, have been removed. The task is to cover all the remaining squares exactly with dominoes, each of which
covers two squares. No overlapping, either of dominoes on top of each other or of dominoes over the boundary of
the mutilated board are allowed. Can this task be done?

One way to solve this problem is to try to enumerate, exhaustively, all possible tilings to see if one works.
But suppose one wants to be more clever. Figure 4.2 shows three ways in which the mutilated checker board
could be represented (to a person). The first representation does not directly suggest the answer to the problem.
The second may; the third does, when combined with the single additional fact that each domino must cover
exactly one white square and one black square. Even for human problem solvers a representation shift may
make an enormous difference in problem-solving effectiveness. Recall that we saw a slightly less dramatic
version of this phenomenon with respect to a problem-solving program in Section 1.3.1, where we considered
two different ways of representing a tic-tac-toe board, one of which was as a magic square.

Number of
black squares = 30

Number of
white squares = 32

{a} {b) {c]
Fig. 4.2 Three Representations of a Mutilated Checker board

Figure 4.3 shows an expanded view of the starred part of Fig. 4.1 The dotted line across the top represents
the abstract reasoning process that a program is intended to model. The solid line across the bottom represents
the concrete reasoning process that a particular program performs. This program successfully models the
abstract process to the extent that, when the backward representation mapping is applied to the program’s
output, the appropriate final facts are actually generated. If either the program’s operation or one of the
representation mappings is not faithful to the problem that is being modeled, then the final facts will probably
not be the desired ones. The key role that is played by the nature of the representation mapping is apparent
from this figure. If no good mapping can be defined for a problem, then no matter how good the program to
solve the problem is, it will not be able to produce answers that correspond to real answers to the problem,

82 Artificial Intelligence

It is interesting to note that Fig. 4.3 looks very much Initial desired real reasoning »| Final
like the sort of figure that might appear in a general facts facts
programming book as a description of the relationship J
between an abstract data type (such as a set) and a

. . . forward backward
concrete implementation of that type (e.g., as a linked % representation representation *
list of elements). There are some differences, though, mapping mapping
between this figure and the formulation usually used ¥
in programming texts {such as Aho er al. [1983]). For

. L Internal Internal
example, in data type design it is expected that the representation —> representation
mapping that we are calling the backward of initial facts c(})fp:rr:;rc;n of initial facts

representation mapping is a function (i.e., every
representation corresponds to only one fact} and that it
is onto (i.e., there is at least one representation for every fact). Unfortunately, in many Al domains, it may not
be possible to come up with such a representation mapping, and we may have to live with one that gives less
ideal results. But the main idea of what we are doing is the same as what programmers always do, namely to
find concrete implementations of abstract concepts.

Fig. 4.3 Representation of Facts

4.2 APPROACHES TO KNOWLEDGE REPRESENTATION

A good system for the representation of knowledge in a particular domain should possess the following four
properties:

Representational Adequacy — the ability to represent all of the kinds of knowledge that are needed in that
domain.

+ Inferential Adequacy — the ability to mantpulate the representational structures in such a way as to
derive new structures corresponding to new knowledge inferred from old.

s Inferential Efficiency — the ability to incorporate into the knowledge structure additional information
that can be used to focus the attention of the inference mecha- nisms in the most promising directions.

s Acquisitional Efficiency — the ability to acquire new information easily. The simplest case involves
direct insertion, by a person, of new knowledge into the database. Ideally, the program itself would be
able to control knowledge acquisition.

Unfortunately, no single system that optimizes all of the capabilities for all kinds of knowledge has yet
been found. As a result, multiple techniques for knowledge representation exist. Many programs rely on more
than one technique. In the chapters that follow, the most important of these techniques are described in detail.
But in this section, we provide a simple, example-based introduction to the important ideas.

Simple Relational Knowledge
The simplest way to represent declarative facts is as a set of relations of the same sort used in database
systems. Figure 4.4 shows an example of such a relational system.

Player Height Weight Bats-Throws
Hank Aaron 6-0 180 Right-Right
Willie Mays |- 5-10 170 Right-Right

Babe Ruth 6-2 215 Left-Left
Ted Williams 6-3 205 Left-Right
player_info(‘hank aaron’, *6-0°, 180,right-right).

Fig. 4.4 Simple Relational Knowledge and a sample fact in Prolog

Knowledge Representation Issues 83

The reason that this representation is simple is that standing alone it provides very weak inferential
capabilities But knowledge represented in this form may serve as the input to more powerful inference engines.
For example, given just the facts of Fig. 4.4, it is not possible even to answer the simple question, “Who is the
heaviest player?” But if a procedure for finding the heaviest player is provided, then these facts will enable
the procedure to compute an answer. If, instead, we are provided with a set of rules for deciding which hitter
to put up against a given pitcher (based on right- and left-handedness, say), then this same relation can
provide at least some of the information required by those rules.

Providing support for relational knowledge is what database systems are designed to do. Thus we do not
need to discuss this kind of knowledge representation structure further here, The practicatl issues that arise in
linking a database system that provides this kind of support to a knowledge representation system that provides
some of the other capabilities that we are about to discuss have already been solved in several commercial
products.

inheritable Knowledge
The relational knowledge of Fig. 4.4 corresponds to a set of attributes and associated values that together
describe the objects of the knowledge base. Knowledge about objects, their attributes, and their values need
not be as simple as that shown in our example. In particuiar, it is possible 1o augment the basic representation
with inference mechanisms that operate on the structure of the representation. For this to be effective, the
structure must be designed to correspond to the inference mechanisms that are desired. One of the most useful
forms of inference is property inheritance, in which elements of specific classes inherit attributes and values
from more general classes in which they are included. ‘
In order to support property inheritance, objects must be organized into classes and classes must be arranged
in a generalization hierarchy. Figure 4.5 shows some additional baseball knowledge inserted into a structure
that is so arranged. Lines represent attributes. Boxed nodes represent objects and values of attributes of
objects. These values can also be viewed as objects with attributes and values, and so on. The arrows on the
lines point from an object to its value along the corresponding attribute line, The structure shown in the figure
is a slot-and-filler structure. It may also be called a semantic network or a collection of frames. In the latter
case, each individual frame represents the collection of attributes and values associated with a particular
node. Figure 4.6 shows the node for baseball player displayed as a frame.

Right
Person p——

L
isa
Adult- — e [5-10
Male height
A
isa height 6-1
equal to__, bats [Baseball- batting-average
fianded Player 257

batting-average ing-
[106 | S VOO0 i fher | [[Fielder |ootiNg-average ez

A A
instance instance
Chicago team Three-Finger-| |Pee-Wee-| team _ |Brooklyn-
Cubs | Brown Reese "~ |Dodgers

Figure 4.5 Inheritable Knowledge

84 Artificial Intelligence

Baseball-Player

isa: Adult-Male

bats: (EQUAL handed}
height: 6-1
batting-average: 252

Fig. 4.6 Viewing a Node as a Frame

Do not be put off by the confusion in terminology here. There is so much flexibility in the way that this
(and'the other structures described in this section) can be used to solve particular representation problems that
it is difficult to reserve precise words for particular representations. Usually the use of the term frame system
implies somewhat more structure on the attributes and the inference mechanisms that are available to apply to
them than does the term semantic network.

In Chapter 9 we discuss structures such as these in substantial detail. But to get an idea of how these
structures support inference using the knowledge they contain, we discuss them briefly here. All of the objects
and most of the attributes shown in this example have been chosen to correspond to the baseball domain, and
they have no general significance. The two exceptions to this are the attribute isa, which is being used to show
class inclusion, and the attribute instance, which is heing used to show class membership. These two specific
(and generally useful) attributes provide the basis for property inheritance as an inference technique. Using
this technique, the knowledge base can support retrieval both of facts that have heen explicitly stored and of
facts that can be derived from those that are explicitly stored,

An idealized form of the property inheritance algorithm can be stated as follows:

Algorithm: Property Inheritance

To retrieve a value V for attribute A of an instance object O
1. Find O in the knowledge base.
If there is a value there for the atiribute A, report that value.
Otherwise, see if there is a value for the atiribute instance. I not, then fail.
Otherwise, move to the node corresponding to that value and look for a value for the attribute A. If one
is found, report it.
5. Otherwise, do until there is no value for the isg attrihute or until an answer is found:
(a) Get the value of the isa attribute and move 1o that node.
(b) See if there is a value for the attribute A. If there is, report it.

bl N

s

This procedure is simplistic. It does not say what we should do if there is more than one value of the
instance or isa attribute. But it does describe the basic mechanism of inheritance. We can apply this procedure
to our example knowledge base to derive answers to the following queries:

o team{Pee-Wee-Reese) = Brookivn-Dodgers. This atiribute had a value stored explicitly in the knowledge
base.)

s batting-average(Three-Finger Brown) = .106. Since there is no value {or batting average stored explicitly
for Three Finger Brown, we follow the instance attribute to Pircher and extract the value stored there.
Now we observe one of the critical characteristics of property inheritance, namely that it may produce
default values that are not guaranteed to be correct but that represent “best guesses” in the face of a lack
of more precise information. In fact, in 1906, Brown’s batting average was .204.

* height(Pee-Wee-Reese) = 6-1. This represents another default inference. Notice here that because we
gel to it first, the more specific fact about the height of baseball players overrides a more general fact
about the he!z"t of adult males.

Knowledge Representation Issues 85

® bats(Three-Finger-Brown) = Right. To get a value for the attribute bats required going up the isa
hierarchy to the class Baseball-Player. But what we found there was not a vaiue but a rule fur computing
a value. This rule required another value (that for handed) as input. So the entire process must be begun
again recursively to find a value for handed. This time, it is necessary 10 go all the way up to Person to
discover that the default value for handedness for people is Right. Now the rule for bats can be applied,
producing the result Right. In this case, that tums out to be wrong, since Brown is a switch hitter (i.e.,
he can hit both left-and right-handed).

Inferential Knowledge

Property inheritance is a powerful form of inference, but it is not the only useful form. Sometimes all the
power of traditional logic (and sometimes even more than that) is necessary to describe the inferences that are
needed. Figure 4.7 shows two examples of the use of first-order predicate logic to represent additional
knowledge about baseball.

Vx : Ball{x) /\ Flv(x) /\ Fair(x) /\ Infield-Catchable (x) /\
Occupied-Base(First) /\ Occupied-Base(Second) N\ (Quis < 2} /N
—[Line-Drive(x) \/ Attempted-Bt, (x)]

—nfield-Fly(x)

Vx,y : Batter(x) /\ batted(x, y) /\ Infield-Fly(y)— Out(x)

Fig. 4.7 Inferential Knowledge

Of course, this knowledge is useless unless there is also an inference procedure that can exploit it (just as
the default knowledge in the previous example would have been useless without our algorithm for moving
through the knowledge structure). The required inference procedure now is one that implements the standard
logical rules of inference. There are many such procedures, some of which reason forward irom given facts to
conclusions, others of which reason backward from desired conclusions to given facts. One of the most
commonly used of these procedures is resolurion, which exploits a proof by contradiction strategy. Resolution
is described in detail in Chapter 5.

Recall that we hinted at the need for something besides stored primitive values with the bats attribute of
our previous example. Logic provides a powerful structure in which to describe relationships among values.
It is often useful to combine this, or some other powerful description language, with an /isa hierarchy. In
general, in fact, all of the techniques we are describing here should not be regarded as complete and incompatible
ways of representing knowledge. Instead, they should be viewed as building blocks of a complete
representational system.

Procedural Knowledge

So far, our examples of baseball knowledge have concentrated on relatively static, declarative facts. But
another, equally useful, kind of knowledge is operational, or procedural knowledge, that specifies what to do
when. Procedural knowledge can be represented in programs in many ways. The most common way is simply
as code (in some programming language such as LLISP) for doing something. The machine uses the knowledge
when it executes the code to perform a task. Unfortunately, this way of representing procedural knowledge
gets low scores with respect to the properties of inferential adequacy (because it is very difficult to write a
program that can reason about another program’s behavior) and acquisitional efficiency (because the process
of updating and debugging large pieces of code becomes unwieldy).

As an extreme example, compare the representation of the way to compute the value of bats shown in
Fig. 4.6 to one in LISP shown in Fig. 4.8. Although the [LISP one will work given a particular way of storing
attributes and values in a list, it does not lend itself to being reasoned about in the same straightforward way

86 Artificial Intelligence

as the representation of Fig. 4.6 does. The LISP representation is slightly more powerful since it makes
explicit use of the name of the node whose value for handed is to be found. But if this matters, the simpler
representation can be augmented to do this as well.

Baseball-Player

isa: Adult-Male
bats: (lambda (x)
(prog ()
L1

{cond {(caddr x} (return (caddr x}))
(t (setq x (eval (cadr x))}
(cond (x (go L1)}
(t (return nil))))))
height: 6-1
batting-average: 252
Fig. 4.8 Using LISP Code to Define a Value

Because of this difficulty in reasening with LISP, attempts have been made to find other ways of representing
procedural knowledge so that it can relatively easily be manipulated both by other programs and by people.

The most commonly used technique for representing procedural knowledge in Al programs is the use of
production rules. Figure 4.9 shows an example of a production rule that represents a piece of operational
knowledge typically possessed by a baseball player.

Production rules, particularly ones that are augmented with information on how they are to be used, are
more procedural than are the other representation methods discussed in this chapter. But making a clean
distinction between declarative and procedural knowledge is difficult. Although at an intuitive level such a
distinction makes some sense, at a formal level it disappears, as discussed in Section 6.1. In fact, as you can
see, the structure of the declarative knowledge of Fig. 4.7 is not substantially different from that of the operational
knowledge of Fig. 4.9. The important difference is in how the knowledge is used by the procedures that
manipulate it.

If: ninth inning, and

score is close, and

less than 2 outs, and

first base is vacant, and

batter is better hitter than next batter,
Then: walk the batter.

Fig. 4.9 Procedural Knowledge as Rules

4,3 ISSUES IN KNOWLEDGE REPRESENTATION

Before embarking on a discussion of specific mechanisms that have been used to represent various kinds of
real-world knowledge, we need briefly to discuss several issues that cut across all of them:

o Are any attributes of objects so basic that they occur in almost every problem domain? If there are, we
need to make sure that they are handled appropriately in each of the mechanisms we propose. If such
attributes exist, what are they?

e Are there any important relationships that exist among attributes of objects?

Knowledge Representation Issues 87

¢ Atwhat level should knowledge be represented? Is there a good set of primitives into which all knowledge
can be broken down? Is it helpful to use such primitives?

¢ How should sets of objects be represented?

s (iiven a large amount of knowledge stored in a database, how can relevant parts be accessed when they
are needed?

We will talk about each of these questions briefly in the next five sections.

4.3.1 Important Attributes

There are two attributes that are of very general significance, and we have already seen their use: instance and
isa. These attributes are important because they support property inheritance. They are called a variety of
things in AT systems, but the names do not matter. What does matter is that they represent class membership
and class inclusion and that class inclusion is transitive, In slot-and-filler systems, such as those described in
Chapters 9 and 10, these attributes are usually represented explicitly in a way much like that shown in Fig. 4.5
and 4.6. In logic-based systems, these relationships may be represented this way or they may be represented
implicitly by a set of predicates describing particular classes. See Section 5.2 for some examples of this.

4.3.2 Relationships among Attributes

The attributes that we use to describe objects are themselves entities that we represent. What properties do
they have independent of the specific knowledge they encode? There are four such properties that deserve
mention here;

¢ Inverses

e Existence in an isa hierarchy

s Techniques for reasoning about values
¢ Single-valued attributes

Inverses
Entities in the world are related to each other in many different ways. But as soon as we decide to describe
those relationships as attributes, we commit to a perspective in which we focus on one object and look for
binary relationships between it and others. Attributes are those relationships. So, for example, in Fig. 4.5, we
used the attributes instance, isa and team. Each of these was shown in the figure with a directed arrow,
originating at the object that was being described and terminating at the object representing the value of the
specified attribute. But we could equally well have focused on the object representing the value. If we do that,
then there 1s still a reiationship between the two entities, aithough it is a different one since the original
relationship was not symmetric (although some relationships, such as sibling, are). In many cases, it is important
to represent this other view of relationships. There are two good ways to do this.

The firstis to represent both relationships in a single representation that ignores focus. Logical representations
are usually interpreted as doing this. For example, the assertion:

team{ Pee-Wee-Reese, Brooklyn-Dodgers)

can equally easily be interpreted as a statement about Pee Wee Reese or about the Brooklyn Dodgers. How it
is actually used depends on the other assertions that a system contains,

The second approach is to use atuwibutes that focus on a single entity but to use them in pairs, one the
inverse of the other. In this approach, we would represent the team information with two attributes:

e one associated with Pee Wee Reese:
team = Brooklyn-Dodgers

a8 Artificial Intefligence

* one associated with Brooklyn Dodgers:
team-members = Pee-Wee-Reese, ...

This is the approach that is taken in semnantic net and frame-hased systems. When it is used, it is usually
accompanied by a knowledge acguisition tool that guarantees the consistency of inverse slots by forcing them
to be declared and then checking each time a value is added to one attribute that the corresponding value is
added to the inverse.

An Isa Hierarchy of Attributes

Just as there are classes of objects and specialized subsets of those classes, there are attributes and specializations
of attributes. Consider, for example, the attribute height. Tt is actually a specialization of the more general
attribute physical-size which is, in turn, a specialization of physical-attribute. These generalization-specialization
relationships are important for attributes for the same reason that they are important for other concepts—they
support inheritance. In the case of attributes, they support inheriting information about such things as constraints
on the values that the attribute can have and mechanisms for computing those values.

Techniques for Reasoning about Values

Sometimes values of attributes are specified explicitly when a knowledge base is created. We saw several
examples of that in the baseball example cf Fig. 4.5. But often the reasoning system must reason about values
it has not been given explicitly. Several kinds of information can play a role in this reasoning, including:

s Information about the type of the value. For example, the value of height must be a number measured
in a unit of length.

o Constraints on the value, often stated in terms of related entities. For example, the age of a person
cannot be greater than the age of either of that person’s parents.

¢ Ruies for computing the vajue when it is needed. We showed an example of such a rule in Fig. 4.5 for
the bats attribute. These rules are called backward rules, Such rules have also been called if-needed
rules.

* Rules that describe actions that should be taken if a value ever becomes known. These rules are called
forward rules, or sometimes if-added rules.

We discuss forward and backward rules again in Chapter 6, in the context of rulebased knowledge
representation.

Single-Valued Attributes

A specific but very useful kind of attribute is one that is guaranteed to take a unique value. For example, a
baseball player can, at any one time, have only a single height and be a member of only one team. If there is
already a value present for one of these attributes and a different value is asserted, then one of two things has
happened. Either a change has occurred in the world or there is now a contradiction in the knowledge base
that needs to be resolved. Knowledge-representation systems have taken several different approaches to
providing support for single-valued attributes, including:

¢ Introduce an explicit notation for temporal interval. If two different values are ever asserted for the
same temporal interval, signal a contradiction automatically.

e Assume that the only temporal interval that is of interest is now. So if a new value is asserted, replace
the old value.

+ Provide no explicit support. Logic-based systems are in this category. But in these systems, knowledge-
base builders can add axioms that state that if an attribute has one value then it is known not to have all
other values,

Knowledge Representation Issues 89

4.3.3 Choosing the Granularity of Representation

Regardless of the particular representation formalism we choose, it is necessary o answer the question At
what level of detail should the world be represented?” Another way this question is often phrased is “Whai
should be our primitives?” Should there be a small number of low-level ones or should there be 4 targer
number covering a range of granularities? A brief example illustrates the problem. Suppose we are interested
in the following fact:

John spotted Sue.
We could represent this as'

spottediagent(John),
object(Sue))

Such a representation would make it easy to answer questions such as:
Who spotted Sue?

But now suppose we want to know:
Did John see Sue?

The obvious answer is “‘yes,” but given only the one fact we have, we cannot discover that answer, W
could, of course, add other facts, such as

spotted(x, ¥) — saw(x, ¥)

We could then infer the answer to the question.
An alternative solution to this problem is to represent the fact that spotting is really a special type of seeing
explicitly in the representation of the fact. We might write something such as

saw(agent(John),
object{Sue),
timespan(briefly))

In this representation, we have broken the idea of spoting apart into more primitive concepts of seeing and
timespan. Using this representation, the fact that John saw Suve is immediately accessible. But the fact that he
spotted her is more difficult to get to.

The major advantage of converting all statements into a representation in terms of a small set of primitives
1s that the rules that are used to derive inferences from that knowledge need be written only in terms of the
primitives rather than in terms of the many ways in which the knowledge may originally have appeared. Thus
what is really being argued for is simply some sort of canonical form. Several Al programs, including those
described by Schank and Abelson [1977] and Wilks [1972], are based on knowledge bases described in terms
of a small number of low-level primitives.

¥ The arguments agent and object are usually called cases. They represent roles involved in the event. This semaniic way of
analyzing sentences contrasts with the probably more familiar syntactic approach in which sentences have a surtace subject.
direct object, indirect object, and so forth. We will discuss case grammar {Fillmore, 1968} and its use in natural language
understanding in Section 15.3.2. For the moment, you can safely assume that the cases mean what their names suggest.

90 Artificial Intelligence

P 0
JohnCT PROPEL —a— fist

s-by Poss-by ‘T
Joh n:)ﬁst &= Physcontact John
Mary John Mary
|
John &—>MOVE
Poss-by#o
John ——> Fist
D

“John punched Mary.”
(a) Mary

Mary<:> PROPEL —4— fist

Poss- byn‘
Poss-by Ma
ary::> f‘ st <= Physcontact ry
Johan Mary John
|
Mary <—>MOVE
F’oss-byfo
Mary —> Fist
D
“Mary punched John.”
(b} John

Fig. 4.10 Redundant Representations

There are several arguments against the use of low-level primitives. One is that simple high-level facts
may require a lot of storage when broken down into primitives. Much of that storage is really wasted since the
low-level rendition of a particular high- level concept will appear many times, once for each time the high-
level concept is referenced. For example, suppose that actions are being represented as combinations of a
small set of primitive actions. Then the fact that John punched Mary might be represented as shown in
Fig. 4.10(a). The representation says that there was physical contact between John's fist and Mary. The contact
was caused by John propelling his fist toward Mary, and in order to do that John first went to where Mary
was.” But suppose we also know that Mary punched John. Then we must also store the structure shown in
Fig. 4.10(b). If, however, punching were represented simply as punching, then most of the detail of both
structures could be omitted from the structures themselves. It could instead be stored just once in a common
representation of the concept of punching.

A second but related problem is that if knowledge is initially presented to the system in a relatively high-
level form, such as English, then substantial work must be done to reduce the knowledge into primitive form.

2 The representation shown in this example is called concepiual dependency and is discussed in detail in Section 10.1.

Knowledge Representation Issues 91

Yet, for many purposes, this detailed primitive representation may be unnecessary. Both in understanding
language and in interpreting the world that we see, many things appear that later turn out to be irrelevant. For
the sake of efficiency, it may be desirable to store these things at a very high level and then to analyze in detail
only those inputs that appear to be important.

A third problem with the use of low-level primitives is that in many domains, it is not at all clear what the
primitives should be. And even in domains in which there may be an obvious set of primitives, there may not be
enough information present in each use of the high-level constructs to enable them to be converted into their
primitive components. When this is true, there is no way to avoid representing facts at a variety of granulanties.

The classical example of this sort of situation is provided by kinship terminology [Lindsay, 1963]. There
exists at least one obvious set of primitives: mother, father, son, daughter, and possibly brother and sister. But
now suppose we are told that Mary is Sue’s cousin. An atternpt to describe the cousin relationship in terms of
the primitives could produce any of the following interpretations:

e Mary = daughter(brother(mother(Sue)))

* Mary = daughter(sister(mother(Sue)})

s Mary = daughter(brother(father(Sue)))

s Mary = daughter(sister{father(Sue})) : !

If we do not already know that Mary is female, then of course there are four more possibilities as well.
Since in general we may have no way of choosing among these representations, we have no choice but to
represent the fact using the nonprimitive relation cousin.

The other way to solve this problem is to change our primitives. We could use the set: parent, child,
sibling, male, and female. Then the fact that Mary is Sue’s cousin could be represented as

Mary = child(sibling(parent{Sue)))

But now the primitives incorporate some generalizations that may or may not be approprate. The main
point to be leamned from this example is that even in very simple domains, the correct set of primitives is not
obvious.

In less well-structured domains, even more problems arise. For example, given just the fact

John broke the window.
a program would not be able to decide if John's actions consisted of the primitive sequence:

1. Pick up a hard object.
2. Hurl the object through the window.

or the sequence:

1. Pick up a hard object.
2. Hold onto the object while causing it to crash into the window.

or the single action:
1. Cause hand {or foot) 1o move fast and crash into the window.
or the single action:

1. Shut the window so hard that the glass breaks.

92 Artificial Intelligence

As these examples have shown, the problem of choosing the correct granularity of epresentation for a
particular body of knowledge is not easy. Clearly, the lower the level we choose, the less inference required to
reason with it in some cases, but the more conference required to create the representation from English and the
mwre roomt it takes to store, since many inferences will be represented many times. The answer for any particular
wmsl, domain must come to a large extent from the domain itself—to what use is the knowledge to be put?

One way of looking at the question of whether there exists a good set of low-level primitives is that it is a
guestion of the existence of a unique representation. Does there exist a single, canonical way in which large
bodies of knowledge can be represented independently of how they were originally stated? Another, closely
related, uniqueness question asks whether individual objects can be represented uniquely and independently of
how they are described. This issue is raised in the following quotation from Quine [1961] and discussed in
Woods 119731:

The phrase Evening Star names a certain large physical object of spherical form, which is hurtling through space
some scores of millions of miles from here. The phrase Morning Star names the same thing, as was probably first
established by some observant Babylonian. But the two phrases cannot be regarded as having the same meaning;
otherwise that Babylonian could have dispensed with his observations and contented himself with reflecting on the
meaning of his words. The meanings, then, being different from one another, must be other than the named object,
which is one and the same in both cases.

In order for a program to be able to reason as did the Babylonian, it must be able to handle several distinct
representations that turm out to stand for the same object.

We discuss the question of the correct granularity of representation, as well as issues involving redundant
storage of information, throughout the next several chapters, particularly in the section on conceptual
dependency, since that theory explicitly proposes that a small set of low-level primitives should be used for
representing actions.

4.3.4 Representing Sets of Objects

It is important to be able to represent sets of objects for several reasons. One is that there are some properties
that are true of sets that are not true of the individual members of a set. As examples, consider the assertions
that are being made in the sentences “There are more sheep than people in Australia™ and “English speakers
can be found all over the world.” The only way to represent the facts described in these sentences 1s to attach
assertions to the sets representing people, sheep, and English speakers, since, for example, no single English
speaker can be found all over the world. The other reason that it is important to be able to represent sets of
objects is that if a property is true of all {or even most) elements of a set, then it is more efficient to associate
it once with the set rather than to associate it explicitly with every element of the set. We have already looked
at ways of doing that, both in logical representations through the use of the universal quantifier and in slot-
and-filler structures, where we used nodes to represent sets and inheritance to propagate set-level assertions
down to individuals, As we consider ways to represent sets, we will want to consider both of these uses of set-
level representations. We will also need to remember that the two uses must be kept distinct. Thus if we assert
something like Jarge(Elephant), it must be clear whether we are asserting some property of the set itself (i.e.,
that the set of elephants is large) or some property that holds for individual elements of the set (i.e., that
anything that is an elephant is large).

There are three obvious ways in which sets may be represented. The simplest is just by a name. This is
essentially what we did in Section 4.2 when we used the node named Baseball-Plaver in our semantic net and
when we used predicates such as Ball and Batter in our logical representation. This simple representation
does make it possible to associate predicates with sets. But it does not, by itself, provide any information
about the set it represents. It does not, for example, tell how to determine whether a particular object is a
member of the set or not.

Knowledge Representation Issues 93

There are two ways to state a definition of a set and its elements. The first is to list the members. Such a
specification is called an extensional definition. The second is to provide a rule that, when a particular object
is evaluated, returns true or false depending on whether the object is in the set or not. Such a rule is called an
intensional definition. For example, an extensional description of the set of our sun’s planets on which people
live is {Earth/. An intensional description is

[x : sun-planet(x} N\ human-inhabited(x)}

For simple sets, it may not matter, except possibly with respect to efficiency concerns, which representation
is used. But the two kinds of representations can function differently in some cases.

One way in which extensional and intensionat representations differ is that they do not necessarily correspond
one-to-one with each other. For example, the extensionally defined set {Earth } has many intensional definitions
in addition to the one we just gave. Others include:

[x : sun-planet{x) ? nth-farthest-fimm-sun(x, 3}}
{x - sun-planer(x) ? nth-biggest(x, 5)}

Thus, while it is trivial to determine whether two sets are identical if extensional descriptions are used, it
may be very difficult to do so using intensional descriptions.

Intensional representations have two important properties that extensional ones lack, however. The first is
that they can be used to describe infinite sets and sets not all of whose elements are explicitly known. Thus we
can describe intensionally such sets as prime numbers (of which there are infinitely many) or kings of England
(even though we do not know who all of them are or even how many of them there have been). The second
thing we can do with intensional descriptions is to allow them to depend on parameters that can change, such
as time or spatial location. If we do that, then the actual set that is represented by the description will change
as a function of the value of those parameters. To see the effect of this, consider the sentence, “The president
of the United States used to be a Democrat,” uttered when the current president is a Republican. This sentence
can mean two things. The first is that the specific person who is now president was once a Democrat. This
meaning can be captured straightforwardly with an extensional representation of “the president of the United
States.” We just specify the individual, But there is a second meaning, namely that there was once someone
who was the president and who was a Democrat. To represent the meaning of “the president of the United
States” given this interpretation requires an intensional description that depends on time. Thus we might write
president(t), where president is some function that maps instances of time onto instances of people, namely
U.S. presidents.

4.3.5 Finding the Right Structures as Needed

Recall that in Chapter 2, we briefly touched on the problem of matching rules against state descriptions during
the problem-solving process. This same issue now rears its head with respect to locating appropriate knowledge
structures that have been stored in memory.

For example, suppose we have a script (a description of a class of events in terms of contexts, participants,
and subevents) that describes the typical sequence of events in a restaurant.® This script would enable us to
take a text such as .

John went to Steak and Ale last night. He ordered a large rare steak, paid his bill, and left.

and answer “yes” to the question

3 We discuss such a script in detail in Chapter 10.

94 Artificial Intelligence

Did John eat dinner last night?

Notice that nowhere in the story was John’s eating anything mentioned explicitly. But the fact that when one
goes to a restaurant one eats will be contained in the restaurant script. If we know in advance to use the restaurant
script. then we can answer the question easily. But in order to be able to reason about a variety of things, a system
must have many scripts for everything from going to work to sailing around the world. How will it select the
appropriate one each time? For example, nowhere in our story was the word “restaurant’” mentioned.

In fact, in order to have access to the right structure for describing a particular situation, it is necessary to
solve all of the following problems.*

How to perform an initial selection of the most appropriate structure,

How to fill in appropriate details from the current situation.

How to find a better structure if the one chosen initially turns out not to be appropriate.
What to do if none of the available structures is appropriate.

When to create and remember a new structure.

There is no good, general purpose method for solving all these problems. Some knowledge-representation
techniques solve some of them. In this section we survey some solutions to two of these problems: how to select
an initial structure to consider and how to find a better structure if that one turns out not to be a good match.

Selecting an [nitial Structure
Selecting candidate knowledge structures to match a particuiar problem-solving situation is a hard problem;
there are several ways in which it can be done. Three important approaches are the following:

¢ Index the structures directly by the significant English words that can be used to describe them. For
example, let each verb have associated with it a structure that describes its meaning. This is the approach
taken in conceptual dependency theory, discussed in Chapter 10. Even for sclecting simple structures,
such as those representing the meanings of individual words, though, this approach may not be adequate,
since many words may have several distinct meanings. For example, the word “fly” has a different
meaning in each of the following sentences:

— John flew to New York. (He rode in a plane from one place to another.)

— John flew a kite. (He held a kite that was up in the air.)

— John flew down the street. (He moved very rapidly.)

~ John flew into a rage. (An idiom)

Another problem with this approach is that it is only useful when there is an English description of the
problem to be solved.

» Consider each major concept as a pointer to all of the structures (such as scripts} in which it might be
involved, This may produce several sets of prospective structures. For example, the concept Steak
might point to two scripts, one for restaurant and one for supermarket. The concept Bill might point to
arestaurant and a shopping script. Take the intersection of those sets to get the structure(s}, preferably
precisely one, that involves all the content words. Given the pointers just described and the story about
John's trip to Steak and Ale, the restaurant script would be evoked. One important problem with this
method is that if the problem description contains any even slightly extraneous concepts. then the
intersection of their associated struttures will be empty. This might occur if we had said. for example,
“John rode his bicycle to Steak and Ale last night.” Another problem is that it may require a great deal
of computation to compute all of the possibility sets and then to intersect them. However, if computing
such sets and intersecting them could be done in parallel, then the time required to produce an answer

*'This list is taken from Minsky [1975].

Knowledge Representation [ssues 95

would be reasonable even if the total number of computations is large. For an exploration of this
paralle] approach to clue intersection, see Fahlman [1979].

» Locate one major clue in the problem description and use it to select an initial structure. As other clues
appear, use them to refine the initial selection or to make a completely new one if necessary. For a
discussion of this approach, see Charmniak [1978]. The major problem with this method is that in some
situations there is not an easily identifiable major clue. A second problem is that it is necessary to
anticipate which clues are going to be important and which are not. But the relative importance of clues
can change dramatically from one situation to another. For example, in many contexts, the color of the
objects involved is not important. But if we are told “The light turned red,” then the color of the light
is the most important feature to consider.

None of these proposals seems to be the complete answer to the problem. It often turns out, unfortunately,
that the more complex the knowledge structures are, the harder it 1s to tell when a particular one is appropriate.

Revising the Choice When Necessary

Once we find a candidate knowledge structure, we must attempt to do a detailed match of it to the problem at
hand. Depending on the representation we are using, the details of the matching process will vary. It may
require variables to be bound to objects. It may require attributes to have their values compared. In any case,
if values that satisfy the required restrictions as imposed by the knowledge structure can be found, they are
put into the appropriate places in the structure. If no appropriate values can be found, then a new structure
must be selected. The way in which the attempt to instantiate this first structure failed may provide useful cues
as to which one to try next. If, on the other hand, appropriate values can be found, then the current structure
can be taken to be appropriate for describing the current situation. But, of course, that situation may change.
Then information about what happened (for example, we walked around the room we were looking at) may
be useful in selecting a new structure to describe the revised situation.

As was suggested above, the process of instantiating a structure in a particular situation often does not
proceed smoothty. When the process runs into a snag, though, it is often not necessary to abandon the effort
and start over. Rather, there are a variety of things that can be done:

s Select the fragments of the current structure that do correspond to the situation and match them against
candidate alternatives. Choose the best match. If the current siructure was at all ciose to being appropriate,
much of the work that has been done to build substructures to fit into it wili be preserved.

s Make an excuse for the current structure’s failure and continue to use it. For example, a proposed chair
with only three legs might simply be broken. Or there might be another cbject in front of it which
occludes one leg. Part of the structure should contain information about the features for which it is
acceptable to make excuses. Also, there are general heuristics, such as the fact that a structure is more
likely to be appropriate if a desired feature is missing (perhaps because it is hidden from view) than if
an inappropriate feature is present. For example, a person with one leg is more plausible than a person
with a tail.

¢ Refer to specific stored links between structures to suggest new directions in which to explore. An example
of this sort of linking among a set of frames is shown in the similarity network shown in Fig. 4.11.5

s Ifthe knowledge structures are stored in an isa hierarchy, traverse upward in it until a structure is found
that is sufficiently general that it dees not conflict with the evidence. Either use this structure if it is
specific enough to provide the required knowledge or consider creating a new structure just below the
matching one.

3 This example is taken from Minsky [1975].

96 Artificial Intelligence

BENCH

no back, too wide

CHAIR -
too big, no back 7/ F\T too high, no back

TABLE STOOL

drawers
SIDEBOARD

DESK _T_/

no knee room

Fig. 4.11 A Similarity Net

4.4 THE FRAME PROBLEM

So far in this chapter, we have seen several methods for representing knowledge that would allow us to form
complex state descriptions for a search program. Another issue concerns how to represent efficiently sequences of
problem states that arise from a search process. For comnplex ill-structured problems, this can be a serious matter.

Consider the world of a household robot, There are many objects and relationships in the world, and a state
description must somehow include facts like onf Plant 12, Table34), under(Table34, Window13), and in{Table34,
Room 15). One strategy is to store each state description as a list of such facts. But what happens during the
problem-solving process if each of those descriptions is very long? Most of the facts will not change from one
state to another, yet each fact will be represented once at every node, and we will quickly run out of memory.
Furthermore, we will spend the majority of our time creating these nodes and copying these facts—most of
which do not change often—from one node to another. For example, in the robot world, we could spend a lot
of time recording above(Ceiling, Floor) al every node. All of this is, of course, in addition to the real problem
of figuring out which facts should be different at each node.

This whole problem of representing the facts that change as well as those that do not is known as the frame
problem [McCarthy and Hayes, 1969]. In some domnains, the only hard part is representing all the facts. In
others, though, figuring out which ones change is nontrivial. For example, in the robot world, there might be
a table with a plant on it under the window. Suppose we move the table to the center of the room. We must also
infer that the plant is now in the center of the room too but that the window is not.

To support this kind of reasoning, some systems make use of an explicit set of axioms called frame axioms,
which describe all the things that do not change when a particular operator is applied in state n to produce
state n + 1. (The things that do change must be mentioned as part of the operator itself.) Thus, in the robot
domain, we might write axioms such as

color(x.y,)} /\ move(x, 5,,5;) — color(x,y, §;)

Knowledge Representation Issues 97

which can be read as, “If x has color y in state 5, and the operation of moving x is applied in state s, to produce
state s, then the color of x in s, is still y.” Unfortunately, in any complex domain, a huge number of these
axioms becomes necessary. An alternative approach is to make the assumption that the only things that change
are the things that must. By “must” here we mean that the change is either required explicitly by the axioms
that describe the operator or that it follows logically from some change that is asserted explicitly. This idea of
circumscribing the set of unusual things is a very powerful one; it can be used as a partial solution to the frame
problem and as a way of reasoning with incomplete knowledge. We return to it in Chapter 7.

