
lIlIlM~nlltArpower to your IBM- PC. Turbo Prolog introduces you to the brave new
rtllldlia You eWilYlhit11l you need to know about this fascinating new ManlMachine .

Turbo Prolog
Owner's Handbook

Copyright 1986 by
Borland International, Inc.
4585 Scotts Valley Drive
Scotts Valley. CA 95066

USA

Table of Contents
Introduction
How to Use This Book
The Distribution Disks
Minimum System Requirements
Acknowledgments

Chapter I About Prolog
What Can Turbo Prolog be Used For?
How Does Turbo Prolog Differ From Other Languages?

Chapter 2 A Short Introduction to the Turbo Prolog System
The Main Menu
Entering Your First Turbo Prolog Program
Editor Survival Kit .

Basic Operation .
Block Operations
Search and Replace

Tracing
Altering the Default Window Setup

Temporary Changes to Windows
Saving a Window Layout

Chapter 3 Tutorial I: Five Simple Programs
The Structure of A Turbo Prolog Program

Variables
Objects and Relations
Domains and Predicates
Compound Goals
Anonymous Variables
Finding Solutions in Compound Goals-Backtracking
Turbo Prolog the Matchmaker: Using Not
Comments
A More Substantial Program Example
Summary

I
I
2
2
2

3
.4
.4

.7

. 7

. 8
II
II
II
12
14
15
15
15

17
17
19
20
20
22
22
23
24
27
27
28

Chapter 4 Tutorial II: A Closer Look at Domains, Objects and Lists 33
Free and Bound Variables 33
Turbo Prolog's Standard Domain Types 34
Compound Objects Can Simplify Your Clauses! 38

Domain Declaration of Compound Objects 38
Going Down a Level 40
Recursion 42

Recursive Objects 44
The Fascinating Worlds of Lists and Recursion 45

Using Lists 46
List Membership 47
Writing Elements of a List . . . 48
Appending One List to Another:

Declarative and Procedural Programming 48
One Predicate Can Have Several Applications 49

Chapter 5 Tutorial III: Turbo Prolog's Relentless Search for Solutions 51
Matching Things Up: The Unification of Terms 51
Controlling the Search for Solutions 54

Use of Fail 57
Preventing Backtracking: The Cut Element 58

Using the Cut to Prevent Backtracking to a
Previous Subgoal in a Rule 58

Using the Cut to Prevent Backtracking to the Next Clause 59
Determinism and the Cut 60

Chapter 6 Tutorial IV:
Arithmetic, Simple Input and Output, and Debugging 63
Prolog can do Arithmetic Too! 63

The Order of Evaluation of Arithmetic Expressions 64
Comparisons 64

Special Conditions for Equality 66
Arithmetic Functions and Predicates 68
Simple Input and Output 69

Writing 69
Reading 72

Debugging and Tracing 74
Some Predicates are Special 75
An Exercise in Tracing 75

Chapter 7 Tutorial V: Seeing Through Turbo Prolog's Windows 77
Setting the Screen Display Attributes 77
Windows in Your Programs . . . 78

Read and Write With Windows 80
Screen-Based Input and Output 82
A Simple Arcade Game 83
A Word Guessing Game Using Windows 86
A Window To DOS 87

Date and Ti me 88

ii Turbo Prolog Owner's Handbook

Chapter 8 Tutorial VI: Graphics and Sound
Turbo Prolog's Graphics

Turtle Graphics Commands
Let's Hear Turbo Prolog

Chapter 9 Tutorial VII: Files and Strings
The Turbo Prolog File System
String Processing

Type Conversion Standard Predicates
Findall and Random

Chapter 10 Tutorial VIII: Spreading Your Wings
Building A Small Expert System
Prototyping: A Simple Routing Problem
Adventures in a Dangerous Cave
Hardware Simulation
Towers of Hanoi
Division of Words Into Syllables
The N Queens Problem
Using The Keyboard

Chapter I I Programmer's Guide
An Overview of the Turbo Prolog System
Basic Language Elements

Names
Reserved Names
Restricted Names

Program Sections
Domain Declarations

Shortening Domains Declarations
Predicate Declarations
Clauses

Simple Constants
Variables
Compound Terms or Structures

Turbo Prolog Memory Management
Compiler Directives

check_cmpio
check_determ
code
diagnostics
include
nobreak
nowarnings
project
trace and shorttrace
trail

Table of Contents

91
91
93
96

99
99

104
106
107
109
09
12
14
16
17
18
21
24

27
27
28
28
29
29
29
30
31
32
32
32
33
33
34
35
35
36
36
36
37
38
38
38
38
39

iii

Dynamic Databases in Turbo Prolog
Declaration of the Database
Handling Facts
Extending the Database onto Files

Control of Input and Output Parameters: Flow Patterns
Programmi ng Style

Stack Considerations and Eliminating Tail Recursion
Use of the Fail Predicate
Determinism, Non-determinism and How to Set the Cut
Domains Containing References

Generating Executable Stand-Alone Programs
Modular Programming

Projects
Global Domains and Global Predicates
Compiling and Linking the Modules
An Example

Interfacing Procedures Written in Other Languages
Declaring External Predicates
Calling Conventions and Parameters
Naming Conventions
An Assembler Routine Called from Turbo Prolog
Calling C. Pascal and FORTRAN Procedures from Turbo Prolog
Low-Level Support

Accessing the Editor From Within a Turbo Prolog Program
edit ..
display
editmsg

Directory and Formatting Facilities
dir
writef

Chapter 12 Reference Guide
Files on the Distribution Disk
Files Needed When Using Turbo Prolog
Installation
The Main Menu

iv

The Run Command
The Compile Command
The Options Menu
The Edit Command
The Files Menu

Load
Save
Directory
File Name
Zap File in Editor
Print

Turbo Prolog Owner's Handbook

140
140
141
142
144
145
145
148
149
149
151
152
152
153
154
154
155
156
56
56
57
59
59
61
61
61
61
62
62
62
63
63
64
64

164
164
165
166
166
166
166
167
167
167
168
168

Erase
Rename
Operating System

Setup Menu
Defining Directories
Librarian
Window Definition
Color Setting . .
Miscellaneous . .
Load Configuration
Save Configuration

Quit Command . .
The Turbo Prolog Editor

Cursor Movement Commands
Insert and Delete Commands
Block Commands
Miscellaneous Commands . .

The Calculation of Screen Attributes
Monochrome Display Adapter
Color/Graphics Adapter

Arithmetic Functions and Predicates
Classified Index of Standard Predicates
Alphabetical Directory of Standard Predicates

asserta
assertz
attribute
back
beep
bios
bound
char _int
clearwindow
closefile
consult
cursor .
cursorform
date
deletefile
dir
disk .
display
dot .
edit .
editmsg
eof ..
existfile
exit ..

Table of Contents

68
68
68
68
68
69
69
70
71
71
72
72
72
73
74
75
76
77
78
78
79
79
81
82
82
82
82
82
82
83
83
83
83
83
83
83
84
84
84
84
84
84
84
85
85
85
85

v

fail
field_attr
field_str
filepos
file_str
findall
flush
forward
free . .
frontchar
frontstr
fronttoken
graphics
is name
left
line ..
makewindow
membyte
memword
nl
not ...
openappend
openmodify
openread
openwrite
pencolor
pendown
penup .
portbyte
ptr_dword
readchar .
read device
readint
readln .
readreal
readterm
removewindow
renamefile
retract
right
save
scr _attr
scr _char
shiftwindow
sound .
storage
str _char

vi Turbo Prolog Owner's Handbook

85
85
85
86
86
86
87
87
87
87
87
87
88
88
88
88
88
89
89
89
89
89
89
90
90
90
90
90
90
90
91
91
91
91
91
91
91
91
92
92
92
92
92
92
92
93
93

str _int
str _len
str _real
system
text .
time
trace
upper_lower
window_attr
window_str
write
writedevice
writef . .

BNF Syntax for Turbo Prolog
Names
Program Section
Directives
Domains Section
Predicate and Database Section
Clause Section
Goal Section

Terms ..
Comparisons

Compiler Directives
System Limits . . .

Appendix A ASCII Character Codes
Appendix B Error Messages
Appendix C PLINK

Use of the File PLlNK.BAT
Contents of the File PLlNK.BAT

Appendix D PROLOG.SYS
Appendix E Using Turbo Prolog with Turbo Pascal
Appendix F Glossary

List of Figures
2-1 The Logon Display
2-2 The Main Menu and the Four System Windows
2-3 Using the Editor
2-4 Executing a Program
3-1 Backtracking...
4-1 Evaluation of Factorial(4,Answer)
10-1 Prototype Map
10-2 Fundamental XOR Circuit
10-3 The Towers of Hanoi
10-4 The N Queens Chessboard
I I-I Memory Partitioning in Turbo Prolog

Table of Contents

193
193
193
194
194
194
194
194
194
195
195
195
195
196
196
197
197
197
198
198
199
199
199
196

· 200
.201
· 205

· 209
· 210
· 211
· 213
· 215

· 7
· 8
· 9
10
25
44

113
116
117
121
134

vii

I 1-2 Sample Diagnostic Display
I 1-3 Example Use of the Include Directive
I I -4 Use of trace
I 1-5 Activation Record
I 1-6 Activation Record
12-1 Options Menu
12-2 Files Menu . . .
12-3 Setup Menu
12-4 Window Definition Menu
12-5 Color Settings Menu
12-6 Miscellaneous Menu

List of Tables
2-1
4-1
4-2
4-3
4-4
6-1
6-2
6-3
6-4
6-5
7-1
7-2
8-1
8-2
8-3
8-4
9-1
I I-I
11-2
12-1
12-2
12-3
12-4
12-5
12-6

viii

Summary of Editor Keystrokes
Standard Domain Types
Simple Objects . . .
List Processing . . .
List Matching
Arithmetic Operations
Operator Priority . .
Relational Operators
Arithmetic Predicates and Functions
Standard Reading Predicates
Monochrome Display Adapter Attribute Values
Color/Graphics Adapter Attribute Values
Graphics Resolution Choices
Palette Choices in Medium Resolution
Background Colors
The Computer as Piano
Mode and Fileposition .
Keyword Contents
T race Window Messages
Editing Command Overview
Monochrome Display Adapter Attribute Values
Color/Graphics Adapter Attribute Values
Arithmetic Predicates and Functions
Graphics Screen Formats
Compiler Directives

Turbo Prolog Owner's Handbook

137
137
139
157
159
166
167
169
170
170
171

13
35
35
46
46
63
64
65
68
73
78
78
92
92
92
97

102
130
138
172
178
178
179
188
196

Introduction
Turbo Prolog is a fifth-generation computer language that takes programming into a
new dimension. Because of its natural, logical approach, both people new to program
ming and professional programmers can build powerful applications-such as expert
systems, customized knowledge bases, natural language interfaces, and smart informa
tion management systems.

Turbo Prolog is a declarative language. This means that. given the necessary facts and
rules, it can use deductive reasoning to solve programming problems. By contrast,
Pascal, BASIC and other traditional computer languages are procedural: the program
mer must provide step-by-step procedures telling the computer how to solve prob
lems. The Prolog programmer need only supply a description of the problem (the goal)
and the ground rules for solving it, and the Prolog system will determine how to go
about a solution.

HOW TO USE THIS BOOK
This manual is designed to serve two different types of reader: those new to Prolog,
and those familiar with the Prolog language.

If you're a new user of Prolog, you should first read Chapters I and 2. Chapter I tells
you a little about the advantages of Turbo Prolog, and Chapter 2 describes how to
enter programs into the system, how to have them compiled and executed and, finally,
how to use Turbo Prolog's unique debugging facilities. You will then know enough
about Turbo Prolog to get going with the tutorials, which are presented in Chapters 3-
10. Each tutorial chapter includes a variety of exercises to help you check your under
standing.

If you're already familiar with Prolog, you can begin with Chapter 2, which covers basic
system operations, and then move on to Chapter II, which describes how Turbo
Prolog differs from other Prolog implementations.

All readers will want to refer to Chapter 12, which provides detailed information about
all aspects of Turbo Prolog.

1

The tutorials cover all aspects of Turbo Prolog programming, except modular pro
gramming and interfacing with other languages such as C, Pascal, or assembly language.
These features are described in Chapter II, which also contains hints and tips on pro
gramming style and a wealth of other information about advanced system features.

For details about the files supplied on the distribution disk, installation, and Turbo Pro-
log menu commands, see Chapter 12. .

THE DISTRIBUTION DISKS
Your distribution disk contains the main Turbo Prolog program and several other files.
Information about each of these files can be found in Chapter II.

Turbo Prolog is not copy-protected. Please note that Borland's no-nonsense license
statement licenses you to use your copy of Turbo Prolog as if it were a book. It is not
licensed to a single person, nor is it tied to one particular computer. The only restriction
on using Turbo Prolog is that it must not be used by two different people at the same time,
just as a book cannot be read by two people at the same time. And, of course, giving
away copies of Turbo Prolog to others would be a violation of Borland's copyright.

MINIMUM SYSTEM REQUIREMENTS
To use Turbo Prolog, you should have the following:

• IBM PC or compatible computer

• 384K RAM internal memory

• PC-DOS or MS-DOS operating system, version 2.0 or later

ACKNOWLEDGMENTS
In this manual, references are made to several products:

• Turbo Prolog and GeoBase are trademarks and Turbo Pascal is a registered trade-
mark of Borland International, Inc.

• WordStar is a registered trademark of MicroPro International Corp.

• MultiMate is a trademark of MultiMate International Corp.

• IBM PC, AT, XT, PCjr, and Portable Computer are registered trademarks of Interna
tional Business Machines Corp.

2 Turbo Prolog Owner's Handbook

1 About Prolog
Over the last decade, the price of hardware has halved approximately every fourth
year, while the cost of writing software has increased annually, and now takes by far the
largest portion of a total system budget. Software accounted for about 10% of total
system costs in 1970,50% in 1975, and more than 80% in 1985. This rapidly escalating
cost has influenced the development of new programming tools to make it easier,
quicker and therefore cheaper to develop programs. In particular, research has focused
on ways of handing over a larger part of the work to the machine itself.

Prolog is the result of many years of such research work. The first official version of
Prolog was developed at the University of Marseilles, France by Alain Colmerauer in
the early 1970s as a convenient tool for PROgramming in LOGic. It is much more
powerful and efficient than most other well-known programming languages like Pascal
and BASIC. For example, a program for a given application will typically require ten
times fewer program lines with Prolog than with Pascal.

Today, Prolog is a very important tool in artificial intelligence applications programming
and in the development of expert systems. Several well-known expert system shells
are written in Prolog, including APES, ESP/Advisor and Xi. The demand for more "user
friendly" and intelligent programs is another reason for Prolog's growing popularity.

Unlike, for example, Pascal, a Prolog program gives the computer a description of the
problem using a number of facts and rules, and then asks it to find all possible solutions
to the problem. In Pascal, one must tell the computer exactly how to perform its tasks.
But once the Prolog programmer has described what must be computed, the Prolog
system itself organizes how that computation is carried out. Because of this declarative
(rather than procedural) approach, well-known sources of errors in Pascal and
BASIC-such as loops that carry out one too many or one too few operations-are
eliminated right from the start. Moreover, Prolog teaches the programmer to make a
well-structured description of a problem, so that, with practice, Prolog can also be used
as a specification tool.

Although Prolog makes programming far easier, it can also make severe demands on
the computer. Turbo Prolog is the first implementation of Prolog for the IBM PC and
compatible personal computers that is both powerful and conservative in its memory
requirements. It provides more features than many mainframe implementations. Turbo

3

Prolog is a full-fledged compiler with a pull-down menu interface and full arithmetic,
graphics and system-level facilities. Turbo Prolog produces compiled programs that
execute very quickly but do not gobble memory like other, less comprehensive micro
computer implementations of Prolog.

In 1983, Japan published plans for an ambitious national project involving the design and
production of fifth generation computers, for which Prolog was chosen as the funda
mental system language (corresponding to the use of assembly language in current
architectures). Turbo Prolog runs on a computer costing about $2000 yet in a compari
son made in 1984 using an earlier version of the system, it produced programs that
executed faster than those produced by the prototype of the Japanese fifth generation
computer.

WHAT CAN TURBO PROLOG BE USED FOR?
There are a number of practical applications for Turbo Prolog. Here's a sampler of
what you can do:

• Produce prototypes for virtually any application program. An initial idea can be
implemented quickly, and the model upon which it is based tested "live."

• Control and monitoring of industrial processes. Turbo Prolog provides complete
access to, the computer's I/O ports.

• Implement dynamic relational databases.

• Translate languages, either natural human languages or from one programming lan
guage to another. A Turbo Prolog program was written to translate from Hewlett
Packard BASIC to C under UNIX on an HP-9000 computer for a total software
development cost of less than $7500.

• Construct natural language interfaces to existing software, so that existing systems
become more widely accessible. With Turbo Prolog it is particularly easy to include
windows in such an interface.

• Construct expert systems and expert-system shells.

• Construct symbolic manipulation packages for solving equations, differentiation and
integration, etc.

• Theorem proving and artificial intelligence packages in which Turbo Prolog's deduc
tive reasoning capabilities are used for testing different theories.

HOW DOES TURBO PROLOG
DIFFER FROM OTHER LANGUAGES?
Let's take a closer look at how Turbo Prolog differs from traditional programming
languages.

4 Turbo Prolog Owner's Handbook

Turbo Prolog is descriptive. Instead of a series of steps specifying how the computer must
work to solve a problem, a Turbo Prolog program consists of a description of the
problem. This description is made up of three components, with the first and second
parts corresponding to the declaration sections of a Pascal program:

I. Names and structures of objects involved in the problem

2. Names of relations which are known to exist between the objects

3. Facts and rules describing these relations

The description in a Turbo Prolog program is used to specify the desired relation
between the given input data and the output which will be generated from that input.

Turbo Prolog uses facts and rules. Apart from some initial declarations, a Turbo Prolog
program essentially consists of a list of logical statements, either in the form of facts such
as:

it is raining today.

or in the form of rules such as:

you will get wet if it is raining
and you, forget your umbrella.

Turbo Prolog can make deductions. Given the facts

john likes mary.
tom likes sam.

and the rule

jeanette likes X if tom likes X.

Turbo Prolog can deduce that

jeanette likes sam.

You can give the Turbo Prolog program a goal, for example

find every person who likes sam

and Turbo Prolog will use its deductive ability to find all solutions to the problem.

Execution of Turbo Prolog programs is controlled automatically. When a Turbo Prolog
program is executed, the system tries to find all possible sets of values that satisfy the
given goal. During execution, results may be displayed or the user may be prompted to
type in some data. Turbo Prolog uses a backtracking mechanism which, once one solu
tion has been found, causes Turbo Prolog to reevaluate any assumptions made to see if
some new variable values will provide new solutions.

Turbo Prolog has a very short and simple syntax. It is therefore much easier to learn than
the syntax of more complicated traditional programming languages.

Turbo Prolog is powerful. Turbo Prolog is a higher level language than, for instance, Pascal.
As pointed out earlier, Turbo Prolog typically uses 10 times fewer program lines when
solving a problem than Pascal. Among other things, this is due to the fact that

About Prolog 5

Turbo Prolog has a built-in pattern-recognition facility, as well as a simple and efficient
way of handling recursive structures.

Turbo Prolog is compiled, yet allows interactive program development. A programmer can
test individual sections of a program at any point and alter the goal of the program,
without having to append new code. This would correspond to being able to tryout
any arbitrary procedure in a Pascal program, even after the program has been com
piled.

This has been a brief overview of the unique features of Turbo Prolog. As you delve
more deeply into this manual and begin writing programs, you'll discover more of its
powerful abilities. Now let's turn to Chapter 2 and get started with the Turbo Prolog
system.

6 Turbo Prolog Owner's Handbook

2 A Short Introduction to the
Turbo Prolog System

This chapter describes the basic operation of the Turbo Prolog system, including how
to make a system backup, use the menu system, run a Turbo Prolog program, and
create a program file using the Turbo Prolog editor.

Chapter 12, the technical reference, gives a complete list of the files supplied on the
distribution disk and the files needed when using the Turbo Prolog system. Turbo
Prolog comes pre-installed and ready to run on an IBM PC or fully compatible com
puter. If you aren't satisfied with some of the defaults (such as our choice of colors for
the display) they are easy to change using pull-down menus. See page 168. For now,
until you're familiar with the system, you can tryout Turbo Prolog as is.

THE MAIN MENU
Once you have a copy of the system on your working disk and you are in the appropri
ate directory, type PROLOG. You should see the logon message shown in Figure 2-1.

Figure 2-1 The Logon Display

7

In addition to the version of Turbo Prolog you are using, the logon message shows you
the configuration for Turbo Prolog on your computer.

Now press the space bar and the Turbo Prolog main menu and four system windows
will appear as shown in Figure 2-2.

Figure 2-2 The Main Menu and the Four System Windows

The Main Menu shows you the commands and pull-down menus available. You select
an item on a menu by pressing the associated highlighted capital letter or by first
moving the highlighted bar using the arrow keys, and then pressing lB. The use of
each window is described throughout this chapter.

The bottom line of the screen contains a status message describing the use of the
function or cursor keys. The meaning of these keys changes depending on what you
are doing with the system at a given time: tracing, editing, or running a program, etc.

ENTERING YOUR FIRST
TURBO PROLOG PROGRAM
Consider the following introductory Turbo Prolog program. We'll be using it to illus
trate how to create, run, and edit Turbo Prolog programs.

predicates
hello

goal
hello.

clauses
hello:-

makewindow(1,7,7,"My first program",L;,Sb,lO,22),
nl,write(" Please type your name "),
cursor(L;,S),
readln(Name),nl,
write(" Welcome ",Name).

Select the Edit option either by moving the cursor with the arrow keys until it is over
the word Edit and then pressing IB, or by simply pressing CD. The screen should now
look like Figure 2-3.

8 Turbo Prolog Owner's Handbook

In" COOIpile IDIl Options riles Setup Ilult

Figure 2-3 Using the Editor

Note that the editor window is highlighted and the status text at the bottom reflects
the new meaning of the function keys.

To see how to correct a mistake, type in the first line of the above program as

predivates

To correct the mistake, position the cursor over the erroneous letter v and then press
@ill. Watch carefully what happens to the display. Now press!]) and look again. The
mistake should be corrected. Now type in the first seven lines of the above program
text, pressing ~ at the end of each line.

When you type the end of the line that begins

makewindow

the rest of the text will scroll to the left inside the editor's window. Just to make sure it
hasn't really disappeared, press ~ after typing in this line, then press the El key and
hold it down until the cursor stops moving. After you see what happens, move the
cursor back to where you left off and finish typing in the program.

Once you are satisfied that the program text has been entered correctly, press 1E to
leave the editor, then select the Run option from the menu. If you entered the program
correctly, the program will be compiled and then executed and you should see the
display shown in Figure 2-4.

Now type your first name and press ~" The program you have entered will respond

Welcome Alfredo

(or whatever your name is) and wait for you to press the space bar. The screen will
then clear, leaving the main menu and the program text visible. Try running the pro
gram again and use an alias this time!

A Short Introduction to the Turbo Prolog System 9

lim COIIpile Edit Option. riles s<!tup quit

Figure 2-4 Executing a Program

To see what would have happened had you made a typing error in your text, let's go
back and insert a deliberate one. If you aren't there yet, go back to the main menu by
pressing the space bar or IE. (If you've already gotten lost in the system, don't worry;
pressing IE a few times-and the space bar whenever instructed to do so--will
always eventually return you to the main menu). From the main menu, select the Editor
again, move the cursor to the line containing the word goal, and add a period (.) after
the word. Now press IE to leave the editor and select the Run option.

Because this extra period is a syntax error, you should see a message telling you so at
the bottom of the editor window. The cursor will flash over the offending period in the
text in the editor window. You are now automatically in editing mode. DELete the
period, press IE to leave the editor, and re-select Run.

To save the program on disk, select the Files option and, from the pull-down menu it
offers, select Save. Type in the filename MYFIRST in response to the Filename: prompt,
then press ~. The contents of the workfile will now be saved, with the default
extension for Turbo Prolog source programs (.P~O) added automatically.

To see a list of all Turbo Prolog programs on the currently selected directory of the
currently selected disk, go back to the Files menu and choose Directory. Turbo Prolog
will respond with a default current directory path name when you press ~ and a
default file mask (press ~ here, too). A list of all programs in the default directory will
appear on the screen, including MYFIRST.PRO. Press the space bar to exit the Direc
tory option, and re-select the Edit option.

Now introduce two new errors into the program in the editor's workfile by replacing
the second occurrence of hello with howdy and the third with hi. The first few lines in
the editor window should now be:

10

predicates
hello

goal
howdy

clauses
hi:-

makewindow

Turbo Prolog Owner's Handbook

Run the program and observe that, as before, the first error is detected and control
returns to the editor so that you can correct the first "mistake"-howdy instead of hello.
Do so now, but when you've finished, instead of typing lliil and Run, just press [l1[).
[l1[) automatically exits the editor and causes the Turbo Prolog system to re-Run the
program. But now the second error-hi-is detected. Correct it and press [l1[) once
again. The program should compile and run normally this time.

The Turbo Prolog editor is a full screen text editor that uses the same key commands
as the Turbo Pascal editor and the WordStar and Multimate word processor systems.
The next section gives a short introduction to the editor; a complete description can be
found in Chapter 12.

EDITOR SURVIVAL KIT
You need only read this section if you are not familiar with either the Turbo Pascal
editor, Word Star, or Multimate. It's a good idea to familiarize yourself with just a few
basic features at first, so that you can easily remember the necessary key sequences.
This particularly applies if you are new to the Turbo Prolog language, since you'll want
to be able to concentrate your efforts on writing Turbo Prolog programs. If you don't
like the key sequences, one way to reconfigure them is to use Borland's SuperKey.

Basic Operation
Select Editor from the main menu. If there is already text in the workfile, delete it using
the @ill key. Type in your name and address in the format you would use on an
envelope, for example

Jeff Stoneham
32 E 24th
New York
NY 12345

Terminate editing by pressing th!= lliil key. Save the contents of the workfile by select
ing Files, then Save. Save what you have typed in the editor under the filename
ADDRESS.

Use @ill to delete what you have typed into the editor, and type in a list of your five
favorite foods, each on a separate line. Now finish the editing session again (press lliil)
and select Files from the main menu, then Load. When asked for a filename, type
ADDRESS followed by [E). The system now asks if you want to save the text in the
workfile. You do not, so press I]J and notice what has happened in the editor win
dow-your favorite foods have been overwritten by the ADDRESS file.

Block Operations
When deleting your name and address from the editor window, you may have won
dered if there was a better way to delete than pressing @ill all those times. Well, there
is a better way, thanks to the editor's block operations: first, you mark the block of text
to be deleted, and then you delete it. Once marked, you can also make a copy of the
block in another place in the text, or move it to another place in the text.

A Short Introduction to the Turbo Prolog System 11

Marking a block is easy. To try it, first re-select the Edit option. With your name and
address still in the editor window, use the arrow keys to position the cursor at the top
left corner. Mark the start of the block by pressing @li!)]J []J. Now move the cursor
to the last character in the last line of your address and mark the end of the block by
pressing @li!)]J []J. Observe what has happened to the text display.

Let's make several copies of this block so that we've got more text to play with. Move
the cursor to the end of your address and copy the block by pressing @li!)]J 1]).
Move the cursor to the end of the newly created text and make another copy of the
block. Repeat the process until you have a total of ten copies of your address in the
editor window. Use the arrow keys and ~ and ~ to move around the text inside
the editor window.

Now let's mark a new block. First we must un-mark the old block by pressing @li!)]J
([) (notice that the original block is no longer highlighted). Insert a new line 4 into the
file consisting of 20 letter X's. Now make line II a new line of 20 letter y's.

Our new block will be lines 5 to 10. Mark it with @li!)]J []J and @li!)]J (!l as before.
To delete the block, press @li!)]J GJ and you should now have a line of X's followed
by a line of Y's.

Next, mark a new block that consists of these two rows of X's and Y's. Move the
cursor to the end of the text, then move the new block here by pressing @li!)]J !]l
(check that it has been moved and not copied using ~ and ~).

Block operations can be carried out using fewer key presses by use of the function
keys. As mentioned earlier, explanations about the function keys are listed at the bot
tom of the screen.

Press the Help key, Iill, to display a pop-up menu containing information about the
function keys (and all the built-in standard predicates, but more about those later).
Press Iill now and select Help Information from the resulting menu. Browse through
the information using ~ and ~. When finished, press (E.
1liJ, illJ, and IEJ are used to copy, move, and delete blocks, as well as to actually
mark the beginning and end of the block. To use them, first move the cursor to the
beginning of a block, then press the required key to mark the beginning of the block.
Then move the cursor to the end of the block, and press the same key again to mark
the end of the block. If you want to delete, press IEJ. If you want to copy or move,
move the cursor to where you want to put the text, and press either IliJ or !![l.

Search and Replace
Search and replace comes in handy if you decide to change the name of something in
your program after you've written it. To use it, delete everything currently in the editor
and type in this well-known phrase

To be or not to be
That is the question

Now let's replace every occurrence of be with be,. Press [EJ and you will be
prompted for a search string. Type be and press [EJ again. You will now be prompted
for the string to replace the search string with. Type be, and you will be asked if the
search and replace is to be global or local.

12 Turbo Prolog Owner's Handbook

A global search will find and replace every occurrence of be in the text, one by one; a
local search finds the next occurrence only. Select a global search. Now you will be
prompted for whether or not you would like to be asked before each replacement is
actually made. In this case, press []J. The search and replace will now be carried out
and the text transformed to

To be, or not to be,
That is the question

If you simply want to find a string in the text, you can use the search command (as
opposed to search and replace). Press I!!] after which you will be prompted for a
search string. Use the search function to find the first occurrence of he in the above
text.

Notice that the search text in both search and search and replace operations is termi
nated by pressing the same key that was used to initiate that operation. This means that
the search string can include the "new-line" character and that the replace string can be
used to insert new lines and to change the layout of the text (for example, the indenta
tion). For example, try replacing II) with (])E) in the above text.

Note also that if a search or local search and replace is selected, that operation can be
repeated with the same choice of options by typing ~ or 8ill, as appropri
ate, once for each desired repetition.

Table 2-1 Summary of Editor Keystrokes

Keys Purpose

IE) or [!![)
Arrow keys, ~, ~, I Home " IE

Exit the editor

Move the cursor

@ill
@!ill) !II
@!ill) [l)
lEI)[]J
@!ill) []J

@!ill)lII
@!ill) []l

Delete the character at the cursor

Mark the beginning of a block

Mark the end of a block

Un-mark a block

Copy a marked block to the position indicated by
the cursor

Delete a marked block

Move a marked block to the position indicated by
the current cursor position

Help information

Copy block

Move block

Delete block

Search

Repeat last search

Search and replace

Repeat last search and replace

A Short Introduction to the Turbo Prolog System 13

TRACING
In this section, we'll show you how to make 'a trace of a Turbo Prolog program. We'll
be using the same example program we used earlier. If you have already saved it on
disk, use the Files command to enter a copy into the editor's workfile: if not. type in the
program again.

To trace program execution, we must add the trace compiler directive to the beginning
of the program so that the program begins

trace
predicates

hello
goal

hello.

Now select the Run command and notice what happens on the screen. In the editor
window the cursor flashes at the end of the goal hello, and in the trace window, the
start of execution of this goal is shown as

CALL: goal ()

IE[) can now be used to execute this goal in single step mode. Press IE[) once and the
trace window will now show

CALL: hello ()

to record that the goal should satisfy the predicate hello. Another press moves the
cursor on to the definition of hello. Press again and notice in the trace window that we
have now CALLed the makewindow predicate. Another press causes the makewindow
predicate to be executed, which is displayed in the trace window as

RETURN: makewindow(1,7,7,"My first program",t;,Sb,1O,22)

Notice that the window is drawn at the top right of the screen.

Now press IE[) repeatedly and watch what happens in each window, until the trace
window displays

CALL: readln(_)

The cursor should now be flashing at the place in our execution window where we are
to type a name. Type TOM, then press ~. The trace window now shows

RETURN: readln(ITOM")

Finally, press IE[) repeatedly until the trace window shows

RETURN: hello ()
RETURN: goal()

at which point execution of our program has finished. Press IE[) one final time and the
system instructs you to press the space bar to return to the main menu level.

14 Turbo Prolog Owner's Handbook

ALTERING THE DEFAULT WINDOW SETUP
Turbo Prolog provides four windows-four views on the programming environment:

• The editor window

• The dialog window

• The trace window

• The message window

These windows can be used in any configuration, and any window can take up the
entire screen or only a small part of it. At any time, you can switch your point of view
and reconfigure a window's size and position. The size of the four system windows can
be changed either during a program's execution by giving a Setup command, or perma
nently. so that each time the system is booted, your own preferred window layout is
used.

Temporary Changes to Windows
Remove the trace compiler directive from the example program, run the result but
don't reply when asked to type in a name. Instead, press ~ repeatedly and
observe that each system window is highlighted in turn.

Highlight the message window. Now try out the effect of the arrow keys and make the
window as near a square in shape as possible. Repeat this for the other three system
windows so that they are all square. Next, select any window, then use the arrow keys
while holding down the ~ key to move the window around the screen. Reposition
the system windows so that they appear in these positions:

MESSAGE TRACE

EDITOR DIALOG

Let's assume these are where you want to put the system windows. To resume execu
tion of the program, press the space bar and type in your name as requested.

After the program has executed, control returns to the main system via the pull-down
menus, but the reorganized window display remains (until new changes are made, or
the system is re-booted). To verify this, use the editor to alter the first write so that it
reads

write(1I What is your name ll
)

and re-run the program.

Select Window from the Setup menu to restore the. system windows to roughly their
former positions. Select each window in turn and, having done so, use the ~ and
arrow keys to re-size and move the windows.

A Short Introduction to the Turbo Prolog System 15

Saving a Window Layout
Select Save from the Setup menu to record a window layout in a disk file. By default.
this file is called PROLOGSYS and if changes are saved in this file, the new window
formats will be used whenever the system is booted.

To avoid erasing the supplied defaults or to keep several window configurations filed
away, the new settings should be saved under a different name, for example
WINDOWS I.SYS. To use a different layout, select Read from the Setup window.

16 Turbo Prolog Owner's Handbook

3 Tutorial I:
Five Simple Programs

This is the first of eight chapters giving a step-by-step tutorial introduction to the Turbo
Prolog language. It begins with a study of the structure of a Turbo Prolog program, first
by means of a simple example and then by examining the fundamental components of
a program, one by one. In every case, our starting point will be a motivating example
with the threads drawn together a little more formally at the end of the chapter.
(Chapters II and 12 contain very precise definitions of all Turbo Prolog features. At this
stage in the tutorial it's getting started that matters.)

Apart from program structure, the two other important ideas introduced in this chap
ter are backtracking (which is how Prolog searches for all possible solutions to a goal)
and how to make Prolog check if something is not true-at least as far as the available
information makes it possible to determine.

THE STRUCTURE OF
A TURBO PROLOG PROGRAM
Consider the following example program:

1* Program 1 *1

domains
person, activity = symbol

predicates
likes(person,activity)

clauses
likes(ellen,tennis).
likes(john,football).
likes(tom,baseball).
likes(eric,swimming).
likes(mark,tennis).
likes(bill,X) if likes(tom,X).

17

The clauses section contains a collection of facts and rules. The facts

likes(ellen,tennis).
likes(john,football).
likes(torn,baseball).
likes(eric,swirnrning).
likes(rnark,tennis).

correspond to these statements in English:

ellen likes tennis.
john likes football.
tom likes baseball.
eric likes swimming.
mark likes tennis.

Notice that there is no information in these facts about whether or not

likes(bill,baseball).

To use Prolog to discover if bill likes baseball, we can execute the above Prolog pro
gram with

likes(bill,baseball).

as our goal. When attempting to satisfy this goal, the Prolog system will use the rule

likes(bill,X) if likes(torn,X).

In ordinary English, this rule corresponds to:

bill likes X if tom likes X.

Type the above program into your computer following the method outlined in Chapter
2 and Run it. When the system responds in the dialog window,

Goal :

enter
likes(bill,baseball).

Turbo Prolog replies

True
Goal :

in the dialog window and waits for you to give another goal. Turbo Prolog has com
bined the rule

likes(bill,X) if likes(torn,X)

with the fact

likes(torn,baseball)

to decide that

likes(bill,baseball)

is true. Now enter the new goal

18 Turbo Prolog Owner's Handbook

likes(bill,tennis).

The system replies

No solution
Goal :

since there is neither a fact that says bill likes tennis nor can this be deduced using the
rule and the available facts. Of course it may be that bill absolutely adores tennis in real
life, but Turbo Prolog's response is based only upon the facts and the rules you have
given it in the program.

Variables
In the rule

likes(bill,X) if likes(tom,X).

we have used the letter X as a variable to indicate an unknown activity. Variable names
in Turbo Prolog must begin with a capital letter, after which any number of letters
(upper or lowercase), digits, or underline characters (,,_") may be used. Thus the fol
lowing two names

My_first_correct_variable_name
Sales 10 11 86

are valid, whereas the next three

1stattempt
second_attempt
'disaster

are invalid.

Careful choice of variable names makes programs more readable. For example,

likes(Individual,tennis).

is preferable to

likes(I,tennis).

Now type the goal

likes(Individual,tennis).

Turbo Prolog replies

Individual = ellen
Individual = mark
2 Solutions
Goal :

because the goal can be solved in just two ways, namely by successively taking the
variable Individual to have the values ellen and mark.

Note that, except for the first character of variable names, Turbo Prolog does not
otherwise distinguish between upper and lowercase letters. Thus, you can also make
variable names more readable by using mixed upper and lowercase letters as in:

IncomeAndExpenditureAccount

Tutorial I: Five Simple Programs 19

Objects and Relations
In Turbo Prolog, each fact given in the clauses section of a program consists of a
relation which affects one or more objects. Thus in

likes(tom,baseball)

the relation is likes and the objects are tom and baseball. You are free to choose names
for the relations and objects you want to use, subject to the following constraints:

• Names of objects must begin with a lowercase letter followed by any number of
characters (letters, digits and underscore ["_"]).

• Names of relations can be any combination of letters, digits and underscore charac
ters.

Thus

owns(susan,horse).
eats(jill,meat).
valuable(gold).
car(mercedes,blue,station_wagon).

are valid Turbo Prolog facts corresponding to the following facts expressed in ordinary
English:

susan owns a horse
jill eats meat
gold is valuable
the car is a blue mercedes station wagon

(Notice that a relation can involve one, two, three, or more objects). You may be
wondering how Turbo Prolog knows that susan owns a horse rather than the horse owns
susan; we'll discuss this in the next chapter.

Exercise Write the following facts and rules in a form acceptable to Turbo Prolog:

ellen likes reading
john likes computers
eric likes swimming
david likes computers
marybeth likes X if john likes X
gina likes anything eric likes

Domains and Predicates
In a Turbo Prolog program, you must specify the domains to which objects in a relation
may belong. Thus, in our example above, the statements

domains
person, activity = symbol

predicates
likes(person,activity)

specify that the relation likes involves two objects, both of which belong to a symbol
domain (names rather than numbers).

20 Turbo Prolog Owner's Handbook

Enter the following goal:

likes(12,X).

The system responds

type error
Goal :

to indicate that it has realized that the number 12 cannot be invoked in the relation likes
since 12 does not belong to a symbol domain.

Similarly,

likes(bill,tom,baseball).

will give an error (try it!). Even though we can deduce from Program I that bill and tom
both like baseball, Turbo Prolog does not allow us to express the fact in this way once
the likes relation has been defined to take just two arguments.

To further illustrate how domains can be used, consider the following program
example:

1* Program 2 *1

domains
brand, color
age, price
mileage

symbol
integer
real

predicates
car(brand,mileage,age,color,price)

clauses
car(chrysler,130000,3,red,12000).
car(ford,90000,~,gray,25000).
car(datsun,BOOO,1,red,30000).

Here, the predicate cor (which is the blueprint for all the cor relations) has objects that
belong to the age and price domains, which are of integer type, i.e., they must be
numbers between - 32,768 and + 32,767. Similarly, the domain mileage is of real type, i.
e., numbers outside the range of integers and possibly containing a decimal point.

Erase the program about who likes whom using the method described in Chapter 2.
Type in Program 2 and try each of the following goals in turn:

car(renault,13,3.5,red,12000).
car(ford,90000,gray,~,25000).
car(1,red,30000,BOOOO,datsun).

Each of them produces a domain error. In the first case, for example, it's because age
must be an integer and 130000 is too big for an integer. Hence, Turbo Prolog can easily
detect if someone types in this goal and has reversed the mileage and age objects in
predicate cor.

By way of contrast, try the goal:

car(Make, Odometer, Years_on_road, Body, 25000).

which attempts to find a car in the database costing $25000. Turbo Prolog replies

Tutorial 1: Five Simple Programs 21

Make=ford, Odometer=90000, Years_on_road=~, Body=gray
1 Solution
Goal :

Compound Goals
The last goal above is slightly unnatural, since we'd rather ask a question like:

is there a car in the database costing less than $25000?

We can get Turbo Prolog to search for a solution to such a query by setting the
compound goal

car(Make,Odometer,Years_on_road,Body,Cost) and
Cost (25000.

To fulfill this compound goal, Turbo Prolog will try to solve the subgoal

car(Make,Odometer,Years_on_road,Body,Cost)

and the subgoal

Cost (25000

with the variable Cost referring to the same value. Try it out now.

The subgoal

Cost (25000

involves the relation < (less than) which is already built into the Turbo Prolog system. In
effect, it is no different from any other relation involving two numeric objects, but it is
more natural to put the < between the two objects rather than in the strange looking
form

((Cost,25000).

which more closely resembles relations similar to

likes(tom,tennis).

Anonymous Variables
For some people, cost and age are the two most important factors to consider when
buying a car. It's unnecessary, then, to give names to the variables corresponding to
brand, mileage, and color in a goal, the settings of which we don't really care about. But
according to its definition in Program 2, the predicate car must involve five objects, so
we must have five variables. Fortunately, we don't have to bother giving them all names.
We can use the anonymous variable which is written as a single underline symbol ("_")'
Try out the goal

car(_,_,Age,_,Cost) and Cost (27000.

Turbo Prolog replies

Age = 3, Cost 12000
Age = ~, Cost 25000
2 Solutions
Goal

22 Turbo Prolog Owner's Handbook

The anonymous variable can be used where any other variable could be used, but it
never really gets set to a particular value. For example, in the goal above, Turbo Prolog
realizes that "_", in each of its three uses in the goal, signifies a variable in which we're
not interested. In this case, it finds two cars costing less than $27000; one three years
old, the other four years old.

Anonymous variables can also be used in facts. Thus, the Turbo Prolog facts

owns(_,shirt).
washes(_) .

could be used to express the English statements

everyone owns a shirt
everyone washes

Finding Solutions in Compound Goals-Backtracking
Consider Program 3, which contains facts about the names and ages of some of the
pupils in a class.

/1 Program 3 1/

domains
child symbol
age integer

predicates
pupil (ch:i,ld, age)

clauses
pupil(peter,q).
pupil(paul,10).
pupil(chris,q).
pupil(susan,q) .

Delete Program 2 and type in Program 3. We'll use Turbo Prolog to arrange a ping
pong tournament between the nine-year-olds in the class (two games for each pair).
Our aim is to find all possible pairs of stude('lts who are nine years old. This can be
achieved with the compound goal

pupil(Personl,q) and
pupil(Person2,Q) and
Personl (> Person2.

(In English: Find Person I aged 9 and Person2 aged 9 so that Person I and Person2 are
different).

Turbo Prolog will try to find a solution to the first subgoal and continue to the next
subgoal only after the first subgoal is reached. The first subgoal is satisfied by taking
Person I to be peter. Now Turbo Prolog can satisfy

pupil(Person2,Q)

by also taking Person2 to be peter. Now we come to the third and final subgoal

Personl (> Person2

Tutorial I: Five Simple Programs 23

Since Person I and Person2 are both peter, this subgoal fails, so Turbo Prolog backtracks
to the previous subgoal. It then searches for another solution to the second subgoal

pupil(Person2,9)

which is fulfilled by taking Person2 to be chris. Now, the third subgoal

Person1 <> Person2

is satisfied, since peter and chris are different, and hence the entire goal is satisfied.
However, since Turbo Prolog must find all possible solutions to a goal, once again it
backtracks to the previous goal hoping to succeed again. Since

pupil(Person2,9)

can also be satisfied by taking Person2 to be susan, Turbo Prolog tries the third subgoal
once again. It succeeds since peter and susan are different. so another solution to the
entire goal has been found.

Searching for more solutions, Turbo Prolog once again backtracks to the second sub
goal. But all possibilities have been exhausted for this subgoal now, so backtracking
continues to the first subgoal. This can be satisfied afresh by taking Person I to be chris.
The second subgoal now succeeds by taking Person2 to be peter, so the third subgoal is
satisfied, fulfilling the entire goal.

The final solution is with Person I and Person2 as susan. Since this causes the final subgoal
to fail, Turbo Prolog must backtrack to the second subgoal, but there are no new
possibilities. Hence, Turbo Prolog backtracks to the first subgoal. But the possibilities for
Person I have also been exhausted and execution terminates.

Type in the above compound goal for Program 3 and verify that Turbo Prolog
responds with

Person1=peter, Person2=chris
Person1=peter, Person2=susan
Person1=chris, Person2=peter
Person1=chris, Person2=susan
Person1=susan, Person2=peter
Person1=susan, Person2=chris
6 Solutions
Goal :

Figure 3-1 illustrates how Turbo Prolog backtracks to satisfy a goal.

Exercise Decide what Turbo Prolog's reply to the goal

pupil(Person1,9) and pupil(Person2,10).

will be, then check your answer by typing in the exercise.

Turbo Prolog the Matchmaker: Using Not

Suppose we want to write a small-scale computer dating program containing a list of
registered males, a list of who smokes, and the rule that sophie is looking for a man
who is either a non-smoker or a vegetarian. The occurrence of or in sophie's selection
rule indicates that we can use more than one Turbo Prolog rule to express it:

24 Turbo Prolog Owner's Handbook

sophie could date(X) if male(X) and not(smoker(X)).
sophie could date(X) if male(X) and vegetarian(X).

These rules are used in Program 4, which you should now type into your computer.

pupil(Person1,9) and pupil(Person(2,9) and Person1()Person2
I I
I I

peter

:~:~~.±:±~.I~:~~f:.~.~:.~:
pupil(paul,10)
pupil(chris,9)
pupil(susan,9)

peter

:P9g#:I.~:~~:~~·B:~::~::~
pupil(paul,10)
pupil(chris,9)
pupil(susan,9)

peter peter FAILS

No (more) possible choices here so
BACKTRACK

pupil(Person1,9) and pupil(Person2,9) and Person1()Person2
I I
I I

peter

~:qe:±±~:Pi:~~B::~:ffl:~
pupil(paul,10)
pupil(chris,9)
pupil(susan,9)

chris

pupil(peter,9)

il'~'~'l

peter chris SUCCEEDS

No (more) possible choices here so
BACKTRACK

pupil(Person1,9) and pupil(Person2,9) and Person1()Person2
I I
I I

peter

~:H:~:f:+:lP,~:~~:F:~::~~
pupil (paul, 10)
pupil(chris,9)
pupil(susan,9)

susan

pupil(peter,9)
pupil(paul,10)
pupil(chris,9)

peter susan SUCCEEDS

p:9:e:~~:~:!lii:p::t::~::}
No (more) possible choices here so
BACKTRACK

No (more) possible choices here so
BACKTRACK

pupil(Person1,9) and pupil(Person2,9) and Person1()Person2
I I
I I

chris

pupil(peter,9)
pupil(paul,10)

:piR:f·~::(::i~:¥~~M~::~
pupil(susan,9)

peter

p:~p:%±:{l~"I~:i:~::~::~
pupil(paul,10)
pupil(chris,9)
pupil(susan,9)

chris peter SUCCEEDS

No (more) possible choices here so
BACKTRACK

Figure 3-1 Backtracking

Tutorial I: Five Simple Programs 25

1* Program L; *1
domains

person symbol

predicates

goal

male(person)
smoker(person)
vegetarian(person)
sophie_could_date(person)

sophie_could_date(X) and
write("a possible date for sophie is ",X) and nl.

clauses
male(joshua) .
male(bill) .
male(tom) .
smoker(guiseppe).
smoker(tom).
vegetarian(joshua).
vegetarian(tom).
sophie_could_date(X) if male(X) and not(smoker(X)).
sophie_could_date(X) if male(X) and vegetarlan(X).

