

TURBO PROLOG TOOLBOX™

User's Guide and Reference Manual

Copyright© 1987
All Rights Reserved

BORlAND INTERNATIONAL, INC.
4585 scans VALLEY DRIVE
scans VALLEY, CA 95066

USA

INTERNATIONAL

Reflex is a registered trademark of Bor!and/P',nal'y-tica, Inc. dBASE I!! is a registered trademark of
Ashton-Tate. Hayes is a trademark of Hayes Microcomputer Products, Inc. Hercules is a trademark
of Hercules Computer Technology. LaserJet is a registered trademark of Hewlett-Packard. Color/
Graphics Adapter is a registered trademark and Enhanced Graphics Adapter is a trademark of
International Business Machines Corporation 1-2-3 and Lotus are registered trademarks of Lotus
Development Corporation.

First Edition
Printed in USA

9 876 5 4 3 2

Table of Contents

Chapter 1 Introduction 1
Wha t These Tools Can Do for You 2
How to Use This Book ... 3
Who's Who? .. 3
The Distribution Disks ... 3
Tool Domains and Predicates 4
Running the Sample Programs 5

Installing the Toolbox on a Hard Disk 5
Installing the Toolbox on Floppy Disks 6
A Helpful Hint .. 7

Reserved Windows .. 7

Part 1 User's Guide 9

Chapter 2 User Interface Tools 11
Status Lines ... 11

A Sample Program Using a Status Line 12
Some Basic Menus .. 13

The menu Tool Predicate 14
Using menu in a Sample Program 15
The Tool Predicate menu_leave 17
Using menu_leave in a Sample Program 17
The Tool Predicate menu_mult 17
Using menu_mult in a Sample Program 18
Using menu, menu_leave, and menu_mult in a Program 20

longmenu, longmenu_leave, and longmenu_mult 21
Using the longmenu Tool Predicates in a Program 21

Box Menus .. 23
Using boxmenu and boxmenu_mult in a Program 24

A Line Menu .. 25
Using linemenu in a Program 26

Pull-d.own Menus .. 26
Using pulldown in a Program 29

Tree Menu Input ... 31

Using treemenu in a Program 32
A Line Input Driver. .. 33

Using the Three lineinput Tool Predicates in a Program 34
Reading a File Name .. 36

Using readfilename in a Program 36
Context-Sensitive Help .. 37

Help Contexts in Tool Predicates 40
Resizing Windows. .. 41

Using resizewindow in a Program. .. 42
A Mixed Bag of BIOS Calls 43

Setting and Reading the Verify Switch .. 43
Changing the Color of the Screen Border. .. 44
Reading File Names from the Directory. .. 44

Chapter 3 Screen-Layout Tools 47
Basic Screen-Layout Definition 48
Basic Use of the Screen Handler 51
Facilities in SCRDEF.PRO 53

Define Screen Layout 54
Save Screen Layout .. 56
Load Screen Layout .. 56
Edit Layout Definition File. .. 57

Associating Values with Fields 57
Associating Actions with Fields 61
No-Input Fields .. 64

Computing Travel Time 65
Three Sample Programs 70

Sorting for Common Interests 70
Using Screen Handlers in a Sample Program 72
Recording Sales Transactions. .. 76
A Label-Printing Program 80

More Advanced Uses of the Screen Handler 86
Specifying New Special Keys .. 86
Associating Help Text With a Field 86
Adding Your Own Screen-Definition Types 87
Using Several Screen Layouts Interchangeably , .. , 89
Creating New Screen Definitions from Old. 90

Printing Formatted Reports 90

Chapter 4 Graphics Tools 95
Coping with Different Coordinate Systems 95

iI

Virtual-Screen Coordinates 96
Low-level Tool Predicates and Virtual Coordinates 96
The Predicate plot ... 97
The Predicate box ... 97
The Predicate ellipse 98
The Predicate sector 98
The Predicate lineShade 99
Using Low-level Tool Graphics Predicates in a Sample Program . 100
Defining Scales .. 103

Drawing Axes on the Screen 106
Using Scales and Axes in a Sample Program. 107

Other Tool Predicates for Handling Coordinates 112
Setting a Scale .. 112
Conversion Between Virtual and Text Coordinates 112
Conversion Between Scaled and Text or Virtual Coordinates ... 113