But now let us return briefly to the problem of representing a changing problem state. We could do it by
simply starting with a description of the initial state and then making changes to that description as indicated
by the rules we apply. This solves the problem of the wasted space and time involved in copying the information
tor each node. And it works fine until the first time the search has to backtrack. Then, unless all the changes
that were made can simply be ignored (as they could be if, for example, they were simply additions of new
theorems). we are faced with the problem of backing up to some earlier node. But how do we know what
changes in the problem state description need to be undone? For example, what do we have to change to undo
the effect of mo¥ing the table to the center of the room? There are two ways this problem can be solved:

+ Do not modify the initial state description at all. At each node, store an indication of the specific
changes that should be made at this node. Whenever it is necessary to tefer to the description of the
current problem state, look at the initial state description and also look back through all the nodes on
the path from the siart state to the current state. This is what we did in our solution to the cryptarithmetic
problem in Section 3.5. This approach makes backtracking very easy, but it makes referring to the state
description fairly complex.

¢ Modify the initial state description as appropriate, but also record at each node an indication of what to
do to undo the move should it ever be necessary to backtrack through the node. Then, whenever it is
necessary to backirack, check each node along the way and perform the indicated operations on the
state description.

Sometimes, even these solutions are not enough. We might want to remember, for example, in the robot
world, that before the table was moved, it was under the window and after being moved, it was in the center
of the room. This can be handled by adding to the representation of each fact a specific indication of the time
at which that fact was true. This indication is called a state variable. But to apply the same technique to a real-
world problem, we need, for example, separate facts to indicate all the times at which the Statue of Liberty is
in New York,

There is no simple answer either to the question of knowledge representation or to the frame problem,
Each of them is discussed in greater depth later in the context of specific problems. But it is important to keep
these questions in mind when considering search strategies, since the representation of knowledge and the
search process depend heavily on each other.

SUMMARY

SR w TRERD inssee sREEEWEEY D¥isns sroetham TEEYY D 0o caw sperwd T E B, Los IS TTI

The purpose of this chapter has been to outline the need for knowledge in reasoning programs and to survey
issues that must be addressed in the design of a good knowledge representation structure. Of course, we have
not covered everything. In the chapters that follow, we describe some specific representations and look at
their refative strengths and weaknesses.

The following collections all contain further discussions of the fundamental issues in knowledge
representation, along with specific techniques to address these issues: Bobrow [1975]), Winograd [1978],
Brachman and Levesque [1985], and Halpern [1986]. For especially clear discussions of specific issues on
the topic of knowledge representation and use see Woods [1975] and Brachman [1985].

CHAPTER

5

USING PREDICATE LOGIC

Nature cares notfing for logic, our human logic: she £as fer own, which we do not recognize and do not
acknowledge until we are crushed under its wheel,

—Ivan Turgenev
(1818-1883), Russian novelist and playwright

In this chapter, we begin exploring one particular way of representing facts — the language of logic. Other
representational formalisms are discussed in later chapters. The logical formalism is appealing because it
immediately suggests a powerful way of deriving new knowledge from old — mathematical deduction. In
this formalism, we can conclude that a new statement is true by proving that it follows from the statements
that are already known. Thus the idea of a proof, as developed in mathematics as a rigorous way of demonstrating
the truth of an already believed proposition, can be extended to include deduction as a way of deriving
answers to questions and solutions to problems.

One of the early domains in which Al techniques were explored was mechanical theorem proving, by
which was meant proving statements in various areas of mathematics. For example, the Logic Theorist [Newell
et al., 1963] proved theorems from the first chapter of Whitehead and Russell’s Principia Mathematica [1950].
Another theorem prover {Gelemter et al., 1963] proved theorems in geometry. Mathematical theorem proving
is still an active area of Al research. (See, for example, Wos ef al. [1984].) But, as we show in this chapter, the
usefulness of some mathematical techniques extends well beyond the traditional scope of mathematics. It
turns out that mathematics is no different from any other complex intellectual endeavor in requiring both
reliable deductive mechanisms and a mass of heuristic knowledge to control what would otherwise be a
completely intractable search problem.

At this point, readers who are unfamiliar with propositional and predicate logic may want to consult a good
introductory logic text before reading the rest of this chapter. Readers who want a more complete and formal
presentation of the material in this chapter should consult Chang and Lee [1973]. Throughout the chapter, we
use the following standard logic symbols: “—” (material implication), “=" (not), /" (or), “/\” (and), *V”
(for all), and “3” (there exists).

Using Predicate Logic ' 99

5.1 REPRESENTING SIMPLE FACTS IN LOGIC

Let’s first explore the use of propositional logic as a way of representing the sort of world knowledge that an
Al system might need. Propositional logic ts appealing because it is simple to deal with and a decision procedure
for it exists. We can easily represent real-world facts as logical propositions written as well-formed formulas
{wff’s) in propositional logic, as shown in Fig. 5.1. Using these propositions, we could, for exampie, conclude
from the fact that it is raining the fact that it is not sunny. But very quickly we run up against the limitations of
propositional logic. Suppose we want to represent the obvious fact stated by the classical sentence

It is raining.
RAINING

It is sunny.
SUNNY

It is windy.
WINDY

If it is raining, then it is not sunny.
RAINING —- SUNNY

Fig. 5.1 Some Simple Facts in Prepositional Logic
Socrates is & man.
We could write:;
SOCRATESMAN
But if we also wanted to represent
Plato is a man.
we would have to write something such as:
PLATOMAN

which would be a totally separate assertion, and we would not be able to draw any conclusions about similarities
between Socrates and Plato. It would be much better to represent these facts as:

MAN(SOCRATES)
MAN(PLATO)

since now the structure of the representation reflects the structure of the knowledge itself. But to do that, we
need to be able to use predicates applied to arguments. We are in even more difficulty if we try to represent the
equally classic sentence ’

All men are mortal.

We could represent this as:

MORTALMAN

100 Artificial Intelligence

But that fails to capture the relationship between any individual being a man and that individual being a
mortal. To do that, we really need variables and quantification unless we are willing to write separate statements
about the mortality of every known man.

So we appear to be forced to move to first-order predicate logic (or just predicate logic, since we do not
discuss higher order theories in this chapter) as a way of representing knowledge because il permits
representations of things that cannot reasonably be represented in prepositional logic. In predicate logic, we
can represent real-world facts as starements written as wif's.

But ¢ major motivation for choosing to use lcgic at all is that if we use logical statements as a way of
representing knowledge, then we have available a good way of reasoning with that knowledge. Determining
the validity of a proposition in propositional logic is straightforward, although it may be computationally
hard. So before we adopt predicate logic as a good medium for representing knowledge, we need to ask
whether it also provides a good way of reasoning with the knowledge. At first glance, the answer is yes. It
provides a way of deducing new statements from old ones. Unfortunately, however, unlike propositional
logic, it does not possess a decision procedure, even an exponential one. There do exist procedures that will
find a proof of a proposed theorem if indeed it is a theorem. But these procedures are not guaranteed to halt if
the proposed statement is not a theorem. In other words, although first-order predicate logic 1s not decidable,
it is semidecidable. A simple such procedure is to use the rules of inference to generate theorem’s from the
axioms in some orderly fashion, testing each to see if it is the one for which a proot is sought. This method is
not particularly efficient, however, and we will want to try to find a better one.

Although negative results, such as the fact that there can exist no decision procedure for predicate logic,
generally have little direct effect on a science such as Al, which seeks positive methods for doing things, this
particular negative result is helpful since it tells us that in our search for an efficient proof procedure, we
should he content if we find one that will prove theorems, even if it is not guaranteed to halt if given a
nontheorem. And the fact that there cannot exist a decision procedure that halts on all possihle inputs does not
mean that there cannot exist one that will halt on almost all the inputs it would see in the process of trying to
solve real problems. So despite the theoretical undecidability of predicate logic, 1t can still serve as a useful
way of representing and manipulating some of the kinds of knowledge that an Al system might need.

Let’s now explore the use of predicate logic as a way of representing knowledge by looking at a specific
example. Consider the following set of sentences:

Marcus was a man.

Marcus was a Pompeian.

All Pompeians were Romans,

Caesar was a ruler.

All Romans were either loyal to Caesar or hated him.
Everyone is loyal to someone.

People only try to assassinate rulers they are not loyal to.
Marcus tried to assassinate Caesar.

i al

The facts described by these sentences can be represented as a set of wif’s in predicate logic as follows:
I. Marcus was a man.

mard{ Marcus)

This representation captures the critical fact of Marcus being a man. It fails to capture some of the
information in the English sentence, namely the notion of past tense. Whether this omission is acceptable
or not depends on the use to which we intend to put the knowledge. For this simple example, it will be
all right.

Using Predicate Logic 101

. Marcus was a Pompeian.
Pompeian(Marcus)

. All Pompeians were Romans.

Vx : Pompeian(x) — Roman(x)

. Caesar was a ruler.

ruler{Caesar)

Here we ignore the fact that proper names are often not references to unique individuals, since many
people share the same name. Sometimes deciding which of several people of the same name is being
referred to in a particular statement may require a fair amount of knowledge and reasoning.

. All Romans were either loyal to Caesar or hated him.

Vx : Roman(x) — loyalto{x, Caesar) \/ hate(x, Caesar)

In English, the word “or” sometimes means the logical inclusive-or and sometimes means the logical
exclusive-or (XOR). Here we have used the inclusive interpretation. Some people will argue, however,
that this English sentence is really stating an,exclusive-or. To express that, we would have to write:

Vx : Romman(x) — [(loyal to(x, Caesar) \/ hate(x, Caesar)) /\
~(loyalto(x, Caesar) /\ hate{x,Caesar))]

. Everyone is loyal to someone.
Vx: o y: lovalto(x,y)

A major problem that arises when trying to convert English sentences into logical statements is the
scope of quantifiers. Does this sentence say, as we have assumed in writing the logical formula above,
that for each person there exists someone to whom he or she is loyal, possibly a different someone for
everyone? Or does it say that there exists someone to whom everyone is loyal (which would be written
as Ay : Vx : loyalto(x,y))? Often only one of the two interpretations seems likely, so people tend to
favor it.

. People only try to assassinate rulers they are not loyal to.

Vx : Yy : person(x) /\ ruler(y} /\ tryassassinate(x,y) — — loyalto(x,y)

This sentence, too, is ambiguous. Does it mean that the only rulers that people try to assassinate are
those to whom they are not loyal (the interpretation used here), or does it mean that the only thing
people try to do is to assassinate rulers to whom they are not loyal?

In representing this sentence the way we did, we have chosen to write “try to assassinate’ as a single
predicate. This gives a fairly simple representation with which we can reason about trying to assassinate.
But using this representation, the connections between trying to assassinate and trying to do other
things and between trying to assassinate and actually assassinating could not be made easily. If such
connections were necessary, we would need to choose a different representation,

. Marcus tried to assassinate Caesar.

tryvassassinate (Marcus, Caesar)

102

Artificiol Intelligence

From this brief attempt to convert English sentences into logical statements, it should be clear how
difficult the task is. For a good description of many issues involved in this process, see Reichenbach
[1947]. '
Now suppose that we want to use these statements to answer the guestion

Was Marcus loyal to Caesar?

It seems that wsing 7 and 8, we shoukd be able to prove that Marcus was not loyal to Caesar (again
ignoring the distinction between past and present tense). Now let’s try to produce a formal proof,
reasoning backward from the desired goal:

—loyalto(Marcus, Caesar)

In order to prove the goal, we need to use the rules of inference to transform it into another goal (or
possibly a set of goals) that can in turn be transformed, and so on, until there are no unsatisfied goals
remaining. This process may require the search of an AND-OR graph (as described in Section 3.4)
when there are alternative ways of satisfying individual goals. Here, for simplicity, we show only a
single path. Figure 5.2 shows an attempt to produce a proof of the goal by reducing the set of necessary
but as yet unattained goals to the empty set. The attempt fails, however, since there is no way to satisfy
the goal person (Murcus) with the statements we have available.

The problem is that, although we know that Marcus was a man, we do not have any way to conclude
from that that Marcus was a person. We need to add the representation of another fact to our system,
namely:

- loyalto{Marcus, Caesar)

T (7, substitution)
person(Marcus)/\
ruler{Caesan/\
tryassassinate{Marcus, Caesar}

T (4)
person(Marcus)
tryassagrsinare{g‘;ircus, Caesar)

person(Marcus)
Fig. 5.2 An Attempt to Prove ~loyaltofMarcus,Caesar)

. All men are people.

Y man(x) — person(x)]
Now we can satisfy the last goal and produce a proof that Marcus was not loyal to Caesar.

From this simple example, we see that three important issues must be addressed in the process of
converting English sentences into logical statements and then using those statements to deduce new
ones:

¢ Many English sentences are ambiguous (for example, 5, 6, and 7 above). Choosing the correct
interpretation may be difficult.

» There is often a choice of how to represent the knowledge (as discussed in connection with 1, and 7
above). Simple representations are desirable, but they may preclude certain kinds of reasoning. The
expedient representation for a particular set of sentences depends on the use to which the knowledge
contained in the sentences will be put.

Using Predicate Logic 103

+ Evenin very simple situations, a set of sentences is unlikely to contain all the information necessary
to reason about the topic at hand. In order to be able to use a set of statements effectively, it is
usually necessary to have access to another set of staternents that represent facts that people constder
too obvious to mention. We discuss this issue further in Section 10.3.

An additional problem arises in situations where we do not know in advance which statements to deduce.
In the example just presented, the object was to answer the question “Was Marcus loyal to Caesar?”” How
would a program decide whether it should try to prove

lovalto(Marcus, Caesar)
=lovalto(Marcus, Caesary

There are several things it could do. It could abandon the strategy we have outlined of reasoning backward
from a proposed truth to the axioms and instead try to reason forward and see which answer it gets to. The
prablem with this approach is that, in general, the branching factor going forward from the axioms is so great
that it would probably not get to either answer in any reascnable amount of time. A second thing it could do
is use some sort of heuristic rules for deciding which answer is more likely and then try to prove that one first.
If it fails to find a proof after some reasonable amount of effort, it can try the other answer. This notion of
limited effort is important, since any proof procedure we use may not halt if given a nontheorem. Another
thing it could do is simply try to prove both answers simultaneousty and stop when one effort is successful.
Even here, however, if there is not enough information available to answer the question with certainty, the
program may never halt, Yet a fourth strategy is to try both to prove one answer and to disprove it, and to use
information gained in one of the processes to guide the other.

5.2 REPRESENTING INSTANCE AND ISA RELATIONSHIPS

In Chapter 4, we discussed the specific ateributes instance and isa and described the important role they play
in a particularly useful form of reasoning, property inheritance. But if we look back at the way we just
represented our knowledge about Marcus and Caesar, we do not appear to have used these attributes at all. We
certainly have not used predicates with those names. Why not? The answer is that although we have not used
the predicates instance and isa explicitly, we have captured the relationships they are used to express, namely
class membership and class inclusion.

Figure 5.3 shows the first five sentences of the last section represented in logic in three different ways. The
first part of the figure contains the representations we have already discussed. In these representations, class
membership is represented with unary predicates (such as Roman), each of which corresponds to a class.
Asserting that P(x) is true is equivalent to asserting that x is an instance (or element) of P. The second part of
the figure contains representations that use the instance predicate explicitly. The predicate instance is a binary
one, whose first argument is an object and whose second argument is a class to which the object belongs. But
these representations do not use an explicit isa predicate. Instead, subclass relationships, such as that between
Pompeians and Romans, are described as shown in sentence 3. The implication rule there states that if an
object is an instance of the subclass Pompeian then it is an instance of the superclass Roman. Note that this
rule is equivalent to the standard set-theoretic definition of the subclass-superclass relationship. The third part
contains representations that use both the instance and isa predicates explicitly. The use of the isa predicae
simplifies the representation of sentence 3, but it requires that one additional axiom (shown here as number 6)
be provided. This additional axiom describes how an instance relation and an isa relation can be combined to
derive a new instance relation. This one additional axiom is general, though, and does not need to be provided
separately for additional isa relations.

104 Artificial Intelligence

M——

mar Marcus)

Pompeian{Marcus)

¥x : Pompeian(x} » Roman(x)

ruler(Caesarn)

¥x : Roman{x} — loyalto(x, Caesan \/ hate(x, Caesar

oo

instance{Marcus, man)

instance(Marcus, Pompeian)

¥ x : instance(x, Pompeian) — instance(x, Roman)
instance{Caesar, ruler)

¥x : instance{x, Roman) — loyalto(x, Caesar \/ hate(x, Caesar)

kel el A

instance{Marcus, man)

instance(Marcus, Pompeian)

isa{ Pompeian, Romarn)

instance{Cagsar, rulery

Vx : instance(x, Romam — loyalto(x, Caesar) \/ hate(x, Caesar

Yx: Vy:Vz:instance(x, y) /\isaly, 2} — instance(x, 2)

D s wh

Fig. 5.3 Three Ways of Representing Class Membership

These examples illustrate two points. The first is fairly specific. It is that, although class and superclass
memberships are important facts that need to be represented, those memberships need not be represented with
predicates labeled instance and isa. In fact, in a logical framework it is usually unwieldy to do that, and
instead unary predicates corresponding to the classes are often used. The second point is more general. There
are usually several different ways of representing a given fact within a particular representational framework,
be it logic or anything else. The choice depends partly on which deductions need to be supported most
efficiently and partly on taste. The only important thing is that within a particular knowledge base consistency
of representation is critical. Since any particular inference rule is designed to work on one particular form of
representation, it is necessary that all the knowledge to which that rule is intended to apply be in the form that
the rule demands. Many errors in the reasoning performed by knowledge-based programs are the result of
inconsistent representation decisions. The moral is simply to be careful,

There is one additional point that needs to be made here on the subject of the use of isa hierarchies in logic-
based systems. The reason that these hierarchies are so important is not that they permit the inference of
superclass membership. It is that by permitting the inference of superclass membership, they permit the inference
of other properties associated with membership in that superclass. So, for example, in our sample knowledge
base it is important to be able to conclude that Marcus is a Roman because we have some relevant knowledge
about Romans, namely that they either hate Caesar or are loyal to him. But recall that in the baseball example
of Chapter 4, we were able to associate knowledge with superclasses that could then be overridden by more
specific knowledge associated either with individual instances or with subclasses. In other words, we recorded
default values that could be accessed whenever necessary. For example, there was a height associated with
adult males and a different height associated with baseball players. Our procedure for manipulating the isa
hierarchy guaranteed that we always found the correct (i.e., most specific) value for any attribute. Unfortunately,
reproducing this result in logic is difficult.

Suppose, for example, that, in addition to the facts we already have, we add the following.!

Pompeian{Paulus)
= [lovalto(Paulus, Caesar) \/ hate(Paulus,Caesar)]

! For convenience, we now return to our original notation using unary predicates to denote class retations.

Using Predicate Logic 105

In other words, suppose we want to make Paulus an exception to the general rule about Romans and their
feelings roward Caesar. Unfortunately, we cannot simply add these facts to our existing knowledge base the
way we could just add new nodes into a semantic net. The difficulty is that if the old assertions are left
unchanged, then the addition of the new assertions makes the knowledge base inconsistent. In order to restore
consistency, it is necessary to modify the original assertion to which an exception is being made. So our
original sentence 5 must become:

Vx : Roman(x)} N=eq(x, Paulus) — loyalto(x,Caesar) \/ hate(x,Caesar)

in this framework, every exception to a general rule’ must be stated twice, once in a particular statement
and once in an exception list that forms part of the general rule. This makes the use of general rules in this
framework less convenient and less efficient when there are exceptions than is the use of general rules in a
semantic net.

A further problem arises when information is incomplete and it is not possible to prove that no exceptions
apply in a particular instance. But we defer consideration of this problem until Chapter 7.

5.3 COMPUTABLE FUNCTIONS AND PREDICATES

In the example we explored in the last section, all the simple facis were expressed as combinations of individual
predicates, such as:

tryassassinate(Marcus,Caesar)

This is fine if the number of facts is not very large or if the facts themselves are sufficiently unstructured
that there is little alternative. But suppose we want to express simple facts, such as the following greater-than
and less-than relationships:

gt(1,0) 10,1y
gt(2,1) 1t(1,2)
gt(3.2) 1t(2,3)

Clearly we do not want to have to write out the representation of each of these facts individuaily. For one
thing, there are infinitely many of them. But even if we only consider the finite number of them that can be
represented, say, using a single machine word per number, it would be extremely inefficient to store explicitly
a large set of statements when we could, instead, so easily compute each one as we need it. Thus it becomes
useful to augment our representation by these computable predicates. Whatever proof procedure we use,
when it comes upon one of these predicates, instead of searching for it explicitly in the database or attempting
to deduce it by further reasoning, we can simply invoke a procedure, which we will specify in addition to our
regular rules, that will evaluate it and return true or false,

It is often also useful to have computable functions as well as computable predicates. Thus we might want
to be able to evaluvate the truth of

g2 +3,1)

To do so requires that we first compute the value of the plus function given the arguments 2 and 3, and then
send the arguments 5 and 1 to gz,)

The next example shows how these ideas of computable functions and predicates can be useful. It also
makes use of the notion of equality and allows equal objects to be substituted for each other whenever it
appears helpful to do so during a proof.

106

Artificial Intelligence

Consider the following set of facts, again involving Marcus:

1.

Marcus was a man.
man(Marcus)

Again we ignore the issue of tense.
Marcus was a Pompeian.

Pompeian(Marcus)
Marcus was born in 40 A.D.
bom(Marcus, 40)

For simplicity, we will not represent A.D. explicitly, just as we normally omit it in everyday discussions.
If we ever need to represent dates B.C., then we will have to decide on a way to do that, such as by using
negative numbers. Notice that the representation of a sentence does not have to look like the sentence itself
as long as there is a way to convert back and forth between them. This allows us to choose a
representation, such as positive and negative numbers, that is easy for a program to work with.

. All men are mortal.

Y man(x) — mortal(x)

. All Pompeians died when the volcano erupted in 79 A.D.

erupted(volcano, 79) /\ ¥x ; [Pompeian(x) — died(x, 79)]

This sentence clearly asserts the two facts represented above. It may also assert another that we have
not shown, namely that the eruption of the volcano caused the death of the Pompeians. People often
assume causality between concurrent events if such causality seems plausible.

Another problem that arises in interpreting this sentence is that of determining the referent of the
phrase “the volcano.” There is more than one volcano in the world. Clearly the one referred to here is
Vesuvius, which is near Pompeii and erupted in 79 A.D. In general, resolving references such as these
can require both a lot of reasoning and a lot of additional knowledge.

No mortal lives longer than 150 years.

Vx: ¥V 1 Ve, mortal(xy /N born(x, 1) /\ gi(t; — £,,150) = dead(x, 1)

There are several ways that the content of this sentence could be expressed. For example, we could
introduce a function age and assert that its value is never greater than 150. The representation shown
above is simpler, though, and it will suffice for this example.

It is now 1991.

now = 199]

Here we will exploit the idea of equal quantities that can be substituted for each other.

Now suppose we want to answer the question “Is Marcus alive?” A quick glance through the statements
we have suggests that there may be two ways of deducing an answer. Either we can show that Marcus
is dead because he was killed by the volcano or we can show that he must be dead because he would
otherwise be more than 150 years old, which we know is not possible. As soon as we attempt to follow

Using Predicate Logic 107

either of those paths rigorously, however, we discover, just as we did in the last example, that we need
some additional knowledge. For example, our statements talk about dying, but they say nothing that
relates to being alive, which is what the question is asking. So we add the following facts:

8. Alive means not dead.

Y : Ve [alive(x, H — ~dead(x,0)] /\ [~dead(x, 1) — alive(z, 1]

This is not strictly correct, since —dead implies alive only for animate objects. (Chairs can be neither
dead nor alive.) Again, we will ignore, this for now. This is an example of the fact that rarely do two
expressions have truly identical meanings in all circumstances.

9. If someone dies, then he is dead at all later times.

Vx Vi o Ve diedx, 1) AN 8i(ty, 1)) = dead(x, 1,)

This representation says that one is dead in all years after the one in which one died. It ignores the
question of whether one is dead in the year in which one died.

man(Marcus)
Pompeiari{Marcus)
born{Marcus, 4Q)
Yx : man(x) - mortalx)
¥: Pompeiari{x) — died{x, 79)
erupted{yolcano, 79)
¥, 1t 1V, mortafix) “born(x, t,) /\ gt{ty ~ t,, 150) — dead(x, t,)
now = 1991
¥x Yt [alive(x, f) - ~dead{x, §] /\ [~deadi{x, § — alive(x, i}
VXV Y died(x, 1) /\ git, £} — dead(x,)
Fig. 5.4 A Set of Facts about Marcus

LN GR LN~

s

To answer that requires breaking time up into smaller units than years. If we do that, we can then add
rules that say such things as “One is dead at time (year 1, month I) if one died during (year I, month I)
and month 2 precedes month 1].” We can extend this to days, hours, etc., as necessary. But we do not
want to reduce all time statements to that level of detail, which is unnecessary and often not availabie.

A summary of all the facts we have now represented is given in Fig. 5.4. (The numbering is changed
slightly because sentence 5 has been split into two parts.) Now let’s attempt to answer the question “Is Marcus
alive?” by proving:

—alive(Marcus, now)

Two such proofs are shown in Fig. 5.5 and 5.6. The term #il at the end of each proof indicates that the list
of conditions remaining to be proved is empty and so the proof has succeeded. Notice in those proofs that
whenever a statemnent of the form:

aNb ¢

was used, 2 and b were set up as independent subgoals. In one sense they are, but in another sense they are not
if they share the same bound vanables, since, in that case, consistent substitutions must be made in each of
them. For example, in Fig. 5.6 look at the step justified by statement 3. We can satisfy the goal

108 Artificial Intelligence

born(Marcus, 1)
using statemnent 3 by binding A to 40, but then we must also bind A to 40 in
gtlrow — 1, 150)
since the two 7;”s were the same variable in statement 4, from which the two goals came. A good computational

proof procedure has to include both a way of determining that a match exists and a way of guaranteeing
uniform substitutions thronghout a proof. Mechanisms for doing both those things are discussed below.

-alive{Marcus, now)

T {9, substitution)
dead{Marcus, now)
T {10, substitution)
diet{ Marcus, t,} /\ gt{now, t,)
T (5, substitution)
Pompeian{Marcus) /\ glnow, 79)

T ()
gl{now, 79)

T (8, substitute equals)
gH(1991,79)

T {compute gt)

il

Fig. 5.5 One Way of Proving That Marcus Is Dead

From looking at the proofs we have just shown, two things should be clear:

¢ Even very simple conclusions can require many steps to prove.

» A variety of processes, such as matching, substitution, and application of modus ponens are involved
in the production of a proof. This is true even for the simple statements we are using. It would be worsc
if we had implications with more than a single term on the right or with complicated expressions
involving amis and ors on the left.

The first of these observations suggests that if we want to be able to do nontnvial reasoning, we are going
to need some statements that allow us to take bigger steps along the way. These should represent the facts that
people gradually acquire as they become experts. How to get computers to acquire them is a hard problem for
which no very good answer is known,

The second observation suggests that actually building a program to do what people do in producing
proofs such as these may not be easy. In the next section, we introduce a proof procedure called resolurion that
reduces some of the complexity because it operates on statements that have first been converted to a single
canonical form.

5.4 RESOLUTION

As we suggest above, it would be useful from a computational point of view ff we had a proof procedure that
carried out in a single operation the variety of processes involved in reasoning with statements in predicate
logic. Resolution is such a procedure, which gains its efficiency from the fact that it operates on statements
that have been converted to a very convenient standard form, which is described below.

Using Predicate Logic 109

-alive(Marcus, now)

T (9, substitution)
dead{Marcus, now)
T {7, substitution)

mortal{Marcus) /\
born(Marcus, t,) /\
ginow —t,, 150)

{4, substitution)
man{Marcus) /\
borm{Marcus, t,) /\
gt{now — ¢, 150)

T {1
born(Marcus, t) /\
giinow — t;, 150)

T (3)
gfinow — 40,150)
T (8)
gH(1931 — 40,150}
T {compute minus)
gt(1951,150)
T {compute gt)
nit
Fig. 5.6 Another Way of Proving That Marcus is Dead

Resolution produces proofs by refuration. In other words, to prove a statement (i.e., show that it is valid),
resolution attempts to show that the negation of the statement produces a contradiction with the known
statements (i.e., that it is unsatisfiable). This approach contrasts with the technique that we have been using to
generate proofs by chaining backward from the theorem to be proved to the axioms. Further discussion of
how resolution operates will be much more straightforward after we have discussed the standard form in
which statements will be represented, so we defer it until then.

5.4.1 Conversion to Clause Form

Suppose we know that all Romans who know Marcus either hate Caesar or think that anyone who hates
anyone is crazy. We could represent that in the following wft:

Vx : [Roman(x) / know(x, Marcus)] —
[hate(x,Caesar) \/ (¥y : Az : hate(y, z) — thinkcrazy(x, y))]

To use this formula in a proof requires a complex matching process. Then, having matched one piece of it,
such as thinkcrazy(xz,y), it is necessary to do the right thing with the rest of the formula including the pieces in
which the matched part is embedded and those in which it is not. If the formula were in a simpler form, this
proc;ess would be much easier. The formula would be easier to work with if

o [t were flatter, i.e., there was less embedding of components.
¢ The quantifiers were separated from the rest of the formula so that they did not need to be considered.

Conjunctive normal form [Davis and Putnam, 1960] has both of these properties. For example, the formula
given above for the feelings of Romans who know Marcus would be represented in conjunctive normal form as

= Roman(x) /\ ~know(x, Marcus) \/
hate(x, Caesar) \/ ~hate(y, 2) \/ thinkcrazy(x, 2)

110 Artificial Intelligence

Since there exists an algorithm for converting any wif into conjunctive normal form. we lose no generality
if we employ a proof procedure (such as resolution) that operates only on wif’s in this form. In fact, for
resolution to work., we need to go one step further. We need to reduce a set of wif’s to a set of clauses, where
a clause is defined to be a wif in conjunctive normal form but with no instances of the connector A. We can do
this by first converting each wff into conjunctive normal form and then breaking apart each such expression
into clauses, one for each conjunct. All the conjuncts will be considered to be conjoined together as the proof
procedure operates. To convert a wif into clause form, perform the following sequence of steps.

Algorithm: Convert to Clause Form
1. Eliminate —, using the fact that ¢ — b6 is equivalent to —a \/ #. Performing this transformation on the
wft given above yields

\x 1 TlRoman(x) /N know< x, Marcus)] \/
|hate(x, Caesary \/ (Yy : ~(3z : hate(y, 2)) \/ thinkerazy(x,y))]

2. Reduce the scope of each - to a single term, using the fact that —={—p) = p, deMorgan’s laws [which say
that =(a /\ b) =—-a\/ -b and —~(a/ b) = ~a /\ -b], and the standard correspondences between quantifiers
[-Vx: P(x)=3x: ~P(x)and -Jx : P(x) = ¥x : 2P(x)]. Performing this transformation on the wff from
step 1 yields

Yx : [mRoman(x) \/ ~know(x, Marcus)} \/
[hate(x, Caesary N/ (Yy : ¥z : —hate(y, z) \/ thinkcrazy(x, y)]

3. Standardize variables so that each quantifier binds a unique variable. Since variables are just dummy
names, this process cannot affect the truth value of the wif. For example, the formula

Yx: Px)\/ Yx: Qx)
would be converted to
Vi P(x) Yy Q)

This step is in preparation for the next.
4. Move all quantifiers to the left of the formula without changing their relative order. This is possible since
there is no conflict among variable names. Performing this operation on the formula of step 2, we get

Yx: ¥y : ¥z :[-Roman(x)\/ ~know(x Marcus)] \/
{hate(x, Caesar)\/ (—hate(y, z) \/ thinkcrazy(x,y))]

At this point, the formula is in what is known as prenex normal form. It consists of a prefix of quantifiers
followed by a matrix, which is quantifier-free.

5. Eliminate existential quantifiers. A formula that contains ar: existentially quantified variahle asserts
-that there is a value that can be substituted for the variable that makes the formula true. We can eliminate
the quentifier by substituting for the variable a reference to a function that produces the desired value.
Since we do not necessarily know how to produce the value, we must create a new function name for
every such replacement. We make no assertions about these functions except that they must exist. So,
for example, the formula

Jdy : President(y)
can be transformed into the formula

President(S1)

Using Predicate Logic 111

where SI is a function with no arguments that somehow produces a value that satisfies President.
If existential quantifiers occur within the scope of universal quantifiers, then the value that satisfies the
predicate may depend on the values of the universally quantified variables. For example, in the formula

YV : Ay Sfather-of (y.x)

the value of y that satisfies father-of depends on the particular value of x. Thus we must generate
functions with the same number of arguments as the number of universal quantifiers in whose scope
the expression occurs. So this exampie would be transformed into

Yx : father-ofiS2(x),x))

These generated functions are called Skolem functions. Sometimes ones with no arguments are called
Skolem constants.

. Drop the prefix. At this point, all remaining variables are universally quantified, so the prefix can just
be dropped and any proof procedure we use can simply assume that any variable it sees is universally
quantified. Now the formula produced in step 4 appears as

[Roman(x) \y ~know(x, Marcus)] v
[hate(x, Caesar) v/ (~hate(y, 7) \/ thinkcrazy{x, ¥))]

. Convert the matrix into a conjunction of disjuncts. In the case of our example, since there are no and’s,
it is only necessary to exploit the associative property of or [i.e., (a / b) vve = {a v/ ¢) A (b A ¢)] and
simply remove the parentheses, giving

—Roman{x) \/ ~know(x, Marcus) \/
hate(x, Caesar) vy —hate(y, z) \/ thinkcrazy(x, ¥)

However, it is also frequently necessary to exploit the distributive property [i.e., (@ A b) v c=(a v ©)
N (b ©)]. For example, the formula

(winter N wearingboots) s (summer N\ wearingsandals)
becomes, after one application of the rule

[winter \/ (summer N\ wearingsandals)]
N [wearingboots \/ (summer /\ wearingsandais))

and then, after a second application, required since there are still conjuncts joined byOR’s,

{winter \/ summer) /\

(winter \/ wearingsandals)
(wearingboots \/ summer) /\
(wearingboots \/ wearingsandals)

. Create a separate clause corresponding to each conjunct. In order for a wif to be true, all the clauses
that are generated from it must be true. If we are going to be working with several wif’s, all the clauses
generated by each of them can now be combined to represent the same set of facts as were represented
by the original wif’s.

. Standardize apart the variables in the set of clauses generated in step 8. By this we mean rename the
variables so that no two clauses make reference to the same variable. In making this transformation, we
rely on the fact that

112 Artificial Intelligence

(Vx: Px) A\ Q(x) = Vx: P(x) /A Vx: Q)

Thus since each clause is a separate conjunct and since all the variables are universally quantified,
there need be no relationship between the variables of two clauses, even if they were generated from
the same wif.

Performing this final step of standardization is important because during the resolution procedure it is
sometimes necessary to instantiate a universally quantified variable (i.e., substitute for it a particular value).
But, in general, we want to keep clauses in their most general form as long as possible. So when a variable is
instantiated, we want to know the minimum number of substitutions that must be made to preserve the truth
value of the system.

After applying this entire procedure to a set of wif’s, we will have a set of clauses, each of which is a
disjunction of literals. These clauses can now be exploited by the resolution procedure to generate proofs.

5.4.2 The Basis of Resolution

The resolution procedure is a simple iterative process: at each step, two clauses, called the parent clauses, are
compared (resolved), yielding a new clause that has been inferred from them. The new clause represents ways
that the two parent clauses interact with each other. Suppose that there are two clauses in the system:

winter \/ summer
Swinter \/ cold

Recall that this means that both clauses must be true (i.e., the clauses, although they look independent, are
really conjoined).

Now we observe that precisely one of winter and -winter will be true at any point. If winfer is true, then
cold must be true to guarantee the truth of the second clause. If —winter is true, then summer must be true to
guarantee the truth of the first clause. Thus we see that from these two clauses we can deduce

summer \/ cold

This is the deduction that the resolution procedure will make. Resolution operates by taking two clauses
that each contain the same literal, in this example, winter. The literal must occur in positive form in one clause
and in negative form in the other. The resolvent is obtained by combining all of the literals of the two parent
clauses except the ones that cancel.

If the clause that is produced is the empty clause, then a contradiction has been found. For example, the
two clauses

winter
—winter

will produce the empty clause. If a contradiction exists, then eventually it will be found. Of course, if no
contradiction exists, it 1s possible that the procedure will never terminate, although as we will see, there are
often ways of detecting that no contradiction exists.

So far, we have discussed only resolution in prepositional logic. In predicate logic, the situation is more
complicated since we must consider all possible ways of substituting values for the variables. The theoretical
basis of the resolution procedure in predicate logic is Herbrand’s theorem [Chang and Lee, 1973], which tells
us the following:

Using Predicate Logic 113

e To show that a set of clauses § is unsatisfiable, it is necessary to consider only interpretations over a
particular set, called the Herbrand universe of S,

e A set of clauses S is unsatisfiable if and only if a finite subset of ground instances (in which all bound
variables have had a value substituted for them) of § is unsatisfiable,

The second part of the theorem is important if there is to exist any computational procedure for proving
unsatisfiability, since in a finite amount of time no procedure will be able to examine an infinite set. The first
part suggests that one way to go about finding a contradiction is to try systematically the possible substitutions
and see if each produces a contradiction. But that is highly inefficient. The resolution principle, first introduced
by Robinson [1965], provides a way of finding contradictions by trying a minimum number of substitutions.
The idea is-to keep clauses in their general form as long as possible and only introduce specific substitutions
when they are required. For more details on different kinds of resolution, see Stickel [1988].

5.4.3 Resolution in Propositional Logic

In order to make it clear how resolution works, we first present the resolution procedure for propositional
logic. We then expand it to include predicate logic.

In propositional logic, the procedure for producing a proof by resolution of proposition P with respect to a
set of axioms F is the following.

Algorithm: Propositional Resolution

1. Convert all the propositions of F to clavse form.
2. Negate P and convert the result to clause form. Add it to the set of clauses obtained in step .
3. Repeat until either a contradiction is found or no progress can be made:

(a) Select two clauses. Call these the parent clauses.

(b) Resoive them together. The resulting clause, called the resolvent, will be the disjunction of all of
the literals of both of the parent clauses with the following exception: If there are any pairs of
literals L and /. such that one of the parent clauses contains L and the other contains -/, then
select one such pair and eliminate both L and —L from the resolvent.

(¢) If the resolvent is the empty clause, then a contradiction has been found. If it is not, then add it to
the set of clauses avatlable to the procedure.

Let’s look at a simple example. Suppose we are given the axioms shown in the first column of Fig. 5.7 and
we want to prove R. First we convert the axioms to clause form, as shown in the second column of the figure.