Apart from the use of two rules (Turbo Prolog lets you use as many as you please),
there are several other novel features in this e~ample. First, notice the use of not as in

not(smoker(X))

Turbo Prolog will evaluate this as true if it is unable to prove smoker(X) is true. Using
not in this way is straightforward, but it must be remembered that Turbo Prolog
cannot, for example, assume automatically that someone is either a smoker or a non
smoker. This sort of information must be explicitly built into our facts and rules. Thus, in
Program 4, the first clause for sophie_could_date assumes that any male not known to
be a smoker is a non-smoker.

, Second, notice the incorporation of a goal within the program. Every time we execute
our mini computer-dating program, it will be with the same goal in mind-to find a list
of possible dates for sophie-so Turbo Prolog allows us to include this goal within the
program. However, we must then include the standard predicate

write(••••••••••)

so that the settings (if any) of the variable X which satisfy the goal are displayed on the
screen. We must also include the standard predicate

nl

which simply causes a new line to be printed.

Standard predicates are predicates that are built into the Turbo Prolog system. Gener
ally, they make functions available that cannot be achieved with normal Turbo Prolog
clauses, and are often used just for their side-effects (like reading keyboard input or
screen displays) rather than for their truth value.

Execute Program 4 and verify that Turbo Prolog displays

a possible date for sophie is joshua

26 Turbo Prolog Owner's Handbook

Surprisingly. even though tom (being male and a vegetarian), would be eligible for a
date, if we include a goal in the program, only the first solution is found. To find all
solutions, try deleting the goal from the program, then give the goal in response to
Turbo Prolog's prompt during execution (as we did earlier). This time all possible dates
will be displayed. Even if the goal is internal (i.e., written into the program), it is possible
for all solutions to be displayed; see Chapter 5.

Comments
It is good programming style to include comments that explain different aspects of the
program. This makes your program easy to understand for both you and others. If you
choose good names for variables, predicates, and domains, you'll be able to get away
with fewer comments, since your program will be more self-explanatory.

Comments in Turbo Prolog must begin with the characters 1* (slash, asterisk) and end
with the characters */. Whatever is written in between is ignored by the Turbo Prolog
compiler. If you forget to close with */, a section of your program will be unintentionally
considered as a comment. Turbo Prolog will give you an error message if you forget to
close a comment.

1* This is an example of a comment *1

1***********************************1
1* and so are these three lines *1
1***********************************1

A More Substantial Program Example
Program 5 is a family relationships database that has been heavily commented.

1* Program 5 *1
domains

person symbol

predicates
male(person)
female(person)
father(person,person)
mother(person,person)
parent(person,person)
sister(person,person)
brother(person,person)
uncle(person,person)
grandfather(person,person)

clauses
male(alan).
male(charles).
male(bob) .
male(ivan).

female(beverly).
female(fay) .
female(marilyn).
female(sally) .

Tutorial I: Five Simple Programs 27

mother(marilyn,beverly).
mother(alan,sally).

father(alan,bob)
father(beverly,charles).
father(fay,bob).
father(marilyn,alan).

parent(X,Y) if mother(X,Y).
parent(X,Y) if father(X,Y).

brother(X,Y) if
male(Y) and
parent(X,P) and
parent(Y,P) and
X () Y.

sister(X,Y) if
female(Y) and
parent(X,P) and
parent(Y,P) and
X () Y.

uncle(X,U) if
mother(X,P) and
brother(P,U).

uncle(X,U) if
father(X,P) and
brother(P,U).

grandfather(X,G) if
father(P,G) and
mother(X,P).

grandfather(X,G) if
father(X,P) and
father(p,G) .

I*The brother of X is Y if *1
I*Y is a male and *1
I*the parent of X is P and *1
I*the parent of Y is P and *1
1* X and Yare not the same *1

I*The sister of X is Y if *1
I*Y is female and *1
I*the parent of X is P and *1
I*the parent of Y is P and *1
I*X and Yare not the same *1

I*The uncle of X is U if *1
I*the mother of X is P and *1
I*the brother of P is U. *1
I*The uncle of X is U if *1
I*the father of X is P and *1
I*the brother of P is U *1

I*The grandfather of X is G *1
I*if the father of P is G *1
I*and the mother of X is P. *1
I*The grandfather of X is G *1
I*if the father of X is P *1
I*the father of Pis G *1

Type and execute this program and, by formulating appropriate goals, use Turbo Pro
log to answer the following questions:

I. Is alan ivan's brother?

2. Who is marilyn's grandfather?

3. Who is fay's sister?

4. What is the relationship (if any) between marilyn and beverly?

The relations uncle and grandfather are both described by two clauses, though only one
is necessary. Try to rewrite uncle and grandfather using one clause for each.

28 Turbo Prolog Owner's Handbook

Summary
A Turbo Prolog program has the following basic structure:

dOlllains
1* ... domain statements *1

predicates
1* ... predicate statements *1

goal

clauses
1* ... clauses (rules and facts) ... *1

If you don't include a goal in the program, Turbo Prolog will ask for a goal when the
program is executed.

Facts have the general form:

relation(object,object, ... ,object)

Rules have the general form

relation(object,object, ... ,object) if
relation(object, ... ,object) and

relation(object, ... ,object).

To be consistent with other versions of Prolog, if can be replaced by the symbol:
and a comma (,) can be used instead of and.

Thus

is_older(Person1,Person2) if
age(Person1,Age1) and
age(Person2,Age2) and
Age1) Age2.

and

is_older(Person1,Person2)
age(Person1,Age1),
age(Person2,Age2),
Age1) Age2.

are exactly equivalent.

. A predicate consists of one or more clauses. Clauses that belong to the same predicate
must follow one another.

Exercise Use Turbo Prolog to construct a small thesaurus. You should store facts like

similar_meaning(big,gigantic).
similar_meaning(big,enormous).
similar_meaning(big,tall).
similar_meaning(big,huge).
similar_meaning(happy,cheerful).
similar_meaning(happy,gay).
similar_meaning(happy,contented).

Tutorial I: Five Simple Programs 29

so that a goal of the form

similar_meaning(big,X)

would cause Turbo Prolog to display a list of alternative words for big.
Exercise Given the following facts and rules about a murder mystery, can you use
Turbo Prolog to find who dunnit?

30

person(allan, 25, m, football_player).
person(allan, 25, m, butcher).
person(barbara,22, f, hairdresser).
person(bert, 55, m, carpenter).
person (john, 25, m, pickpocket) .

had_affair(barbara, john).
had_affair(barbara, bert).
had_affair(susan, john).

killed_with(susan, club).

motive(money).
motive(jealousy).

smeared_in(catherine, blood).
smeared_in(allan, mud).

owns(bert, wooden_leg).
owns(john, pistol).

1* Background-knowledge *1
operates_identically(wooden_leg, club).
operates_identically (bar, club).
operates_identically(pair_of_scissors, knife).
operates identically(football_boot, club).

owns_probably(X,football_boot) if
person(X,_,_,football_player).

owns_probably(X,pair_of_scissors) if
person(X,_,_,_,_).

owns_probably(X,Object) if
owns(X,Object).

1* Suspect all those who own a weapon with which susan could
possibly have been killed *1

suspect(X) if
killed_with(susan,Weapon) and
operates_identically(Object,Weapon) and
owns_probably(X,Object).

1* Suspect men that have had an affair with susan *1
suspect(X) if

motive(jealousy) and
person(X,_,m,_) and
had_affair(susan,X).

Turbo Prolog Owner's Handbook

1* Suspect females who have had an affair with a man susan knew*1
suspect(X) if

motive(jealousy) and
person(X,_,k,_) and
had_affair(X,Man) and
had_affair(susan,Man).

1* Suspect pickpockets whose motive could be money*1
suspect(X) if

motive(money) and person(X,_,_,pickpocket).

Tutorial I: Five Simple Programs 31

32 Turbo Prolog Owner's Handbook

4 Tutorial II: A Closer Look at
Domains, Objects and Lists

This chapter will familiarize you with many of the Turbo Prolog features you'll be using
the most. We introduce the concepts of free and bound variables, standard domain
types, and compound objects. You'll learn how to use recursion in your programs, and
see how to take advantage of Turbo Prolog's extensive list-handling facilities.

If a Turbo Prolog variable has a known value, we say it is bound to that value and that
otherwise it is free. This chapter begins by considering the bindings of variables during
the evaluation of a. goal.

Bound variables have values from a domain which is either itself of standard type or is a
user-defined domain built up from one or more such domains. In the second part of
this chapter, we study domains in some detail and learn how to build compound
domains including those which allow lists of objects to be regarded as a single entity.

Just as lists are one of Turbo Prolog's most important data structures, the most impor
tant Prolog programming technique is recursion; in particular, recursion allows us to
process the elements of a list. This chapter concludes with several examples showing
the use of recursion.

FREE AND BOUND VARIABLES
Turbo Prolog distinguishes between two types of variables:

• Free variable-Turbo Prolog does not know its value

• Bound variable-a known value

Look at Program 6, and consider how Turbo Prolog will solve the following compound
goal:

likes(X,reading) and likes(X,swimming).

33

1* Program b *1
domains

person, hobby = symbol
predicates

likes(person,hobby)
clauses

likes(ellen,reading).
likes(john,computers).
likes(john,badminton).
likes(leonard,badminton).
likes(eric,swimming).
likes(eric,reading).

Turbo Prolog searches from left to right. In the first subgoal

likes(X,reading)

the variable X is free (its value is unknown before Turbo Prolog attempts to satisfy the
subgoal) but, on the other hand, the second argument, reading, is known. Turbo Prolog
will now search for a fact that can fulfill the demands in the subgoal.

The first fact is a match, so the free variable X will be bound to the relevant value in the
fi rst fact, ellen.

likes(ellen,reading).

At the same time, Turbo Prolog places a pointer in the database indicating how far
down the search procedure has reached.

Next, the second subgoal must be fulfilled. Since X is now bound to ellen, Turbo Prolog
has to search for the "fact"

likes(ellen,swimming).

Turbo Prolog searches from the beginning of the database, but in vain. Thus, the second
subgoal is false when X is ellen.

Turbo Prolog now attempts another solution of the first subgoal with X free once again.
The search for a second fact that can fulfill the first subgoal starts from the place last
marked (provided there are more untested possibilities).

TURBO PROLOG'S STANDARD DOMAIN TYPES
Turbo Prolog can deal with six standard domain types, as shown in Table 4-1.

34 Turbo Prolog Owner's Handbook

char

integer

real

string

symbol

Table 4-1 Standard Domain Types

character enclosed between two single quotation marks (e.g. 'a').

integers from - 32,768 to 32,767.

numbers with an optional sign followed by some digits; then (optionally) a
decimal point (.) followed by some digits for the fractional part; and finally an
optional exponential part-for example, an e followed by an optional sign and
an exponent.

Following are examples of real numbers:

42705
-9999
86.72
-9111.929437
-521 e238
64e-94
-79.83e+21

The permitted number range is ± I e-307 to ± I e+ 308. Integers are automati
cally converted to real numbers when necessary.

Any sequence of characters written between a pair of double quotation marks,
e.g. "jonathan mark's book"

Two formats are permitted for symbols: (I) a sequence of letters, numbers and
underscores, provided the first character is lowercase; or (2) a character
sequence surrounded by a pair of double quotation marks (this is used in the
case of symbols containing spaces, or if a symbol does not start with a lowercase
letter). Following are examples of strings:

telephon~number

"railway_ticket"
"Dorid_lnc"

Symbols and strings can be used interchangeably, but they are handled differ
ently internally. Symbols are kept in a lookup table, which results in a very quick
matching procedure during a search. The disadvantage is that the symbol table
takes up room and the insertion takes time. You must determine which domain
will offer the best performance in a given program.

file The file domain type is described in Chapter 9.

Let's look at some more examples of objects that belong to domains of standard type.

Table 4-2 Simple Objects

swift, abc, kenneth, "animal lover"

-1,3,5,0

3.45,0.01, -30.5, 123.4e+5

'a', 'b', 'c' , '/', '&'

"One two", "name number 5", "&&"

(symbol)

(integer)

(real)

(char)

(string)

Tutorial II: A Closer Look at Domains, Objects and Lists 35

Objects belonging to character and string domains, and that contain a \ (backslash) have
a special meaning:

\Number
\n

a character with the ASCII value Number
Newline character

\t Tabulate character

Thus, the three objects below

write('\13')
write('\n')
nl

will cause a newline to be displayed.

We will now work out some predicate declarations using these standard domains. If
standard domains are the only domains in the predicate declarations, the program
need not have a domains section. For example, suppose we wish to define a predicate
so that a goal similar to

alphabet_position(A_character,N)

will be true if A-character is the Nth letter in the alphabet. Clauses for this predicate
would look like

alphabet_position('a',1).
alphabet_position('b',2).
alphabet_position('c',3).
alphabet_position(,0). 1* other characters give ° II

The predicate can be declared as follows:

predicates
alphabet_position(char, integer)

and there is no need for a domains section.

As another example, suppose we wish to declare a predicate that can be used in
connection with addition. Thus, we need a predicate such that in the following goal

add(X,y,Z).

the arguments are the two numbers to be added and the number that represents the
total, corresponding to the equation

X + Y = Z

Consequently, the predicates declaration must stipulate that add needs three numeric
arguments, and it must describe the types of domain to which they belong:

add(integer,integer,integer)

or

add(real,real,real)

If both predicate declarations are used, the predicate add can be used for both integers
and real numbers. This is due to the fact that Turbo Prolog permits multiple predicate
declarations. In multiple declarations of the same predicate, the declarations must be
given one after the other and they must all have the same number of arguments.

36 Turbo Prolog Owner's Handbook

Program 7 is a complete Turbo Prolog program that functions as a mini telephone
directory that uses the standard predicates readln and write. The domains section has
been omitted, since only standard domains are used. The program asks for a name to
be typed in. When the name is entered, the corresponding telephone number is found
from the database and displayed on the screen.

1* Program 7 *1
predicates

reference(symbol,symbol)
goal

clauses

write(IIPlease type a name :11),
readln(The_Name),
reference(The_Name,Phone_No),
write (liThe phone number is II, Phone_No) , nl.

reference(IIAlbert ll , 1101-1231;56 11).
reference(IIBettyll, 1101-569767 11).
reference(IICarol ll , 1101-2671;00 11).
reference(IIDorothyll,1I01-191051 11).

Finally, to illustrate the char domain type, Program 8 defines is/etter which, when given
the goals

isletter('%').
isletter('Q').

will return false and true respectively.

1* Program 8 *1
predicates

isletter(char)
clauses

isletter(Ch) if Ch (= 'z' and 'a' (= Ch.
isletter(Ch) if Ch (= 'Z' and 'A' (= Ch.

Exercise Type in Program 7 and try each of these goals in turn.

(1) reference (IiCarol ll , y) .
(2) reference(X,1I01-191951 11).
(3) reference(IIMavisll,y).
(1;) reference(X,y).

Kim shares a flat with Dorothy and so has the same phone number. Add this informa
tion to the clauses for the predicate reference and try the goal

reference(X,1I01-191051 11).

to check your addition.

Type Program 8 and try each of these goals in turn.

(1) isletter('x').
(2) isletter('2').
(3) isletter(lIhello ll).
(1;) isletter(a).
(5) isletter(X).

Tutorial II: A Closer Look at Domains, Objects and Lists 37

COMPOUND OBJECTS
CAN SIMPliFY YOUR CLAUSES!
Turbo Prolog allows you to make objects that contain other objects. These are called
compound objects. Compound objects can be regarded and treated as a single object,
which greatly simplifies programming.

Consider, for example, the fact

owns(john,book("From Here to Eternltyl,"James Jones")).

in which we state that john owns the book From Here to Eternity, which was written by
James Jones. Likewise, we could write

owns(john,horse(blacky)).

which can be interpreted as: john owns a horse by the name of blacky. The compound
objects in these two examples are

book("From Here to Eternityl,"James Jones")

and

horse(blacky)

If we had instead written two facts

owns(john, "From Here to Eternity").
owns(john, blacky).

we would not have. been able to decide whether blocky was the title of a book or the
name of a horse. On the other hand, the first component of a compound object, the
functor, is used to distinguish between different objects. In the example above, we
made use of the functors book and horse to indicate the difference.

Compound objects consist of a functor and the sub-objects belonging to it:

functor(object1,object2, ... objectN)

A functor without objects is written as

functor()

or just

functor

Domain Declaration of Compound Objects
We will now look at how compound objects are defined when domain declarations are
used. In the subgoal

o~ns(john,X)

the variable X can be bound to different types of objects, either a book, a horse, or
perhaps other types of objects. Because of this, we can no longer employ the old
definition of the owns predicate

owns(symbol,symbol)

38 Turbo Prowg Owner's Handbook

where the second argument has to refer to objects belonging to a domain of symbol
type. Instead, we use a new formulation of the predicate declaration:

owns(name,articles)

The articles can then be described with the domain declarations

domains
articles = book(title,author) ; horse(name)
title, author, name = symbol

The semicolon can be read as or. In this case, two alternatives are possible: a book can
be identified by its title and author, and a horse can be identified by a name. The domains
title, author, and name are all of symbol type.

More alternatives can easily be added to the domain declaration: articles could also
include a boat or a bankbook, for example.

For boat we can make do with an object with a functor which has no objects. On the
other hand, we wish to give the bank balance as a figure within bankbook. The domains
declaration of articles is therefore extended to

articles=book(title,author);horse(name);boat;bankbook(integer)

Here are some examples of how compound objects from the domain articles can be
used in some facts which define the predicate owns:

owns(john,book("A friend of the familyl,"Irwin Shaw")).
owns(john,horse(blacky)).
owns(john,boat).
owns(john,bankbook(1000)).

With the goal

owns(john,Thing).

we will now receive the answers:

Thing
Thing
Thing
Thing

book("A friend of the family", "Irwin Shaw")
horse(blacky)
boat
bankbook(1000)

How domain declarations are written-a summary.

domain = alternativel(D,D, ...); alternative2(D,D, ...)

Here, alternative I and alternative2 are arbitrary (but different) functors. The notation
(0,0,,,.) represents a list of domain names that are either declared elsewhere, or are
one of the standard domains symbol, integer, real or char.

Notice:

I. The alternatives are separated by semicolons.

2. Every alternative consists of a functor, and possibly a list of domains for the corre
sponding objects.

Tutorial II: A Closer Look at Domains, Objects and Lists 39

Program 9 uses functors to move the cursor around the screen as a "side-effect" of the
evaluation of goals. For example

move_cursor(~,9,up(2)).

moves the cursor up two lines from its starting position of row 4 and column 9 of the
screen. It uses the built-in predicate

cursor(row,column)

to position the cursor at the specified row and column.

/1 Program 9 1/
domains

row, column, step = integer
movement = up(step); down(step);

left(step) ; right(step)
predicates

move_cursor(row,column,movement)
clauses

move_cursor(R,C,up(Step)) :
Rl=R-Step,cursor(Rl,C).

move_cursor(R,C,down(Step)) :
Rl=R+Step,cursor(Rl,C).

move_cursor(R,C,left(_)) :
Cl=C-l,cursor(R,Cl).

move_cursor(R,C,right(_)):-
Cl=C+l,cursor(R,Cl).

If we added the alternative no, a movement could also include "no step" as in
mov~cursor (R,c'no). Note that the functor no is sufficient to represent "no move
ment." No sub-objects are required.

Going Down a Level
Turbo Prolog allows you to construct compound objects on several levels. For exam
ple, in

book("The Ugly Duckling", "Andersen")

instead of using the author's surname, we could use a new structure that describes the
author in more detail, including both the author's first name and surname. Calling the
functor for the resulting new compound object author, the description of the book is
changed to

book("The Ugly Ducklingl,author("Hans Christianl,IAndersen"))

In the old domain declaration

book(title,author)

we see that the second argument in the book functor is author. But the old declaration

author = symbol

40 Turbo Prolog Owner's Handbook

can only include a single name which is therefore no longer sufficient. We must now
specify that an author is also a compound object comprising the author's first name and
surname. This is achieved with the domain statement:

author = author(firstname,surname)

which leads us to the following declarations:

domains
articles = book(title,author) ;
author = author(firstname,surname)
title, firstname, surname = symbol

When we use compound objects on different levels in this way, it is often helpful to
draw a "tree":

book
I \

title author
I \

firstname surname

A domain statement describes only one level of the tree at a time and not the whole
tree. For instance, a book cannot be defined with the following domain statement:

book = book(title,author(name,surname»

As another example, consider how to represent the grammatical structure of the
sentence

"ellen owns the book"

using a compound object.

The most simple sentence structure consists of a noun and a verbphrose:

sentence = sentence(noun,verbphrase)

A noun is just a simple word:

noun = noun(word)

A verbphrose consists of either a verb and a nounphrose or single verb.

verbphrase = verbphrase(verb,noun) ; verb(word)
verb = verb(word)

Using these domain declarations (sentence, noun, article, verbphrose and verb), the sen
tence "ellen owns the book" becomes:

sentence(noun(ellen),verbphrase(verb(owns),noun(book»)

The corresponding tree is:

sentence

/ \
nlun Vi~:erbPhrase\nlun

ellen owns the book

Tutorial II: A Closer Look at Domains, Objects and Lists 41

Exercise Write a suitable domains declaration using compound objects that could be
used in a Turbo Prolog catalog of musical shows. A typical entry in the catalog might be:

Show: West Side Story
Lyrics: Stephen Sondheim
Music: Leonard Bernstein

Exercise Using compound objects wherever possible, write a Turbo Prolog program
to keep a database ofthe current Top Ten hit records. Entries should include the name
of the song, the name of the singer or group, its position in the Top Ten chart, and the
number of weeks in the charts.

Recursion
Program 10 illustrates an important Turbo Prolog programming technique called
recursion. Recursion is usually used in two situations:

• when relations are described with the help of the relations themselves

• when compound objects are a part of other compound objects (i.e., they are recur
sive objects)

The first situation occurs in Program 10. It gives a fact and a rule for the single predicate
factorial which, when used in a goal like

factorial(N,F)

will return true if F is equal to N! i.e., if

F = N*(N-1)*(N-2)* ... *3*2*1

Before we discuss how factorial works, type the program in and try out the following
goals:

42

factorial(l,Answer). /* goal 1 */
factorial(2,Answer). /* goal 2 *1
factorial(3,Answer). 1* goal 3 *1
factorial(~,Answer). 1* goal ~ *1
factorial(S,Answer). 1* goal 5 *1
factorial(b,720). 1* goal b *1
factorial(10,2000). 1* goal 7 *1

1* Program 10 */
domains

n, f = integer
predicates

factorial(n,f)
clauses

factorial(l,l).
factorial(N,Res) if

N) 0 and
N1 = N-1 and
factorial(Nl,FacNl) and
Res = N*FacNl.

Turbo Prolog Owner's Handbook

In the program, N I =N- I should be regarded as a more readable form of the clause:

=(N1,-(N,1))

where - is a functor. Thus N I =N-I evaluates to true provided N I is bound to the
value of N-I.

Let's investigate how factorial works when satisfying the goal

factorial(2,Answer)

Using the rule, we have

factorial(2,Res) if
2>1,N1=2-1,factorial(N1,FacN1),Res=2*FacN1.

So we must evaluate the goal

factorial(1,FacN1).

Using the fact

factorial(1,1).

the goal is satisfied by binding FacN I to I. In turn, we now need to evaluate

Res=2*FacN1

which is solved with Res bound to 2 * I, so the initial goal is satisfied with Answer bound
to 2.

For a more complicated evaluation like

factorial(~,Answer)

we have the evaluation sequence

factorial(~,Res) if
~>1,N1=~-1,factorial(~-1,FacN1),Res=~*FacN1

factorial(3,FacN1) if
3>1,N11=3-1,factorial(3-1,FacN11),Res=3*FacN11

factorial(2,FacN11) if
2>1,N11=2-1,factorial(2-1,FacN111),Res=3*FacN111

factorial(2-1,FacN111) succeeds with FacN111 bound to 1

factorial(3-1,FacN11) succeeds with FacN11 bound to 2

factorial(~-1,FacN1) succeeds with FacN1 bound to 6

factorial(~,Res) succeeds with Res bound to 2~

Hence, factorial(4,Answer) succeeds with Answer bound to 24.

Tutorial II: A Closer Look at Domains, Objects and Lists 43

goal : factorial(~,Answer)

calls: factorial(~,Res)

calls: factorial(~-1,FacN1), ~*FacN1

calls: factorial(~-1-1,FacN11),(~-1)*FacN11

calls: factorial(~-1-1-1,FacN111),(~-1-1)*FacN111

calls: factorial(1,1)

Figure 4-1 Evaluation of Factorial(4,Answer)

Exercise Add domains and predicates declarations to the following facts and rules:

factorial(X,Y) if newfactorial(D,1,X,Y).

newfactorial(X,y,X,y).
newfactorial(U,V,X,y) if

U1=U+1,
U1V=U1*V,
newfactorial(U1,U1V,X,Y).

and tryout the resulting program with the following goals:

1. factorial(3,Answer).
2. factorial(~,Answer).
3. factorial(S,Answer).

Using pencil and paper, trace the execution of the first goal.

Recursive Objects
Recursion can also be used to describe objects where the number of elements is not
known in advance. Consider this problem: Which object can describe the names of all
pupils in a school class, without us knowing the number of pupils in advance?

To solve this problem, let's formulate a corresponding domains declaration for the
domain c/oss/ist, step by step. We start by describing an empty class with no students:

classlist = empty

Next, we formulate the recursive definition

classlist = class(name,classlist)

Thus, a typical object would be

class(peter,X)

which symbolizes a C/oss/ist with peter as the first member. X symbolizes a smaller
c/oss/ist (without peter). Hence, a class consisting of two students could be described by

class(peter,class(james,empty))

and a class consisting of three students by

class(andrew,class(peter,class(james,empty)))

44 Turbo Prolog Owner's Handbook

Note that

class(name,classlist)

is a compound object where the functor is class, name is one student in the class, and
classlist contains the other students. The final, complete domains declaration consists of
the two alternative definitions

classlist=class(name,classlist) ; empty

Likewise a series of numbers could, for instance, be defined by

integerlist = list(integer,integerlist) ; empty

Exercise Write the compound Turbo Prolog terms that describe the following list of
numbers:

1,3,6,0,3

and draw the corresponding tree.

Exercise For the purposes of our Turbo Prolog programs, we wish to treat arithme
tic expressions, such as I + 2 - 3, as objects. Much of this is accomplished by the
domains declaration:

expr=plus(expr,expr) ; number(integer)

which gives such object possibilities as

plus(number(~),number(5))

corresponding to the arithmetic expression 4+ 5. The expression I + 2 + 3 could simi
larly be written as:

plus(number(1),plus(number(2),number(3)))

or

plus(plus(number(1),number(2)),number(3))

Append new alternatives to the above domains declaration so that objects that
describe 2-4 or 2+ 3-log(5) are also permitted.

THE FASCINATING WORLDS OF
LISTS AND RECURSION
Lists are the basic data structure in Turbo Prolog programs, corresponding roughly to
Pascal's use of arrays. Because lists are so common, Turbo Prolog provides an easier
way to represent them than as compound objects. A list that consists of the numbers I,
2, and 3 can be written as

[1,2,3, 1.

The elements of a list are separated by commas and enclosed by [and]. Here are
some examples:

[dog,cat,canaryl
[livalerie ann","jonathan","michael"l

Tutorial II: A Closer Look at Domains, Objects and Lists 45

To declare a domain for lists of integers, we use a declaration such as

domains
integerlist = integer*

where the asterisk indicates that there are 0 or more elements in a list.

The objects in a list can be anything, including other lists. However, all elements in a list
must belong to the same domain and there must be a domains declaration for the
objects that follows this form:

domains
objectlist = objects*
objects

Turbo Prolog processes a list by dividing it into two parts: the head and the tail. The
head of the list [1,2,3] is the element I. The tail of [1,2,3] is the list you get when you
remove the head, namely [2,3].

Table 4-3 List Processing

List

['a','b','c']
[I]
[]
[[1,2.3],[2,3,4].[]]

Head Tail
'a' ['b','c']

undefined
[1,2,3]

[] (an empty list)
undefined
[[2,3,4],[]]

Turbo Prolog uses a vertical bar (I) to separate the head and tail of a list. Hence, a list
with head X and tail Y is written

[X I Y]

If Turbo Prolog tries to satisfy the goal

scores([XIY])

and finds the fact

scores([0,1,0,2,6,0,0,1,2,3])

the variable X will be bound to the head of the list, i.e., to the integer 0, and Y will be
bound to the tail of the list, i.e., the list

[1,0,2,6,0,0,1,2,3,].

Table 4-4 gives several examples of list matching. Free variables are bound in the same
way as X and Y in the previous example.

List I

[X,y,z]
[7]
[1,2,3,4]
[1,2]

46

Table 4-4 List Matching

List 2

[egbert,eats,icecream]
[X I Y]
[X, Y I Z]
[3 I X]

Variable Binding

X = egbert,Y = eats,Z = icecream
X=7, Y=[]
X= I, Y=2, Z=[3,4]
The comparison fails, since the heads of the two
lists differ.

Turbo Prolog Owner's Handbook

Using Lists
In this and the following two sections, we'll examine some typical Turbo Prolog list
processing predicates.

List Membership
Suppose we have a list with the names

[john, leonard, eric, frankJ

-and would like to use Turbo Prolog to investigate if a given name is in the list. In other
words, we must express the relation member between two objects-a name and a list
of names--corresponding to the predicate statement

member(name,namelist).

In Program II, the first clause investigates the head of the list. If the head is equal to the
Name we are searching for, we can conclude that Name is a member of the list. Since
the tail of the list is of no interest. it is indicated by "_". Thanks to this first clause, the
goal

member(john,[john,leonard,eric,frankJ)

is satisfied.

1* Program 11 *1
domains

namelist = name*
name = symbol

predicates
member(name,namelist).

clauses
member(Name,[Namel_J).
member(Name,[_ITailJ) if member(Name,Tail).

If the head of the list is different from Name, we need to investigate whether Name can
be found in the tail of the list. In English:

"Name is a member of the list if Name is member of the tail"

and in Turbo Prolog:

member(Name,[_ITailJ) if member(Name,Tail).

Exercise Type in the above program and try the following goal:

member(susan,[ian,susan,johnJ)

Add domain and predicate statements so that the member predicate can also be used
to investigate if a number is a member of a list of numbers. Try several goals to test
your resulting new program, including

member(X,[1,2,3,~)).

Tutorial II: A Closer Look at Domains, Objects and Lists 47

Exercise Does the order of the two clauses for the member predicate have any
significance? Test the behavior of the program when the two rules are swapped. The
difference appears if the goal

member(X,[l,2,3,~,5))

is tested in both situations.

Writing Elements of a List
Now we'll define a predicate that writes out elements of a list on separate lines. Again,
we need to think recursively.

write_a_list([)).
write_a_list([HeadITail)) if

write(Head),nl,write_a_list(Tail).

The first clause says: Stop when there are no further elements in the list (the list is
empty); the second says: Write the head of the list, write a newline, and then deal with
the tail.

Exercise Complete the write_a-1ist program above and test the following goal:

write_a_list([2,~,b,8,10))

Appending One List to Another:
Declarative and Procedural Programming
As given, the member predicate of Program II works in two ways. Consider its clauses
once again:

member(Name, [Namel_)).
member(Name, [_ITail)) if member (Name,Tail).

We can think of these clauses from two different points of view. From a declarative
viewpoint they say that, given a list, Name is a member of that list if its head is Name; if
not, Name is a member of the list if it is a member of its tail. From a procedural
viewpoint the two clauses could be interpreted: to find a member of a list, find its head,
otherwise find a member of its tail.

These two points of view correspond to the goals

member(2,[l,2,3,~)).

and

member(X,[l,2,3,~)).

since, in effect, the first goal asks Turbo Prolog to check that something is true, whereas
the second asks Turbo Prolog to find all members of the list [1,2,3,4].

The beauty of Turbo Prolog lies in the fact that, often, if we construct the clauses for a
predicate from one point of view, they'll work for the other. As an example of this,
we'll now construct a predicate to append one list to another. For example, let's
append the lists [1,2,3] and [4,5] to form the list [1,2,3,4,5]. We'll define the predicate
append with three arguments:

append(Listl, List2, List3)

48 Turbo Prolog Owner's Handbook

This combines List I and List2 to form List3. Once again we are using recursion (from a
procedural point of view).

If List I is empty, the result of appending List I and List2 will be the same as List2. In
Turbo Prolog:

append([), List2, List2).

Otherwise, we can combine List I and List2 to form List3 by making the head of List I
the head of LisG. (Below, the variable X is used as the head of both List I and List3). The
rest of List3 (its tail) is obtained by putting together the rest of List I and the whole of
List2. (The tail of List3 is U, which is composed of the rest of List I (namely, L I) and the
whole of List2. In Turbo Prolog:

append([XIL1), List2, [XIL3)) if
append(L1,List2,L3).

The append predicate thus operates as follows: While List I is not empty, the recursive
rule transfers one element at a time to List3. When List I is empty, the first clause
ensures that List2 hooks onto the back of List3.

Exercise The two predicates append and writelist are defin~d in the Turbo Prolog
program below. Type in the program and run it with the following goal:

append([1,2,3),[S,6),L) and writelist(L).

Now try this goal:

append([1,2),[3),L),append(L,L,LL),writelist(LL).

1* Program 12 *1
domains

integerlist = integer*
predicates

append(integerlist,integerlist,integerlist)
writelist(integerlist)

clauses
append([),List,List).
append([XIL1), List2, [XIL3)) if

append(L1,List2,L3).
writelist([),([)).
writelist([HeadITail)) if

write(Head),nl,writelist(Tail).

One Predicate Can Have Several Applications
Looking at append from a declarative point of view, we have defined a relation
between three lists. This relation also holds if List I and List3 are known but List2 isn't
and if only List3 is known. For example, to find which two lists could be appended to
form a known list, we could use a goal of the form

append(L1,L2,[1,2,~)).

for which Turbo Prolog will find the solutions

Tutorial II: A Closer Look at Domains, Objects and Lists 49

L1 [], L2 = [1,2, L;]
L1 [1], L2 = [2,L;]
L1 [1,2], L2 = [L;]
L1 [1,2,L;], L2 = []
L; solutions

We can also use append to find which list could be appended to [3,4] to form the list
[1,2,3,4] by giving the goal

append(L1,[3,L;],[1,2,3,L;]).

Turbo Prolog finds the solution L I = [1,2].

append has defined a relation between an input set and an output set in such a manner
that the relation applies both ways. We can therefore ask

"Which output corresponds to this given input?"

or

"Which input corresponds to this given output?"

Exercise By amending the clauses given for member in Program II, construct clauses
for a predicate evenmember which would be solved given a goal

evenmember(2,[1,2,3,L;,5,6]).

and which, given the goal

evennumber(X,[1,2,3,L;,5,6]).

would display

X=2
X=L;
X=6
3 solutions

50 Turbo Prolog Owner' s Handbook

5 Tutorial III: Turbo Prolog's
Relentless Search for Solutions

This chapter falls into two main parts. In the first, we examine in detail the process
Turbo Prolog uses when trying to match a goal with a clause. This process is called
unification and corresponds to parameter passing in other programming languages.

In the second part, you'll learn how to control Turbo Prolog's search for solutions of
goals. This will include techniques that make it possible for a program to carry out a task
which would otherwise be impossible, either because the search would take too long
or (less likely with Turbo Prolog) because the system would run out of free memory.

MATCHING THINGS UP:
THE UNIFICATION OF TERMS
Consider Program 13 in terms of the (external) goal

written_by(X,y).

1* Program 13 *1

domains
title, author symbol
pages integer
publication book(title,page)

predicates
written_by(author,publication)
long_novel(Title)

clauses
written_by(fleming,book("DR NO",210)).
written_by(melville,book("MOBY DICK",bOO))
long_novel(Title):-written_by(_,book(Title,Length)),

Length> 300.

When Turbo Prolog tries to fulfill the goal, it must try each of the clauses for the
predicate written-.by in turn, trying to get a match between the parameters X and Yand
the parameters in each clause for written_by. This term matching operation is called
unification.

51

Since X and Yare free variables in this goal, and a free variable can be unified with any
other term, the very first written~y clause unifies with the goal clause

written_by (X Y

written_by(fleming,book("MOBY DICK",boo))

Thus X becomes bound to fieming and Y becomes bound to book(" MOBY DfCK",600)
so Turbo Prolog displays

X = fleming, Y = book("MOBY DICK",boo)
1 Solution

If, on the other hand, we give Program 13 the goal

written_by(X,book("MOBY DICK",Y)).

then again unification is attempted with the first clause for written~y:

written_by(X ,book("MOBY DICK", Y)).
I
I

written_by(fleming,book("DR NOli ,210)).

Since X is free, it becomes bound to fieming and a match is attempted between

book("DR NOli ,200)

and

book("MOBY DICK", Y)

A compound term can unify with another compound term provided they both involve
the same functor and the same number of arguments, and all the subterms unify pair
wise. In this case, the functor is the same (book) and the number of subterms is two
in each case. However, the constant MOBY DICK can unify only with itself or with a
free variable. Thus, no match is possible between MOBY DICK and DR NO and unifica
tion fails.

Turbo Prolog now attempts a match between

written_by (X , book("MOBY DICK", Y))

and

written_by(melville,book("MOBY DICK",boo))

The free variable X unifies (and becomes bound with) the constant melville. The com
pound terms

book("MOBY DICK", Y)

and

book("MOBY DICK",boo)

unify, since they both involve the same functor book; they have the same number of
arguments; the constant MOBY DICK unifies with itself; and the constant 600 can be
unified with the free variable Y. Thus the goal succeeds and Turbo Prolog responds

52

X = melville, Y = bOO
1 Solution

Turbo Prolog Owner's Handbook

Finally, consider execution of the goal

long_novel (X).

When Turbo Prolog tries to fulfill a goal, it investigates whether or not there exists a
matching fact or left side of a rule. In this case, the match is with the left side of a rule

long_novel(X)

long_novel(Title):-
written_by(_,book(Title,Length)),Length>300.

since the free variable X can be unified with any other term and, in particular, another
free variable. Next, Turbo Prolog makes the first clause on the right side of this rule the
current sub-goal, and unification is achieved with the first fact for written-1Jyas follows:

written_by(Name ,book(Title ,Length))
written_by(fleming,book("DR NOli, 210))

in which Length has become bound to 210.

Now the second clause on the right side of the longJJovel rule becomes the current
sub-goal

Length > 300

Before unification is attempted, the bound variable Length is replaced with the value to
which it is bound, 210. Since

210 > 300

is a legal comparison of two integer values, the comparison is made-and, of course,
returns false. Turbo Prolog now attempts a different unification of

written_by(Name,book(Title,Length))

(see the next section) and binds Title to "MOBY DICK" and Length to 600. Now

Length > 300

unifies with Length replaced by 600 (the value to which it is bound) and indeed suc
ceeds, so that longJJovel also succeeds with Title bound to "MOBY DICK". Turbo
Prolog displays

X = "MOBY DICK"
1 Solution

Summary of Turbo Prolog's Unification Algorithm

• A free variable can be unified with any term. The variable is then bound to the other
term.

• A constant (an integer, for example) can unify with itself or with a free variable.

• A compound term can unify with another compound term, provided they both
involve the same functor and have the same number of arguments. Further, all the
subterms must unify pairwise. (Lists are treated as a special kind of compound term).

Tutorial III: Turbo Prolog's Relentless Search for Solutions 53

Bound variables are replaced with the value to which they were bound prior to
unification.

Thus, unification takes care of:

• Assigning values to variables (i.e., parameter passing).

• Accessing data structures via a general pattern-matching mechanism.

• Certain kinds of tests for equality.

CONTROLLING THE SEARCH FOR SOLUTIONS
In this section we'll look at some techniques we can use to control Turbo Prolog's
search for solutions of our goals.

Let's start by looking at Program 14 in light of this goal, which cOl'1sists of two subgoals:

likes(X,wine) and likes(X,books)

1* Program l~ *1
domains

name, thing = symbol
predicates

likes(name,thing)
reads(name)
is_inquisitive(name)

clauses
likes(john,wine).
likes(lance,skiing).
likes(Z,books) if

reads(Z) and
is_inquisitive(Z).

likes(lance,books).
likes(lance,films).
reads (john) .
is_inquisitive(john).

When evaluating the goal, Turbo Prolog notes which subgoals have been satisfied and
which have not. This search can be represented by a goal tree:

likeS(X'Win~ikeS(X'bOOkS)
Before goal evaluation begins, the goal tree consists of two unsatisfied subgoals. In what
follows below, subgoals already satisfied in a goal tree are underlined with a dotted line,
and the corresponding satisfying clause head is shown underneath.

In our example, the goal tree shows that two subgoals must be satisfied. To do so,
Turbo Prolog follows the first basic principle:

Subgoals must be satisfied from left to right.

54 Turbo Prolog Owner's Handbook

The clause Turbo Prolog chooses to satisfy the first subgoal is determined by the second
basic principle:

Predicate clauses must be tested in the order they appear in the program.

When executing Program 14, Turbo Prolog finds a suitable clause in the first fact. Let's
look at the goal tree again:

/\
likes(X,wine) likes(X,booksj

likes(john,wine)

The subgoal

likes(X,wine)

matches the fact:

likes(john,wine).

by binding X to the value john. Turbo Prolog next tries to satisfy the next subgoal to the
right.
The satisfaction of the second subgoal starts a completely new search procedure, with
X = john. The first clause

likes(john,wine)

. does not match the subgoal

likes(X,books)

since wine is not the same as books. Turbo Prolog must therefore try the next clause,
but lance does not match the value of X (john), so the search continues with the third
clause

likes(Z,books) if reads(Z) and is_inquisitive(Z).

The parameter Z is a variable and so matches with X, and the second parameters
agree. When X matches Z, Turbo Prolog demands that Z also be bound to the value
john.
We know now that the subgoal matches the left side of a rule. Continued searching is
determined by the third basic principle:

When a subgoal matches the left side of a rule, the right side of that rule must be
satisfied next. The right side constitutes the new set of subgoals.

From this we get the following goal tree:

A
likes(X,wine) likes(X,books)

likes(john,wine) likes(Z,books)

d
/ . \ ... rea s(Z) lS_lnqulsltlve(Z)

Tutorial Ill: Turbo Prolog's Relentless Search for Solutions 55

The goal tree now includes the subgoals

reads(Z) and is_inquisitive(Z)

where Z has the value john. Turbo Prolog will now search for facts that match both
subgoals. The resulting final goal tree is shown below:

A
likes(X,wine) likes(X,books)

likes(john,wine) likes(Z,books)

/\
reads(Z) is_inquisitive(Z)

reads(john) is_inquisitive(john)

According to the fourth basic principle:

A goal has been satisfied when a matching fact is found for all the extremities (leaves)
of the goal tree,

so we know now that our initial goal is satisfied.

Turbo Prolog uses the result of the search procedure in different ways, depending on
how it was initiated. If the goal is a subgoal in a rule, Turbo Prolog keeps trying to satisfy
the next subgoal in the rule. If the goal is a question from the user, Turbo Prolog replies
directly:

X = john
1 solution
Goal :

As we saw in Chapter 3, having once satisfied a goal, Turbo Prolog backtracks to find
alternative solutions. It will also backtrack if a subgoal fails, hoping to resatisfy a previous
subgoal in such a way that the failed subgoal is satisfied with new variable values.

To fulfill a subgoal, Turbo Prolog begins a search with the first clause in a predicate. Two
things can happen:

I. A matching clause head is found. The following then happens:

a. If there is another clause that can possibly resatisfy the subgoal, the first such
clause is marked with a pointer to indicate a backtracking point.

b. All free variables in the subgoal that match values in the clause head are
assigned these values (the variables become bound).

c. If the matching clause is the left side of a rule, that rule must be satisfied. This is
done by treating the right side of the rule as a new goal.

2. A matching clause head cannot be found and the goal fails. Turbo Prolog back
tracks as it attempts to resatisfy a previous subgoal. All variables that were free
before the subgoal was previously satisfied are made free again.

56

Turbo Prolog first searches the clause indicated by the pointer. If the search is
unsuccessful, it backtracks again. If backtracking exhausts all clauses for all subgoals,
the goal fails.

Turbo Prolog Owner's Handbook

Use of Fail
Turbo Prolog contains a standard predicate that forces backtracking-fail. The effect of
fail corresponds to the effect of 2=3. We'll use Program 15 to illustrate the use of this
predicate.

1* Program 15 *1
domains

name = symbol
predicates

father(name,name)
everybody

clauses
father(leonard,katherine).
father(carl,jason).
father(carl,marilyn).
everybody if

father(X,y) and
write(X,1I is II,Y,II's father\n ll

) and
fail.

The goal father(X, Y) could be used in two different situations:

• As an inquiry to the Turbo Prolog system (an external goaO

• On the right side of a rule (an internal goaO, as in:

grandfather(X,B) if father(X,y) and father(Y,B).

With father(X, Y) as an external goal, Turbo Prolog will write out all possible solutions in
the usual way:

X= , Y=
X= , Y=
.... solutions

With father(X, Y) as an internal goal, Turbo Prolog will continue with the next subgoal
once it has been satisfied and will display only one solution. However, the predicate
everybody in Program 15 uses the fail predicate to disturb the usual mechanism.

The object of the predicate everybody is to produce neater responses from program
runs. Compare the answers to the two goals

Goal: father_to(X,y)
X=leonard, Y = katherine
X=carl, Y=jason
X=carl, Y=marilyn
3 solutions

Goal: everybody
leonard is katherine's father
carl is jason's father
carl is marilyn's father
No solution

The predicate everybody makes use of backtracking to generate more solutions for
father(X, Y) by trying to satisfy the right side of everybody:

father(X,Y) and write(X,1I is lI,y,llIs father\n ll
) and fail.

Tutorial III: Turbo Prolog's Relentless Search for Solutions 57

These subgoals must be satisfied from left to right. The first

father(X,y)

can be satisfied with X = leonard and Y = katherine, so that Turbo Prolog continues to
the next subgoal, the standard predicate write. It fulfills its task by writing some values,
and then continues to the last subgoal, the standard predicate fail.
Fail can never be satisfied, so Turbo Prolog is forced to backtrack. write cannot be
resatisfied (offer new solutions), so Turbo Prolog must backtrack again to the first
subgoal.

A new solution, namely X = carl and Y = sam, is found. Turbo Prolog can now
continue to the next subgoal, where the values are written out, and finally reaches the
last subgoal-fail-which once again initiates backtracking, and so on.

Exercise Type in Program 14 and evaluate the following goals:

father(X,y).

and

everybody.

Why are the solutions to everybody terminated by False? For a clue, append:

everybody

as a second clause to the definition of predicate everybody and reevaluate the goal.