Pie Charts .. 114
Using a Pie Chart in a Sample Program .. 115

Bar Charts .. 119
Using bargraph and bargraph3d in a Sample Program 120

Color Graphics with the EGA Card 122
Using the EGA Palettes in a Sample Program. 123

Loading .PIC Files 126
Using Zoadpic in a Sample Program 127
Using Zoadpic and savepic to Create an On-Screen Presentation .. 128

Chapter 5 Communication with Remote Serial Devices 131
The Communication Tool Predicates 131
Hardware Considerations 132

Pinouts for DTE-to-DTE Configuration 133
Pinouts for DTE-to-OCE Configuration .. 133

General Serial Communications 134
Opening a Serial Port 134
Closing a Serial Port 136
Obtaining Transmission Status Information ;. 136
Transmit a Character from a Serial Port .. 138
Receiving a Character from a Serial Port 139
Obtaining Input and Output Queue Sizes 139
Deleting the Output Buffer. .. 140
Deleting the Input Buffer 140

Some Complete Sample Programs 140

III

A Printer Driver That Lets You Modify the File Being Printed ... 141
Terminal Emulation .. 143
Polled Communication with Time Out 144
Transmission with a True Subset of the XMODEM Protocol 146

Modem Communication 153
Sending a Break Signal to a Modem .. 153
Setting the Modem Mode .. 153
Sending a Command or Data to a Modem 155
Receiving a Response from a Modem. .. 155

A Menu-Driven Serial Communications Program. 156

Chapter 6 Importing Data from Other Systems 165
Accessing a Reflex File 166

Reading One Reflex Record at a Time 168
Accessing a dBASE III File .. 170

Reading One dBASE III Record at a Time 172
Accessing a Lotus 1-2-3 or Symphony File 174

Reading All Cells .. 177
Reading a Specific Cell 177

Chapter 7 The Parser Generator 181
What Does a Parser Do? 181

The Different Types of Parsers 182
Lexical Analysis: The Scanner 183
Describing the Grammar 183
Backus Naur Form Grammar. .. 184

The Toolbox Parser Generator .. 186
Specifying the Input to the Parser Generator 187
Creating Your Own Grammar 190

Examples Demonstrating the Parser Generator 193
The Toolbox Version of a Grammar 194
Example of the Parser Generator's Input Grammar. 195
Example of a Parser Domains File Generated by the Parser. 196
Example of a Scanner for the Generated Parser 197
Example of Generated Parser 198
Example of the Scanner and Generated Parser Used Together. .. 199
Error Handling. .. 201
Using the Whole System in a Working Sample 202
The Generated Domain Definitions 203
The Generated Parser 204
The Scanner ... 206

Iv

The Parser Generator System 212
The System Around the Generated Parser. 212

Bootstrapping a Parser 213

Part 2 Reference Guide 217

Chapter 8 Reference Guide 219
Introduction ..•....... 219
axisla1>els .. 224
bargraph ... 225
batGraph3d .. 227
border ... 229
box .. 230
boxmenu .. 231
boxmenu_leave ... 233
boxmenu_mult .. 235
changestatus .. 237
closeRS232 ... 238
createwindow (used by scrhnd) .. 239
defineScale ... 240
delInBuf_RS232 ... 241
delOt1tBuf_RS232 .. 242
disks pace .. 243
dosver ... 244
draw .. 245
ellipse ... 246
field_action (programmer defined) .. 247
field_value (programmer defined) 248
Findmatch .. 249
findScale ... 250
getverify ... 251
gwrite ... 252
help ... 253
init_dBase3 ... 254
init_Reflex .. 255
lineinput ... 256
lineinput_leave ... 258
lineinput_repeat ... 259
lineMenu .. 261
lineShade .. 262
loadpic .. 264