Given Axioms Converted to Clause Form

P P (1

(PANQ >R =P\/-Q\/ R {2}

(v N-Q =Sy Q@ 3
TV Q {4)

T T (5)

Fig. 5.7 A Few Facts in Propositional Logic

Then we negate R, producing —R, which is already in clause form. Then we begin selecting pairs of clauses to
resolve together. Althcugh any pair of clavses can be resolved, only those pairs that contain complementary
literals will produce a resolvent that is likely to lead to the goal of producing the empty clause {(shown as a
box). We might, for example, generate the sequence of resolvents shown in Fig. 5.8. We begin by resolving
with the clause R since that is one of the clauses that must be involved in the contradiction we are trying to
find.

114 Artificial Intelligence

One way of viewing the resolution process is that it takes a set of clauses thatare 5, o o -R
all assumed to be true and, based on information provided by the others, it generates \/
new clauses that represent restrictions on the way each of those original clauses —Pv-Q P
can be made true. A contradiction occurs when a clause becomes so restricted that \/
there is no way it can be true. This is indicated by the generation of the empty -a oQ
clause. To see how this works, let’s look again at the example. In order for proposition \T/ -
2 to be true., one of three things must be true: =F£, =0, or R. But we are assuming B \a/

that —R is true. Given that, the only way for proposition 2 to be true is for one of

two things to be true: = or -~Q. That is what the first resolvent clause says. Bur ~ Fig. 5.8 Resolution in
proposition 1 says that £ is true, which means that =P cannot be true, which leaves Propositional
only one way for proposition 2 to be true, namely for ~Q to be true (as shown in Logic

the second resolvent clause). Proposition 4 can be true if either =7 or @ is true. But since we now know that
-~ must be true, the only way for proposition 4 to be true is for =7 to be true (the third resolvent). But
proposition 5 says that T'is true. Thus there is no way for all of these clauses to be true in a single interpretation.
This is indicated by the empty clause {the last resolvent).

5.4.4 The Unification Algorithm

In propositional logic, it is easy to determine that two literals cannot both be true at the same time. Simply
look for L and =L In predicate logic, this matching process is more complicated since the arguments of the
predicates must be considered. For example, man{John) and ~man(John) is a contradiction, while man(Johr)
artd ~man(Spot) is not Thus, in order to determine contradictions, we need a matching procedure that compares
two literals and discovers whether there exists a set of substitutions that makes them identical. There is a
straightforward recursive procedure, called the unification algorithm, that does just this.

The basic idea of unification is very simple. To attempt to unify two literals, we first check if their initial
predicate symbols are the same. If so, we can proceed. Otherwise, there is no way they can be unified,
regardless of their arguments. For example, the two literals

tryassassinate(Marcus. Caesar)
hate{Marcus, Caesar)

cannot be unified. If the predicate symbols match, then we must check the arguments, one pair at a time. If the
first matches, we can continue with the second, and so on. To test each argument pair, we can simply call the
unification procedure recursively. The matching rules are simple. Different constants or predicates cannot
match; identical ones can. A variable can match another variable, any constant, or a predicate expression,
with the restriction that the predicate expression must not contain any instances of the variable being matched.

The only complication in this procedure is that we must find a single, consistent substitution for the entire
literal, not separate ones for each piece of it. To do this, we must take each substitution that we find and apply
it to the remainder of the literals before we continue trying to unify them. For example, suppose we want to
unify the expressions

P(x,x)
P(y.2)

The two instances of P match fine. Next we compare x and y, and decide that if we substitute y for x, they
could match. We will write that substitution as

¥x

Bhartendu

Using Predicate Logic 115

(We could, of course, have decided instead to substitute x for y, since they are both just dummy variable
names. The algorithm will simply pick one of these two substitutions.} But now, if we simply continue and ~
match x and z. we produce tne substitution z/7x. But we cannot substitute bothy and z for x. so we have not
produced a consistent substitution.

What we need to do after finding the first substitutiony/x is to make that substitution throughout the literals,
giving

Py »
Py, 2)

Now we can attempt to unify arguments v and g, which succeeds with the substitution z/y. The entire
unification process has now succeeded with a substitution that is the composition of the two substitutions we
found. We write the composition as

{2y X y/x)

following standard notation for function composition. In general, the substitution (a/a,, a/a,, .. }(b\/b,,
by/b,,...)... means to apply all the substitutions of the right- most list, then take the result and apply all the ones
of the next list, and so forth, until all substitutions have been applied.

The object of the unification procedure is to discover at least one substitution that causes two literals to
match. Usually, if there is one such substitution there are many. ‘ For example, the literals

hare(x, v)
hate{Marcus. z)

could be unified with any of the following substitutions:

(Marcus/x,z/y)
(Marcus/x,y/z)
(Marcus/x, Cuesar/v,Caesar/z)
" (Marcus/x, Polonius/y, Polonius/z)

The first two of these are equivalent except for lexical variation. But the second two, although they produce
a match, also produce a substitution that is more restrictive than absolutely necessary for the match. Because
the final substitution produced by the unification process will be used by the resolution procedure, it is usefut
to generate the most general unifier possible. The algorithm shown below will do that.

Having explained the operation of the unification algorithm, we can now state it concisely. We describe a
procedure Unify(L1l, L2), which returns as its value a list representing the composition of the substitutions that
were performed during the match, The empty list, NIL, indicates that a match was fpund without any
substitutions. The list consisting of the single value FAIL indicates that the unification procedure failed.

Algorithm: Unify(Ll, L2)
1. If L1 or L2 are both variables or constants, then:
(a)y If L1 and L2 are identical, then return NIL.
(b) Elseif L] is a variable, then if L1 occurs in L2 then return {FAIL}, else return (L2/L1).
(¢) Elseif L2 is a variable then it L2 occurs in L1 then return {FAIL}, else retumn (L1/12).
(d) Else return {FAIL].

116 Artificial Intelligence

2. If the initia! predicate symbols in L1 and 1.2 are not identical, then return {FAIL).
If L1 and L2 have a different number of arguments, then return {FAIL].
4. Set SUBST to NIL. (At the end of this procedure, SUBST will contain all the substitutions used to unify
Lland 2.
5. Fori « 1 to number of arguments in L1:
(a) Call Unify with the /th argument of L] and the ith argument of L2, putting result in S.
(b) If § contains FAIL then return {FAIL}.
(c} If §is not equal to NIL then:
(i) Apply S to the remainder of both L} and L2.
(ii) SUBST : = APPEND(S, SUBST).
6. Return SUBST.
The only part of this algorithm that we have not yet discussed is the check in steps 1(#) and 1(¢) to make

sure that an expression involving a given vanable is not unified with that variable. Suppose we were attempting
to unify the expressions

it

flax)
Slg(x), gl

If we accepted g(x) as a substitution for x, then we would have to substitute it for x in the remainder of the
expressions. But this leads to infinite recursion since it will never be possible to eliminate x. '

Unification has deep mathematical roots and is a useful operation in many Al programs, for example,
theorem provers and natural language parsers. As a result, efficient data structures and algorithms for unification
have been developed. For an introduction to these techniques and applications, see Knight [1989].

5.4.5 Resolution in Predicate Logic

We now have an easy way of determining that two literals are contradictory—they are if one of them can be
unified with the negation of the other. So, for example, man(x) and —man(Spot) are contradictory, since
man(x) and man(Spot) can be unified. This corresponds to the intuition that says that man(x) cannot be true
for all x if there is known to be some x, say Spot, for which man(x) is false. Thus in order to use resolution for
expressions in the predicate logic, we use the unification algorithm to locate pairs of literals that cancel out.

We also need to use the unifier produced by the unification algorithm to generate the resolvent clause. For
example, suppose we want to resolve two clauses:

1. man(Marcus)
2. —man{x;} \/ mortal(x,)

The literal man{Marcus) can be unified with the literal man/x\) with the substitution Marcus/x,, telling us
that for x, = Marcus, ~man(Marcus) is false, But we cannot simply cancel out the two man literals as we did
in propositional logic and generate the resolvent mortal(x,). Clause 2 says that for a given x;, either ~man(x,)
or mortal(x)). So for it to be true, we can now conclude only that mortal(Marcusy must be true. It is not
necessary that mortal(x,) be true for all x|, since for some values of x,, ~man(x;) might be true, making
morial(x,) irrelevant to the truth of the complete clause. So the resolvent generated by clauses 1 and 2 must be
mortal(Marcus), which we get by applying the result of the unification process to.the resolvent. The resolution
process can then proceed from there to discover whether mortal{iMarcus) leads to a contradiction with other
available clauses.

This example illustrates the importance of standardizing variables apart during the process of converting
expressions to clause form. Given that that standardization has bee’n done, it is easy to determine how the

Using Predicate Logic 117

unifier must be used to perform substitutions to create the resolvent. If two instances of the same variable
occur, then they must be given identical substitutions.

We can now state the resolution algorithm for predicate logic as follows, assuming a set of given statements
F and a statement to be proved P:

Algorithm: Resolution

1. Convert all the statements of F to clause form.

2. Negate P and convert the result to clause form. Add it to the set of clauses obttfHied in 1.

3. Repeat until either a contradiction is found, no progress can be made, or a prede- termined amount of
effort has been expended.

(a) Select two clauses. Call these the parent clauses.

{b) Resolve them together. The resolvent will be the disjunction of all the literals of both parent clauses
with appropriate substitutions performed and with the following exception: If there is one pair of
literals 71 and =72 such that one of the parent clauses contains 72 and the other contains 71 and
if T1 and T2 are unifiable, then neither 71 nor T2 should appear in the resolvent. We call 71 and 72
Complementary literals. Use the substitution produced by the unification to create the resolvent. If
there is more than one pair of complementary literals, only one pair should be omitted from the
resolvent.

(c) If the resolvent is the empty clause, then a contradiction has been found. If it is not, then add it to
the set of clauses available to the procedure.

If the choice of clauses to resolve together at each step s made in certain systematic ways, then the resolution
procedure will find a contradiction if one exists. However, it may take a very long time. There exist strategies
for making the choice that can speed up the process considerably:

¢ Only resolve pairs of clauses that contain complementary literals, since only such re«lutions produce
new clauses that are harder to satisfy than their parents. To facilitate this, index clauses by the predicates
they contain, combined with an indication of whether the predicate is negated. Then, given a particular
clause, possible resolvents that contain a complementary occurrence of one of its predi- cates can be
located directly.

¢ Eliminate certain clauses as soon as they are generated so that they cannot partic- ipate in later resolutions.
Two kinds of clauses should be eliminated: tautologies (which can never be unsatisfied) and clauses that
are subsumed by other clauses (i.e., they are easier ;0 satisfy, For example, P/ is subsumed by P)

¢ Whenever possible, resolve either with one of the clauses that is part of the statement we are trying to
refute or with a clause generated by a resolution with such a clause. This is called the set-of-support
strategy and corresponds to the intuition that the contradiction we are looking for must involve the
statement we are trying to prove. Any other contradiction would say that the previously believed
statements were inconsistent.

s Whenever possible, resolve with clauses that have a single literal. Such resolutions generate new clauses
with fewer literals than the larger of their parent clauses and thus are probably closer to the goal of a
resolvent with zero terms. This method is called the unit-preference strategy.

Let’s now return to our discussion of Marcus and show how resolution can be used to prove new things
about him. Let’s first consider the set of statements introduced in Section 5.1. To use them in resolution
proofs, we must convert them to clause form as described in Section 5.4.1. Figure 5.9(a) shows the resuits of
that conversion. Figure 5.9(#) shows a resolution proof of the statement

hate(Marcus, Caesar)

118 Artificial Intelligence

Axioms in clause form:

1. man{Marcus)
2. Pompeian{Marcus)
3. =Pompeian(x;} \/ Roman(x,)
4. ruledCasesan
5. —Roman{x,) \/ loyallo{x,,Caesar} \/ hate{x,,Caesar)
6. loyalto{x;, (x5}
7. ~man(x,) \/ -ruler(y,) \/ -tryassassinate(x,,y,) \/ loyalto(x,,y;)
8. tryassassinate{Marcus,Caesar)
{a)
Prove: hate (Marcus, Caesar) —hate (Marcus, Caesar) 5

Marcus/x;

3 —Roman (Marcus) \/ loyaltc (Marcus, Caesar)

\/ Marcus/x

—Pompeian (Marcus) \/ loyalto (Marcus, Caesar) 2

\/

7 loyalfo {Marcus, Caesar)

\/Macus/x,;, Caesarly,

1 —~man (Marcus) s —ruler {Caesar} \/ —iryassassinate (Marcus, Caesar)

\/

—rufer{Caesar) \/ —lryassassinate (Marcus, Caesar) 4

T~

—tryassassinate (Marcus, Caesar)

{b)

Fig. 5.9 A Resolution Proof

8

Of course, many more resolvents could have been generated than we have shown, but we used the heuristics
described above to guide the search. Notice that what we have done here essentiaily is to reason backward
from the statement we want to show is a contradiction through a set of intermediate conclusions to the final
conclusion of inconsistency.

Suppose our actual goal in proving the assertion

hate(Marcus, Caesar)

was to answer the question “Did Marcus hate Caesar?” In that case, we might just as easily have attempted to
prove the statement

—hate(Marcus, Caesar)

Using Predicate Logic 119

To do so, we would have added
hate(Marcus, Caesar)

to the set of available clauses and begun the resolution process. But immediately we notice that there are no
clauses that contain a literal involving —hate. Since the resolution process can only generate new clauses that
are composed of combinations of literals from already existing clauses, we know that no such clause can be
generated and thus we conclude that hate(Marcus, Caesar) will not produce a contradiction with the known
staternents. This is an example of the kind of situation in which the resclution procedure can detect that no
contradiction exists. Sometimes this situation is detected not at the beginning of a proof, but part way through,
as shown in the example in Figure 5.10(a), based on the axioms given in Fig. 5.9.
But suppose our knowledge base contained the two additional statements

—loyaito (Marcus, Caesar) 5
Marcusfxa

3 —Roman (Marcus) \/ loyalto (Marcus, Caesar)

\/ Marcusfx,

-Pompeian (Marcus) \/ hate (Marcus, Caesar) 9

\/

hate (Marcus, Caesar)

(a)

hate (Marcus, Caesar) 10

\Aarcuslxa, Caesarfy,

persecute (Caesar, Marcus) 9

\/namus/xs, Caesar/y,

hate (Marcus, Caesar)

{b)
Fig. 5.10 An Unsuccessful Attempt at Resolution

9. persecute(x, v) = hate(y, x)
10. hate(x, y) — persecute(y, x)
Converting to ciause form, we get
9. —persecute(xs, ¥,) \/ hate(y,, xs)
10. =hate(xg, y4) \/ persecute(y, xg)

These statements enable the proof of Fig. 5.10(a) to continue as shown in Fig. 5.10(b). Now to detect that
there is no contradiction we must discover that the only resolvents that can be generated have been generated
before. In other words, although we can generate resolvents, we can generate no new ones,

120 Artificial Intelligence

Given:
1. -father(x, y) \/ ~woman(x)
' {i.e., father(x, y) — ~woman(x))
2. -~mother(x, y) \/ woman(x)

. {i.e., mother(x, y) — woman(x))
3. mother{Chris,Mary)
4. father(Chris, Bill

1 2

\/

—father (x,y) ~Mother, {x,y} 3

Chrisfx, Maryly
—father {Chris, Mary)
Fig. 5.11 The Need to Standardize Variables

Axioms in clause form:
mani{Marcus)
Pompeian{ Marcus)
horn{Marcus, 40)
-man{x,) \/ mortafx,)
-Pompeian{x,) \/ died(x,,79)
erupled{ volcano,79)
-morta(x;) \/ ~bom(x;,)} \/ ~giit; — t;, 150) \/ dead(x;, &)
now = 2008
—alive{x,, t;) \/ ~dead(x,, 1)
dead{xs, t;} \/ alive(x, &)
10. ~diodxg 1) \/ ~Glik. &) \/ dead(xs, &)
Prove: —~alive{Marcus, now)

e S S

@ ©
o

alive (Marcus, now} 9a

Marcus [x4, now(ty
—dead (Marcus, now) 10

\/Marcus Ixg, now s

5 —dead (Marcus, t5) \/ —gt (now, 15)

\/mFCUSfX2, 79 ﬁ5

—-Pompeian (Marcus) \/ —gt (now, 79)

vubstitute equals

—Pompeian (Marcus} \/ ~gt(2008, 79)

\/reduce

—Pompeian (Marcus) 2

\D/

Fig. 5.12 Using Resolution with Equality and Reduce

Using Predicate Logic 121

Recall that the final step of the process of converting a set of formulas to clause form was to standardize
apart the variables that appear in the finai clauses. Now that we have discussed the resolution procedure, we
can see clearly why this step is so important, Figure 5.11 shows an example of the difficulty that may arise if
standardization is not done. Because the variable ¥ occurs in both clause 1 and clause 2, the substitution at the
second resolution step produces a clause that is too restricted and so does not lead to the contradiction that is
present in the database. If, instead, the clause

—father(Chris, y)

had been produced, the contradiction with clause 4 would have emerged. This would have happened if clause
2 had been rewritten as

—mother(a, b) \/ woman(a)

In its pure form, resolution requires all the knowledge it uses to be represented in the form of clauses. But
as we pointed out in Section 5.3, it is often more efficient to represent certain kinds of information in the form
of computable functions, computable predicates, and equality relationships. It is not hard to augment resolution
to handle this sort of knowledge. Figure 5.12 shows, a resolution proof of the statement

~alive{Marcus,now)

based on the statements given in Section 5.3. We have added two ways of generating new clauses, in addition
to the resolution rule:

e Substitution of one value for another to which it is equal.

¢ Reduction of computable predicates. If the predicate evaluates to FALSE, it can simply be dropped,
since adding V FALSE to a disjunction cannot change its truth value. If the predicate evaluates to
TRUE, then the generated clause is a tautology and cannot lead to a contradiction.

5.4.6 The Need to Try Several Substitutions

Resolution provides a very good way of finding a refutation proof without actually trying all the substitutions
that Herbrand's theorem suggests might be necessary. But it does not always eliminate the necessity of trying
more than one substitution. For example, suppose we know, in addition to the statements in Section 5.1, that

hate(Marcus, Pawlus)
hate{Marcus, Julian)

Now if we want to prove that Marcus hates some ruier, we would be likely to try each substitution shown
in Figure 5.13(a) and (b) before finding the contradiction shown in (c). Sometimes there is no way short of
very good luck to avoid trying several substitutions.

54.7 Question Answering

Very early in the history of Al it was realized that theorem-proving techniques could be applied to the problem
of answering questions. As we have already suggested, this seems natural since both deriving theorems from
axioms and deriving new facts (answers) from old facts employ the process of deduction. We have already
shown how resolution can be used to answer yes-no questions, such as “Is Marcus alive?” In this section, we
show how resolution can be used to answer fill-in-the-blank questions, such as “When did Marcus die?” or

122 Artificial Intelligence

“Who tried to assassinate a ruler?’ Answering these questions involves finding a known statement that matches
the terms given in the question and then responding with another piece of that samc statement that {ills the slot
duinanded by the question. For example, to answer the question “When did Marcus die?” we need a statement
of the form

died{Marcus, 1)
with 77 actually filled in by some particular year. So, since we can prove the statement
died(Marcus, 79)

we can respond with the answer 79.
It turns out that the resolution procedure provides an easy way of locating just the statement we need and
finding a proof for it. Let’s continue with the example question

Prove: Jx : hate(Marcus,x) 7 ruler(x)
{negate): ~dx : hate{Marcus,x) /\ rulen(x)
{clausify): ~hate{Marcus,x} \s —~rulen(x)
—hate(Marcus, x) \/ —rufer(x) hate (Marcus, Paulus)
Paulus | x
~ruler(Paulus)

(a)
—hate(Marcus, x) \/ —rufar(x} hate(Marcus, Julian)

Julian fx
—ruler{Julian)

(b)

—hate (Marcus, x)\/ —~nuler(x) hate(Marcus, Caesar)

Caesar/x
—ruler (Caesar) ruler (Caesar)

(c)
Fig. 5.13 Trying Several Substitutions

‘When «id Marcus die?” In order to be able to answer this question, it must first be true that Marcus died.
Thus it must be the case that

dr : died{Marcus,t)
A reasonable first step then might be to try to prove this. To do so using resolution, we attempt to show that
-dr. died(Marcus, i)

produces a contradiction. What does it mean for that statement to produce a contradiction? Either it conflicts
with a statement of the form

Yt died(Marcus, t)

Using Predicate Logic T 123

where ¢ is a variable, in which case we can either answer the question by reporting that there are many times
at which Marcus died, or we can simply pick one such time and respond with it. The other possibility is that
we produce a contradiction with one or more specific statements of the form

died{Marcus, date)

for some specific value of date. Whatever value of date we use in producing that contradiction is the answer
we want. The value that proves that there is a value (and thus the inconsistency of the statement that there is
no such value) is exactly the value we want.

Figure 5.14(a) shows how the resolution process finds the statement for which we are looking. The answer
to the question can then be derived from the chain of unifications that lead back to the starting clause. We can
eliminate the necessity for this final step by adding an additicnal expression to the one we are going to use to
try to find a contradiction. This new expression will simply be the one we are trying to prove true (i.e., it will
be the negation of the expression that is actually used in the resolution}. We can tag it with a special marker so
that it will not interfere with the resolution process. (In the figure, it is underlined.) Tt will just get carried
along, but each time unification is done, the variables in this dummy expression will be bound just as are the
ones in the clauses that are actively being used. Instead of terminating on reaching the nil clause, the resolution
procedure will terminate when all that is left is the dummy expression. The bindings of its variables at that
point provide the answer to the question. Figure 5.14(fr) shows how this process produces an answer to our
question.

Unfortunately, given a particular representation of the facts in a system, there will usually be some questions
that cannot be answered using this mechanism. For example, suppose that we want to answer the question
“What happened in 79 A.D.?” \ising the statements in Section 5.3. In order to answer the question, we need to
prove that something happened in 79. We need to prove

dx : event(x, 79)

—3t ; died(Marcus,) = —~died{Marcus, {)
—Pompeian(x,) \/ died(x, 79) —died (Marcus, 1)

79/t Marcus/x,
Pompeian(Marcus) . -Pompeian{Marcus)

\m/

{a)
—Pompeian(x,)\/ died{xy, 79) —died(Marcus, t) \; died (Marcus, £}

\AL Marcus/x,

—Pompeian(Marcus) \/ died (Marcus, 79)

—~Pormpeian(Marcus)

—died{Marcus, 79}
(b)
Fig. 5.14 Answer Extraction Using Resolution

124 Artificial Intelligence

and to discover a value for x. But we do not have any statements of the form event(x, y).
We can, however, answer the question if we change our representation. Instead of saying

erupted(volcano, 79)
we can say
event(erupted(volcane), 79)

Then the simple proof shown in Fig. 5.15 enables us to answer the question.

This new representation has the drawback that it is more complex than the old one. And it still does not
make it possible to answer all conceivable questions. In general, it is necessary to decide on the kinds of
questions that will be asked and to design a representation appropriate for those questions.

—event(x,79) \/ evenf{x, 79) event (erupted (volcano),79)
erupted (volcano)x

event (erupted {volcanc).79}
Fig. 5.15 Using the New Representation

Of course, yes-no and fill-in-the-blank questions are not the only kinds one could ask. For example, we
might ask how to do something. So we have not yet completely solved the problem of question answering. In
later chapters, we discuss some other methods for answering a variety of questions. Some of them exploit
resolution; others do not.

5.5 NATURAL DEDUCTION

In the last section, we introduced resolution as an easily implementable proof procedure that relies for its
simplicity on a uniform representation of the statements it uses. Unfortunately, uniformity has its price—
everything looks the same. Since everything looks the same, there is no easy way to select those statements
that are the most likely to be useful in solving a particular problem. In converting everything to clause form,
we often lose valuable heuristic information that is contained in the original representation of the facts. For
example, suppose we believe that all judges who are not crooked are well-educated, which can be represented
as

Vx : judge(x) /\ =crooked(x) — educated(x)

In this form, the statement suggests a way of deducing that someone is educated. But when the same
staternent is converted to clause form,

—judge(x) \/ crooked(x) \/ educated|x)

it appears also to be a way of deducing that someone is not a judge by showing that he is not crooked and not
educated. Of course, in a logical sense, it is. But it is almost certainly not the best way, or even a very good
way, to go about showing that someone is not a judge. The heuristic information contained in the original
statement has been lost in the transformation.

Another problem with the use of resolution as the basis of a theorem-proving system is that people do not
think in resolution. Thus it is very difficult for a person to interact with a resolution theorem prover, either to

Using Predicate Logic 125

give it advice or to be given advice by it. Since proving very hard things is something that computers still do
poortly, it is important from a practical standpoint that such interaction be possible. To facilitate it, we are
foiced to look for a way of doing machine theorem proving that corresponds more closely to the processes
used in human theorem proving. We are thus led to what we call, mostly by definition, natural deduction.

Natural deduction is not a precise term. Rather it describes a melange of techniques, used in combination
to solve problems that are not tractable by any one method alone. One common technique is to arrange
knowledge, not by predicates, as we have been doing, but rather by the objects involved in the predicates.
Some techniques for doing this are described in Chapter 9. Another technique is to use a set of rewrite rules
that not only describe logical implications but also suggest the way that those implications can be exploited in
proofs. :

For a good survey of the variety of techniques that can be exploited in a natural deduction system, see
Bledsoe [1977]. Although the emphasis in that paper is on proving mathematical theorems, many of the ideas
in it can be applied to a variety of domains in which it is necessary to deduce new statements from known
ones. For another discussion of theorem proving using natural mechanisms, see Boyer and Moore {1988],
which describes a system for reasoning about programs. It places particular emphasis on the use”of mathematical
induction as a proof technique.

SUMMARY

fhzomnerennan

WEHEH G x HEgeer naw owa T * oxr x . sdun s LELY O HTOL0n g s R et A Rk B £ e pa ks] T DR LT LA TS

£90Y seaps SESRSREE B4ve o aes ax wveme bedoscssheieasniileiic TITEQUESY ggeamey

In this chapter we showed how predicate logic can be used as the basis of a technique for knowledge
representation. We also discussed a problem-solving technique, resolution, that can be applied when knowledge
is represented in this way. The resolution procedure is not guaranteed to halt if given a nontheorem to prove.
But is it guaranteed 1o halt and find a contradiction if one exists? This is called the completeness question. In
the form in which we have presented the algorithm, the answer to this question is no. Some small changes,
usually not implemented in theorem-proving systems, must be made to guarantee completeness. But, from a
computational point of view, completeness is not the only important question. Instead, we must ask whether
a proof can be found in the limited amount of time that is available. There are two ways to approach achieving
this computational goal. The first is to search for good heuristics that can inform a theorem-proving program.
Current theorem-proving research attempts to do this. The other approach is to change not the program but the
data given to the program. In this approach, we recognize that a knowledge base that is just a list of logical
assertions possesses no structure. Suppose an information-bearing structure could be imposed on such a
knowledge base. Then that additional information could be used to guide the program that uses the knowiedge.
Such a program majuiot look a lot like a theorem prover, although it will still be a knowledge-based problem
solver. We discuss this idea further in Chapter 9.

A second difficulty with the use of theorem proving in Al systems is that there are some kinds of information
that are not easily represented in predicate logic. Consider the following examples:

“It is very hot today.” How can relative degrees of heat be represented?

¢ “Blond-haired people often have blue eyes.” How can the amount of certainty be represented?

e “If there is no evidence to the contrary, assume that any adult you meet knows how to read.” How can
we represent that one fact should be inferred from the absence of another?

e “It’s better to have more pieces on the board than the opponent has.” How can we represent this kind of
heuristic information?

e “T know Bill thinks the Giants will win, but I think they are going to lose.” How can several different

126

Artificial Intelligence

belief systems be represented at once?

These examples suggest issues in knowledge representation that we have not yet satisfactorily addressed.
They deal primarily with the need to make do with a knawledge base that is incomplete, although other
problems also exist, such as the difficulty of representing continuous phenomena in a discrete system. Some
solutions to these problems are presented in the remaining chapters in this part of the book.

EXERCISE

PEELLG LTETTY - e w2 Ead bk gnaebaaaec e an PUPPE B ReREORE w0 2o op e G L WTITLF0E BF Fore [Bame

1. Using facts 1-9 of Section 5.1, answer the question, “Did Marcus hate Caesar?”

2. In Section 5.3, we showed that given our facts, there were two ways to prove the statement
—alive{Marcus, now). In Fig. 5.12(a) resolution proof corresponding to one of those methods is shown.
Use resolution to derive another proof of the statement using the other chain of reasoning.

3. Trace the operation of the unification algorithm on each of the following pairs of literals:

(a)} f(Marcus) and f(Caesar)
(b} fx) mdf(g(»))
(c) f(Marcus, g(x, y)) andf(x, g(Caesar, Marcus))

4. Consider the following sentences:

[]

(a)
(b)
(c)
(d)
(e)

John likes all kinds of food.

Apples are food.

Chicken is food.

Anything anyone eats and isn’t killed by is food.

Bill eats peanuts and is still alive.

Sue eats everything Bill eats.

Translate these sentences into formulas in predicate logic.
Prove that John likes peanuts using backward chaining.
Convert the formulas of part a into clause form.

Prove that John ltikes peanuts using resolution.

Use resolution to answer the question, “What food does Sue eat?”

5. Consider the following facts:

The members of the Elm St. Bridge Club are Joe, Saily, Bill, and Ellen.

Joe is married to Sally.

Bill is Ellen’s brother.

The spouse of every married person in the club is also in the club.

The last meeting of the club was at Joe's house.

Represent these facts in predicate togic.

From the facts given above, most people would be able to decide on the truth of the following
additional staternents:

The last meeting of the club was at Sally’s house.

Ellen is not married.

Can you construct resolution proofs to demonstrate the truth of each of these statements given the
five facts listed above? Do so if possible. Otherwise, add the facts you need and then construct the
proofs.

6. Assume the following facts:

.

Steve only likes easy courses.
Science courses are hard.

Using Predicate Logic 127

+ All the courses in the basketweaving department are easy.

s BK301 is a basketweaving course.

Use resolution to answer the question, “What course would Steve like?”

. In Section 5.4.7, we answered the question, *““When did Marcus die?” by using resolution to show that
there was a time when Marcus died. Using the facts given in Fig. 5.4, and the additional fact

Vx : Vi, dead(x, 4} — 31, : gi(ty, 1) N died(x, 1)

there is another way to show that there was a time when Marcus died.

(a) Do a resolution proof of this other chain of reasoning.

(b} What answer will this proof give to the question, “When did Marcus die?”

. Suppose that we are attempting to resolve the following clauses:

loves(father{a), a)
=loves(y, x) v loves(x, y)

{a) What will be the result of the unification algorithm when applied to clause 1 and the first term of
clause 27

(b} What must be generated as a result of resolving these two clauses?

{c) What does this example show about the order in which the substitutions determined by the
unification procedure must be performed?

. Suppose you are given the following facts:

Vi, y. 2 gt(x y) A\ gy 2) o gilx, 2

Va,b : succ(a, b) - gi(a,b)

Vx : —gtix,x)

You want to prove that

gt(5,2)
Consider the following attempt at a resolution proof:

gt(5, 2) “gh(x, ¥) v "ghly, 2) v gllx, Z)
5/x, 21z
~gK5, y) \/ ~gt(y, 2) ~succ(a, b) \/ gi{a, b)
yla, 2/b
“gHS, y) v ~sucely, 2) ghx, y) \/ "gtly, Z) v gix, 2)

5/x, yiz

~gt(S, ¥) v ~gily, ¥y} v suce(y, 2)

{a) What went wrong?
(b) What needs to be added to the resolution procedure to make sure that this does not happen?

128

10.

11.

12,

13.

Artificial Intelligence

The answer to the last problem suggests that the unification procedure could be simplified by omitting
the check that prevents x and f(x) from being unified together (the occur check). This should be possible
since no two clauses will ever share variables. If x occurs in one, f(x) cannot occur in another. But
suppose the unification procedure is given the following two clauses (in the notation of Section 5.4.4):
p(xf(x))

pifia)a)

Trace the execution of the procedure. What does this example show about the need for the occur
check?

What is wrong with the following argument {Henle, [965]?

e Men are widely distributed over the earth.

"o Socrates is a man.

¢ Therefore, Socrates is widely distributed over the earth.

How should the facts represented by these sentences be represented in logic so that this problem does
not arise?

Consider all the facts about baseball that are represented in the slot-and-filler structure of Fig. 4.5.
Represent those same facts as a set of assertions in predicate logic. Show how the inferences that were
derived from that knowledge” in Section 4.2 can be derived using logical deduction.

What problems would be encountered in attempting to represent the following statements in predicate
logic? It should be possible to deduce the final statement from the others.

¢ John only likes to see French movies.

It’s safe to assume a movie is American unless explicitly told otherwise.

The Playhouse rarely shows foreign films.

People don’t do things that will cause them to be in situations that they don’t like.

John doesn’t go to the Playhouse very often.

I AR .
"u\JU() i

CHAPTER

6

REPRESENTING KNOWLEDGE USING RULES

Do be useful, a system fas to do more than just correctly perform some task,

—]John McDermott,
Al Researcher

In this chapter, we discuss the use of rules to encode knowledge. This is a particularly important issue since
rule-based reasoning systems have played a very important role in the evolution of Al from a purely laboratory
science into a commercially significant one, as we see later in Chapter 20.

We have already talked about rules as the basis for a search program. But we gave little consideration to the
way knowledge about the world was represented in the rules (although we can see a simple exampile of this in
Section 4.2). In particular, we have been assuming that search control knowledge was maintained completely
separately from the rules themselves. We will now relax that assumption and consider a set of rules to represent
both knowledge about relationships in the world, as well as knowledge about how to solve problems using the
content of the rules.

6.1 PROCEDURAL VERSUS DECLARATIVE KNOWLEDGE

Since our discussion of knowledge representation has concentrated so far on the use of]0g1cal assertions, we
use logic as a starting point in our discussion of rule-based systems.

In the previous chapter, we viewed logical assertions as declarative representations of knowledge. A
declarative representation is one in which knowledge is specified, but the use to which that knowledge is to
be put is not given. To use a declarative representation, we must augment it with a program that specifies what
is to be done to the knowledge and how. For example, a set of logical assertions can be combined with a
resolution theorem prover to give a complete program for solving problems. There is a different way, though,
in which logical assertions can be viewed, namely as a program, rather than as data to a program. In this view,
the implication statements define the legitimate reasoning paths and the atomic assertions provide the starting
points (or, if we reason backward, the ending points) of those paths, These reasoning paths define the possible
execution paths of the program in much the same way that traditional control constructs, such as if-then-else.
define the execution paths through traditional programs. In other words, we could view logical assertions as

130 Artificial Intelligence

procedural répresemations of knowledge. A procedural representation is one in which the control information
that is necessary to use the knowledge is considered to be embedded in the knowledge itself. To use a procedural
representation, we need to augment it with an interpreter that follows the instructions given in the knowledge.

Actually, viewing logical assertions as code is not a very radical idea, given that all programs are really
data to other programs that interpret {or compile) and execute them. The real difference between the declarative
and the procedural views of knowledge lies in where control information resides. For example, consider the
knowledge base:

man(Marcus)
man{Caesar)
person{Cleopatra)

Vx : man(x) — person(x)

Now consider wrying to extract from this knowledge base the answer to the question

dy : person(y)

We want to bind y to a particular value for which person is true. Our knowledge base justifies any of the
following answers:

¥ = Marcus
y = Caesar
v = Cleopatra

Because there is more than one value that satisfies the predicate, but only one value is needed, the answer
to the question will depend on the order in which the assertions are examined during the search for a response.
If we view the assertions as declarative, then they do not themselves say anything about how they will be
examined. If we view them as procedural, then they do. Of course, nondeterministic programs are possible —
for example, the concurrent and parallel programming constructs described in Dijkstra [1976], Hoare [1985],
and Chandy and Misra [1989]. So, we could view these assertions as a nondetermninistic program whose
output is simply not defined. If we do this, then we have a “procedural” representation that actually contains
no more information than does the “declarative” form. But most systems that view knowledge as procedural
do not do this. The reason for this is that, at least if the procedure is to execute on any sequential or on most
existing parallel machines, some decision must be made about the order in which the assertions will be
examined, There is no hardware support for randomness. So if the interpreter must have a way of deciding,
there is no real reason not to specify it as part of the definition of the language and thus to define the meaning
of any particular program in the language. For example, we might specify that assertions will be examined in
the order in which they appear in the program and that search will proceed depth-first, by which we mean that
if a new subgoal is established then it will be pursued immediately and other paths will only be examined if
the new one fails. If we do that, then the assertions we gave above describe a program that will answer our
question with

¥ = Cleopatra

To see clearly the difference between declarative and procedural representations, consider the following
assertions:

Representfng Knowledge Using Rules 131

man(Murcus)
man{Caesar)

Yx : man(x} — person(x)
person{Cleopatra)

Viewed declaratively, this is the same knowledge base that we had before. All the same answers are supported
by the system and no one of them is explicitly selected. But viewed procedurally, and using the contrel model
we used to get Cleopatra as our answer before, this is a different knowledge base since now the answer to our
question is Marcus. This happens because the first statement that can achieve the person goal is the inference
rule Vx : man(x) — person(x). This rule sets up a subgoal to find a man. Again the statements are examined
from the beginning, and now Marcus is found to satisfy the subgoal and thus also the goal. So Marcus is
reported as the answer,

It is important to keep in mind that although we have said that a procedural representation encodes control
information in the knowledge base, it does so only to the extent that the interpreter for the knowledge base
recognizes that control information. So we could have gotten a different answer to the person question by leaving
our original knowledge base intact and changing the interpreter so that it examines statements from last to first
(but still pursuing depth-first search). Following this control regime, we report Caesar as our answer.

There has been a great deal of controversy in Al over whether declarative or procedural knowledge
representation frameworks are better. There is no clearcut answer to the question. As you can see from this
discussion, the distinction between the two forms is often very fuzzy. Rather than try to answer the question
of which approach is better, what we do in the rest of this chapter is to describe ways in which rule formalisms
and interpreters can be combined to solve problems. We begin with a mechanism called logic programming,
and then we consider more flexible structures for rule-based systems.