PREVENTING BACKTRACKING:
THE CUT ELEMENT
Turbo Prolog contains an element that prevents backtracking under certain circum
stances. The element is called the cut and is written as an exclamation mark (!). Its
effect is simple:

It is impossible to backtrack past a cut

There are two main uses of the cut:

• When you know in advance that certain possibilities will never give rise to meaningful
solutions, so it is a waste of time and storage space to backtrack over them. By using
a cut in this situation, the resulting program will run quicker and use less memory.

• When the logic of a program demands the cut.

In the following examples, we will use several schematic Turbo Prolog rules rl, r2, r3
which all describe the same predicate r, plus several subgoals a,b,c, etc.

Using the Cut to Prevent Backtracking
to a Previous Subgoal in a Rule

r1 if a and band ! and c.

This is a way of telling Turbo Prolog that we are satisfied with the first solution of
subgoals a and b. As a concrete example, consider Program 16. It is based on the idea
that two people might like one another if they have at least one interest in common.

58 Turbo Prolog Owner's Handbook

1* Program 1b *1
domains

name,sex,interest = symbol
interests = interest*

predicates
findpairs
person(name,sex,interests)
member(interest,interests)
common_interest(interests, interests, interest)

clauses
findpairs if person(Man, m, ILIST1) and

person(Woman, f, ILIST2) and
common_interest(ILIST1, ILIST2, _) and

write(Man, II might like II,Woman) and nl and
fail.

findpairs:- write (II-----------end of the 1ist---II).

common_interest(IL1, IL2, X) if
member(X, IL1) and member(X, IL2) and !.

person(tom,m, [travel,books,baseball1).
person(mary,f,[wine,books,swimming1)~

member(X, [XI_1).
member(X, [_IL1) if member(X, L).

The use of the cut in the predicate common~nterest is the reason the predicate finds
only one common interest. If the cut were not employed, the same names would be
written many times if the persons had many interests in common.

Using the Cut to Prevent Backtracking to the Next Clause
This is a way to tell Turbo Prolog that it has chosen the correct clause for this predicate.
For example, given

r1 if ! and a and band c.
r2 if ! and d.
r3 if c.

the two cuts ensure that only one of the following clauses rl, r2 or r3 will be used.
(Remember, rl, r2, r3 are clauses for the same predicate r).
Our example in this case is based on Program 9 (Chapter 4), which defined the facto
rial predicate without the use of the cut:

factorial(1,1).
factorial(N,Res) if

N>1 and
N1=N-1 and
factorial(N1,Temp) and
Res=N*Temp.

The condition N> I was necessary, since the second clause could be satisfied with N = I.
Without this condition the first argument in factorial could become negative and the
program would loop forever (or until memory was exhausted).

Tutorial Ill: Turbo Prolog's Relentless Search for Solutions 59

With the use of the cut, however, we can adopt the new clauses

factorial(1,1) if !.
factorial(N,Res) if

N1=N-1 and factorial(N1,Between) and Res=N*Between.

where the cut indicates that, for N= I. the second clause should not be tested.

Determinism and the Cut
The member predicate (defined in Chapter 4) is an example of a predicate having non
deterministic clauses, i.e., clauses capable of generating multiple solutions through back-.
tracking. In many implementations of Turbo Prolog, special care must be taken with
non-deterministic clauses because of the attendant demands made on memory
resources at run time. In Turbo Prolog, however, internal checks are made for non
deterministic clauses and these are dealt with in a special way, thus reducing the burden
upon the programmer.

However, for debugging (and other) purposes, it can still sometimes be necessary for
the programmer to intercede and the checLdeterm compiler directive is provided for
this reason. If check determ is inserted at the very beginning of a program, a warning will
be displayed if any non-deterministic clauses are encountered during the evaluation of a
goal. Pressing [!1[) causes the warning to be ignored, while pressing any other key
aborts evaluation of the goal.

Non-deterministic clauses can be made deterministic by inserting cuts. Thus,
verifyJTlember with clauses

verify_member (X,[XI_l)):-!
verify_member (X,[_IY1):-verify_member(X,y).

is a deterministic version of member, the only difference between the two being the cut
to stop backtracking in the first clause.

verifyJTlember can be used to check that an element is a member of a given list, but
cannot be used in a goal like

verify_member (X,[1,2,3,~,Sl).

to successively bind X to the members of [1.2,3.4,5], since the goal succeeds with X
bound to I and no backtracking takes place.

60 Turbo Prolog Owner's Handbook

Exercise Suppose an average taxpayer in the USA is a US citizen, a married person
with two children, and earns no less than $500 a month and no more than $2,000 per
month. Define a Turbo Prolog predicate speciaLtaxpayer which, with this goal

special_taxpayer(fred).

will succeed only if fred fails one of the conditions for an average taxpayer. Use the cut
to ensure that there is no unnecessary backtracking.

Exercise Players in a certain squash club are divided into three leagues, and players
may only challenge members in their own league or the league below (if there is one).
Write a Turbo Prolog program that will display all possible matches between club
players in the form:

tom versus bill
marjory versus annette

Use the cut to ensure, for example, that

tom versus bill

and

bill versus tom

are not both displayed.

Tutorial III: Turbo Prolog's Relentless Search for Solutions 61

62 Turbo Prolog Owner's Handbook

6 Tutorial IV: Arithmetic,
Simple Input and Output,
and Debugging

Turbo Prolog's arithmetic capabilities are similar to those provided in programming
languages such as BASIC, C and Pascal. It includes a full range of arithmetic functions and
standard predicates as diverse as the arctangent function, and a family of predicates for
bitwise logical operations. These are described in the first part of this chapter, along
with standard predicates for basic input and output of numeric and non-numeric values.

The final part of this chapter resumes the discussion of debugging at the point where
Chapter 2 left off. As programs become larger and more complex, you'll require more
control over the amount of information produced by the various trace facilities, and this
section tells how to gain that control.

PROLOG CAN DO ARITHMETIC TOO!
We have already seen some simple examples of Turbo Prolog's arithmetic capabilities.
Turbo Prolog can perform all four basic arithmetic operations (addition, subtraction,
multiplication and division) between integer and real values, the type of the result being
determined according to Table 6-1.

Table 6-1 Arithmetic Operations

Oeerand I Oeerator Oeerand 2 Result
integer +, -, * integer integer

real +, -, * integer real

integer +, -, * real real

real +, -, * real real

integer or real integer or real real

63

The Order of Evaluation of Arithmetic Expressions
Arithmetic expressions, such as the one on the right side of the = predicate in

A = 1 + 6 / (11 + 3) * z
may include operands (numbers and variables), operators +, -, *, I, and parentheses
"("and")". Hexadecimal numbers are identified by a preceding dollar sign. The value of
an expression can only be calculated if all variables are bound at the time of evaluation.
This calculation must then be made in a certain order, determined by the priority of the
arithmetic operators; operators with the highest priority are evaluated first. Thus, eval
uation of arithmetic expressions proceeds as follows:

• If the expression contains subexpressions in parentheses, the subexpressions are
evaluated first.

• If the expression contains * (multiplication) or I (division), these operations are car
ried out next, working from left to right through the expression.

• Finally + (addition) and - (subtraction) are carried out, again working from left to
right.

Returning to our example expression, since variables must be bound before evaluation,
assume that Z has the value 4. The value of (II + 3) is the first subexpression to be
evaluated, and it evaluates to 14. Now 6/14 can be evaluated to give 0.428571 and then
0.428571 *4 gives 1.714285. Finally, evaluating 1+ 1.714285 gives the value of the expres
sion as 2.714285. If A belongs to a domain of real type, A will be bound to 2.714285, but
if A belongs to a domain of integer type, A will be bound to 2.

Comparisons
In the following statement:

X+L; < 9 - y

Table 6-2 Operator Priority

Operator

+
* /
mod div

- + (unary)

Priority

I
2
3
4

(which is the Turbo Prolog equivalent of: The total of X and 4 is less than 9 minus Y), the
relational operator < (less than) indicates the relation between the two expressions,
X+4 and 9-Y. If Value I and Value2 represent the values of the two expressions, we
could write this relation in a "normal" Turbo Prolog statement format as

less_than(Value1,Value2)

We could also write the Turbo Prolog sentences

plus(X,L;,Value1)
minus(9,L;,Value)

64 Turbo Prolog Owner's Handbook

Table 6-3 Relational Operators

< less than
<=

>
>=
<> or ><

less than or equal to
equal
greater than
greater than or equal to
different from

to describe how X+4 and 9-Yare evaluated to Va!ue! and Va!ue2, respectively. The
entire comparison X +4 < 9-Y could thus be formulated as:

plus(X,~,Value1) and
minus(9,y,Value2) and
less_than(Value1,Value2)

Turbo Prolog allows the more familiar formulation we began with, but be aware that a
single comparison such as X +4<9-Y (this is called inftx notation) corresponds to as
many Turbo Prolog statements as there are operators in the original sentence.

The complete range of relational operators allowed in Turbo Prolog is shown in Table
6-3.

Besides numeric expressions, it is also possible to compare single characters, strings and
symbols. Consider the following comparisons:

'a' < 'b'
peter > sally
"antony" > "antonia"

Turbo Prolog converts the comparison 'a' < 'b' to the equivalent arithmetic expression
97 < 98 using the corresponding ASCII code value for each character. With two string
or symbol values, the outcome depends on a character-by-character comparison of
corresponding positions. The result will be the same as from a comparison of their
initial characters, unless these two characters are the same. If they are, Turbo Prolog
will compare the next corresponding pair of characters and return that result, unless
these are also equal, in which case a third pair will be examined, and so on.

Hence, the second expression above is false-as is determined by comparing the
ASCII values for the characters that make up peter and sally, respectively. The character
p comes before s in the alphabet, so p has the lowest ASCII value and the expression is
false. (The ASCII values for the entire character set can be found in Appendix B).
Similarly, the third comparison is true, since the two symbols first differ at the position
where one contains the letter y and the other the letter i.

Compound objects, however, must be compared for equality using an equal predicate,
as shown in Program 17:

1* Program 17*1
domains

d = pair(integer,integer) ; single(integer) none
predicates

equal(d,d)
clauses

equal(X,X).

Tutorial IV: Arithmetic, Simple Input and Output, and Debugging 65

Type in Program 17 and try out these goals:

equal(single(~),pair(3,~».
equal(pair(2,l),pair(2,l».
equal(none,none).

Try also

equal(S,~).

which will result in a domain error. Now append a new predicate declaration of equal.

equal(integer,integer)

and retry the goal

equal(S,~).

Special Conditions for Equality
In Turbo Prolog, statements like N=N 1-2 indicate a relation between the three
objects: N, N I and 2; or a relation between two objects: N and the value of N 1-2.lf N
is still free, the statement can be satisfied by binding N. This corresponds to what other
programming languages call an assignment statement; in Turbo Prolog, it is a logical
statement. On the other hand, N I must always be bound to a value since it is part of an
expression.

When using the equal predicate to compare real values, care must be taken to ensure
that the necessarily approximate representation of real numbers does not lead to
unexpected results. Thus the goal

~.9999999999=S.OOOOOOOOOOO

will fail, indicating that when comparing two real values for equality, it is better to check
that the two are within a certain range of one another.

Program 18 illustrates how to use the equal predicate and tries to find solutions for the
quadratic equation

A * X*X + B * X + C = 0

where the existence of solutions depends on the value of the discriminant

D = B*B-~*A*C.

D>O implies that there are two solutions, D = 0 implies there is one solution only, and
D<O implies that there are no solutions if X is to take a real value.

66

1* Program 18 *1
predicates

solve(real,real,real)
reply(real,real,real)
mysqrt(real,real,real)
equal(real,real)

clauses
solve(A,B,C) :-

D = B*B-~*A*C, reply(A,B,D), nl.

Turbo Prolog Owner's Handbook

reply(_,_,D) :- D < 0, write("No solution"), !.
reply(A,B,D) :-

D = 0, X=-8/ (2*A), write("x=" ,X), !.
reply(A,B,D) :

mysqrt(D,D,SqrtD),
X1 = (-B + SqrtD)/(2*A),
X2 = (-B - SqrtD)/(2*A),
write("x1 = ",n," and x2 = ",X2).

mysqrt(X,Guess,Root) :-
NewGuess = Guess-(Guess*Guess-X)/2/Guess,
not(equal(NewGuess,Guess)),!,
mysqrt(X,NewGuess,Root).

mysqrt(_,Guess,Guess).

equal(X, Y) :-
X/Y) 0.99999 , X/Y < 1.00001.

The program calculates square roots by an iterative formula where a better guess
(NewGuess) for the square root of X can be obtained from the previous guess (Guess):

NewGuess = (Guess - (Guess * Guess - X)) /2

Each iteration brings us a little closer to the square root of X. Once the condition equal
is satisfied, no further progress can be made and the calculation terminates.

Exercise Type in Program 18 and try the following goals:

solve(1,2,1).
solve(1,1,t;).
solve(1,-3,2).

The solutions should be

x = -1
No solution
x1 = 2 and x2 1

respectively.

Exercise The object of this exercise is to experiment with the mysqrt predicate in
Program 18. We can ensure that temporary calculations can be monitored by adding
the following as the first subgoal in the first mysqrt clause:

write(Guess)

To see the effect of this amendment, try this goal

mysqrt(8,1,Result).

Next, replace the equal clause with this fact

equal(X,X).

and retry the goal. Experiment a little more with the properties of equal. Try, for
instance

equal(X,y) :- X/Y < 1.1 , X/Y) 0.9.

Tutorial IV: Arithmetic, Simple Input and Output, and Debugging 67

Exercise Turbo Prolog has a built-in square root function sqrt. Thus,

X = sqrt(D)

will bind X to the square root of the value to which D is bound. Rewrite Program 18
using sqrt and compare the answers with those from the original version.

ARITHMETIC FUNCTIONS AND PREDICATES
Unlike other versions of Prolog, Turbo Prolog has a full range of built-in mathematical
functions and predicates that operate on integer and real values. The complete list is
given in Table 6-4.

Table 6-4 Turbo Prolog Arithmetic Predicates and Functions

Functional Predicate

bitand(X, Y,Z)
bitor(X, Y,Z)
bitnot(X,Z)
bitxor(X, Y,Z)
bit/eft(X,N, Y)
bitright(X,N, Y)

XmodY
XdivY
abs(X)

cos(X)
sin(X)
tan(X)
arctan(X)
exp(X)
In(X)
log(X)
sqrt(X)

Description
If X and Yare bound to integer values, Z will be bound to an
integer which is the result of (I) representing the values of X and
Yas signed 16-bit numbers and (2) performing the corresponding
logical operation AND, OR, NOT, XOR on those numbers.

If X and N are bound to integer values, Y is bound to the integer
which is the result of representing X as a signed 16-bit number
and shifting left or right the number of places specified by N.

Returns the remainder of X divided by Y.
Returns the quotient of X divided by Y.
If X is bound to a positive value v, abs(X) returns that value; other
wise it returns -I IV.

The trigonometric functions require that X be bound to a value
representing an angle in radians.

Returns the arctangent of the real value to which X is bound.

e raised to the value to which X is bound.

Logarithm to base e.

Logarithm to base 10.

Square root.

Thus

test1(Xreal,AnswerReal):-
AnswerReal = In(exp(sin(sqrt(XReal'XReal)))))

and

test2(Xinteger,Answerlnt):
bitand(X,X,Y1),bitnot(Y1,Y2),bitor(Y2,X,Answerlnt).

could be used as clauses for predicates test I and test2 in a test program. In particular,
the goal

tesU(t;,A) .

will return

68 Turbo Prolog Owner's Handbook

A= -0.756802

and

tes t2 (L; , B) .

will return

B=-1

since - I is the signed 16-bit integer equivalent of IIIIIIIIIIIIIIII in binary.

Exercise Use the trigonometric functions in Turbo Prolog to display a table of sine,
cosine and tangent values on the screen. The left column of the table should contain
angle values in degrees, starting at 0 degrees and continuing to 360 degrees in steps of
15 degrees.

Exercise Write a Turbo Prolog program to test the theory that

myxor(A,B,Result):
bitnot(B,NotB),bitand(A,NotB,AandNotB),
bitnot(A,NotA),bitand(NotA,B,NotAandB),
bitor(AandNotB,NotAandB,Result).

behaves like

bitxor(A,B,Result)

SIMPLE INPUT AND OUTPUT

Writing
The predicate write can be called with an optional number of arguments:

wri te (Arg1, Arg2, Arg3,)

These arguments can either be constants (from domains of standard type) or variables,
but variables must be bound beforehand.

The standard predicate nl is often used in conjunction with write and causes printing on
the display screen to continue from a new line. Thus

pupil(PUPIL,CL),
write(PUPIL,1I is in the II,CL,II class ll

),

nl,
write(II-----------------------------------II).

might result in the display:

Helen Smith is in the fourth class

whereas

.... ,
write(IIList1= II, L1, II, List2= II, L2).

could give

List1 = [cow,pig,rooster], List2= [1,2,3]

Tutorial IV: Arithmetic, Simple Input and Output, and Debugging 69

Also, if in,

domains

clauses

sentence
subject
sentence verb
verb

sentence(subject, sentence_verb
subject(symbol) ;
sentence_verb(verb) ;
symbol

write(II SENTENCE= II, My_sentence).

My_sentence is bound to

sentence(subject(john),sentence_verb(sleeps))

we might obtain this display:

SENTENCE= sentence(subject(john),sentence_verb(sleeps))

Often write does not. by itself, give you as much control as you'd like over the printing
of compound objects like lists, but it's easy to use it in programs that give better control.
To conclude this section, we'll give you four small examples to illustrate the possibilities.
The first. Program 19, prints out lists without the opening and closing brackets, [and].

1* Program 19 *1
domains

integerlist = integer*
name list = symbol.

predicates
writelist(integerlist)
writelist(namelist).

clauses
writelist([]).
writelist([HIT]) :- write(H,1I II), writelist(T).

Try typing in the program and evaluating this goal:

writelist([1,2,3,~]).

Our next example, Program 20, writes out the values in a list, with at most five ele
ments per line.

1* Program 20 *1

domains
integer list = integer*

predicates
writelist(integerlist)
writeS(integerlist,integer)

clauses
writelist(NL) :- ni, writeS(NL, 0), ni.

writeS(TL, S) :-!, ni, writeS(TL, _).
writeS([HIT], N) :- write(H,1I 1I),N1=N+1,writeS(T,N1).
writeS ([], _).

If Program 20 is given this goal

writelist([2,~,b,B,10,12,1~,1b,1B,20,22]).

Turbo Prolog responds with

70 Turbo Prolog Owner's Handbook

2 L; 6 8 10
12 It; 16 18 20
22

Frequently, you may want a predicate that displays compound objects in a more read
able form. Program 21 displays a compound object like

plus(mult(x,number(99)),mult(number(3),x))

in the form

1* Program 21 *1
domains

expr = number(integer)
plus(expr,expr)

predicates
writeExp (expr)

clauses

x ; log(expr) ;
mult(expr,expr)

writeExp(x) write('x').
writeExp(number(No)) :- write(No).
writeExp(log(Expr)) :

wri te("log ("), writeExp (Expr), write(') ').
writeExp(plus(U1,U2)):-

writeExp(U1), write('+'), writeExp(U2).
writeExp(mult(U1,U2)):-

writeExp(U1), write('*'), writeExp(U2).

Program 22 is another, similar example. Try it with the goal

write_sentence(sentence(name(bill),verb(jumps))).

1* Program 22 *1
domains

sentence sentence(nounphrase,verbphrase)
nounphrase nounp(article,noun); name(name)
verbphrase verb(verb); verbphrase(verb,nounphrase)
article,noun,name,verb = symbol

predicates
write_sentence(sentence)
write_nounphrase(nounphrase)
write_verbphrase(verbphrase)

clauses
write_sentence(sentence(S,V)) if

write_nounphrase(S) and write_verbphrase(V).

write_nounphrase(nounp(A,N)) if write(A,' ',N,' ').
write_~ounphrase(name(N) if write(N,' ')).

write_verbphrase(verb(V)) if write(V,' ').
write_verbphrase(verbphrase(V,N)) if

write(V,' ') and write_nounphrase(N).

Exercise Write a Turbo Prolog program that, given a list of addresses contained in
the program as clauses of the form

address("Sylvia Dickson","lt; Railway Boulevardl,"Any Town",272L;O).

displays the addresses in a form suitable for mailing labels such as:

Tutorial IV: Arithmetic, Simple Input and Output, and Debugging 71

Sylvia Dickson
14 Railway Boulevard
Any Town
27240

Reading
Turbo Prolog includes standard predicates for reading:

• whole lines of characters

• integer, real, and character values from the keyboard

• from a disk file

By themselves, these predicates cannot be used to read compound objects or lists
directly (but see readterm in Chapter II). The construction of compound objects or
lists from users' input is the programmer's responsibility. Table 6-5 contains a list of
available predicates.

Program 23 illustrates both the use of readln and the extraction of compound objects
from input lines.

1* Program 23 *1
domains

person = p(name,age,telno,job)
age = integer
telno,name,job = string

predicates
readperson(person)
run

goal
run.

clauses
readperson(p(Name,Age,Telno,Job)):

write(IIWhich name? 1I),readln(Name),
write("Job ?"),readln(Job),
write("Age ?"),readint(Age),
write("Telephone no ?"),readln(Telno).

run:
readperson(p),nl,write(P),nl,nl,
write("Is this compound object OK (y/n)"),
readchar(Ch),Ch='y' .

run:-
nl,nl,write("Alright, try again"),nl,nl,run.

The final example in this section uses readint to read a list of integers. One integer per
line is read until readint fails.

72

1* Program 2~ *1
domains

list integer*
predicates

readlist(list)
goal

write("Write a list of integers"),readlist(L),
write("\nThe Turbo Prolog list is ",L).

Turbo Prolog Owner's Handbook

clauses
readlist([HITl
readlist([l).

readint(H),!,readlist(T).

Exercise Write and test clauses for a predicate reodbin which in the call

readbin(IntVar)

would convert a user-input 16-bit binary number to a corresponding Turbo Prolog
integer value to which In tV or is bound. Check your work by writing a program that
contains reodbin.

Table 6-5 Standard Reading Predicates

readln(Line)

readint(X)

readreal(X)

file_str(Filename,X)

readchar(CharParam)

The domain for the variable Line must be of either string or
symbol type. The variable Line must be free prior to the
readln invocation. readln reads up to 150 characters for
strings 64K and up to the limit from other devices (see
Chapter 8). The string entered must be terminated by a
carriage return.

The domain for the variable X must be of integer type, and
X must be free prior to the call. When the line read will be
converted to an integer, readint will read characters from the
current input device iE!:9bably the keyboard, but see
Chapter 8) until the [t:J key is pressed. -If the line does. not
correspond to the usual syntax for integers, readint fails and
Turbo Prolog's backtracking mechanism is invoked.

The domain for the variable X must be of real type, and X
must be free prior to the call. readreal reads characters from
the current input device until the IE) key is pressed. This
input is then converted to a real number. If the input does
not correspond to the usual syntax for a real number,
readreal fails.

The domains for Filename and X must be of symbol or string
type (preferably string, since long texts slow down symbol
table lookup). The variable X must be free prior to the
invocation of f/le-str. f/le-str reads characters from the file
until an end-of-file character (normally a @ill)I)) terminates
the process. The contents of the file Filename are transferred
to the variable X so that. for example

file_str(lit. datil, My _text)

binds My_text to the contents of the file t.dat. In this way, the
string can contain carriage return characters. Files that are
read from a disk will automatically contain an end-of-file
character as the last character. The file read must not exceed
64K bytes in length.

CharParam must be a free variable prior to invocation of
readchar and belong to a domain of char type. The predicate
then reads a single character from the current input device.
readchar returns as soon as a single character is typed.

Tutorial IV: Arithmetic, Simple Input and Output, and Debugging 73

DEBUGGING AND TRACING
Before a program is executed, it is first checked to see that it conforms with Turbo
Prolog syntax and to verify that values from different domain types have not been
mixed up. As we saw in Chapter 2, if any error is found, the system returns control to
the editor and places the cursor where the error was detected.

Once a program has been verified to be syntactically correct, Turbo Prolog provides
unique debugging and tracing facilities for efficient program development. When a pro
gram has successfully compiled and Turbo Prolog is waiting for an external goal, the
next stage in debugging is to choose goals carefully so that predicates can be tested for
a representative sample of all possible values. If unexpected behavior occurs, the trace
compiler directive introduced in Chapter 2 can be used to obtain a step-by-:-step trace
of execution in the trace, edit and dialog windows.

Turbo Prolog uses a good deal of optimization to increase execution speed. One
important optimizing technique is tail recursion elimination (see Chapter II). Using the
trace compiler directive, the trace contains all RETURNs that are logically part of pro
gram execution. To trace execution using these optimizations, use the shorttrace direc
tive instead.

shorttrace also results in less trace output in the trace window. When tracing a fairly
large program section, this may be an advantage in itself. It may be, however, that use of
either directive generates too much tracing information, in which case you can use the
trace predicate to dramatically reduce trace display.

The trace predicate always succeeds, and works only when one of the compiler direc
tives trace or shorttrace appears at the top of a program.

trace(on)

turns tracing on and

trace(off)

turns tracing off, respectively. Thus, if the clauses for the predicate works_already were
known to behave as expected, the clause for the predicate test defined by

test(X):-works_already(X,Z),

might be more effectively traced by temporarily redefining it as

test(X):-trace(off),
works_already(X,Z),
trace(on),

During the single-step execution of a program trace, I]ill)]J can be used to provide
the same function as trace, since it toggles between trace(off) and trace(on).
Another way of controlling the information supplied by the tracing facilities is to use
trace or shorttrace in the form

trace p1,p2,p3, ...

or

shorttrace p1,p2,p3, ...

74 Turbo Prolog Owner's Handbook

which result only in calls to and returns from the named predicates p l,p2,p3,oo. occur
ring in the trace.

Some Predicates are Special
You may have noticed that write is not traced in the same way as other predicates (its
CALL and RETURN are not marked). This is because write is implemented in a rather
special way so that it is allowed to have an arbitrary number of parameters.

Several other predicates are specially treated in a trace for similar reasons. These
include: all comparison operators (=,< etc), not, (indall, free, bound, asserta, assertz,
retract, writer. and readterm. (Several of these have yet to be introduced in the tutorial,
but all are described in Chapter 12).

An Exercise in Tracing
Type in Program 25, which seeks to define the predicate intersect so that it serves two
purposes. With this assumption, a goal

intersect(X,List1,List2).

would succeed if X is bound to the list of integers which List I and List2 have in com
mon, so that

intersect(X,[1,2,3],[2,3,~,5])

succeeds with X bound to [2,3] and

intersect([2,3],X,[2,3,~,5])

succeeds with X bound to [2,3.4,5]. Use the Turbo Prolog trace facilities to discover
why the program doesn't work as intended.

1* Program 25 *1
domains

list integer*
predicates

member(integer,list)
intersect(list,list,list)

clauses
member(X,[Xl_]).
member(X,[_lY]):- member(X,y).

intersect([],[],_).
intersect([XlY],[XlL1],L2):-

member(X,L2),intersect(Y,L1,L2).
intersect(Y,[_lL1],L2):

intersect(Y,L1,L2).

Tutorial IV; Arithmetic, Simple Input and Output, and Debugging 75

76 Turbo Prolog Owner's Handbook

7 Tutorial V: Seeing Through
Turbo Prolog's Windows

Turbo Prolog allows you to incorporate windows in your programs (in full color if you
have the necessary hardware) and have full access to DOS. Before introducing Turbo
Prolog's first-class windowing capabilities, this chapter describes how to determine the
screen attribute values that will be used in window commands to determine the colors
both inside a given window and for the window frame (if there is one).

The chapter concludes with two exciting illustrations of the potential of Turbo Prolog's
windowing features (an arcade style "shoot-em-up" game and a word guessing game)
and then gives a few simple examples of how to interface your Turbo Prolog programs
with DOS.

SETTING THE SCREEN DISPLAY ATTRIBUTES
Turbo Prolog allows you to control such screen display characteristics as inverse video,
underlining and colors. This information is passed to standard predicates via an attribute
value which, among other things, determines the color of the characters (the fore
ground) and the color behind the characters (the background). It is possible to give
attributes for single characters or for a whole screen area.

If your computer has a Monochrome Display Adapter, display attribute values are
calculated as follows:

• Choose the integer representing the desired foreground and background combina-
tion from Table 7- I.

• Add I if you want characters to be underlined in the foreground color.

• Add 8 if you want the white part of the display to be in high intensity.

• Add 128 if you want the character to blink.

77

Table 7-1 Monochrome Display Adapter Attribute Values

Black characters on a black background (i.e., blank) 0

White characters on a black background (normal video) 7

Black characters on a white background (inverse video) 112

To calculate the values of screen attributes for a Color/Graphics display, follow this
procedure:

• Choose one foreground color and one background color.

• Add the corresponding integer values from Table 7-2.

• Add 128 if you want whatever is displayed with this attribute to blink.

Table 7-2 Color/Graphics Adapter Attribute Values

Background colors Foreground colors
Black 0 Black 0

Gray 8 Blue I
Blue 16 Green 2

Light Blue 24 Cyan 3

Green 32 Red 4

Light Green 40 Magenta 5
Cyan 48 Brown 6

Red 64 White 7

Light Red 72

Magenta 80

Light Magenta 88

Brown 96
Yellow 104

White 112

White (High Intensity) 120

Thus, for black and white display on a color monitor, the corresponding screen attri
bute is 0+7=7, whereas for red foreground on a yellow background the attribute
value is 4+ 104= 108.

WINDOWS IN YOUR PROGRAMS
Turbo Prolog provides six standard predicates which allow your programs to handle
windows, i.e., to define areas of the screen and direct output to these areas. These
predicates are:

78 Turbo Prolog Owner's Handbook

makewindow(...)
shiftwindow(...)
removewindow(...)
clearwindow(...)
window_str(...)
window_attr(...)

Also useful in this connection is the cursor positioning standard predicate

cursor(...)

We'll now consider each predicate, starting with makewindow.

makewindow(WNo,ScrAttr,FrameAttr,Header,Row,Col,Height,Width)

The predicate makewindaw defines an area of the screen as a window. All parameters
except Header must be integers. Header must be a string or symbol, and it is used as a
title in the upper frame line. Windows are identified by a number (WNa) which is used
to select which on-screen window is active. If FromeAttr is greater or less than zero, a
border is drawn around the defined area (i.e., the window is framed) in the color
specified by that attribute. Once defined, the window is "cleared" to the background
color and the cursor is moved to its topmost left corner.

The row and column positions of the top left corner of the window-relative to the
whole screen-are specified by parameters Raw and Cal respectively, and Height and
Width give the dimensions of the window. Raw, Cal, Height and Width should corre
spond to the size of the display. Typically, display size is 25 rows of 80 characters, but
this can be changed with the graphics standard predicate (see Chapter 8). Here's an
example use of makewindaw:

makewindow(1,7,135,IIMy first window ll ,1,20,L;,3L;)

Here, makewindaw specifies window number I, with a black and white display. A bor
der will be drawn (FromeAttr is 135) with the header "My first window" and the win
dow itself will be 4 rows high, 34 columns wide and be positioned with the top left
corner at row I, column 20 of the screen (note that rows and columns are numbered
from 0 onwards).

On the other hand

makewindow(2,7,135,lIcount the rows ll ,8,20,19,3L;)

will result in the error message

the parameters in makewindow are illegal

since a window with height 19 is impossible if positioned starting from row 8 (8+ 19 >
25 I). Notice also that if Height and Width are bound to 10 and 20 respectively, the
actual display area of the window will be 8 rows and 18 columns if the window is
framed (i.e., FromeAttr is bound to a non-zero value), since the frame will then occupy a
total of two rows and two columns.

Tutorial V: Seeing Through Turbo Prolog's Windows 79

Read and Write With Windows
The standard predicates read, readint, readchar, write and nl automatically affect the
most recently made window. Thus, in Program 26, the messages will be written in the
appropriate window (first window I, then window 2) and the first call to readint will
echo digits typed in window 2. Once the [E) key has been pressed, window 2 will be
removed by the removewindow predicate. removewindow removes the currently active
window and the screen returns to the display prior to the "making" of that window.
Then readint will echo digits typed .in window I until [E) is pressed, when window I
will be removed (being the currently active window). Hence the final readint will echo
to the bottom of the screen as usual.

predicates
run

clauses
run :-

1* Program 26 *1

makewindow(1,20,7,IIA blue window ll ,2,5,10,50),
write(IIThe characters are red ll),
makewindow(2,1M,7,IIA light cyan window ll ,M,55,10,20),
write(IIThiswindow is light cyan and the II),

write(lIletters are black and blink. II),
write(IIPlease type an integer to exit.II),nl,
readint(_),
removewindow,
readint(_),
removewindow,
readint(_),
write(1I Notice where the integer appearsll).

Windows can overlap. To see this, replace the makewindow commands in Program 26
with

makewindow(1,20,7,IIFirst ll ,1,3,20,30)

and

makewindow(2,1M,7,IISecond ll ,6,18,18,50)

respectively.

If the text is too big to fit in a window, the text will scroll, just as it would on the full
display screen. To see this, replace the makewindow commands in Program 26 with

makewindow(1,20,7,IIFirst ll ,1,3,20,15)

and

makewindow(2,1M,7,IISecondll ,6,18,18,30)

Output to the screen is re-routed to window WindowNo by the standard predicate

shiftwindow(WindowNo)

and that window becomes the currently active window. (Turbo Prolog remembers any
previously active window.) The cursor returns to where it was when window Win
dowNo was last active. If window WindowNo does not exist, a runtime error occurs.

80 Turbo Prolog Owner' s Handbook

You can change the attribute of the currently active window with the
window_attr(Attr)

standard predicate. windowattr causes the entire active window to receive the attribute
Attr.

The cursor standard predicate also gives more control over screen display. If Rowand
Col are bound to positive integer values, then

cursor(Row,Col)
moves the cursor to the indicated position in the currently active window. (Rowand Col
denote row and column values within the window, where the top left corner inside the
window is at row 0, column 0). If Rowand Col are free, cursor(Row,Col) binds Rowand
Col to the current cursor position.

Program 27 uses the window standard predicates to turn your computer into a simple
adding machine that repeatedly adds two integers and displays the result. Both oper
ands and the sum are displayed in windows.

Note the redefinition of window 2 in the program. The new window definition is
referred to by the same number; the latest definition is always used. clearwindow clears
the currently active window by filling that window with the selected background color.
To run the program, give the goal start.

/* Program 27 *1
predicates

start
run(integer)
do_sums
set_up_windows
clear_windows

clauses
start :

set_up_windows,do_sums.
set_up_windows :

makewindow(1,7,7,1I11,0,0,25,80),
makewindow(1,7,7,IILeft operandll ,2,5,5,25),
makewindow(2,7,7,1111,2,35,5,10),
nl,write(1I PLUS II),
makewindow(2,7,7,IIRight operand ll ,2,50,5,25),
makewindow(3,7,7,IIGives ll , 10,30,5,25),
makewindow(L;,7,7,1I11,20,30,5,35).

do_sums :
run(_),clear_windows,do_sums.

run(Z)
shiftwindow(1),
cursor(2,1),readint(X),
shiftwindow(2),
cursor(2,10),readint(Y),
shiftwindow(3),Z=X+Y,cursor(2,10),write(Z),
shiftwindow(L;),
write(1I Please press the space barll),
readchar(_).

clear_windows :
shiftwindow(1),clearwindow,
shiftwindow(2),clearwindow,
shiftwindow(3),clearwindow,
shiftwindow(L;),clearwindow.

Tutorial V: Seeing Through Turbo Prolog's Windows 81

SCREEN-BASED INPUT AND OUTPUT
The basic read and write family of standard predicates is not adequate for more sophis
ticated uses of Turbo Prolog's screen and window display facilities. There are some
other specially designed standard predicates that make full screen and window handling
easier. In this section, we'll first describe the facilities available and then use some of
them to construct a simple program which could be the basis of a "shoot-em-up"
computer game.

The entire screen or a window can be accessed and manipulated on three levels:

• One character at a time.

• One field at a time. (A field is any contiguous sequence of character display positions
occurring on the same row.)

• One window at a time.

On the character level, the important predicates for screen and window handling are
scr _char and scr _attr. scr _char takes the form

scr_char(Row,Column,Character)

and is used both to read and write a character. With all three parameters bound, the
Character will be written in the indicated position. With Rowand Column bound and
Character free, a character is read from the indicated position. If Row or Column refers
to a position outside the borders of the active window, a runtime error occurs.

sccattr is used analogously to scr _char and takes the form

scr_attr(Row,Column,Attr)

The attribute of the character position (Row, Column) is assigned or read depending on
whether Attr is bound or free.

On the field level, (teld--str takes the form

field_str(Row,Column,Length,String)

and works similarly. It can be used to read text from, or write text to a field on the
screen or inside a window. The position of the field is indicated by variables Row,
Column and Length, which must refer to a position within the borders of the currently
active window. If {teld--str refers to positions outside the screen or currently active
window, the program will stop with a runtime error. If String is bound to a value
containing more characters than Length indicates, only the first Length characters are
used. If String is shorter than Length, the rest of the field will be filled with blank spaces.

All the positions in a selected field can be assigned an attribute value with a single call of
the standard predicate (teld_attr, which takes the form

field_attr(Row,Column,Length,Attr)

All parameters must be bound, although if {teld_attr is called with Row, Column and
Length bound and Attr free, Attr will be bound to the current attribute setting of the
specified field (which will be determined by the attribute of the first character in the
field).

82 Turbo Prolog Owner's Handbook

The window-str predicate takes the form:

window_str(StringParam)

If StringParam is free when window-str is called, StringParam will be bound to the string
currently displayed in the active window and thus have the same number of lines as are
in the active window. The length of every line in the string is determined by the last
non-blank character in that line.

If, on the other hand, StringParam is bound to a string value, that string is written in the
window according to the following algorithm:

• If there are more lines in the string than there are lines in the window, lines will be
written until the window space is exhausted.

• If there are fewer lines in the string than in the window, the remaining lines in the
window will be filled out with blank spaces.

• If there are more characters in a string line than are available on a window line, the
string line will be truncated to fit.

• If there are fewer characters in a line than there are columns in the window, the line
will be filled out with blank spaces.

A SIMPLE ARCADE GAME
To illustrate the power of Turbo Prolog's window handling facilities, we'll now use
scr _char to construct a very simple arcade game program. When the program is run,
monsters will appear at the top of the screen and gradually make their way down
towards the player who is stationed at the bottom. The player must direct the fire
from the zapGun using the II) and I]) keys. The object of the game is to zap the
monsters before they zap you.

Since Turbo Prolog works so fast, we need to slow it down to give the screen display a
chance to catch up. Otherwise the whole game would be played so quickly that we
wouldn't see a thing. Thus, we define the predicate delay, whose sole purpose is to
waste an amount of time indicated by its single integer parameter. Its clauses are:

delay(N) :- N>O,!,N1=N-1,delay(N1).
delayL) .

Now, we can define the predicate zapGun which when called in the form

zapGun(2~,Column)

will simulate the firing of a laser beam from the bottom of the screen straight up the
given Column. We do this by repeatedly drawing and erasing the "A" character.

zapGun(N,C):- N>O,!,scr_char(N,C,'A'),delay(150),
scr_char(N,C,' '),N1=N-1,zapGun(N1,C).

zapGun(_,_).

The attacking monsters are represented by a list of integers denoting the numbers of
the columns down which they will descend. We want to be able to draw the monsters

Tutorial V: Seeing Through Turbo Prolog's Windows 83

(represented by the character "#") and to erase them (to simulate movement). Predi
cate show Them takes three parameters: a list of columns occupied by monsters; the
row on which they are to be displayed; and a character which will be displayed in every
monster position.

showThem([],_,_) :-!.
showThem([MonsterITheRest],Row,Char)

scr_char(Row,Monster,Char),
showThem(TheRest,Row,Char).

At different points in the game, we'll check to see which monsters still "live" and which
row they have reached:

testresult([],_):-
write ("\ nWell done champion zapper !"),
delay(32ooo),exit.

testresult(_,Row):- Row<2~,!.
testresult(_,_):-

write("\nToo late, YOU have been zapped!"),
delay(32ooo),exit.

Once a monster has been zapped, it is deleted from the list of live monsters by the
delete predicate:

delete (_, [] , []) .
delete(X,[XIR],R) :-!.
delete(X,[YIR],[Y,R2]) !,delete(X,R,R2).

There are a few other details to consider. We must prevent the zap gun from going off
the sides of the screen, move it one column to the left if I1l is pressed, or one column
to the right if II) is pressed. Pressing any other key has no effect. Here's the relevant
code:

test('z' ,0,0) :-!.
tes t (, x' ,79, 79) : -! .
test('z',OldCol,NewCol):-!,NewCol=OldCol-l.
test('x',OldCol,NewCol):-!,NewCol=OldCol+l.
testC,C,C) .

The internal goal for the program is

doit(5b,[~2,~5,5o,55,5b,59],0)

which starts the game with the zap gun in column 56, monsters in columns
42,45,50,55,56 and 59, and all monsters at row 0. The defining clause for doit is

84

doit(Initial,Monsters,Row):
testresult(Monsters,Row),
showThem(Monsters,Row, '\1'),
readchar(Ch),test(Ch,Initial,Final),
zapGun(2~,Final),
delete(Final,Monsters,LiveMonsters),
NewRow=Row+l,
cursor(2~,Final),
showThem(Monsters,Row,' '),
doit(Final,MovedMonsters,NewRow).

Turbo Prolog Owner's Handbook

Program 28 shows the entire program.

II Program 28 II
domains

monsters=integer ' predicates

goal

delay(integer)
zapGun(integer,integer)
delete(integer,monsters,monsters)
testresult(monsters,integer)
test(char,integer,integer)
doit(integer,monsters,integer)
showThem(monsters,integer,char)

makewindow(1,7,O,IIII,O,O,25,80),
doit(56,[~,22,~5,50,5,56,59,62],O).

clauses
doit(Initial,Monsters,Row):

testresult(Monsters,Row),
showThem(Monsters,Row,'\1'),
readchar(Ch),
test(Ch,Initial,Final),
zapGun(2~,Final),
delete(Final,Monsters,LiveMonsters),
NewRow=Row+1,
cursor(2~,Final),
showThem(Monsters,Row,' '),
doit(Final,LiveMonsters,NewRow).

testresult([],_):-
write(lI\nWell done champion zapper !II),
delay(32000),exit.

testresult(_,Row) :- Row<2~,!.
testresult(_,_) :-

write(lI\nToo late, YOU have been zapped !II),
delay(32000),exit.

showThem([],_,_) :-!.
showThem([MonsterITheRest],Row,Char)

scr_char(Row,Monster,Char),
showThem(TheRest,Row,Char).

zapGun (N, C) :
N>O,!,scr_char(N,C,'A'),delay(150),
scr_char(N,C,' '),N1=N-1,zapGun(N1,C).

zapGun(_,_).

test('z',O,O):-!.
tes t (, x' ,79, 79) : -! .
test('z',OldCol,NewCol):-!,NewCol=OldCol-1.
test('x',OldCol,NewCol):-!,NewCol=OldCol+1.
test(_,C,C) .

delete <-, [] , []) .
delete(X,[XIR],R):-!.
delete(X,[YIR],[YIR2]) !,delete(X,R,R2).

delay(N): N>O,!,N1=N-1,delay(N1).
delay(O).

Tutorial v; Seeing Through Turbo Prolog's Windows 85

A WORD GUESSING GAME USING WINDOWS
Program 29 uses Turbo Prolog's window facilities to produce a word guessing game. To
keep it fairly short, the operation of the program is quite primitive, but the windows
make its on-screen presentation impressive nevertheless.

The player must guess a total of three words in turn. First. s/he is asked to type in a
letter. If that letter is in the word, it is put in the YES window. If not. the letter goes into
the NO window. After each guess at a letter, the player is asked to guess the whole
word, which must then be typed in letter-by-Ietter, and the IE) key pressed after
every letter. A record is kept of the total number of guesses.

86

1* Program 29 *1
dOlains

list=symbol*
. scores=integer

predicates

goal

member(symbol,list)
run
continue(list,scores)
yes_no_count(symbol,list)
guess_word(scores,list)
word(list,integer)
read_as_list(list,integer)

makewindow(1,7,D,III1,D,D,2S,8D),
makewindow(2,7,13S,IICounting ll ,1,2D,L;,3L;),
makewindow(3,112,112,IIYES II ,S,S,7,30),
makewindow(L;,112,112,IINO II ,S,L;D,7,3D),
makewindow(S,7,7,III1,M,2D,1D,3L;),
run.

clauses
run:- word(W,L),

shiftwindow(1),clearwindow,
write(IIThe word has II,L,II lettersll),
shiftwindow(2),clearwindow,
shiftwindow(3),clearwindow,
shiftwindow(L;),continue(W,O),fail.

continue(L,R):-
shiftwindow(L;),clearwindow,
write(IIGuess a letter :11),
Total=R+1,readln(T),yes_no_count(T,L),
shiftwindow(L;),clearwindow,
guess_word(Total,L),continue(L,Total).

yes_no_count(X,List):
member(X,List),shiftwindow(2),write(X),!.

yes_no_count(X,_):-
shiftwindow(3),write(X).

guess_word(Count,Word):-
write(IIKnow the word yet? Press y or nil),
readchar(A),A='y',cursor(O,D),
write(IIType it in one letter per line \nll),
word(Word,L),read_as_list(G,L),
G=Word,clearwindow,window_attr(112),
write(IIRight! You used II,Count,1I guess(es)II),
readchar(_),window_attr(7),!,fail.

Turbo Prolog Owner's Handbook

guess_word(_,_).
word([b,i,r,d],~). word([p,r,o,l,o,g],6).
word([f,u,t,u,r,e],6).
member(X,[XI_]):-!.
member(X,[_IT]):-member(X,T).
read_as_list([],O) :-!.
read_as_list ([Ch I Rest] , L) :-

readln(Ch),L1=L-1,read_as_list(Rest,L1).

A WINDOW TO DOS
Turbo Prolog programs can provide access to DOS via the system predicate, which
takes the form

system("Any DOS command or the name of an executable file")

If the argument is an empty string (" "), DOS will be called, as long as the DOS file
COMMAND.COM is accessible from the current DOS directory (see Chapter 12,
"Setup"). You can then give commands to DOS. To return to Turbo Prolog, type

EXIT

(Evaluation of the related standard predicate exit will stop the execution of a Turbo
Prolog program and return control to Turbo Prolog).

For example, to copy the file B:ORIGINAL.FIL to a file A:ACOPY.FIL from within the
Turbo Prolog system, you could give the goal

system("") .

and then copy the file using the usual DOS command

>copy b:original.fil a:acopY.fil

and then return to Turbo Prolog

A>EXIT

after which Turbo Prolog replies

Goal :

You could combine this DOS-calling facility with windows to construct your own user
interface to DOS. For instance,

makewindow(1,7,7,IDOS",5,26,10,~O),

system("") .

would confine any dialogue with DOS to an 8-row, 38-column window in the top right
corner of the screen.

Program 30 displays directories for the disk in drive A (left window) and drive B (right
window), and returns to Turbo Prolog when the space bar is pressed.

Tutorial V: Seeing Through Turbo Prolog's Windows 87

goal
1* Program 30 *1

makewindow(l,7,7,"Directory for disk AII,o,o,20,3S),
system("dir a:"),
makewindow(2,7,7,"Directory for disk B",o,L;o,2o,3S),
system("dir b:"),
makewindow(3,7,7,"I,21,2S,3,30).