v

longmenu 0 265
longmenu_leave 00 267
longmenu_mult 0 269
makeAxes 00 271
makestatus 000 273
menu 00 0 0 274
menu_leave 0 276
menu_mult 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 278
mkdir 00 0 0 280
modify' Axes 0 •••• 0 0 • 0 0 •••••••••••••••• 0 •• 0 ••••••••• 0 •• 0 • • • •• 281
noinput (programmer defined) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 • 0 0 0 .. 0 0 0 0 0 0 282
openRS232 0 283
pdwaction (programmer defined) o. 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 285
pieChart 0 0 0 0 • 0 • 0 • 0 0 0 •• 0 0 0 0 0 0 0 0 0 • 0 0 0 0 o. 287
plot 00000.00000000.000000000000000000.0000 •• 0000.0000.00 0 0 0 0 289
pop_helpcontext 0000.000000000. 0 00000000000 •• 0.0 •• 000.000000 290
pulldown 0 0 0 0 • 0 0 0 •• 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 • 0 0 0 •• 0 0 0 0 • 0 • 0 0 0 0 291
push_helpcontext 0 •• 0000 •• 0000.000000000000.00.0 •• 000.000000 293
queueSize 0 0 0 0 • 0 0 0 0 0 0 0 • 0 •• 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 • 0 0 0 0 0 • 0 0 0 ••• 0 0 o. 294
rd_dBase3File . 0.00 ••• 000 ••• 0000.00000.0.000 •• 0.0.00.0 •• 0000. 295
rd_dBase3Rec 0.0.0. 0 0 0000 •• 0000.0000000000 ••••• 0.0000 •• 00000 296
rd_LotusCell 0 0 • 0 • 0 •• 0 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 297
rd_LotusFile 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ••• 0 0 0 0 0 0 0 ••• 0 • 0 0 0 • 0 • 0 0 •• 0 0 0 0 0 298
rd_ReflexFile 00000000. 0 0 0 0 0 • 0 0 0 0 0 0000000000.0000 •• 0 000 0 0 0000 299
rd_ReflexRec .0000000000000.00.0000.000000.0.00000.00.00000. 300
readfilename 0 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ••• 0 •••• 0 0 0 •• 0 0 0 o. 301
refresh status 000000000000.000. 0 •• 0000000000 •• 0.0 •••• 00. 000000 303
removestatus 0.00000000000. 0 00 ••• 0000 •• 000.000000 •• 000000000 304
resizewindow 0 0 •• 305
rmdir 0000000000000000000.0000000000.00.000000 ••• 00. 00' 0.00. 306
rxch_RS232 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 • 0 0 0 0 • 0 • 0 • 0 • 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 307
rxStr_Modem 0 0 0 0 0 0 • 0 0 0 • 0 0 •• 0 0 0 ••• 0 0 •• 0 • 0 • 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 308
savepic. 0 ••• 0 0 •• 0.0. 00000000.00.0.00000000.000.0 •• 0 00 •• 0 0 0 0 0 309
scaleCursor 0 0 0 • 0 0 0 •• 0 0 0 0 0 • 0 0 0 0 0 0 0 • 0 • 0 • 0 • 0 0 0 •• 0 0 0 • 0 0 0 0 0 • 0 0 0 0 0 310
scaleLine 0 0 0 • 0 • 0 0 0 0 •• 0 • 0 0 •• 0 • 0 0 •• 0 0 0 0 0 0 0 0 0 0 •••••• 0 •••••• 0 0 •• 311
scalePlot .00000000000 0 0 00 •• 0 000 •• 0000000000000000 0 0 0 • 0 0 • 0 ••• 312
scalePolygon 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 • 0 •••• 0 0 0 • 0 0 0 0 • 0 0 0 0 •• 313
scale_text 00000 • 0 .00.0 0 • 0 0 •• 0 0 0000000000 •• 00 • 0 ••• 0 •• 000 •• 0 00. 314
scale_virtual 0 •• 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 •• 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 315
scrhnd 000000 ••• 00000.000.000000 •• 000 ••• 0.0.0 •• 0 •••• 0000000. 316

vi

sector .. 318
sendBreak_RS232 .. 319
setModemMode .. 320
setverify ... 322
shiftScale .. 323
status_RS232 .. 324
temp_helpcontext ... 326
tempstatus ... 327
ticks ... 328
treemenu ... 329
txCh_RS232 .. 331
txStr_Modem ... 332
virtual_text ... 333
writescr (programmer defined) .. 334

Appendix A Compiling a Project 335
Compiling Projects Provided in the Toolbox. 335
Creating Your Own Project File .. 336

Glossary 337

Index 341

vii

c H A p T E R

1

Introduction

Before the introduction of Turbo Prolog, Prolog was famous as the
language for cost-effective software prototyping. With the implementation
of Turbo Prolog, Prolog has become a practical tool that can be used for
actual implementation work.