6.2 LOGIC PROGRAMMING

Logic programming is a programming language paradigm in which logical assertions are viewed as programs,
as described in the previous section. There are several logic programming systems in use today, the most
popular of which is PROLOG [Clocksin and Meliish, 1984; Bratko, 1986]. Programming in PROLOG has
been described in more detail in Chapter 25. A PROLOG program is described as a series of logical assertions,
each of which is a Horn clause.! A Horn clause is a clause (as defined in Section 5.4.1) that has at most one
positive literal. Thus p, =p \/ ¢, and p — g are all Hom clauses. The last of these does not look like a clause

Vx : pel(x) /\ smalix) — apartmentpetx)
Vx 1 ca{x)\/ dog(x} - pef(x)
Yx : poodie{xy — dog(x) /\ smali(x)
poodiel fiujfy)

A Representation In Loglc

apartmentpet (X) :- pet{X), small{X}.
pet{X) :- cat(X).

pet{X) :- dog(X).

dogi{X) :- pocodle (X}

small (X) :- poodle(X}.

poodle{fluffy}.
A Representation in PROLOG

Fig. 6.1 A Declarative and a Procedural Representation

! Programs written in pure PROLOG are composed only of Horn clauses. PROLOG, as an actual programming language,
however, allows departures from Hom clauses. In the rest of this section, we limit our discussion to pure PROLOG,

132 Artificial Intefligence

and it appears to have two positive literals. But recall from Section 5.4.1 that any logical expression can be
converted to clause form. If we do that for this example, the resulting clause is ~p\/ g, which is a well-formed
Hom clause. As we will see below, when Horn clauses are written in PROLOG programs, they actually look
more like the form we started with (an implication with at most one literal on the right of the implication sign}
than the ciause form we just produced. Some examples of PROLOG Hormn clauses appear below.,

The fact that PROLOG programs are composed only of Horn clauses and not of arbitrary logical expressions
has two important consequences. The first is that because of the uniform representation a simple and efficient
interpreter can be written. The second consequence is even more important. The logic of Horn clause systems
is decidable (unlike that of full first-order predicate logic).

The control structure that is imposed on a PROLOG program by the PROLOG interpreter is the same one
we used at the beginning of this chapter to find the answers Cleopatra and Marcus. The input to a program is
a goal to be proved. Backward reasoning is applied to try to prove the goal given the assertions in the program.
The program is read top to bottom, left to right and search is performed depth-first with backtracking.

Figure 6.1 shows an example of a simple knowledge base represented in standard logical notation and then
in PROLOG. Both of these representations contain two types of statements, facts, which contain only constants
{i.e., no variables) and rules, which do contain variables. Facts represent statements about specific objects.
Rules represent statements about classes of objects.

Notice that there are several superficial, syntactic differences between the logic and the PROLOG
representations, including:

1. In logic, variables are explicitly quantified. In PROLOG, quantification is provided implicitly by the
way the variables are interpreted (see below). The distinction between variables and constants is made
in PROLOG by having all variables begin with upper case letters and all constants begin with lower
case letters or numbers.

2. Inlogic, there are explicit symbols for and (/\) and or (\/). In PROLOG, there is an explicit symbol for
and (,), but there is none for or, Instead, disjunction must be represented as a list of alternative statements,
any one of which may provide the basis for a conclusion.

3. Inlogic, implications of the form “p implies 4" are written as p — g. In PROLOG, the same implication
is written “backward,” as ¢ : - p. This form is natural in PROLOG because the interpreter always
works backwards from a goal, and this form causes every rule to begin with the component that must
therefore be matched first. This first component is called the head of the rule.

The first two of these differences arise naturally from the fact that PROLOG programs are actually sets of
Horn clauses that have been transformed as follows:

1. If the Horn clause contains no negative literals (i.e., it contains a single literal which is positive), then
leave it as itis.

2. Otherwise, rewrite the Horn clause as an implication, combining all of the negative literals into the
antecedent of the implication and leaving the single positive literal (if there is one) as the consequent.

This procedure causes a clause, which originally consisted of a disjunction of literals (all but one of which
were negative), to be transformed into a single implication whose antecedent is a conjunction of (what are
now positive) literals. Further, recall that in a clause, all variables are implicitly universally quantified. But,
when we apply this transformation (which essentially inverts several steps of the procedure we gave in Section
5.4.1 for converting to clause form), any variables that occurred in negative literals and so now occur in the
antecedent become existentially quantified, while the variables in the consequent (the head) are still universally
quantified. For example, the PROLOG clause '

P(x) - Qi{x, ¥)

Representing Knowledge Using Rules 133

is equivalent to the logical expression
Vx:3y: Qlx, ¥v) = Plx)

A key difference between logic and the PROLOG representation is that the PROLOG interpreter has a
fixed conirol strategy, and so the assertions in the PROLOG program define a particular search path to an
answer to any question. In contrast, the logical assertions define only the set of answers that they justify, they
themselves say nothing about how to choose among those answers if there are more than one.

The basic PROLOG control strategy outlined above is simple. Begin with a problem statement, which is
viewed as a goal to be proved. Look for assertions that can prove the goal. Consider facts, which prove the
goal directly, and also consider any rule whose head matches the goal. To decide whether a fact or a rule can
be applied to the current problem, invoke a standard unification procedure (recall Section 5.4.4). Reason
backward from that goal until a path is found that terminates with assertions in the program. Consider paths
using a depth-first search strategy and using backtracking. At each choice point, consider options in the order
in which they appear in the program. If a goal has more than one conjunctive part, prove the parts in the order
in which they appear, propagating variable bindings as they are determined during unification. We can illustrate
this strategy with a simple example.

Suppose the problem we are given is to find a value of X that satisfies the predicate apartmentpet
{X). We state this goal to PROLOG as

?— apartmentpet {X}.

Think of this as the input to the program. The PROLOG interpreter begins looking for a fact with the
predicate apartmentpet or a rule with that predicate as its head. Usually PROLOG programs are written
with the facts containing a given predicate coming before the rules for that predicate so thut the facts can be
used immediately if they are appropriate and the rules will only be used when the desired fact is not immediately
avatlable. In this example, there are no facts with this predicate, though, so the one rule there is must be used.
Since the rule will succeed if both of the clauses on its rght-hand side can be satisfied, the next thing the
interpreter does is to try to prove each of them. They will be tried in the order in which they appear. There are
no facts with the predicate pet but again there are rules with it on the right-hand side. But this time there are
two such rules, rather than one. All that is necessary for a proof though is that one of them succeed. They will
be tried in the order in which they occur. The first will fail because there are no assertions about the predicate
cat in the program. The second will eventually lead to success, using the rule about dogs and poodles and
using the fact poodle (£1uffy). This results in the variable X being bound to £1uf fy. Now the second
clause small (X) of the initial rule must be checked. Since X is now bound to fluffy, the more specific goal,
small (fluffy), must be proved. This too can be done by reasoning backward to the assertion pocdle

(£luffy). The program then haits with the result apartmentpet (£luffy).

Logical negation (1) cannot be represented explicitly in pure PROLOG. So, for example, it is not possible

to encode directly the logical assertion

Vx 1 dog(x) — —car(x)

Instead, negation is represented implicitly by the lack of an assertion. This leads to the problem-solving
strategy called negation as failure [Clark, 1978]. If the PROLOG program of Fig. 6.1 were given the goal

?— cat{fluffy}.

134 Artificial Intefligence

it would retum FALSE because it is unable to prove that Fluffy is a cat. Unfortunately, this program returns
the same answer when given the goal even though the program knows nothing about Mittens and specifically
knows nothing that might prevent Mittens from being a cat. Negation by failure requires that we make what
is called the closed world assumption, which states that all relevant, true assertions are contained in our
knowledge base or are derivable from assertions that are so contained. Any assertion that is not present can
therefore be assumed to be false. This assumption, while often justified, can cause serious problems when
knowledge bases are incomplete. We discuss this issue further in Chapter 7.

There is much to say on the topic of PROLOG-style versus LISP-style programming. A great advantage of
logic programming is that the programmer need only specify rules and facts since a search engine is built
directly into the language. The disadvantage is that the search control is fixed. Although it is possible to write
PROLOG code that uses search strategies other than depth-first with backtracking, it is difficult to do so. It is
even more difficult to apply domain knowledge to constrain a search. PROLOG does allow for rudimentary
control of search through a non-logical operator called cur. A cut can be inserted into a rule to specify a point
that may not be backtracked over.

More generally, the fact that PROLOG programs must be composed of a restricted set of logical operators
can be viewed as a limitation of the expressiveness of the language. But the other side of the coin is that it is
possible to build PROLOG compilers that produce very efficient code.

In the rest of this chapter, we retain the rule-based nature of PROLOG, but we relax a number of PROLOG’S
design constraints, leading to more flexible rule-based architectures. Programming in PROLOG has been
explained in more detail later in Chapter 25,

6.3 FORWARD VERSUS BACKWARD REASONING

The object of a search procedure is to discover a path through a problem space from an initial configuration to
a goal state, While PROLOG only searches from a goal state, there are actually two directions in which such
a search-could proceed:

» Forward, from the start states

e Backward, from the goal states

The production system model of the search process provides an easy way of viewing forward and backward
reasoning as symmetric processes. Consider the problem of solving a particular instance of the 8-puzzle. The
rules to be used for solving the puzzle can be written as shown in Fig. 6.2. Using those rules we could attempt
to solve the puzzie shown back in Fig. 2.12 in one of two ways:
Assume the areas of the tray are numbered:

1 2 3
4 5 6
7 8 9

Sguare 1 empty and Square 2 contains tile n —
Square 2 empty and Square 1 contains tile n
Square 1 emply and Square 4 contains tile n —
Square 4 empty and Square 1 contains file 7
Square 2 empty and Square 1 contains tile 7 -

Square 1 empty and Square 2 contains tile 7
Fig. 6.2 A Sample of the Rules for Solving the 8-Puzzle

e Reason forward from the initial states. Begin building a tree of move sequences that might be solutions
by starting with the initial configuration(s) at the root of the tree. Generate the next level of the tree by
finding all the rules whose left sides match the root node and using their right sides to create the new

Representing Knowledge Using Rules 135

configurations. Generate the next level by taking each node generated at the previois level and applying
to it all of the rules whose left sides match it. Continue until a configuration that matches the goal state
is generated. .

e Reason backward from the goal states. Begin building a tree of move sequences that might be solutions
by starting with the goal configuration(s) at the root of the tree. Generate the next level of the tree by
finding all the rules whose righr sides match the root node. These are alt the rules that, it only we could
apply them, would generate the state we want. Use the left sides of the rules to generate the nodes at
this second level of the tree. Generate the next level of the tree by taking each node at the previous level
and finding all the rules whose right sides match it. Then use the corresponding left sides to generate
the new nodes. Continue until a node that matches the initial state is generated. This method of reasoning
backward from the desired final state is often called goal-directed reasoning.

Notice that the same rules can be used both to reason forward from the initial state and to reason backward
from the goal state. To reason forward, the left sides (the preconditions) are matched against the current state
and the right sides (the results) are used to generate new nodes until the goal is reached. To reason backward,
the right sides are matched against the current node and the left sides are used to generate new nodes representing
new goal states to be achieved. This continues until one of these goal states is matched by an initial state.

In the case of the 8-puzzle, it does not make much difference whether we reason forward or backward; about
the same number of paths will be explored in either case. But this is not always true. Depending on the topology
of the problem space, it may be significantly more efficient to search in one direction rather than the other.

Four factors influence, the question of whether it is better to reason forward or backward:

» Are there more possible start states or goal states? We would like to move from the smaller set of states
to the larger (and thus easier to find) set of states.

e In which directicn is the branching factor (i.e., the average number of nodes that can be reached directly
from a single node) greater? We would like to proceed in the direction with the lower branching factor.

¢ Will the program be asked to justify its reasoning process to a user? If so, it is important to proceed in
the direction that corresponds more closely with the way the user will think.

» What kind of event is going to trigger a problem-solving episode? If it is the arrival of a new fact,
forward reasoning makes sense. If it is a query to which a response is desired, backward reasoning is
more natural,

A few examples make these issues clearer. It seems easier to drive from an unfamiliar place home than from
home to an unfamiliar place. Why is this? The branching factor is roughly the same in both directions (unless
one-way streets are laid out very strangely). But for the purpose of finding our way around, there are many more
Tocations that count as being home than there are locations that count as the unfamiliar tarpet place. Any place
from which we know how to get home can be considered as equivalent to home. 1f we can get to any such place,
we can get home easily, But in order to find a route from where we are to an unfamiliar place, we pretty much
have to be already at the unfamiliar place. So in going toward the vnfamiliar place, we are aiming at a much
smaller target than in going home. This suggests that if our starting position is home and our goal position is the
unfamiliar place, we should plan our route by reasoning backward from the unfamiliar place.

On the other hand, consider the problem of symbolic integration. The problem space is the set of formulas,
some of which contain integral expressions. The start state is a particular formula containing some integral
expression. The desired goal state is a formula that is equivalent to the initial one and that does not contain any
integral expressions. So we begin with a single easily identified start state and a huge number of possible goal
states. Thus to solve this problem, it is better to reason forward using the rules for integration to try to generate
an integral-free expression than to start with arbitrary integral-free expressions, use the rules for differentiation,
and try to generate the particular integral we are trying to solve. Again we want to head toward the largest
target; this time that means chaining forward.

136 Artificial Intelligence

These two examples have illustrated the importance of the relative number of start states to goal states in
deterinining the optimal direction in which to search when the branching factor is approximately the same in
both directions. When the branchmg factor is not the same, however, it must also be taken into account.

Consider again the problem of proving theorems in some particular domain of mathematics. Our goal state
is the particular theorem to be proved. Our initial states are normally a small set of axioms. Neither of these
sets is significantly bigger than the other. But consider the branching factor in each of the two directions.
From a small set of axioms we can derive a very large number of theorems. On the other hand, this large
number of theorems must go back to the small set of axioms. So the branching factor is significantly greater
going forward from the axioms to the theorems than it is going backward from theorems to axioms. This
suggests that it would be much better to reason backward when trying to prove theorems. Mathematicians
have long realized this {Polya, 1957], as have the designers of theorem-proving programs.

The third factor that determines the direction in which search should proceed is the need to generate
coherent justifications of the reasoning process as it proceeds. This is often crucial for the acceptance of
programs for the performance of very important tasks. For example, doctors are unwilling to accept the
advice of a diagnostic program that cannot explain its reasoning to the doctors’ satisfaction. This issue was of
concern to the designers of MYCIN [Shortliffe, 1976], a program that diagnoses infectious diseases. It reasons
backward from its goal of determining the cause of a patient’s illness. To do that, it uses rules that tell it such
things as “If the organism has the following set of characteristics as determined by the lab results, then it is
likely that it is organism x.” By reasoning backward using such rules, the program can answer questions like
“Why should I perform that test you just asked for?” with such answers as “Because it would help to determine
whether organism x is present.” (For a discussion of the explanation capabilities of MY CIN, see Chapter 20.)

Most of the search techniques described in Chapter 3 can be used to search either forward or backward. By
describing the search process as the application of a set of production rules, it is easy to describe the spec1ﬁc
search algorithms without reference to the direction of the search.? ‘

We can also search both forward from the start state and backward from the goal simultaneously until two
paths meet somewhere in between. This strategy is called bidirectional search. It seems appealing if the

number of nodes at each step grows exponentially with the number of steps that have been taken. Empirical

search it is much less likely to be so. Figure 6.3 shows

why bidirectional search may be ineffective. The two

to have finished. However, if individual forward and

each in exactly those situations where it can be the most profitable, the results can be more encouraging. In
Although in principle the same set of rules can be used for both forward and backward reasoning, in

results [Pohl, 1971] suggest that for blind search, this divide-and-conquer strategy is indeed effective.
searches may pass each other, resulting in more work
Backward search
Start States explored here Goal States
0

backward steps are performed as specified by a
fact, many successful Al applications have been written using a combination of forward and backward
practice it has proved useful to define two classes of rules, each of which encodes a particular kind of knowledge.

Unfortunately, other resuits {Pohl, 1971; de Champeaux and Sint, 1977] suggest that for informed, heuristic
than it would have taken for one of them, on its own,
program that has been carefully constructed to exploit Fig. 6.3 A Bad Use of Heuristic Bidirectional Search .
reasoning, and most Al programming environments provide explicit support for such hybrid reasoning.

e Forward rules, which encode knowledge about how to respond to certain input configurations.

¢ Backward rules, which encode knowledge about how to achieve particular goals.

2 One exception to this is the means-ends analysis technique, described in Section 3.6, which proceeds not by making
successive steps in a single direction but by reducing differences between the current and the goal states, and, as a result,
sometimes reasoning backward and sometimes forward.

Representing Knowledge Using Rules 137

By separating rules into these two classes, we essentially add to each rule an additional piece of inforinarion.
nametly, how it should be used in problem-solving. In the next three sections, we describe in mwore detaif the:
two kinds of rule systems and how they can be combined.

6.3.1 Backward-Chaining Rule Systems

Backward-chaining rule systems, of which PROLCG is an example, are good for goal-directed problem-
solving. For example, a query system would probably use backward chaining to reason about and answer user
questions.

In PROLOG, ruies are restricted to Horn clauses. This allows for rapid indexing because all of the rules for
deducing a given fact share the same rule head. Rules are matched with the unification procedure. Unification
tries to find a set of bindings for variables to equate a (sub)goal with the head of some rule. Rules in a
PROLOG program are matched in the order in which they appear.

Other backward-chaining systems allow for more complex rules. In MYCIN, for example, rules can be
augmented with probabilistic certainty factors to reflect the fact that some rules are more reliable than others.
We discuss this in more detail in Chapter 8.

6.3.2 Forward-Chaining Rule Systems

Instead of being directed by goals, we sometimes want to be directed by incoming data. For example, suppose
you sense searing heat near your hand. You are likely to jerk your hand away. While this could be construes
as goal-directed behavior, it is modeled more naturally by the recognize-act cycle characteristic of forward-
chaining rule systems. In forward-chaining systems, left sides of rules are matched against the state descriptior.
Rules that match dump their right-hand side assertions into the state, and the process repeats.

Matching is typically more complex for forward-chaining systems than backward ones. For example,
consider a rule that checks for some condition in the state description and then adds an assertion. After the
rule fires, its conditions are probably still valid, so it could fire again immediately. However, we will necd
somne mechanism to prevent repeated firings, especially if the state remains unchanged.

While simple matching and control strategies are possible, most forward-chaining systems (e.g., OPS3
[Brownston et al., 1985]) implement highly efficient matchers and supply several mechanisms for preferring
one rule over another. We discuss matching in more detail in the next section.

6.3.3 Combining Forward and Backward Reasoning

Sometimes certain aspects of a problem are best handled via forward chaining and other aspects by backward
chaining. Consider a forward-chaining medical diagnosis program. It might accept twenty or so facts about a
patient’s condition, then forward chain on those facts to try to deduce the nature and/or cause of the disease.
Now suppose that at some point, the left side of a rule was nearly satisfied—say, nine out of ten of is
preconditions were met. It might be efficient to apply backward reasoning to satisfy the tenth precondition in
a directed manner, rather than wait for forward chaining to supply the fact by accident. Or perhaps the tenth
condition requires further medical tests. In that case, backward chaining can be used to query the user.

Whether it is possible to use the same rules for both forward-and backward reasoning also depends on the
form of the rules themselves. If both left sides and right sides contain pure assertions, then forward chaining
can match assertions on the left side of a rle and add to the state description the assertions on the right sidc.
But if arbitrary procedures are allowed as the right sides of rules, then the rules will not be revecsible. Some
production languages allow only reversible rules; others do not. When trreversible rules are used, then a
commitment to the direction of the search must be made at the time the rules are written. But, as we suggested
above, this is often a useful thing to do anyway because it allows the rule writer {0 add control knowledge to
the rules themselves.

138 Artificial Intelligence

6.4 MATCHING

So far. we have described the process of using search to solve problems as the application of appropriate rules
io individual problem states 1o generate new states to which the rules can then be applied, and so forth, until
a solution is found. We have suggested that clever search involves choosing from among the rules that can be
applied at a particular point, the ones that are most likely to lead to a solution. But we have said little about
how we extract from the entire collection of rules those that can be applied at a given point. To do so requires
some kind of matching between the current state and the preconditions of the rules. How should this be done?
The answer to this question can be critical to the success of a rule-based system. We discuss a few proposals
below.

6.4.1 Indexing

One way to select applicable rules is to do a simple search through all the rules, comparing each one’s
preconditions to the current state and extracting all the ones that match. But there are two problems with this
simple solution:
¢ In order to solve very interesting problems, it will be necessary to use a large number of rules. Scanning
through all of them at every step of the search would be hopelessly inefficient.
» It is not always immediately obvious whether a rule’s preconditions are satisfied by a particular state.

Sometimes there are easy ways to deal with the first of these problems. Instead of searching through the
rules, use the current state as an index into the rules and select the matching ones immediately. For example,
consider the legal-move generation rule for chess shown in in Fig. 6.4. To be able to access the appropriate
rules immediately, all we need do is assign an index to each board position. This can be done simply by
treating the board description as a large number. Any reasonable hashing function can then be used to treat
that number as an index into the rules. Aill the rules thai describe a given board position will be stored under
the same key and so will be found together. Unfortunately, this simple indexing scheme only works because
preconditions of rules match exact board configurations. Thus the matching process is easy but at the price of
complete lack of generality in the statement of the rules. As discussed in Section 2.1, it is often better to write
rules in a more general form, such as that shown in Fig. 6.5. When this is done, such simple indexing is not
possible. In fact, there is often a trade-off between the ease of writing rules (which is increased by the use of
high-level descriptions) and the simplicity of the matching process (which is decreased by such descriptions).

Black Biack
s LadAvveldral S SE IE SR AR AF SE Y0 ¢
T A2 L212(2(2)2 2 (2122|2222
6
5 P
4 &
3
2R |A|(R(A(A|R AR RIATRIA Rt
AR S L= AR AR - EAY o Iald ¥ <8 o0
a b cde f 9 h a b ¢ d e f 9 h
White White

Fig. 6.4 One Legal Chess Move

Representing Knowledge Using Rules 139

White pawn at
Square(file e, rank 2)

AND move pawn from
Squareffile e, rank 3) — Squaref(file e, rank 2)
is empty 1o Squarelfile e, rank 4)
AND
Square(file e, rank 4}
is empty

Fig. 6.5 Another Way to Describe Chess Moves

All of this does not mean that indexing cannot be helpful even when the preconditions of rules are stated as
fairly high-level predicates. In PROLOG and many theorem-proving systems, for example, rules are indexed by
the predicates they contain, 5o all the rules that could be applicable to proving a particular fact can be accessed
fairly quickly. In the chess example, rules can be indexed by pieces and their positions. Despite some limitations
of this approach, indexing in some form is very important in the efficient operation of rule-based systems.

6.4.2 Matching with Variables

The problem of selecting applicable rules is made more difficult when preconditions are not stated as exact
descriptions of particular situations but rather describe properties (of varying complexity) that the situations
must have. It often turns out that discovering whether there is a match between a particular situation and the
preconditions of a given rule must itself involve a significant search process.

If we want to match a single condition against a single element in a state description, then the unification
procedure of Section 5.4.4 will suffice. However, in many rule-based systems, we need to compute the whole set
of rules that match the current state description, Backward-chaining systems usually use depth-first backtracking
to select individual rules, but forward-chaining systems generally employ sophisticated conflict resolution
strategies to choose among the applicable rules.®> While it is possible to apply .unification repeatedly over the
cross product of preconditions and state description elements, it is more efficient to consider the murny-many
match problem, in which many rules are matched against many elements in the state description simultaneously,

One efficient many-many match algorithm is RETE, which gains efficiency from three major sources:

e The temporal nature of data. Rules usually do not aiter the state description radically. Instead, a rule
will typically add one or two elements, or perhaps delete one or two, but most of the state description
remains the same. (Recall our discussion of this as part of our treatment of the frame problem in
Section 4.4.) If a rule did not match in the previous cycle, it will most likely fail to apply in the current
cycle. RETE maintains a network of rule conditions, and it uses changes in the state description to
determine which new rules might apply (and which rules might no longer apply). Full matching is only
pursued for candidates that could be affected by incoming or outgoing data,

Structural similarity in rules. Different rules may share a large number of pre-conditions. For example,
consider rules for identifying wild animals. One rule concludes jaguar(x) if mammal(x), feline(x),
carmivorous(x), and has-spots(x). Another rule concludes tiger(x) and is identical to the first rule except
that it replaces has-spots with has-stripes. If we match the two rules independently, we will repeat a lot
of work unnecessarily. RETE stores the rules so that they share structures in memory; sets of conditions
that appear in several rules are matched (at most) once per cycie.

+ Persistence of variable binding consistency. While all the individual preconditions of a rule might be
met, there may be variable binding conflicts that prevent the rule from firing. For example, suppose we
know the facts son(Mary, Joe) and son(Bill, Bob). The individual preconditions of the rule

3 Conflict resolution is discussed in the next section.

140 Artificial Intelligence

son(x, ¥) /N son(y, 7} — grandparent(x, z)

can be matched, but not in a manner that satisfies the constraint imposed by the variable y. Fortunately,
it is not necessary to compute binding consistency from scratch every time a new condition is satisfied.
RETE remembers its previous calculations and is able to merge new binding information efficiently.

For more details about the RETE match algorithm, see Forgy [1982]. Other matching algorithms (e.g.,
Miranker | 1987] and Oflazer {1987]) take different standson how much time to spend on saving state information
hetween cycles. They can be more or less efficient than RETE, depending on the types of rules written for the
domain and on the degree of hardware parallelism available.

6.4.3 Complex and Approximate Matching

A more complex matching process is required when the preconditions of a rule specify required properties
that are not stated explicitly in the description of the current state. In this case, a separate set of rules must be
used to describe how some properties can be inferred from others.

An even more complex matching process is required if rules should be applied if their preconditions
approximately match the current situation. This is often the case in situations involving physical descriptions
of the world. For example, a speech- understanding program must contain rules that map from a description
of a physical waveform to phones (instances of English phonemes, such as p or). There is so much variability
in the physical signal, as a result of background noise, differences in the way individuals speak, and so forth,
that one can hope 10 find only an approximate match between the rule that describes an ideal sound and the
input that describes an unideal world. Approximate matching is particularly difficult to deal with because as
we increase the tolerance allowed in the match, we also increase the number of rules that will match, thus
increasing the size of the main search process. But approximate matching is nevertheless superior to exact
matching in situations such as speech understanding. where exact matching may often result in no rules being
matched and the search process coming to a grinding halt. Although symbolic techniques for approximate
matching exist, there is another, very different approach that can be vsed to solve this problem. We discuss it
in detail in Chapter 18 where we describe connectionist systems (also called neural nets).

For some problems, almost all the action is in the matching of the rules to the problem state. Once that is
done, so few rules apply that the remaining search is trivial. This was the case, for example, in ELIZA
[Weizenbaum, 1966], an early Al program that simulated the behavior of a Rogerian therapist. A fragment of
a dialogue between ELIZA and a user is shown in Figure 6.6. ELIZA’s knowledge about both English and
psychology was coded in a set of simple rules. Figure 6.7 shows some ELIZA-like rules.

Person: Men are all alike.

ELIZA: in what way?

Person: They're always bugging us about something or other.
ELIZA: Can you think of a specitic example?

Pergon: Well, my boyfriend made me come here.

ELIZA: Your boyfriend made you come here.

Person: He says I'm depressed much of the time.

ELIZA: I am sorry to hear you are depressed.

Person: i's true. | am unhappy.

ELIZA: Do you think coming here will help you not to be unhappy?
Person: | need some help, that much seems certain.

ELIZA: What would it mean to you if you got some help?
Person: Perhaps | could learn to get along with my mother.
ELIZA: Tel! me more about your family.

Fig. 6.6 A Bit of a Dialogue with ELIZA

Representing Knowledge Using Rules 141

{(XmeY) — {(XyouY)

(I remember X} — (Why do remember X just now?)
(My {family-member} is Y) — {Who else in your family is Y?)
(X {family-member} Y} — (Tell me more about your family)

Fig. 6.7 Some ELIZA-like rules

ELIZA operated by matching the left sides of the rules against the user’s last sentence and using the
appropriate right side to generate a response. For example, if the user typed “My brother is mean to me,”
ELIZA might respond, “Who else in your family is mean to you?” or “Tell me more about your family.” The
rules were indexed by keywords so only a few had actually to be matched against a particular sentence. Some
of the rules had no left side, so the rule could apply anywhere. These rules were used if no other rules matched
and they generated replies such as *“Tell me more about that”. Notice that the rules themselves cause a form of
approximate matching to occur. The patterns ask about specific words in the user’s sentence. They do not
need to match entire sentences. Thus a great variety of sentences can be matched by a single rule, and the
grammatical complexity of English is pretty much ignored. This accounts both for ELIZA’s major strength, its
ability to say something fairly reasonable almost all of the time, and its major weakness, the superficiality of
its understanding and its ability to be led completely astray. Approximate matching can easily lead to both
these results. ‘

As if the matching process were not already complicated enough, recall the frame problem mentioned in
Chapter 4. One way of dealing with the frame problem is to avoid storing entire state descriptions at each
node but instead to store only the changes from the previous node. If this is done, the matching process will
have to be medified to scan backward from a node through its predecessors, looking for the required objects.

6.4.4 Conflict Resolution

The result of the matching process is a list of rules whose antecedents have matched the current state description
along with whatever variable bindings were generated by the matching process. 1t is the job of the search
method to decide on the order in which rules will be applied. But sometimes it is useful to incorporate some
of that decision making into the matching process. This phase of the matching process is then called conflict
resolution.

There are three basic approaches to the problem of conflict resolution in a production system:

s Assign a preference based on the rule that matched.
* Assign a preference based on the cbjects that matched.
e Assign a preference based on the action that the matched rule would perform.

Preferences Based on Rules

There are two common ways of assigning a preference based on the rules themselves, The first, and simplest,
is to consider the rules to have been specified in a particular order, such as the physical order in which they are
presented to the system. Then priority is given to the ruies in the order in which they appear. This is the
scheme used in PROLOG. '

The other common rule-directed preference scheme is to give priority to special case rules over rules that
are more general. We ran across this in Chapter 2, in the case of the water jug problem of Fig. 2.3. Recall that
rules 11 and 12 were special cases of rules 9 and 5, respectively. The purpose of such specific rules is to allow
for the kind of knowledge that expert problem solvers use when they solve problems directly, without search.
If we consider all rules that match, then the addition of such special-purpose rules will increase the size of the
search rather than decrease it. In order to prevent that, we build the matcher so that it rejects rules that are
more general than other rules that also match. How can the matcher decide that one rule is more general than
another? There are a few easy ways:

142 Artificial Intelligence

» If the set of preconditions of one rule contains all the preconditions of another (plus some others), then
the second rule is more general than the first.

« |f the precondifions of one rule are the same as those of another except that in the first case variables
are specified where in the second there are constants, then the first rule is more general than the second.

Preferences Based on Objects

Another way in which the matching process can ease the burden on the search mechanism is to order the
matches it finds based on the importance of the objects that are matched. There are a variety of ways this can
happen. Censider again ELIZA, which matched patterns against a user’s sentence in order to find a rule to
generate a reply. The patterns looked for specific combinations of important keywords. Often an input sentence
contained several of the keywords that ELIZA knew. If that happened, then ELIZA made use of the fact that
some keywords had been marked as being more significant than others. The pattern matcher returned the
match involving the highest priority keyword. For example, ELIZA knew the word “I” as a keyword. Matching
the input sentence *I know everybody laughed at me” by the keyword “I” would have enabled it to respond,
“You say you know everybody laughed at you.” But ELIZA also knew the word “everybody” as a keyword.
Because “everybpdy™ occurs more rarely than “I,” ELIZA knows it to be more semantically significant and
thus to be the clne to which it should respond. S0 it will produce a response such as *“Who in particular are you
thinking of 7" Notice that priority matching such as this is particalarly important if only one of the choices will
ever be tried. This was true for ELIZA and would also be true, say, for a person who, when leaving a fast-
burning room, must choose between turning off the lights (normally a good thing to do) and grabbing the
baby (a more important thing to do).

Another form of priority matching can occur as a function of the position of the matchable objects in the
current state description. For example, suppose we want to model the behavior of human short-term memory
(STM). Rules can be matched against the current contents of STM and then used to generate actions, such as
producing output to the environment or storing something in long-termn memory. In this situation, we might
like to have the matcher first try to match against the objects that have most recently entered STM and only
compare against older elements if the newer elements do not trigger a match. For a discussion of this method
as a conflict resofution strategy in a production system, see Newell [1973].

Preferences Based on States

Suppose that there are several rules waiting to fire. One way of selecting among them is to fire all of them
temporarily and to examine the results of each, Then, using a heuristic function that can evaluate each of the
resulting states, compare the merits of the results, and select the preferred one. Throw away (or maybe keep
for later if necessary) the remaining ones,

This approach should look familiar — it is identical to the best-first search procedure we saw in Chapter 3.
Although conceptually this approach can be thought of as a copflict resolution strategy, it is usually implemented
as a search control technique that operates on top of the states generated by rule applications. The drawback
to this design is that LISP-coded search control knowledge is procedural and therefore difficult to modify.
Many Al search programs, especially ones that leam from their experience, represent their control strategies
declaratively. The next section describes some methods for capturing knowledge about control using rules.

6.5 CONTROL KNOWLEDGE

A major theme of this book is that while intelligent programs require search, search is computationally intractable
unless it is constrained by knowledge about the world. In large knowledge bases that contain thousands of
rules, the intractability of search is an overriding concern. When there are many possible paths of reasoning,
it 1s critical that

Representing Knowledge Using Rules 143

Under conditions A and B,
Rules that do {not} mention X
{at al,
in their lefi-hand side,
in their right-hand side}
will
{definitely be useless,
probably be useless

prabably be especially useful
definitely be especially useful}

Fig. 6.8 Syntax for a Control Rule [Davis, 1980}

fruitless ones not be pursued. Knowledge about which paths are most likely to lead quickly to a goal state 1s
often called search control knowledge. It can take many forms:

1. Knowledge about which states are more preferable to others.
2. Knowledge about which rule to apply in a given situation.

3. Knowledge about the order in which to pursue subgoals.

4. Knowledge about useful sequences of miles to apply.

In Chapter 3, we saw how the first type of knowledge could be represented with heuristic evaluation functions.
There are many ways of representing the other types of control knowledge. For example, rules can be labeled and
partitioned. A medical diagnosis system might have one set of rules for reasoning about bacteriologicat diseases
and another set for immunological diseases. If the systemn is trying to prove a particular fact by backward chaining,
it can probably eliminate one of the two rule sets, depending on what the fact is. Another methed [Etzioni, 1989] is
to assign cost and probability-of-success measures to rules. The problem-solver can then use probabilistic
decision analysis to choose a cost-effective alternative at each point in the search.

By now it should be clear that we are discussing how to represent knowledge about knowledge. For this
reason, search control knowledge is sometimes called meta- knowledge. Davis [1980] first pointed out the
need for meta-knowledge, and suggested that it be represented declaratively using rules. The syntax for one
type of control rule is shown in Fig. 6.8.

A number of Al systems represent their control knowledge with rules. We look briefly at two such systems,
SOAR and PRODIGY.

SOAR [Laird et al., 1987] is a general architecture for building intelligent systems. SOAR is based on a set
of specific, cognitively motivated hypotheses about the structure of human problem solving. These hypotheses
are derived from what we know about short-term memory, practice effects, etc. In SOAR:

1. Long-term memory is stored as a set of productions (or, rules).

2. Short-term memory (also called working memory) is a buffer that is affected by perceptions and serves
as a storage area for facts deduced by rules in long-term memory. Working memory is analogous to the
state description in problem solving.

3. All problem-solving activity takes place as state space traversal. There are several classes of problem-
solving activities, including reasoning about which states to explore, which rules to apply in a given
situation, and what effects those rules will have.

4, All intermediate and final results of problem solving are remembered (or, chunked) for future reference *

The third feature is of most interest to us here. When SOAR is given a start state and a goal state, it sets up
an initial problem space. In order to take the first step in that space, it must choose a rule from the set of
applicable ones. Instead of employing a fixed conflict resolution strategy, SOAR considers that choice of

% We return to chunking in Chapter 17.

144 Artificial Intelligence

rules to be a substantial problem in its own right, and it actually sets up another, auxiliary problem space. The
rules that apply in this space look something like the rule shown in Figure 6.8. Operator preference rules may
be very general, such as the ones described in the previous section on conflict resolution, or they may contain
domain-specific knowledge.

SOAR also has rules for expressing a preference for applying a whole sequence of rules in a given situation.
In leaming mode, SOAR can take useful sequences and build from them more complex productions that it can
apply in the future.

We can also write rules based on preferences for some states over others. Such rules can be used to implement
the basic search strategies we studied in Chapters 2 and 3. For example, if we always prefer to work from the
state we generated last, we will get depth-first behavior. On the other hand, if we prefer states that were
generated earlier in time, we will get breadth-first behavior. If we prefer any state that looks better than the
current state (according to some heuristic function), we will get hill climbing. Best-first search results when
state preference rules prefer the state with the highest heuristic score. Thus we see that all of the weak methods
are subsumed by an architecture that reasons with explicit search control knowledge. Different methods may
be employed for different problems, and specific domain knowledge can override the more general strategies.

PRODIGY [Minton er al., 1989] is a general-purpose problem-solving system that incorporates several
different learning mechanisins. A good deal of the learning in PRODIGY is directed at automatically
constructing a set of control rules to improve search in a particular domain. We return to PRODIGY’S leaming
methods in Chapter 17, but we mention here a few facts that bear on the issue of search control rules. PRODIGY
can acquire control rules in a number of ways:

» Through hand coding by programmers.
o Through a static analysis of the domain’s operators.
¢ Through looking at traces of its own problem-solving behavior.

PRODIGY learns control rules from its experience, but unlike SOAR it also leams from its failures, If
PRODIGY pursues an unfruitful path, it will try to come up with an explanation of why that path failed. It will
then use that explanation to build control knowledge that will help it avoid fruitless search paths in the future.

One reason why a path may lead to difficulties is that subgoals can interact with one another. In the process
of solving one subgoal, we may undo our solution of a previous subgoal. Search control knowledge can tell us
something about the order in which we should pursue our subgoals. Suppose we are faced with the problem
of building a piece of wooden furniture. The problem specifies that the wood must be sanded, sealed, and
painted. Which of the three goals do we pursue first? To humans who have knowledge about this sort of thing,
the answer is clear. An Al program, however, might decide to try painting first, since any physical object can
be painted, regardiess of whether it has been sanded. However, as the program plans further, it will realize that
one of the effects of the sanding process is to remove the paint. The program will then be forced to plan a
repainting step or else backtrack and try working on another subgoal first. Proper search control knowledge
can prevent this wasted computational effort. Rules we might consider include:

o If a problem’s subgoals include sanding and painting, then we should solve the sanding subgoal first.
+ If subgoals include sealing and painting, then consider what the object is made of. If the object is made
of wood, then we should seal it before painting it.

Before closing this section, we should touch on a couple of seemingly paradoxical issues concerning
control rules. The first issue is called the utility problem [Minton, 1988]. As we add more and more control
knowledge to a system, the system is able to search more judiciously. This cuts down on the number of nodes
it expands. However, in deliberating about which step to take next in the search space, the system must
consider all the control rules. If there are many control rules, simply matching them all can be very time-
consuming. It is easy to reach a sitvation (especially in systems that generate control knowledge automatically)

Representing Knowledge Using Rules 145

in which the system’s problem-solving efficiency, as measured in CPU cycles, is worse with the control rules
than without them. Different systems handle this problem in different ways, as demonstrated in Section 17.4.4.