Program 31 illustrates a file copy utility with a very elegant, window-driven user inter
face. In this design, the user needn't remember whether it is the name of the copy or
the name of the file to be copied that comes first in the DOS copy command (a point of
confusion for many novice computer users). Program 31 uses the standard predicate
concat (see Chapter 9) which takes the form

concat(X,y,Z)

and is true if Z is bound to the concatenated strings to which X and Yare bound. Thus

concat("hello"," mother",X)

will succeed and binds X to "hello mother" and

concat("valerie","ann","valerie-ann")

fails (because of the extra hyphen in "valerie-ann").

1* Program 31 *1
goal

makewindow(l,7,7,ISource",o,o,2o,3S),
write("Which file do you want to copy ?"),
cursor(3,B),readln(X),
makewindow(2,7,7,IDestination",o,L;o,2o,3S),
write("What is the name of the new copy ?"),
cursor(3,B),readln(Y),
concat(X," ",Xl) ,concat(Xl, Y, Z),
concat("copy ",Z,W),
makewindow(3,7,7,IProcess",M,lS,B,So),
write(" Copying ",X," to ",Y),cursor(2,3),
system(W) .

Date and Time
There are two other DOS-related standard predicates that are handy to use: date and
time. They can each be used in two ways, depending on whether all their parameters
are free or bound on entry. If all variables in

time(Hours,Minutes,Seconds,Hundredths)

are bound, time will reset the internal system time clock. If all variables are free, they
will be bound to the current values of the internal clock.

Date, which also relies on the internal system clock, operates in the same way, and
takes the form

date(Year,Month,Day)

Program 32 uses time to display the time elapsed during a listing of the directory in
drive A.

88 Turbo Prolog Owner's Handbook

goal
1* Program 32 *1

makewindow(1,7,7,ITimer",8,1D,12,bO),
time(O,O,O,O),system("dir a:"),
time(H,M,S,Hundredths),
write(H," hours "),
write(M," minutes "),
write(S,1I seconds "),
write(Hundredths,1I hundredths of a second"),nl,nl.

For a more sophisticated example of the use of time, see Program 60 in Chapter 10.

Tutorial V: Seeing Through Turbo Prolog's Windows 89

90 Turbo Prolog Owner's Handbook

8 Tutorial VI:
Graphics and Sound

Apart from windows, the other way to brighten up your programs is to use graphics
and sound. Turbo Prolog offers a choice of point- and line-based graphics or a full set of
Turtle Graphics commands. Complex shapes are easy to draw with Turtle Graphics
all you have to do is guide a little pen-carrying turtle around the screen. This chapter
describes these facilities in detail, gives some attractive example programs and con
cludes with two applications of the sound standard predicate, one of which turns your
computer into a piano!

TURBO PROLOG'S GRAPHICS
Before using Turbo Prolog's graphics commands, you must set up the screen in an
appropriate way using the standard predicate graphics. When you've finished with
graphics, the standard predicate text can be used to clear the screen and return to text
mode.

The graphics predicate takes the form

graphics(ModeParam,Palette,Background)

and initializes the screen in medium, high or extra-high resolution graphics. The possible
values for ModeParam and the resulting screen formats are shown in Table 8-1. The
standard IBM Color/Graphics Adapter supports modes I and 2: and modes 3,4, and 5
are supported by the Enhanced Graphics Adapter. In all cases, graphics clears the
screen and positions the cursor at the upper left corner.

In mode I four colors can be used (colors 0, 1,2, and 3), as shown in Table 8-2. Color °
is the current background color. Colors are determined by one of two palettes,
selected according to whether Palette is bound to ° or I. Modes 3 and 4 offer sixteen
colors, and mode 5 offers 3.

Background (also an integer value) selects one of the background colors shown in Table
8-3.

91

Table 8-1 Graphics Resolution Choices

Number Number
ModeParam of Co Is of Rows Description

I 320 200 Medium resolution, 4 colors.
2 640 200 High resolution black and white.
3 320 200 Medium resolution, 16 colors.
4 640 200 High resolution, 16 colors.
5 640 350 Enhanced resolution, 13 colors.

Table 8-2 Palette Choices in Medium Resolution

Palette Color I Color 2 Color 3

0 green red yellow
cyan magenta white

Table 8-3 Background Colors

0 black 8 gray
I blue 9 light blue
2 green 10 light green
3 cyan II light cyan
4 red 12 light red
5 magenta 13 light magenta
6 brown 14 yellow
7 white 15 high intensity white

The two fundamental graphics standard predicates are dot and line. The call

dot(Row,Column,Color)

places a dot at the point determined by the values of Rowand Column, in the specified
Color. Rowand Column are integers from 0 to 31999 and are independent of the current
screen mode. (Dot returns the color value if the variable Color is free prior to the call).
Similarly,

line(Row1,Co11,Row2,Co12,Color)

draws a line between the points (Rowl, Col/) and (Row2, Co12) in the specified Color.
Program 33 shows a typical sequence of standard graphics predicate calls.

92

II Program 33 II
goal

write("Before graphics"),readchar(_),
graphics(1,1,~),
line(~OOO,~DDD,1DDDD,2DDDD,2),
write("ordinary write during graphics mode"),
readchar(_),
text,
write("After graphics").

Turbo Prolog Owner's Handbook

Program 34 uses standard graphics predicates to construct a "doodle pad." A border is
drawn around the screen, and you can draw by pressing the CD (for Up), []J (for
Down), El (for Left), and El (for Right) keys. Try the program out before examining
the code. Keys other than ([), []J, !Il and [[) are ignored, except that pressing 0
exits the program.

/1 Program 3t; 1/
predicates

move(char,integer,integer,integer)
start
changestate(integer,integer)

goal
start

clauses
start:-

graphics(l,l,t;),
line(1000,1000,1000,31000,2),
line(1000,31000,31000,31000,2),
line(31000,31000,31000,1000,2),
line(31000,1000,1000,1000,2),
changestate(15000,15000).

changestate(X,Y):-
readchar(Z),move(Z,X,Y,Xl,Yl),changestate(Xl,Yl).

move('r',X,31000,X,31000):- !.
move('r',X,Yold,X,Ynew):- !,Ynew=Yold+l00,dot(X,Yold,3).
move('l',X,1000,X,1000):- !.
move('l',X,Yold,X,Ynew):- !,Ynew=Yold-l00,dot(X,Yold,3).
move('v',1000,Y,1000,Y):- !.
move('v';Xold,Y,Xnew,Y):- !,Xnew=Xold-l00,dot(Xold,y,3).
move('d',31000,Y,31000,Y):- !.
move('d',Xold,Y,Xnew,Y):- !,Xnew=Xold+l00,dot(Xold,Y,3).
move('I',_,_,_,_):- !,exit.
move(_,X,y,X,y).

Turtle Graphics Commands
Standard predicates that produce effects similar to Program 34 are built into Turbo
Prolog-the Turtle Graphics commands.

When you enter graphics mode the screen is cleared, and a turtle appears in the
middle of the screen facing the top of the screen vertically and with a "pen" attached to
its tail. As the turtle is directed to move by various standard predicates, the "pen"
leaves a trail on the screen.

The effect of these predicates depends on

• The position of the turtle

• The direction of the turtle

• Whether the "pen" is drawing (activated) or not

• The color of the pen

The standard predicate pendown activates the pen and penup deactivates it. Immedi
ately after a call to graphics, the pen is activated. The color of the trail left by the pen

Tutorial VI: Graphics and Sound 93

is determined by the parameter Color in pencolor(Color) according to the colors in Table
7-1.
The movement of the turtle is controlled by four standard predicates: forward, back,
right and left. Thus

forward(Step)

indicates how many steps the turtle is to move from its current position along its
current direction (the size of the step depends on the graphics mode). forward fails if
the movement leads to a position outside the screen; there are 32000 horizontal steps
and 32000 vertical steps. The current position of the turtle is updated only if forward is
successful.
The predicate

back(Step)

does the opposite of forward: back(X) corresponds to forward(- X).
To make the turtle turn right. use the predicate

right(Angle)

If Angle is bound, the turtle will turn through the indicated angle in degrees to the right.
If Angle is free prior to calling right, it is bound to the current direction of the turtle.
The predicate

left(Angle)

works the same for left turns.
Thus, the following sequence would draw a triangle on the screen and end up with the
turtle facing in its original direction:

pendown,
forward(5DDD),right(12D),
forward(5DDD),right(120),
forward(5000),right(120).

Program 35 draws a star in a similar way.

1* Program 35 *1
goal

graphics(2,1,O),
forward(5000),right(1~~),forward(5000),right(1~~),
forward(5000),right(1~~),forward(5000),right(1~~),
forward(500D),right(1~~),forward(5DDD).

Here are some more examples of what you can do with Turtle Graphics: Programs 36
and 37 draw spirals, Program 38 draws a pattern, and Program 39 a circle.

94

1* Program 36 *1
predicates

polyspiral(integer)
goal

graphics(2,1,D),polyspiral(5DD).
clauses

polyspiral(X):
forward(X),right(62),Y=X+1DD,polyspiral(Y).

Turbo Prolog Owner's Handbook

/1 Program 37 1/
predicates

inspiral(integer)
goal

graphics(2,1,0),inspiral(10).
clauses

inspiral(X):
forward(SOOO),right(X),Y=X+1,inspiral(Y).

/1 Program 38 1/
predicates

square(integer)
fillsquare(integer)

goal
fillsquare(SOOO).

clauses
square(X) :

forward(X),right(90),forward(X),right(90),
forward(X),right(90),forward(X),right(90).

fillsquare(X):-X>10000,!.
fillsquare(X):-square(X),Y=X+SOO,fillsquare(Y).

predicates
goal
clauses

/1 Program 39 1/

circle
circle.
circle:-forward(1000),right(1),circle.

Turbo Prolog's graphics can also be used within windows, as illustrated in Program 40.
A window is drawn and a "spotlight" effect (several lines drawn from a fixed point to
fifteen other points) is repeated at five different positions. Another overlapping win
dow is drawn and five more "spotlights" appear. Finally, a text window is drawn, which
contains an invitation for the user to press the space bar. Each time the space bar is
pressed, one of the windows is removed and the invitation reappears.

Note that text and graphics can be used simultaneously both inside a window and on
the full screen.

/1 Program L;O 1/
domains

list=integer l

predicates
spotlight(integer,integer,integer)
xy(list)

goal
undo

graphics(2,0,1),
makewindow(1,7,7,"First",1,1,18,70),
xy([O,0,0,9000,3000,26S00,20100,2L;L;00,201DO,1000J),
makewindow(2,7,7,"Second",10,20,1t;,6D),
xy([O,100D,D,9DOO,O,20DDO,1S0DO,200DD,1S000,100DJ),

Tutorial VI: Graphics and Sound 95

makewindow(3,7,7,IText",1S,O,b,3S),
write("This could be any text written by any"),nl,
write("of the Turbo Prolog writing predicates."),
undo,undo,undo.

clauses
xy([X,YIRestl):

spotlight(1S,X,Y),!,xy(Rest).
xy(_).
spotlight(O,_,_):-! .
spotlight(N,R,C):

X=N I 1200,line(R,C,9000,X,1),N1=N-1,
spotlight(N1,R,C).

undo:
write("\n\nPress the space bar"),
readchar(_),removewindow.

LET'S HEAR TURBO PROLOG
Turbo Prolog has two standard predicates for making noises. The simplest takes the
form

beep

and makes the computer beep. The other can be used to make more imaginative
noises, and takes the form

sound(Duration,Frequency)

A note of the indicated Frequency is played for Duration hundredths of a second. Using
the sound predicate, we can turn the computer into a miniature piano, given the fre
quencies of various notes. In Program 41 we have done just that, using the frequencies
shown in Table 8-4 and using the keys

WET Y U
A S D F G H J K

to mimic the normal piano keyboard layout. For example, pressing ASDFGHJK (in that
order) would produce a C major scale. Keys not on our pretend piano keyboard
produce a high-pitched peep thanks to the clause

tone(_,SOOO).

and thus only ~ interrupts the execution.

96 Turbo Prolog Owner's Handbook

Table 8-4 The Computer as Piano

Note Frequency

C (low) 131
C sharp 139
D 147
D sharp 156
E 165
F 175
F sharp 185
G 196
G sharp 208
A 220
A sharp 233
B 247
C (middle) 262

1* Program L;1 *1

Keyboard Character

A
W
S
E
D
F
T

G
y

H
U

J
K

predicates
piano
tone(char,integer)

goal
piano.

clauses
piano:

readchar(Note),tone(Note,Freq),sound(S,Freq),piano.

tone('a',131). tone('w',139). tone('s',1L;7).
tone('e',1Sb). tone('f',17S). tone('t',1BS).
tone('g',19b). tone('y',20B). tone('h',220).
tone('u',233). tone('j',2L;7). tone('k',2b2).
tone(_,SOOO). I*all other keys squeak *1

Program 42 plays the nursery rhyme Jock and Jill by running up and down musical
scales.

1* Program L;2 *1
domains

direction=up;down
predicates

jack_and_jill(direction,integer)
goal

jack_and_jill(up,SOO).
clauses

jack_and_jill(up,F):
F<SOOO,!,sound(1,F),F1=F+200,jack_and_jill(up,F1).

jack_and_jill(up,F):-
jack_and_jill(down,F).

jack_and_jill(down,F):
F>SOO,!,sound(1,F),F1=F-200,jack_and_jill(down,F1).

jack_and_jill(down,F):-
jack_and_jill(up,F).

Tutorial VI: Graphics and Sound 97

98 Turbo Prolog Owner's Handbook

9 Tutorial VII: Files and Strings
Turbo Prolog is extremely rich in file and string-handling facilities. Rather than giving a
long list of standard predicates that might seem daunting at first sight, this chapter gives
the standard predicates in related families. Each family of predicates is followed by
some example programs which illustrate the use of predicates in that family. A com
plete classified (and alphabetized) list of standard predicates can be found in Chap
ter 12.

The chapter concludes with a description of the very important standard predicate
{indoll (which is used to collect the values of a variable that satisfy a given clause into a
list) and of the random number generator random.

THE TURBO PROLOG FILE SYSTEM
In this section, we'll take a look at the Turbo Prolog file system and the standard read
and write predicates that are relevant to files. The standard predicates for reading and
writing are elegant and efficient. With just a single command, output can, for instance,
be routed to a file instead of being displayed on the screen.

In fact, Turbo Prolog makes use of a currenueod_device, from which input is read, and
a currenLwrite_device, to which output is sent. Normally, the keyboard is the current
read device and the screen is the current write device, but you can specify other
devices. For instance, input could be read from a file that is stored externally (on disk
perhaps), and output could be sent to a printer. Moreover, it is possible to reassign the
current input and output devices while a program is running.

Regardless of what read and write devices are used, reading and writing are handled
identically within a Turbo Prolog program.

99

To access a file, it must first be opened. A file can be opened in four ways:

• For reading

• For writing

• For appending to the file

• For modification

A file opened for any activity other than reading must be closed when that activity is
finished or the changes to the file will be lost. Several files may be open simultaneously,
and input and output can be quickly redirected between open files. In contrast, it takes
longer to open and close a file than to redirect data between files.

When a file is opened, Turbo Prolog connects a symbolic name to the actual name of
the file used by DOS. This symbolic name is used by Turbo Prolog when input and
output are redirected. Symbolic file names must start with a lowercase letter and must
be declared in the file domain declaration:

file = fileL ; source ; auxiliary

Only one file domain is allowed in any program, and the four symbols

printer
screen
keyboard
comL

are automatically defined in advance in the file domain and must not appear in the file
declaration. printer refers to the parallel printer port and com I refers to the serial
communication port.

Following are the standard predicates for opening and closing files.

openread{SyrnbolicFileNarne,DosFileNarne)
The file DosFileName is opened for reading. The file is then referred to by the symbolic
name SymbolicFileName. If the file is not found, the predicate fails. If DosFileName is
illegal, an error message is displayed.

openwrite{SyrnbolicFileNarne,DosFileNarne)
The file DosFileName is opened for writing. If the file already exists, it is deleted. Other
wise, the file is created and an entry made in the appropriate DOS directory.

openappend{SyrnbolicFileNarne,DosFileNarne)
The file DosFileName is opened for appending. If the file is not found, an error message
is displayed and execution halted.

openrnodify{SyrnbolicFileNarne,DosFileNarne)
The file DosFileName is opened for both reading and writing. openmodify can be used in
conjunction with the (ilepos standard predicate (see page 102) to update a random
access file.

]00 Turbo Prolog Owner's Handbook

closeFile(SymbolicFileName}
The indicated file is closed. This predicate is successful even if the file has not been
opened.

readdevice(SymbolicFileName}
Reassigns the current read device provided SymbolicFileName is bound and has been
opened for reading. If SymbolicFileName is free, the call will bind it to the name of the
current active read device.

writedevice(SymbolicFileName}
Reassigns the current write device provided the indicated file has been opened either
for writing or appending.

For example: The following sequence opens the file MYDATA.FIL for writing and
directs all output produced by clauses between the two occurrences of writedevice to
that file. In the following code excerpt, the file is associated with the symbolic filename
destination appearing in a domains declaration of the file domain:

dOlains
file = destination

goal
openwrite(destination,"mydata.fil"),
writedevice(destination),

writedevice(screen),

As another example, the following sequence will redirect all output produced by
clauses between the two occurrences of writedevice to the printer device. (The printer
need not be "opened," since this is handled by the system. Caution: If no printer is
connected, the system will "hang" if such a sequence is executed; ~ can be used
to allow Turbo Prolog to regain control).

writedevice(printer),

writedevice(screen),

Also, the com I device is opened automatically. If your computer has no serial card,
there will be a runtime error if com I is used in writedevice or readdevice.

In Program 43, we have used some standard read and write predicates to construct a
program that stores characters typed at the keyboard in the DOS file TRYFILE.ONE
on the current default disk. Characters typed are not echoed on the display screen; it
would be a good exercise for you to change the program so that characters are
echoed. The file is closed when the W key is pressed.

During text entry, each ASCII code for a carriage return received from the keyboard is
sent to the file as two ASCII codes, carriage return and line feed. This is because the
DOS TYPE command requires both characters to be present in order to produce a
proper listing of the contents of the file.

Tutorial VII: Files and Strings 101

1* Program ~3 *1
domains

file myfile
predicates

start
readin(char)

clauses
start:-

open write (myfile ,"tryfile. oneil) ,
writedevice(myfile),
readchar(X),
readin(X),
closefile(myfile),
writedevice(screen),
write("Your input has been transferred a file").

readin ('#'): -! .
readin('\13') :-! ,write(I\13\10") ,readchar(X) ,readin(X).
readin(X):- write(X),readchar(Y),readin(Y).

The position where reading or writing takes place in a file can be controlled by the
(tlepos predicate, which takes the form

filepos(SymbolicFileName,FilePosition,Mode)

This predicate can change the read and write position for a file identified by Symbolic
FileName, which has been opened via openmodify, or it can return the current file posi
tion if called with Fileposition free and Mode bound to O. Fileposition is a real value
(any fractional part is disregarded). Mode is an integer and specifies how the value of
Fileposition is to be interpreted, as shown in Table 9-1.

Thus the sequence

Text="A text to be written in the file",
openmodify(myfile,"some.fil")
writedevice(myfile),
filepos(myfile,100,O),
write(Text).

will write the value of Text in the file starting at position 100 (relative to the beginning of
the file).

Using (tlepos, the contents of a file can be inspected position by position, and this is
precisely what Program 44 allows you to do. The program requests a filename and
then displays the contents of positions in the file as their position numbers are entered
at the keyboard.

102

Mode

o
I
2

Table 9-1 Mode and Fileposition

Fileposition

Relative to the beginning of the file

Relative to current position

Relative to the end of the file i.e., the end of the file counts as position O.

Turbo Prolog Owner's Handbook

domains
file input

predicates

II Program 1;1; II

start
inspect_positions

goal
start.

clauses
start:-

write("Which file do you want to work with ?"),
readln(FileName) ,
openread(input,FileName),
inspect_positions.

inspect_positions:
readdevice(keyboard),nl,write("Position No?"),
readreal(X),
readdevice(input),filepos(input,X,D),readchar(Y),
write(Y) ,inspect_positions.

In a similar vein, Program 45 dumps the contents of a file onto the display screen in
(decimal) ASCII codes. It uses the eaf predicate, which has the form

eof(SymbolicFileName)

eaf can check whether the fileposition during a read operation is at the end of the file, in
which case eaf succeeds: otherwise, it fails.

II Program 1;5 II
domains

file input
predicates

start
print_contents

goal
start.

clauses
start:-

write ("Which file do yau want to work with ?"),
readln(FileName) ,
openread(input,FileName),
readdevice(input),
print_contents.

print_contents:
not(eof(input)),readchar(Y),char_int(Y,T),
write(T,1I "),print_contents.

print_contents:-
nl,readdevice(keyboard),
write("\nPlease press the space bar"),readchar(_).

Following are the remaining file handling standard predicates.

flush(SymbolicFileName)
Forces the contents of the internal buffer to be written to the named file. ~ush is useful
when the output is directed to a serial port and it may be necessary to send data to the
port before the buffer is full. During normal disk file operations, the buffer is fiushed
automatically.

Tutorial VII: Files and Strings 103

existFile(DosFileName)
This predicate succeeds if DosFileName is found in the DOS directory in the current
default disk drive. The predicate fails if the name does not appear in the directory or if
the name is an invalid filename or includes wildcards, e.g. *. *. The sequence

open(File,Name):
existfile(Name),l,openread(File,Name).

open(_,Name):-
write(IIError: the file II,Name,1I is not found ll

).

can be used to verify that a file exists before attempting to open it.

deleteFile(DosFileName)
DosFileName is deleted. De/eteFile always succeeds if the filename is a valid DOS file
name; otherwise, a runtime error will occur.

renameFile(OldDosFileName,NewDosFileName)
The file OldDosFileName is renamed NewDosFileName provided a file called NewDos
FileName doesn't already exist and both names are valid filenames. The predicate fails
otherwise.

STRING PROCESSING
The predicates described in this section are used to divide strings either into a list of
their individual characters or into a list of corresponding symbols. The predicate

frontchar(String1,CharParam,String2)

operates as if it were defined by the equation

String1 = (the concatenation of CharParam and String2).

If String I is empty, the predicate will fail. In Program 46, frontchar is used to define a
predicate that changes a string to a list of characters (or the other way around). Try the
goal

string_chlist("ABCII,Z)

This goal will return Z bound to ['A','B','C'].

1* Program L;6 *1
domains

charlist=char*
predicates

string_chlist(string,charlist)
clauses

string_chlist(lIlI, [1).
string_chlist(S,[HIT1):

frontchar(S,H,S1),
string_chlist(S1,T).

Fronttoken can be used to split a string into a list of tokens. It takes the form

fronttoken(String1,SymbolParam,Rest)

104 Turbo Prolog Owner's Handbook

If (ronttoken is called with String I bound, it finds the first token of String I which is then
returned in SymbolParom. The remainder of the string is returned in the third parame
ter, Rest. Preceding blank spaces are ignored.

A sequence of characters is grouped as one token when it constitutes one of the fol
lowing:

• A name according to normal Turbo Prolog syntax.

• A number (a preceding sign is returned as a separate token).

• A non-space character.

The following predicates can be used to determine the nature of the returned token:
isname, str ~nt, and str _len, as demonstrated in Program 48. But first, let's look at an
illustration of the division of a sentence into a list of names. If Program 47 is given the
goal

string_namelist("bill fred tom dick harry",X).

X will be bound to

[bill,fred,tom,dick,harryl

1* Program ~7 *1
domains

namelist = name*
name = symbol

predicates
string_namelist(string,namelist)

clauses
string_namelist(S,[HIT1):

fronttoken(S,H,S1),!,string_namelist(S1,T).
string_namelist(_,[l).

As another example, we'll define the predicate scanner, which will transform a string
into a list of tokens, this time classified by associating each token with a functor.

1* Program ~B *1
domains

tok numb(integer);char(char);name(string)
tokl = tok*

predicates
scanner(string,tokl)
maketok(string,tok)

clauses
scanner("",[l).
scanner(Str,[TokIRestl):

fronttoken(Str,Sym,Str1),
maketok(Sym,Tok),
scanner(Str1,Rest).

maketok(S,name(S)):- isname(S).
maketok(S,numb(N)):- str_int(S,N).
maketok(S,char(C)):- str_char(S,C).

We conclude this section with a short summary of other useful string handling standard
predicates.

Tutorial VII: Files and Strings 105

concat(String1,String2,String3)
concot states that String3 is the string obtained by concatenating String I and String2. At
least two of the parameters must be bound prior to invoking concot, which means that
con cot always gives only one solution (i.e., is deterministic). Thus

concat(lcrocol,ldile",Animal)

binds Animal to "crocodile".

frontstr(NurnberOfChars,String1,StartStr,String2)
String I is split into two parts. StartStr will contain the first NumberO(Chars characters in
String I and String2 will contain the rest. Before (ronstr is called, the first two parameters
must be bound and the last two must be free.

str_len(StringPararn,IntegerLength)
The predicate str ~en returns the length of StringParam or tests if StringParam has the
given IntegerLength.

isnarne(String)
Tests the String to verify whether it is a name according to normal Turbo Prolog syntax,
i.e., whether it starts with a letter of the alphabet followed by any number of letters,
digits and underscore characters. Preceding and succeeding spaces are ignored.

Type Conversion Standard Predicates
Following is a summary of the available type conversion standard predicates. Full details
can be found in Chapter 12.

The standard predicates convert between a character and its ASCII value, a string and a
character, a string and an integer, a string and a real, and uppercase and lowercase
characters. The predicates are:

char_ascii(ACharacter,Anlnteger)
str_char(OneCharlnAString,OneCharacter)
str_int(AString,Anlnteger)
str_real(AString,AReal)
upper_lower(UpperCaseStr,LowerCaseStr)

Conversions between the domain types symbol and string and between integer and
real are handled automatically when using standard predicates and during evaluation of
arithmetic expressions. This automatic conversion is necessarily performed when a
predicate is called, as in the following example:

predicates
p(integer)

clauses
p(X) :-write("The integer value is _",X) ,nl.

in which case the two goals

X=1.23t;,p(X).
X=1,p(X).

have the same effect.

106 Turbo Prolog Owner's Handbook

As another example, we define two predicates which explicitly describe the .conver
sions (the conversions are actually performed by the standard predicate equal).

predicates

clauses

int_real(integer,real)
str_symbol(string,symbol)

int_real(X,y):- X=Y.
str_symbol(X,y):- X=Y.

FINDALL AND RANDOM
(Indo" is used to collect values obtained from backtracking into a list. It takes the form

findall(VarName,mypredicate(...),ListParam)

{Indo" is called with three parameters: the first parameter specifies which variable in
that predicate designates the values to be collected in a list; the second is a predicate
that gives multiple values by backtracking; and the third parameter is a variable that
holds the list of values from backtracking. (There must be a user-defined domain to
which the values of ListPoram belong). Program 49 uses (Indo" to print the average age
of some persons.

1* Program ~9 *1
domains

name, address = string
age = integer
list = agel

predicates
person(name,address,age)
sumlist(list,age,integer)

goal
findall(Age,person(_,_,Aqe),L),sumlist(L,Sum,N),
Age = Sum/N
write("Average =",Age),nl.

clauses
sumlist([] ,0,0).
sumlist([H:T] ,Sum,N) :-

sumlist(T,S1,N1),Sum=H+S1,N=1+N1.
person("Sherlock Holmes l ,"22B Baker Street",~2).
person("Pete Spiersl,"Flat 22, 21st Street",36).
person("Mary Darrowl,"Flat 2, Omega Home",51).

The standard predicate

random(RealNumber)

returns a real number X satisfying

o (= X (1

Tutorial VII: Files and Strings 107

Program 50 uses random to select three names from five at random.

1* Program 50 *1

108

predicates
person(integer,symbol)
rand_int_l_5(integer)
rand_person(integer)

goal
rand_person(3).

clauses
person(l,fred).
person(2,tom).
person(3,mary).
person(L;,dick).
person(5,george).

rand_int_l_5(X):-random(y),X=Y*5+1.

rand_person(O):-!.
rand_person(Count):-

rand_int_l_5(N),person(N,Name),write(Name),nl,
NewCount=Count 1,rand_person(NewCount).

Turbo Prolog Owner's Handbook

10 Tutorial VIII:
Spreading Your Wings

In this final section of the tutorial, we present some example programs intended to
stimulate your own ideas and to provide further illustration of the topics covered in the
earlier tutorial chapters. Nearly all of the examples offer plenty of room for expan
sion; your own ideas can grow into full-blown programs using one of our programs as
a basis. For complete information about the Turbo Prolog system, see Chapters II
and 12.

BUILDING A SMALL EXPERT SYSTEM
We shall use Turbo Prolog to construct a small expert system that will figure out which
of seven animals (if any) the user has in mind. It will do so by asking questions and then
making deductions from the replies given. A typical user dialogue with our expert
system might be:

Goal :_run.
has it hair?
yes
does it eat meat ?
yes
has it a fawn color ?
yes
has it dark spots ?
yes
Your animal may be a (an) cheetah !

Turbo Prolog's ability to check facts and rules will provide our program with the rea
soning capabilities germane to an expert system. Our first step is to provide the knowl
edge with which to reason, shown in Program 51.

109

110

1* Program 51*1
predicates

animal_is(symbol)
it_is(symbol)
positive(symbol,symbol)

clauses
animal_is(cheetah) if

it_is(mammal) and
it_is(carnivore) and
positive(has,tawny_color) ·and
positive(has,dark_spots).

animal_is(tiger) if
it_is(mammal) and
it_is(carnivore) and
positive(has,tawny_color) and
positive(has,black_stripes).

animal_is(giraffe) if
it_is(ungulate) and
positive(has,long_neck) and
positive(has,long_legs) and
positive(has,dark_spots).

animal_is(zebra) if
it_is(ungulate) and
positive(has,black_stripes).

animal_is(ostrich) if
it_is(bird) and
negative(does,fly) and
positive(has,long_neck) and
positive(has,long_legs) and
positive(has,black_and_white_color).

animal_is(penguin) if
it_is(bird) and
negative(does,fly) and

positive(does,swim) and
positive(has,black_and_white_color).

animal_is(albatross) if
it_is(bird) and
positive(does,fly_well).

it_is(mammal) if
positive(has,hair).

it_is(mammal) if
positive(does,give_milk).

it_is (bird) if
positive(has,feathers).

it_is(bird) if
positive(does,fly) and
positive(does,lay_eggs).

Turbo Prolog Owner's Handbook

it_is(carnivore) if
positive(does,eat_meat).

it_is(carnivore) if
positive(has,pointed_teeth) and
positive(has,claws) and
positive(has,forward_eyes).

it_is(ungulate) if
it_is(mammal) and
positive(has,hooves).

it_is(ungulate) if
it_is(mammal) and
positive(does,chew_cud).

We can ask questions like

does it have hair?

We want to add corresponding clauses to Turbo Prolog's database so it can reason
with the new clauses. We can add facts to the Turbo Prolog database via the asserta
standard predicate. Thus

asserta(xpositive(has,black_stripes))

will cause

xpositive(has,black_stripes).

to be added to the Turbo Prolog database, provided xpositive has been declared in a
database declaration at the top of the program:

domains

database
xpositive(symbol,symbol)

predicates

clauses

Clauses for a predicate declared in a database declaration must not contain any
rules-only facts. For a more detailed discussion of database predicates, see Chapter
II, "Dynamic Databases."

Our database declaration will be as follows:

database
xpositive(symbol,symbol)
xnegative(symbol,symbol)

The relationship between xpositive and positive is contained in the first of two rules for
positive:

positive(X,y) if xpositive(X,Y),!.

In other words, xpositive is the database equivalent of positive. We have a similar rule
for negative:

negative(X,y) if xnegative(X,Y),!.

Tutorial VIII: Spreading Your Wings 111

The other rule for positive will ask the user for information if nothing is already known
which contradicts a certain fact:.

positive(X,y) if
not(xnegative(X,y)) and ask(X,y,yes).

The second rule for negative is similar:

negative(X,y) if
not(xpositive(X,y)) and
ask(X,y,no).

Predicate ask asks the questions and organizes the remembered replies. If a reply starts
with y, Turbo Prolog assumes the answer is yes; if it starts with n, the answer is no.

ask (X, y, yes) :-
write(X,1I it lI,y,lI\nll),
readln(Reply),
frontchar(Reply,'y',_),l,
remember(X,y,yes).

ask(X,y,no):-
write(X,1I it lI,y,lI\nll),
readln(Reply),
frontchar(Reply,'n',_),l,
remember(X,y,no).

remember(X,y,yes):
assert(xpositive(X,y)).

remember(X,y,no):
assert(xnegative(X,y)).

We start the program by giving the goal run, with the following clauses:

run:-

run:-

animal_is(X),l,
write(lI\nYour animal may be a (an) II,X),
nl,nl,clear_facts.

write(lI\nUnable to determine what II),
write(lIyour animal is. \n\nll),clear_facts.

clear -facts removes any extra facts we may have added to the database, so that subse
quent goals for the same program are not confused by information added to the
database during the execution of previous goals. CleaLfacts then waits for the user to
press the space bar before returning to the Turbo Prolog system:

clear_facts:
retract(xpositive(_,_)),fail.

clear_facts:
retract(xnegative(_,_)),fail.

clear_facts:-
write(lI\n\nPlease press the space bar to exit\nll),
readchar(_).

For practice, type in the above "inference engine" and the "knowledge" clauses given
earlier. Add appropriate declarations to make a complete program, and then try out
the result.

112 Turbo Prolog Owner's Handbook

PROTOTYPING: A SIMPLE ROUTING PROBLEM
This program illustrates the properties that make Turbo Prolog especially useful as a
prototyping tool. Suppose we want to construct a computer system to help decide the
best route between two U.S. cities. We could first use Turbo Prolog to build a minia
ture version of the system (see Program 52), since it will then become easier to investi
gate and explore different ways of solving the problems involved. We will use the final
system to investigate questions such as:

• Is there a direct road from one particular town to another?

• Which towns are situated less than ten miles from a particular town?

1* Program 52 *1
domains

town symbol
distance = integer

predicates
road(town,town,distance)
route(town,town,distance)

clauses
road(houston,tampa,2DD).I*There is a road 200 miles

long from Houston to Tampa*1
road(gordon,tampa,3DD).
road(houston,gordon,1DD)
road(houston,kansas_city,12D).
road(gordon,kansas_city,13D).

route(Town1,Town2,Distance):
road(Town1,Town2,Distance).

route(Town1,Town2,Distance):
road(Town1,X,Dist1),route(X,Town2,Dist2),
Distance=Dist1+Dist2.

Figure 10-1 shows a simplified map for our prototype.

KansasCr'ty .

Tampa
Houston

Gordon

Figure 10-1 Prototype Map

Each clause for the road predicate describes a road, with a certain length in miles, that
goes from one town to another The route predicate's clauses indicate that it is possible
to make a route from one town to another over several stretches of road. Following
the route, one drives a distance given by the third parameter.

The route predicate is defined recursively; a route can simply consist of one single
stretch of road. In this case, the total distance is merely the length of the road.

Alternatively, it is possible to construct a route from Town I to Town2 by driving from
Townl to X and afterwards following some other route from X to Town2. The total
distance is the sum of the distance from Town I to X and the distance from X to Town2.

Tutorial VIII: Spreading Your Wings 113

Try the program with the goal

route(tampa,kansas_city,X).

Can the program handle all possible combinations of starting point and destination? If
not, can you modify the program to avoid any omissions? The next example will give
you ideas about how to get this program to collect names of towns visited enroute into
a list. This prevents Turbo Prolog from choosing a route that involves visiting the same
town twice, thereby avoiding going around in circles-and ensuring that the Turbo
Prolog program doesn't go into an infinite loop. When you've solved problems of this
type, you can enlarge the program by adding more cities and roads.

ADVENTURES IN A DANGEROUS CAVE
You are an adventurer who has heard that there is a vast gold treasure hidden inside a
cave. Many people before you have tried to find it, but to no avail. The cave is a
labyrinth of galleries connecting different rooms in which there are dangerous beings
like monsters and robbers. In your favor is the fact that the treasure is all in one room.
Which route should you follow to get to the treasure and escape with it unhurt?

we can construct a Turbo Prolog representation of the map to help us find a safe route.
Each gallery is described by a fact. Rules are given by the predicates go and route. Let's
give the program the goal

go(entry,exit) .

The answer will consist of a list of the rooms we should visit to capture the treasure
and return with it safely.

An important design feature of this program is that the rooms already visited are
collected in a catalog. This happens thanks to the route predicate, which is defined
recursively; if one is standing in the exit room, the third parameter in the route predi
cate will be a list of the rooms already visited. If the gold_treasure room is a member of
this list, we will have achieved our aim. Otherwise, the list of rooms visited is enlarged
with Nextroom, provided Nextroom is neither one of the dangerous rooms nor has
been visited before.

114 Turbo Prolog Owner's Handbook

1* Program 53 *1
domains

room symbol
roomlist = room*

predicates
gallery(room,room) 1* There is a gallery between

two rooms *1
neighborroom(room,room) 1* Necessary because it does

not matter which direction
we go along a gallery *1

avoid(roomlist)
go(room,room)
route(room,room,roomlist) 1* This is the route to be

followed. Roomlist consists
of a list of rooms already
visited. *1

member(room,roomlist)
clauses

gallery(entry,monsters). gallery(entry,fountain).
gallery(fountain,hell). gallery(fountain,food).
gallery(exit,gold_treasure). gallery(fountain,mermaid).
gallery(robbers,gold_treasure).gallery(fountain,robbers).
gallery(food,gold_treasure). gallery(mermaid,exit).
gallery(monsters,gold_treasure).

neighborroom(X,Y) if gallery(X,y).
neighborroom(X,Y) if gallery(Y,X).

avoid([monsters,robbersl).

go(Here,There) if route(Here,There,[Herel).

route(exit,exit,VisitedRooms) if
member(gold_treasure,VisitedRooms) and
write(VisitedRooms) and nl.

route(Room,Way_out,VisitedRooms) if
neighborroom(Room,Nextroom) and
avoid(DangerousRooms) and
not(member(NextRoom,DangerousRooms)) and
not(member(NextRoom,VisitedRooms)) and
route(NextRoom,Way_out,[NextRoomIVisitedRoomsl).

member(X,[XI_l).
member(X,[_IH1) if member (X,H).

After verifying that the program does find a solution to the goal

go(entry,exit).

you might want to try adding some more galleries, for example,

gallery(mermaid,gold_treasure).

and/or extra nasty things to avoid.

Even though there is more than one possible solution to the problem, our program will
only come up with one. To obtain all the solutions, we must make Turbo Prolog back-

Tutorial VIII: Spreading Your Wings 115

track as soon as one solution has been found. This can be done by adding the fail
predicate to the first rule for route:

route(Room,Room,VisitedRooms) if
member(gold_treasure,VisitedRooms) and
write(VisitedRooms) and nl and
fail.

We could use the list writing predicate write_a_list to write the list of names, without
the containing square brackets [and] or the separating commas. However, the rooms
visited are collected in the VisitedRooms list in reverse order, i.e., exit first and entry last.
write_a-.list must therefore be changed so that it first writes the tail of the list and then
the head.

HARDWARE SIMULATION
Every logical circuit can be described with a Turbo Prolog predicate, where the predi
cate indicates the relation between the signals on the input and output terminals of the
circuit. The fundamental circuits are described by giving a table of corresponding truth
values (see the and_, or_ and noL predicates in Program 54).

Fundamental circuits can be described by indicating the relationships between the inter
nal connections as well as the terminals. As an example, let's construct an exclusive OR
circuit from and_, or_, and noL circuits, and then check its operation with a Turbo
Prolog program. The circuit is shown in Figure 10-2.

Input I N4p
OR Output

N3
Input2

Figure 10-2 Fundamental XOR Circuit

In Program 54, this network is described by the xor predicate.

1* Program 5L; *1

116

domains
d = integer

predicates
not_(D,D)
and_(D,D,D)
or_(D,D,D)
xor(D,D,D)

clauses
not_(1,D).
and_(D,D,D).
or_(D,D,D).

not_(D,1).
and_(D,1,D). and_(1,D,D).
or_(D,1,1). or_(1,D,1).

and_(1,1,1).
or_(1,1,1).

xor(Input1,Input2,Qutput) if
not_(Input1,N1) and not_(Input2,N2) and
and_(Input1,N2,N3) and not_(Input2,N1,NL;) and
or_(N3,NL;,D).

Turbo Prolog Owner's Handbook

Given the goal

xor(Input1,Input2,Output)

we obtain this result:

Input1 0, Input2
Input1 = 0, Input2
Input1 = 1, Input2
Input1 = 1, Input2
L; solutions

0, Output 0
1, Output 1
0, Output 1
1, Output 0

which verifies that the above circuit does indeed perform the task expected of it.

TOWERS OF HANOI
The ancient puzzle of the Towers Of Hanoi consists of a number of wooden disks and
three poles attached to a baseboard. The disks each have different diameters and a
hole in the middle large enough for the poles to pass through. In the beginning all the
disks are on the left pole as shown in Figure 10-3.

A
()

()

f)
Figure 10-3 The Towers of Hanoi

The object of the puzzle is to move all the disks over to the right pole, one at a time, so
that they end up in the original order on that pole. The middle pole may be used as a
temporary resting place for disks, but at no time is a larger disk to be on top of a
smaller one. Towers Of Hanoi can be easily solved with one or two disks, but becomes
more difficult with three or more disks.

A simple strategy for solving the puzzle is:

• A single disk can be moved directly.

• N disks can be moved in three steps:

• Move N-I disks to the middle pole.

• Move the last disk directly over to the right pole.

• Move the N - I disks from the middle pole to the right pole.

Our Turbo Prolog program to solve the Towers Of Hanoi puzzle uses three predi
cates: hanoi, with one parameter that indicates just how many disks we are working
with; move, which describes the moving of N disks from one pole to another using the
remaining pole as a temporary resting place for disks; and inform, which displays what
has happened to a particular disk.

Tutorial VIII: Spreading Your Wings 117

/* Program 55 */
domains

loc = right ; middle ; left
predicates

hanoi(integer)
move(integer,loc,loc,loc)
inform(loc,loc)

clauses
hanoi(N) :- move(N,left,middle,right).

move(1,A,_,C) :- inform(A,C),!.
move (N , A, B, C) :

N1=N-1,move(N1,A,C,B),inform(A,C),move(N1,B,A,C).

inform(Loc1,Loc2):-
write("\nMove a disk from I,Loc1," to ",Loc2).

To solve Towers Of Hanoi with three disks, we give the goal

hanoi(3).

The output is:

Move a disk from left to right
Move a disk from left to middle
Move a disk from right to middle
Move a disk from left to right
Move a disk from middle to left
Move a disk from middle to right
Move a disk from left to right

DIVISION OF WORDS INTO SYLLABLES
A computer program can decide how to divide words into syllables using a very simple
algorithm, which involves looking at the sequence of vowels and consonants each word
contains. For instance, consider the two sequences below:

I. vowel consonant vowel

In this case, the word is divided after the first vowel. For example, this rule can be
applied to the following words:

ruler
prolog

) ru-ler
) pro-log

2. vowel consonant consonant vowel

In this case, the word is divided between the two consonants. For example:

number
anger

) num-ber
) an-ger

These two rules work well for most words, but fail with words like handbook, which
conform to neither pattern. To divide such words, our program would have to use a
library containing all words.

118 Turbo Prolog Owner's Handbook

Let's write a Turbo Prolog program to divide a word into syllables. First, it will ask for a
word to be typed in, and then attempt to split it into syllables using the above two rules.
As we have observed, this will not always produce correct results.

First. the program should split the word up into a list of characters. We therefore need
the domains declarations

domains
letter = symbol
word = letter'

We must have a predicate that determines the type of letter-vowel or consonant.
However, our two rules can also work with the vocals, that is, the usual vowels (a, e, i,
0, u) plus the letter y. The letter y sounds like (and is considered) a vowel in many
words, for example hyphen, pity, myrrh, and martyr. Hence, we have the clauses

vocal(a). vocal(e). vocal(i).
vocal(o). vocal(u). vocal(y).

for the predicate vocal.
A consonant is defined as a letter that is not a vocal:

consonant(L) if not(vocal(L)).

We also need two more predicates. First, we need the append predicate (described on
page 49).

append(word,word,word)

Secondly, we need a predicate to convert a string to a list of the characters in that
string:

string_word(string,word)

This predicate will use the frontchar standard predicate (described in Chapter 9) as well
as the standard predicates free and bound where

free(X)

succeeds if X is a free variable at the time of calling and

bound(Y)

succeeds if Y is bound.

Now we are ready to attack the main problem: the definition of the predicate divide
which separates a word into syllables. divide has four parameters and is defined recur
sively. The first and second parameters contain, respectively, the Start and the Remain
der of a given word during the recursion. The last two parameters return, respectively,
the first and the last part of the word after the word has been divided into syllables.

The first rule for divide is

divide(Start,[T1,T2,T3IRestl,D,[T2,T3IRestl):-
. vocal(T1),consonant(T2),vocal(T3),

append(Start,[T11,D).

where Start is a list of the first group of characters in the word to be divided. The next
three characters in the word are represented by T I, T2 and T3, and Rest represents the

Tutorial VIII: Spreading Your Wings 119

remaining characters in the word. In the list D, the characters T2 and T3, and the list Rest
represent the complete sequence of letters in the word. The word is divided into
syllables at the end of those letters contained in D.
This rule can be satisfied by the call

divide([p,rl,[0,1,0,gl,P1,P2)

To see how, let's insert the appropriate. letters into the clause

divide([p,rl,[o,l,ol[gll, [p,r,ol, [1,0 I [gll):
vocal(o),consonant(l),vocal(o),
append([p,rl,[ol,[p,r,ol).

append is used to concatenate the first vocal to the start of the word. P I becomes
bound to [p,r,o], and P2 is bound to [I,o,g].

Program 56 shows the complete program.

120

domains
letter = symbol
word = letter l

II Program 56 II

predicates
divide(word,word,word,word)
vocal(letter)
consonant(letter)
string_word(string,word)
append(word,word,word)
repeat

goal
clearwindow,
repeat,
write("Write a word: "),readln(S),string_word(S,Word),
append(First,Second,Word),
divide(First,Second,Part1,Part2),
string_word(Syllable1,Part1),
string_word(Syllable2,Part2),
write("Division: I,Syllable1,1-",Syllable2),nl,
fail.

clauses
divide(Start,[T1,T2,T3IRestl,D1,[T2,T3IRestl):

vocal(T1),consonant(T2),vocal(T3),
append(Start,[T11,D1).

divide(Start,[T1,T2,T3,T~IRestl,D1,[T3,T~IRestl):
vocal(T1),consonant(T2),consonant(T3),vocal(T~),
append(Start,[T1,T21,D1).

divide(Start,[T1IRestl,D1,D2):-
append(Start,[T11,S),
divide(S,Rest,D1,D2).

vocal(a).vocal(e).vocal(i).vocal(o).vocal(u).vocal(y).

consonant(B):-not(vocal(B)), B (.z , a (= B.

Turbo Prolog Owner's Handbook

string word ("" , [1) : -! .
string:word(Str,[HIT1):

bound(Str),frontstr(1,Str,H,S),string_word(S,T).
string_word(Str,[HIT1):

free(Str),bound(H),string_word(S,T),concat(H,T,Str).

append([1 ,L,L) :-!.
append([XIL11,L2,[XIL31)

repeat.
repeat:-repeat.

append(L1,L2,L3).

THE N QUEENS PROBLEM
In the N Queens problem, we try to place N queens on a chessboard in such a way that
no two queens can take each other. Thus, no two queens can be placed on the same
row, column or diagonal.