The Turbo Prolog Toolbox, a collection of software tools, increases the
efficiency with which applications can be constructed. Many time
consuming (and therefore costly) operations-such as designing screen
layouts-<:an be carried out quickly and easily using the predicates and
programs defined within the Turbo Prolog Toolbox.

The Toolbox gives you over 80 tools (8,000 lines of source code) that you
can incorporate into your programs. In addition, 40 sample programs
demonstrate how to use the tools and can be adapted to your particular
needs. These tools consist of built-in predicates, which specify relations
among the defined objects.

Each major predicate is provided in a self-contained file that may be
included in your programs. However, freque,!}.t1Y. __ 1].~~~ domains . and
predicate declarations have been incornorated into the files-fDOMS]?RO'-, .. ,
....-. __ ,.oP..............,.~..;~ •• ~lJI...._......<-'" .Jt. • .., ~~"".,"": .,''','''' :''''~,,' .,,"." • I~., .':;"".,'A ."'~~,.,.,..., :.K_ . ;' _'." .. .,' """ ,._," ."--.... " .. "".,'~:~',e'· .. ".':"".,I."" _._..,.,:'- •• , ,~~''"''..,...., .. ,~'''',''-'''''''~.- ~.~

an.9- ~~Q~:.~gQL"~!1!slt~h~.~9:.E! .. !~~~~~~~ti!t:,~!tpiogram$. thaJ.l:l~~ ,ti;le ...
too,fs described ,here. If your machine nas limited memory and you need to
"red~~';fhe'-amounr of Turbo Prolog code, you can carefully edit the
contents of TOOMS.PRO and TPREDS.PRO to delete the predicates you

Introduction

don't need. (It's a good idea to edit a copy of the files, so that you have the
originals for later use.)

This manual assumes that you have a good working knowledge of Turbo
Prolog. If you don't, you should first work through the tutorials in the
Turbo Prolog Owner's Handbook.

What These Tools Can Do for You

The Toolbox is a distillation of the most useful tools for developing dif
ferent types of software, including:

spreadsheets
database systems
file-handling systems
mailing-list systems
integrated systems
system utilities
communications packages
visual presentation systems
compilers
expert systems

Your Turbo Prolog Toolbox provides facilities for

• User-interface design and construction including a wide variety of
menus (pull down, pop up, line, tree, and box), context-sensitive help,
and predicates to include status lines in your programs.

• Screen-layout design tools that allow layout specifications to be
constructed on the actual PC screen (and even on a virtual screen). Tool
predicates can then make use of such specifications to generate printed
reports.

• Business graphics images including predicates that create bar charts,
pie charts, and graphs. An interface allows you to incorporate .PIC files
into your Turbo Prolog programs.

II Communication with remote devices either through a serial link or a
modem-to-modem connection. One of the sample programs using these
predicates is a complete serial communications package; another allows
file conversion on transmission to a printer.

2 Turbo Prolog Toolbox Owner's Handbook

• Importing files from other systems such as Reflex: The Database
Manager, dBASE III, Lotus 1-2-3, and Symphony .

• A parser generator that automatically creates a Turbo Prolog source
code parser for a specified grammar. The parser can then be applied to
construct your own user interfaces in Turbo Prolog.

How to Use This Book

Chapters 2 through 7 describe each tool in detail and list sample programs
that show you how the tools can be used. While you'll want to read
through all the chapters eventually, you can skip ahead to the chapters
most relevant to your needs.

The final chapter, Chapter 8, is a reference guide. It's an alphabetical lookup
of all of the tools, showing each tool's predicate, declaration, flow patterns,
function, parameters, and any relevant information. It also contains a table
that lists the Toolbox files and the files required by each file.

Following the chapters is an appendix, IICompiling a Project," that tells you
how to load and run a project file. If you're unfamiliar with projects, you
may want to read through this appendix early on and refer to it as needed.

You won't need to enter the code used to illustrate the concepts in each
chapter; they're on your distribution disk under the file name given.
They're also listed in the program examples that follow each explanation.

Who'sWho?