The second issue concerns the complexity of the production system interpreter. As this chapter has
progressed, we have seen a trend toward explicitly representing more and more knowledge about how search
should proceed. We have found it useful to create meta-rules that talk about when to apply other rules. Now,
a production system interpreter iaust know how to apply various rules and meta-rules, so we should expect
that our interpreters will have to become more complex as we progress away from simple backward-chaining
systems like PROLOG. And vet, moving to a declarative representation for control knowledge means that
previously hand coded LISP functions can be eliminated from the interpreter. In this sense, the interpreter
becomes more strearnlined.

SUMMARY

In this chapter, we have seen how to represent knowledge declaratively in rule-based systems and how to
reason with that knowiedge. We began with a simple mechanism, logic programming, and progressed to more
complex production system models that can reason both forward and backward, apply sophisticated and
efficient matching techniques, and represent their search control knowiedge in rules.

In later chapters, we expand further on rule-based systems. In Chapter 7, we describe the use of rules that
allow default reasoning to occur in the absence of specific counter evidence. In Chapter 8, we introduce the
idea of aitaching probabilistic measures to rules. And, in Chapter 20, we look at how rule-based systems are
being used to solve complex, real-world problems.

The book Pattern-Directed Inference Systems 'Waterman and Hayes-Roth, 1978] is a collection of papers
describing the wide variety of uses to which production systems have been put in AL Its introduction provides
a good overview of the subject. Brownston er af. [1985] is an introduction to programming in production
rules, with an emphasis on the OPS5 programming language.

EXERCISES

1. Consider the following knowledge base:
Vx 1 Vy : car(x) N fish(y) — likes — to— eat(x,y)
Vx: calico(x) = cat(x)
Yx : tuna{x)— fish(x)
tuna(Charlie)
tuna(Herb)
calico{ Puss)
(a) Convert these wif’s into Hom clauses.
{b) Convert the Horn clauses into a PROLOG program.
{c) Write a PROLOG query corresponding to the question, “What does Puss like to eat?” and show
how it will be answered by your program.
(d) Write another PROLOG program that corresponds to the same set of wif’s but returns a different
answer to the same query.
2. A problem-solving search can proceed either forward (from a known start state to a desired goal state)
or backward (from a goal state to a start state). What factors determine the choice of direction for a
particular problem?

146 Artificial Intelligence

3. If aproblem-solving search program were to be written to solve each of the following types of problems,
determine whether the search should proceed forward or backward:
(a) water jug problem
(b) blocks world
(¢) naturat language understanding

4. Program the interpreter for a production system. You will need to build a table that holds the rules and
a matcher that compares the current state to the left sides of the rules. You will also need to provide an
appropriate control strategy to select among competing rules. Use your interpreter as the basis of a
program that solves water jug problems.

CHAPTER

7

SYMBOLIC REASONING UNDER UNCERTAINTY

There are many methods for predicting the future. For example, you can read horoscopes, tea leaves, tarot
cards, or crystal palls. Collectively, these methods are Known as ‘nutty methods.” Or you can put well-
researched facts into sophisticated computer models, more commonly referred to as ‘a complete waste of
time.”

—Scott Adams
-(1957-) Author Known for his comic strip Dilbert

So far, we have described techniques for reasoning with a complete, consistent, and unchanging model of the
world. Unfortunately, in many problem domains it is not possible to create such models. in this chapter and
the next, we explore techniques for solving problems with incomplete and uncertain models.

7.1 INTRODUCTION TO NONMONOTONIC REASONING

In their book, The Web of Belief, Quine and Ullian [1978] provide an excellent discussion of techniques that
can be vsed to reason effectively even when a complete, consistent, and constant model of the world is not
available. One of their examples, which we call the ABC Murder story, clearly illustrates many of the main
issues that such techniques must deal with. Quoting Quine and Ullian [1978]:

Let Abbott, Babbitt, and Cabot be suspects in a murder case. Abbott has an alibi, in the register of a
respectable hotel in Albany. Babbitt also has an alibi, for his brother-in-law testified that Babbitt was visiting
him in Brooklyn at the time, Cabot pleads alibi too, claiming to have been watching a ski meet in the Catskills,
but we have only his word for that. So we believe

1. That Abbott did not commit the crime

2. That Babbitt did not commit the crime

3. That Abbott or Babbitt or Cabot did.

But presently Cabot documents his alibi—he had the good luck to have been caught by television in the
sidelines at the ski meet. A new belief is thus thrust upon us:

4. That Cabot did not.

148 Artificial Intelligence

Our beliefs (1) through (4) are inconsistent, so we must choose one for rejection. Which has the weakest
evidence? The basis for (1) in the hotel register is good, since it is a fine old hotel. The basis for (2) is weaker,
since Babbitt’s brother-in-law might be lying. The basis for (3) is perhaps twofold: that there is no sign of
burglary and that only Abbott, Babbitt, and Cabot seem to have stood to gain from the murder apart from
burglary. This exclusion of burglary seems conclusive, but the other consideration does not; there could be
some fourth beneficiary. For (4), finally, the basis is conclusive: the evidence from television. Thus (2) and (3)
are the weak points. To resolve the inconsistency of (1) through (4} we should reject (2) or (3), thus either
incriminating Babbitt or widening our net for some new suspect.

See also how the revision progresses downward. If we teject (2), we also revise our previous underlying
belief, however tentative, that the brother-in-law was telling the truth and Babbitt was in Brooklyn. If instead
we reject (3), we also revise our previous underlying belief that none but Abbott, Babbitt, and Cabot stood to
gain from the murder apart from burglary.

Finally, a certain arbitrariness should be noted in the organization of this analysis. The inconsistent beliefs
(1) through (4) were singled out, and then various further beliefs were accorded a subordinate status as
underlying evidence: a belief about a hotel register, a belief about the prestige of the hotel, a belief about the
television, a perhaps unwarranted belief about the veracity of the brother-in-law, and so on. We could instead
have listed this full dozen of beliefs on an equal footing, appreciated that they were in contradiction, and
proceeded to restore consistency by weeding them out in various ways. But the organization lightened our
task. It focused our attention on four prominent beliefs among which to drop one, and then it ranged the other
beliefs under these four as mere aids to choosing which of the four to drop.

The strategy illustrated would seem in general to be a good one: divide and conquer. When a set of beliefs
has accumulated to the point of contradiction, find the smaliest selection of them you can that still involves
contradiction; for instance, (1) through (4). For we can be sure that we are going to have to drop some of the
beliefs in that subset, whatever else we do. In reviewing and comparing the evidence for the beliefs in the
subset, then, we will find ourselves led down in a rather systematic way to other beliefs of the set. Eventually
we find ourselves dropping some of them too.

In probing the evidence, where do we stop? In probing the evidence for (1) through (4) we dredged up
vanous underlying beliefs, but we could have probed further, seeking evidence in tum for them. In practice,
the probing stops when we are satisfied how best to restore consistency: which ones to discard among the
beliefs we have canvassed.

This story illustrates some of the problems posed by uncertain, fuzzy, and often changing knowledge. A
variety of logical frameworks and computational methods have been proposed for handling such problems. In
this chapter and the next, we discuss two approaches:

¢ Nonmonotonic reasoning, in which the axioms and/or the rules of inference are extended to make it
possible to reason with incomplete information. These systems preserve, however, the property that, at
any given moment, a statement is either believed to be true, believed to be false, or not believed to be
either.

o Statistical reasoning, in which the representation is extended to allow some kind of numeric measure
of certainty (rather than simply TRUE or FALSE) to be associated with each statement.

Other approaches to these issues have also been proposed and used in systems. For example, it is sometimes
the case that there is not a single knowledge base that captures the beliefs of all the agents involved in solving
a problem. This would happen in our murder scenario it we were to attempt to model! the reasoning of Abbott,
Babbitt, and Cabot, as well as that of the police investigator. To be able to do this reasoning, we would require
a technique for maintaining several parallel belief spaces, each of which would correspond to the beliefs of
one agent. Such techniques are complicated by the fact that the belief spaces of the various agents, although

Symbolic Reasoning Under Uncertainty 149

not identical, are sufficiently similar that it is unacceptably inefficient to represent them as completely separate
knowledge bases. In Section 15.4.2 we return briefly to this issue. Meanwhile, in the rest of this chapter, we
describe techniques for nonmonotonic reasoning.

Conventiotnal reasoning systems, such first-order predicate logic, are designed to work with information
that has three important properties:

+ It is complete with respect to the domain of interest. In other words, all the facts that are necessary to

solve a problem are present in the system or can be derived from those that are by the conventional
rules of first-order logic.

e It is consistent.
e The only way it can change is that new facts can be added as they become available. If these new facts

are consistent with all the other facts that have already been asserted, then nothing will ever be retracted
from the set of facts that are known to be true. This property is called monaotonicity.

Unfortunately, if any of these properties is not satisfied, conventional logic-based reasoning systems become
inadequate. Nonmonotonic reasoning systems, on the other hand, are designed to be able to solve problems in
which all of these properties may be missing.

In order to do this, we must address several key issues, including the following:

L.

How can the knowledge base be extended to allow inferences to be made on the basis of lack of
knowledge as well as on the presence of it? For example, we wouid like to be able to say things like, “Hf
you have no reason to suspect that a particular person committed a crime, then assume he didn’t,” or “If
you have no reason to believe that someone is not getting along with her relatives, then assume that the
relatives will try to protect her.” Specifically, we need to make clear the distinction between:

¢ It is known that =P,

¢ It is not known whether P.

First-order predicate logic allows reasoning to be based on the first of these. We need an extended
system that allows reasoning to be based on the second as well. In our new system, we call any inference
that depends on the lack of some piece of knowledge a nonmonotonic inference.!

Allowing such reasoning has a significant impact on a knowledge base. Nonmonotonic reasoning
systems derive their name from the fact that because of inferences that depend on lack of knowledge,
knowledge bases may not grow monotonically as new assertions are made. Adding a new assertion
may invalidate an inference that depended on the absence of that assertion. First-order predicate logic
systems, on the other hand, are monotonic in this respect. As new axioms are asserted, new wff’s may
become provable, but no old proofs ever become invalid.

In other words, if some set of axioms T entails the truth of some statement w, then 7 combined with
another set of axioms ¥ also entails w. Because nonmonotonic reasoning does not share this property,
itis also called defeasible: a nonmonotonic inference may be defeated (rendered invalid) by the addition
of new information that violates assumptions that were made during the original reasoning process. It
turns out, as we show below, that making this one change has a dramatic impact on the structure of the
logical system itself. In particular, most of our ideas of what it means to find a proof will have to be
reevaluated.

How can the knowledge base be updated properly when a new fact is added to the system (or when an
old one is removed)}? In particular, in nonmonotonic systems, since the addition of a fact can cause

! Recall that in Section 2.4, we also made a monotonic/monmonotonic distinction. There the issue was classes of production
systems. Although we are applying the distinction to different entities here, it is essentially the same distinction in both
cases, since it distinguishes between systems that never shrink as a result of an action (monotonic ones) and ones that can
(nonmonotonic ones).

150 Artificial Intelligence

previously discovered proofs to be become invalid, how can those proofs, and all the conclusions that
depend on them be found? The usual solution to this problem is to keep track of proofs, which are often
called justifications. This makes it possible to find all the justifications that depended on the absence of
the new fact, and those proofs can be marked as invalid. Interestingly, such a recording mechanism
also makes it possible to support conventional, monotonic reasoning in the case where axioms must
occasionally be retracted to reflect changes in the world that is being modeled. For example, it may be
the case that Abbott is in town this week and so is available to testify, but if we wait until next week, he
may be out of town. As a result, when we discuss techniques for maintaining valid sets of justifications,
we talk both about nonmonotonic reasoning and about monotonic reasoning in a changing world.

3. How can knowledge be used to help resolve conflicts when there are several in consistent nonmonotonic
inferences that could be drawn? 1t turns out that when inferences can be based on the lack of knowledge
as well as on its presence, contradictions are much more likely to occur than they were in conventional
logical systems in which the only possible contradictions were those that depended on facts that were
explicitly asserted to be true. In particular, in nonmonotonic systems, there are often portions of the
knowledge base that are locally consistent but mutually (globally) inconsistent. As we show below,
many techniques for reasoning nonmonotonically are able to define the alternatives that could be
believed, but most of them provide no way to choose among the options when not all of them can be
believed at once.

To do this, we require additional methods for resolving such conflicts in ways that are most appropriate for
the particular problem that is being solved. For example, as soon as we conclude that Abbott, Babbiit, and
Cabot all claim that they didn’t commit a crime, yet we conclude that one of them must have since there’s no
one else who is believed to have had a motive, we have a contradiction, which we want to resolve in some
particular way based on other knowledge that we have. In this case, for example, we choose to resolve the
conflict by finding the person with the weakest alibi and believing that he committed the crime (which involves
believing other things, such as that the chosen suspect lied).

The rest of this chapter is divided into five parts. In the first, we present several logical formalisms that
provide mechanisms for performing nonmonotonic reasoning. {n the last four, we discuss approaches to the
implementation of such reasoning in problem-solving programs. For more detailed descriptions of many of
these systems, see the papers in Ginsberg [1987].

7.2 LOGICS FOR NONMONOTONIC REASONING

Because monotonicity is fundamental to the definition of first-order predicate logic, we are forced to find some
alternative to support nonmonotonic reasoning. In this section, we look at several formal approaches to doing
this. We examine several because no single formalism with all the desired properties has yet emerged (although
there are some attempts, e.g., Shoham [1987]) and Konolige [1987], to present a unifying framework for these
several theories). In particular, we would like to find a formalism that does all of the following things:

o Defines the set of possible worlds that could exist given the facts that we do have. More precisely, we
will define an interpretation of a set of wff’s to be a domain (a set of objects) D, together with a
function that assigns: to each predicate, a relation (of corresponding arity); to each n-ary function, an
operator that maps from D into D; and to each constant, an element of D. A mode! of a set of wil’s is
an interpretation that satisfies them. Now we can be more precise about this requirement. We require a
mechanism for defining the set of models of any set of wff’s we are given.

* Provides a way to say that we prefer to believe in some models rather than others.

Symbolic Reasoning Under Uncertainty 151

¢ Provides the basis for a practical implementation of this kind of reasoning.
¢ Corresponds to our intuitions about how this kind of reasoning works. In other words, we do not want
vagaries of syntax to have a significant impact on the conciusions that can be drawn within our system.

As we examine each of the theories below, we need to evaluate how well they
perform each of these tasks. For a more detailed discussion of these theories and
some comparisons among them, see Reiter [1987a], Etherington [1988], and
Genesereth and Nilsson[1987].

Before we go into specific theories in detail, let’s consider Fig. 7.1, which shows
one way of visualizing how nonmonotonic reasoning works in all of them. The box
labeled A corresponds to an original set of wif’s. The large circle contains all the
models of A. When we add some nonmonotonic reasoning capabilities to A, we get
a new set of wff’s, which we’ve labeled B.2 B (usually) contains more information |
than A does. As a result, fewer models satisfy 5 than A. The set of models B
corresponding to A is shown at the lower right of the large circle. Now suppose we
add some new wif’s (representing new information) to A. We represent A with Fig. 7.1 Models, Wff's,
these additions as the box €. A difficulty may arise, however, if the set of models and Non-
corresponding to C is as shown in the smaller, interior circle, since it is disjoint with monotontc
the models for B. In order to find a new set of models that satisty C, we need to Reasoning
accept models that had previously been rejected. To do that, we need to eliminate the wff’s that were responsible
for those models being thrown away. This is the essence of nonmonotonic reasoning.

7.2.1 Default Reasoning

We want to use nonmonotonic reasoning to perform what is commonly called default reasoning. We want to
draw conclusions based on what is most likely to be true. In this section, we discuss two approaches to doing this.
» Nonmonotonic Logic®
» Default Logic

We then describe two common kinds of nonmonotonic reasoning that can be defined in those logics:
e Abduction
* Inheritance

Nonmeonotonic Logic

One system that provides a basis for default reasoning is Nonmonotonic Logic (NML) [McDermott and
Doyle, 1980], in which the language of first-order predicate logic is augmented with a modal operator M,
which can be read as “is consistent.” For example, the formula

Vx, y . Related(x, y) /A M GetAlong(x, y) = WillDefend(x, y)

should be read as, “For all x and v, if x and y are related and if the fact that x gets along with ¥ is consistent with
everything else that is believed, then conclude that x will defend y.”

2 As we will see below, some technigues add inference rules, which then generate wif’s, while others add wff’s directly.
We’ll ignore that difference for the moment.

*Try not to get confused about names here. We are using the terms “nonmonotonic reasoning” and “default reasoning”
generically to describe a kind of reasoning. The terms “Nonmonotonic Logic™ and “Default Logic™ are, on the other
hand, being used to refer to specific formal theories.

152 Artificial Intelligence

Once we augment our theory to allow statements of this form, one important issue rhust be resolved if we
want our theory to be even semidecidable. (Recall that even in a standard first-order theory, the question of
theoremhood is undecidable, so semide-cidability is the best we can hope for.) We must define what “is
consistent” means. Because consistency in this system, as in first-order predicate logic, is undecidable, we
need some approximation. The one that is usually used is the PROLOG notion of negation as failure, or some
variant of it. In other words, to show that P is consistent, we attempt to prove -P. If we fail, then we assume
- to be false and we call P consistent. Unfortunately, this definition does not completely solve our problem.
Negation as failure works in pure PROLOG because, if we restrict the rest of our language to Hom clauses,
we have a decidable theory. So failure to prove something means that it is not entailed by our theory. If, on the
other hand, we start with fult first-order predicate logic as our base language, we have no such guarantee. So,
as a practical matter, it may be necessary to define consistency on some heuristic basis, such as failure to
prove inconsistency within some fixed level of effort.

A second problem that anses in this approach (and others, as we explain below) is what to do when
multiple nonmonotonic statements, taken alone, suggest ways of augmenting our knowledge that if taken
together would be inconsistent. For example, consider the following set of assertions:

Yx : Republican(x) A M ~Pacifist(x) — =Pacifist(x)
Vx : Quaker(x) /\ M Pacifist(x) — Pacifist(x)
Republican(Dick)

Quakev{Dick)

The definition of NML that we have given supports two distinct ways of augmenting this knowledge base.
In one, we first apply the first assertion, which allows us to conclude -Pacifist{Dick). Having done that, the
second assertion cannot apply, since it is not consistent to assume Pacifist(Dick). The other thing we could do,
however, is apply the second assertion first. This results in the conclusion Pacifist{Dick), which prevents the
first one from applying. So what conclusion does the theory actually support?

The answer is that NML defines the set of theorems that can be derived from a set of wff’'s A to be the
intersection of the sets of theorems that result from the various ways in which the wif’s of A might be combined.
So, in our example, no conclusion about Dick’s pacifism can be derived. This theory thus takes a very
conservative approach to theoremhood. .

It is worth pointing out here that aithough assertions such as the ones we used to reason about Dick’s
pacifism look like rules, they are, in this theory, just ordinary wft’s which can be manipulated by the standard
rules for combining logical expressions. So, for example, given

AANMB—SB
-AAMB—-B

we can derive the expression
MB- B

In the original formulation of NML, the semantics of the modal operator M, which is self-referential, were
unclear. A more recent system, Autoepistemic Logic {Moore, 1985] is very similar, but solves some of these
problems.

4 Reiter’s original notation had “:M” in place of *:”. but since it conveys no additional information, the M is usually omitted.

Symbolic Reasoning Under Uncertainty 153

Default Logic

An alternanive logic for performing default-based reasoning is Reiter’s Default Logic (DL) [Reiter, 1980, in

which a new class of inference rules is introduced. In this approach, we allow inference rules of the forin*
A B

C

Such a rule should be read as, “If A is provable and it is consistent to assume B then conclude C.” As you
can see, this is very sirnilar in intent to the nonmonotonic expressions that we used in NML. There are some
important differences between the two theories, however. The first is that in DL the new inference rules are
used as a basis for computing a set of plausible extensions to the knowledge base. Each extension corresponds
to one maximal consistent augmentation of the knowledge base.® The logic then admits as a theorem any
expression that is valid in any exiension. If a decision among the extensions is necessary to support problern
solving, some other mechanism must be provided. So, for example, if we return to the case of Dick the
Republican. we can compute two extensions, one corresponding to his being a pacifist and one corresponding
1o his not being a pacifist. The theory of DL does not say anything about how to choose between the two. But
see Reiter and Criscuolo [1981], Touretzky [1986], and Rich [1983] for discussions of this issue.

A second important difference between these two theories is that, in DL, the nonmonotonic expressions
are rules of inference rather than expressions in the language. Thus they cannot be manipulated by the other
rules of inference. This leads to some unexpected resuits. For example, given the two rules

A:B - A:B

C B
and no assertion about A, no conclusion about B will be drawn, since neither inference rule applies.

Abduction
Standard logic performs deduction. Given two axioms:

Y A(x) — Blx)
A(CY

we can conclude B(C) using deduction. But what about applying the implication in reverse? For example,
suppose the axiom we have is.

Vx : Measles(x) — Spots(x)

The axiom says that having measles implies having spots. But suppose we notice spots. We might like 1o
conclude measles. Such a conclusion is not licensed by the rules of standard logic and it may be wrong, but it
may be the best guess we can make about what is going on. Deriving conclusions in this way is thus another
form of default reasoning. We call this specific form abductive reasoning. More precisely, the process of
abductive reasoning can be described as, “Given two wff’s (A — B} and (B), for any expressions A and B, if
it is consistent to assume 4, do $0.”

In many domains. abductive reasoning is particularly useful if some measure of certainty is attached to the
resuiting expressions. These certainty measures quantify the risk that the abductive reasoning process is

5 What we mean by the expression “maximal consistent augmentation” is that no additional default rules can be applied
withoui violating consistency. But its is important to note that only expressions generated by the application of the stated
interence rules 1o the original knowledge are allowed in an extension. Gratuitous additions are not permitted.

154 Artificial Intelligence

wrong, which it will be whenever there were other antecedents besides A that could have produced B. We
discuss ways of doing this in Chapter 8.

Abductive reasoning is not a kind of logic in the sense that D1. and NML are. In fact, it can be described in
either of them. But it is a very useful kind of nonmonotonic reasoning, and so we mentioned it explicitly here.

Inheritance

One very common use of nonmonotonic reasoning is as a basis for inheriting attribute values from a prototype
description of a class to the individual entities that belong to the class. We considered one example of this kind
of reasoning in Chapter 4, when we discussed the baseball knowledge base. Recall that we presented there an
algorithm for implementing inheritance. We can describe informally what that algorithm does by saying, “An
object inherits attribute values from all the classes of which it is a member unless doing so leads to a
contradiction, in which case a value from a more restricted class has precedence over a value from a broader
class.” Can the logical ideas we have just been discussing provide a basis for describing this idea more
formally? The answer is yes. To see how, let’s return to the baseball example (as shown in Figure 4.5) and try
to write its inheritable knowledge as rules in DL,

We can write a rule to aceount for the inheritance of a default value for the height of a baseball player as:

Baseball-Player(x) : height(x, 6-1)
height(x, 6-1)

Now suppose we assert Pitcher(Three-Finger-Brown). Since this enables us to conclude that Three-Finger-
Brown is a baseball player, our rule allows us to conclude that his height is 6-1. If, on the other hand, we had
asserted a conflicting value for Three Finger’ had an axiom like

V', vy, z: height(x, y) /\ height(x, 2) 5 y=1z,

which prohibits someone from having more than one height, then we would not be able to apply the default
rule. Thus an explicitly stated value will block the inheritance of a default value, which is exactly what we
want. (We’'ll ignore here the order in which the assertions and the rules occur. As a logical framework, default
logic does not care. We'll just assume that somehow it settles out to a consistent state in which no defaults that
conflict with explicit assertions have been asserted. In Section 7.5.1 we look at issues that arise in creating an
implementation that assures that.)

But now, let’s encode the default rule for the height of adult males in general. If we pattern it after the one
for baseball players, we get

Adult-Male(x) : height(x, 5-10)
height(x, 5-10)

Unfortunately, this rule does not work as we would like, In particular, if we again assert Pitcher(Three-
Finger-Brown), then the resulting theory contains two extensions: one in which our first rule fires and Brown’s
height is 6-1 and one in which this new rule applies and Brown'’s height is 5-10. Neither of these extensions
is preferred. In order to state that we prefer to get a value from the more specific category, baseball player, we
could rewrite the default rule for adult males in general as:

Adult-Male(x) : ~Baseball-Player(x) /\ height(x, 5-10)
height(x, 5-10)

This effectively blocks the application of the default knowledge about adult males in the case that more
specific information from the class of baseball players is available.

Symbolic Reasoning Under Uncertainty 155

Unfortunately, this approach can become unwieldy as the set of exceptions to the general rule increases.
For example, we could end up with a rule like:

Adult-Male(x) : —Baseball-Player(x) /\ —Midget(x) N\ — Jockey{x) /\ height(x, 5-10)
height(x, 5-10)

What we have done here is to clutter our knowledge about the general class of adult males with a list of all
the known exceptions with respect to height. A clearer approach is to say something like, “Adult males
typically have a height of 5-10 unless they are abnormal in some way.” We can then associate with other
classes the information that they are abnormal in one or another way. So we could write, for example:

Vx: Adult-Male(x) N —AB(x, aspectl) — height(x,5-10)
Y'x : Baseball-Player(x) — AB(x, aspect 1)

Yx : Midger(x) — AB(x, aspect 1)

Yx . Jockey(x) — AB(x, aspect 1)

Then, if we add the single default rule:
:—AB(x, ¥)
— AB(I, y)
we get the desired result.

7.2.2 Minimalist Reasoning

So far, we have talked about general methods that provide ways of describing things that are generally true. In
this section we describe metheds for saying a very specific and highly useful class of things that are generally
true. These methods are based on some variant of the idea of a minimal model. Recall from the beginning of
this section that a model of a set of formulas is an interpretation that satisfies them. Although there are several
distinct definitions of what constitutes a minimal model, for our purposes, we will define a model to be
minimal if there are no other models in which fewer things are true. (As you can probably imagine, there are
technical difficulties in making this precise, many of which involve the treatment of sentences with negation.)
The idea behind using minimal models as a basis for nonmonotonic reasoning about the world is the following:
“There are many fewer true statements than false ones. If something is true and relevant it makes sense to
assume that it has been entered into our knowledge base. Therefore, assume that the only true statements are
those that necessarily must be true in order to maintain the consistency of the knowledge base.” We have
already mentioned (in Section 6.2) one kind of reasoning based on this idea, the PROLOG concept of negation
as failure, which provides an implementation of the idea for Horn clause-based systems. In the rest of this
section we look at some logical issues that arise when we remove the Horn clause limitation.

The Closed World Assumption

A simple kind of minimalist reasoning is suggested by the Closed World Assumption or CWA [Reiter, 1978].
The CWA says that the only objects that satisfy any predicate P are those that must. The CWA is particularly
powerful as a basis for reasoning with databases, which are assumed to be complete with respect to the
properties they describe. For example, a personnet database can safely be assumed to list all of the company’s
employees. If someone asks whether Smith works for the company, we should reply “no’ unless he is explicitly
listed as an employee. Similarly, an airline database can be assumed to contain a complete list of all the routes
flown by that airline. So if I ask if there is a direct flight from Oshkosh to El Paso, the answer should be “no”
if none can be found in the database. The CWA is also useful as a way to deal with AB predicates, of the sort

156 Artificial Intelligence

R

we introduced in Section 7.2.1, since we want to take as abnormal only those things that are asserted to be so.

Although the CWA is both simple and powerful, it can fail to produce an appropriate answer for either of
two reasons. The first is that its assumptions are not always true in the world; some parts of the world are not
realistically “closable.” We saw this problem in the murder story exarnple. There were facts that were relevant
to the investigation that had not yet been uncovered and so were not present in the knowledge base. The CWA
wiil yield appropnate results exactly to the extent that the assumption that all the relevant positive facts are
present in the knowledge base is true.

The second kind of problem that plagues the CWA anises from the fact that it is a purely syntactic reasoning
process. Thus, as you would expect, its results depend on the form of the assertions that are provided. Let’s
look at two specific examples of this problein.

Consider a knowledge base that consists of just a single statement:

A(Joey \/ B(Joe)

The CWA allows us to conclude both ? A(Joe) and 7B{Joe), since neither A nor 6 must necessarily be true
of Joe. Urfortunately, the resulting extended knowledge base

Allve) v/ BlJoe)
—A(Joe)
-B{Joe)

is inconsistent.

The problem is that we have assigned a special status lo positive instances of predicates, as opposed to
negative ones. Specifically, the CWA forces completion of a knowledge base by adding the negative assertion
*P whenever it is consistent to do so. But the assignment of a real world property to some predicate £ and its
complement to the negation of P may be arbitrary. For example, suppose we define a predicate Single and
create the following knowledge base:

Single(John)
Single(tMary)

Then, if we ask about Jane, the CWA will yield the answer —Single{Jane). But now suppose we had chosen
instead to use the predicate Married rather than Single. Then the corresponding knowledge base would be

-Married(Johri)
“Married(Mary)

It we now ask about Jane, the CWA will yield the result ~Married(Jane).

Circumscription

Although the CWA captures part of the idea that anything that must not necessarily be true should be assurned
to be false, it does not capture all “of it. It has two essential Hmitations:

» [t operates on individual’predicates without considering the interactions among predicates that are
defined in the knowledge hase. We saw an example of this above when we considered the statement
AlJoe) v/ BlJoe).

o It assumes that all predicates have all of their instances listed. Although in many database applications
this is frue, in many knowledge-based systems it is not. Some predicates can reasonably be assumed to

Symbolic Reasoning Under Uncertainty 157

be completely defined (i.c., the part " hie world they describe is closed), but others cannot (i.e., the
part of the world they describe is open). For example, the predicate has-a-green-shirt should probably
be considered open since in most situations it would not be safe to assume that one has been told all the
details of everyone else’s wardrobe,

Several theories of circumscription (e.g., McCarthy [1980], McCarthy [1986], and Lifschitz [1985]) have
been proposed to deal with these problems. In all of these theories, new axioms are added to the existing
knowledge base. The effect of these axioms is to force a minimal interpretation on “‘a selected portion of the
knowledge base. In particular, each specific axiom describes a way that the set of values for which a particular
axiom of the original theory is true is to be delimited (i.e.. circumscribed).

As an example, suppose we have the simple assertion

V. @ Adult(x) /\ —AB(x, aspect]} — Literate(x)

We would like to circumscribe AB, since we would like it to apply only to those individuals to which it
applies. In essence, what we want to do is to say something about what the predicale AB must be {since at this
point we have no idea what it is; all we know is its name). To know what it is, we need to know for what values
it is true. Even though we may know a few values for which it is true (if any individuals have been asserted to
be abnormal in this way), there are many different predicates that would be consistent with what we know so
far. Imagine this universe of possible binary predicates. We might ask, which of these predicates could be AB?
We want to say that AB can only be one of the predicates that is true only for those objects that we know it
must be true for. We can do this by adding a (second order) axiom that says that AB is the smallest predicate
that is consistent with our existing knowledge base.

In this simple example, circumscription yields the same result as does the CWA since there are no other
assertions in the knowledge base with which a minimization of AB must be consistent. In both cases, the only
models that are admitted are ones in which there are no individuals who are abnormal in aspect I. In other
words, AB must be the predicate FALSE.

But, now let’s return to the example knowledge base

A(Joe) \/ B(Joe)

If we sircumscribe only A, then this assertion describes exactly those models in which A is true of no one
and B is true of at least Joe. Similarly, if we circumscribe only B, then we will accept exactly those models in
which B is true of no one and A is true of at least Joe. If we circumnscribe A and B together, then we will admit
only those models in which A is true of only Joe and B is true of no one or those in which B is true of only Joe
and A is true of no one. Thus, unlike the CWA, circumscription allows us to describe the logical relationship
between A and B.

7.3 IMPLEMENTATION ISSUES

Although the logical frameworks that we have just discussed take us part of the way toward a basis for
implementing nonmonotonic reasoning in problem-solving programs, they are not enough. As we have seen,
they all have some weaknesses as logical systems. In addition, they fail to deal with four important problems
that arise in real systems.

The first is how to dedive exactly those nonmonotonic conclusions that are relevant to solving the problem
at hand while not wasting time on those that, while they may be licensed by the logic, are not necessary and
are not worth spending time on.

158 Artificial Intelligence

The second problem is how to update our knowledge incrementally as problem-solving progresses. The
definitions of the logical systems tell us how to decide on the truth status of a proposition with respect 1o a
given truth status of the rest of the knowledge base. Since the procedure for-doing this is a global one (relying
on some form of consistency or minimality), any change to the knowledge base may have far-reaching
consequences. It would be computationally intractable to handle this problem by starting over with just the
facts that are explicitly stated and reapplying the various nonmonotonic reasoning steps that were used before,
this time deriving possibly different results,

The third problem is that in nonmonotonic reasoning systems, it often happens that more than one
interpretation of the known facts is licensed by the available inference rules. In Reiter’s terminology, a given
nonmonotonic system may (and often does) have several extensions at the moment, even though many of
them will eventually be eliminated as new knowledge becomes available. Thus some kind of search process
is necessary. How should it be managed?

The final problem is that, in general, these theories are not computationally effective. None of them is
decidable. Some are semidecidable, but only in their propositional forms. And none is efficient.

In the rest of this chapter, we discuss several computational solutions to these problems. In all of these
systems, the reasoning process is separated into two parts: a problem solver that uses whatever mechamsm it
happens to have to draw conclusions as necessary and a truth maintenance system whose job is just to do the
bookkeeping required to provide a solution to our second problem. The various logical issues we have been
discussing, as well as the heuristic ones we have raised here are issues in the design of the problem solver. We
discuss these issues in Section 7.4. Then in the following sections, we describe techniques for tracking
nonmonotonic inferences so that changes to the knowledge base are handled properly. Techniques for doing
this can be divided into two classes, determined by their approach to the search control problem:

e Depth-first, in which we follow a single, most likely path until come new piece of information comes
in that forces us to give up this path and find another.

¢ Breadih-first, in which we consider all the possibilities as equally likely. We consider them as a group,
eliminating some of them as newfacts become available. Eventually, it may happen that only one (or a
small number) turn out to be consistent with everything we come lo know.

It is important to keep in mind throughout the rest of this discussion that there is no exact correspondence
between any of the logics that we have described and any of the implementations that we will present.
Unfortunately, the details of how the two can be brought together are still unknown.

7.4 AUGMENTING A PROBLEM-SOLVER

So far, we have described a variety of logical formalisms, all of which describe the theorems that can be
derived from a set of axioms, We have said nothing about how we might write a program that solves problems
using those axioms. In this section, we do that.

As we have already discussed several times, problem-solving can be done using either forward or backward
reasoning. Problem-solving using uncertain knowledge is no exception. As a result, there are two basic
approaches to this kind of problem-solving (as well as a variety of hybrids):

e Reason forward from what is known. Treat nonmonotonically derivable conclusions the same way
monotonically derivable ones are handled. Nonmonotonic reasoning systems that support this kind of
reasoning allow standard forward-chaining rules to be augmented with unless clauses, which introduce
a basis for reasoning by default, Control (including deciding which default interpretation to choose) is
handled in the same way that all other control decisions in the system are made (whatever that may be,
for example, via rule ordering or the use of metarules).

]

Svmbolic Reasoning Under Uncertainty 159

» Reason backward to determine whether some expression £ is true (or perhaps to find a set of bindings
for its variables that make it true). Nonmonotonic reasoning systems that support this kind of reasoning
may do either or both of the following two things’.

— Allow default (unless) clauses in backward rules. Resolve conflicts among defaults using the same,
control strategy that is used for other kinds of reasoning (usually rule ordering).

— Support a kind of debate in which an attempt is made to construct arguments both in favor of P and
opposed to it. Then some additional knowledge is applied to the arguments to determine which side
has the stronger case.

Let’s look at backward reasoning first. We will begin with the simple case of backward reasoning in which
we attemnpt to prove (and possibly to find bindings for) an expression £ Suppose that we bave a knowledge
base that consists of the backward rules shown in Fig. 7.2.

Suspect{x) «- BeneficianAx)
UNLESS Afibix)
Alibi(x} — SomewhereElse(x}
SomewhereElse(x) — RegisteradHotel(x, ¥) and FarAway(y)
UNLESS ForgedRegister(y)

Alibi(x) « Defends(x, y)

UNLESS Lies())
SomewhereElse(x) « PictureOfx, y) and FarAway(y)
Contradiction{) «— TRUE

UNLESS 3Jx: Suspecf{x)

Beneficiary (Abbotf)
Beneficiary{ Babbitt)
BeneficianA Cabot)

Fig. 7.2 Backward Rules Using UNLESS

Assume that the problem solver that is using this knowledge base uses the usual PROLOG-style control
structure in which rules are matched top to bottom, left to right. Then if we ask the question? Suspect(x), the
program will first try Abbott, who is a fine suspect given what we know now, so it will return Abbott as its
answer. If we had also included the facts

RegisteredHotel(Abbort, Albany)
FarAway(Albany)

then, the program would have failed to conclude that Abbott was a suspect and it would instead have located
Babbitt.

As an alternative to this approach, consider the idea of a debate. In debating systems, an attempt is made to
find multiple answers. In the ABC Murder story case, for example, all three possible suspects would be
considered. Then some attermnpt to choose among the arguments would be made. In this case, for example, we
might want to have a choice rule that says that it is more likely that people will lie to defend themselves than
to defend others. We might have a second rule that says that we prefer to believe hotel registers rather than
people. Using these two rules, a problem solver would conclude that the most likely suspect is Cabot.

Backward rules work exactly as we have described if all of the required facts are present when the rules are
invoked, But what if we begin with the situation shown in Fig. 7.2 and conclude that Abbott is our suspect.
Later, we are told that he was registered at a hotel in Albany. Backward rules will never notice that anything
has changed. To make our system data-driven, we need td use forward rules. Figure 7.3 shows how the same
knowledge could be represented as forward rules. Of course, what we probably want is a system that can
exploit both. In such a system, we could use a backward rule whose goal is to find a suspect, coupled with
forward rules that fire as new facts that are relevant to finding a suspect appear.