To solve the problem, we'll number the rows and columns of the chessboard from I
to N. To number the diagonals, we divide them into two types, so that a diagonal
is uniquely specified by a type and a number calculated from its row and column
numbers:

Diagonal = N + Column - Row
Diagonal = Row + Column - 1

(type 1)
(type 2)

When the chessboard is viewed with row I at the top and column I on the left side,
type I diagonals resemble the "\" character in shape and type 2 diagonals resemble the
shape of"/". The numbering of type 2 diagonals on a 414 board is shown in Figure 10-4.

I 2 3 4

I I 2 3 4

2 2 3 4 5

3 3 4 5 6

4 4 5 6 7

Figure 10-4 The N Queens Chessboard

To solve the N Queens problem with a Turbo Prolog program, we must record which
rows, columns and diagonals are free and also make a note of where the queens are
placed.

A queen's position is described with a row number and a column number, as in the
domain declaration

Tutorial VIII: Spreading Your Wings 121

queen = q(integer,integer)

to represent the position of one queen. To describe more positions, we can make use
of a list:

queens = queen*

Likewise, we need several numerical lists indicating the rows, columns and diagonals
that are not occupied by a queen. These lists are described by:

freelist = integer*

We will treat the chessboard as a single object via the domains declaration:

board = board(queens,freelist,freelist,freelist,freelist)

(reelist represents the free rows, columns and diagonals of type I, and the free diago
nals of type 2, respectively.
By way of example, let's let board represent a 4*4 chessboard in two situations: (I)
without queens and (2) with one queen at the top left corner.

(I) board wihout queens

board([],[1,2,3,~],[1,2,3,~],[1,2,3,~,5,b,7],[1,2,3,~,5,b,7])

(2) board with one queen

board([q(1,1)], [2,3,~],[2,3,~],[1,2,3,5,b,7],[2,3,~,5,b,7])

The problem can now be solved by describing the relation between an empty board
and a board with N queens. We define the predicate

placeN(integer,board,board)

with the two clauses below. Queens are placed one at a time until every row and
column is occupied. This can be seen in the first clause, where the two lists of (reerows
and (reecols are empty:

placeN(_,board(D,[],[],X,Y),board(D,[],[],X,Y)).
placeN(N,Board1,Result) :

place_a_queen(N,Board1,Board2),
placeN(N,Board2,Result).

In the second clause, the predicate place_a_queen gives the connection between
Board I and Board2. (Board2 has one more queen than Boardl). We use the predi
ca tes declaration

place_a_queen(integer,board,board)

The core of the N Queens problem is in the description of how to add extra queens
until all have been successfully placed, starting with an empty board. To solve this
problem, we add the new queen to the list of those who are already placed:

[q(R,S)IQueens]

Among the remaining free rows, Rows, we need to find a row R where we can place
the next queen. R must, at the same time, be removed from the list of free rows
resulting in a new list of free rows, NewR. This is formulated as

findandremove(R,Rows,NewR)

122 Turbo Prolog Owner's Handbook

Correspondingly, we must find and remove a vacant column C. From Rand C, the
numbers of the diagonals can be calculated on which a queen in row R and column C is
placed. Then we can determine if D I and 02 are among the vacant diagonals.

The clause is shown below:

place_a_queen(N,board(Queens,Rows,Columns,Diag1,Diag2),
board([q(R,C)IQueens],NewR,NewS,NewD1,NewD2)):-

findandremove(R,Rows,NewR),
findandrernove(C,Colurnns,NewC),
D1=N+S-R,findandremove(D1,Diag1,NewD1),
D2=R+S-1,findandremove(D2,Diag2,NewD2).

Program 57 is the complete program. It contains a number of smaller additions to
define nqueens, so we need only give a goal like

nqueens(5)

to obtain a possible solution (in this case, for placing five queens on a 5*5 board).

1* Program 57 *1
domains

queen=q(integer,integer)
queens=queen*
freelist = integer*
board=board(queens,freelist,freelist,freelist,freelist)

predicates
placeN(integer,board,board)
place_a_queen(integer,board,board)
nqueens(integer)
rnakelist(integer,freelist)
findandremove(integer,freelist,freelist)

clauses
nqueens(N):

rnakelist(N,L),Diagonal=N*2-1,makelist(Diagonal,LL),
placeN(N,board([],L,L,LL,LL),Final),write(Final).

placeN(_,board(D,[],[],D1,D2),board(D,[],[],D1,D2)):-! .
placeN(N,Board1,Result):

place_a_queen(N,Board1,Board2),
placeN(N,Board2,Result).

place_a_queen(N,board(Queens,Rows,Columns,Diag1,Diag2),
board([q(R,C)IQueens],NewR,NewC,NewD1,NewD2)):

findandremove(R,Rows,NewR),
findandrernove(C,Colurnns,NewC),
D1=N+C-R,findandrernove(D1,Diag1,NewD1),
D2=R+C-1,findandrernove(D2,Diag2,NewD2).

findandremove(X,[XIRest],Rest).
findandrernove(X,[YIRest],[YITail]):

findandrernove(X,Rest,Tail).

rnakelist(1,[1]).
rnakelist(N,[N:Rest]):

N>O,N1=N-1,rnakelist(N1,Rest).

Tutorial VIII: Spreading Your Wings 123

USING THE KEYBOARD
When using full-screen input/output, our program must be able to read and react to
special keys, such as the arrow and function keys. This is often tricky, because these
keys are sometimes described by more than one ASCII value and may not have an
associated printable image. Thus, the left arrow is represented by a single ASCII value,
'\75', and the function key I![) is represented by two ASCII values, '\0' and '\68', but
neither key corresponds to any printable character.

Program 58 shows how all keys can be read and recognized. We take advantage of the
fact that keys represented by two ASCII codes always produce 0 when pressed without
the ~, []![) or I]ill) keys. A predicate readkey is defined which returns symbolic
values for the keys read. Symbolic values are easier to use than sequences of numerical
values. The predicates key_code and key_code2 specify the relationship between the
symbolic names and the ASCII values.

1* Program 58 *1
domains

key cr;esc;break;tab;btab;del;bdel;ins;end;home;
fkey(integer);up;down;left;right;char(CHAR);other

predicates
readkey(key)
key_code(key,char,integer)
key_code2(key,integer)

goal
clearwindow,
write(IIKeyboard test. Press a key!II),
readkey(Key),nl,
write(IIThe II,Key,lI-key was pressed ll

).

clauses
readkey(Key):

readchar(T),char_int(T,Val),key_code(Key,T,Val).

key_code(Key,_,O):-
readchar(T),char_int(T,Val),key_code2(Key,Val),!.

key_code(break,_,3):-!. key_code(bdel,_,8):-!.
key_code(tab,_,10):-!. key_code(cr,_,13):-!.
key_code(esc,_,27):-!. key_code(char(T),T,_).

key_code2(btab,15):-!.
key_code2(up,72):-!.
key_code2(right,77):-!.
key_code2(down,80):-!.
key_code2(del,83):-!.

key_code2(home,71):-!.
key_code2(left,75):-! .
key_code2(end,79):-!.
key_code2(ins,82):-!.

key_code2(fkey(N),V):- V>58, V<70, N=V-58, !.
key_code2(other,_).

Program 59 uses the readkey predicate to build a simple field editor defined by the
predicate scr.
When the program is run, the left and right arrow keys are used to move the cursor's
position without modifying the contents of the field being edited. In the program, these
arrow keys are referred to by the objects left and right, respectively. The I![) key is
used to terminate editing (and, therefore, to accept the amendments made up to that
point), while the ~ key is used to abandon editing and to ignore any changes made. If
a key is pressed that is not recognized by the program, the computer beeps.

124 Turbo Prolog Owner's Handbook

Program 59 makes use of the readkey predicate from Program 58. If Program 58 has
been saved in a disk file called PROG58.PRO, the definition of readkey can be easily
incorporated into Program 59 using the include compiler directive (see Chapter II). It
takes the form

include "filename"

and causes the contents of the named text file to be inserted into the containing pro
gram at the position of the include directive. Thus, using

include IPROG58.PRO"

after compilation, Program 59 will contain the complete text of Program 58. However,
since we wish to give a different goal. to initiate the field editor from that used to
demonstrate readkey, it is necessary to save Program 58 on disk without the goal it
contains.

II Program 59 II

include I prog58.pro" I'excluding the goal'l
domains

row,col,length=integer
field=f(row,col,length)
position=pos(row,col)

predicates
scr(field,position,key)

goal
Row=lO,Col=lO,Length=30,cursor(Row,Col),
makewindow(1,23,1,"Example Editor",O,O,25,80),
write("Edit the text. Use the arrow keys to move"),
field_attr(Row,Col,Length,112),
scr(f(Row,Col,Length),pos(Row,Col),home),nl,nl,
field_str(Row,Col,Length,Contents),
write("Edited contents: ",Contents).

clauses
scr(_,_,esc):-l, fail.
scr(_,_,fkey(lO)):-l.
scr(f(Row,Col,L),pos(R,C),char(Ch)):-

scr_char(R,C,Ch),Cl=C+l,Cl<C+L,cursor(R,Cl),
readkey(Key), scr(f(Row,Col,L),pos(R,Cl),Key).

scr(f(Row,Col,L),pos(R,C),right):
Cl=C+l,!,Cl<C+L,cursor(R,Cl),readkey(Key),
scr(f(Row,Col,L),pos(R,Cl),Key).

scr(f(Row,Col,L),pos(R,C),left):-
Cl=C-l,Cl>=Col,cursor(R,Cl),
readkey(Key),scr(f(Row,Col,L),pos(R,Cl),Key).

scr(Field,Pos,_):-
beep,readkey(Key),scr(Field,Pos,Key).

As an exercise, add predicates to Program 59 to move a part of the field to the right or
the left and thereby add insert and delete functions to the simple field editor.

To conclude this section, we give an example of how to use the inkey standard predi
cate which takes the form

inkey(CharParam)

Tutorial VIII: Spreading Your Wings 125

If a key has been pressed since the last read operation was performed, inkey succeeds
by binding the variable CharParam to the ASCII character associated with the key
pressed. inkey fails if no key has been pressed. Thus inkey-unlike readchar-allows
execution to continue even if a key has not been pressed. The example below uses
inkey and time to test a person's reaction time.

126

II Program bD II
predicates

wait(char)
equal(char,char)
test(string)

goal
makewindow(3,7,D,IIII,D,D,2S,8D),
makewindow(2,7,7,IIKey to press now ll ,2,S,b,7D),
makewindow(:L,7,7,IIAccepted letters ll ,8,:LD,:LD,bD),
Word = IIPeter Piper picked a peck of pickled peppersll),
write("Please type :\n\tll,Word,\n\t),
time(O,O,O,D),test(Word),
timeL, _, 5, H),
write(lI\nYou took 11,5,11 seconds and II,H,II hundredthsll).

clauses
wait(X):- inkey(Y),equal(X,Y).
wait(X):- shiftwindow(2),write(X),wait(X).
test(W):- frontchar(W,Ch,R),wait(Ch),

shiftwindow(2),write(Ch),test(R).
test(lIlI) .
equal(X,X) :-!.
equal(_,_):-beep,fail.

Turbo Prolog Owner's Handbook

11 Programmer's Guide
This chapter is intended for the professional programmer (which includes all those who
have worked through the tutorial chapters 3 through 10). The first section summarizes
the difference between Turbo Prolog and other versions of Prolog, and then gives a
detailed summary of Turbo Prolog's syntax.

Like an encyclopedia, this chapter is not intended to be read from beginning to end in
one sitting. Sections on memory management (page 134), compiler directives (page
135), flow patterns (page 144) and programming style (page 145) should be read by
everyone. Some of the information given in Chapter 12 will only make sense after
reading "Control of Input and Output Parameters: Flow Patterns," on page 144. For
details about system-level operation-including installation and the specifications of the
menu commands-see Chapter 12:

AN OVERVIEW OF THE TURBO PROLOG SYSTEM
Turbo Prolog is a typed Prolog compiler, which means that while it contains virtually all
the features described in Programming in Prolog by Clocksin and Mellish (Springer, 1981),
it is much faster than interpreted Prolog.

Compiled Turbo Prolog makes Prolog a practical tool for several reasons, some of
which are listed below.

I. It is possible to produce stand-alone programs for the IBM PC and compatibles
using the full capabilities of the hardware, windows, and full (color) graphics. Any
window can contain mixed text and graphics. Turbo Prolog provides easy access
to the PC's memory and I/O ports, as well as facilities for including machine code
subroutines in Turbo Prolog programs.

2. Unlike the Clocksin and Mellish version of Prolog, Turbo Prolog maintains the
programmer's own variable names. This means you can maintain control over
your source code, even though the program is compiled. During debugging, the
trace facility allows you to watch the execution of your program through a win
dow onto the source text, and to single step through the evaluation of any goal.

127

3. The unique type system in Turbo Prolog not only offers a more secure program
development environment, but also reduces the space requirements of the Prolog
language.

4. Turbo Prolog is an integrated, fully modular program development environment.
Modules written in Prolog or other languages (such as C and assembly language)
can be linked into an executable unit. It is even possible to access the built-in
system editor via a standard predicate call, so that a stand-alone program written
in Turbo Prolog can include the complete editing subsystem.

5. Standard predicates for file handling allow the use of random access files.

6. Both integer and real arithmetic are built into the system, as are a complete range
of mathematical operators and functions. These include all the usual trigonometric
functions, as well as predicates defining bit-wise operations for control and robotic
applications.

7. Turbo Prolog permits arithmetic expressions written in infix notation (including
relational operators, arithmetic functions, and bracketed subexpressions).

There are a few other ways that Turbo Prolog differs from other versions of Prolog:

I. You are not allowed to define your own infix operators; full functorial notation
must be used instead.

2. = is both a standard predicate and an operator.

3. The result of arithmetic operations (e.g., X/Y) depends on the types of their argu
ments.

BASIC LANGUAGE ELEMENTS

Names
Names are used to denote symbolic constants, domains, predicates, and variables. A
name consists of a letter or underscore followed by any combination of letters, digits,
and underscores. Two important restrictions are imposed on names:

• Names of symbolic constants must start with a lowercase letter.

• Names of variables must start with an uppercase letter or an underscore symbol.

Otherwise, you can either use upper or lowercase letters in your programs. For
instance, you could make a name more readable by using mixed upper and lowercase,
as in

MyLongestVariableNameSoFar

or by using underscores, as in

pair_who_might_make_a_happy_couple(henry,ann)

128 Turbo Prolog Owner's Handbook

Reserved Names
The following are reserved words and must not be employed as user-defined names:

and
asserta
assertz
bound

clauses
database
domains
fail

Restricted Names

findall
free
global
goal

if
include
not
or

predicates
readterm
retract

The following words have a special meaning in Turbo Prolog and should be avoided in
user-defined names to prevent confusion:

arctan cursorform frontstr openwrite shorttrace
attribute date fronttoken pencolor sin
back deletefile trace pendown sound
beep diagnostics graphics penup sqrt
bios dir include porLbyte storage
bitand disk inkey project str_char
bitleft display isname ptr_dword stcint
bitnot div left random str _real
bitor dot length read char system
bitright edit line readdevice tan
bitxor editmsg In readint text
char_int eof makewindow readln time
checLcmpio existfile membyte read real trace
checLdeterm exit memword reference trail
clearwindow exp mod removewindow upper_lower
closefile field-O.ttr nl renamefile window-O.ttr
code file-str nobreak right window-str
co n cat filepos nowarnings save write
consult flush openappend scr_attr writedevice
cos forward openmodify scr_char writef
cursor frontchar openread shiftwindow

Program Sections
A Turbo Prolog program consists of several program sections, each identified with a
keyword and given in the sequence shown in Table II-I.

You need not include all sections in your programs. For example, if you omit the goal
section, your program will behave more like the Clocksin and Mellish version, in which
all goals are given at runtime. Alternatively, a program could consist entirely of a single
goal section. For example:

goal readint(X),Y=X+3,write(IX+3=",y).

Programmer's Guide 129

Table 11-1 Keyword Contents

domains
global domains
database
predicates
global predicates
goal
clauses

Zero or more domain declarations.

Zero or more domain declarations.
Zero or more database predicate declarations.

One or more predicate declarations.

Zero or more predicate declarations.
Goal.

Zero or more clauses (facts or rules).

Usually, a program will require at least predicates and clauses sections. For large
programs, a domains section will help you economize on code for the same reason
that types are used in Pascal. (This is a system requirement if any of the objects in a
Turbo Prolog program belong to domains of a non-standard type).
For modular programming, the keywords domains and predicates can be prefixed
with the word global, indicating that the subsequent domain declarations or predicate
declarations affect several program modules globally (modular programming is dis
cussed on page 152).

A program can contain several domains, predicates, or clauses sections, provided
the following restrictions are observed:

• A program section must be prefaced with the corresponding keyword (domains,
database, predicates, clauses, or goal).

• Only one goal must be met during compilation.

• All clauses that describe the same predicate must occur one after the other.

• At most, one global predicates section may be encountered during compilation,
and then only if there have been no ordinary predicates declarations earlier.

• Sections containing database predicates must occur before all global and ordinary
predicates declarations.

Domain Declarations
A domains section contains domain declarations. Four formats are used:

I. name = d

130

This declaration declares a domain, name, which consists of elements from a stan
dard domain type, d, which must be either integer, char, real, string, or symbol.

This declaration is used for objects that are syntactically alike but are semantically
different. For instance, NoOfApples and HeightlnFeet could both be represented as
integers and thus be mistaken for one another. This can be avoided by declaring
two different domains of integer type

apples,height = integer

This allows Turbo Prolog to perform domain checks to ensure that apples and
heights are never inadvertently mixed.

Turbo Prolog Owner's Handbook

2. mylist = elementDom*
This is a convenient notation for declaring a list domain. mylist is a domain consist
ing of lists of elements, from the domain e/ementDom. e/ementDom can be either a
user-defined domain, or one of the standard types of domain. The asterisk should
be read as "list" so that, for example

number list = integer*

declares a domain for lists of integers, such as [1, -5,2, -6] .

3. myCompDom=f1(d11, .. ,d1N);f2(d21, .. ,d2M); .. ;fM(dN1, .. ,dNK)

Domains that consist of compound objects are declared by stating a functor and
the domains for all the subcomponents. For example, we could declare a domain
of owners comprising elements like

owns(john,book(wuthering_heights,bronte))

with the declaration

owners = owns(name,book)

where owns is the functor of the compound object, and name and book are
domains of the subcomponents.

The right side of such a domains declaration can define several alternatives,
separated by a semicolon or the word or. Each alternative must contain a
unique functor and a description of the domains for the actual subcomponents. For
example,

owners = owns(name,car);credit_card_purchase(name,car)

could be two alternative domain definitions for compound objects in the owners
domain.

4. file = name1 ; name2 ; ... ; nameN
A file domain must be defined when the user needs to refer to files by symbolic
names. A program can have only one domain of this type, which must be called
file. Symbolic file names are then given as alternatives for the file domain. For
example

file = sales ; salaries

introduces the two symbolic file names sales and salaries.

Shortening Domains Declarations
As we saw in the name=d declaration, the left side of a domains declaration (except
for a file domain) can consist of a list of names

mydom1, mydorn2, .. mydomN = ...

thereby declaring several domains, mydom I, ... mydomN, at the same time.

Programmer's Guide 131

Predicate Declarations
Sections that follow the keyword predicates contain predicate declarations. A predi
cate is declared by stating its name and the domains of its arguments

predname (domainl, domain2, ... ,domainN)

where predname stands for the new predicate name and domain I, ... , domainN stand
for user-defined domains or standard types of domain.

A predicate can consist of a name only, so that, for example, we could have a rule for
the predicate choose_teams which looks like

choose_teams:
same_league(X,y),never_played(X,y),write(X,y).

Multiple predicate declarations are also allowed. As an example, we can declare that
member works on both numbers and names by

member(name,namelist)
member(number,numberlist)

where name, namelist, number and numberlist are user-defined domains. The alterna
tives need not have the same number of arguments.

Clauses
A clause is either a fact or a rule corresponding to one of the declared predicates. In
general, a clause is either an atom or consists of an atom followed by :-, then by a list
of atoms separated by commas or semicolons. Also:

• The keyword if can be used instead of:- (a colon and hyphen)

• The keyword and can be used instead of, (a comma)

• The keyword or can be used instead of; (a semicolon)

(The precise syntax for c1auses-as well as the rest of Turbo Prolog--can be found in
Chapter 12).

For example, the Turbo Prolog fact

same_league(ucla,usc).

consists of a single atom (which is itself a name, same-.Jeague), and a bracketed list of
terms (uc/a,usc).
A term is either a (simple) constant, a variable, or a compound term. We'll look at these
three syntactic elements in greater detail now.

Simple Constants
Simple constants belong to one of the six standard types of domain:

A character belongs to the char domain type (an 8-bit ASCII character enclosed
between two single quotation marks). An ASCII character is indicated by the ESCAPE

132 Turbo Prolog Owner's Handbook

symbol (\) followed by an ASCII code. \n and \t produce a newline and a tabulate
character, respectively. \ followed by any other character produces the character itself.

An integer belongs to an integer domain type and is a whole number in the range
- 32,768 to 32,7C,Z

A real number belongs to the domain of real type and is a number in the range
± I e-307 to ± I +e308, written with a sign, a mantissa, a decimal point, a fractional
part, a sign, an e and an exponent, all without included spaces. The sign, fractional, and
exponent parts are optional (though if the fractional part is omitted, so is the decimal
point). Integers will be automatically converted to real numbers when necessary.

A string belongs to the string domain type (any sequence of characters between a pair
of double quotation marks). Strings can contain characters produced by an ESCAPE
sequence as mentioned under character above.

A symbolic constant belongs to the symbol domain type (a name starting with a lower
case letter). Strings are accepted as symbols too, but symbols are kept in a lookup table
for quicker matching. The symbol table does take up some storage space, as well as the
time required to make an entry in the table.

A symbolic filename belongs to the file domain (either a name starting with a lowercase
letter and appearing on the right side of the file domain declaration, or one of the
predefined symbolic filenames: printer, screen, keyboard, and com I),

Variables
Variables are names starting with an uppercase letter or, to represent the anonymous
variable, a single underscore character. The anonymous variable is used when the value
of that variable is not of interest. A variable is said to be free when it is not yet
associated with another term and bound when it is instantiated, i.e., when the variable is
unified with a term. The predicate free(X) determines whether the variable X is free or
not. free succeeds only if the value of the variable is still unknown when tree is called.
bound(X) succeeds only if X is bound to a value.

Compound Terms or Structures
A compound term (or structure) is a single object that consists of a collection of other
objects (called components) and a describing name, the functor. The components are
enclosed in parentheses and separated by commas. The functor is written just before
the left parenthesis. For example, the compound term below consists of the functor
author and three components:

author(emily,bronte,1818)

A compound term belongs to a user-defined domain. The domains declaration corre
sponding to the author compound term might look like

dOlains
authors = author(firstname,lastname,year_of_birth)
firstname,lastname = symbol
year_of_birth = integer

Programmer's Guide 133

Lists-a Special Kind of Compound Term. Lists are a common data structure in
Turbo Prolog; they are actually a form of compound object. A list consists of a
sequence of terms enclosed in square brackets and separated by commas. A list of
integers would appear as

[1,2,3,9,-3,2]

Such a list belongs to a user-defined domain, such as

domains
ilist = integer'

If the elements in a list are of mixed types, for example, a list containing both characters
and integers, this must be stated in a corresponding declaration. Thus the declarations

domains
element = c(char) ; i(integer)
list = element'

would allow lists like

[i(12),i(3~),i(-5b7),c(lxl),c(lyl)~c(lz'),i(987)]

TURBO PROLOG MEMORY MANAGEMENT
From the point of view of the Turbo Prolog system, available memory is divided into
the areas shown in Figure II-I.

1- Stack Heap Code Source

Figure ll-l Memory Partitioning in Turbo Prolog

• The Stack is used for parameter transfer, especially in recursive programs where tail
recursion cannot be eliminated.

• The area used for the user's program Source text.

• The area used for the Code the compiler generates from the user's source text.

• The area allocated for the Trail, which is used to register the binding and unbinding of
reference variables.

• The area allocated for the Heap.

134 Turbo Prolog Owner's Handbook

The Heap is used for two different purposes and, depending upon the purpose, spare
Heap resources can be released in two ways. Within the Heap, a stack is used for
building structures, storing strings, etc., and stack storage is released when predicates
fail. Hence, the principles of programming style discussed starting on page 145 (espe
cially rules 3 and 5) should be carefully observed. The Heap is also used when facts are
inserted in a database. These areas are automatically released whenever possible to
keep Heap demands to a minimum.

Since individual programs vary in their demands on different memory areas, users can
control memory partitioning as follows:

Stack. To allow for greater recursion in programs in which tail recursion cannot be
eliminated, stack size should be increased. The size of the Stack can be reconfigured using
the Miscellaneous option of the Setup command by specifying the numbers of paragraphs
(I paragraph is 16 bytes) between 600 and 4000 as required. The configuration via Setup
must then be saved. then loaded (via Setup) so that the new Stack is correctly installed.

Source. The capacity for source text can be increased by using include files (see page
137).

Code. By default, 16K bytes are allocated for code. This default can be altered using the
compiler directive code (see page 136).

Trail. By default, no space is allocated for the trail, because the trail is not normally
needed in Turbo Prolog. However, this can be changed via the compiler directive trail
(see page 139).

Heap. Once the Stack, Source, Code, and Trail areas have been allocated, any remain
ing memory is used for the Heap.

The standard predicate

storage(StackSize,HeapSize,TrailSize)

returns the available size of the three runtime memory areas used by the system
(Stack, Heap, and Trail, respectively).

COMPILER DIRECTIVES
A number of compiler features are controlled through compiler directives. One or
more of the following directives can be introduced as keywords at the beginning of the
program text:

check_cmpio, check_determ, code, diagnostics, nobreak,
nowarnings, project, shorttrace, trace, trail

and the include directive can appear wherever one of the program section keywords
can be used.

checLcmpio
When the chec/ccmpio compiler directive is specified, a warning will be given when
ever compound flowpatterns are used.

If a predicate can be called with a parameter that is partly used for input (that is to say,
some subcomponents are bound). and with other subcomponents used for output (that

Programmer's Guide 135

is, free), then we say that this parameter has a corresponding compound flowpattern or
a compound input/output pattern. As an example, consider a list of compound objects:

domains
object = int(integer) ; str(string) ; real(real)
list = object*

predicates
member(object,list).

A call

member(int(X),List)

to the member predicate with a compound flowpattern could then be used to return all
the ints in a list.

Compound flowpatterns tend to produce more code, so it is sometimes more appro
priate to test a parameter on return from the predicate.

checLdeterm
When checLdeterm is specified, a warning will be given for each program clause that
results in a nondeterministic predicate. checLdeterm can be used to guide the setting
of cuts (see page 149). Turbo Prolog itself performs extensive tests to decide whether a
predicate is deterministic or nondeterministic, so your programs need not be filled with
cuts merely to save stack space.

code
code is used to specify the size of the internal code array. The default is 16K bytes. For
very large programs it may be desirable (or even essential) to specify a larger size. For
computers with limited RAM capacity, you may want to specify a smaller size to make
more room for stack space, for instance. The format is

code = Number_of_paragraphs

where Numbecof-paragraphs represents the number of memory paragraphs (16
bytes each) required in the code array. Thus

Code = l02~

sets the size of the code array to 16K bytes.

diagnostics
When diagnostics is specified, the compiler will display an analysis of the user's program
containing the following information:

• The names of the predicates used.

• Whether or not all the clauses for the predicate are facts.

• Whether the predicate is deterministic or nondeterministic.

• The size of the code for each predicate.

136 Turbo Prolog Owner's Handbook

• The fiowpattern for each predicate.

• The domain types of the parameters.

An example display is shown in Figure 11-2.

Predicate Name Dbase Determ Size Doml--flow pattern

goal NO YES o --
person YES NO 168 name,address,age,sex,inter

--outp,outp,outp,inp,outp
list311 NO NO 176 --
shared_inter NO YES 80 inters,inters--inp,inp
member NO NO 72 inter,inters--outp,inp
member NO NO 87 inter,inters--inp,inp

Total size 583

Figure 11-2 Sample Diagnostic Display

include
include is used in programs or modules when the contents of a text file are to be
included in a program during compilation. The syntax is

include "dos-file-name"

dos-file-name may include a path name.

Include files can only be used on "natural" boundaries in a program. Thus, the keyword
include may appear only where one of the keywords domains, predicates, goal, or
clauses is permitted. An include file may itself contain further include directives. How
ever, include files must not be used recursively in such a way that the same file is
included more than once during compilation. The use of many levels of include files
requires more storage during compilation than if the same files were included directly
in the main program (at one level). Include files can contain a goal or domains and
predicates declarations, provided the restrictions on program structure are observed
(see page 130). In the example in Figure 11-3 a file is included in a program, and that file
in turn contains an include directive.

grammar.pro
scanner. pro include "scanner. pro" -~

douins
douins tok =

str = string tokl =
predicates predicates

test(str,tokl) scanner(str,tokl)
start clauses

clauses
start ;- include "sdeL pro" f-

readln(L),
scanner(L,T),
test(L,T). sdeLpro

scanner ;- •
Figure 11-3 Example Use of the Include Directive

Programmer's Guide 137

nobreak
In the absence of the nobreak compiler option, code will be generated to check the
keyboard before each predicate call to ensure that the CCifil]fijk) or I]liiJ]J key com
bination has not been pressed. This slows down program execution slightly and takes
up a little extra program space. nobreak stops this automatic generation of code. When
the nobreak option is in operation, the only way to escape an endless loop is to reboot
the entire operating system. It should only be used, therefore, when a program has
been thoroughly tested.

nowarnings
nowarnings suppresses the warnings given when a variable occurs only once in a clause,
and when a variable is not bound on return from a clause.

project
project is used in modular programming. All Turbo Prolog modules involved in a project
need to share an internal symbol table. project must appear on the first line of a module
to specify which project it belongs to. For example

project "MYPROJ"

See page 152 for complete details about modular programming.

trace and shorttrace
trace prevents Turbo Prolog from carrying out the elimination of tail recursion (see
page 145) and various other optimizing tricks so that the trace shows all RETURNs.
shorttrace shows a trace with these optimizations being used.

If either trace or shorttrace is specified, all predicates will be traced. If trace or shorttrace
is followed by a list of predicate names, only those predicates in the list will be traced.
Turbo Prolog displays the information shown in Table II -2.

CALL

RETURN

FAIL

REDO

138

Table 11-2 Trace Window Messages

Each time a predicate is called, the predicate's name and the values of its
parameters are displayed in the trace window.

RETURN is displayed in the trace window when a clause is satisfied and the
predicate returns to any calling predicate. If there are further clauses that
match the input parameters, an asterisk will be displayed to indicate that this
clause is at a backtracking point.

When a predicate fails, the word FAIL is displayed, followed by the name of
the failing predicate.

~O indicates that backtracking has taken place. The name of the predicate
that is being retried, together with the values of its parameters, are
displayed in the trace window.

Turbo Prolog Owner's Handbook

For example, given

trace
domains

list=integer*
predicates

eq(integer,integer)
member(integer,list)

clauses
member(X,[XI_l).
member(X,[_IL1):-member(X,L).
eq(X,X).

and a goal that uses the eq predicate to determine whether 2 is a member of the list
[/,2], we obtain the trace shown in Figure 11-4.

d' 1 la og

Goal: member(X,[1,21), eq(X,2)
X = 2
1 Solution trace

CALL: member (_, [1,21)
Goal: RETURN:*member(1,[1,21)

CALL: eq(1,2)
FAIL: eq(1,2)
REDO: member (_, [1,21)
CALL: member(_,[21)
RETURN:*member(2,[21)
CALL: eq(2,2)
RETURN: eq(2,2)
REDO: member(_,[21)
CALL: member(_,[l)
FAIL: member(_,[l)

Figure 11-4 Use of trace

trail
trail is used to specify the size of the internal trail array. The format is:

trail= Number_of_words

The trail array is used to register side effects (primarily bindings of reference variables).
Since, by default, there is no trail array, if reference variables (see page 149) have been
used, a trail size must be given explicitly; otherwise, a trail overflow error will result. For
most purposes

trail = 100

will be adequate.

Programmer's Guide 139

DYNAMIC DATABASES IN TURBO PROLOG
Because Turbo Prolog represents a relational database as a collection of facts, the
Turbo Prolog language can be utilized as a powerful query language for dynamic data
bases. Its unification algorithm automatically selects facts with the correct values for the
known parameters and assigns values to any unknown parameters, and its backtracking
algorithm gives all the solutions to a given query.

In this section we'll talk about how to update a dynamic database-insert new
information and remove the old during execution. To increase speed when processing
large databases, facts belonging to dynamic databases are treated differently from nor
mal predicates. Dynamic database predicates are distinguished from normal predicates
by declaration in a separate database section.

Declaration of the Database
The keyword database marks the beginning of a sequence of predicate declarations
for predicates describing a dynamic database. A dynamic database is a database to
which facts can be added during execution, or fetched from a disk file by a call to the
standard predicate consult. A database declaration must precede all normal predicate
declarations, as shown in this code excerpt:

domains
name, address = string
age = integer
sex = male ; female

database
person(name,address,age,sex)

predicates
male(name,address,age)
female(name,address,age)
child(name,age,sex)

clauses
male(Name,Address,Age) if
person(Name,Address,Age,male).

The predicate person can be used in precisely the same way as the other predicates,
the only difference being that it is possible to insert and remove facts for the person
predicate during execution. Facts added in this way are stored in internal memory.

Manipulation of a database is carried out by three standard predicates. asserta inserts
a new fact before any existing facts for a given relation, assertz inserts a new fact after
all existing facts for the given relation, and retract removes a fact from the database.

For example, the first of the following two goals inserts a fact about 'John" for the
person predicate. The second retracts the first fact about "Fred":

assertz(person(IJohnl,"New York",35)).
retract(person(IFred",_,_)).

To modify a fact in the database, the fact is first retracted and then the new version of
the fact is asserted.

The whole database can be saved in a text file by calling the predicate save with the
name of the text file as its parameter. For example, after the call to

140 Turbo Prolog Owner's Handbook

save("mydata.dba")

the file mydata.dba will resemble an ordinary Turbo Prolog program with a fact on
each line. Such a file can later be read into memory using the consult predicate:

consult("mydata.dball)

consult succeeds if the program in the file does not contain errors; otherwise, it fails.

Handling Facts
The readterm predicate makes it possible to access facts in a file. read term can read
any object written by the write predicate and takes the form

readterl«name>,TermParam).

where (name) is the name of a domain. The following code excerpt shows how read
term might be used.

domains
name,addr = string
one_data_record = p(name,addr)
file = file_of_data_records

predicates
person(name,addr)
moredata(file)

clauses
person(Name,Addr):

openread(file_of_data_records,lIdd.datll) ,
readdevice(file_of_data_records),
moredata(file_of_data_records),
readterl(one_data_record,p(Name,Addr)).

moredata(_) .
moredata(File):-not(eof(File)),moredata(File).

Provided the file dd.dat contains facts belonging to the description domain, such as

p(IPeterl ,"28th Streetll)
p(ICurtl,"Wall Streetll)

the following is an example of a dialog that retrieves information from that file:

Goal: person("Peterll,Address).
Address="28th Street"
1 Solution
Goal: person("Peterll,IINot an address").
False
Goal : ...

Facts that describe database predicates can also be manipulated as though they were
terms. This is made possible by the dbasedom domain, which is automatically declared
by the Turbo Prolog system and constitutes one alternative for each predicate in the
database. It describes each database predicate by a functor and by the domains of the
arguments in that predicate.

As an example, consider the declarations

database
person(name,telno)
city(cno,cname)

Programmer's Guide 141

The Turbo Prolog system generates the corresponding dbasedom:

domains
dbasedom = person(name,telno) ; city(cno,cname)

This domain can be used like any other predefined domain. Thus, if it were not already
supplied as part of the Turbo Prolog system, a predicate my_consult, similar to the
standard predicate consult, could be constructed as follows:

dOlains
file = dbase

database

predicates
my_consult(string)
repeat(file)

clauses
my_consult(FileName):

openread(dbase,FileName),
readdevice(dbase),
repeat(dbase),
readterl(dbasedom,Term),
assertz(Term),
fail.

my_consult(_):- eof(dbase).
repeatL) .
repeat(File):-not(eof(File)), repeat(File).

If, for example, the database program section contains the declaration

p(string,string)

and a file called dd.dat exists with contents as described on page 141 we could obtain
the following dialog:

Goal:my_consult("dd.dat").
True
Goal:p(X,Y).
X = "Peter", Y = "28th Street"
X = "Curt", Y = "Wall Street"
2 solutions

Extending the Database onto Files
The next example program illustrates how to implement new predicates that are like
assertz and retract except that the resulting database is maintained in files, rather than
in RAM. This extends the normal database facility, since database facts are part of a
Prolog program and are therefore restricted by the size of available RAM. With the
database in files, the only limit is the size of available disk space. This means that your
Turbo Prolog database could be anything up to 100M bytes.

In the program, two new predicates, dbassert and dbretract, are implemented using an
index file to record the positions of the facts in the data file. Each position is repre
sented by a real number specifying where that fact is stored relative to the beginning of
the datafile. The use of an index file in this way is not essential, but it could be the basis
for binary search or hashing techniques to speed up access to the facts in the database.

142 Turbo Prolog Owner's Handbook

domains
file
name, address
age
sex
interest
interests

datafile;
string
integer
m or f
symbol
interest*

index file

database
person(name,address,age,sex,interests)

predicates
dbassert(dbasedom)
dbretract(dbasedom)
dbread(dbasedom)
dbass(dbasedom,string,string)
dbaaccess(dbasedom,real)
dbret(dbasedom,string,string)
dbret1(dbasedom,real)
dbrd(dbasedom,string,string)

clauses

1* Entry routines. These can be changed to fit the actual
application: for example, extended to a pool of open files in
order to access several databases at a time, or to allow more
than one datafile. *1

dbassert(Term):- dbass(Term,ldba.indl,ldba.dat").

dbretract(Term):- dbret(Term,ldba.indl,ldba.dat").

dbread(Term):- dbrd(Term,ldba.indl,ldba.dat").

1* dbass appends a term to the data file and updates the
index file * I

dbass(Term,IndexFile,DataFile):-
existfile(DataFile), existfile(IndexFile),!,
openappend(datafile, Datafile),
writedevice(data file),
filepos(datafile, Pos, 0),
write(Term),nl,
closefile(datafile),
openappend(index file ,IndexFile),
writedevice(indexfile),
writef(1%7.0\n",pos),
closefile(indexfile).

dbass(Term, IndexFile, DataFile)
openwrite(datafile, Datafile),
writedevice(datafile),
filepos(datafile, Pos, 0),
write(Term),nl,
closefile(datafile),
openwrite(index file ,IndexFile),
writedevice(indexfile),
writef(1%7.0\n",Pos),
closefile(indexfile).

Programmer's Guide 143

/1 dbrd returns terms from the database. The files are closed
after the database has been read. 1/

dbrd(Term, IndexFile, DataFile) :
openread(datafile, DataFile),
openread(indexfile, IndexFile),
dbaaccess(Term, -1).

dbrd(_,_,_) :-
closefile(data file), closefile(indexfile), fail.

dbaaccess(Term, Datpos):
Datpos>=O,
filepos(datafile,Datpos,O),
readdevice(datafile),
readterl(Dbasedom, Term).

dbaaccess(Term,_) :-
readdevice(indexfile),
readreal(Datpos1),
dbaaccess(Term, Datpos1).

/1 dbret retracts terms from the database. A term is retracted
by writing a negative number in the index file. 1/

dbret(Term,Indexfile,Datafile):
openread(datafile, DataFile),
openmodify(indexfile, IndexFile),
dbret1(Term, -1).

dbret1(Term, Datpos):
Datpos>=O,
filepos(datafile,Datpos,O),
readdevice(datafile),
(Dbasedom, Term),!,
filepos(indexfile, -9, 1),
flush(indexfile),
writedevice(indexfile),
writef(1%7.0\n", -1),
writedevice(screen).

dbretl(Term,_) :-
readdevice(index file),
readreal(Datposl),
dbret1(Term, Datpos1).

CONTROL OF INPUT AND OUTPUT
PARAMETERS: FLOW PATTERNS
Most standard predicates can be used to perform several functions depending on how
the predicate is called. In one situation, a particular parameter may have a known value;
in a different situation some other parameter may be known; and for certain purposes
all of the parameters may be known at the time of the call.

144 Turbo Prolog Owner's Handbook

We can call the known parameters the in parameters for a predicate, and the unknown
parameters the out parameters. The pattern of the in and out parameters in a given
predicate call indicates the behavior of that predicate for that call. This pattern is called
a ~ow pattern. If a predicate is to be called with two arguments, there are four possibili
ties for its flow pattern:

(i,i)
(i,o)
(o,i)
(0,0)

It may not make sense to use a certain predicate in as many ways as there are flow
patterns. For example, there would be no point in a call to readchar like

readchar(X)

with the variable X bound (i.e., with an in parameter).

However, as the following example shows, it is possible to produce predicates (in this
case, the plus predicate), which can be called with any combination of free and bound
parameters:

II Program 61 II
predicates

plus(integer,integer,integer)
numb(integer)

clauses
plus(X,Y,Z):- bound(X),bound(Y),Z=X+Y.
plus(X,Y,Z):- bound(Y),bound(Z),X=Z-Y.
plus(X,Y,Z):- bound(X),bound(Z),Y=Z-X.
plus(X,Y,Z):- free(X),free(Y),bound(Z),numb(X),Y=Z-X.
plus(X,Y,Z):- free(X),free(Z),bound(Y),numb(X),Z=X+Y.
plus(X,Y,Z):- free(Y),free(Z),bound(X),numb(Y),Z=X+Y.
plus(X,Y,Z):-

free(X),free(Y),free(Z),numb(X),numb(Y),Z=X+Y.
II Generator of numbers starting from 0 II

numb(O).
numb(X) :- numb(A) , X=A+1.

PROGRAMMING STYLE
This section provides some comprehensive guidelines for writing good Turbo Prolog
programs. We open with a discussion of tail recursion, and follow with a number of
rules for efficient programming style.

Stack Considerations and Eliminating Tail Recursion
To conserve space and for faster execution, Turbo Prolog eliminates tail recursion
wherever possible. Consider the definition of the predicate member:

member(X,[XI_1).
member(X,[_IY1):-member(X,Y).

The essentially iterative operation of checking or generating elements of a given list one
by one has been implemented in a recursive manner, with recursion's attendant
demands on stack space (and therefore on execution time).

Programmer's Guide 145

Tail recursion elimination is a technique for replacing such forms of recursion with
iteration, and in spite of its name, it is also useful in situations in which there is no direct
recursion or even no recursion at all-just a long chain of procedure calls.

To see how it works, suppose we had defined demopred, which uses member as
follows:

demopred(X,Y):- ... ,member(A,B),test(A),

When member is first activated, the system must remember that once member has
been successfully evaluated, control must pass to the predicate test. This means that the
address of test must be saved on the stack.

Likewise, for each recursive call of member, the system must remember the address
the member predicate needs to return to after successful evaluation-namely, itself.
Since there are no backtracking points between

member(X,[_IY1)

and the recursive call

member(X,y)

there is no need to stack the address of member several times. It is enough to remem
ber that on successful termination of member. control should pass to test. This is tail
recursion elimination. Where the system itself cannot eliminate recursion, the program
mer can do a lot to limit its effect (and limit demand on the stack) by adopting a few
rules of thumb about programming style.

Rule I. Use more variables rather than more predicates. This rule is often in direct
conflict with program readability, so a careful matching of objectives is required to
achieve programs that are efficient both in their demands upon relatively cheap
machines and upon relatively expensive human resources.

Thus, if writing a predicate to reverse the elements of a list

reverse(X,y):- reverseL([),X,y).
reverseL(Y,[),Y).
reverseL(XL,[UIX21,Y):- reverseL([UIXL),X2,Y).

makes less demands upon the stack than

reverse ([) , [1) .
reverse([UIX),Y):-reverse(X,YL),append(YL,[U),Y).

append([l,Y,Y).
append([UIX),Y,[UIZ)):- append(X,y,Z).

which uses the extra predicate append.
Rule 2. When ordering subgoals in a rule, those with the most bound variables should
come ftrst. Thus, if writing a Turbo Prolog predicate to solve the simultaneous equations

X + L = t;
X + Y = 5

and using a "generate and test" method,

solve(X,y):
numb(X),plus(X,l,t;),
numb(y),plus(X,y,S).

146 Turbo Prolog Owner' s Handbook

is better than

solve(X,y):-
numb(X),numb(Y),
plus(X,y,5),plus(X,1,~).

(The numb and plus predicates are imported from Program 61). numb generates num
bers and plus(X,Y,Z) is a predicate that works for all possible flow patterns and suc
ceeds if Z is bound to the sum of the values to which X and Yare bound, etc.

Rule 3. Try to ensure that execution fails efficiently when no solutions exist. Suppose we
want to write a predicate singlepeak that checks the integers in a list to see if, in the
order given, they ascend to a single maximum and then descend again. Thus

singlepeak([1,2,5,7,11,8,b,~1).

would succeed and

singlepeak([1,2,3,9,b,8,5,~,31).

would fail.

Definition I disobeys rule 3, since the failure of a list to have a single peak is only
recognized when append has split the list into every possible decomposition:

Definition I

singlepeak(X):-append(X1,X2,X),up(X1),down(X2).

up([1).
up([U1).
up([U,VIY1):- U<V,up([V,Y1).

down([1).
down([U1).
down([U,VIY1):- U>V, down([V,Y1).

append([1, Y, Y).
append([UIX1,Y,[UIZ1):- append(X,y,Z).

On the other hand. definition 2 recognizes failure at the earliest possible moment:

Definition 2

singlepeak([l).
singlepeak([U1).
singlepeak([U,VIY1):-U<V,singlepeak([VIY1).
singlepeak([U,VIY1):-U>V,down([VIY1).
down ([1) .
down([U1).
down([U,VIY1):- U>V, down([V,Y1).

Definition 3 shortens singlepeak further by observing rule I. Thus, using definition 3

singlepeak(Y,up)

succeeds if Y is bound to a single peaked list appended to an ascending list and

singlepeak(Y,down)

succeeds if Y is bound to a descending list.

Programmer's Guide 147

Definition 3

singlepeak([l,_).
singlepeak([_l,_).
singlepeak([U,VIW1,up):-

U<V,singlepeak([VIW1,up).
singlepeak([U,VIW1,_):

U>V,singlepeak([VIW1,down).

Rule 4. Let Turbo Prolog's unification mechanism do as much of the work as possible. At
first thought, you might think to define a predicate equal to test two lists for equality as

equal ([1 , [1) .
equal([UIX1,[UIY1):- equal(X,y).

but this is unnecessary. Using the definition

equal(X,X).

Turbo Prolog's unification mechanism does all the work!

Rule 5. Use backtracking instead of recursion to effect repetition. Backtracking
decreases stack requirements. The idea is to use the repeat . .. fail combination instead
of recursion. This is so important that the next section is dedicated to the technique.

Use of the Fail Predicate
To have a particular sequence of subgoals evaluated repeatedly, it is often necessary to
define a predicate like run with a clause of the form

run:- readln(X),
process(X,y),
write(Y) ,
run.

thus incurring unnecessary tail recursion overheads that cannot be automatically elimi
nated by the system because process(X, Y) involves backtracking.