In this manual, user always means the person who works with Turbo
Prolog programs and programmer refers to the person who creates the
Turbo Prolog code.

The Distribution Disks

The files containing the tools are on Distribution Disk 1. Disk 2 contains the
example programs, which all start with an X.

Introduction 3

The tool files on Disk 1 can be divided among four levels, each providing
tools or declarations and clauses from which higher-level tools are
constructed:

• Level 1: Declaration files These files at the lowest level contain
declarations of domains used by the Toolbox predicates. For example,
TDOMS.PRO is a declaration file.

• Level 2: Low-level tool files These contain several predicate definitions
that are used by the higher level tool predicates. For example,
TPREDS.PRO contains clauses for the predicates repeat, max, and min.
GRAPHICS.OBJ contains external tool predicates, provided in .OBJ-code
form because they have been implemented in C or assembler.

• Level 3: Tool files These files are function specific in that each contains
either a major tool or a family of closely related tools. Thus, in order for
an application to use two tools at this level (for instance, a status line
and a menu), two tool files must be included in the application program
(in this case, STATUS. PRO and MENU. PRO). The tool files include
MENU.PRO, LONGMENU.PRO, BOXMENU.PRO, and SCRHND.PRO.

• Level 4: Utility program files These include a program for defining texts
to be used when offering users context-sensitive help (HELPDEF.PRO),
a program for defining screen layouts (SCRDEF.HLP), and a parser
generator. (NOTE: The license agreement at the beginning of this
manual specifies that these program files are for your personal use
alone. You may not give away or sell them in any form.)

Tool Domains and Predicates

When using the tool predicates, it is assumed that the domains and
predicates defined specifically for the purpose of constructing the tools are
available in any containing program. These include the domains stringlist,
row, col, len, in tergerlis t, and key, and many of the predicates in
TPREDS.PRO. This availability is guaranteed if the appropriate files
(TDOMS.PRO, TPREDS.PRO, and so on) are included in the containing
program. Details of the predicates called by each tool predicate are easily
obtained by listing the files that hold the tools.

If a tool file contains database declarations, these must be grouped with all
the other database declarations in the containing application program.

4 Turbo Prolog Toolbox Owner's Handbook

Some tool predicates are implemented in C or assembler; they are provided
in this Toolbox in the form of .OBJ files. For example, the tool predicate
loadpic, which loads pictures into the Turbo Prolog system, is contained in
the file PICTOOLS.OBJ. In order to use tools of this kind, you must create a
Turbo Prolog project definition containing both PICTOOLS.OBJ and your
program. If the project name is MYPROJ, then a corresponding module list,
MYPROJ.PRJ, should be created containing the name(s) of the .OBJ file(s)
used and the name(s) of your module(s). See Appendix A for more
information on project files.

See the reference guide (Chapter 8) for a handy table listing all the Toolbox
files and their contents.

Running the Sample Programs

All the sample programs are listed on the second distribution disk as
Prolog source code. Their program names are prefixed with X. To execute
most demos, load the program into the Prolog system and select the Run
option from Turbo Prolog's main menu. Some of the demos (for instance,
those concerning communications, graphics, and external data access tool
predicates) need to be linked up to object modules. To execute these demos,
select Compile Project from the Turbo Prolog main system menu and then
give the name of the demo. (If you press Return at this point, a complete
list of the demos implemented as projects is displayed on the screen.)

Installing the Toolbox on a Hard Disk

The demos are designed to be executed without modification. However, it
is recommended that you set up a Toolbox directory. Here's one way to do
it.

First, you should copy your Toolbox files into a subdirectory off of your
Turbo Prolog directory. Let's say you named your Turbo Prolog directory
PROLOG and will call the subdirectory TOOLBOX.

In Turbo Prolog, select the Setup option on the main menu. Then select
DirectQ.ries from the pull-down menu that appears. Set the directories as
follows:

Introduction 5

PRO directory C:' TOOLBOX
OBI directory C:' TOOLBOX
EXE directory C:' TOOLBOX
TURBO directory C: 'PROLOG

That's it-you're set to begin programming with the Toolbox.