160 Artificial Intelligence

If: Beneficiary(x),
UNLESS Alibi(x),
then Suspeckx)

If: Somewheretise{x),
then Alibi(x)

If: RegisteredHotel(x, y), and
FarAway(y),
UNLESS ForgedRegister(y),
then SomewhereEise(x)

If Defends(x.y),
UNLESS Lies(y), 1
then Afibi{x)

If PictureOfix, y}, and
FarAwayly),
then SomewhereEise(x)

If TRUE,

UNLESS Jx: Suspect)
then Contradiction()
Beneficiary(Abbotf)
Beneficiary(Babbitf)
Beneficiary(Cabot)

Fig. 7.3 Forward Rules Using UNLESS

7.5 IMPLEMENTATION: DEPTH-FIRST SEARCH
7.5.1 Dependency-Directed Backtracking

If we take a depth-first approach to nonmonotonic reasoning, then the following scenario is likely to occur often:
We need to know a fact, F, which cannot be derived monotonically from what we already know, but which can be
derived by making some assumption A which seems plausible. So we make assumption A, derive F, and then
derive some additional facts G and H from F. We later derive some other facts M and N, but they are completely
independent of A and F. A little while later, a new fact comes in that invalidates A. We need to rescind our proof
of F, and also our proofs of G and H since they depended on F. But what about M and N? They didn’t depend on
F, so there is no logical need to invalidate them. But if we use a conventional backtracking scheme, we have to
back up past conclusions in the order in which we derived them, So we have to backup past M and N, thus
undoing them, in order to get back 1o F, G, H and A. To get around this problem, we need a slightly different
notion of backtracking, one that is based on logical dependencies rather than the chronological order in which
decisions were made. We call this new method dependency-directed backtracking [Stallman and Sussman,
19771, in contrast to chronological backtracking, which we have been using up until now.

Before we go into detail on how dependency-directed backtracking works, it is worth peinting out that
although one of the big motivations for it is in handling nonmonotonic reasoning, it turns out to be useful for
conventional search programs as well. This is not too surprising when you consider that what any depth-first
search program does is to “make a guess” at scmething, thus creating a branch in the search space. If that
branch eventually dies out, then we know that at least one guess that led to it must be wrong. It could be any
guess along the branch. In chronological backtracking we have to assume it was the most recent guess and
back up there to try an alternative. Sometimes, though, we have additional information that tells us which
guess caused the problem. We'd like to retract only that guess and the work that explicitly depended on it,
leaving everything else that has happened in the meantime intact. This is exactly what dependency-directed
backtracking does.

Symbolic Reasoning Under Uncertainty 161

D FRE

As an example, suppose we want to build a program that generates a solution to a fairly simple problem,
such as-finding a time at which three busy people can all attend a meeting. One way to solve such a problem
is first to make an assumption that the meeting will be held on some particular day, say Wednesday, add to the
database an assertion to that effect, suitably tagged as an assumption, and then proceed to find a time, checking
along the way for any inconsistencies in people’s schedules. If a conflict arises, the statement representing the
assumption must be discarded and replaced by another, hopefully noncontradictory, one. But, of course, any
statements that have been generated along the way that depend on the now-discarded assumption must also be
discarded.

Of course, this kind of situation can be handled by a straightforward tree search with chronological back-
tracking. All assumptions, as well as the infer-
ences drawn from them, are recorded at the

search node that created them. When a node is 'Y day = Wednesday Try day = Tuesday
determined to represent a contradiction, sim- After many steps, Repeat same time-finding
ply backtrack to the next node from which there 00l|10|ude tf;lat the| Progess a?d a%ai? ﬂacide
: : only time all people on 2 p.m. for all of the
remain unexplored.path_s. The assumptlox?s and are available is 2 p.m. Same reasons.
their inferences will disappear automatically.
T.he drawbaf:k to this approach is illustrated in Try to find a room Try to find a room
Fig. 7.4, which shows part of the search tree of |
a program that is trying to schedule a meeting, FAIL SUCCEED
To do so, the program must solve a constraint {A special conference
; : 1 - d nd has all the rooms
satl.sfactlon problem to.fllnd aday a d time at booked on Wednesday.)
which none of the participants is busy and at
which there is a sufficiently large room avail- Fig. 7.4 Nondependency-Directed Backtracking
able.

In order to solve the problem, the system must try to satisfy one constraint at a time. Initially, there is little
reason to choose one alternative over another, so it decides to schedule the meeting on Wednesday. That
creates a new constraint that must be met by the rest of the solution. The assumption that the meeting will be
held on Wednesday is stored at the node it generated. Next the program tries to select a time at which all
participants are available. Among them, they have regularly scheduled daily meetings at all times except 2:00.
So 2:00 is chosen as the meeting time. But it would not have mattered which day was chosen. Then the
program discovers that on Wednesday there are no rooms available. So it backtracks past the assumption that
the day would be Wednesday and tries another day, Tuesday. Now it must duplicate the chain of reasoning
that led it to choose 2:00 as the time because that reasoning was lost when it backtracked to redo the choice of
day. This occurred even though that reasoning did not depend in any way on the assumption that the day
would be Wednesday. By withdrawing statements based on the order in which they were generated by the
search process rather than on the basis of responsibility for inconsistency, we may waste a great deal of effort.

If we want to use dependency-directed backtracking instead, so that we do not waste this effort, then we
need to do the following things:

* Associate with each node one or more justifications. Each justification corre sponds to a derivation
process that led to the node. (Since it is possible to derive the same node in several different ways, we
want to allow for the possibility of multiple justifications.) Each justification must contain a list of ali
the nodes (facts, rules, assumptions) on which its derivation depended.

e Provide a mechanism that, when given a contradiction node and its justification, computes the “no-
good” set of assumptions that underlie the justification. The no-good set is defined to be the minimal
set of assumptions such that if you remove any element from the set, the justification will no longer be
valid and the inconsistent node wilt no longer be believed.

162 Artificial Intelligence

¢ Provide a mechanism for considering a no-good set and choosing an assumption to retract.
Provide a mechanism for propagating the result of retracting an assumption. This mechanism must cause
all of the justifications that depended, however indirectly, on the retracted assumption to become invalid.

In the next two sections, we will describe two approaches to providing such a system.

7.5.2 Justification-Based Truth Maintenance Systems

The idea of a truth maintenance system or TMS [Doyle, 1979] arose as a way of providing the ability to do
dependency-directed backtracking and so to support nonmonotonic reasoning. There was a later attempt to
rename it to Reason Maintenance System (a bit less pretentious}), but since the old name has stuck, we use it here.

A TMS allows assertions 10 be connected via a spreadsheet-like network of dependencies. In this section,
we describe a simple form of truth maintenance system, a justification-based truth maintenance system (or
JTMS). In a JTMS (or just TMS for the rest of this section), the TMS itself does not know anything about the
structure of the assertions themselves. (As a result, in our examples, we use an English-like shorthand for
representing the contents of nodes.) The TMS’s only role is to serve as a bookkeeper for a separate problem-
solving system, which in tum provides it with both assertions and dependencies among assertions.

To see how a TMS works, let’s return to the ABC Murder story. Initially, we might believe that Abbott is
the primary suspect because he was a beneficiary of the deceased and he had no alibi. There are three assertions
here, a specific combination of which we now believe, although we may change our beliefs later, We can
represent these assertions in shorthand as follows:

» Suspect Abbott (Abbott is the primary murder suspect.)
s Beneficiary Abbort (Abbott is a beneficiary of the victim.)
s Alibi Abbont (Abbott was at an Albany hotel at the time.)

Our reason for possible belief that Abbott is the murderer is nonmonotonic. In the notation of Default
Logic, we can state the rule that produced it as

Beneficiary(x) : —Alibi(x)
Suspect(x)

or we can write it as a backward rule as we did in Section 7.4.

If we currently believe that he is a beneficiary and we have no reason to believe he has a valid alibi, then
we will believe that he is our suspect. But if later we come to believe that he does have a valid alibi, we will
no longer believe Abbott is a suspect.

But how should belief be represented and how should this change in belief be enforced? There are various
ad hoc ways we might do this in a rule-based system. But they wouid all require a developer to construct rules
carefully for each possible change in belief. For instance, we would have to have a rule that said that if Abbott
ever gets an alibi, then we should erase from the database the belief that Abbott is a suspect. But suppose that
we later fire a ruie that erases belief in Abbott’s alibi. Then we need another rule that would reconclude that
Abbott is a suspect. The task of creating a rule set that consistently maintains beliefs when new assertions are
added to the database quickly becomes un- Suspect Abbott supported belied

manageable. In contrast, a TMS dependency

network offers a purely syntactic, domain-

independent way to represent belief and :|IUStlfcatl0n
change it consistently.

Figure 7.5 shows how these three facts | Beneficiary Abbot| | Alibi Abbot
would be represented in a dependency IN-list OUT-list
network, which can be created as a result of Fig. 7.5 A justification

Symbolic Reasoning Under Uncertainty 163

applying the first rule of either Fig. 7.2 or Fig. 7.3. The assertion Suspect Abbott has an associated TMS
Justification. Each justification consists of two parts: an IN-list and an OUT-fist. In the figure, the assertions
on the IN-list are connected to the justification by “+" links, those on the OUT-list by “~" links. The justification
is connected by an arrow to the assertion that it supports. Tn the justification shown, there is exactly one
assertion in each list. Beneficiary Abbott is in the IN-list and Alibi Abbort is in the OUT-list. Such a justification
says that Abbott should be a suspect just when it is believed that he is a beneficiary and it is not believed that
he has an alibi.

More generally, assertions (usually called nodes) in a TMS dependency network are believed when they
have a valid justification. A justification is valid if every assertion in the IN-list is believed and none of those
in the OUT-list is. A justification is nonmonotonic if its OUT-list is not empty, or, recursively, if any assertion
in its IN-list has a nonmonotonic justification. Otherwise, it is monotonic. In a TMS network, nodes are
labeled with a belief status. If the assertion corresponding to the node should be believed, then in the TMS it
is labeled IN. If there is no good reason to believe the assertion, then it is labeled OUT. What does it mean that
an assertion “should be believed™ or has no “good” reason for belief?

A TMS answers these questions for a dependency network in a way that is independent of any interpretation
of the assertions associated with the nodes. The fabeling task of a TMS is to label each node so that two
criteria about the dependency network structure are met. The first criterion is consistency: every node labeled
IN is supported by at least one valid justification and all other nodes are labeled OUT. More specifically than
before, a justification is valid if every node in its IN-list is labeled IN and every node in its OUT-list is labeled
OUT. Notice that in Fig. 7.5, all of the assertions would have to be labeled OUT to be consistent. Alibi Abbont
has no justification at all, much less a valid one, and so must be labeled OUT. But the same is true for
Beneficiary Abbott, so it must be QUT as well. Then the justification for Suspect Abbort is invalid because an
element of its IN-list is labeled OUT. Suspect Abbott would then be labeled OUT as well. Thus status labels
correspond to our belief or lack of it in assertions, and justifications Correspond to our reasons for such belief,
with valid justifications being our “good™ reasons. Notice that the label OUT may indicate that we have
specific reason to believe that a node represents an assertion that is not true, or it may mean simply that we
have no information one way or the other.

But the state of affairs in Fig. 7.5 is incomplete. We are told Suspect Abbott [IN]
that Abbott is a beneficiary. We have no further justification for
this fact; we must simply accept it. For such facts, we give a
premise justification: a justification with empty IN- and OUT-
lists. Premise justifications are always valid. Figure 7.6 shows
such a justification added to the network and a consistent labeling
for that network, which shows Suspect Abbott labeled IN. l

That Abbot is the primary suspect represents an initial state of
the murder investigation. Subsequently, the detective establishes
that Abbott is listed on the register of a good Albany hotel on the
day of the murder. This provides a valid reason to believe Abbott’s alibi. Figure 7.7 shows the effect of adding
such a justification to the network, assuming that we have used forward (data-driven) rules as shown in Fig. 7.3
for ail of our reasoning except possibly establishing the top-level goal. That Abbott was registered at the hotel.
Registered Abbott, was told to us and has a premise justification and so is labeled IN. That the hote! is far away is
also asserted as a premise. The register might have been forged, but we have no good reason to believe it was.
Thus Register Forged lacks any justification and is labeled OUT. That Abbott was on the register of a far away
hotel and the lack of belief that the register was forged will cause the appropriate forward rule to fire and create
a justification for Alibi-Abbott, which is thus labeled IN. This means that Suspect Abbott no longer has a valid
justification and must be labeled OUT. Abboitt is no longer a suspect.

Beneficiary Abbott [IN] Alibi Abbott [OUT]

Fig. 7.6 Labeled Nodes with Premise
Justification

164 Artificial Intelligence

Notice that such a TMS labeling carefully
avoids saying that the register definitely was
not forged. It only says that there is currently
no geod reason 10 believe that it was. Just like
our original reason for believing that Abbott was
a suspect, this is a nonmenotonic justification.
Later, if we find that Abbott was secretly
married to the desk clerk, we might add to this
network a justification that would reverse some
of the labeling. Babbitt will have a similar
justification based upon lack of belief that his
brother-in-law lied as shown in Fig. 7.8 (where
B-I-L stands for “Brother-In-Law™).

Abbott’s changing state showed how
consistency was maintained. There is another
criterion that the TMS must meet in labeling a
dependency network: well-foundedness (i.e., the
proper grounding of a chain of justifications on
a set of nodes that do not themselves depend on
the nodes they support). To illustrate this,
consider poor Cabot: Not only does he have
fewer bs and ¢s in his name, he also lacks a valid
justification for his alibi that he was at a ski
show. We have only his word that he was.
Ignoring the more complicated representation
of lying, the simple dependency network in
Fig. 7.9 illustrates the fact that the only support
for the alibi of attending the ski show is that
Cabot is telling the truth about being there. The
only support for his telling the truth would be if
we knew he was at the ski show. But this is a
circular argument. Part of the task of a TMS is
to disallow such arguments, In particular, if the
support for a node only depends on an unbroken
chain of positive links (IN-list links) leading
back to itself then that node must be labeled
OUT if the labeling is to be well-founded.

The TMS task of ensuring a consistent, well-
founded labeling has now been outlined. The
other major task of a TMS is resolving
contradictions. In a TMS, a contradiction node
does not represent a logical contradiction but
rather a state of the database explicitly deciared
to be undesirable. (In the next section, we
describe a slightly different kind of TMS in
which this is not the case.) In our example, we

Suspect Abboit [OUT]

e

Benefi ctary Abbott [IN] Alibi Abbolit [IN]

Registered Abbott [IN]
i Far away [IN]

i Register forged {OUT]

Fig. 7.7 Changed Labeling

Suspect Babbilt [OUT]

eSS

Beneficiary Babbitt [IN] Alibi Babbitt [IN]

l

ey

Says So B I-L [IN] Lies B-I-L. [OUT)]

Fig. 7.8 Babbitt’s justification

Suspect Cabot [IN]
+
Beneficiary Cabot [IN] Alibi Cabot [OUT] T
Ll Tells Truth Cabot [OUT]

Fig. 7.9 Cabot’s justification

Contradiction

Suspect Abbott

Other Suspects

Suspect Babbitt Suspect Cabot
Fig. 7.10 A Contradiction

Svmbolic Reasoning Under Uncertainty 165

have a contradiction if we do not have at least one murder suspect. Thus a contradiction might have the
justification shown in Fig. 7.10, where the node Other Suspects means that there are suspects other than
Abbott, Babbitt, and Cabot. This is one way of explicitly representing an instance of the closed world
assumption. Later, if we discover a long-lost relative, this will provide a valid justification for Other Suspects.
But for now, it has none and must be labeled OUT. Fortunately, even though Abbott and Babbitt are not
suspects, Suspect Cabot is labeled IN, invalidating the justification for the contradiction. While the contradiction
is labeled OUT, there is no contradiction to resolve.

Now we learn that Cabot was seen on
television attending the ski tournament. Adding
this to the dependency network first illustrates
the fact that nodes can have more than one + =
justification as shown in Fig. 7.11. Not only does
Cabot say he was at the ski slopes, but he was Beneﬁciary Cabot [IN] Alibi Cabot [IN]
seen there on television, and we have no reason
to believe that this was an elaborate forgery. This
new valid justification of Alibi Cabot causes it Tells Truth Cabot [IN]
to he labeled IN (which also causes Tells Truth
Cabot to come IN). This change in state
propagates to Suspect Cabot, which goes OUT.
Now we have a problem.

The justification for the contradiction is now
valid and the contradiction is IN. The job of the
TMS at this point is to determine how the contradiction can be made OUT again. In a TMS network, a node
can be made OUT by causing all of its justifications to become invalid. Monotonic justifications cannot be
made invalid without retracting explicit assertions that have been made to the network, Nonmonotonic
justifications can, however, be invalidated by asserting some fact whose absence is required by the justification.
We cali assertions with nonmonotonic justifications assumptions. An assumption can be retracted by making
IN some element of its justification’s QUT-list (or recursively in some element of the OUT-list of the justification
of some element in its IN-list). Unfortunately, there may be many such assumptions in a large dependency
network. Fortunately, the network gives us a way to identify those that are relevant to the contradiction at
hand. Dependency-directed backtracking algorithms, of the sort we described in Section 7.5.1, can use the
dependency links to determine an AND/OR tree of assumptions that might be retracted and ways to retract
them by justifying other beliefs.

In Fig. 7.10, we see that the contradiction itself is an assumption whenever its justification is valid. We
might retract it by believing there were other suspects or by finding a way to believe again that either Abbott,
Babbitt, or Cabot was a suspect. Each of the last three could be believed if we disbelieved their alibis, which
in turn are assumptions. So if we believed that the hotel register was a forgery, that Babbitt's brother-in-law
lied, or that the television pictures were faked, we would have a suspect again and the contradiction would go
back QUT. So there are four things we might believe to resolve the contradiction. That is as far as DDB will
take us. It reports there is an OR tree with four nodes. What should we do?

A TMS has no answer for this question. Early TMSs picked an answer at random. More recent architectures
take the more reasonable position that this choice was a problem for the same problem-solving agent that
created the dependencies in the first place. But suppose we do pick one. Suppose, in particular, that we choose
to believe that Babbitt’s brother-in-law lied. What should be the justification for that belief? If we believe it
just because not believing it leads to a contradiction, then we should install a justification that should be valid
only as long as it needs to be. If iater we find another way that the contradiction can be labeled OUT, we will
not want to continue in our abductive belief.

Suspect Cabot [OUT]

Cabot Seen {IN] TV Forgery [QUT]

Fig. 7.11 A Second fustification

166 Artificial Intelligence

For instance, suppose that we believe that the brother-in-law lied, but later we discover that a long-lost
relative, jilted by the family, was in town the day of the murder. We would no longer have to believe the
brother-in-law lied just to avoid a contradiction. A TMS may also have algorithms to create such justifications,
which we call abductive since they are created using abductive reasoning. If they have the property that they
are not unnecessarily valid, they are said to be complete. Lios B-I-L
Figure 7.12 shows a complete abductive justification for
the belief that Babbitt’s brother-in-law lied. I we come to
believe that Abbott or Cabot is a suspect, or we find a long-
lost relative, or we somehow come to believe that Babbitt’s Says So B--L Suspect Abbott Suspect Cabot
brother-in-law didn’t really say Babbitt was at his house,
then this justification for lying will become invalid.

At this point, we have described the key reasoning operations that are performed by a JTMS:

Other Suspects

Fig. 7.12 A Complete Abductive Justification

s consistent labeling
+ contradiction resolution

We have also described a set of important reasoning operations that a JTMS does not perform, including:

¢ applying rules to derive conclusions

e creating justifications for the results of applying rules (although justifications are created as part of
contradiction resolution)

¢ choosing among alternative ways of resolving a contradiction

» detecting contradictions

All of these operations must be performed by the problem-solving program that is using the JTMS. In the
next section, we describe a slightly different kind of TMS, in which, although the first three of these operations
must still be performed by the problem-solving system, the last can be performed by the TMS,

7.5.3 Logic-Based Truth Maintenance Systems

A logic-based truth maintenance system (LTMS) [McAllester, 1980] is very similar to a JTMS. Tt differs in
one important way. In a JTMS, the nodes in the network are Lreated as atoms by the TMS, which assumes no
relationships among them except the ones that are explicitly stated in the justifications. In particular, a JTMS
has no problem simultaneously labeling both £ and — P IN. For example, we could have represented explicitly
both Lies B-I-L and Not Lies B-I-L and labeled both of them IN. No contradiction will be detected automatically.
In an LTMS, on the other hand, a contradiction would be asserted automatically in such a case. If we had
constructed the ABC example in an LTMS system, we would not have created an explicit contradiction
corresponding to the assertion that there was no suspect. Instead we would (replace the contradiction node by
one that asserted something like No Suspect. Then we would assert Suspect. When No Suspect came IN, it
would cause a contradiction to be asserted automatically.

7.6 IMPLEMENTATION: BREADTH-FIRST SEARCH

The assumption-based truth maintenance system (ATMS) |de Kleer, 1986] is an alternative way of implementing
nonmonotonic reasoning. In both JTMS and LTMS systems, a single line of reasoning is pursued at a time,
and dependency-directed backtracking occurs whenever it is necessary to change the system’s assumptions.
Inan ATMS, alternative paths are maintained in parallel. Backtracking is avoided at the expense of maintaining
multiple contexts, each of which corresponds to a set of consistent as-sumptions. As reasoning proceeds in an
ATMS-based system, the universe of consistent contexts is pruned as contradictions are discovered. The
remaining consistent contexts are used to label assertions, thus indicating the contexts in which each assertion
has a valid justification. Assertions that do not have a valid justification in any consistent context can be

) Symbolic Reasoning Under Uncertainty 167

pruned from consideration by the problem solver. As the set of consistent contexts gets smaller. so too does
the set of assertions that can consistently be believed by the problem solver. Essentially, an ATMS system
works breadth-first, considering all possible contexts at once, while both ITMS and LTMS systems operate
depth-first. :

The ATMS, like the JTMS, is designed to be used in conjunction with a separate problem solver. The
problem solver’s job is to:

e (Create nodes that correspond to assertions (both those that are given as axioms and those that are
derived by the problem solver).

» Associate with each such node one or more justifications, each of which describes a reasoning chain
that led to the node.

» Inform the ATMS of inconsistent contexts.

Notice that this is identical to the role of the problem solver that uses a JTMS, except that no expllicit
choices among paths to follow need be made as reasoning proceeds. Some decision may be necessary at the
end, though, if more than one possible solution still has a consistent context.

The role of the ATMS system is then to: '

¢ Propagate inconsistencies, thus ruling out contexts that include subcontexts (sets of assertions) that are
known to be inconsistent.

o Label each problem solver node with the contexts in which it has a valid justification. This is done by
combining contexts that correspond to the components of a justification. In particular, given a justification
of the form

AINAZAN L NAR - C

assign as a context for the node corresponding to C the intersection of the contexts corresponding to
the nodes A1 through An.

Contexts get eliminated as a resu)t of the problem-solver asserting inconsistencies and the ATMS propagating
them. Nodes get created by the problem-solver to represent possible components of a problem solution. They
may then get pruned from consideration if all their context labels get pruned. Thus a choice among possible
solution components gradually evolves in a process very much like the constraint satisfaction procedure that
we examined in Section 3.5.

One problem with this approach is that given a set of n assumptions, the number of possible contexts that
may have to be considered is 2". Fortunately, in many problem-solving scenarios, most of them can be pruned
without ever looking at them. Further, the ATMS exploits an efficient labeling system that makes if possible
to encode a set of -contexts as a single context [A1, A2, A3, A4]
that delimits the set. To see how both of these '

things work, it is necessary to think of the set of " e A A2 A4l A AD A4l [AD A3 A4
contexts that are defined by a set of assump- (41, A2, A3] A1, 42, Ad] A1, A3, Ad] [A2, A3, Ad]

tions as forming a lattice, as shown for a simple /W
example with four assumptions in Fig. 7.13.

Lines going upward indicate a subset relation- [A1. AZ] A1, 43] [A1, Ad] (A2, A3] [A2,A4] A3, A4)
ship. :
The first thing this lattice does for us is to (A1) [A2] [A3] [A4]

illustrate a simple mechanism by which
contradictions (inconsistent contexts) can be \\ //
propagated so that large parts of the space of 27 {}

contexts can be eliminated. Suppose that the Fig. 7.13 A Context Lattice

168 Artificial Intelligence

context labeled (A2, A3} is asserted to be Inconsistent. Then all contexts that include it (i.e., those that are
above it) must also be inconsistent.

Now consider how a node can be Labeléd with all the contexts in which it has a valid justification. Suppose its
Justitication depends on assumption Al. Then the context labeled {A1} and all the contexts that include it are
acceptable. But this can be indicated just by saying {A1}. It is not necessary to enumerate its supersets. In general,
each node will be labeled with the greatest lower bounds of the contexts in which it should be believed.

Clearly, it is important that this lattice not be built explicitly but only used as an implicit structure as the
ATMS proceeds.

As an example of how an ATMS-based problem-solver works, let’s return to the ABC Murder story.
Again, our goal is to find a primary suspect. We need (at least) the following assumptions;

Al. Hotel register was forged.

A2. Hotel register was not forged.

A3. Babbitt’s brother-in-law hied.

A4. Babbitt’s brother-in-law did not lie.

AS5. Cabot lied.

A6. Cabot did not lie. :

A7. Abbott, Babbitt, and Cabot are the only possible suspects.
» AS8. Abbott, Babbitt, and Cabot are not the only suspects.

The problem-solver could then generate the nodes and associated justifications shown in the first two
columns of Fig. 7.14. In the figure, the justification for a node that corresponds to a decision to make assumption
N is shown as {N}. Justifications for nodes that correspond to the result of applying reasoning rules are shown
as the rule involved. Then the ATMS can assign labels to the nodes as shown in the second two columns. The
first shows the label that would be generated for each justification taken by itself. The second shows the label
{possibly containing multiple contexts) that is actually assigned to the node given all its current justifications.
These columns are identical in simple cases, but they may differ in more compiex situations as we see for
nodes 12, 13, and 14 of our example.

Nodes Justifications Node Labels
1] Register was not forged {A2} {A2} {A2}.
2] Ahbott at hotel [11-[2] [A2} {A2}
(8] B-I-L didn't lie {4} {Ad}, {Ad}
[4] Babbitt at B-I-L [381 -4 {Ad} { A4}
[5] Cabot didn't lie {6} {A6} { A6}
[6] Cabot at ski show [5] — [8] {AB} {AB}
[71 A, B, C only suspecis {A7} {AT} {A7}
i8] Prime Suspect Ahbott FIAN3 A 14 = [8] {A7, A4, A6} {A7, A4, A6}
)] Prime Suspect Babbitt A2 A [14] - [9] {A7, A2, A6} {A7, A2, Ag}
[10] Prime Suspect Cabot 7121 A[18] - [10] {A7, A2, Ad} {A7, A2, Ad}
[11] A, B,C not only suspects {A8} {A8} {A8}
[12] Not prime suspect Abbott [2] = [12] {A2} {A2}, {AB}
[11] - [12] {48}
9] - [12] {A7, A2, Ag}
[10]1 - [12] {A7, A2, A4}
[13] Not prime suspect Babbitt 4] - 13 {A4} {Ad4}, {AB}
[11] - [13) {A8}
[8] - [13] {A7, Ad, A8}
[10] - [13] {A7, A4, A2}
[14] Not prime suspect Cabot [6] — [14] {A6} {Ag], {A8}
[11] - [14] {A8}
[8] = [14] {A7, A4, A6}
[9] = [14] {A7, A2, Ag)

Fig. 7.14 Nodes and Their Justifications and Labels

Symbalic Reasoning Under Uncertainty 169

There are several things to notice about this example:
* Nodes muy have several justifications if there are several possible reasons for believing them. This is
the case for nodes 12, 13, and 14,
¢ Recall that when we were using a JTMS, a node was labeled IN if it had at least one valid justification.
Using an ATMS, a node will end up being labeled with a consistent context if it has at least one
justification that can occur in 4 consistent context,
* The label assignment process is sometimes complicated. We describe it in more detail below,

Suppose that a problem-solving program first created nodes 1 through 14, representing the various
dependencies among them without committing to which of them it currently believes. It can indicate known
contradictions by marking as no good the context:

* A, B, C are the only suspects; A, B, C are not the only suspects; {A7, A8)

The ATMS would then assign the labels shown in the figure. Let’s consider the case of node 12. We
generate {four possible labels, one for each justification. But we want to assign to the node a label that contains
just the greatest lower bounds of all the contexts in which it can,occur, since they implicitly encode the
superset contexts. The label {A2) is the greatest lower bound of the first, third, and fourth label, and (A8} is
the same for the second label. Thus those two contexts are all that dre required as the label for the node. Now
let’s consider labeling node 8. Its label must be the union of the labels of nodes 7, 13, and 14. But nodes 13
and 14 have complex labels representing alternative justifications. So we must consider all ways of combininy.
the labels of all three nodes. Fortunately, some of these combinations, namely those that contain both A7 and
A8, can be eliminaied because they are already known to be contradictory. Thus we are left with a single label
as shown.

Now suppose the problem-solving program labels the context {A2 } as no good, meaning that the assumption
it contains (namely that the hotel register was not forged) conflicts with what it knows. Then many of the
labels that we had disappear since they are now inconsistent. In particular, the labels for nodes [, 2,9, 10, and
12 disappear. At this point, the only suspect node that has a label is node 8. But node 12 (Not prime suspect
Abbott) also still has a label that corresponds to the assumption that Abbott, Babbitt, and Cabot are not the
only suspects. If this assumption is made, then Abbolt would: not be a clear suspect even if the hotel register
were forged. Further information or some choice process is still necessary to choose between these remaining,
nodes.

SUMMARY

In this chapter we have discussed severai logical systems that provide a basis for nonmonotonic reasoning,
including nonmonotonic logic, default logic, abduction, inheritance, the closed world assumption, and
circumscription. We have also described a way in which the kind of rules that we discussed in Chapter 6 could
be augmented to support nonmonotonic reasoning.

We then presented three kinds of TMS systems, all of which provide a basis for implementing nonmonotonic
reasoning. We have considered two dimensions along which TMS systems can vary: whether they antomatically
detect logical contradictions and whether they maintain single or multiple contexts. The following table
summarizes this discussion:

TMS Kinds single context multiplecontext
nonfogical JTMS ATMS
logical LTMS ?

170 Artificial Intelligence

As can be seen in this table, there is currently no TMS with logical contradictions and multiple contexts.
These various TMS systems each have advantages and disadvantages with respect to each other. The
major issues that distinguish I'TMS and ATMS systems are:
e The JTMS is often better when only a single solution is desired since it does not need to consider
alternatives; the ATMS is usually more efficient if all solutions are eventually going to be needed.
¢ To create the context lattice, the ATMS performs a global operation in which it considers all possible
combinations of assumptions. As a result, either all assumptions must be known at the outset of problem
solving or an expensive, recompilation process must occur whenever an assumption is added. In the
JTMS, on the other hand, the gradual addition, of new assumptions poses no problem.
e The JTMS may spend a lot of time switching contexts when backtracking is necessary. Context switching
does not happen in the ATMS.
¢ Inan ATMS, inconsistent contexts disappear from consideration. If the initial problem description was
overconstrained, then all nodes will end up with empty labels and there will be no problem-solving
trace that can serve as a basis for relaxing one or more of the constraints. In a ITMS, on the other hand,
the justification that is attached to a contradiction node provides exactly such a trace.
» The ATMS provides a natural way to answer questions of the form, “In what contexts is A true?” The
only way to answer such questions using a JTMS is to try all the alternatives and record the ones in
which A is labeled IN.

One way to get the best of both of these worlds is to combine an ATMS and a JTMS (or LTMS), letting
each handle the part of the problem-solving process to which it is best suited.

The various nonmonotonic systemns that we have described in this chapter have served as a basis for a
variety of applications. One area of particular significance is diagnosis (for example, of faults in a physical
device) [Reiter, 1987b; de Kleer and Williams, 1987]. Diagnosis is a natural application area for minimalist
reasoning in particular, since one way to describe the diagnostic task is, “Find the smalles’: set of abnormalty
t:chaving components that would account for the observed behavior.” A second application area is reasoning
about action, with a particular emphasis on addressing-the frame problem [Hanks and McDermott, 1986].
The frame problem is also natural for this kind of reasoning since it can be described as, “Assume that
everything stays the same after an action except the things that necessarily change.” A third application area
is design [Steele er al., 1989]. Here, nonmonotonic reasoning provides a basis for using common design
principies to find a promising path quickly even in a huge design space while preserving the option to consider
alternatives later if necessary. And vet another application area is in extracting intent from English expressions
(~ee Chapter 15.)

In all the systems that we have discussed, we have assumed that belief status is a binary function. An
assertion must eventually be either believed or not. Sometimes, this is toe strong an assumption. [n the next
chapter, we present techniques for dealing with uncertainty without making that assumption. Insiead, we
allow for varying degrees of belief.

EXERCISES

t. Try to formulate the ABC Murder story in preduate logic and see how far you can get.

The ¢lassic example of nonmonotonic reasoning involves birds and flying. In particular, consider the
folowing tacts:

s Most things do not fly,

* Most birds do fly, unless they are too young or dead or have a broken wing.

* Penguins and ostriches do not fly.

e Magical ostriches fly.

!‘-J

10.
11,

Symbolic Reasoning Under Uncertainty 171

» Tweety is a bird.

e Chirpy is either a penguin or an ostrich.

s Feathers is a magical ostrich,

Use one or more of the nonmonotonic reasoning systems we have discussed to answer the following
questions:

s Does Tweety fly?

¢ Does Chirpy fly?

¢ Does Feathers fly?

Does Paul fly?

Consider the missionaries and cannibals problem of Section 2.6. When you solved that problem. you
used the CWA several times (probably without thinking about it}. List some of the ways in which you
used it.

A big technical problem that arises in defining circumscription precisely is the definition of a mimmal
modcl. Consider again the prohlem of Dick, the Quaker and Republican, which we can rewrite using a
slightly different kind of AB predicate as;

Vi 1 Republican(x) 2AB1(x) — —~Pacifisi(x)
Vx 1 Quaker(x) N\ ~AB2(x) — Pacifist(x)
Republican{x)

Quaker(x)

{a) Write down the smallest models you can that describe the two extensions that we computed for
that knowledge base.

{f) Does it make sense to say that either is smaller than the other?

{¢) Prioritized circurnscription [McCarthy, 1986] attempts to solve this problem by ranking predicates
by the order in which they should be minimized. How could you use this idea to indicate a preference
as to which extension to prefer?

Consider the problem of finding clothes to wear in the moming. To solve this problem, it is necessary

to use knowledge such as;

* Wear jeans unless either they are dirty or you have a job interview today.

e Wear a sweater if it's cold.

» [t's usually cold in the winter.

e Wear sandals if it’s warm.

e [t’s usually warm in the summer,

{a) Build a JTMS-sityle database of the necessary facts to solve this problem.

(b} Show how the problem can be solved and how the solution changes as the relevant facts (such as
time of year and dirtiness of jeans) change.

Show how a JTMS could be used in medical diagnosis. Consider rules such as, “If you have a runny

nose, assume you have a cold unless it is allergy season.”

Solve the same medical reasoning problem with an ATMS.

Show how a JTMS could be used to select 2 TV program to watch. Consider rules such as, “If it is 6:00,

then watch the news on channel 2 unless there is a football game still going on.”

TMSs are useful tools in solving constraint satisfaction problems since they fa cilitate the nonmonotonic

reasoning that occurs during the search for a complete solution.

(a) Show how a JTMS could be used to solve the cryptarithmetic problems of Chapter 2.

() Show how an ATMS would solve the same problem.

We described informally the JTMS labeling process. Write a formal description of that algorithm.

Work through the details of the ATMS node labeling process whose results are shown in Fig. 7.14.

CHAPTER

8

STATISTICAL REASONING

Statistics can be made to prove anything-even the truth.

—Anonymous

So far, we have described several representation technigues that can be used to model belief systems in which,
at any given point, a particular fact is believed to be true, believed to be false, or not considered one way or the
other. For some kinds of problem solving, though, it is usefu] to be able to describe beliefs that are not certain
but for which there is some supporting evidence. Let’s consider two classes of such problems.

The first class contains problems in which there is genvine randomness in the world. Playing card games
such as bridge and blackjack is a good example of this class. Although in these problems it is not possible to
predict the world with certainty, some knowledge about the likelihood of various outcomes is available, and
we would like to be able to exploit it.

The second class contains problems that could, in principle, be modeled using the techniques we described
in the last chapter. In these problems, the relevant world is not random; it behaves “normally”” unless there is
some kind of exception. The difficulty is that there are many more possible exceptions than we care to enumerate
explicitly (using techniques such as AB and UNLESS). Many common sense tasks fall into this category, as
do many expert reasoning tasks such as medical diagnosis. For problems like this, statistical measures may
serve a very useful function as summaries of the world; rather than enumerating all the possible exceptions,
we ‘can use a numerical summary that tells us how often an exception of some sort can be expected to occur.

In this chapter we explore several techniques that can be used to augment knowledge representation
techniques with statistical measures that describe levels of evidence and belief.

8.1 PROBABILITY AND BAYES' THEOREM

An important goal for many problem-solving systems is to collect evidence as the system goes along and to
modify its behavior on the basis of the evidence. To model this behavior, we need a statistical theory of
evidence. Bayesian statistics is such a theory. The fundamental notion of Bayesian statistics is that of conditional
probability:

P(FNE)

Statistical Reasoning 173

Read this expression as the probability of hypothesis H given that we have observed evidence E. To
compute this, we need to take into account the prior probability of H (the probability that we would assign to
H if we had no evidence) and the extent to which E provides evidence of H. To do this, we need to define a
universe that contains an exhaustive, mutually exclusive set of H;’s, among which we are trying to discriminate.
Then, let

P(H)\E) = the probability that hypothesis H; is true given evidence E
P(ENH) = the probability that we will observe evidence E given that hypothesis { is true
P(H) = the a priori probability that hypothesis { is true in the absence of any specific evidence. These probabilities
are called prior probabilities or priors.
k = the number of possible hypotheses

Bayes’ theorem then states that

P(E\H,)- P(H))
P(HAE) = =
Y. P(E\H,)-P(H,)

Suppose, for example, that we are interested in examining the geological evidence at a particular location
to determine whether that would be a good place to dig to find a desired mineral. If we know the prior
probabilities of finding each of the various minerals and we know the probabilities that if a mineral is present
then certain physical characteristics will be observed, then we can use Bayes’ formuia to compute, from the
evidence we collect, how likely it is that the various minerals are present. This is, in fact, what is done by the
PROSPECTOR program [Duda et al.,, 1979], which has been used successfully to help locate deposits of
several minerals, including copper and uranium.