In this case, the repeat . .. fail combination avoids the need for the final recursive call.
Given

repeat.
repeat:-repeat.

we can redefine run without tail recursion as follows:

run:- repeat,
readln(X),
process(X,y),
write(Y) ,
fail.

fail causes Turbo Prolog to backtrack to process, and eventually to repeat, which always
succeeds.

148 Turbo Prolog Owner's Handbook

Determinism, Non-determinism and How to Set the Cut
The compiler directive checLdeterm is useful when you need to decide where to place
the cut, since it marks those clauses which give rise to non-deterministic predicates. If
you want to make these predicates deterministic, the cut will have to be inserted to
stop the backtracking (which causes the non-determinism). As a general rule in such
cases, the cut should always be inserted as far to the left as possible without destroying
the underlying logic of the program.

Domains Containing References
Consider the predicate lookup in Program 62 during the evaluation of the goal

lookup(tom,27,Tree),
lookup(dick,28,Tree),
lookup(harry,26,Tree).

II Program 62 II
domains

tree reference t(id,val,tree,tree)
id = symbol
val = integer

predicates
lookup(id,val,tree)

clauses
lookup(ID,VAL,t(ID,VAL,_,_)):-l.
lookup(ID,VAL,t(ID1,_,TREE,_)):

ID<ID1,l,lookup(ID,VAL,TREE).
lookup(ID,VAL,t(_,_,_,TREE)):-lookup(ID,VAL,TREE).

After matching with the first rule, the compound object to which Tree is bound takes
the form

t(tom,27,_,_)

and even though the last two parameters in t are not bound, t must be carried forward
to the next subgoal evaluation

lookup(dick,28,Tree)

which in turn binds Tree to

t(tom,28,t(dick,28,Tree,_),_)

Finally, the subgoal

lookup(harry,26,Tree)

binds Tree to

t(tom,28,t(dick,28,_,t(harry,26,_,_)),_)

which is the result returned by the goal.

Because an unbound variable is passed from one subgoal to another, the domain tree
has been declared as a reference to a compound object. This indicates that-inter
nally-Turbo Prolog will have to pass references (or, loosely, addresses) rather than
values. If t had not been declared as a reference object, Turbo Prolog would display a
warning at runtime saying that references must be passed.

Programmer's Guide 149

In many cases, the use of reference objects is avoidable. If they are used, however, they
must be declared as such; otherwise, Turbo Prolog will display a warning, "The variable
is not bound in this clause" during compilation. Program 63 uses several reference
declarations to implement a Turbo Prolog interpreter which, given the goal

call(atom(likes,[symb(john),Xl))

will respond

X = symb("baseball")
1 Solution

The program contains clauses representing Program I (see "The Structure of a Turbo
Prolog Program" in Chapter 3) except for the fact

likes(tom,baseball).

which will be inserted dynamically in the clause database during the dialog below.
Notice that the fact

likes(mark,tennis).

is represented in the interpreter as

claoses(atom(likesr[symb(mark)isymb(tennis)J)t[J).

As given, the interpreter does not understand all of regular Turbo Prolog syntax. That
would require a parser which reads a string and transforms it into a "parse tree"
according to the domains in the program. However, it can produce the following dialog:

150

Goal: call(atom(likes,[symb(bill),Xl))
No solution
Goal:assertz(clause(atom(likes,[symb(tom),symb(baseball)l),[l)).
True

Goal: call(atom(likes,[X,Yl))
X symb("ellen"), Y symb("tennis")
X symb("john"), Y symb("football")
X symb("eric"), Y symb("swimming")
X symb("mark"), Y symb("tennis")
X symb("bill"), Y symb("baseball")
X symb("tom"), Y symb("baseball")
6 Solutions

1* Program 63 *1
code=1000 trail=1000
domains

term reference var(vid);symb(symbol);cmp(fid,terml)
terml = reference term*
atom atom(aid,terml)
atoml = atom*
e = e(vid,term)
env = reference e*
fid,aid,vid = symbol

database
clause(atom,atoml)

Turbo Prolog Owner's Handbook

predicates
call(atom)
unify_term(ter~,term,env)
unify_terml(terml,terml,env)
unify_littl(atoml,env)
member(e,env)

clauses
I*The clauses below form the Turbo Prolog interpreter*1

call(atom(Id,Terml)):-
clause(atom(Id,Termll),Body),
free(E),unify_terml(Terml,Termll,E),unify_littl(Body,E).

unify_terml([l,[l,_).
unify_terml([TrmlITLll,[Trm2ITL21,E):-

unify_term(Trml,Trm2,E),unify_terml(TL1,TL2,E).
unify_term(Term,var(X),Env):-member(e(X,Term),Env),l.
unify_term(symb(X),symb(X),_).
unify_term(var(X),var(X),_)
unify_term(cmp(ID,Ll),cmp(ID,L2),E):-unify_terml(Ll,L2,E).
unify_littl([l,_).
unify_littl([atom(Id,Terml)IAtomll,Env):

unify_terml(Call,Terml,Env),call(atom(Id,Call)),
unify_littl(Atoml,Env).

member(X,[XI_l).
member(X,[_IL1):-member(X,L).

1* These are the clauses that represent the
part of a program already entered into the interpreter's
database. They could all be asserted instead of being
included statically as part of the program body. *1

clause(atom(likes,[symb(ellen),symb(tennis)1) , [1).
clause(atom(likes,[symb(john),symb(football)l), [1).
clause(atom(likes,[symb(eric),symb(swimming)l), [1).
clause(atom(likes,[symb(mark),symb(tennis)l) , [1).
clause(atom(likes,[symb(bill),var(X)l):-

[atom(likes,([symb(tom),var(X)l)l).

GENERATING
EXECUTABLE STAND-ALONE PROGRAMS
A Turbo Prolog program can be compiled and linked to form a stand-alone executable
file. Turbo Prolog actually does this for you: just set the Compile switch in the Options
pull-down menu to "Compile to EXE file", and then give a Compile command. Pro
vided the program is error free, an OBJ file is generated (with the same name as the
source program text) and the linker is automatically invoked via a DOS batch file
source called PLlNK.BAT.

To ensure a successful link process, the following conditions must be satisfied:

• COMMAND.COM must be present in the DOS directory defined in Setup.

• The file PLlNK.BAT (supplied on the distribution disk) must be present in the OBJ
directory.

Programmer's Guide 151

• The DOS linker, LlNK.EXE, must be present in the OBJ directory or in a directory
that is searched via a path set by the DOS Path command when the linker is called
from the OBJ directory.

• There must be enough memory available to contain the complete linked program. If
memory resources are limited, you can compile the program to an OBJ file, exit
from the Turbo Prolog system via the Quit command, and finally start the link pro
cess by hand without the Turbo Prolog system resident. To do so, use the following
command to call the linker:

PLINK MYPROG

where MYPROG is the name of the Turbo Prolog program to be linked. The PLINK
file and the link process are described in detail in Appendix C.

MODULAR PROGRAMMING
A powerful feature of the Turbo Prolog system is its ability to handle programs that are
broken up into modules. Modules can be written, edited, and compiled separately, and
then linked together to create a single executable program. If you need the program,
you need only edit and recompile one of the modules, not the entire program-a
feature you will appreciate when you write large programs. Also, modular program
ming allows you to take advantage of the fact that, by default, all predicate and domain
names are local. This means different modules can use the same name in different ways.

Turbo Prolog uses two concepts to manage modular programming: projects and global
declarations. Among other things, these features make it possible to keep a record of
which modules make up a program (called a project), and to perform type checking
across module boundaries. In this section, we'll define the two concepts and then, by
way of a simple example, show how some modules can be combined into a single,
stand-alone program.

Projects
When a program is to be made up of several modules, Turbo Prolog requires a project
definition specifying the names of the modules involved. You must create a file (called
the LIBRARIAN) containing the list of the module names. The contents of the librarian
file take the form

name_of_firstmodule+
name_of_secondmodule+

Each module is specified by its first name only (no file type) followed by a +. The
filename of the project definition file becomes the name of the project, and it must have
file type PRJ.
The first step in modular programming is to make up a name for the project and then
create a corresponding LIBRARIAN file containing the names of the modules in the
project. This is done via the Librarian option in the Setup pull-down menu. Each project
is associated with a unique LIBRARIAN.

152 Turbo Prolog Owner's Handbook

The project concept has two purposes:

I. The contents of the LIBRARIAN file are used during linkage; the names of the
modules are inserted into the link command (given via PLlNK.BAT) from that file.

2. The project name is used during compilation to identify a symbol table shared by
all modules in that project. The symbol table is stored in a file in the OBJ directory
with the same name as the project and file type .SYM . This file is automatically
generated and updated during compilation.

To achieve the second purpose, the name of the project must be given in each module
via the project compiler directive, which takes the form

project "MYPROJ"

Global Domains and Global Predicates
By default. all names used in a module are local. Turbo Prolog programs communicate
across module boundaries using predicates defined in a global predicates section.
The domains used in global predicates must be defined as global domains, or else be
domains of standard types.

All the modules in a project need to know exactly the same global predicates and
global domains. The easiest way to achieve this is by writing all -global declarations in
one single file, which can then be included in every relevant module via an include
directive.

global domains
A domain is made global by writing it in a global domains program section. In all other
respects, global domains are the same as ordinary (local) domains.

global predicates
global predicate declarations differ from ordinary (local) predicate declarations in that
they must contain a description of the flow pattern(s) in which each given predicate
may be called. A global predicates declaration must follow the scheme

mypred(dl,d2, .. ,dn) - (f,f, ... ,f)(f,f, .. ,f) ...

where d l,d2, ... ,dn are global domains and each group

(f, f, ... , f)

denotes a flow pattern where each (is either i (input parameter) or 0 (output parame
ter).

Note that if any global definition is changed, all modules in that project must be
recompiled.

Programmer's Guide 153

Compiling and Linking the Modules
Before compiling and linking the modules, the following conditions must be fulfilled:

I. Each module must be headed with the two compiler directives project and include.
For example:

project "MYPROJ"
include "GLOBALS.PRO"

(assuming that the project name is MYPROj and that the global declarations are
saved in the file GLOBALS.PRO)

2. One and only one module must contain a goal section! This module is regarded as
the main module. Any facts describing a database predicate given in the program
text must be written in the main module.

3. PLlNK.BAT, LlNK.EXE, and COMMAND.COM must satisfy the conditions neces-
sary for successful linking, as described on pages 151 and 152.

The modules in the project can be compiled with the compile option switch set to
either "Compile to OBJ" or "Compile to EXE". Once you have compiled all the other
modules in a project, the best way to compile the last module is by using the compile
Option set to "Compile to EXE". This automatically invokes the linker and runs the
compiled program. Otherwise, if memory resources are limited, all modules should
first be compiled with the compile Option set to "Compile to OBj." By exiting the
Turbo Prolog system, control can then be given to DOS and the DOS linker will handle
the job.

The link process can be initiated for MYPROj by giving the command

PLINK MYPROJ

(see Appendix C).

An Example
Now let's look at the steps involved in combining two modules into a single program.
Assume that the two modules and the project are called MAIN.PRO, SUB I.PRO, and
MYPROj respectively, and that the necessary global declarations are saved in the file
GLOBDEF.PRO.

Step I. Create a LIBRARIAN file via the Librarian entry in Setup by giving the name
MYPROJ to the "Name of module list?" prompt and then edit the contents to:

MYPROJ.PRJ
main+suh1+

Step 2. Create, edit, and save the global declarations file so that it appears as follows:

154

GLOBDEF.PRO

global dOlains
name=string
global predicates
welcome(name)-(i)

Turbo Prolog Owner's Handbook

Step 3. Create, edit, and save the main module file so that it appears as follows:

MAIN.PRO

project "MYPROJ"
include "globdef.pro"
predicates

test

goal
test.

clauses
test:-clearwindow,

write("Please write your name"),
nl,nl,nl,
read(ThisName),
welcome(ThisName).

Step 4. Set the Compile Switch in the Options pull-down menu to "Compile to OBJ"
and give a Compile command, thus generating the files MAIN.OBj and MYPROj.SYM.

Step 5. Create, edit, and save the sub-module file as follows:

SUB1.PRO

project "MYPROJ"
include "globdef.pro"
clauses

welcome(Name):-
write("Welcome ",Name),
write(" Nice to meet you."),
sound(100,200).

Step 6. Set the Compile Switch in the Options pull-down menu to "Compile to EXE"
and give a Compile command, thus generating the file SUB I.OBj and performing an
autolink process.

This link process links the files

INIT.OBJ, SUB1.0BJ, MAIN.OBJ, MYPROJ.SYM and PROLOG.LIB

to give the file

MYPROJ.EXE

INTERFACING PROCEDURES WRITTEN
IN OTHER LANGUAGES
Although Turbo Prolog is an excellent tool for many purposes, there are still reasons
to use other languages. For example, it's easier to perform numeric integration in
FORTRAN; interrupt handling is probably done better in assembly language; and, of
course, if someone has developed a large program in Pascal that already solves some
aspect of the problem, this work should not be wasted. For these reasons, Turbo
Prolog allows interfacing with other languages. Currently, the languages supported are
Pascal, C, FORTRAN, and assembler.

Programmer's Guide 155

Declaring External Predicates
To inform the Turbo Prolog system that a global predicate is implemented in another
language, a language specification is appended to the global predicate declaration:

global predicates
add(integer,integer,integer)-(i,i,o),(i,i,i) language C
scanner(string,token)-(i,o) language Pascal

Turbo Prolog makes the interfaced language explicit to simplify the problems of activa
tion record and parameter format, calling and returning conventions, segment defini
tion, and linking and initialization.

Calling Conventions and Parameters
The 8086 processor family gives the programmer a choice between NEAR and FAR
subroutine calls. Turbo Prolog requires that all calls to and returns from subroutines be
FAR.

When interfacing to a routine written in C, the parameters are pushed on the stack in
reverse order and, after return, the stack pointer is automatically adjusted. When inter
facing to other languages, the parameters are pushed in the normal order and the called
(unction is responsible (or remuving the parameters {i-om the stack.
In many language compilers for the 8086 family, there is a choice between 16-bit and
32-bit pointers, where the 16-bit pointers refer to a default segment. To access all of
memory, Turbo Prolog always uses 32-bit pointers.

Turbo Prolog types are implemented in the following way:

integer 2 bytes
real 8 bytes (IEEE format)
char 1 byte (2 bytes when pushed on the stack)
string ~ byte dword pointer to a null terminated string
symbol ~ byte dword pointer to a null terminated string
compound ~ byte dword pOinter to a record

An output parameter is pushed as a 32-bit pointer to a location where the return value
must be assigned.

For input parameters, the value is pushed directly and the size of the parameter
depends on its type.

Naming Conventions
The same predicate in Turbo Prolog can have several type variants and several flow
variants. A separate procedure is called for each type and ~ow variant. To call these
different procedures, a separate name must be assigned to each procedure. This is
done by numbering the different procedures with the same predicate name from 0
upwards. For example, given the declaration

156 Turbo Prolog Owner's Handbook

global predicates
add(integer,integer,integer)-

(i,i,o),(i,i,i) language pascal

the first variant with flow pattern (i,i,o) is named add_O and the second with flow
pattern (i,i,i) is named add_I.

An Assembler Routine Called from Turbo Prolog
Suppose an assembly language routine is to be called into operation via the clause

double(MyInVar,MyOutVar)

with MylnVar bound to an integer value before the call so that, after the call, MyOutVor
is bound to twice that value.

The "activation record" placed on top of the stack when double is activated will take the
form shown in Figure 11-5. The basic assembly language outline is

MOV AX,[BP]+6 ;get the value to which
;MyInVar is bound

ADD AX,AX ;double that value
LDS SI,DWORD PTR [BP]+6 ;Store the value to

MOV [SI],AX

[BP]+8

[BP]+6

[BP]+2

[BP]+O

;which MyOutVar is to
;be bound in the
;appropriate address.

The value to which MyInVar is
SIZE = 2 bytes

Address in which the value for
MyOutVar must be placed.

SIZE = 1; bytes

bound.

Address from which execution is to
continue after double has been executed.

SIZE = 1; bytes

Previous BP setting before execution of
double began.

SIZE = 2 bytes

Figure 11-5 Activation Record

After adding the statements necessary to preserve Turbo Prolog's SP and BP registers,
and to be able to combine the assembly language fragment with a Turbo Prolog .OBJ
module, we obtain the following code:

Program~r' s Guide 157

A_PROG

PUBLIC
double °

double_D
A_PROG
END

SEGMENT BYTE
ASSUME CS:A_PROG
double_D
PROC FAR
PUSH BP
MOV BP,SP
MOV AX, [BP]+6
ADD AX,AX
LDS SI,DWORD PTR [BP]+6
MOV [SI],AX
POP BP
MOV SP,BP
RET
ENDP
ENDS

The Turbo Prolog program containing the call to double must contain the global pred
icates declaration

global predicates
double(integer,integer) - (i,o) language assembler

but otherwise is no different from any other program.

if this assembiy ianguage program module is a~serTlbred into the file ~·1)/AS~"1.0BJ and
the calling Turbo Prolog object module is MYPROLOG.OBJ, the tWo can be linked via

LINK INIT+MYPROLOG+MYASM+MYPROLOG.SYM,MIXPROG"PROLOG

and thus produce an executable stand-alone program in the file MIXPROG.EXE (using
the Turbo Prolog library in PROLOG. LIB). It is important that MYPROLOG.SYS appear
last in the above link command.

In general, the format of an activation record will depend upon the number of parame
ters in the calling Turbo Prolog predicate and the domain types corresponding to those
parameters. Thus, if we wanted to define

add(Va11,Va12,Sum)

with Vall, Val2 and the Sum belonging to domains of integer type, the activation record
would take the form shown in Figure II -6.

Notice that each parameter occupies a corresponding number of bytes. For output
parameters, the size is always 4 bytes (used for segment address and offset). For input
parameters, the size is determined by the value actually pushed on the stack and is thus
dependent on the corresponding domain type.

Thus, Vall and Val2-belonging to a domain of integer type and being used with an (i)
flow pattern-both occupy 2 bytes, whereas Sum-being used with an (0) flow pat
tern-occupies 4 bytes.

Note also that, within the Turbo Prolog compiler, a call to an external predicate takes
the form

158

1* push parameters *1
MOV AX,SEGMENT DATA
MOV DS,AX
CALL FAR PTR EXTERNAL_PREDICATE_IMPLEMENTATION

Turbo Prolog Owner's Handbook

so that the data segment addressed while a procedure for an external predicate is
being executed is the one called DATA.

Address in which the value for Sum
must be placed.

[BP]+W ... SIZE. = 1; bytes

The value to which Va12 is bound.
[BP]+B ... SIZE = 2 bytes

The value to which Vall is bound.
[BP]+6 ... SIZE = 2 bytes

Address from which execution is to
continue after add has been executed.

[BP]+2 ... SIZE = 1; bytes

Previous BP setting before execution of
add began.

[BP]+O ... SIZE = 2 bytes

Figure 11-6 Activation Record

Calling C, Pascal and FORTRAN Procedures from Turbo Prolog
Program 64 demonstrates how to access a subroutine written in C from a Turbo
Prolog program. The process with Pascal and FORTRAN is similar.

1* Program 61; *1
global predicates

goal
treble(integer,integer) - (i,o) language c

write("Type an integer"),readint(A),
treble(A,T),
write("Treble that number is ",T),nl.

In the Turbo Prolog program that contains the call to treble. the language used to
implement it must be specified in the global predicates section. In the C source
(shown in Program 65). you must use the Turbo Prolog naming convention for the
names of the C-subroutines. The name of the predicate (treble) must be followed by an
integer corresponding to the flow pattern.

1* Program 65 *1

treble_O(x,y) int x; int *y
{

*y=3*x; I*The value of x can be used in treble *1

Low-Level Support
The Turbo Prolog standard predicate bios gives the programmer access to the low
level bios (basic i/o system) routines. These routines are documented in any IBM DOS

Programmer's Guide 159

manual. Information is passed to and from the bios functions via the predefined com
pound object reg(..), so that, using the variables AXi, BXi, eXi, DXi, SIi, O/i, OSi, ESi to
represent the register values passed to bios and AXo, ... , ESo for those returned by the
bios, the Turbo Prolog predicate takes the form

bios(IntNo,reg(AXi,BXi,CXi,DXi,SIi,Dli,DSi,ESi),
reg(AXo,BXo,CXo,DXo,SIo,Dlo,DSo,ESo))

The domain for the compound object reg(AX,BX, .. .) is predefined as

regdom = reg(integer,integer,integer,)

Program 66 uses the bios standard predicate and three of the other four low-level
support standard predicates: ptr _dword, memword, membyte, and portbyte. These take
the following formats:

ptr_dword(StringVar,Segment,Offset)
portbyte(PortNo,Byte)
memword(Segment,Offset,Word)
membyte(Segment,Offset,Byte)

ptr _dword returns the internal Segment and Offset address of StringVar. portbyte sets or
returns the value at PortNo, depending on whether Byte is bound or free. memword
sets or returns the value of the Word at the memory address given by Segment and
Offset, depending on whether Vvord is bound or free. membyte acts the same as mem
word, but for a single byte.

Program 66 defines four predicates:

• dosver returns the actual DOS version number.

• diskspace returns the total number of bytes and number of available bytes on the
given Disk. The Disk is specified by a number: 0 denotes the default disk, I denotes
drive A:, 2 denotes drive B:, and 3 denotes drive C:.

• makedir creates a subdirectory.

• removedir removes a subdirectory.

In light of Program 66, try out the following three goals:

dosver(DosVersionNumber).
diskspace(DriveNumber,TotalSpace,RemainingSpace).
makedir("testdir"),

160

write("Notice that testdir appears in the directory"),
readchar(_),system("dir"),remove("testdir"),
write("Notice that testdir is removed"),
readcharL) ,
system("dir").

1* Program bb *1
predicates

dosver(real)
diskspace(integer,real,real)
diskname(integer,symbol)
makedir(STRING)
removedir(STRING)

Turbo Prolog Owner's Handbook

clauses
dosver(VERSION):

AX=L;8*256,

bios(33,reg(AX,O,O,O,O,O,O,O),reg(VV,_,_,_,_,_,_,_)),
1* you could use hex notation, bios($21 ...)

instead of bios(33 ...) *1
L=VV/256, H=VV-256*L, VERSION=H+L/100.

diskspace(DISK,TOTALSPACE,FREESPACE):-
AAX=5L;*256,
bios(33,reg(AAX,O,O,DISK,O,O,O,O),

reg(AX,BX,CX,DX,_,_,_,_)),
FREESPACE=1.0*BX*CX*AX, TOTALSPACE=1.0*DX*CX*AX.

makedir(NAME):-
ptr_dword(NAME,DS,DX),
AX=256*57,
bios(33,reg(AX,O,O,DX,O,O,DS,O),_).

removedir(NAME):
ptr_dword(NAME,DS,DX),AX=256*58,
bios(33,reg(AX,O,O,DX,O,O,DS,O),_).

ACCESSING THE EDITOR
FROM WITHIN A TURBO PROLOG PROGRAM
The following predicates are used to call the Turbo Prolog editor.

edit(InStringParam,OutStringParam)
The Turbo Prolog editor is invoked in the active window. All the usual editor facilities
are now available. (The operation of the editor is described in Chapters 2 and 12.) The
editor will be used on the text given in InStringParam, and OutStringParam will receive
the edited result. Thus, the following call could be used to start editing an empty screen:

edit (1111, Text) .

display(String)
The Turbo Prolog editor is invoked in the active window. The text in String can be
examined under editor control but cannot be altered (and therefore only a subset of
the editor's facilities are available in "display" mode).

editmsg(InString, OutString, LeftHeader, RightHeader,
Message,Position, HelpFileName, Code)

The Turbo Prolog editor is called, and InString can then be edited in the currently active
window to form OutString. Two texts are inserted in the header given by LeftHeader
and RightHeader. The cursor is located at the Position-th character in InString and the

Programmer's Guide 161

indicated Message is displayed at the bottom of the window. The file loaded when the
"help" key [EJ is pressed is HelpFi/eName. The value returned in Code is used to indi
cate how the editing was terminated (Code=O if terminated by IE!) and Code= I if
aborted by IE).

DIRECTORY AND FORMATTING FACILITIES
The following predicates can be used to access the Turbo Prolog file directory and to
format output.

dir(Path,FileSpec,Filename)
The Turbo Prolog file directory facilities are invoked. The indicated Path and FileSpec
define the files to appear in the directory. Cursor keys can then be used to select one
of the filenames. Pressing ~ selects the file to which the cursor is currently pointing.
An example of a call could be

dir(l\mydirl,lt.pro",NameOfSelectedProgram)

writef(FormatString,Argl,Arg2,Arg3,)
This predicate allows the production of formatted output. Arg I to ArgN must be con
stants or variables that belong to domains of standard type. It is not possible to format
compound domains. The format string contains ordinary characters, which are printed
without modification, and format specifiers of the form:

% m.p

where the optional (-) indicates that the field is to be left-justified (right-justified is the
default). The optional m field is a decimal number specifying a minimum field, with the
optional .p field specifying the precision of a floating-point image or the maximum
number of characters to be printed from a string. For real numbers, p can be qualified
by one of the letters: f, e, or g with the following denotation:

f Reals in fixed decimal notation.
e Reals in expoenntial notation.
g Use the shortest format (this is the default)

For example:

Goal: person(N,A,I),
writef("Name= -%15, Age= %2, Income=$%g.2f \n",N,A,I).

would produce output such as the following:

162

Name= Pete Ashton
Name= Marc Spiers
Name= Kim Clark

, Age= 20, Income=$ 11111.11
, Age= 32, Income=$ 22222.22
, Age= 28, Income=$ 33333.33

Turbo Prolog Owner's Handbook

12 Reference Guide
This chapter provides a comprehensive reference to all aspects of the Turbo Prolog
system. We'll discuss files on the distribution disk, the menu system, the editor, and how
to calculate screen attributes. The remainder of the chapter is a classified. alphabetical
lookup for all functions, predicates, and compiler directives.

FILES ON THE DISTRIBUTION DISK
The distribution disk contains the following files:

PROLOG.EXE contains the editor, compiler, file handler and runtime package.

PROLOG. ERR contains error messages. This text file need not be present if you don't
mind the absence of explanatory compile-time error messages. If the file isn't present,
errors will be indicated only by an error number; Appendix B contains explanations for
all error messages. If you want complete error messages to be displayed, these can
either be in a disk file (which must be called PROLOG.ERR) or can be stored in mem
ory (for the details, see Appendix B).

PROLOG.HLP is an ASCII text file containing help messages. If you wish, you can edit
the help text to your liking.

READ.ME (if present) contains the latest updates and suggestions about Turbo Prolog.
It may also contain addenda or corrections to this manual.

*.PRO files contain the source text for sample Turbo Prolog programs.

PROLOG.LlB is the library needed when OBject files are linked to form EXEcutable
files.

INIT.OBJ must be included as the first OBJ file in all LINK commands when creating
executable files. INIT.OBJ contains code to initialize the computer before processing
the actual Turbo Prolog program code.

PLlNK.BAT contains linking information (see Appendix 0).

163

FILES NEEDED WHEN USING TURBO PROLOG
To start Turbo Prolog. The only file necessary to load Turbo Prolog is PROLOG.EXE.
However, if during a previous Turbo Prolog session the system configuration was
changed, a file PROLOG.5YS will have been created (using the Save configuration
option on the Setup menu). If such a file exists, its contents will be used to define system
parameters (such as size of windows) when Turbo Prolog is started up.

To give error messages. Error messages (rather than just error code numbers) will
only be displayed if PROLOG.ERR is present in the same directory as PROLOG.EXE.

To use DOS commands within Turbo Prolog programs. DOS commands can be
used from within a Turbo Prolog program, provided that the directory speCified via a
path in the Setup pull-down menu contains the sam~ version of COMMAND.COM as
was used to boot the computer.

When generating EXE files. PLlNK.BAT must be present in the same directory as
PROLOG.EXE (the Turbo directory), the files INIT.OBJ and PROLOG.L1B must be
present in the OBJ directory, and the LINKER must be present in the OBJ directory or
accessible via a DOS path.

T~T~TA T T ATTO~T
... .J.. ... uL~..L..I.L '-J.J.. ...

Installation of colors, directories, windows, and other features can be performed via
the Setup pull-down menu described on page 168. Any changes made can be saved in a
.5YS file in the same directory as the Turbo Prolog system (the Turbo directory). The
default .5YS file is PROLOG.SYS but several .5YS files can be maintained via the Setup
menu. When a .5YS file is read via the "Read Configuration" command, the system is
automatically configured from the named file .. SYS files contain ASCII text that can be
modified directly with a text editor. The contents of .SYS files are explained in detail in
Appendix D.

THE MAIN MENU
This section is a functional reference to the Turbo Prolog menu system. If you need
help with the keystrokes required to use the menus, see Chapter 2.

The Run Command
The Run command is used to execute a program residing in memory. If a compiled
program is already in memory, and the source of that program has not been modified
in the editor since the last Run, it will be executed immediately. If not, the source
program in the editor will first be compiled, after which the resulting program will be
executed.

Turbo Prolog programs can be executed in two ways:

164 Turbo Prolog Owner's Handbook

I. If the program contains a goal, the goal is executed, and any output from Turbo
Prolog appears in the dialog window. After execution, the user can press the space
bar to return to the main menu.

2. If the goal is not internal (written in the program), the user can try several goals;
the "conversation" between the user and Turbo Prolog will appear in the dialog
window.

During program execution, some of the function keys have special meanings:

~

I1U
~
@]!1[)
I]ID]l (toggle)

Automatically retypes the previous goal on the next line in the dialog
window.

Calls the editor.

Selects a system window to be resized.

Re-sizes or moves the dialog window.

Tempora~ the output of a program to the screen.
Pressing Ctrl S again continues output.

Interrupts program execution and returns control to the main menu
or the dialog window.

Automaticall echoes any output sent to the screen to the printer.
Pressing Ctrl P again stops output to the printer.

The Compile Command
The Compile command compiles the program currently in the editor. Compilation
may result in a program resident in memory (default), in an OBj file, or an EXE file,
depending on the current setting of the compile option switch in the Options pull
down menu.

When compiling to an EXE file, all linking is performed automatically. If the compiled
program is part of a project, the linking process depends on the project definition. (See
page 152.)
When compiling to OBj files, if the program is part of a project, it must begin with the
keyword project and the name of that project (see page 152). The project must have
been defined via the Librarian entry in the Setup menu.

Instead of using the automatic linking process, you can give the LINK commands in
DOS. This might be desirable, for example, if there is not enough memory to allow
linkage with the Turbo Prolog system resident. To link in DOS, quit the Turbo Prolog
system, switch to the OBj directory, and give a PLINK command in one of the following
ways:

PLINK PROGRAM

or

PLINK PROJECTl

The first command links a single compiled program (where the source was in
PROGRAM.PRO) to an executable file. The second command links a project called
PROJECT I to an executable file.

Reference Guide 165

The Options Menu
The Options pull-down menu is shown in Figure 12-1.

Figure 12-1 Options Menu

The current compile setting is shown as the first (non-selectable) entry. You can select
either of the other two options if desired. Compilation to OBJ and EXE files is
described under the Compile Command (see previous section).

The Edit Command
The Edit command invokes the built-in editor for editing the file defined as the workfile
(via the Filename entry in the Files pull-down menu). If no workfile filename has been
specified, WORK.PRO is assumed.

In addition to editing the current workfile, you can also edit another file from inside the
editor without disturbing the editing of the workfile. Also, you can incorporate some or
all of the contents of another file into the one being edited. For more information about
the editor, see page 172.

The Files Menu
The Files pull-down menu is shown in Figure 12-2.

Load
Load selects a workfile from the PRO directory. The workfile can then be edited,
compiled, executed, or saved.

After issuing a Load command, you will be prompted for a file name. You can enter
either of the following:

I. Any legal filename. If the period and file type (extension) are omitted, the .PRO
extension is automatically assumed. To specify a file name with no extension, enter
the name followed by a period.

166 Turbo Prolog Owner's Handbook

2. A filename from a directory. The directory facility is consulted when the File nome:
prompt is answered either by pressing S or with a pattern containing wildcards
followed by S. If no file pattern is given, all files with the .PRO extension will be
listed. In either case, the cursor can then be moved up and down in the resulting
list of file names by the arrow keys, I Home I, 1El, ~ and ~. Choose a file by
pressing S. If lE is pressed, the cursor will return to the File nome: prompt.

Figure 12-2 Files Menu

Save
Save saves the current workfile on disk. The old version of the named file, if any, is
given a .BAK extension.

Directory
Directory is used to select the default directory for .PRO files. It can also be used to
browse in the .PRO directory. After issuing the Directory command, you will be
prompted for a directory path. Any legal path name can be given. See the Setup
command, page 168 for a description of the other directories used by the system.

File Name
File is used to rename the workfile (by default, WORK. PRO). This operation does not
affect any files on disk. This is useful, for example, for saving an edited program, so that
the program previously saved under the current workfile name is not erased.

Reference Guide 167

Zap File in Editor
Zap erases the text currently in the editor. The current workfile name is maintained.

Print
Print sends the program to the printer. It will initiate a dialog in which the user is asked
to mark the program block to be ,printed.

Erase
Erase erases a disk file. The file can be specified by name, or it can be selected from the
directory as described on page 167.

Rename
Rename renames a disk file. After issuing the Rename command, you will be asked for
the name of the original file by the From: prompt: respond with a legal file name
(possibly prefixed with a path). Then type the new name after the To: prompt. As with
the Erase command, files can be specified by name, or selected from the directory.

Operating System
Operating system calls the DOS operating system; Turbo Prolog remains resident in
memory. The version of DOS used during the boot process must be available in the
DOS directory. Once DOS has been called, any DOS commands can be executed,
including MD and FORMAT. Control is returned to the resident Turbo Prolog system
with the EXIT command.

Setup Menu
Setup should be selected when any of the setup parameters are to be inspected,
temporarily changed, or recorded permanently in a .SYS file. The Setup menu is shown
in Figure 12-3.

Defining Directories
The P, 0, E, T, and D entries define a drive and path for each of the five directories
used by the system.

When you select a directory, you will be prompted for a drive and a path. Type in the
drive and/or path, press ~. and Turbo Prolog will accept your specification; if you
change your mind and want to start over, press IE.
The PRO directory is used by default in all file-handling operations performed'from the
Files pull-down menu. This includes Loading and Saving Turbo Prolog programs.

OBJ directory is used for files of .OBJ and .PRJ type and, possibly, the IBM PC linker,
LIN K.EXE.

168 Turbo Prolog Owner's Handbook

The EXE directory is used for the files generated by the Turbo Prolog system of .EXE
type.

The TURBO directory is used for the Turbo Prolog system itself, i.e., for the system
files PROLOG.EXE, PROLOG.ERR, PROLOG.HLP, PROLOG.SYS, and PROLOG.L1B.

The DOS directory should contain the version of COMMAND.COM that was used
when the computer was booted. Whenever the Operating system entry in the Files
menu is selected or when Quitting the Turbo Prolog system, COMMAND.COM is
consulted again. This directory is also used as the default for any DOS command issued
from within the Turbo Prolog system.

Run C"",pil" Edit Options riles mm quit

Figure l2-3 Setup Menu

Librarian
When you select Librarian, you will be asked for the name of the file containing the list
of modules in a given project. Type in a name, or select it from a catalog of project
names found in the OBj directory. For example, if you specify the name APROjECT.
any existing module list of that name can be edited; otherwise, an empty file is pre
pared for editing. In either case, once the new module list is complete, exiting the
editor with the fl2!l key automatically uprlates the module list file APROjECT.PRj in the
OBj directory.

Window Definition

Window activates another menu, shown in Figure 12-4. Select E, D, M, T, or A, then do
the following to define the selected window:

Reference Guide 169

Window Width

Window Length

Window Position

Press 8 to make the width smaller, or El to make it larger.

Press II) or CD to decrease or increase the length of the
window. To make changes in larger increments, hold down the
[]ill) key at the same time.
Move the window to a new position by holding down the ~
key and pressing the arrow keys.

----- ------
Use tlrst letter of option 01' select with -) or (-

Figure 12-4 Window Definition Menu

Color Setting
This entry is used to define the background and foreground colors of one or more
system windows. When selected, a new pop-up menu appears (Figure 12-5) to enable
you to select which window will be affected:

Figure 12-5 Color Settings Menu

170 Turbo Prolog Owner's Handbook

Choose E, D, M, T, A, p, or S to select a window. Then use the arrow keys to alter the
foreground and background colors. The status line at the bottom of the screen reflects
the current meanings of these keys:

<--, --) :Background color lA, Iv:Foreground color Any other:End Attr = 7 A[&k12H

The El and El keys can be used to increase or decrease the selected window's
background attribute value in steps, and II) and II) can be used similarly to control the
foreground color. The actual attribute value selected is shown to the right of the status
line.

Miscellaneous
Miscellaneous is used to define more specialized parameters. When selected, the pop
up menu shown in Figure 12-6 appears.

Inn COIIpile Edit Options FiI~$ @I!I!!R quit

Figure 12-6 Miscellaneous Menu

I toggles special synchronization to improve performance on a color screen driven by
the IBM Color/Graphics Adapter. By default, no special synchronization is provided.

A toggles whether the text file containing error messages is to be loaded into memory
(Autoload messages ON), or whether each error message is to be loaded from
PROLOG. ERR each time an error occurs. By default. Autoload messages are OFF.
S is used to (re)define the stack size. The default is 600 paragraphs (I paragraph is 16
bytes). When you issue the S command, you will be prompted for a new stack size in
the interval 600-4000 paragraphs.

Load Configuration
Press L to load a .SYS file from the Turbo directory and reset the system according to
the parameters it contains.

Reference Guide 171

Save Configuration
S saves the current setup in a .SYS file in the Turbo directory. The configuration can be
given any name, but the default PROLOG.SYS is automatically used when the Turbo
Prolog system is first started up.

Quit Command
Use the Quit command to leave the Turbo Prolog system. If the workfile has been
edited since it was loaded, Turbo Prolog will ask you if you want to save the workfile
before quitting.

THE TURBO PROLOG EDITOR
The Turbo Prolog editing commands can be grouped into the following four categories:

• Cursor movement commands

• Insert and delete commands

• Block commands

• Miscellaneous commands

Each group will be described separately in the sections that follow. Table 12-1 provides
an overview of the commands available. In the following sections, each of the descrip
tions consists of a heading defining the command, followed by the keystrokes used to
activate the command. In some cases, there are two ways to give a command, using
either the PC's function keys or WordStar-like commands; both will be shown.

172

Table 12-1 Editing Command Overview

Cursor Movement Commands

Character left

Character right

Word left

Word right

Line up

Line down

Page up

Page down

Beginning of line

End of line

Top of file

End offile

Beginning of block

End of block

Bottom of page

Top of page

Insert and Delete Commands

Insert mode on/off

Delete left character

Delete character under cursor

Delete right word

Delete line

Delete to end of line

Turbo Prolog Owner's Handbook

Table 12-1 Editing Command Overview (continued)

Block Commands

Mark block begin
Copy block
Move block
Read block from disk

Mark block end
Repeat the last copy
Delete block
Hide/display block

Miscellaneous Editing Commands

Call the auxiliary editor
Which line number
Auto indent on/off
Repeat last find
Repeat last find & replace

Cursor Movement Commands

Go to line
End edit
Find
Find & replace

These commands are used to move the cursor to different areas in a text file.

Character left El or @ill)]]
Moves the cursor one character to the left without affecting the character there. This
command does not work across line breaks; when the cursor reaches the left edge of
the window, it stops.

Character right El or []ill)])
Moves the cursor one character to the right without affecting the character there.
When the cursor reaches the right edge of the window, the text scrolls horizontally
until the cursor reaches the extreme right of the line; it then moves to the beginning of
the next line (if there is one).

Word left @li!)3 or @li!)]l
Moves the cursor to the beginning of the word to the left.

Word right @illEl or @illII
Moves the cursor to the beginning of the word to the right. This command works
across line breaks.

Line up II) or@ill)l)
Moves the cursor to the line above. If the cursor is on the top line, the window scrolls
down one line.

Line down CD or @li[)])
Moves the cursor to the line below. If the cursor is on the last line, the window scrolls
up one line.

Page up ~ or I]![)]l
Moves the cursor one page up with an overlap of one line. The cursor moves one
window, less one line, backward in the text.

Page down ~ or []li!)]J
Moves the cursor one page down with an overlap of one line. The cursor moves one
window, less one line, forward in the text.

Reference Guide 173

Beginning of line I Home I or @ill)]) !]J
Moves the cursor all the way to the left edge of the window (column one).
End of Line ~ or @ill)]) []l
Moves the cursor to the end of the line, i.e., to the position following the last printable
character on the line.
Top of fiI e (CtrIJBOiTie) 0 r @ill)]) I]]
Moves to the first character of the text.
End of file ~ or @ill)]) @l
Moves to the last character of the text.
Beginning of block @ill)]) []J
Moves the cursor to the block begin marker set with @.ill)]) (I). The command works
even if the block is not displayed (see page 175), or the block end marker is not set.
End of block @ill)]) CKl
Moves the cursor to the block end marker set with @.ill)]) CKl. The command works
even if the block is not displayed (see page 175), or the block begin marker is not set.

Insert and Delete Commands
These commands let you insert and delete characters, words. and lines. They can be
divided into two types: one command that controls the text entry mode (insert or
overwrite), and a number of simple delete commands.

Insert mode on/off [ill or ~
Toggles between insert (default) and overwrite modes. The current mode is displayed
on the status line at the top of the window.
Insert mode is the default value when the editor is activated. In this mode, existing text
to the right of the cursor moves to the right as you type in the new text.
Overwrite mode is used to replace old text with new. In this mode, characters are
replaced by the new characters typed over them.
Delete left character IE
This is the backspace key directly above the IB key. It moves one character to the left
and deletes the character there. Any characters to the right of the cursor move to the
left.
Delete character under cursor !£ill
Deletes the character under the cursor and moves any character to the right of the
cursor one position to the left. This command works across line breaks.
Delete right word I][)=:l
Deletes the word to the right of the cursor.
Delete line @li!)E or !]ill)])
Deletes the line containing the cursor and moves any lines below one line up.
Delete to end of line I][)=:l or @ill)]) fll
Deletes all text from the cursor position to the end of the line.

174 Turbo Prolog Owner's Handbook

Block Commands
These commands are used to mark and manipulate blocks of text.

Mark block begin @ill]) []]
Marks the beginning of a block. You can also use the begin block marker as a reference
point to move to with the @li!)]l []] command.

Mark block end @ill]) fI)
Marks the end of a block. You can also use the end block marker as a reference point
to jump to with the @li!)]lfI) command.

Copy block !!D or @ill]) [I)
!!D Marks the start and end of the block, then copies the block to the cursor position.
First, press !!D to mark the beginning of the block. Then move the cursor to the end
of the block, and press !!D again to mark the end of the block. Finally, move the cursor
where you want to insert the block. Press !!D again to copy the block.

@ill]) [I) Places a copy of a marked and highlighted block at the cursor position. The
original block is left unchanged, and the markers are placed around the new copy of the
block.

Repeat the last copy ~
The block previously marked with !!D is inserted at the cursor position.

Move block [!D or @ill]) []J
[!D Marks the start and end of the block, then moves the block to the cursor position.
First, press [!D to mark the beginning of the block. Then move the cursor to the end
of the block and press [!D again to mark the end of the block. Finally, move the cursor
to where you want to insert the block. Press [!D again to move the block.

@ill]) []J Moves a marked and highlighted block from its original position to the
cursor position. The block disappears from its original position and the markers remain
around the block at its new position.

Delete block flD or @ill]) III
flD Marks the start and end of the block, then deletes it. First, press flD to mark the
beginning of the block. Then move the cursor to the end of the block and press flD
again to mark the end of the block. Finally, press flD to delete the block.

@ill]) III Deletes a marked and highlighted block.

Read block from disk [![J or @ill]) [!)
Opens the Files menu and selects the Load option. You can then load the file and view
it as though in the editor. The text to be copied is selected either by pressing I![) at
the beginning and end of the block, or by marking the block with []ill)]) []J and
@ill]) fI). The block is then inserted in the main edit text at the current cursor
position.

Hide/display block @ill]) f]]
Causes block highlighting to be toggled off and on. @ill]) block manipulation com
mands (copy, move, delete, or write to a file) work only when the block is highlighted.
Block-related cursor movements Uump to beginning/end of block) work whether the
block is highlighted or not.

Reference Guide 175

Miscellaneous Commands
Call the auxiliary editor rl[)
Establishes a separate window for temporary editing of another text file (before copy
ing a block from it. for example). Functionally, the auxiliary editor is exactly the same as
the ordinary editor, and is especially useful when include files must be edited. After
terminating the temporary edit of a file with the I!J:[l key, you can save the edited
version of that file.

Go to line CE[)
When you press !![l, you will be prompted for a line number. Enter a line number, but
don't press tEl. Press !![l again to move the cursor to the beginning of the indicated
line.

Which line number (BE]
Displays the line number of the cursor at the bottom of the screen. Press another key
to continue editing.

End Edit fE or I!J:[l
I!J:[l Terminates editing and, if the editing was due to a program syntax error, automati
cally recompiles the program.

fE Terminates editing.

Auto indent @ill)]) OJ
Provides automatic line indentation. When auto indent is active, the indentation of the
current line is repeated on all subsequent lines. When you press tEl, the cursor does
not return to column one, but to the starting column of the line you just terminated.

When you want to change the indentation, simply move the cursor to select the new
column. When auto indent is active (the default), the message indent is displayed at the
top of the editor window.

Find (!D or @ill)])1Il
Searches for any string up to 25 characters long. When you issue this command, you
are prompted for a search string. Type in the search string. Then, if(!D was used as the
find command, press (!D again. If @ill)])1Il was used, press tEl.
The find operation can be repeated with the Repeat last find command.

Repeat last find IBfD or @illI)
Searches for the next occurrence of the search string.

Find and Replace [El or @ill)]) []J
Searches for any string up to 25 characters long, then replaces it with any other string
up to 25 characters long.

When you issue this command, you are prompted for the search string. Type in the
search string. If you used [El, press [El again. If @ill)]) []J was used, press tEl.
Next, enter the string to replace the search string, terminated in the same way as the
search string.

Then you are asked if you want a global or local find and replace. If local is specified,
only one find and replace operation is carried out. Otherwise the find and replace
operation is repeatedly carried out throughout the text, from the current cursor posi
tion onwards.

176 Turbo Prolog Owner's Handbook

Finally, you are asked if you want to be prompted before a replacement is carried out.
If you answer No, the find and replace operation is carried out without further ado. If
you answer Yes, the find string mayor may not be found. If it is found (and the Yoption
is specified), you are asked the question: Replace (Y/N)? Press Y to replace or N to
skip. You can also abort the search and replace operation by pressing~. The find and
replace operation can be repeated with the Repeat last find and replace command.

Repeat last find and replace 8'EJ or @[(D
This command repeats the latest Find and replace operation exactly as if all information
had been re-entered.

Function Key Summary

Function Keys

fill Help

[lD Go to Line
Actual Line

~ Search
Search Again*

E) Replace
Replace Again*

[![) Copy
Copy Again*

[l£l Move Text

!EJ Delete Text

~ Auxiliary Edit

[![J External Copy

~ End editor

Special Combinations

IID3 Move to word at left

~ Move to word at right

(CfffJFOiW) Go to start of text

~ Go to end of text

(]!!J3 Delete line to left

~ Delete line to right

I]ill)E Delete line

~ Toggle indentation

~ Insert/Overwrite

*These functions are activated when f3El is
pressed at the same time as the function key.

THE CALCULATION OF SCREEN ATTRffiUTES
Turbo Prolog allows you to specify the colors and/or attributes for your particular
screen type. The methods for a monochrome and color/graphics screen are outlined in
the following sections.