Installing the Toolbox on Floppy Disks

If you have a computer with two floppy drives, you first need to set up a
Turbo Prolog work disk (disk 1) using a blank formatted disk. Insert your
Turbo Prolog disk into Drive A and disk 1 into Drive B. Copy the following
files onto disk 1:

From the Turbo Prolog Program Disk:
PROLOG.OVL
PROLOG.HLP
PROLOG.ERR
PROLOG.SYS
Do not copy PROLOG.EXE.

From the Turbo Prolog Library & Sample Programs Disk:
PROLOG.LIB
INIT.OBI

From your DOS Disk:
COMMAND.COM

Remove disk 1 from Drive B.

Next, insert a second blank formatted disk (a development work disk, disk
2) into Drive B and copy these Toolbox files onto it:

TOOMS.PRO
TPREDS.PRO

(You'll need to do this for each development work disk you set up.) Then
copy the tools and demo programs required for the program or chapter you
are working on. For example, to run the status line example, you should
copy STA TUS.PRO and XSTA TUS.PRO onto disk 2. Remember, all files are
listed at the beginning of the Reference Guide.

6 Turbo Prolog Toolbox Owner's Handbook

Now, load Turbo Prolog,. (the disk containing PROLOG.EXE and
PROLOG.OVL) from Drive A. Remove your Turbo Prolog disk and insert
disk 1 into Drive A.

Select Setup from the main menu and Directories from the pull-down
menu. Set up the following directories:

PRO directory: 'tB '. \
OBI directory: ~B :\
EXE directory: \B '.\
TURBO directory: \A : \

You are now ready to use the Turbo Prolog Toolbox.

A Helpful Hint

Start with the simplest example in a chapter and add files to your work
disk as needed. When you've filled your development work disk, you can
select unnecessary files and delete them. That way, you can continue using
the same work disk.

As you progress, you may find it convenient to set up different
development work disks according to your areas of interest.

Reserved Windows

The Turbo Prolog tools use windows 80 to 85 inclusive. These windows can
not be used by any program that uses the tool predicates.

Introduction 7

8 Turbo Prolog Toolbox Owner's Handbook

p A R T

1

User's Guide

9

10 Turbo Prolog Toolbox Owner's Handbook

c H A p T E R

2

User Interface Tools

This chapter introduces the various tools that help you develop customized
user interfaces. It includes tools for status lines, different types of menus,
line inputs, context-sensitive Help, window resizing, and some BIOS (Basic
Input/Output System) calls. Sample programs follow each tool
description, to suggest how you can implement the tool in your program.

Status Lines

STATUS.PRO contains a set of tools that uses window number 83 (see
makewindow) to display a status line at the bottom of the screen, rather like
the Turbo Prolog editor status line, which reminds you of the action of
each function key. A status line is initially displayed via the makestatus tool
predicate, which takes the form

rnakestatus(ATTR,STRING)

ATTR is the window color attributes; STRING is the text status window.
The call

rnakestatus(112,"d=date t=time rn=rnore l=less ")

reminds users that you press d for date, and so on.

User Interface Tools 11

If a containing program destroys the status line, such as by drawing a
window that overlaps it, the status line can be refreshed with the tool
predicate refreshstatus. The tool predicate removestatus deletes the status
window. Another tool predicate, changes tat us, takes the string and is used
with the call changestatus(newstatus).

If a call to makestatus is followed by·calls that can fail, tempstatus should be
used instead. Then, in the event of backtracking to the tempstatus call, the
status line is removed.

ternpstatus (ATTR, STRING)

A Sample Program Using a Status Line

The following program, XSTATUS.PRO, demonstrates the status-line
family of tool predicates. Remember, you can refer to the table in the
reference guide to quickly see what files XSTATUS.PRO requires.

1Dclud. "tdorns. pro"
1Dclude "tpreds.pro"
1Dclude "status.pro"

90 &1
makewindow(2,7,0,"1,0,0,25,80),
makewindow(1,7,7,"1,0,0,24,80),
cursor (20, 0),

XSTATUS.PRO

makestatus(7,"Press any key (first status line)"),

12

write ("A status line can be created easily with the makestatus
tool predicate."),

nl,nl,
readkey(),
write(II*~***\n"),
write ("\nThe contents of the status line can later be changed by the") ,
write(lI\nchangestatus command"),
write(lI\n\nPress the space bar to see the effect of \n"),
write (lI\tchangestatus (\"A new status line: please press the spacebar\")\n\n"),
readkey(),
changestatus ("A new status line: please press the spacebar"),
readkey(),
changestatus ("A new status line"),
write(II***\n"),
write(lI\nA status line can be removed by the rernovestatus predicate."),
write (lI\n\nPress the spacebar to see the effect of removestatus. When"),
write(lI\nyou are ready to continue, press the spacebar once again\n\n"),
readkeyU,