The key to using Bayes’ theorem as a basis for uncertain reasoning is to recognize exactly what it says.
Specifically, when we say P(A\B), we are describing the conditional probability of A given that the only
evidence we have is B, If there is also other relevant evidence, then it too must be considered. Suppose, for
example, that we are solving a medical diagnosis problem. Consider the following assertions:

S. patient has spots
M: patient has measles
F. patient has high fever

Without any additional evidence, the presence of spots serves as evidence in favor of measles. It also
serves as evidence of fever since measles would cause fever. But suppose we already know that the patient
has measles. Then the additional evidence that he has spots actually tells us nothing about the likelihood of
fever. Alternatively, either spots alone or fever alone would constitute evidence in favor of measles. If both
are present, we need to take both into account in determining the total weight of evidence. But, since spots and
fever are not independent events, we cannot just sum their effects. Instead, we need to represent explicitly the
conditional probability that arises from their conjunction. In general, given a prior body of evidence ¢ and
some new observation E, we need to compute

P(elE, H)

P(H\E, e} = P(HIE) - PeIE)

174 Artificial Intelligence

Unfortunately, in an arbitrarily complex world, the size of the set of joint probabilities that we require in
order to compute this function grows as 2" if there are n different propositions being considered. This makes
using Bayes’ theorem intractable for several reasons:

¢ The knowledge acquisition problem is insurmountable: too many probabilities have to be provided. In
addition, there is substantial empirical evidence {e.g., Tversky and Kahneman [1974| and Kahneman
e1 al. [1982]) that people are very poor probability estimators.

¢ The space that would be required to store all the probabilities is too large.

e The time required to compute the probabilities is too large.

Despite these problems, though, Bayesian statistics provide an attractive basis for an uncertain reasoning
system. As a result, several mechanisms for exploiting its power while at the same time making it tractable
have been developed. In the rest of this chapter, we explore three of these:

¢ Attaching certainty factors to rules
e Bayesian networks
e Dempster-Shafer theory

We also mention one very different numerical approach to uncertainty, fuzzy logic.

There has been an active, strident debate for many years on the question of whether pure Bayesian statistics
are adequate as a basis for the development of reasoning programs. (See, for example, Cheeseman [1985] for
arguments that it is and Buchanan and Shortliffe [1984] for arguments that it is not.) On the one hand, non-
Bayesian approaches have been shown to work well for some kinds of applications (as we see below). On the
other hand, there are clear limitations to all known techniques. In essence, the jury is still out. So we sidestep
the issue as much as possible and simply describe a set of methods and their characteristics.

8.2 CERTAINTY FACTORS AND RULE-BASED SYSTEMS

In this section we describe one practical way of compromising on a pure Bayesian system. The approach we
discuss was pioneered in the MYCIN system [Shortliffe, 1976; Buchanan and Shortliffe, 1984; Shortliffe and
Buchanan, 1975], which attempts to recommend appropriate therapies for patients with bacterial infections. It
interacts with the physician to acquire the clinical data it needs. MYCIN is an example of an expert system,
since it performs a task normally done by a human expert. Here we concentrate on the use of probabilistic
reasoning;, Chapter 20 provides a broader view of expert systems.

MYCIN represents most of its diagnostic knowledge as a set of rules. Each rule has associated with it a
certainty factor, which is a measure of the extent to which the evidence that is described by the antecedent of
the rule supports the conclusion that is given in the rule’s consequent. A typical MYCIN rule looks like:

If: (1) the stain of the organism is gram-positive, and
{2) the morphology of the organism is coccus, and
(3) the growth conformation of the organism is clumps,
then there is suggestive evidence (0.7) that
the identity of ‘the organism is staphylococcus.

This is the form in which the rules are stated to the user. They are actually represented internally in an easy-
to-manipulate LISP list structure. The rule we just saw would be represented internally as

PREMISE: {$AND (SAME CNTXT GRAM GRAMPOS)
{SAME CNTXT MORPH COCCUS}
(SAME CNTXT CONFORM CLUMPS))
ACTION: {CONCLUDE CNTXT IDENT STAPHYLOCOCCUS TALLY 0.7)

Statistical Reasaning 175

MYCIN uses these rules to reason backward to the clinical data available from its goal of finding significant
disease-causing organisms. Once it finds the identities of such organisms, it then attemnpts to select a therapy
by which the disease {s) may be treated. In order to understand how MYCIN exploits uncertain information,
we need answers to two questions: “What do certainty factors mean?” and “How does MYCIN combine the
estimates of certainty in each of its rules to produce a final estimate of the certainty of its conclusions?” A
further question that we need to answer, given our observations about the intractability of pure Bayesian
reasoning, is, “What compromises does the MYCIN technique make and what risks are associated with those
compromises?” In the rest of this section we answer all these questions.

Let’s start first with a simple answer to the first question (to which we return with a more detailed answer
later). A certainty factor (CF [, e]) is defined in terms of two components:

* MBih, e}—a measure (between 0 and 1) of belief in hypothesis # given the evidence e. MB measures
the extent to which the evidence supports the hypothesis. It is zero if the evidence fails to support the
hypothesis,

* MD[he¢]—ameasure (between () and 1) of disbelief in hypothesis /2 given the evidence e. MD measures
the extent t0 which the evidence supports the negation of the hypothesis. It is zero if the evidence
supports the hypothesis.

From these two measures, we can define the certainty factor as
CFlh,] = MB[h, e|] - MDI[h,]
Since any particular piece of evidence either supports or denies a hypothesis (but not both), and since each

MYCIN rule corresponds to one piece of evidence (although it may be a compound piece of evidence), a
single number suffices for each rule to define both the MB and MD and thus the CF.

The CF’s of MYCIN'’s rules are provided by the experts who write the @
rules. They rellect the experts’ assessments of the strength of the evidence in &)
support of the hypothesis. As MYCIN reasons, however, these CF's need to © @®a ® (B)
be combined to reflect the operation of multiple pieces of evidence and multiple ®
rules applied to a problem. Figure 8.1 illustrates three combination scenarios (©
that we need to consider. In Fig. 8.1(a), several rules all provide evidence that (@) (b} (c)

relates to a single hypothesis. In Fig. 8.1(b), we need to consider our belief in
a collection of several propositions taken together. In Fig. 8.1(c), the output
of one rule provides the input to another.

What formulas should be used to perform these combinations? Before we answer that question, we need
first to describe some properties that we would like th ~combining functions to satisfy:

Fig. 8.1 Combining
Uncertain Rules

» Since the order in which evidence is collected is arbitrary, the combining functions should be
commutative and associative.
¢ Until certainty is reached, additional confirming evidence should increase MB (and similarly for
disconfirming evidence and MD).
e If uncertain inferences are chained together, then the result should be less certain than either of the
inferences alone.
Having accepted the desirability of these properties, let’s first consider the scenario in Fig. 8.1(a), in which
several pieces of evidence are combined to determine the CF of one hypothesis. The measures of belief and
disbelief of a hypothesis given two observations s, and s, are computed from:

176 Artificial Intelligence

0 ifMDIh, s, Nyl =1
MBlhs /N s,) = -
MBIA, 3,1 + MBLh, 5,1 - (1 — MBlA, 5\]) otherwise

0 if MBLh, 5, Ns;)=1
MDIh, sy N 5,1 = .
- MD\h, 5,1 + MDih, 5] - (1 - MD[h, 5D otherwise

One way to state these formulas in English is that the measure of belief in £ is 0 if & is disbelieved with
certainty, Otherwise, the measure of belief in 2 given two observations is the measure of belief given only one
observation plus some increment for the second observation. This increment is computed by first taking the
difference between 1 (certainty) and the belief given only the first observation. This difference is the most that
can be added by the second ohservation. The difference is then scaled by the belief in & given only the second
observation. A corresponding explanation can be given, then, for the formula for computing disbelief. From
MB and MD, CF can be computed. Notice that if several sources of corroborating evidence are pooled, the
absolute value of CF will increase. If conflicting evidence is introduced, the absolute value of CF will decrease.

A simple example shows how these functions operate. Suppose we make an initial observation that confirms
our belief in & with MB = (0.3, Then MD|A,s] = 0 and CF[A, 5,] = 0.3. Now we make a second observation,
which also confirms A, with MB[A,5,] = 0.2. Now:

MBIhs, A 5] =03+02-07
=044
- MDIhs; A 5,1 = 0.0
CFlhs, /\ s,] = 0.44

You can see from this example how slight confirmatory evidence can accumulate to produce increasingly
larger certainty factors.

Next let’s consider the scenario of Fig. 8.1(b), in which we need to compute the certainty factor of a
combination of hypotheses. In particular, this is necessary when we need to know the certainty factor of a rule
antecedent that contains several clauses {as, for example, in the staphylococcus rule given above). The
combination certainty factor can be computed from its MB and MD. The formulas MYCIN uses for the MB of
the conjunction and the disjunction of two hypotheses are:

MBIk, /\ hy, €] = min(MB[h,, e],MBIh,, e])
MBI, A by, €] = max(MBlk, e, MBlAye])

MD can be computed analogously.

Finally, we need to consider the scenario in Fig. 8.[(c), in which rules are chained together with the result
that the uncertain outcome of one rule must provide the input to another. Qur solution to this problem will also
handle the case in which we must assign a measure of uncertainty to initial inputs. This could easily happen in
situations where the evidence is the outcome of an experiment or a laboratory test whose results are not
completely accurate. In such a case, the certainty factor of the hypothesis must take into account both the
strength with which the evidence suggests the hypothesis and the level of confidence in the evidence. MYCIN
provides a chaining rule that is defined as follows. Let MB’[4. 5] be the measure of belief in & given that we are
absolutely sure of the validity of 5. Let e be the evidence that led us to believe in s (for example, the actual
readings of the laboratory instruments or the results of applying other rules). Then:

Statistical Reasoning 177

MBlh, 5] = MB'[h. 5] - max(0, CF[s, ¢])

Since initial CF's in MYCIN are estimates that are given by experts who write the rules, it is not really
necessary to state a more precise definition of what a CF means than the one we have already given. The
original work did, however, provide one by defining MB (which can be thought of as a proportionate decrease
in disbelief in £ as a result of e) as:

1 if P(h) =1
MBlh, el = 1 max[P(hle), PUD)— P(h)
- P(in

otherwise

Similarly, the MD is the proportionate decrease in belief in & as a result of e:

i if P(Ry=0
MDIh, ¢] = § min[P(h|e), Pih)] — P(h)
—-P(h)

otherwise

It turns out that these definitions are incompatible with a Bayesian view of conditional probability. Small
cbanges to them, however, make them compatible [Heckerman, 1986]. In particular, we can redefine MB as

1 it P(h)=1
MBih, e] = { max[P(hle), P(h)] - P(h)
(1— P(h)- P(hle)

otherwise

The definition of MD must also be changed similarly.

With these reinterpretations, there ceases to be any fundamental conflici between MYCIN’s techniques
and those suggested by Bayesian statistics. We argued at the end of the last section that pure Bayesian statistics
usually leads to intractable systems. But MYCIN works [Buchanan and Shortliffe, 1984]. Why?

Each CFin a MYCIN rule represents the contribution of an individual rule to MY CIN’s belief in a hypothesis.
In some sense then, it represents a conditional probability, P(AAE). But recall that in a pure Bayesian system,
P(H\E) describes the conditional probability of H given that the only relevant evidence is E. If there is other
evidence, joint probabilities need to be considered. This is where MYCIN diverges from a pure Bayesian
system, with the result that it is easier to write and more efficient to execute, but with the corresponding risk,
that its behavior will be counterintuitive. In particular, the MY CIN formulas for all three combination scenarios
of Fig. 8.1 make the assumption that all rules are independent. The burden of guaranteeing independence (at
least to the extent that it matters) is on the rule writer. Each of the combination scenarios is vulnerable when
this independence assumption is violated.

Let’s first consider the scenario in Fig. 8.1(a). Our example rule has three antecedents with a single CF
rather than three separate rules; this makes the combination rules unnecessary. The rule writer did this because
the three antecedents are not independent. To see how much difference MYCIN's independence assumption
can make, suppose for a moment that we had instead had three separate rules and that the CF of each was 0.6.
This could happen and still be consistent with the combined CF of 0.7 if the three conditions overlap
substantially. If we apply the MYCIN combination formula to the three separate rules, we get

178 Artificial Intelligence

MBlhs A\ 5, = 0.6 + (0.6 - 0.4)
=084
MBIh.(s, A\ 53) 7\ 53] = 0.84 + (0.6 - 0.16)
=0.936

This is a substantially different result than the true value, as expressed by the expert, of (.7.
Now let’s consider what happens when independence assumptions are violated in the scenario of Fig,
8.1(c). Let’s consider a concrete example in which:

S: sprinkler was on Iast night
W: grass is wet
R: it rained last night

We can write MY CIN-style rules that describe predictive relationships among these three events:

I1f: the sprinkler was on last night
then there is suggestive evidence (0.9) that
the grass will be wet this morning

Taken alone, this rule may accurately describe the world. But now consider a second rule:

If: the grass is wet this morning
then there is suggestive evidence (0.8) that
it rained last night

Taken alone, this rule makes sense when rain is the most common source of water on the grass. But if the
two rules are applied together, using MYCIN’s rule for chaining, we get

MB[WS =038 {sprinkler suggests wet}
MB[RW]=08-09=0.72 {wet suggests rains}

In other words, we believe that it rained because we believe the sprinkler was on. We get this despite the
fact that if the sprinkler is known to have been on and to be the cause of the grass being wet, then there is
actually almost no evidence for rain (because the wet grass has been explained some other way). One of the
major advantages of the, modularity of the MYCIN rule system is that it allows us to consider individual
antecedent/consequent relationships independently of others. In particular, it lets us talk about the implications
of a proposition without going back and considering the evidence that supported it. Unfortunately, this example
shows that there is a danger in this approach whenever the justifications of a belief are important to determining
its consequences. In this case, we nced to know why we believe the grass is wet (e.g., because we observed it
to be wet as opposed to because we know the sprinkler was on) in order to determine whether the wet grass is
evidence for it having just rained.

It is worth pointing out here that this example illustrates one specific rule structure that almost always
causes trouble and should be avoided. Notice that our first rule describes a causal relationship (sprinkier
causes wet grass). The second rule, although it looks the same, actually describes an inverse causality relationship
(wet grass is caused by rain and thus is evidence for its cause). Although one can derive evidence for a
symptom from its cause and for a cause from observing its symptom, it is important that evidence that is
derived one way not be used again to go back the other way with no new inforrnation. To avoid this problem,

Statistical Reasoning 179

many rule-based systems either limit their rules to one structure or clearly partition the two kinds so that they
cannot interfere with each other. When we discuss Bayesian networks in the next section, we describe a
systematic solution to this problem.

We can summarize this discussion of certainty factors and rule-based systems as follows. The approach
makes strong independence assumptions that make it relatively easy to use; at the same time assumptions
create dangers if rules are not written carefully so that important dependencies are captured. The approach
can serve as the basis of practical application programs. It did so in MYCIN. It has done so in a broad array of
other systems that have been built on the EMYCIN platform [van Melle ez al., 1981], which is a generalization
(often called a shell) of MY CIN with all the domain-specifie rules stripped out. One reason that this framework
is useful, despite its limitations, is that it appears that in an otherwise robust system the exact numbers that are
used do not matter very much, The other reason is that the rules were carefully designed to avoid the major
pitfalls we have just described. One other interesting thing about this approach is that it appears to mimic
quite weil [Shultz er al., 1989] the way people manipulate certainties.

8.3 BAYESIAN NETWORKS

In the last section, we described CF's as a mechanism for reducing the complexity of a Bayesian reasoning
system by making some approximations to the formalism. In this section, we describe an alternative approach,
Bayesian networks [Pearl, 19881, in which we preserve the formalism and rely instead on the modularity of
the world we are trying to model. The main idea is that to describe the real world, it is not necessary to use a
huge joint probabililify table in which we list the probabilities of all conceivable combinations of events.
Most events are conditionally independent of most other ones, so their interactions need not be considered.
Instead, we can use a more local representation in which we will describe clusters of events that interact.

Recall that in Fig. 8.1 we used a network notation to describe the various kinds of constraints on likelihoods
that propositions can have on each other. The idea of constraint networks turns out to be very powerful. We
expand on it in this section as a way to represent interactions among events; we also return to it later in
Sections 11.3.1 and 14.3, where we talk

about other ways of representing

knowledge as sets of constraints.

Let’s return to the example of the
sprinkler, rain, and grass that we introduced @ m @ m
in the last section. Figure 8.2(a) shows the

flow of constraints we described in

MYCIN-style rules. But recall that the @
problem that we encountered with that @) &
example was that the constraints flowed Fig. 8.2 Representing Causality Uniformly
incorrectly from “sprinkler on” to “rained last night.” The problem was that we failed to make a distinction
that turned out to be critical. There are two different ways that propositions can influence the likelihood of
each other. The first is that causes influence the likelihood of their symptoms; the second is that observing a
symptom affects the likelihood of all of its possible causes. The idea behind the Bayesian network structure is
to make a clear distinction between these two kinds of influence.

Specifically, we construct a directed acyclic graph (DAG) that represents causality relationships among
variables. The idea of a causality graph {or network) has proved to be very useful in several systems, particularly
medical diagnosis systems such as CAS- NET [Weiss ef al., 1978] and INTERNIST/CADUCEUS [Pople,
1982]. The variables in such a graph may be propositional (in which case they can take on the values TRUE
and FALSE) or they may be variables that take on values of some other type {e.g., a specific disease, a body

180 Artificial Intelligence

temperature, or a reading taken by some other diagnostic device). In Fig. 8.2(h). we show a causality graph
for the wet grass example. In addition 1o the three nodes we have been talking about, the graph contains a new
node corresponding to the propositional variable that tells us whether it is currently the rainy season.

A DAG, such as the one we have just drawn, illustrates the causality relationships that occur among the
nodes it contains. In order to use it as a basis for probabilistic reasoning, however, we need more information.
In particular, we need to know, for each value of a parent node, what evidence is provided about the values
that the child node can take on. We can state this in a table in which the conditional probabilities are provided.
We show such a table for our example in Fig. 8.3, For example. from the table we see that the prior probability
of the rainy season is 0.5. ““Then, if it is the rainy season, the probability of rain on a given night is 0.9; if it is
not, the probability is only 0.1.

Attribute Probability
X WetlSprinkler, Rain) 0.95
P{Wet\Sprinkler, -~Rain) 0.9

X Wet\-Sprinkler, Rain) 08

X Wet\=Sprinkler, -Rain) 01

X Sprinkler\RainySeason) 0.0

X Sprinkleri-RainySeason) 1.0

P Rain \RainySeason) 0.9

X Rain \ =RainySeason) 0.1

Pl RainySeason) 0.5

Fig. 8.3 Conditional Probabilities for a Bayesian Network

To be useful as a basis for problem solving, we need a mechanism for computing the influence of any
arbitrary node on any other. For example, suppose that we have observed that it rained last night. What does
that tell us about the probability that it is the rainy season? To answer this question requires that the initial
DAG be converted to an undirected graph in which the arcs can be used to transmit probabilities in either
direction, depending on where the evidence is coming from. We also require a mechanism for using the graph
that guarantees that probabilities are transmitted correctly. For example, while it is true that observing wet
grass may be evidence for rain, and observing rain is evidence for wet grass, we must guarantee that no cycle
is ever traversed in such a way that wet grass is evidence for rain, which’is then taken as evidence for wet
grass, and so forth.

There are three broad classes of algorithms for doing these computations: a message-passing method
IPearl, 1988], a clique triangulation method [Lauritzen and Spiegelhalter, 1988], and a variety of stochastic
algorithms. The idea behind these methods is to take advantage of the fact that nodes have limited domains of
influence. Thus, although in principle the task of updating probabilities consistently throughout the network
is intractable, in practice it may not be. In the clique triangulation method, for example, explicit arcs are
introduced between pairs of nodes that share a common- descendent. For the case shown in Fig. 8.2(b), a link
would be introduced between Sprinkler and Rain. This explicit link supports assessing the impact of the
observation Sprinkler on the hypothesis Rain. This is important since wet grass could be evidence of either of
them. but wet grass plus one of its causes is not evidence for the competing cause since an alternative explanation
for the observed phenomenon already exists.

The message-passing approach is based on the observation that to compute the probability of a node A
given what is known about other nodes in the network, it is necessary to know three things:

s g-the total support arriving at A from its parent nodes (which represent its causes).
» A-the total support arriving at A from its children {which represent its symptoms).
» The entry in the fixed conditional probability matrix that relates A to its causes.

Statistical Reasoning ' 181

Several methods for propagating & and A messages and updating the probabilities at the nodes have been
developed. The structure of the network determines what approach can be used. For example, in singly
connected networks (those in which there is only a single path between every pair of nodes), a simpler
algorithm can be used than in the case of multiply connected ones. For details, see Pearl [198§].

Finally, there are stochastic, or randomized algorithms for updating belief networks. One such algorithm
[Chavez, 1989] transforms an arbitrary network into a Markov chain. The idea is to shield a given node
probabilistically from most of the other nodes in the network: Stochastic algorithms run fast in practice, but
may not yield absolutely correct results.

8.4 DEMPSTER-SHAFER THEORY

So far, we have described several technigues, all of which consider individual propositions and assign to each
of them a point estimate (i.e., a single number) of the degree of belief that i1s warranted given the evidence. In
this section, we consider an alternative technique, called Dempster-Shafer theory |Dempster, 1968; Shafer,
1976]. This new approach considers sets of propositions and assigns to each of thein an interval

[Belief, Plausibility]

in which the degree of belief must lie. Belief (usually denoted Bel) measures the strength of the evidence in
favor of a set of propositions. It ranges from { (indicating no evidence) to 1 (denoting certainty).
Plausibility (P} is denned to be

Pi(s) =1 — Bel(=y)

[t also ranges from (} to 1 and measures the extent to which evidence in favor of —s leaves room for belief
in 5. In particular, if we have certain evidence in favor of s, then Bel(—s) will be 1 and Pi(s) will be 0. This
tells us that the only possible value for Bel(s) is also O.

The belief-plausibility interval we have just defined measures not only our level of belief in some
propositions, but also the amount of information we have. Suppose that we are currently considering three
competing hypotheses: A, B, and C. If we have no information, we represent that by saying, for each of them,
that the true likelihood is in the range {0,1]. As evidence is accumulated, this interval can be expected o
shrink, representing increased confidence that we know how likely each hypothesis is. Note that this contrasts
with a pure Bayesian approach, in which we would probably begin by distributing the prior probability equally
among the hypotheses and thus assert for each that P(4) = 0.33. The interval approach makes it clear that we
have no information when we start. The Bayesian approach does not, since we could end up with the same
probability values if we collected volumes of evidence, which taken together suggest that the three values
occur equally often, This difference can matter if one of the decisions that our program needs to make is
whether to collect more evidence or to act on the basis of the evidence it already has.

So far we have talked intuitively about Bel as a measure of our belief in some ., hypothesis given some
evidence, Let’s now define it more precisely. To do this, we need to start, just as with Bayes’ theorem, with an
exhaustive universe of mutually exclusive hypotheses. We'll call this the frame of discernment and we’ll
write it as ©, For example, in a simplified diagnosis problem, © might consist of the set {All, Flu,Cold, Pneu|:

All: allergy

Flu: flu

Cold: cold

Preu: pneumonia

182 Artificial Intelligence

Our goal is to attach some measure of belief to elements of & However, not all evidence is directly
supportive of individual elements. Often it supports scts of elements (i.e., subsets of @). For example, in our
diagnosis problem, fever might support { Flu, Cold, Pneu). In addition, since the elements of & are mutually
exclusive, evidence in faver of some may have an affect on our belief in the others. In a purely Bayesian
system, we can handle both of these phenomena by listing all of the combinations of conditional probabilities.
But our goal is not to have to do that. Dempster-Shafer theory lets us handle interactions by manipuiating sets
of hypotheses directly.

The key function we use is a probability density function, which we denote as m. The function m is defined
not just for elements of @but for all subsets of it (including singleton subsets, which correspond to individual
elements). The quantity m(p) measures the amount of beliet that is currently assigned to exactly the set p of
hypotheses. If & contains n elements, then there are 2" subsets of . We must assign m so that the sum of all
the m values assigned to the subsets of @is 1. Although dealing with 2" values may appear intractable, it
Usually turns out that many of the subsets will never need to be considerad because they have no significance
in the problem domain (and so their associated value of m will be ().

Let us see how m works for our diagnosis problem. Assume that we have no information about how to
choose among the four hypotheses when we start the diagnosis task. Then we define m as:

{6} (Lo

All other values of m are thus 0. Although this means that the actual value must be some one element Afl,
Flu, Cold, or Prieu, we do not have any information that allows us to assign belief in any other way than to say
that we are sure the answer is somewhere in the whole set. Now suppose we acquire a piece of evidence that
suggests (at a level of 0.6) that the correct diagnosis is in the set {Flu, Cold, Pneu}. Fever might be such a
piece of evidence. We update m as follows:

[Fiu,Cold, Pneu} (0.6}
{& (0.4

At this point, we have assigned to the set {Fiu, Cold, Pneu} the appropriate belief. The remainder of our
belief still resides in the larger set ©. Notice that we do not make the commitment that the remainder must be
assigned to the complement of { Flu, Cold, Pneu}.

Having defined m, we can now define Bel(p) for a set p as the sum of the values of m for p and for all of its
subsets. Thus Bel(p) is our overall belief that the correct answer lies somewhere in the set p.

In order to be able to use m (and thus Bel and P!I) in reasoning programs, we need to define functions that
enable us to combine m’s that arise from multiple sources of evidence.

Recall that in our discussion of CF’s, we considered three combination scenarios, which we illustrated in
Fig. 8.1. When we use Dempster-Shafer theory, on the other hand, we do not need an explicit combining
function for the scenario in Fig. 8.1(b) since we have that capability already in our ability to assign a value of
n to a set of hypotheses. But we do need a mechanism for performing the combinations of scenarios (¢) and
(¢). Dempster’s rule of combination serves both these functions. It allows us to combine any two belief
functions (whether they represent multiple sources of evidence for a single hypothesis or multiple sources of
evidence for different hypotheses).

Suppose we are given two belief functions m, and m,. Let X be the set of subsets of © to which m, assigns
a nonzero value and let ¥ be the corresponding set for m,. We define the combination m, of m| and m, to be

= me=z m(X) my ()
m3(Z)
1 X e XD - my(Y)

Statistical Reasoning 183

This gives us a new belief function that we can apply to any subset Z of @ We can describe what this formula
is doing by looking first at the simple case in which all ways of intersecting elements of X and elements of ¥
generate nonempty sets. For example, suppose m, corresponds to our belief after observing fever:

{Flu, Cold, Pneu) (0.6)
e 0.4)

Suppose m, corresponds to our belief after observing a runny nose:

[All, Flu,Cold) (0.8)
e (0.2)

Then we can compute their combination m; using the following table (in which we further abbreviate
disease names), which we can derive using the numerator of the combination rule:

(A, EC} (0.8 e (0.2)
[FEC P} (06) {E, C} (0.48) [EC P} (012
e 0.4 {A,ECY 032 © (0.08)

The four sets that are generated by taking all ways of intersecting an element of X and an element of Y are
shown in the body of the table. The value of m; that the combination rule associates with each of them is
computed by multiplying the values of m; and m, associated with the elements from which they were derived.
Although it did not happen in this simple case, it is possible for the same set to be derived in more than one
way during this intersection process. If that does occur, then to compute m, for that set, it is necessary to
compute the sum of all the individual values that are generated for all the distinct ways in which the set is
produced (thus the summation sign in the numerator of the combination formula).

A slightly more complex situation arises when some of the subsets created by the intersection operation are
empty. Notice that we are guaranteed by the way we compute m, that the sum of all its individual values is 1
(assuming that the surns of all the values of m, and m, are 1). If some empty subsets are created, though, then
some of m- will be assigned to them. But from the fact that we assumed that 0 is exhaustive, we know that the
true value of the hypothesis must be contained in some nonempty subset of 0. So we need to redistribute any
belief that ends up in the empty subset proportionately across the nonempty ones. We do that with the scaling
factor shown in the denominator of the combination formula. If no nonempty subsets are created, the scaling
factor is }, so we were able to ignore it in our first example. But to see how it works, let's add a new piece of
evidence to our example. As a result of applying m, and m,, we produced my.

{Fiu, Cold} (0.48)
LAl Flu.Cold) 0.32)
[Flu,Cold, Pneu) 0.12)
] (0.08)

Now, let m, correspond to our belief given just the evidence that the problem goes away when the patient
goes on a trip: .

(All) 0.9)
) 0.1

184 Artificial Intelligence

We can apply the numerator of the combination rule to produce (where * denotes the empty set):

(0.9) o (0.1)

[F,C} (048) o
{ALEC} (032) {A
{EC P} (012) ¢
2] (0.08) {4

(0432 [EC) {0.048)
(0.288) {A F C} (0.032)
(0.108) {F C P} (0.012)
0072y @ (0.008)

But there is now a total belief of 0.54 associated with ¢; only 0.45 is associated with outcomes that are in fact
possible. So we need to scale the remaining values by the factor 1 — 0.54 = 0.46. if we do this, and also combine
alternative ways of generating the set {All, Flu, Cold}, then we get the final combined belief function, m.

{Flu, Cold} (0.104)
{All, Flu, Cold} (0.696)
{Flu,Cold, Pneu} (0.026)
{Aly (0.157)
- e (0.017)
! l .
1 ________________
tall
very tail
0 height g

{(a) Fuzzy Membership

0

height
(b) Conventional Membership

Fig. 8.4 Fuzzy versus Conventional Set Membership

In this example, the percehtage of m; that was initially assigned to the empty set was large (over half). This
happens whenever there is conflicting evidence (as in this case between m, and m,).

8.5 FUZZY LOGIC

In the techniques we have discussed so far, we have hot modified the mathematical underpinnings provided
by set theory and logic. We have instead augmented those ideas with additional constructs provided by
probability theory. In this section, we take a different approach and briefly consider what happens if we make
fundamental changes to our idea of set membership and corresponding changes to our definitions of logical

operations. -

The motivation for fuzzy sets is provided by the need to represent such propositions as:

John is very tall.

Mary is slightly iil.

Sue and Linda are close friends.

Exceptions to the rule are nearly impossible.
Most Frenchmen are not very tall.

While traditional set theory defines set membership as a boolean predicate, fuzzy set theory allows us to
represent set membership as a possibility distribution, such as the ones shown in Fig. 8.4(a) for the set of tall

Statistical Reasoning 185

people and the set of very tall people. Notice how this contrasts with the standard boolean definition for tall
people shown in Fig. 8.4(b). In the latter, one is either tali or not and there must be a specific height that
defines the boundary. The same is true for very talt. In the former, one’s tallness increases with one’s height
until the value of 1 is reached.

Once set membership has been redefined in this way, it is possible to define a reasoning system based on
techniques for combining distributions [Zadeh, 1979] (or see the papers in the journal Fuzzy Sets and Systems).
Such reasoners have been applied in control systems for devices as diverse as trains and washing machines. A
typical fuzzy logic control system has been described in Chapter 22.

T SEEE ek 8, D D L ¢ 30

T R e e TR T S T R R T B

SUMMARY

T e B n b B B g
B e T

AEETRE BB TUA A TARMa e nd s

In this chapter we have shown that Bayesian statistics provide a good basis for reasoning under various kinds
of uncertainty, We have also, though, talked about its weaknesses in complex real tasks, and so we have talked
about ways in which it can be modified to work in practical domains. The thing that all of these modifications
have in cornmon is that they substitute, for the huge joint probability malrix that a pure Bayesian approach
requires, a more structured representation of the facts that are relevant to a particular problem. They typically
do this by combining probabilistic information with knowledge that is represented using one or more other
representational mechanisms, such as rules or constraint networks.

Comparing these approaches for use in a particular problem-solving program is not always straightforward,
since they differ along several dimensions, for example:

¢ They provide different mechanisms for describing the ways in which propositions are not independent
of each other.

e They provide different techniques for representing ignorance.

e They differ substantially in the ease with which systems that use them can be built and in the
computational complexity that the resulting systems exhibit.

We have also presented fuzzy logic as an alternative for representing some kinds of uncertain knowledge.
Although there remain many arguments about the relative overall merits of the Bayesian and the fuzzy
approaches, there is some evidence that they may both be useful in capturing different kinds of information,
As an example, consider the proposition

John was pretty sure that Mary was scriously ill.

Bayesian approaches naturally capture John’s degree of certainty, while fuzzy techniques ran describe the
degree of Mary’s illness. _

Throughout all of this discussion, it is important to keep in mind the fact that although we have been
discussing techniques for representing knowledge, there is another perspective from which what we have
really been doing is describing ways of representing lack of knowledge. In this sense, the techniques we have
described in this chapter are fundamentally different from the ones we talked about earlier. For example, the
truth values that we manipulate in a logical systemn characterize the formulas that we write; certainty measures,
on the other hand, describe the exceptions — the facts that do not appear anywhere in the formulas that we
have written. The consequences of this distinction show up in the ways that we can interpret and manipulate
the formulas that we write. The most important difference is that logical formulas can be treated as though
they represent independent propositions. As we have seen throughout this chapter, uncertain assertions cannot.
As aresult, forexample, while implication is transitive in logical systems, we often get into trouble in uncertain

186 Artificial Intelligence

systems if we treat it as though it were (as we saw in our first treatment of the sprinkler and grass example).
Another difference is that in logical systems it is necessary to find only a single proof to be able to assert the
iruth value of a proposition. All other proofs, -if there are any, can safely be ignored. In uncertain systems, on
the other hand, computing belief in a proposition requires that all available reasoning paths be followed and
corabined.

One final comment is in order before we end this discussion. You may have noticed throughout this chapter
that we have not maintained a clear distinction among such concepts as probability, certainty, and belief. This
is because although there has been a great deal of philosophical debate over the meaning of these various
terms, there is no clear argreement on how best to interpret thern if our goal is to create working programs.
Although the idea that probability should be viewed as a measure of belief rather than as a summary of past
experience is now quite widely held, we have chosen to avoid the debate in this presentation. Instead, we have
used all those words with their everyday, undifferentiated meaning, and we have concentrated on providing
simple descriptions of how several algorithms actually work. If you are interested in the philosophical issues,
see, for example, Shafer [1976] and Pearl [1988].

Unfortunately, aithough in the last two chapters we have presented several important approaches to the
problem of uncertainty management, we have barely scraped the surface of this area. For more information,
see Kana} and Lemmer [1986], Kanal and Lemmer [1988], Kanal er al. [1989], Shafer and Pearl [1990], Clark
[1990]. In particular, our list of specific techniques is by no méans complete. For example, you may wish to
look into probabilistic logic [Nilsson, 1986; Halpem, 1989], in which probability theory is combined with
logic so that the truth value of a formula is a probability value (between O and 1) rather than a boolean value
(TRUE or FALSE). Or you may wish to ask not what statistics can do for Al but rather what Al can do for
statistics. In that case, see Gale [1986].

EXERCISES

At MR P AS S R TR TR G TRTRIL AR L BT DTN e el o i . i 5 SFE e R W Bt wad dBm il be menrn vhat LRT al 0 wa 3E Wy

1. Consider the following puzzle:

A pea is placed under one of three shells, and the shells are then manipulated in such a fashion
that all three appear to be equally likely to contain the pea. Nevertheless, you win a prize if you
guess the correct shell, so you make a guess. The.person running the game does know the correct
shell, however, and uncovers one of the shells that you did not choose and that is empty. Thus,
what remains are two shells: one you chose and one you did not choose. Furthermore, since the
uncovered shell did not contain the pea, one of the two remaining shells does contain it. You are
offered the opportunity to change your selection to the other shell. Should you?

Work through the conditional probabilities mentioned in this problem using Bayes’ theorem. What do
the results tell about what you should do’
2. Using MYCIN’s rules for inexact reasoning, compute CF MB, and MD of h, given three observations
where
CF(h), 0,) =0.5
CF(h;, 0,) =03
CF(hy, 0,) =-0.2
3. Show that MYCIN’s combining rules satisfy the three properties we gave for them.
4. Consider the following set of propositions:
patient has spots
patient has measles

Statistical Reasoning 187

patient has high fever
patient has Rocky Mountain Spotted Fever
patient has previously been innoculated against measles
patient was recently bitten by a tick
patient has an allergy
(a) Create a network that defines the causal connections among these nodes.
(b) Make it a Bayesian network by constructing the necessary conditional probability matrix.
. Consider the same propositions again, and assume our task is to identify the patient’s disease using
Dempster-Shafer theory.
(a) What is @7
{b) Define a set of m functions that describe the depéndencies among sources of evidence and elements
of &’ '
(¢) Suppose we have observed spots, fever, and a tick bite. In that case, what is our
Bel({ RockyMountainSpottedFever})?
. Define fuzzy sets that can be used to represent the list of propositions that we gave at the beginning of
Section 8.5.
. Consider again the ABC Murder story from Chapter 7. In our discussicn of it there, we focused on the
use of symbolic techniques for representing and using uncertain knowledge. Let’s now explore the use
of numeric techniques to solve the same problem. For each part below, show how knowledge could be
represented. Whenever possible, show how it can be combined to produce a prediction of who committed
the murder given at least one possible configuration of the evidence.
(a) Use MYCIN-style rules and CF’s. Example rules might include:

If (1) relative (x,y). and
{2) on speaking terms (x,vy).

then there is suggestive evidence (0.7) that
will-lie-for (x,y)

(b) Use Bayesian networks. Represent as nodes such propositions as brother- in-law-lied, Cabot-at-
ski-meet, and so forth.
{c) Use Dempster-Shafer theory. Examples of/w’s might be:

m, = {Abbott, Babbitt) (0.8) {beneficiaries in will
O (0.2)

my = {Abbott, Cabot) (0.7) {in line for his job)
e 03

{d)} Use fuzzy logic. For example, you might want to define such fuzzy sets as honest people or greedy
people and describe Abbott, Babbitt, and Cabot’s memberships in those sets.
{e) What kinds of information arc easiest (and hardest) to represent in each of these frameworks?

CHAPTER

9

WML B e RN i BRI e s R T APt S T e

WEAK SLOT-AND-FILLER STRUCTURES

Speech is the representation of the mind, and writing is the representation of speech

—Aristotle
(384 BC - 322 BC), Greek philosopher

In this chapter, we continue the discussion we began in Chapter 4 of slot-and-filler structures. Recall that we
originally introduced them as a device to support property inheritance along isu¢ and instance links. This is an
important aspect of these structures. Monotonic inheritance can be performed substantially more efficiently
with such structures than with pure logic, and nonmonotonic inheritance is easily supported. The reason that
inheritance is easy is that the knowledge in slot-and-filler systems is structured as a set of entities and their
attributes. This structure turns out to be a useful one for other reasons besides the support of inheritance,
though, including:

» Itindexes assertions by the entities they describe. More formally, it indexes binary predicates [such as
team|Three-Finger-Brown, Chicago-Cubs) by their first argument. As a result, retrieving the value for
an attribute of an entity is fast.

» [t makes it easy to describe properties of relations. To do this in a purely logical system requires some
higher-order mechanisms.

» It is a form of object-oriented programming and has the advantages that such systems normally have,
including modularity and ease of viewing by people.