Reference Guide 177

Monochrome Display Adapter
I. Choose the integer representing the required foreground and background combi-

nation from Table 12-2.

2. Add I if you want characters to be underlined in the foreground color.

3. Add 8 if y~u want the white part of the display to be in high intensity.

4. Add 128 to this value if you want the character to blink.

Table 12-2 Monochrome Display Adapter Attribute Values

Black characters on a black background (i.e., blank) 0
White characters on a black background (normal video) 7
Black characters on a white background (inverse video) 112

Color/Graphics Adapter
I. Choose one foreground color and one background color.

2. Add the corresponding integer values from Table 12-3.

3. Add 128 if you want whatever is displayed with this attribute to blink.

Table 12-3 Color/Graphics Adapter Attribute Values

Background colors Foreground colors
Black 0 Black 0
Gray 8 Blue I
Blue 16 Green 2
Light Blue 24 Cyan 3
Green 32 Red 4
Light Green 40 Magenta 5
Cyan 48 Brown 6
Red 64 White 7
Light Red 72
Magenta 80
Light Magenta 88
Brown 96
Yellow 104
White 112
White (High Intensity) 120

178 Turbo Prolog Owner's Handbook

ARITHMETIC FUNCTIONS AND PREDICATES

Table 12-4 Turbo Prolog Arithmetic Predicates and Functions

Functional Predicate Description

bitand(X. Y.Z)
bitnot(X,Z)
bitor(X. Y.Z)
bitxor(X. Y.Z)

If X and Yare bound to integer values. Z will be bound to an
integer that is the result of (I) representing the values of X and Y
as signed 16-bit numbers and (2) performing the corresponding
logical operation AND. OR, NOT, XOR on those numbers.

bitleft(X.N. Y)
bitright(X.N. Y)

If X and N are bound to integer values, Y is bound to the integer
that is the result of representing X as a signed 16-bit number and
shifting left or right the number of places specified by N.

Binds X to a pseudo-random number x with 0 < = x < I.

Returns the remainder of X divided by Y.
Returns the quotient of X divided by Y.

random(X)
X modY
X divY
abs(X) If X is bound to a positive value v, abs(X) returns that value; other

wise it returns -I *v.
cos(X)
sin(X)
tan(X)

The trigonometric functions require that X be bound to a value
representing an angle in radians.

arctan(X)
exp(X)
In(X)
log(X)
sqrt(X)

Returns the arctangent of the real value to which X is bound.

e raised to the value to which X is bound.

Logarithm to base e.

Logarithm to base 10.

Square root.

CLASSIFIED INDEX OF STANDARD PREDICATES
Below is a classified index of all standard predicates. Predicates are grouped by func
tion. Detailed descriptions are given in alphabetical order on the pages that follow this
index.

Reading
readchar(CharVariable)
readint(lntVariable) .
readln(StringVariable) .
readreal(ReaIVariable) .
readterm(Term,Domain) .

Writing
nl
write({Variable I Constant}*) .
writedevice(SymbolicFileName)
writef(FormatString,{VariableI Constant}*) .

File System
closefile(SymbolicFileName) .
consult(DosFileName) . . .

Reference Guide

Page

191
191
191
191
191

189
195
195
195

183
183

179

deletefile(DosFileName) 184
dir(Pathname,FileSpecString,DosFileName) 184
disk(DosPath) I 84
eof(SymbolicFileName) 185
existfile(DosFileName). 185
filepos(SymbolicFileName,FilePosition,Mode) 186
file-str(DosFileName,StringVariable). . . . 186
flush(SymbolicFileName) 187
openappend(SymbolicFileName,DosFileName) 189
openmodify(SymbolicFileName,DosFileName). 189
openread(SymbolicFileName,DosFileName) . 190
openwrite(SymbolicFileName,DosFileName) . 190
readdevice(SymbolicFileName) 191
renamefile(OldDosFileName,NewDosFileName). 191
save(DosFileName) 192
writedevice(SymbolicFileName) 195

Screen Handling
attri bute(A ttr) . . . I 82
back(Step) 182
I~~,,,:~...J~,,, 101
LleUI VVIlIUVVV I U.J

cursor(Row,Column) 183
cursorform(Startline,Endline) 183
display(String) . . , . . . 184
dot(Row,Column,Color) . . 184
edit(lnputString,OutputString) 184
editmsg(lnStr,OutStr,LeftHeader,RightHeader,Message,

HelpFileName,Position,Code) . 85
field-'lttr(Row,Column,Length,Attr). . . 85
field~tr(Row,Column,Length,String). . . 85
forward(Step) 87
graphics(ModeParam,Palette,Background) 88
left(Angle). 88
line(Rowl,Coll,Row2,CoI2,Color) . . . 88
makewindow(WNo,ScrAtt,FrameAttr,Header,Row,Col,Height,Width) 88
pencolor(Color) 90
pendown. . . 90
penup 90
removewindow 91
right(Angle) . . 92
scr _attr(Row,Col,Attr) . 92
scr _char(Row,Column,Char) 92
shiftwin~ow(WindowNo). 92
text. 94
window_attr(Attr) . . . 94
window~r(ScreenString). 95

180 Turbo Prolog Owner's Handbook

String Handling
frontchar(String.FrontChar,RestString).
frontstr(NumberOfChars,String I,StartStr,String2)
fronttoken(String,Token, RestString) .
isname(StringParam) .
str _len(String, Length)

Type Conversion
char _int(CharParam,lntParam) .
str _char(StringParam,CharParam)
str _int(StringParam,lntParam) . .
str _real(StringParam,ReaIParam) .
upper _lower(StringlnUpperCase,StringlnLowerCase) .
Data Predicates
asserta((fact)). . . .
assertz((fact)). . . .
consult(DOSFileName).
retract((fact)). . . .
save(DOSFileName). .

System Level Predicates
beep
bios(lnterruptNo,Regsln,RegsOut)
date(Year,Month,Day).
mem byte(Segment.Offset, Byte) .
memword(Segment. Offset,Word)
portbyte(PortNo,Value)
ptr _dword(StringVar,Segment.Offset) .
sound(Duration.Frequency).
storage(StackSize,HeapSize,TraiISize) .
system(DosCommandString)
time(Hours,Minutes,Seconds,Hundredths)
trace(Status). . . .

Language Predicates
bound(Variable) . .
exit
fail
findall(Variable, (atom), ListVariable)
free(Variable)
not«atom»)

ALPHABETICAL DIRECTORY
OF STANDARD PREDICATES

187
187
187
188
193

183
193
193
193
194

182
182
183
192
192

82
82
84
89
89
90
90
92
93
94
94
94

183
185
185
186
187
189

This section lists all Turbo Prolog standard predicates in alphabetical order. Each predi
cate is described in the following format:

• predicate name and a typical invocation

• types of the parameters in corresponding positions of the predicate

Reference Guide 181

• list of the possible flow patterns for this predicate

• description of the outcome of a call to the predicate for each of the allowed flow
patterns.

asserta((fact)) (dbasedom) : (i)
Inserts a (fact) in the RAM database before any other stored clauses for the corre
sponding predicate. The (fact) must be a term belonging to the domain dbasedom,
which is internally generated.

assertz((fact)) (dbasedom) : (i) (0)
Inserts a (fact) in the RAM database after all other stored clauses for the corresponding
predicate. The (fact) must be a term belonging to the domain dbasedom, which is
internally generated.

attribute (Attr)
(i)
Sets the default attribute value for all screen positions.

(0)

(integer) : (i) (0)

Binds Attr to the current default attribute value for all screen positions.

back(Step) (integer) : (i)
Indicates how many Steps the turtle is to move from its current position along its
current direction. back fails if the movement leads to a position outside the screen
(screen is 32000 horizontal and 32000 vertical steps). The current position of the turtle
will only be updated if back is successful.

beep
Beeps the computer's speaker.

bios(InterruptNo, RegsIn, RegsOut)
(integer,regdom,regdom) : (i,i,o)

Causes BIOS interrupt InterruptNo with register values indicated in the parameter
Regsln and binds the parameter RegsOut to the register values after the interrupt has
been executed. Regsln and RegsOut both belong to the internal domain regdom, which
is defined as:

regdom = reg(AX,BX,CX,DX,SI,DI,DS,ES)

where AX, BX, ex, OX, 51, 01, OS and ES are all of integer domain type.

182 Turbo Prolog Owner's Handbook

bound(Variable)
Succeeds if Variable is bound.

char Jnt(CharParam,IntParam)
(i,o)

(variable») : (0)

(char,integer) : (i,o) (o,i) (i,i)

Binds IntParam to the decimal ASCII code for CharParam.

(o,i)
Binds CharParam to the character having the decimal ASCII code specified by IntParam.

(i,i)
Succeeds if IntParam is bound to the decimal ASCII code for CharParam.

clearwindow
Clears the currently active window of text by filling it with its background color.

closefile(SymbolicFileN arne) (file) : (i)
Closes the named file. c10sefile succeeds even if the named file has not been opened.

consult(DOSFileName) (string) : (i)
Adds a text file (created, for example, by saving a database with the save predicate) to
the current database. The predicate succeeds by loading the facts (describing declared
database predicates) from the file DOSFileName into memory. If the file contains any
syntactic errors, consult fails.

cursor(Row, Column) (integer,integer) : (i,i) (0,0)

(i,i)
Moves the cursor to the indicated position (relative to the top left corner at row 0,
column 0) in the currently active window.

(0,0)
Binds Rowand Column to the current cursor position.

cursorform(Startline, Endline) (integer,integer) : (i,i)
Sets the height and vertical position of the cursor within a single-character display area.
Each character occupies 14 scan lines of the screen, so Startline and Endline must be
bound to values between I and 14, inclusive.

Reference Guide 183

date(Year, Month, Day) (integer,integer,integer) : (i,i,i) (0,0,0)
(1,1,1)
Reads the date from the computer's internal clock.
(0,0,0)
Sets the date used by the computer's internal clock.

deletefile(DosFileN arne) (string) : (i)
Deletes the file DosFileName from the currently active disk.

dir(Pathnarne,FileSpecString,DosFileN arne)
(string,string,string) : (i,i,o)

Calls the Turbo Prolog file directory command. The indicated PathName and FileSpec
String define the files to appear in the directory window. The user can select a name
(returned in DosFileName) with the cursor keys, followed by !El when the desired
filename is highlighted. dir fails if it is aborted with the [El key.

disk(DosPath)
(1)
Sets the current default drive and path.
(0)
Returns the current default drive and path.

display(String)

(string) : (i) (0)

(string) : (i)
Displays the contents of String in the currently active window. The contents can be
inspected (but not altered) using the editor's cursor control keys.

dot(Row, Column, Color) (integer,integer,integer) : (i,i,i) (i,i,o)
(1,1,1)
Provided the screen is initialized to graphics mode, dot puts a dot at the point deter
mined by the values of Rowand Column, in the specified Color. The coordinates are
both integers from 0 to 31999 and are independent of the current screen mode.
(1,1,0)
When used with Color as a free parameter, dot reads the color value at the point
determined by Rowand Column.

edit(InputString,OutputString) (string,string) : (i,o)
Calls the Turbo Prolog editor. InputString can then be edited in the currently active
window to form OutputString.

184 Turbo Prolog Owner's Handbook

editrnsg(InStr, OutStr, LeftHeader, RightHeader, Message,
HelpFileNarne, Position,Code)

(string, string, string, string, string, string, string,integ er,integer)
: (i,o,i,i,i,i,i,o)

Calls the Turbo Prolog editor. InStr can then be edited in the currently active window to
form OutStr. Two texts are inserted in the header given by LeftHeader and RightHeader.
The cursor is located at the Position-th character in InStr and the indicated Message is
displayed at the bottom of the window. The name of the file loaded when the' "Help"
key !ill is pressed is HelpFileName. The value returned in Code indicates how editing
was terminated (Code=O if terminated by IE[) and Code= I if aborted by []i)).

eof(SyrnbolicFileN arne) (file) : (i)
Checks whether the pointer to the current file position (see (tlepos) is pointing to the
end of the file. If so, eof succeeds: otherwise it fails.

existfile(D os File N arne) (string) : (i)
Succeeds if the file DosFileName appears in the directory of the currently active disk
(see disk).

exit
Stops program execution and returns control to the Turbo Prolog menu system.

fail
Forces failure of a predicate and, hence, backtracking.

fielcLattr(Row, Colurnn,Length,Attr)
(integer,integer,integer,integer) : (i,i,i,i) (i,i,i,o)

(1,1,1,1)
If Rowand Column refer to a position within the currently active window (see makewin
dow and shiftwindow) and a field of the given Length starting at that position can be
contained inside that window, all the positions in that field are given attribute Attr.

(1,1,1,0)
The attribute of the field occupying Length characters at position Row, Column of the
currently active window is bound to Attr. As above, the specified field must fit inside this
window.

fielcLstr(Row, Colurnn , Length , String)
(integer,integer,integer,string) : (i,i,i,i) (i,i,i,o)

(1,1,1,1)
If Rowand Column refer to a position within the currently active window (see makewin
dow and shiftwindow) and a field of the given Length starting at that position can be

Reference Guide 185

contained inside that window, the value to which String refers will be written at that
position, subject to these conditions:

If String is bound to a value that contains more characters than Length indicates, only the
first Length characters are written. If String is shorter than Length, the rest of the field
will be filled with blank spaces. .

(1,1,1,0)
The text occupying the field of Length characters at position Row, Column of the cur
rently active window is read into String. As above, the specified field must fit inside this
window.

filepos(SyrnbolicFileN arne, FilePosition, Mode)
(file,real,integer) : (i,i,i) (i,o,i)

(1,1,1)
Selects the position in the named file where a value is to be written by write. Positions
are calculated according to the type of element stored in the file and the value of Mode.
Thus, if SymbolicFileName refers to a file of bytes, and FilePosition and Mode are bound
to II and 0 respectively, the next byte written into the file will be at byte position II
(from the beginning of the file).

(1,0,1)
Returns the position relative to the beginning of the file where the next write will take
place. Reading the file position therefore requires that Mode=O.

Mode Position

o Relative to the start of the file

I Relative to the current position

2 Relative to the end of the file

file-str(DosFileNarne,StringVariable) (string,string) : (i,o)
Reads characters (maximum 64K) from the named file into the string until an end-of-file
character (decimal ASCII code 26, normally 1]illJ]J) is received.

findall(Variable,(atom),ListVariable)
Collects the values from backtracking into a list. Thus, if (atom) is a predicate with its
arguments represented by valid Turbo Prolog variable names, and Variable is the name
of one of the variables in the predicate, ListVariable will be bound to the list of values for
that variable that was obtained from instances when the predicate can succeed due to
backtracking.

186 Turbo Prolog Owner's Handbook

flush(SyrnbolicFileN arne) (file) : (i)
Forces the contents of the internal file buffer to be written to the current writedevice.
~ush is useful when output is directed to a serial port and it may be necessary to send
the data to the port before the buffer is full. (Normally file buffers are ~ushed auto
matically).

forward(Step) (integer) : (i)
Provided the screen is initialized to graphics mode, forward moves the pen from its
current position the indicated number of Steps along its current direct. forward fails if
the movement leads to a position outside the screen (screen is 32000 horizontal and
vertical steps). The current position of the turtle will only be updated if forward is
successful. If the pen is activated, forward leaves a trail in the current pen color.

free(Variable) (variable») : (0)
Succeeds if Variable is not bound.

frontchar(String, FrontChar, RestString)
(string,char,string) : (i,o,o) (i,i,o) (i,o,i) (i,i,i) (o,i,i)

Operates as if it were defined by the equation

String=(the concatenation of FrontChar and RestString)

so that either String must be bound or both FrontChar and RestString must be bound.

frontstr(NurnberOfChars, Stringl, StartStr, String2)
(integer,string,string,string) : (i,i,o,o)

Splits String I into two parts. StartStr will contain the first NumberOfChars characters in
String I and String2 will contain the rest.

fronttoken(String, Token,RestString)
(string,string,string) : (i,o,o) (i,i,o) (i,o,i) (i,i,i) (o,i,i)

Operates as if it were defined by the equation

String = (the concatenation of Token and RestString)

so that either String must be bound or both Token and RestString must be bound. Thus,
fronttoken succeeds if Token is bound to the first token of String and RestString is bound
to the remainder of the String. A group of one or more characters constitutes a token
in one of the following cases:

• they constitute a (name) according to Turbo Prolog syntax.

• they constitute a valid string representation of a Turbo Prolog integer or real (a
preceding sign is returned as a separate token).

• it is a single character, but not the ASCII space character (decimal code 32).

Reference Guide 187

graphics(ModeParam, Palette ,Background)
(integer,integer,integer) : (i,i,i)

Initializes the screen in medium, high or extra-high resolution graphics. ModeParam
selects the resolution. The resulting screen formats are shown in Table 12-5.

Table 12-5 Graphics Screen Formats

ModeParam Co Is Rows Adapter and Resolution

320 200 CGA, medium resolution 4 colors.
2 640 200 CGA, high resolution, black and white.
3 320 200 EGA, medium resolution, 16 colors.
4 640 200 EGA, high resolution, 16 colors.
5 640 350 EGA, enhanced resolution, 3 colors.

CGA: The standard Color/Graphics Adapter
EGA: Enhanced Graphics Adapter

Background (aiso an integer vaiue) seiects a background coior. in screen modes i and 2,
the choice is made according to Table 7-1.

isname(StringParam) (string) : (i)
Succeeds if StringParam is a (name) according to Turbo Prolog syntax.

left(Angle) (integer) - (i) (0)
(i)
Turns the turtle the indicated Angle (in degrees) to the left (counterclockwise).

(0)
Binds Angle to the current direction of the turtle.

line(Row I, Coll,Row2, Co12, Color)
(integer, integer, integer, integer, integer) : (i,i,i,i,i)

Provided the screen is initialized to graphics mode, line draws a Color line between the
points defined by Rowl, Call, and Row2, Co12, respectively. The coordinates are integers
from a to 31999 and are independent of the current screen mode.

makewindow(WindowNo,Scr Att,FrameAttr, Header,
Row,Col,Height, Width)

(integer, integer, integer, string, integer, integer, integer ,integer)
: (i,i,i,i,i,i,i,i)

Defines an area of the screen as a window. Each window is identified by a number
(WindowNo) which is used when selecting which window is to be active. If FrameAttr is

188 Turbo Prolog Owner's Handbook

less than or greater than zero, a border is drawn around the defined area (i.e. the
window is framed) and the upper border line will include the Header text. Once
defined, the window is "cleared" and the cursor is moved to its top left corner. The
row and column positions of the left corner of the window-relative to the whole
screen-are specified by parameters Rowand Col, respectively, and Height and Width
give the dimensions of the window. It is important that Row, Col, Height and Width be
compatible with the size of the display-normally 25 rows of 80 characters. The size of
the display can be changed using the graphics standard predicate.

membyte(Segment, Offset,Byte)
(integer,integer,integer) : (i,i,i) (i,i,o)

(1,1,1)
When Byte is bound, membyte stores the value of the Byte at the memory address
given by Segment and Offset (calculated as Segment* 16 + Offset).
(1,1,0)
When Byte is free, membyte reads the value of the byte at the memory address given
by Segment and Offset (calculated as Segment* 16+0ffset).

memword(Segment, Offset, Word)
(integer,integer,integer) : (i,i,i) (i,i,o)

(1,1,1)
When Word is bound, memword stores the value of the Word at the memory address
given by Segment and Offset (calculated as Segment* 16 + Offset).
(1,1,0)
When Word is free, memword reads the value of the word at the memory address
given by Segment and Offset (calculated as Segment* 16 + Offset). (Values in the range
32768 to 65536 are taken as negative integers).

nl
Causes a carriage-return, line-feed sequence to be sent to the current writedevice.

not(atom»)
Succeeds if (atom) represents a goal that fails when evaluated.

openappend(SymbolicFileName, DosFileName) (file,string): (i,i)
Opens the disk file DosFileName for appending, and attaches the SymbolicFileName to
that file for future reference within the Turbo Prolog program containing this call.

openmodify(SymbolicFileName,DosFileName) (file,string) : (i,i)
Opens the disk file DosFileName for both reading and writing, and attaches the
SymbolicFileName to that file for future reference within the Turbo Prolog program

Reference Guide 189

containing this call. This predicate can be used in conjunction with (tlepos to update a
random access file.

openread(SymbolicFileName, DosFileName) (file,string) : (i,i)
Opens the disk file DosFileName for reading, and attaches the SymbolicFileName to that
file for future reference within the Turbo Prolog program containing this call.

openwrite(SymbolicFileName, DosFileName) (file,string) : (i,i)
Opens the disk file DosFileName for writing and attaches the SymbolicFileName to that
file for future reference within the Turbo Prolog program containing this call. If a file
called DosFileName already exists on the disk, it is deleted.

pencolor(Color) (integer) : (i)
Determines the Color of the trail left by the pen. For the standard Color/Graphics
Adapter, the color is determined according to Table 7-1.

pendown
Activates the pen used by the forward and back predicates.

penup
De-activates the pen used by the forward and back predicates.

portbyte(PortNo, Value) (integer,integer) : (i,i) (i,o)
(1,0)
Binds Value to the decimal equivalent of the byte value at I/O port PortNo.
(1,1)
Sends the Value to I/O port PortNo.

ptr _dword(StringVar, Segment, Offset)
(string,integer,integer) : (i,o,o) (o,i,i)

(1,0,0)
When StringVar is bound, ptr_word returns the internal Segment and Offset address of
StringVar.
(0,1,1)
When Segment and Offset are bound, ptLword returns the contents of location
Segment* 16 + Offset and following as a string. The string consists of the characters with
the given ASCII values and is terminated at the first location containing a NUL byte (i.e.,
a byte set to 0).

190 Turbo Prolog Owner's Handbook

readchar(CharVariable) (char) : (0)
Reads a single character from the current read device (the keyboard unless the default is
changed via readdevice).

readdevice(SymbolicFileN ame) (symbol) : (i) (0)
(1)
Reassigns the current read device to the file opened with the given SymbolicFileName,
which may be the pre-defined symbolic file keyboard or any user-defined symbolic file
name for a file opened for reading or modifying.

(0)

Binds SymbolicFileName to the name of the current read device, which may be the pre
declared keyboard or a file (see, for example, openread).

readint(IntVariable) (integer) : (0)
Reads an integer from the current read device (the keyboard unless the default is
changed via readdevice) terminated by an ASCII carriage-return character.

readln(StringVariable) (string) : (0)
Reads characters from the current read device (the keyboard unless the default is
changed via readdevice) until an ASCII carriage-return character is read.

readreal(ReaIVariable) (real) : (0)
Reads a real from the current read device (the keyboard unless the default is changed
via readdevice) terminated by an ASCII carriage-return character.

readterm(Domain, Term) (name),(variable») : (o,i)
Reads any object written by the write predicate. Term is bound to the object read,
provided it conforms with the declaration of Domain. readterm allows facts to be
accessed on files.

removewindow
Removes the currently active window from the screen.

renamefile(OldDosFileN ame,NewDosFileName)
(string, string) : (i,i)

Renames the file OldDosFileName (on the currently accessed disk) to NewDosFileName.

Reference Guide 191

retract((fact)) (dbasedom) : (i)
Deletes the first (fact) in the database that matches the given (fact).

right(Angle) (integer) : (i) (0)
(i)
Turns the turtle the indicated Angle (in degrees) to the right (clockwise).
(0)

Binds Angle to the current direction of the turtle.

save(DOSFileName) (string) : (i)
Saves all the clauses for database predicates in the text file to which DOSFileName
refers. save saves a fact on each line in the file. The file can later be read into memory
by the consult predicate. The text file-and thus the entire database, can also be
inspected and manipulated using the editor.

scr _attr(Row, Col,Attr) (integer,integer,integer) : (i,i,i) (i,i,o)
(1,1,1)
Sets the attribute of the character at screen position Row, Col to the value referred to
by Attr.
(i,i,o)
Returns the value of the attribute setting for the character at position Row, Col.

scr_char(Row,Column,Char) (integer,integer,char) : (i,i,i) (i,i,o)
(i,i,1)
Writes the character Char on the screen with the current attribute at the position given
by Rowand Column.
(i,i,o)
Reads a character from the specified position.

shiftwindow(Window No) (integer) : (i) (0)
(i)
Changes the currently active window to the one referred to by WindowNo. (Any
previously active window is stored in its current state.) The cursor returns to the
position it was in when window WindowNo was last active.
(0)

Binds WindowNo to the number of the currently active window.

sound(Duration,Frequency) (integer,integer) : (i,i)
Plays a note through the speaker with given Frequency for Duration hundredths of a
second.

192 Turbo Prolog Owner's Handbook

storage(StackSize,HeapSize, TrailSize) (real,real,real) : (0,0,0)
Returns the available size of the three run-time memory areas used by the Turbo
Prolog system.

str _char(StringParam, Char Param) (string,char) : (i,o) (o,i) (i,i)
(i,o)
Binds ChorPoram to the single character contained in the string to which StringPorom is
bound.

(o,i)
Binds StringPoram to the character specified by ChorPoram.
(i,i)
Succeeds if ChorPoram and StringPoram are both bound to representations of the same
character.

str -int(StringParam, IntParam) (string,integer) : (i,o) (o,i) (i,i)
(i,o)
Binds IntPoram to the internal (binary) equivalent of the decimal integer to which
StringPoram is bound.

(o,i)
Binds StringPoram to a string of decimal digits representing the value to which IntPorom
is bound.

(i,i)
Succeeds if IntPoram is bound to the internal (binary) representation of the decimal
integer to which StringPoram is bound.

str jen(String,Length)
(i,i)
Succeeds if String has Length characters.

(i,o)

(string,integer) : (i,i) (i,o)

Succeeds by binding Length to the number of characters in String.

str-real(StringParam, RealParam) (string,real) : (i,o) (o,i) (i,i)
(i,o)
Binds ReolPoram to the internal (binary) equivalent of the decimal real number to which
StringPoram is bound.

(o,i)
Binds StringPoram to a string of the decimal digits representing the value to which
ReolPoram is bound.

(i,i)
Succeeds if ReolPoram is bound to the internal (binary) representation of the decimal
real number represented by the string to which StringPoram is bound.

Reference Guide 193

system(DosCommandString)
(i)
Sends DosCommandString to DOS for execution.

text

(string) : (i)

Resets the screen in text mode. The call has no effect if the screen was already in text
mode.

time(Hours , Minutes , Seconds, Hundredths)
(integer,integer,integer,integer) : (i,i,i,i) (0,0,0,0)

(i,i,i,i)
Sets the time used by the computer's internal clock.
(0,0,0,0)
Reads the time from the computer's internal clock.

trace(Status) (symbol) : (i) (0)
(i)
trace(on) turns tracing on (in whichever mode has been selected by the corresponding
compiler directive-trace or shorttrace); trace(off) turns tracing off.
(0)
Binds Status to on or off. indicating whether tracing is being performed or not.

upper -Iower(Stringln UpperCase, StringlnLowerCase)
(string,string) : (i,i) (i,o) (o,i)

(i,o)
Binds StringlnLowerCase to the lowercase equivalent of the string to which Stringln
UpperCase is bound.
(o,i)
Binds StringlnUpperCase to the uppercase equivalent of the string to which Stringln
LowerCase is bound.
(i,i)
Succeeds if StringlnLowerCase and StringlnUpperCase are bound to lower and uppercase
versions of the same string.

window--attr(Attr) (integer) : (i)
Gives the currently active window the attribute value to which Attr is bound.

194 Turbo Prolog Owner's Handbook

window_str(ScreenString) (string) : (i) (0)
(i)
Binds ScreenString to the string currently displayed in the active window; therefore
ScreenString has the same number of lines as there are lines in the active window. The
length of each line is determined by the last non-blank character in that line.

(0)

ScreenString is written in the window according to the following criteria:

• If there are more lines in the string than there are lines in the window, lines will be
written until the window space is exhausted.

• If there are fewer lines in the string than in the window, the remaining lines in the
window will be filled out with blank spaces.

• If there are more characters on a string line than are available on a window line, the
string line will be truncated to fit.

• If there are fewer characters in a line than there are columns in the window, the line
will be filled out with blank spaces.

write(el,e2,e3, ... ,eN)
Writes the given constants or values in the currently active window on the current
writedevice. Can be called with an optional number of arguments ei, which can either
be constants or variables bound to values of the standard domain types.

writedevice(SymbolicFileName) (symbol) : (i) (0)
(i)
Reassigns the current writedevice to the file opened with the given SymbolicFileName,
which may be one of the predefined symbolic files (screen and printer) or any user
defined symbolic filename for a file opened for writing or modifying.

(0)
Binds SymbolicFileName to the name of the current writedevice, which may be the pre
declared screen or printer, or a file (see, for example, openwrite).

writef(FormatString,Argl,Arg2,Arg3,) (i,(i)*)
Produces formatted output. Arg I to ArgN must be constants or variables that belong to
domains of standard type. The format string contains ordinary characters, which are
printed without modification, and format specifiers of the form:

%-m.p

• "_" indicates left justification; right justification is the default.

• The optional m field specifies the minimum field width.

• The optional .p field determines the precision of a floating-point image (or the maxi
mum number of characters to be printed from a string). This field can also contain
one of the letters f, ~ or g denoting:

Reference Guide 195

f - Reals in fixed decimal notation (default).
e - Reals in exponential notation.
g - Use the shortest format.

COMPILER DIRECTIVES

check_cmpio
check_de term
code=nnnnn
diagnostics
include "filename"
nobreak

nowarnings
shorttrace

shorttrace p1, p2
trace

trace p1,p2, ..
trail= nnn

Table 12-6 Compiler Directives

Check for use of compound flow patterns.
Warn about the presence of nondeterministic clauses.
Size of the code array in paragraphs (I paragraph is 16 bytes).
Print compiler diagnostics.
Include a Turbo Prolog file during compilation.
Predicates should not scan the keyboard to see if @!fiJ8§Fl
has been pressed.
Suppress warnings.
Trace all predicates, but without destroying any system optimi
zation.
shorttrace predicates p /,p2 only.
Display complete trace information by removing various
optimizations carried out by the compiler. For example, trace
stops automatic elimination of tail recursion so that all
RETURNs from predicate calls can be inspected.
Trace predicates p /,p2, .. only.
Size of the trail in bytes.

BNF SYNTAX FOR TURBO PROLOG
The following BNF notation is used to define Turbo Prolog syntax:

<term>
{ X } *
[Xl
X!Y

Names

Names of language constructs are surrounded by u(" and U)".
Represents zero or more repetitions of X. ,

Means that X is optional.
Indicates that X and Y are alternatives and that either X or Y must be used.

A Turbo Prolog (name) is defined by

<name> ::= «letter> ! _) { <letter> <digit>! } *

196 Turbo Prolog Owner's Handbook

(name)s must start with a letter or an underscore, followed by a contiguous sequence
of letters, digits and underscore characters. A list of names separated by commas is
defined by

<name-list>

Similarly,

<variable>

<functor>

"= <name> I <name> , <name-list>

(<capital-letter> I _) [<name>]

<small-letter> [<name>]

Note that a leading capital letter (or underscore) denotes a variable and a leading small
letter denotes a constant.

<letter>

<small-letter>

<capital-letter>

<digit>

Program Section
<program>
<program section>

<small letter> I <capital letter> I

"= a b x I y I z
A B I Y Z

D 1 6 9

{ <directives> }I { <program section> }I

"= <domain section>
<predicate section>
<clause section>
<goal section>
<database section>
<include-directive>

I
I

(This syntax is subject to the restrictions on program sections.)

Directives
<directive> check_cmpio

check_deter.
code= <integer>
diagnostics
<include-directive>
nobreak
nowarnings
shorttrace
trace
trail=<digits>

<include-directive>::= include "<filename>"

Domains Section
<domain-section> ::= [global] domains { <domain-definition> }I
<domain-definition>::= <name-list> = [reference] <righthand>

I file = <name-list>

Reference Guide 197

<righthand>

<domain-type>

<d-alternatives>

<d-alternative>

<domain type> 1
<name> * 1
<d-alternatives>
char
integer
symbol
string
real
<d-alternative>
<d-alternative> <or> <d-alternatives>

<functor> [([<name-list> 1) 1

Predicate and Database Section
<database-section> ::= database { <predicate-def>}*

<predicate-section>::= predicates { <predicate-def> }* 1 global
predicates {<global-predicate-def>}*

<global-predicate-def>::=<predicate-def>[-{<flow-
spec>}*[language<language>ll

<flow-spec> ::=«flow-param-list»

<flow-param-list> ::=<flow-param>1 <flow-param>, <flow-param-list>

<flow-param> ::=ilo

<language> ::=assemblerlclpascallfortran

<predicate-def> <name> [([<name-list> 1) [.l

Clause Section

198

<clause-section>

<clause>

<fact>

<rule>

<alternatives>

<subgoal-list>

<subgoal>

<relational-expr>

<findall-literal>

clauses { <clause> }*

<fact> • I <rule>

<relational-expr>

<relational-expr> <if> <alternatives>

<subgoal-list> [<or> <subgoal-list>

<subgoal> 1
<subgoal> <and> <subgoal-list>

<relational-expr>
<comparison>
<findall-literal>
<database-literal>
< flow-li teral>
not(<relational-expr>
!

<name> [([<term-list> 1) 1

findall«variable>,<relational-expr>,
<variable»

Turbo Prolog Owner's Handbook

<database-literal>

<flow-literal>

<and>

<or>

<if>

Goal Section
<goal>

Terms
<term-list>

<term>

<number>

<digits>

<exponent>

<sign>

<char>

<string>

<list>

<element-list>

<compound-term>

Comparisons
<comparison>

<ascii>
<arithmetic>

- asserta{ <fact>
assertz{ <fact>
retract{ <fact>

• • = free{ <variable>) I
I

bound{ <variable>)

- and

: : = or

• • = if :-

"= <subgoal-list> •

"= <term> : <term> , <term-list>

- [<sign>] <number>
<char>
<list>
<string>
<variable>
<compound term>

"= <digits> [. <digits> [<exponent>]

::= <digit> I <digit><digits>

::= e [sign] <digits>

• • =

: : =

• • =

• • =

+ I -

'<character>' : '\<character>'

.. {<character>} * ..
] :
<element-list>

<term>[:<term>]:
<term> , <element-list>

<functor> [([<term-list>])]

- <ascii> <operator> <ascii><arithmetic> :
<compare> <arithmetic>

::= <functor> : <string> I <char> :<variable>
,,- <multexp> <adding> <arithmetic> I

<multexp>

Reference Guide 199

<multexp>

<factor>

<compare>

<adding>

<multiplying>

<function>

<factor> <multiplying> <arithmetic>
<factor>

<variable>
<number>
«arithmetic»
<function> (<arithmetic>

<= 1 >= 1 >(1<> 1=<1=>1<1>

•• = + I -

00= I / 1 div I lod

::= abs cos
arctan exp
sqrt

sin tan
In log

SYSTEM liMITS
• A (name) may consist of a maximum of 250 characters.

• A string constant may consist of a maximum of 250 characters.

• A string variable may be bound to a string containing a maxil)1um of 64K characters.

• The range of allowable integer values is - 32768 to + 32767.

• The range and format of real numbers follows the 8-byte IEEE standard. The expo-
nent must be an integer between - 308 and + 308.

• No more than 50 parameters may be used in a predicate.

• It is not possible to give a goal for a submodule.

• The maximum number of include files is 10.

• The maximum number of domain names is 250.

• The maximum number of alternatives in a domain declaration is 250.

• The maximum number of predicate names is 300.

• The maximum number of variables in a clause is 100.

• The maximum number of literals in a clause is 100.

• The maximum number of clauses in each predicate is 500.

200 Turbo Prolog Owner's Handbook

A ASCII Character Codes
Following are the ASCII character codes as understood by Turbo Prolog.

ASCII Character Set

Special Characters (group I)
char code char code char code char code

33 % 37 41 45
34 & 38 * 42 46

35 39 + 43 47
$ 36 40 44

Digits
char code char code char code char code

0 48 3 51 6 54 9 57
49 4 52 7 55

2 50 5 53 8 56
Special Characters (group 2)

char code char code char code char code

58 < 60 > 62 @ 64
59 61 63

Uppercase Letters
char code char code char code char code

A 65 H 72 0 79 V 86
B 66 I 73 P 80 W 87
C 67 J 74 Q 81 X 88
D 68 K 75 R 82 Y 89
E 69 L 76 S 83 Z 90
F 70 M 77 T 84
G 71 N 78 U 85

201

ASCII Character Set (continued)

Special Characters (group 3)
char code char code char code char code

[91 93 95
\ 92 1\ 94 96

Lowercase Letters
char code char code char code char code

a 97 h 104 0 III v 118
b 98 105 P 112 w 119
c 99 j 106 q 113 x 120
d 100 k 107 r 114 y 121
e 101 108 5 115 z 122
f 102 m 109 t 116
g 103 n 110 u 117

Special Characters (group 4)
char code char code char code char code

{ 123 124 } 125 126

202 Turbo Prolog Owner's Handbook

The following characters are non-printable.

Unprintable ASCII Characters

Code Key Combination Effect

I []![ill
2 @l!)
3 ~ Halt execution
4 @Il])
5 []![)Il
6 @llIl
7 @liI)])
8 @ill)]) Backspace
9 []li[[[) Tabulate character
10 @Ill)
II @Iill
12 @illJI)
13 @illll (RETURN)
14 []liI)]l
15 @Il])
16 f]li!)1) Toggles echoing to printer
17 @Il]) Continue printout
18 @!ill)
19 []![[[l Temporarily stops printout
20 @ill]) Turn tracing on and off
21 f]li!)])
22 @ill)])
23 ~
24 []lillJ
25 @illill
26 @lliill End-Of-File character
27 []il Escape
28
29
30
31
32 SPACE Space character

ASCII Character Codes 203

204 Turbo Prolog Owner's Handbook

B Error Messages
Following is a comprehensive list of the error codes returned by Turbo Prolog.

I Illegal character
3 Illegal keyword
4 Use the format CODE=dddd or TRAIL=ddd
5 This size must not exceed 64
10 Illegal character
II Character constants should be terminated by a '
12 The comment is not terminated by 1/
14 The name is too long. (max. 250 characters)
15 The textstring is too long. (max. 250 characters)
16 The textstring should be terminated with a " in the same line
17 Real constant is out of range

100 Undeclared domain (or misspelling)
102 Standard domains must not be declared
103 This domain was declared previously
104 Syntax error: = or , expected
105 Name expected (either a domain or a functor)
106 Alternatives in a list declaration are illegal
107 This functor has already been used in the domain declaration
108 Functor name expected
109 Domain name expected
110 Syntax error in domain declaration:) or , expected
III WARNING: Domain used as a functor (F 10=Ok, Esc=Abort)
112 WARNING: Domain declaration with a single functor (F 10=Ok, Esc=Abort)

200 Illegal start of domain declaration
201 This name is reserved for a standard predicate
202 This predicate is already declared
204 Domain name or) expected
205 Undeclared domain or misspelling
206 Too many parameters used in this predicate

205

208 Syntax error in predicate declaration:) or , expected
209 Illegal number of parameters
210 Only one database predicate declaration is allowed
211 This predicate is declared as a database predicate
220 Syntax error in declaration of global predicates: - expected
221 Syntax error: (expected
222 Syntax error in flow pattern: i or 0 expected
223 Flow pattern has the wrong length
226 Syntax error: predicates or domains expected
227 Project name expected
228 At most one internal goal may be specified
229 The include file does not exist
230 Include files may not be used recursively; this file is already included
231 Too many include files; the maximum is 10
232 The include file is too big
233 database declarations must precede predicates
234 Global predicates must be declared first

400 Syntax error (Illegal start of predicate declaration)
401 No clauses for this predicate
402 Syntax error. AND , or . expected
403 Predicate name expected
404 Undeclared predicate or misspelling
405 (expected
406) or, expected
407 Illegal number of parameters: refer to declaration
408 This sign should be followed by a number
409 Syntax error-this token is misplaced
410 Variable expected
411 , expected
412 Syntax error
413 Syntax error: , I or] expected
414 Number or variable expected
415 Clauses for the same predicate should be grouped
416 Comparison operator expected i.e., one of < <= >= >< <>
417 Text after. is prohibited here
418 Unexpected end of text
419 Syntax error in clause body
420 WARNING: the variable is only used once. (FIO=Ok, Esc=Abort)
421 The parameter is missing
422 .:- or IF expected
423 , or) expected
424 This facility is not implemented in this version
425 A list should be terminated by a]
426 Initializing a "database" is not allowed in a submodule
427 To generate an object module the program must contain a goal
450 Syntax error '

206 Turbo Prolog Owner's Handbook

600 Too many domain names
601 Too many alternatives in the domain declaration
602 Too many predicate names
603 Too many parameters in this clause
604 Too many literals in this clause
605 Too many clauses
606 Too many arguments
607 Too many domain names on the left side of a domain declaration
608 Too many database predicates
610 Code array too small: use code=size to get more space
611 Trail array too small: use trail=size to get more space
612 Overflow: too many structures in clause

701 An internal system error has occurred; please contact your dealer

1000 The parameters in makewindow are illegal
1001 The cursor values are illegal
1002 Stack overflow; re-configure with Setup if necessary
1003 Heap overflow; not enough memory or an endless loop
1004 Arithmetic overflow.
1005 The window referred to is unknown
1006 There is not enough room in the editor for the text
1007 Heap overflow; not enough memory or an endless loop
1008 Code overflow; use code=size to get more space
1009 Trail overflow; use trail=size to get more space
1010 Attempt to open a previously opened file
1011 Attempt to re-assign input device to a unopened file
1012 Attempt to re-assign output device to a unopened file
1013 'system' call tries to execute a program which is too big or resident
1014 Division by zero
1015 Illegal window number
1016 Maximum number of windows exceeded
1018 The file isn't open
1020 Free variables are not allowed here

2000 Not enough storage space for the text
2001 Can't execute a write operation
2002 Impossible to open
2003 Impossible to erase
2004 Illegal disk
2005 > > > Text buffer full < < <
2006 Can't execute a read operation
2200 Type error
2201 Free variable in expression
2202 The free variable in findall can only be used inside findall
2203 The free variable in findall does not occur in the predicate
2204 This is the first occurrence of this variable
2205 Type error: illiegal variable type for this position

Error Messages 207

2206 Type error: the functor does not belong to the domain
2207 Type error: the compound object has the wrong number of arguments
2208 Expressions may not contain objects of this type
2209 Comparisons may only be made between standard types
2210 Objects from these domains cannot be compared
2211 There is no corresponding list domain
2212 Type error: This parameter can't handle compound objects
2213 Type error: This argument can't be a real

3001 WARNING: Variable used twice with output flow pattern.
(F 10=Ok, Esc=Abort)

3002 WARNING: Composite flow pattern. (FIO=Ok, Esc=Abort)
3003 This flow pattern doesn't exist for the standard predicate
3004 Free variable in NOT
3005 Free variables are not allowed in WRITE
3006 The last variable in FINDALL must be free
3007 WARNING: The variable is not bound in this clause (FIO=Ok, Esc=Abort)
3008 Free variable in expression
3009 WARNING: two free variables in expression. (FIO=Ok, Esc=Abort)

3010 Loop in the flow analysis; don't use a compound flow pattern here
3011 WARNING: this will create a free variable. (FIO=Ok,.Esc=Abort)
4001 WARNING: non-deterministic clause. (FIO=Ok, Esc=Abort)
4002 WARNING: non-deterministic predicate. (FIO=Ok, Esc=Abort)

5001 Error in reading symbol table
5003 Error in writing symbol table
5103 Row number too small
5104 Row number too big
5105 Column number too small
5106 Column number too big
5107 Illegal screen mode (should be in range 1-6)
5109 Direction should be 0 or I
5114 The line is outside the window

208 Turbo Prolog Owner's Handbook

C PLINK

USE OF THE FILE PLINK.BAT
PLlNK.BAT is a batch file that is executed when PLINK is invoked from within the
Turbo Prolog system (the auto-link feature), or when the user gives a PLINK command
from DOS.

PLINK can be given up to three parameters, which are referred to in PLINK via the
symbolic variables % I, %2, %3:

% I The name of the project or module.

%2 A drive and path description for the directory to which the EXE generated file is
to be added.

%3 A drive and path description specifying the directory where the files INIT.OBJ
and PROLOG.LlB are to be found.

When used by the Turbo Prolog system (during auto-link), PLINK is given all three
parameters automatically:

% I The name of the project or program

%2 The current path for the EXE directory

%3 The current path for the Turbo directory

When PLINK is initiated from DOS, at least the first parameter must be given. If the
second and third parameters are omitted, the current default directory will be used,
thus giving the command:

PLINK MYPROJ

when in the directory C\MYDIR has the same effect as giving the command

PLINK MYPROJ C:\MYDIR C:\MYDIR

PLINK checks whether an appropriate .SYM file exists and distinguishes between linking
a project or a single OBJ file by means of the DOS EXISTS command.

209

CONTENTS OF THE FILE PLINK.BAT

210

if exist %1.sym goto symok
rem » ERROR: symbol file %1.SYM does not exist
go to exit

:symok
if exist %1.prj goto linkprj
if exist %1.obj goto linkobj
rem» ERROR: OBJ-file %1.0BJ (or LIBRARIAN file %1.PRJ) missing
goto exit

: linkobj
link %3 init %1 + %1.SYM,%2%1,,%3PROLOG
if errorlevel 1 go to exit
goto run

:linkprj
link %3 init @%1.prj %1.SYM,%2%1,,%3PROLOG
if errorlevel 1 go to exit

:run
Rem Press Return to execute the program, AC to Abort
pause
%1.exe

:exit
pause

Turbo Prolog Owner's Handbook

D PROWG.SYS
The table below describes the contents of the system-generated text file PROLOG.
SYS. The first two columns give the meanings of the parameters in the order in which
they appear in PROLOG.SYS. The third column gives an example value for each
parameter.

Example
No. Meaning Value

I Screen synchronization activated (I =active. O=not active) 0

2 Autoload error messages into RAM (I =active. O=not active) 0

3 Stack size in paragraphs (I paragraph is 16 bytes) 600

4 Screen attribute for the message window 120

5 Screen attribute for the trace window 32

6 Screen attribute for the dialog window 67

7 Screen attribute for the status line (options window) 15

8 Screen attribute for the edit window 7

9 Screen attribute for the auxiliary edit window 112

10 Screen attribute for areas outside the system windows. etc. 112

II Screen attribute for pull-down and pop-up menus and catalogs 7

12 Edit window format: TOP ROW coordinate 4

13 Edit window format: BOnOM ROW coordinate 22

14 Edit window format: LEFT COLUMN coordinate I

15 Edit window format: RIGHT COLUMN coordinate 78

16 Message window format: TOP ROW coordinate 18

17 Message window format: BOnOM ROW coordinate 22

18 Message window format: LEFT COLUMN coordinate I

19 Message window format: RIGHT COLUMN coordinate 32

211

Example
No. Meaning Value

20 Dialog window format: TOP ROW coordinate 4
21 Dialog window format: BOnOM ROW coordinate 14
22 Dialog window format: LEFT COLUMN coordinate 35
23 Dialog window format: RIGHT COLUMN coordinate 78
24 Trace window format: TOP ROW coordinate 18
25 Trace window format: BOnOM ROW coordinate 22
26 Trace window format: LEFT COLUMN coordinate 35
27 Trace window format: RIGHT COLUMN coordinate 78
28 Auxiliary edit window format: TOP ROW coordinate 6
29 Auxiliary edit window format: BOnOM ROW coordinate 22
30 Auxiliary edit window format: LEFT COLUMN coordinate I
31 Auxiliary edit window format: RIGHT COLUMN coordinate 78
32 Path for the OBJ-directory C:\objdir

33 Path for the EXE-directory C:\exedir

34 Path for the TURBO-directory C:\prolog

35 Path for the DOS-directory C:\dosdir

The warning "Variable not bound in clause" F 10=ok, Esc=abort as well as the warn
ings: 3001, 3009, 3011, warn that the variable used hasn't got a value. If you press!E[),
the domain of that variable is automatically retyped to a reference domain, unless you
are compiling to object modules which are part of a project. In this case, you must
explicitly declare that the domain of that variable is a reference domain. For example:

domains reflnt = reference integer.