Turbo Prolog Toolbox Owner's Handbook

removestatus,
readkey(),
write(II***\n"),
write("\nAnd they can overlap. Press the space bar again") ,nl,nl,
readkey(),
write(IIWe will create two status lines, one on top of another"),nl,
write("using:\n\n\t\tmakestatus(7,\"First of two overlapping status

lines\"),"),nl,
write (lI\t\tmakestatus (135, \"Second of two overlapping status

lines\II), ") ,nl,nl,nl,
makestatus (7, "First of two overlapping status lines"),
makestatus(135,"Second of two overlapping status lines"),
write (IIBelow is the second status line. Press the space bar to see

the first"),
write(II\nand then press the space bar once again to remove this also.\n"),
readkey(),
removestatus,
readkey(),
remove status,
write(II\n***\n"),
write("\nIf you want the status line to disappear automatically"),nl,
write(IIduring fail, then you should use tempstatus instead of

makestatus"),nl,
readkey(),
tempstatus (112, II This line is created by tempstatus"),
write(lI\n***\n"),
write (II\nSometimes the status line can disappear because another window"),
write(II\nis placed on the top of it. II),
write(lI\n\nPress any key and the status line will disappear"),
write (II\nbecause of: \"shiftwindow (2), shiftwindow(1) \"\n"),
readkey(),
shiftwindow (2) , shiftwindow (1) ,
write("\n\nPress any key to see the effect of refreshstatus\n"),
readkey(),
refreshstatus,
write("\n***\n"),
write(II\n\nNow the program will fail. Notice that tempstatus"),
write(II\nremoves the status line. II),
readkey(),
fail. -

Some Basic Menus

This section describes three basic menu tools-menu, menu_leave, and
menu_mult-which are in the file MENU.PRO.

User Interface Tools 13

The menu Tool Predicate

The menu predicate implements a menu in which the arrow keys can be
used to indicate the various options and the FlO or Return key to select an
option. It takes the form

menu (PosRow,PosCol, Wattr, Fattr, ItemList,Title, Initltem ,ChoiceCode)

and has eight parameters:

• PosRow and PosCol, respectively, indicate the row and column positions
on the text screen of the upper left-hand comer of the menu window.

• Wltfr and Fatfr specify the attribute values for the inside of the window
and its frame; if the frame attribute is zero, the window will not have a
frame.

• Itemlist is a list of strings, one string for each menu item, with a
description of that item.

• Title is a string heading for the menu, which is included in the menu
window's frame when it is drawn.

• InitItem specifies the number of the menu item on which the selection
bar is drawn when the menu is first displayed.

• ChoiceCode, the integer parameter, is bound to a code number indicating
the user's actual menu selection:

o Esc was pressed and no selection made.
1 The first item on the menu was selected.
2 The second item on the menu was selected.
3 The third item on the menu was selected, and so on.

Thus, the call

menu(5,lO,7,7,[Basic,Pascal,Lisp,Prolog,Modula2),
"Which is your favorite language'1",4,Langno)

creates a window positioned at row 5, column 10 of the text screen, as
shown in Figure 2.1. It contains white text on a black background with a
white frame.

14 Turbo Prolog Toolbox Owner's Handbook

~hlch Is your favorite language?
hasic
pascal
lisp .Pi
ModulaZ

Figure 2.1 : A Call to the menu Tool Predicate

The word prolog is highlighted when the menu is first displayed. If the user
presses the arrow keys to highlight (modula2) and then presses Return, menu
succeeds with Langno instantiated to 5.

Using menu in a Sample Program

The following sample program uses menu to construct a menu-based career
adviSOry system that suggests the best career for its user. In a fairly simple
minded way, it works out which of three careers best suits the user, given
an analysis of the user's personality. The program is in the file
XCAREER.PRO, whose required files are listed in the files table at the
beginning of the reference guide.