We describe two views of this kind of structure: semantic nets and frames. We talk about the representations
themselves and about techniques for reasoning with them. We do not say much, though, about the specific
knowledge that the structures should contain. We call these “knowledge-poor” structures “weak,” by analogy
with the weak methods for problem solving that we discussed in Chapter 3. In the next chapter, we expand
this discussion to include *“strong” slot-and-filler structures, in which specific commitments to the content of
the representation are made.

9.1 SEMANTIC NETS

The main idea behind semantic nets is that the meaning of a concept comes from the ways in which it is
connected to other concepts. In a semantic net, information is represented as a set of nodes connected to each

Weak Siot-and-Filler Structures 189

other by a set of labeled arcs, which represent relationships among the nodes. A fragment of a typical semantic

net is shown in Fig. 9.1.
isa

instance

Fig. 9.1 A Semantic Network

uniform-
color

Brook!yn-Dodgeﬂ

This network contains examples of both the isa and instance relations, as well as some other, more domain-
specific relations like tearn and uniform-color. In this network, we could use inheritance to derive the additional
relation

has-part (Pee-Wee-Reese, Nose)

9.1.1 Intersection Search

One of the early ways that semantic nets were used was to find relationships among objects by spreading
activation out from each of two nodes and seeing where the activation met. This process is called intersection
search [Quillian, 1968]. Using this process, it is possible to use the network of Fig. 9.1 to answer questions
such as “What is the connection between the Brooklyn Dodgers and blue?”! This kind of reasoning exploits
one of the important advantages that slot-and-filler structures have over purely logical representations because
it takes advantage of the entity-based organization of knowledge that slot-and-fiiler representations provide.

‘To answer more structured questions, however, requires networks that are themselves more highly structured.
In the next few sections we expand and refine our notion of a network in order to support more sophisticated
reasoning.

9.1.2 Representing Nonbinary Predicates

Semantic nets are a natural way to represent relationships that would appear as ground instances of binary
predicates in predicate logic. For example, some of the arcs from Fig. 9.1 could be represented in logic as

isa(Person, Mammal)

instance{ Pee-Wee-Reese, Person)
team(Pee-Wee-Reese, Brooklyn-Dodgers)
uniform-color(Pee-Wee-Reese, Blue)

But the knowledge expressed by predicates of other arities can also be expressed in semantic nets. We have
already seen that many unary predicates in logic can be thought of as binary predicates using some very
general-purpose predicates, such as isa and irsfance. So, for example,

man(Marcus)

! Actually, to do this we need to assume that the inverses of the links we have shown also exist.

190 Artificial Intelligence

could be rewritten as

instance{Marcus, Man)

thereby making it easy to represent in a semantic net.

Three or more place predicates can also be converted to a binary form by creating one new object representing
the entire predicate statement and then introducing binary predicates to describe the relationship to this new
object of each of the original arguments. For example, suppose we know that

score{Cubs, Dodgers, 5-3)
visiting
This can be represented in a semantic net by team
creating a node to represent the specific game and
then relating each of the three pieces of information
to it. Doing this produces the network shown in Fig.
9.2. Fig. 9.2 A Semantic Net for an n-Place Predicate

This technique is particularly unseful for
representing the contents of a typical declarative
sentence that describes several aspects of a particular

event, The sentence

home-team

Instance instance

object

John gave the book to Mary. Ev7
beneficiary
could be represented by the network shown in [ﬁ'
Fig. 9.3.2 In fact, several of the earliest uses of
semantic nets were in English-understanding Fig. 9.3 A Semantic Net Representing a Sentence
programs.

9.1.3 Making Some Important Distinctions

In the networks we have described so far, we have glossed over some distinctions that are important in
reasoning. For example, there should be a difference between a link that defines a new entity and one that
relates two existing entities. Consider the net

Both nodes represent objects that exist independently of their relationship to each other. But now suppose
we want to represent the fact that John is talter than Bill, using the net

B
" height haight
H1 greater-than Ha

The nodes A1 and H2 are new concepts representing John’s height and Bill’s height, respectively. They are
defined by their relationships to the nodes John and Bill. Using these defined concepts, it is possible to

2 The node labeled BK23 represents the particular book that was referred to by the phrase “the book.” Discovering which
particular book was meant by that phrase is similar to the problem of deciding on the correct referent for a pronoun, and
it can be a very hard problem. These issues are discussed in Section 15.4.

Weak Slot-and-Filler Structures 191

A

represent such facts as that John’s height increased, which we could not do before. {The number 72 increased?)
Sometimes it is useful to introduce the arc value to make this distinction clear. Thus we might use the
following net to represent the fact that John is 6 feet tall and that he is taller than Bill:

height height
greater-than

H2

Value

The procedures that operate on nets such as this can exploit the fact that some arcs, such as height, define
new entities, while others, such as greater-than and value, merely describe relationships among existing
entities.

Another example of an important distinction we have missed is the difference between the properties of a
node itself and the properties that a node simply holds and passes on to its instances. For example, it is a
property of the node Person that it is a subclass of the node Mammal. But the node Person does not have as
one of its parts a nose. Instances of the node Person do, and we want them to inherit it.

It is difficult to capture these distinctions without assigning more structure to our notions of node, link, and
value. In the next section, when we talk about frame systems, we do that. But first, we discuss a network-
oriented solution to a simpler problem; this solution illustrates what can be done in the network model but at
what price in complexity.

9.1.4 Partitioned Semantic Nets

Suppose we want to represent simple quantified expressions in semantic nets. One way to do this is to partition
the semantic net into a hierarchical set of spaces, each of which corresponds to the scope of one or more
variables [Hendrix, 1977]. To see how this works, consider first the simple net shown in Fig. 9.4(a). This net
corresponds to the statement

The dog bit the mail carrier

The nodes Dot’s. Bite, and Mail-Carrier represent the classes of dogs, bitings, and mail carriers, respectively,
while the nodes d, b, and m represent a particular dog, a particular biting, and a particular mail carrier. This
fact can easily be represented by a single net with no partitioning.

But now suppose that we want to represent the fact

Every dog has bitten a mail carrier,
or, in logic:
Vx Doglx) = 3y : Mail-Carrier (y) /\ Bite / (x, ¥)
To represent this fact, it is necessary to encode the scope of the universally quantified variable x. This can
be done using partitioning as shown in Fig. 9.4(b). The node g stands for the assertion given above. Node g is

an instance of the special class GS of general statements about the world (i.e., those with universal quantifiers).
Every element of G5 has at least two atiributes: a form, which states the relation that is being asserted, and one

192 Artificial Intelligence

or more ¥ connections. one for each of the universally quantified variables. [n this example, there is only one
such vanable d, which can stand for any element of the class Dogs. The oiher two variables in the form, b and
m, are understood to be existentially quantified. In other words, for every dog d, there exists a biting event b,
and a mail carrier /n, such that 4 is the assailant of b and m 1s the victim.

Mail- Mail- |SA
carrier Dogs | | Bite | |carrier
isa isa isa isal 87
b m
assaifant victim assaitant victim
(a) (b}
SA SA
GS |Dogs| [Bite || Constables] Dogs| | Bite | | Mail-carrier
L .
. isa isa isa isal 571
isa p 5L almm
\0‘@ isa isa S1 " salﬁg%n
v b v 4
gssailant victim g 9] form

() {d)

Fig. 9.4 Using Partitioned Semantic Nets

To see how partitioning makes variable quantification explicit, consider next the similar sentence:
Every dog in town has bitten the constable.

The representation of this sentence is shown in Fig. 9.4(c). In this net, the node ¢ representing the victim
lies outside the form of the general statement. Thus it is not viewed as an existentially quantified variable
whose value may depend on the value of d. Instead it is interpreted as standing for a specific entity (in this
case, a particular constable), just as do other nodes in a standard, nonpartitioned net.

Figure 9.4(d} shows how yet another similar sentence:

Every dog has bitten every mail carrier.

would be represented. In this case, g has two V links, one pointing to d, which represents any dog. and one
pointing to s, representing any mail carrier,

The spaces of a partitioned semantic net are related to each other by an inclusion hierarchy. For example,
in Fig. 9.4(d), space 51 is included in space SA. Whenever a search process operates in a partitioned semnantic
net, it can explore nodes and arcs in the space from which it starts and in other spaces that contain the starting
point, but it cannot go downward, except in special circumstances, such as when a form arc is being traversed.
So, returning to Fig. 9.4(d), from node 4 it can be determined that & must be a dog. But if we were to start at
the node Dogs and search for all known instances of dogs by traversing isa links, we would not find 4 since
it and the link to it are in the space S1, which is at a lower level than space SA. which contains Dogs. This is
important, since d does not stand for a particular dog; it is merely a variable that can be instantiated with a
value that represents a dog.

Weak Slot-and-Filler Structures 193

9.1.5 The Evolution into Frames

The idea of a semantic net started out simply as a way to represent labeled connections.among entities. But, as
we have just seen, as we expand the range of problem-solving tasks that the representation must support, the
representation itself necessarily begins to become more complex. In particular, it becomes useful to assign
more structure to nodes as well as to links. Although there is no clear distinction between a semantic net and
a frame system, the more structure the system has, the more likely it is to be termed a frame system. In the next
section we continue our discussion of structured slot-and-filler representations by describing some of the
most important capabilities that frame systems offer.

9.2 FRAMES

A frame is a collection of attributes (usually called slots) and associated values (and possibly constraints on
values) that describe some entity in the world. Sometimes a frame describes an entity in some absolute sense;
sometimes it represents the entity from a particular point of view (as it did in the vision system proposal
[Minsky, 1975] in which the term frame was first introduced). A single frame taken alone is rarely useful.
Instead, we build frame systems out of collections of frames that are connected to each other by virtue of the
fact that the value of an attribute of one frame may be another frame. In the rest of this section, we expand on
this simple definition and explore ways that frame systems can be used to encode knowiedge and support
reasoning

9.2.1 Frames as Sets and Instances

The Set theory provides a good basis for understanding frame systems. Although not all frame systems are
defined this way, we do so here. In this view, each frame represents either a class (a set) or an instance (an
element of a class). To see how this works, consider the frame system shown in Fig. 9.5, which is a slightly
modified form of the network we showed in Fig. 9.5. In this example, the frames Person, Adult-Male, ML-
Baseball-Player (corresponding to major league haseball players), Pitcher, and ML-Baseball-Team (for major
league baseball team) are all classes. The frames Pee-Wee-Reese and Brooklyn-Dodgers are instances.

The isa relation that we have been using without a precise definition is in fact the subser relation. The set
of adult males is a subset of the set of people. The set of major league baseball players is a subset of the set of
adult males, and so forth. Qur instance telation corresponds to the relation elernent-of. Pee Wee Reese is an
element of the set of fielders. Thus he is also an element of all of the supersets of fielders, including major
league baseball players and people. The transitivity of isa that we have taken for granted in our description of
property inheritance follows directly from the transitivity of the subset relation.

Both the isa and instance relations have inverse attributes, which we call subclasses and all-instances. We
do not bother to write them explicitly in our examples unless we need to refer to them. We assume that the
frame systermn maintains them automatically, either explicitly or by computing them if necessary.

Because a class represents a set, there are two kinds of atiributes that can be associated with it. There are
attributes about the set itself, and there are attributes that are to be inherited by each element of the set. We
indicate the difference between these two by prefixing the latter with an asterisk (*). For example, consider
the class ML-Baseball-Player, We have shown only two properties of it as a set: It is a subset of the set of adult
males. And it has cardinality 624 (i.e., there are 624 major league baseball players). We have listed five
properties that all major league baseball players have (height, bats, batting-average, team, and uniform-
color), and we have specified default values for the first three of them. By providing both kinds of slots, we
allow a class both to define a set of objects and to describe a prototypical object of the set.

Sometimes, the distinction between a set and an individual instance may not seem clear. For example, the
team Brooklyn-Dodgers, which we have descnibed as an instance of the class of major league baseball teams,

194

Artificial Intelligence

could be thought of as a set of players. In fact, notice that the value of the slot players is a set. Suppose,
instead, that we want to represent the Dodgers as a class instead of an instance. Then its instances would be
the individual players. It cannot stay where it is in the isa hierarchy; it cannot be a subclass of ML-Basebali-
Team, because if it were, then its elements, namely the players, would also, by the transitivity of subclass, be
elements of ML-Baseball-Team, which is not what we want to say. We have to put it somewhere else in the isa
hierarchy. For example, we could make it a subclass of major league baseball players. Then its elements, the

players, are also elements of ML-Baseball-Player, Aduit-Male, and Person. That is acceptable. But if we do
that, we Jose the ability to inherit properties of the Dodgers from general information about baseball teams.

whole, i.e., of the set of players. For example, we might like to know what the default size of the team is,

We can still inherit attributes for the elements of the team, but we cannot inherit properties of the team as a

Person
isa:
cardinality :
* handed :
Adult-Male
isa:
cardinality
* height
ML-Baseball-Player
isa:
cardinality :
*height :
* bats :

* batting-average :

* team :

* uniform-color :
Fielder

isa

cardinality :

*batting-average :

Pee-Wee-FReese
instance :
height :
bats :
batting-average :
team :
uniform-coior :

ML-Baseball-Team
isa;

cardinality :

* tearn-size :

* manager :
Brooklyn-Doagers
instance :
tearn-size :
manager :

players :

Mammal
6,000,000,000
Right

Person |
2,000,000,000
5-10

Adult-Male

624

6-1

equal to handed
.252

ML-Baseball-Player
376
.262

Fielder

5-10

Right

.309
Brooklyn-Dodgers
Blue

Team
26
24

ML-Baseball-Team
24
Leo-Durocher

{Pee-Wee-Aeese,...}

Fig. 9.5 A Simplified Frame System

that it has a manager, and so on. The easiest way to allow for this is to go back to the idea of the Dodgers as
an instance of ML-Baseball-Team, with the set of players given as a slot value.

But what we have encountered here is an example of a more general problem. A class is a set, and we want
to be able to talk about properties that its elements possess. We want to use inheritance to infer those properties

Weak Slot-and-Filler Structures 195

from general knowledge about the set. But a class is also an entity in itself. [t may possess properties that
belong not to the individual instances but rather to the class as a whole. In the case of Brooklyn-Dodgers, such
properties included team size and the existence of a manager. We may even want to inherit some of these
properties from a more general kind of set. For example, the Dodgers can inherit a default team size from the
set of all major league baseball teams. To support this, we need to view a class as two things simultaneously:
a subset (isq) of a larger class that also contains its elements and an instance (instance) of a class of sets, from
which it inherits its set-level properties.

To make this distinction clear, it is useful to distinguish between regular classes, whose elements are
individual entities, and metaclasses, which are special classes whose elements are themselves classes. A class
is now an element of (instance} some class (or classes) as well as a subclass {isa) of one or more classes. A
class inherits properties from the class of which it is an instance, just as any instance does. ln addition, a class
passes inheritable properties down from its superclasses to its instances.

Let us consider an example. Figure 9.6 shows how we could represent teams as classes using this distinction.
Figure 9.7 shows a graphic view of the same classes. The most basic metaclass is the class Class. 1t represents
the set of all classes. All classes are instances of it, either directly or through one of its subclasses. 1n the
example, Team is a subclass (subset) of Class and ML-Baseball-Team is a subclass of Team. The class Class
introduces the attribute cardinality, which is to be inherited by all instances of Class (including itself). This
makes sense since all the instances of Class are sets and all sets have a cardinality.

Class
instance : Class
isa : Class
* cardinality :
Team
instance : Class
isa: Class
cardinality : {the number of teams that exist}
*team-size : {each team has a size}

ML -Baseball-Team

isa . Mammal
instance : Class
isa: Team
cardi nality : 26 {the number of baseball teams that exist}
* team-size : 24 {default 24 players on a team}
* manager :
Brooklyn-Dodgers .
instance . ML-Baseball-Team
isa : ML-Baseball-Player
team-size : 24
manager - Leo-Durgcher
* uniform-color : Biue
Pee-Wee-Reese
instance . Brooklyn-Dodgers
instance : Fielder
uniform-color - Biue
batting-average : .309

Fig. 9.6 Representing the Class of All Teams as a Metaclass

196 Artificial Intelligence

ML -Baseball-Team

Team

> Class (set of sels}

ML-Baseball-Player Brooklyn-Dodgers
Pee-Wee-Roese }

Fig. 9.7 Classes and Metaclasses

Tearn represents a subset of the set of all sets, namely those whose elements are sets of players on a team.
It inherits the property of having a cardinatity from Class. Team introduces the attribute team-size, which all
its elements possess. Notice that team-size is like cardinality in that it measures the size of a set. But it applies
to something different; cardinality applies 10 sets of sets and is inherited by all elements of Class. The slot
team-size applies to the elements of those sets that happen to be teams. Those elements are sets of individuals.

ML-Baseball-Team is also an instance of Class, since it is a set. It inherits the property of having a cardinality
from the set of which it is an instance, namely Class. But it is a subset of Team. All of its instances will have
the property of having a ream-size since they are also instances of the superclass Team. We have added at this
level the additional fact that the default teamn size is 24, so all instances of ML-Baseball-Team wiil inherit that
as well. In addition, we have added the inheritable slot manager.

Brooklyn-Dodgers is an instance of a ML-RBaseball-Team. It is not an instance of Class because its elements
are individuals, not sets. Brooklyn-Dodgers is a subclass of ML-Baseball-Player since all of its elements are
also elements of that set. Since it is an instance of a ML-Baseball-Team, it inherits the properties team-size and
manager, as well as their default values. It specifies a new attribute uniform-color, which is to be inherited by
all of its instances (who will be individual players).

Finally, Pee-Wee-Reese is an instance of Brooklyn-Dodgers. That makes him also, by transitivity up isa
links, an instance of ML-Baseball-Player. But recall that in our earlier example we also used the class Fielder,
to which we attached the fact that fielders have above-average batting averages. To allow that here, we simply
make Pee Wee an instance of Fielder as well, He will thus inherit properties from both Brookivn-Dodgers and
from Fielder, as well as from the classes above these. We need to guarantee that when multiple inheritance
occurs, as it does here, that it works correctly. Specifically, in this case, we need to assure that batting-average
gets inherited from Fielder and not from ML-Baseball-Player through Brooklyn-Dodgers. We retumn to this
issue in Section 9.2.5.

In atl the frame sysiems we illustrate, all classes are instances of the metaclass Class. As a result, they all
have the attribute cardinality. We leave the class Class, the isa links to it, and the attribute cardinality out of
our descriptions of our examples, though, unless there is some particular reason to include them.

Every class is a set. But not every set should be described as a class. A class describes a set of entities that
share significant properties. In particular, the default information associated with a class can be used as a basis
for inferring values for the properties of its individual elements. So there is an advantage to representing as a
class those sets for which membership serves as a basis for nonmonotonic inheritance. Typically, these are
sets in which membership is not highly ephemeral. Instead, membership is based on some fundamental structural
or functional properties. To see the difference, consider the following sets:

Weak Siot-and-Filler Structures 197

¢ People
¢ People who are major league baseball players
+ People who are on my plane to New York

The first two sets can be advantageously represented as classes, with which a substantial number of inheritable
attributes can be associated. The last, though, is different. The only properties that all the elements of that set
probably share are the definition of the set itself and some other properties that follow from the definition
(e.g.. they are being transported from one place to another). A simple set, with some associated assertions, is
adequate to represent these facts; nonmonotonic inheritance is not necessary.

9.2.2 Other Ways of Relating Classes to Each Other

We have talked up to this point about two ways in which classes (sets) can be related to each other. Class, can be
a subset of Class,. Or, if Class, is a metaclass, then Class, can be an instance of Class,. But there are other ways
that classes can be related to each other, corresponding to ways that sets of objects in the world can be related.

One such relationship is mutually-disjoint-with, which relates a class to one or more other classes that are
guaranteed to have no elements in common with it. Another important relationship is is-covered-by which
relates a class to a set of subclasses, the vnion of which is equal to it. If a class is-covered-by a set § of
mutually disjoint classes, then § is called a partition of the class.

For examples of these relationships, consider the classes shown in Fig. 9.8, which represent two orthogonal
ways of decomposing the class of major league baseball players. Everyone is either a pitcher, a catcher, or a
fielder {and no one is more than one of these). In addition, everyone plays in either the National League or the
American League, but not both.

9.2.3 Slots as Full-Fledged Objects

So far, we have provided a way to describe sets of objects and individual objects, both in terms of attributes
and values. Thus we have made extensive use of attributes, which we have represented as slots attached to
frames. But it turns out that there are several reasons why we would like to be able to represent attributes
explicitly and describe their properties. Some of the properties we would like to be able to represent and use
in reasoning include:

» The classes to which the attribute can be attached, i.e. for what classes does it make sense? For example,
weight makes sense for physical objects but not for conceptual ones (except in some metaphorical
sense).

¢ Constraints on either the type or the value of the attribute. For example, the age of a person must be a
numeric quantity measured in some time frame, and it muost be less than the ages of the person’s
biological parents.

o A value that all instances of a class must have by the definition of the class.

» A default value for the attribute.

* Rules for inheriting values for the attribute. The usual rule is to inherit down isqa and instance links.
But some attributes inherit in other ways. For example, last-name inherits down the child-of link.

¢ Rules for computing a vatue separately from inheritance. One extrerne form of such a rule is a procedure
written in some procedural programming language such as LISP.

* An inverse attribute.

e Whether the slot is single-valued or multivalued.

In order to be able to represent these attributes of attributes, we need to describe attributes (slots) as frames.
These frames will be organized into an isa hierarchy, just as any other frames are, and that hierarchy can then
be used to support inheritance of values for attributes of slots. Before we can describe such a hierarchy in
detail, we need to formalize our notion of a slot,

198 Artificial Intelligence

T Ay e Rk B e e wade

| ML-Basebali-Player |

isa isa
isa isa isa

American- National-

Pitcher | | Catcher| [Fielder | |1ga0,0r Leaguer

instance

instance

[Three-Finger-Brown|

ML-Baseball-Player

is-covered-by . {Pitcher, Catcher, Fielden
{American-Leaguer, National-Leagued
Pitcher
isa: ML-Basebalfl-Player
mutually-disjoint-with : {Catcher, Fielder
Caicher
isa ML -Baseball-Flayer
mutually-disjoint-with: {Pitcher, Fielden
Fielder
isa: ML-Baseball-Player

mutually-disjoint-with :

American-Leaguer
isa:

mutually-disfoint-with

National-Leaguer
isa:

mutually-disjoint-with

Three-Finger-Brown
instance :
instance :

{Pitcher, Calcher}

ML-Basebali-Player
{National-Leaguer}

ML-Baseball-Piayer
{American-Leaguer}

Pitcher
National-Leaguer

Fig. 9.8 Representing Relationships among Classes

A slot is a relation. It maps from elements of its domain (the classes for which it makes sense) to elements
of its range (its possible values). A relation is a set of ordered pairs. Thus it makes sense to say that one
relation (R,) is a subset of another (R,). In that case, R, is a specialization of K., so in our terminology isa (R,
R,}). Since a slot is a set, the set of all slots, which we will call Sloy, is 2 metaclass. Its instances are slots, which
may have subslots.

Figures 9.9 and 9.10 illustrate several examples of slots represented as frames. Sfot is a metaclass. Its
instances are slots (each of which is a set of ordered pairs). Associated with the metaclass are attributes that
each instance (i.e., each actual slot) will inherit. Each slot, since it is a relation, has a domain and a range. We
represent the domain in the slot labeled domain, We break up the representation of the range into two parts:
range gives the class of which elements of the rangemust be elements; range-constraint contains a logical
expression that further constrains the range to be elements of runge that also satisfy the constraint. If range-
constraint is absent, it is taken to be TRUE. The advantage to breaking the description apart into these two

" pieces is that type checking is much cheaper than is arbitrary constraint checking, so it is useful to be able to
do it separately and early during some reasoning processes.

The other slots do what you would expect from their names. If there is a value for definition, it must be
propagated (o all instances of the slot. If there is a value for defaidt, that value is inherited to all instances of

Weak Slot-and-Filler Structures 199

the slot unless there is an overriding value. The attribute transfers-through lists other slots from which values
for this slot can be derived through inheritance. The fo-compute slot contains a procedure for deriving its
value. The inverse attribute contains the inverse of the slot. Although in principle all slots have inverses,
sometimes they are not useful enough in reasoning to be worth representing. And single-valued is used to
mark the special cases in which the slot is a function and so can have only one value.

Of course, there is no advantage to representing these properties of slots if there is no reasoning mechanism
that exploits them. In the rest of our discussion, we assume that the frame-system interpreter knows how to
reason with all of these slots of slots as part of its built-in reasoning capability. In particular, we assume that
it is capable of performing the following reasoning actions:

¢ Consistency checking to verity that when a slot value is added to a frame
— The slot makes sense for the frame. This relies on the domain attribute of the slot.
— The value is a legal value for the slot. This relies on the range and range-constraints attributes,
* Maintenance of consistency between the values for slots and their inverses when ever one is updated.
¢ Propagation of definition values along isa and instance links.
¢ Inhentance of defauit values along isa and instance links.

— —

manager color

———

my—r;'Janager bats
(uniform-color Stot

X

Smokey-The-Bear Brown

Class (set of sets)

Pée-Wee—Reese Biue Pee-Wee-keesa Right

Slot
isa : Class
instance : Class
* domairt

" range .

* range-constraint

* definition

" default -

* transfers-through :

* to-compute :

* inverse :

* single-valued

manager
instance : Siot
domairn : ML-Baseball-Team
range : Person
range-constraint : Ax {baseball-experience x.manager)
default .
inverse : manager-of
single-vaiued : TRUE

Fig. 9.9 Representing Slots as Frames, |

Artificial Intelligence

my-manager
instance : Siot
domain : ML -Baseball-Player
range . Person
range-constraint : Ax (bassball-exparience x.my-manager
fo-compute : Ax (x.team).manager
single-valued : TRUE
color ‘
instance : Siot
domain : Physical-Object
range : Color-Sot
transfers-through . top-level-part-of
visual-salience : High
single-vaiued : FALSE
uniform-color
instance ; Slot
isa : color
domain ; team-player
range : Color-Set
range-corstraint ;. not Pink
visual-salience : High
single-valued : FALSE
bats
instance : Slot
domain : ML-Baseball-Player
range : {Left, Right, Switch)
to-compute AX x.handed
single-valued : TRUE

Fig. 9.10 Representing Slots as Frames, II

» Computation of a value of a slot as needed. This relies on the to-compute and transfers-through attributes.

o Checking that only a single value is asserted for single-valued slots. This is usually done by replacing
an old value by the new one when it is asserted. An alternative is to force explicit retraction of the old
value and to signal a contradiction if a new value is asserted when another is already there.

There is something slightly counterintuitive about this way of defining slots. We have defined the properties
range-constraint and defaulr as parts of a slot. But we often think of them as being properties of a slot
associated with a particular class. For example, in Fig. 9.5, we listed two defaults for the batting-average slot,
one associated with major league baseball players and one associated with fielders. Figure 9.11 shows how

batting-average

instance .
domain :

range
range-constraint :
default
single-vaiued :

fielder-batting-average

instance .

isa:

domain :

range :
range-constraint .
default :
single-valued :

Slot

ML-Baseball-Player

Number

Ax (O < x.range-constraint < 1)
252

TRUE

Siot

batting-average

Fialder

Number

Ax {0 < x.range-constraint < 1)
282

TRUE

Fig. 9.11 Associating Defaults with Slots

Weak Slot-and-Filler Structures 201

this can be represented correctly, by creating a specialization ot barring-average that can be associated with a
specialization of ML-Baseball-Player to represent the more specific information that is known about the
specialized class. This seems cumbersome. It is natural, though, given our definition of a slot as a relation.
There are really two relations here, one a specialization of the other. And below we will define inheritance so
that it looks for values of either the slot it is given or any of that siot’s generalizations.

Unfortunately, although this model of slots is simple and it is internally consistent, it is not easy to use. So
we introduce some notational shorthand that allows the four most important properties of a slot (domain,
range, definition, and default) to be defined implicitly by how the slot is used in the definitions of the classes
in its domain. We describe the domain implicitly to be the class where the slot appears. We describe the range
and any range constraints with the clause MUST BE, as the value of an inherited siot. Figure 9.12 shows an
example of this notation. And we describe the definition and the default, if they are present, by inserting them
as the value of the slot when it appears. The two will be distinguished by prefixing a definitional value with an
asterisk (*). We then let the underlying bookkeeping of the frame system create the frames that represent slots

as they are needed.
ML-Baseball-Player
bats : MUST BE {Left, Right, Switch}

Fig. 9.12 A Shorthand Notation for Siot-Range Specification

Now let’s look at examples of how these slots can be used. The slots bats and my-manager illustrate the
use of the to-compute attribute of a slot. The variable x will be bound to the frame to which the slot is attached.
We use the dot notation to specify the value of a slot of a frame. Specifically, x.y describes the value(s) of the
y slot of frame x. So we know that to compute a frame's value for my-manager, it is necessary to find the
frame’s value for team, then find the resulting team’s manager., We have simply composed two slots to form
a new one.” Computing the value of the bats slot is even simpler. Just go get the value of the handed slot.

The manager slot illustrates the use of a range constraint. Tt is stated in terms of a variable x, which is
bound to the frame whose manager slot is being described. It requires that any manager be not only a person
but someone with baseball experience. It relies on the domain-specific function baseball-experience, which
must be defined somewhere in the sysiem.

The slots color and uniform-celor illustrate the arrangement of slots in an isa hierarchy. The relation color
is a fairly general one that holds between physical objects and colors. The attribute uniform-color is a restricted
form of color that applies only between team players and the colors that are allowed for team uniforms
(anything but pink). Arranging slots in a hierarchy is useful for the same reason that arranging any thing else
in a hierarchy is: it supports inheritance. In this example, the general slot color is known to have high visual
salience. The more specific slot uniform-color then inherits this property, so it too is known to have high
visual salience.

The slot color also illustrates the use of the fransfers-through stot, which defines a way of computing a
slot’s value by retrieving it from the same slot of a related object. In this example, we used transfers-through
to capture the fact that if you take an object and chop it up into several top level parts (in other words, parts
that are not contained inside each other), then they will all be the same color. For example, the arm of a sofa
is the same color as the sofa. Formally, what transfers-through means in this example is

color (x, y) /\ top-level-part-of (z, x} = color(z, ¥)

In addition to these domain-independent slot attributes, slots may have domain-specific properties that
support problem solving in a particular domain. Since these slots are not treated explicitly by the frame-
system interpreter, they will be useful precisely to the extent that the domain problem solver exploits them.

3Notice that since slots are relations rather than functions, their composition may retum a set of values.

202 Artificial Intelligence

9.2.4 Slot-Values as Objects

In the last section, we reified the notion of a slot by making it an explicit object that we could make assertions
about. In some sense this was not necessary. A finite relation can be completely described by listing its
elements. But in practical knowledge-based systems one often does not have that list. So it can be very
important to be able to make assertions about the list without knowing all of its elements. Reification gave us
a way to do this.

The next step along this path is to do the same thing to a particular attribute-value (an instance of a relation)
that we did to the relation itself. We can reify it and make it an object about which assertions can be made. To
see why we might want to do this, let us return to the example of John and Bill’s height that we discussed in
Section 9.1.3. Figure 9.13 shows a frame-based representation of some of the facts. We could easily record
Bill’s height if we knew it. Suppose, though, that we do not know it. All we know is that John is taller than
Bill. We need a way to make an assertion about the value of a slot without knowing what that value is. To do
that, we need to view the slot and its value as an object.

John
height : 72
Biil
height :
Fig. 9.13 Representing Slot-Values

We could attempt to do this the same way we made slots themselves into objects, namely by representing
them explicitly as frames. There seems liftle advantage to doing that in this case, though, becaose the main
advantage of frames does not apply to slot values: frames are organized into an isa hierarchy and thus support
inheritance. There is no basis for such an organization of slot values. So instead, we augment our value
representation language to allow the value of a slot to be stated as either or both of:

e A value of the type required by the slot.
* A logical constraint on the value. This constraint may relate the slot’s value to he values of other slots
or to domain constants,
If we do this to the frames of Fig. 9.13, then we get the frames of Fig. 9.14. We again use the lambda
notation as a way to pick up the name of the frame that is being described.

John

height : 72; x {x.height > Bill. heighty
Bilt

height : Ax (x.height < John.height)

Fig. 9.14 Representing Slot-Values with Lambda Notation

9.2.5 Inheritance Revisited

In Chapter 4, we presented a simple algorithm for inheritance. But that algorithm assumed that the isa hierarchy
was a tree. This is often not the case. To support flexible representations of knowledge about the world, it is
necessary to aliow the hierarchy to be an arbitrary directed acyclic graph (DAG). We know that acyclic
graphs are adequate because isa corresponds to the subset relation. Hierarchies that are not trees are called
tangled hierarchies. Tangled hierarchies require a new inheritance algorithm. In the rest of this section, we
discuss an algorithm for inheriting values for single-valued slots in a tangled hierarchy. We leave the problem
of inheriting multivalued slots as an exercise.

Considcr the two examples shown in Fig. 9.15 (in which we return to a network notation to make it easy to
visualize the isa structure). In Fig. 9.15(a), we want to decide whether Fifi can fly. The correct answer is no.

Weak Slot-and-Filler Structures 203

Although birds in general can fly, the subset of birds, ostriches, does not. Although the class Pet-Bird provides
a path from Fifi to Bird and thus to the answer that Fifi can fly, it pravides no information that conflicts with
the special case knowledge associated with the class Ostrich, so it should have no affect on the answer. To
handle this case correctly, we need an algorithm for traversing the isa hierarchy that guarantees that specific
knowledge will always dominate more general facts.

In Fig. 9.15(b), we return to a problem we discussed in Section 7.2.1, namely determining whether Dick is
a pacifist. Again, we must traverse multiple instance links, and more than one answer can be found along the
paths. But in this case, there is no well-founded basis for choosing one answer over the other. The classes that
are associated with the candidate answers are incommensurate with each other in the partial ordering that is
defined by the DAG formed by the ise hierarchy. Just as we found that in Default Logic this theory had two
extensions and there was no principled basis for choosing between them, what we need here is an inheritance
algorithm that reports the ambiguity; we do not want an algorithm that finds one answer (arbitrarily) and stops
without noticing the other.

One possible basis for a new inheritance algorithm is path length. This can be implemented by executing
a breadth-first search, starting with the frame for which a slot value is needed. Follow its instance links, then
follow isa links upward, If a path produces a value, it can be terminated, as can all other paths once their
length exceeds that of the successful path. This algorithm works for both of the examples in Fig. 9.15. In (a),
it finds a value at Ostrich. It continues the other path to the same length (Per-Bird), fails to find any other
answers, and then halts. In the case of (b), it finds two competing answers at the same level, so it can report the
contradiction.

Bird
fly : yos
isa w
Ostrich . Quaker Republican

fy : no Pet-Bird pacifist : true pacifist : false
instan‘ck A):tance instanr?e\ Ataﬁce

Fifi Dick

fly:? pacifist : ?

(@) (b)
Fig. 9.15 Tangled Hierarchies

But now consider the examples shown in Fig. 9.16. In the case of (&), our new algorithm reaches Bird (via
Pet-Bird) before it reaches Ostrich. So it reports that Fifi can fly. In the case of (b), the algorithm reaches
Quaker and stops without noticing a contradiction. The problem is that path length does not always correspond
to the level of generality of a class. Sometimes what it really corresponds to is the degree of elaboration of
classes in the knowledge base. If some regions of the knowledge base have been elaborated more fully than
others, then their paths will tend to be longer. But this should not influence the result of inheritance if no new
information about the desired attribute has been added.

The solution to this problem is to base our inheritance algorithm not on path length but on the notion of
inferential distance [Touretzky, 1986], which can be defined as follows:

Class| is closer to Class, than to Class,, if and only if Class| has an inference path through Class, to Class;
(in other words, Class, is between Class| and Class;).

Notice that inferential distance defines only a partial ordering. Some classes are incommensurate with
each other under it.

204 Artificial Intelligence

Bird
fly : yos
isa
- / isa
Ostrich
fly - no
s a\ Pet-Bird
Plumed- it
; Republican
Osirich pacifist : false

isa / .
isa

(V)Vf;”?f lumed instance Quarker Conservative-
Stnc pacifist - true Republican
instance\ instance /i:s(ance
Fifi Dick
fiy:? pacifist: 7

(a) {b)
Fig. 9.16 More Tangled Hierarchies =

We can now define the result of inheritance as follows: The set of competing values for a slot 8 in a frame
F contains all those values that

Can be dedived from some frame X that is above F in the isa hierarchy
» Are not contradicted by some frame Y that has a shorter inferential distance to F than X does

Notice that under this definition competing values that are derived from incommensurate frames continue
to compete. _

Using this definition, let us return to our examples. For Fig. 9.15(a), we had two candidate classes from
which to get an answer. But Ostrich has a shorter inferential distance to Fifi than Bird does, so we get the
single answer no. For Fig, 9.15(b), we get two answers, and neither is closer to Dick than the other, so we
correctly identify a contradiction. For Fig. 9.16(a), we get two answers, but again Osrrich has a shorter
inferential distance to Fifi than Bird does. The significant thing about the way we have defined inferential
distance is that as long as Ostrich is a subclass of Bird, it will be closer to all its instances than Bird is, no
matter how many other classes are added to the system. For Fig, 9.16(b), we again get two answers and again
neither is closer to Dick than the other.

There are several ways that this definition can be implemented as an inheritance algorithm. We present a
simple one. It can be made more efficient by caching paths in the hierarchy, but we do not do that here,

Algorithm: Property Inheritance
To retrieve a value V for slot S of an instance F do:
1. Set CANDIDATES to empiy.
2. Do breadth-first or depth-first search up the isa hierarchy from F following all instance and isa links.
At each step, see if a value for § or one f its generalizations is stored.
(a) If a value is found, add it to CANDIDATES and terminate that branch of the search.
{b) If no value is found but there are instance or isa links upward, follow them.
(c} Otherwise, terminate the branch.

Weak Slot-and-Filler Structures 205

3. For each element C of CANDIDATES do:
(a) See if there is any other element of CANDIDATES that was derived from a class closer to F than
the class from which C came.
(b) If there is, then, remove C from CANDIDATES.
4. Check the cardinality of CANDIDATES:
{a) If it is 0, then report that no value was found.
(b) Ifitis 1, then return the single element of CANDIDATES as V.
(c) If it is greater than 1, report a contradiction.
This algorithm is guaranteed to terminate because the isa hierarchy is represented as an acyclic graph.

9.2.6 Frame Languages

The idea of a frame system as a way to represent declarative knowledge has been encapsulated in a series of
frame-oriented knowledge representation languages, whose features have evolved and been driven by an
increased understanding of the sort of representation issues we have been discussing. Examples