212 Turbo Prolog Owner's Handbook

E Using Turbo Prolog
with Turbo Pascal

TheTurbo Prolog system allows you to create .OBJ files. However, Turbo Pascal ver
sions I, 2, and 3 do not allow the linking of Turbo Pascal programs with such .OBJ
modules. This means that for the time being, there is no simple way of interfacing Turbo
Prolog modules with Turbo Pascal programs.

However, Borland plans to release Turbo Pascal 4.0 by the second quarter of 1987.
Turbo Pascal 4.0 will allow the inclusion of Turbo Prolog modules within Turbo Pascal
programs. We at Borland look forward to these exciting new possibilities.

213

214 Turbo Prolog Owner's Handbook

F Glossary
anonymous variable The variable "_" used in place of an ordinary variable when the
values that the ordinary variable may become bound to are of no interest.

arguments Collective name for the objects and variable names in a relation.

atom A relation, possibly involving objects or variables.

attribute A positive whole number that determines the characteristics of the display
in a given window, including color, blinking/non-blinking and normal/inverse video.

backtracking The mechanism built into Turbo Prolog whereby, when evaluation of a
given sub-goal is complete, Turbo Prolog returns to the previous sub-goal and tries to
satisfy it in a different way.

bound variable A variable that refers to a known value.

calling a sub-goal (or predicate) An expression denoting that Turbo Prolog is now
trying to satisfy a certain sub-goal (belonging to the given predicate).

char An arbitrary character enclosed between two single quotation marks.

compiler directives Instructions to the Turbo Prolog compiler to take special actions.

clause A fact or rule for a particular predicate, followed by a period (.).

compound goal A goal containing at least two sub-goals.

compound object An object consisting of a functor and a list of objects separated by
commas and enclosed in parentheses.

current input device The currently assigned readdevice from which standard predi
cates take input by default.

current output device The currently assigned writedevice to which standard predi
cates send output by default.

cut (or!) The cut commits Turbo Prolog to all the choices made so far in the evalua
tion of the predicate containing the cut. Once the cut has been evaluated as a sub-goal,
Turbo Prolog may not backtrack past it.

database predicates Predicates for which facts can be added to or deleted from the
Turbo Prolog system during execution.

dialog window The system window in which external goals are given and the results
of those goals recorded.

215

domain Specifies the types of values objects may take in relation.

editor window The window where text currently in the workfile can be edited.

element of a list Either an object or another list.

expert system A computer system that mimics the ability of an expert in a certain
(usually very narrow) field.

external goal A goal entered in the dialog window by the user and given to the
program currently in the workfile.

fact A relation between objects. In the fact

likes(john,mary)

likes is the name of the relation and john and mory are objects.

fail A sub-goal that Turbo Prolog cannot satisfy.

field A contiguous sequence of character display positions occurring on the same row
of the screen display.

filename Either a symbolic file name starting with a lowercase letter and appearing on
the righthand side of a (tIe domain declaration, or one of the predefined symbolic file
names printer, screen, keyboord, and coml.

flow pattern The pattern formed according to whether the parameters in a predi
cate call are used for input (i.e., are known) or for output (i.e., are unknown).

flow variant If a predicate is associated with several different flow patterns, a separate
internal implementation of the routines corresponding to that predicate will exist for
each flow pattern. These different implementations are called flow variants of the pred
icate.

free variable A variable that does not currently refer to any value.

functor A name for a compound object.

global Qualifier used to allow more than one program module access to certain
domains and predicates.

goal The collection of sub-goals that Turbo Prolog attempts to satisfy.

goal tree A diagrammatic representation of the possible choices that can be made in
the evaluation of the constituent sub-goals of a goal. '

hand trace A trace produced by the programmer working with pen and paper
rather than by the computer.

head of a list The first element of a list.

heap That part of memory used by Turbo Prolog for building structures, storing
strings and inserting facts for database predicates.

infix notation Writing arithmetic expressions with the operators between the two
values or expressions on which they are to operate.

integer A whole number in the range - 32,768 to 32,767.

internal goal A goal contained in the goal section of a program.

interative method A method that involves repeating the same basic action(s) over
and over again until the desired objective is achieved.

216 Turbo Prolog Owner's Handbook

list A special sort of object consisting of a collection of elements enclosed in square
brackets and separated by commas.

message window The window in which messages related to the operation of the
Turbo Prolog system appear.

module A Turbo Prolog program with global declarations forming part of a project.
multiple predicate declarations Anyone predicate can have several declarations,
each involving different domain specifications for the argument(s) of the relevant
relation.

name Any contiguous sequence of letters, digits, and underscore characters that start
with a lowercase letter or underscore.

object The name of an individual element of a certain type.

operator priority The hierarchy that determines the order in which operators are
obeyed in arithmetic expressions.

parameters Collective name for the objects and variable names in a relation.

pointer The device by which Turbo Prolog keeps a record of the next place in its
database of facts and rules to which to backtrack.

predicate Every Turbo Prolog fact or rule belongs to some predicate, which specifies
the name of the relation involved and the types of objects involved in the relation.

project A Turbo Prolog program consisting of more than one module.

real A decimal number in the range ± I.OE- 307 to ± I.OE+ 308.

recursion The technique whereby an entity is defined in terms of itself.

reference objects and domains If an unbound variable is passed from one sub-goal to
another, the domain containing the values to which the variable will eventually become
bound must be declared as a reference domain. Elements of such a domain are refer
ence objects.

relation A name describing the manner in which a collection of objects (or objects
and variables referring to objects) belong together.

repeat . .fail combination A technique that can be used to avoid tail recursion by using
Turbo Prolog's backtracking mechanism instead.

return from a sub-goal (or predicate) An expression used to denote that Turbo
Prolog has now finished evaluating a certain sub-goal (belonging to the given predicate).

rule A relationship between a "fact" and a list of sub-goals which must be satisfied for
that "fact" to be true.

satisfying a sub-goal The process by which Turbo Prolog chooses values for any
unbound variables (if possible) in such a way that the sub-goal is true according to the
given clauses for the corresponding predicate.

search principle One of four basic rules that Turbo Prolog follows in attempting to
satisfy a goal.

stack The part of memory used by Turbo Prolog for parameter transfer.

stand-alone programs Programs that can be run from DOS independently of the
Turbo Prolog system.

standard predicate A predicate already defined internally in Turbo Prolog.

Glossary 217

standard type (of domain) A domain containing objects of a single type chosen from
integer, real, char, string, symbol and file.

string An arbitrary number of characters enclosed by a pair of double quotation
marks.

sub-goal A relation, possibly involving objects or variables, which Turbo Prolog must
attempt to satisfy.

sub-object One of the objects in a compound object.

symbol A name starting with a lowercase letter.

tail of a list The list that remains when the first element of a given list (and its separat
ing comma) are removed.

tail recursion elimination Action taken internally by the Turbo Prolog system to
reduce the space/time overhead of tail recursion in rules.

term Either an object from one of the domains of standard type, a list, a variable, or a
compound term, i.e., a functor followed by a list of terms enclosed in parentheses and
separated by commas.

token A name, an unsigned (real or integer) number, or a non-space character.

trace The production of a step-by-step report on the execution of a program show
ing all relevant details.

trace window The window in which Turbo Prolog can generate a trace of program
execution.

trail The part of memory used by Turbo Prolog to register the binding and unbinding
of reference variables.

type system The means by which all objects in a relation or all variables used as
arguments in a relation are constrained to belong to domains corresponding to those
used in the relevant predicate's declaration(s).

unification The process by which Turbo Prolog tries to match a sub-goal against facts
and the left hand side of rules in order either to satisfy that sub-goal, or to determine
one or more further sub-goals necessary to evaluate the original sub-goal.

variable A name beginning with a capital letter that can be used to represent the
(possibly unknown) value of a certain object.

variable binding(s) The status-free or bound-of one or more variables.

workfile The file in which a Turbo Prolog source program text is held ready for
compilation or execution.

218 Turbo Prolog Owner's Handbook

Index
A
Anonymous Variable, 22-23
Arithmetic Operations, 63

comparisons, 64-66
expressions, order of evaluation, 64
predicates and functions, 68-69, 179
special conditions for equality, 66-67

ASCII character codes, 201-203
Assembly language routine, calling from

Turbo Prolog, 157-159

B
Backtracking, 23-24

cut, used to prevent, 58-61
(ail predicate, used to initiate, 57-58

Block operations, I 1-12, 175
BNF syntax for Turbo Prolog, 196-199

c
C language procedures, calling from

Turbo Prolog, 153-157, 159
Clauses, 18, 132

deterministic, 60-61, 149
nondeterministic, 60, 149

Comments, 27
Comparisons, arithmetic, 64-66
Compile command, 165-166

options menu, 166
Compiler directives, 135-139
Compound goals, 22
Compound objects, 38-44

domain declaration of, 38
functors, use in, 38
levels in, 40-42
recursion in, 42-44

Compound structures, 133-134
Compound terms, 133-134
Constants, simple (see Simple constants)
Cut, 58-61, 149

D
Databases (see Dynamic databases)
Date, 88
Debugging,74
Distribution Disk, 2

files on, 163-164
Domain Declarations, 38-39, 130-131

shortening, 131
Domains, 20-21
DOS, access to, 87-89
Dynamic Databases, 140-144

accessing facts, 141-142
declaration of database, 140-141
extending database onto files, 142-144

E
Edit Command, 166-172

files menu, 166-168
setup menu, 168-172

Editor
accessing from within Turbo Prolog

program, 161-162
basic operation, I I, 172-173
block operations, 1 1-12, 175
commands, 172-177
search and replace operations, 12-13
summary of commands, 13

Entering a program, 8
Error messages, 205-208
Executing a program, 9-10

219

F
File Directory

access to, I 62
formatting of, 162

File System, 99-103
Files menu, 166-168
Files on distribution disk, 163-164
Flow patterns, 144-145
FORTRAN procedures, calling from

Turbo Prolog, 153-157, 159
Functors, 38

G
Games and Puzzles

adventure, I 14-116
arcade, 83-85
N queens problem, 121-123
Towers of Hanoi, I 17-1 18
word guessing, 86-87

Global domains and predicates, 153
Goals, 18

external, 57
internal, 57
solution of, 54-57

Graphics, 91-96
turtle graphics commands, 93-96

H
Hardware simulation, 116-117
Hexadecimal notation, 64

Input and Output, 69-73
fiow patterns, 144-145
keyboard, used in, 124-126
reading,72-73
screen-based, 82-83
writing,69-72

Installation, 164
Interfacing with other languages, 155-161

assembly language, 157-159
C. 159
calling conventions and parameters, 156
declaring external predicates, 156
FORTRAN, 159
low-level support, 159-161
naming conventions, 156-157
Pascal, 159

K
Keywords, 129-130

L
Language elements

clauses, I 32
compound terms or structures,

133-134
domain declarations, 130-131
names, 128-129
predicate declarations, 132
program sections, 129-130
simple constants, 132-133
variables, 133

Lists, 45-50, 134
Logon message, 7

M
Main menu, 7-8, 164-172

Compile command, 165-166
Edit command, 166-172
Files command, 166-168
Options command, 166
Quit command, 172
Run command, 164-165
selecting items from, 8
Setup command, 168-172

Memory management, I 34-1 35
Minimum system requirements, 2
Modular programming, 152-155

N

compiling and linking modules, 154
example of, 154- 155
global domains and predicates, 153
projects, 152-153

Names, 128-129
reserved, 129
restricted, 129

not, use of, 24-27

o
Objects, 20
Options menu, 166

220 Turbo Prolog Owner's Handbook

p
Pascal procedures. calling from

Turbo Prolog. 153-157. 159
PLINK. 209-210
Predicates. 21

declarations of. 132
multiple. 35
standard. 26. 181 -196

Programmer's Guide. I 27ff
Programming style. 145-151

domains containing references. 149-151
rules for efficiency of. 146-148
setti ng the cut. 149
tail recursion elimination. 145-146
use of fail predicate. 148

Program sections. 129-1 30
Program structure. summary of. 28-29
Projects. 152-153
PROLOG.SYS. 21 1-212
Prototyping. I 12-114
Pull-down menus. 8

Q

files menu. 166-168
options menu. 166
setup menu. 168-172

Quit command. 172

R
Recursion. 42-45
Recursive objects. 44-45
Relations. 20
Reserved names. 129
Restricted names. 129
Run command. 164-165

S
Screen attributes

calculation of. 177-178
how to set. 77-78

Search and replace operations. 12-13
Search for solutions. controlling. 54-58
Setup menu. 168-172
Simple constants. 132-1 33
Sound. 96-97
Stand-alone programs. generation of.

151-152
Standard domain types. 34-37
Standard predicates. 26

alphabetical directory of. 181-196
String processing. 104-106
System limits. 200

Index

System windows. 8. 15-16
saving window layout. 15-16
temporary changes to. 15

T
Tail recursion elimination. 145-146
Time. 88-89
Tracing. 14.74-75
Turbo Pascal. using with Turbo Prolog.

213
Turbo Prolog

advantages of. 3-4. 127-128
compared to other languages. 4-6.

127-128
examples of use. 4
using with Turbo Pascal. 213

Tutorials
I. introduction. 17-31
II. domains. objects. lists. 33-50
III. unification. solutions to goals. 51-61
IV. arithmetic. input and output.

debugging. 63-75
V. windows. 77-89
VI. graphics and sound. 91-97
VII. files and strings. 99-108
VIII. spreading your wings. 109-126

Type conversion standard predicates. 106

U
Unification. 51-54

V
Variables. 19. 133

bound. 33-34
free. 33-34

W
Windows. 77-89

access to DOS. 87-89
reading and writing with. 80-81
setting screen display attributes. 77-78
using in programs. 78-80

221

Borland
Software

4585 Scotts valley Drive Scotts Valley, CA 95066

Available at bettBr dealers nationwide.
Th order by Credit Card call (BOO) 255-8008, CA (BOO) 742-1133

(~fi'fii)1]'J17rr'17(ilJ17r., ®

l~'/\~,i(·~iJ~"-i,~,,~r\. VERSION 1.5
INFOWORLD'S

SOFTWARE PRODUCT OF THE YEAR
Whether you're running WordStar™, Lotus™, d8ase™,
or any other program, SIDEKICK puts al/ these desktop

accessories at your fingertips. Instantly.

A full-sCrBBn WordStar-lIkB Editor You may jot
down notes and edit files up to 25 pages long.

A PhonB DirBctory for your names, addresses
and telephone numbers. Finding a name or a
number becomes a snap.

An Autodial" for all your phone calls. It will
look up and dial telephone numbers for you.
(A modem is required to use this function.)

All the SIDEKICK windows stacked up over Lotus 1-2-3,
From bottom to top: SIDEKICK'S "Menu Window," ASCII
Table, Notepad, Calculator, Datebook, Monthly Calendar and
Phone Dialer.

A Monthly CalBndar functional from year 1901
through year 2099.

A DatBbook to remind you of important
meetings and appointments.

A full-fBBtUrBd Calculator ideal for business use.
It also performs decimal to hexadecimal to
binary conversions.

An ASCII TablB for easy reference.

Here's SIDEKICK running over Lotus 1-2-3. In the SIDEKICK
Notepad you'll notice data that's been imported directly from
the Lotus screen. In the upper right you can see the Calculator.

The Critics' Choice
"In a simple, beautiful implementation of WordStar's'"
block copy commands, SIDEKICK can transport all or
any part of the display screen (even an area overlaid by
the notepad display) to the notepad."

-Charles Petzold, PC MAGAZINE

"SIDEKICK deserves a place in every PC."
-Garry Ray, PC WEEK

"SIDEKICK is by far the best we've seen. It is also the
least expensive." -Ron Mansfield. ENTREPRENEUR

"If you use a PC, get SIDEKICK. -You'll soon become
dependent on it." -Jerry Pournelle. BYTE

SIDEKICK IS AN UNPARALLELED BARGAIN AT ONLY $54.95 {copy-protected}

OR $84.95 {not copy-protected}

Minimum System Configuration: SIDEKICK Is available now for your IBM PC. XT. AT. PC/r •• Ind 100% compltible microcomputers.
The IBM PC Jr. will only Icceptthe SIDEKICK not copy-protected Vlrslon. Your computer must hlVlltlust128K RAM. one disk
drive Ind PC· DOS 2.0 Dr grelter. A HlyasTII compltlble modem, IBM PC/r.TII Internll modem, Dr AT&T@ Modem 4000 Is required for
the lutodlllllr function . • ~~~

SideKick and SuperKey are registered trademarks of Borland International. Inc, dBase is a trademark of Ashton-Tate IBM is a registered trademark and PC Ir, is a trademark of International Business
Machines Corp AT&T is a registered trademark of American Telephone & Telegraph Company.lnfowo~d is a trademark of Popular Computing. Inc., a subsidiary of CW Communications Inc. Lotus 1-2-3 is

a trademark of Lotus Development Corp. WordStar is a trademark of Micropro International Corp. Hayes is a trademark of Hayes Microcomputer Products, tnc.

BOR0060

SideKick, the Macintosh Office Manager, brings
information management, desktop organization and
telecommunications to your Macintosh. Instantly,

while running any other program.

A full-screen editor/mini-word processor
lets you jot down notes and create or edit
files. Your files can also be used by your
favorite word processing program like
MacWriteTIl or MicroSoft® Word.
A complete telecommunication
program sends or receives information
from anyon-line network or electronic
bulletin board while using any of your
favorite application programs. A modem is
required to use this feature.
A full-featured financial and scientific
calculator sends a paper-tape output to
your screen or printer and comes complete
with function keys for financial modeling
purposes.
A print spooler prints any text file while
you run other programs.
A versatile calendar lets you view your
appointments for a day, a week or an entire
month. You can easily print out your
schedule for quick reference.
A convenient "Things-to-Do" file
reminds you of important tasks.

A convenient alarm system alerts you to
daily engagements.
A phone log keeps a complete record of all
your telephone activities. It even computes
the cost of every call. Area code hook-up
provides instant access to the state, region
and time zone for all area codes.
An expense account file records your
business and travel expenses.
A credit card file keeps track of your
credit card balances and credit limits.
A report generator prints-out your mailing
list labels, phone directory and weekly
calendar in convenient sizes.
A convenient analog clock with a
sweeping second-hand can be displayed
anywhere on your screen.
On-line help is available for all of the
powerful SIDEKICK features.
Best of all, everything runs
concurrently.
SIDEKICK, the software Macintosh
owners have been waiting for.

SideKick, Macintosh's Office Manager is available now for
$84.95 (not copy-protected).

Minimum System Conflgurltlon: SIDEKICK Is IVlllibie now for your Mlclntosh microcomputer In I formlt thlt Is not copy-protected.
Your computer must hive It lelst 128K RAM Ind one disk drive. Two disk drives Ire recommended If you wish to use other Ippllcatlon
progrlms. A Hlyes-compltlble modem Is required for the telecommunications function. To use SIDEKICK'S lutodliling caplbillty you
need the 80rllnd phone· link Interflce . • ~~~

SIDEKICK is a registered trademark of Borland International, Inc. Macintosh is a trademark of Mcintosh laboratory, Inc. MacWrite is trademark of Apple
Computer, Inc. IBM is a trademark of International Business Machines Corp. Microsoft is a registered trademark of MicroSoft Corp.

Hayes is a trademark of Hayes Microcomputer Products, Inc.

BOA 0069

SlnBiCI
The Organizer For The Computer Age!

Traveling SideKick is both a binder you take with you when you travel and a
software program - which includes a Report Generator - that generates and

prints out all the information you'll need to take with you.

Information like your phone list, your client list,
your address book, your calendar and your
appointments. The appointment or calendar files
you're already using in your SideKick(l!) are
automatically used by your Traveling SideKick".
You don't waste time and effort reentering
information that's already there.

One keystroke generates and prints out a form like
your address book. No need to change printer

paper, you simply punch three holes, fold and clip
the form into your Traveling SideKick binder and
you're on your way. Because SideKick is CAD
(Computer-Age Designed), you don't fool around
with low-tech tools like scissors, tape or staples.
And because Traveling SideKick is electronic, it
works this year, next year and all the "next years"
after that. Old-fashioned daytime organizers are
history in 365 days.

What's inside Traveling SideKick

ADDRESS BOOK SECTION
PRE·PRINTED FORMAT WITH DMDERS AND
TABS FOR EASY REFERENCE

CALENDAR SECTION
YEARLY, MONTHLY, WEEKLY AND DAILY
CALENDAR WITH APPOINTMENT
SCHEDULER

TRAVELING SIDEKICK SOFTWARE
A REPORT GENERATOR TO CONVERT, PRINT
AND UPDATE AUL INFORMAnON

Traveling SideKick is only $69.95 - Or get BOTH
Traveling SideKick and SideKick for only $125.00 -
you save $29.90 (not copy-protected).

What the software program and
its Report Generator do for you
before you go - and when you
get back.

Before you go:
• Prints out your calendar,

appointments, addresses, phone
directory and whatever other
information you need from your
data files

When you return:
• Lets you quickly and easily

enter all the new names you
obtained while you were away
- into your SideKick data files

It can also:
• Sort your address book by

contact, ZIP code or company
name

• Print mailing labels
• Print information selective,)
• Search files for existing

addresses or calendar
engagements

Minimum System Configuration: IBM PC, XT, AT, Portable, 3270 or true compatibles. PC-DOS (MS-OOS) 2.0 or later.
128K and SideKick software.

SideKick is a registered trademark and Traveling SideKick is a trademark 01 Borland International,
Inc, IBM PC, XT, AT, PCjr and PC-DOS are registered trademarks of International BUSiness
Machines Corp. MS-DOS is a trademark 01 Microsoft Corp.

INCREASE YOUR PRODUCTIVITY
BY 500/6 OR YOUR MONEY BACK

SuperKey turns 1,000 keystrokes into 11
Yes, SuperKey can record lengthy keystroke sequences and play them back at the
touch of a single key. Instantly. Like Magic.
Say, for example, you want to add a column of figures in 1-2-3. Without SuperKey you'd
have to type seven keystrokes just to get started. ["shift-@-s-u-m-shift-(,l With SuperKey
you can turn those 7 keystrokes into 1.

SuperKey keeps your 'confidential' files . .. CONFIDENTIAL!
Time after time you've experienced it: anyone can walk up to your PC, and read .your
confidential files (tax returns, business plans, customer lists, personal letters ...).
With SuperKey you can encrypt any file, even while running another program. As long
as you keep the password secret, only YOU can decode your file. SuperKey imple
ments the U.S. government Data Encryption Standard (DES).

SuperKey helps protect your capital investment.
SuperKey, at your convenience, will make your screen go blank after a predetermined
time of screen/keyboard inactivity. You've paid hard-earned money for your PC.
SuperKey will protect your monitor's precious phosphor ... and your investment.

SuperKey protects your work from intruders while you take a break.
Now you can lock your keyboard at any time. Prevent anyone from changing hours of
work. Type in your secret password and everything comes back to life ... just as you left it.

SUPERKEY is now available for an unbelievable $69.95 (not copy-protected).

Minimum System Configuration: SUPERKEY is compatible with your IBM PC, XT, AT, PCjr. and 100%
compatible microcomputers. Your computer must have at least 128K RAM, one disk drive and PC-DOS 2.0
or greater.

SideKick and SuperKey are registered trademarks of Borland International,lnc
IBM and PC-DOS are trademarks of International BUSIness Machines Corp. Lotus t -2-3 is a trademark at Lotus Development Corp

BOR0062

REFLEX
THE ANALYSTT

•

Reflex" is the most amazing and easy to use database management
system. And if you already use Lotus 1-2-3, dBASE or PFS File, you

need Reflex-because it's a totally new way to look at your data. It shows
you patterns and interrelationships you didn't know were there, because

they were hidden in data and numbers. It's also the greatest
report generator for 1-2-3.

REFLEX OPENS MULTIPLE WINDOWS WITH NEW VIEWS AND GRAPHIC INSIGHTS INTO YOUR DATA.
1111111 III IUl

Ui ... diIPnnl-fil,_IOrth ... lUi. rail 'rinliflil 1iiCOr. I- lilt UiM Edil Pnnllfil. IIocordI S- Iin,1i I ...
,fl,ldllorll,III"""1-

IUlIII:IR ~~
IDITH:!:B

1111E:_

IIFIUl:167

DoI,I,IIocord
PtrfcnSort
1Ioto1, .
CI",DoI'"

IUlU .. 1> IJI3 IP!IIIIl£: \leI.1I

CllS1U"I:11I1

IlIPIIFI1 I_I: IIJ xllRill:I!.IX

III1El:

IIDITH
... -111

"'-15
... -15
... -15
... -15

1 ... -15
... -15
... -15
... -15
"'-15
... -15
... -15
FIiI-15

11ft I'11III:
lIMn iIlIo
lIMn IUs - Cwr.
wort iIlIo
Wort IUs
wort ewr.
PitrCt iIlIo
Pltra IUs
Pitree ewr.
Ir_ iIlIo
1~1 IUs
lrwall ewr. - iIlIo

11F11l£111l!!1I .. 11iii11_1
167 Ill! 1111
~ $173 lin
171 III! 1111
I'll 1317 1197
I9J IIlI 161 - 161 151
IJ7 IJI9 1166
!It IIIJ In
1111 171 151
!71 IIIl \a6
!JI 1129 \e'Z
~ 1M III
III l1li IJI!

hlosbiPracll:I'orudlSioro
hlosllocord IMIJI - I

IDITH:

I •
ITIIE:_

1!IIIItT: ewr.
I- IIJIITI1Y:2JI

ForED~ ! IU Ill!

IUl: Itl

CllSI:11A

PllFI1:M

Ii: lIWortPlllXl(,IIrtt xllRill .• "
.-1

The FORM VIEW lets you build and view your database. The LIST VIEW lets you put data in tabular List form
just like a spreadsheet.

The GRAPH VIEW gives you instant interactive
graphic representations.

The CROSSTAB VIEW gives you
amazing "cross-referenced"
pictures of the links and
relationships hidden in your data.

UiM 1411 Prinl-fll. _.

s-.:~
I!IIIItT

Fi.ld:I!f'l1

ewr. IU
I
I lIMn IJJI .
0 wort 11111 III
A Pitrtt 1- 6M E 1 __ 1

1191 IJI .. 17J7 I'"

I_

Ill!
2116
1m
1911
1111
1SII

Crosstii

IU -JJ66
Jrn
J2A7

IIIJJ
The REPORT VIEW allows you to

import and export to and from
Reflex, 1-2-3, dBASE, PFS File and

other applications and prints out
information in the formats you want.

So Reflel shows you. Instant answers. Instant pictures. Instant analysis. Instant understanding.

THE CRITICS' CHOICE:

"The next generation of software has officially arrived."
Peler NDrIDn, PC WEEK

"Reflex is one of the most powerful database programs on
the market. Its multiple views, interactive windows and graphics, great
report writer, pull-down menus and cross tabulation make this
one of the best programs we have seen in a long time ...

The program is easy to use and not intimidating to the novice ...
Reflex not only handles the usual database functions such as sorting
and searching, but also "what-if" and statistical analysis ... it can
create interactive graphics with the graphics module. The separate
report module is one of the best we've ever seen."

Marc Slern, INFOWORLD

Minimum S,ltem Requlrementl: Reflel runl on the IBMe PC, Xl, AT Ind compltlbles. 384K RAM minimum. IBM Color Grlphici Adlpter~, Hercules
Monochrome Graphici Clrd", or equlvllent. PC-DOS 2.0 or grelter. Hard dllk Ind mouse optlonll. LotUI1-2-3, dBASE, or PFS File optlonll.

Suggested Retail Price $149.95 (not copy-protected)

Reflex is a trademark of BORLAND/Analytica Inc. lotus is a registered trademark and lotus 1-2-3 is a trademark of lotus Development Corporation. dBASE is a registered
trademark of Ashton-Tate. PFS is a registered trademark and PFS File is a trademark of Software Publishing Corporation. IBM PC. Xl, AT, PC-DOS and IBM Color Graphics Adapter are
registered trademarks of International Business Machines Corporation. Hercules Graphics Card is a trademark of Hercules Computer Technololgy.

BOR0066

If you use an IBM PC, you need

T U R B 0

Lightning'M
Turbo Lightning™ teams up
with the Random House
Spelling DicUonary® to check
your spelling as you Iype!
Turbo Lightning, using the
83,OOO-word Random House
Dictionary, checks your spelling
as you type. If you misspell a
word, it alerts you with a 'beep'.
At the touch of a key, Turbo
Lightning opens a window on top
of your application program and
suggests the correct spelling.
Just press ENTER and the
misspelled word is instantly
replaced with the correct word.
It's that easy!

Turbo Lightning works hand-in
hand with the Random House
Thesaurus® to give you inslanl
access to synonyms.
Turbo Lightning lets you choose
just the right word from a list of
alternates, so you don't say the
same thing the same way every
time. Once Turbo Lightning opens
the Thesaurus window, you see a
list of alternate words, organized by
parts of speech. You just select the
word you want, press ENTER and
your new word will instantly replace
the original word. Pure magic!

II you ever write a word, think
a word, or say a word, you
need Turbo Lightning.

The Turbo Lightning Dictionary.

The Turbo Lightning Thesaurus.

Suggested Retail Price: $99.95 Not copy-protected

IBM PC, XT, AT, and PCjr. are registered trademarks of International Business Machines Corp. Lotus 1·2-3 is a registered trademark of Lotus
Development Corporation. WordStar is a registered Jrademark of MicroPro International Corp. dBASE is a registered trademark of Ashton-Tate.
Microsoft is a registered trademark of Microsoft Corporation SideKick is a registered trademark and Turbo Lightning and Turbo Lightning
Library are trademarks of Borland International. Random House Dictionary and Random House Thesaurus are registered trademarks of
Random House Inc Reflex is a trademark of BORLAND/Analylica Inc. MultiMate is a trademark of MultlMate Internalionallnc.

Turbo Lightning's intelligence
lets you teach it new words.
The more you use Turbo
Lightning, the smarter it gets!
You can also teach your new Turbo
Lightning your name, business
associates' names, street names,
addresses, correct capitalizations,
and any specialized words you use
frequently. Teach Turbo Lightning
once, and it knows forever.

Turbo LightningTM is the
engine that powers Borland's
Turbo Lightning LibraryTM.
Turbo Lightning brings electronic
power to the Random House
Dictionary® and Random House
Thesaurus®. They're at your
fingertips - even while you're
running other programs. Turbo
Lightning will also 'drive' soon-to
be-released encyclopedias,
extended thesauruses, specialized
dictionaries, and many other
popular reference works. You get
a head start with this first volume
in the Turbo Lightning Library.
And because Turbo Lightning is a
Borland product, you know you can
rely on our quality, our 50-day
money-back guarantee, and our
eminently fair prices.

Minimum System Requirements:
128K IBM PC~ or 100% compatible computer,
with 2 floppy disk drives and PC-DOS (MS-DOS)
2.0 or greater.

BOR0070

FREE MICROCALC SPREADSHEET
WITH COMMENTED SOURCE CODE!

VERSION 3.0

THE CRITICS' CHOICE:
"Language deal of the century ... Turbo
Pascal: it introduces a new programming
environment and runs like magic."

-JIg Ounllm8nn, PC M8g8llnl

"Most Pascal compilers barely fit on a disk,
but Turbo Pascal packs an editor, compiler,
linker, and run-time library into just 39K
bytes of random-access memory."

-08VI Gsrl8nd, Populsr Compul/ng

"What I think the computer industry is
headed for: well - documented, standard,
plenty of good features, and a reasonable
price." -Jlfry Pournll/I, BYTE

LOOK AT TUR80 NOWI
o More than 400,000 users worldwide.

o TURBO PASCAL is proclaimed as the
de facto industry standard.

o TURBO PASCAL PC MAGAZINE'S award
for technical excellence.

OPTIONS FOR 16-81T SYSTEMS:

8087 math co-processor support for intensive
calculations.

Binary Coded Decimals (BCD): Eliminates
round-off error! A must for any serious business
application. (No additional hardware required.)

THE FEATURES:
Onl-Sllp Com pilI: No hunting & fishing
expeditions! Turbo finds the errors, takes you
to them, lets you correct, then instantly
recompiles. You're off and running in record
time.

Buill-In Inllf8cI/vI Editor: WordStar-like easy
editing lets you debug quickly.

Aulomll/c Overl8Ys: Fits big programs into
small amounts of memory.

Mlcroc8lc: A sample spreadsheet on your disk
with ready-to-compile source code.

IBM PC VERSION: Supports Turtle Graphics,
Color, Sound, Full Tree Directories, Window
Routines, Input/Output Redirection and much
more.

o TU RBO PASCAL named 'Most Significant
Product of the Year' by PC WEEK.

o TURBO PASCAL 3.0 - the FASTEST
Pascal development environment on the
planet, PERIOD.

Turbo Pascal 3.0 is available now
for $69.95.

Opl/ons: Turbo P8sc81 with 8087 or BCD 81 I low
$109.90. Turbo P8SCII wllh bolh opllons (8087
Ind BCD) prlcld II $124.95.

MINIMUM SYSTEM CONFIGURATION: To use Turbo P"caI3.0 "ful",64K RAM. on. dl,t drive. 1-80. 8088/86.80186 or 80286
mleroproell,or running .lth" CP/M-80 2.2 or g",flr. CP/M-86 1.1 or gru'er. MS-DOS 2.0 or gru'er or PC-DOS 2.0 gru'er.
MS-DOS 2.0 or gru'er or PC-DOS 2.0 or gru',r. A XENIX veillon of Turbo Plical w/ll,oon b •• nnoune.d, .nd b.fore 'h •• nd 01
fh' yur. Turbo PIII:II will b. running on mo,' 68000-bllld mlcrocompUtlIl .

• ~~~ Turbo Pascal is a registered trademark of Bo~and International, Inc
CP/M is registered trademark of Digital Research, Inc:
IBM an PC· DOS are registered trademarks of International Business
Machines Corp
MS·DOS is a trademark of Microsoft Corp
zao is a trademark of Zilog Corp

BOR0061

Learn Pascal From The Folks Who Created
The Turbo Pascal Family.

Borland International proudly presents Turbo Tutor, the perfect complement to
your Turbo Pascal compiler. Turbo Tutor is really for everyone - even if

you've never programmed before.

And if you're already proficient, Turbo Tutor can sharpen up the fine pOints. The
manual and program disk focus on the whole spectrum of Turbo Pascal programming
techniques.

• For the Novice: It gives you a concise history of Pascal, tells you how to write a
simple program, and defines the basic programming terms you need to know.

Q) Programmer's Guide: The heart of Turbo Pascal. The manual covers the fine
points of every aspect of Turbo Pascal programming: program structure, data
types, control structures, procedures and functions, scalar types, arrays, strings,
pointers, sets, files, and records .

• Advanced Concepts: If you're an expert, you'll love the sections detailing such
topics as linked lists, trees, and graphs. You'll also find sample program examples
for PC-DOS, MS-DOS and CP/M.

A Must. You'll find the source code for all the examples in the book on the
accompanying disk ready to compile.

Turbo Tutor may be the only reference work about Pascal and programming you'll
ever need!

TURBO TUTOR - A REAL EDUCATION FOR ONLY $34.95.
(non copy-protected) *

*Minlmum system configuration: TURBO TUTOR Is available today for your computer running TURBO PASCAL for PC·DOS, MS
DOS, CP/M·86. Your computer must have at least 128K RAM, one disk drive and PC·DOS 1.0 or greater, MS·DOS 1.0 or greater,
CP/M·80 2.2 or greater, or CP/M·86 1.1 or greater.

Turbo Pascal and Turbo Tutor are registered trademarks of Borland International Inc. CP/M is a registered
trademark of Digital Research Inc. MS-DOS is a trademark of Microsoft Corp. PC-DOS is a registered
Irademark of International Business Machines Corp BOR 0064

2VRBO PASCAl.

DATA BASEl OOr-SOXn

Is The Perfect Complement To Turbo Pascal.
It contains a complete library of Pascal procedures that allows you to sort

and search your data and build powerful applications. II's another set of tools
from Borland that will give even the beginning programmer

the expert's edge.

THE TOOLS YOU NEEDI
TUR80ACCESS Files llsing 8+Trees- The best way to organize and search your data.
Makes it possible to access records in a file using key words instead of numbers. Now
available with complete source code on disk ready to be included in your programs.

TllR80S0RT - The fastest way to sort data-and TURBOSORT is the method preferred by
knowledgeable professionals. Includes source code.

GINST (General Installation Program) - Gets your programs up and running on other ter
minals. This feature alone will save hours of work and research. Adds tremendous value
to all your programs.

GET STARTED RIGHT AWAY: FREE DATABASEI
Included on every Toolbox disk is the source code to a working database which demon
strates the power and simplicity of our Turbo Access search system. Modify it to suit
your individual needs or just compile it and run. Remember, no royalties!

THE CRITICS' CHOICE I
"The tools include a B+ tree search and a sorting system. I've seen stuff like this, but not
as well thought out, sell for hundreds of dollars."

-Jerry Pournelle, BYTE MAGAZINE

"The Turbo Database Toolbox is solid enough and useful enough to come recommended."
-Jeff Duntemann, PC TECH JOURNAL

TURBO DATABASE TOOLBOX-ONLY $54.95 (not copy-protected).

Minimum system configurations: 64K RAM and one disk drive. 16-blt systems: TURBO PASCAL 2.0 or grelter for MS-DOS or PC-DOS
2.0 or greater. TURBO PASCAL 2.1 or grelter for CP/M-86 1.1 or grelter. Eight-bit systems: TURBO PASCAL 2.0 or greater for
CP/M-80 2.2 or grelter.

Turbo Pascal IS a registered trademark and Turbo Database Toolboxs a trademark of Borland Infernational. Inc. CP 1M and CP IM·S6 are registered trademarks of Digital Research. Inc
IBM and PC· DOS are registered trademarks of International BUSiness Machines Corp MS· DOS is a trademark of Microsoft Corp

BOR0063

TII.R8O MS'CA£

GRAPHlX100tSOX"
HIGH RESOLUTION GRAPHICS AND GRAPHIC WINDOW MANAGEMENT

FOR THE IBM PC

~
~'

'-'~~.-,;.-::;.~~
',,_ f i~"~~llt, ' 1 Z . 3 _ 4

:.;~-

'.~
I

,,;!·
c'

!,= ,
\
1\11\1111 '''!E1UIli .. ";,,, .. -'

~

Dazzling graphics and painless windows.
The Turbo Graphix ToolboxTM will give even a beginning programmer the expert's edge. It's a
complete library of Pascal procedures that include:

• Full graphics window management.

• Tools that allow you to draw and hatch pie charts, bar charts, circles, rectangles
and a full range of geometric shapes.

• Procedures that save and restore graphic images to and from disk.

• Functions that allow you to precisely plot curves.

• Tools that allow you to create animation or solve those difficult curve fitting
problems.

No sweat and no royalties.
You can incorporate part, or all of these tools in your programs, and yet, we won't charge you
any royalties. Best of all, these functions and procedures come complete with source code on
disk ready to compile!

John Markoff & Paul Freiberger, syndicated columnists:
"While most people only talk about low-cost personal computer software, Borland has been
doing something about it. And Borland provides good technical support as part of the price."

Turbo Graphix Toolbox-only $54.95 (not copy protected).

Minimum Systllm Configuration: Turbo Graphlx Toolbox Is aVllllbl1l todlY for your computllr running Turbo PlScal 2.0 or grllltllr for
PC-DOS. or truly compillbill MS-DOS. Your computllr must havllit IlIIst 128K RAM. onll disk drlvlI Ind PC-DOS 2.0 or grllltllr. Ind
MS-DOS 2.0 or grllitar wllh IBM Grlphlcs Adlptar or Enhlncad Graphics Adlptllr. IBM-compilibia Grlphlcs Adlptar. or Harculas
Grlphlcs Clrd.

Turbo Pascal is a registered trademark and Turbo Graphix Toolbox is a trademark of Bo~and International, Inc.
IBM and PC-DOS are trademarks of International Business Machines Corp. MS-DOS is a trademark of Microsoft Corp.

BOR0068

2VRBO PASCAt

EDJ2OR7tDr.BOX™
It's All You Need To Build Your Own Text Editor

Or Word Processor.
Build your own lightning-last editor and incor
porate it i"to your Turbo Pascal programs. Turbo
Editor ToolboxTM gives you easy-to-install modules.
Now you can integrate a fast and powerful editor into
your own programs. You get the source code, the
manual and the know how.

Create your own word processor. We provide all
the editing routines. You plug in the features you want.
You could build a WordStar@-like editor with pull
down menus like Microsoft's® Word, and make it work
as fast as WordPerfect™.

To demonstra,te the tremendous power 01 Turbo Editor Toolbox, we give you the source code lor two
sample editors:
Simple Editor A complete editor ready to include in your programs. With windows, block commands, and

memory-mapped screen routines.
MicroStar™ A full-blown text editor with a complete pull-down menu user interface, plus a lot more.

Modify MicroStar's pull-down menu system and include it in your Turbo Pascal programs.

The Turbo Editor Toolbox gives you all the
standard features you would expect to find
in any word processor:

• Word wrap
• UNDO last change
• Auto indent
• Find and Find/Replace with options
• Set left and right margin
• Block mark, move and copy.
• Tab, insert and overstrike modes,

centering, etc.
MicroStar's pull-down menus.

And Turbo Editor Toolbox has features that word processors selling for several hundred dollars can't begin to match.
Just to name a few:

[!J RAM-based editor. You can edit very large [!J Multiple windows. See and edit up to eight
files and yet editing is lightning fast. documents-or up to eight parts of the same

[!J Memory-mapped screen routines. In- document-all at the same time.
stant paging, scrolling and text display. [!J Multi-Tasking. Automatically save your

[!J Keyboard installation. Change control text. Plug in a digital clock ... an apPointment
keys from WordStar -like commands to any that alarm-see how it's done with MicroStar's
you prefer. "background" printing.

Best of all, source code is included for everything in the Editor Toolbox. Use any of the Turbo Editor Toolbox's
features in your programs. And pay no royalties.
Minimum system configuration: The Turbo Editor Toolbol requires an IBM PC, Xl, AT, 3270, PCjr or true compatible with a minimum
192K RAM, running PC-DOS (MS-DOS) 2.0 or greater. You must be using Turbo Pascal 3.0 for IBM and compatibles.

Suggested Retail Price $69.95
(not copy-protected)

Turbo Pascal is a registered trademark and Turbo Editor Toolbox and MicroStar are trademarks of Borland
International, Inc. WordStar is a registered trademark of MicroPro International Corp. Microsoft and MS·DOS are
registered trademarks of MicrosoM Corp. WordPerfect is a trademark of Satellite Software International. IBM,
IBM PC, XT, AT, PCjr and PC-DOS are registered trademarks of International Business Machine Corp. BOR 0067

TM

Secrets And Strategies 01 The Masters Are
Revealed For The First Time

Explore the world of state-of-the-art computer games with Turbo GameWorksTM. Using
easy-to-understand examples, Turbo GameWorks teaches you techniques to quickly create
your own computer games using Turbo Pascal@. Or, for instant excitement, play the three

great computer games we've included on disk-compiled and ready-to-run.

TURBO CHESS

Test your chess-playing skills against your computer challenger. With Turbo GameWorks, you're on your
way to becoming a master chess player. Explore the complete Turbo Pascal source code and discover
the secrets of Turbo Chess.

"What impressed me the most was the fact that with this program you can become a computer
chess analyst. You can add new variations to the program at any time and make the program play
stronger and stronger chess. There's no limit to the fun and enjoyment of playing Turbo GameWorks'
Chess, and most important of all, with this chess program there's no limit to how it can help you
improve your game." -George Koltanowski, Dean of American Chess, former President of

the United Chess Federation and syndicated chess columnist.

TURBO BRIDGE

Now play the world's most popular card game-Bridge. Play one-on-one with your computer or against
up to three other opponents. With Turbo Pascal source code, you can even program your own bidding
or scoring conventions.

"There has never been a bridge program written which plays at the expert level, and the ambitious
user will enjoy tackling that challenge, with the format already structured in the program. And for the
inexperienced player, the bridge program provides an easy-to-follow format that allows the user to start
right out playing. The user can "play bridge" against real competition without having to gather three
other people." -Kit Woolsey, writer and author of several articles and books

and twice champion of the Blue Ribbon Pairs.

TURBO GO-MOKU

Prepare for battle when you challenge your computer to a game of Go-Moku-the exciting strategy
game also know as "Pente"TI'. In this battle of wits, you and the computer take turns placing X's and
O's on a grid of 19X19 squares until five pieces are lined up in a row. Vary the game if you like using
the source code available on your disk.

Minimum system configuration: IBM PC, XT, AT, Portable, 3270, PClr, and true compatibles with 192K system memory, running
PC·DOS (MS· DOS) 2.0 or later. To edit and compile the Turbo Pascal source code, you must be using Turbo Pascal 3.0 .or IBM PC
and compatibles.

Suggested Retail Price: $69.95 (not copy-protected)

.~~~~~
Turbo Pascal is a registered trademark and Turbo GameWorks is a trademark of
Borland International, Inc. Pente is a registered trademark of Parker Brothers.
IBM PC, Xl, AT, PCjr and PC· DOS are registered trademarks of International Business
Machines Corporation. MS·DOS is a trademark of Microsoft Corporation.

BOR 0065

-

BOW2hBuy
Borland
Software

w--- .to}' ~ ... BORLANDco,ok,o.,O}'~cr~/)
I YINTERNATIONAL

II To Order .,. ~ In II
By Credit I ~~i\l::tt , California

I Card, ' ... ,1 call I
I Call (800) I
I (800) 742-1133 I
I 255-8008 .J
1.. _____ _

-

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

NOTES

} " <

With
because of its natural,
logical approach, both
people new to programming
and professional programmers
can build powerful applica
tions such as expert systems,
customized knowledge
bases, natural language
interfaces, and smart
information management systems.

is a declarative language
which uses deductive reasoning to solve
programming problems.

development system
includes:
o A complete Prolog incremental compiler

supporting a large superset of the Clocksin
and Mellish Edinburgh standard Prolog.

o A full-screen interactive editor.
o Support for both graphic and text windows.
o All the tools that let you build your own

expert systems and AI applications with
unprecedented ease.

Ii t,'! it i provides
a fully integrated pro
gramming environment
like Borland's Turbo
Pascal,® the de facto
worldwide standard.

You get the 200-page
manual you're holding,
software that includes
the lightning-fast

incremental
compiler and interactive editor, and the free
GeoBase™ natural query language database,
which includes commented source code on
disk, ready to compile. (GeoBase is a
complete database designed and developed
around U.S. geography. You can modify it
or use it "as is. ")

Turbo Prolog and GeoBase are trademarks and Turbo Pascal is a registered trademark of Borland
International, Inc. IBM, AT, and PCjr are registered trademarks and XT is a trademark of International
Business Machines Corp. MS· DOS is a registered trademark of Microsoft Corp.

4585 SCOTTS VALLEY DRIVE
SCOTTS VALLEY, CALIFORNIA 95066 ISBN 0-87524-150-6

I3C.'10014