User Interface Tools 15

XCAREER.PRO

iDcl_ "tdoms. pro"
iDcl_ "tpreds. pro"
iDclwl. "menu.pro"

douin.
number list = integer*

FecI1cat ••
ask (numberlist, integer)
career (integer, string)
q(integer, string, stringlist)

9011
makewindow (1, 7,0, '"',0,0,25, SO),
ask([1,2,3,4],Total),career(Total,Job),
makewindow(1,7,7,"Career",20,10,5,50),
nl,write("You should be in",Job),readcharC).

ella •••

16

q(4,"If you were at a party and saw someone standing alone, would you:",
["organize lots of people to go over and talk to that person",
"go over and talk to him or her yourself",
"just smile at him or her sympathetically",
"take no notice"]).

q(3,"Which of the following activities do you most enjoy?",
[parties,"going out for a meal", sports, cinema, "flower arranging",
"reading a book"]).

q(2,"Which one of the following best describes you?",
[obstinate, determined, ambitious, considerate, thoughtful,
"couldn't care what turns up"]).

q(l,"Which one of the following best describes you?",
[wild,"very extroverted",extroverted,happy,"quiet and refined",
quiet, "very introverted", "extremely shy"]).

ask([] ,0).
ask([X I Y],S) :

ask(Y,T),q(X,Title,Choicelist),
menu (10, 7, 7, 7,Choicelist,Title,1,ChoiceNo),
S = T+ChoiceNo.

career (Total, advertising) :- Total<S.
career (Total, computing) :- Total>7,Total<20.
career(_,archaeology).

Turbo Prolog Toolbox Owner's Handbook

The Tool Predicate menu_leave

This tool is also found in the file MENU.PRO and implements the predicate
menu_leave, which creates a pop-up menu as in menu. However, on return
from menu_leave, the window is not removed from the screen. menu_leave
takes the same eight parameters as menu.

Using menu_leave in a Sample Program

If the clauses defining the ask predicate of the previous sample program are
replaced with a version in which menu_leave is used instead of menu,
successive windows remain on the screen and overlap. (This amended
program is in XLCAREER.PRO.)

XLCAREER.PRO

ask([l ,0).
ask([X I Yl,S) :- ask(Y,T),q(X,Title,Choicelist),

R = 4*(4-X), C = 7*(4-X), FATTR = 7t16*X
menu leave(R,C,7,FATTR,Choicelist,Title,1,ChoiceNo),
S = TtChoiceNo.

The Tool Predicate menu_mulf

The clauses that define menu_mult are in the file MENU.PRO. menu_mult
implements a pop-up menu similar to the menu predicate but returns a list
of selections made from the menu rather than just a single selection. This
list consists of numeric codes for the selections made (as with menu and
menu_leave). (If Esc is pressed during menu selection, however, an empty
list is returned.) Use the arrow keys to highlight a choice from the menu
and press Return to select it. Press FlO to indicate that all the desired
selections have been made.

~1
~'\Il
...J.~
~~
'- "-

{'t
..., ~~
" St,

~,~.
,~
~"'/~

,,~. ~

The parameters for menu_mult are the same as menu, except thC!i the choicg., 't --t.,b·
parameter is an INTEGERLIST rather than an INTEGER, and1:ts definition
takes the form

menu_mult (ROW, COL,ATTR,ATTR,STRINGLIST, STRING, INTEGERL IST,INTEGERLIST)

User Interface Tools 17

and a call of the form

menu_mult(Row,Col,Wattr,Fattr,List,Header,StartList,ChoiceList)

places a menu on the screen, with these parameters:

• Row and Col indicate the row and column positions on the text screen of
the top left-hand comer of the menu window.

• ~ttr and Fattr specify the attribute values for the window forming the
menu and the menu frame.

• List names the items on the menu.

• Header is the string holding the menu title.
• StartList specifies the selection to be highlighted when the menu is first

displayed.

• ChoiceList returns the selections made from the menu.

Using menu_mulf In a Sample Program

The following sample program (in the file XIQ.PRO) uses menu_mult to
create a simple multiple-choice brain-teaser.

XIQ.PRO

iDcl. "tdoms. pro"
iDcl. "tpreds. pro"
iDcl. "menu.pro"

clauiDa
number list = integer*

pJ:.clicat ••
solution (integer,integerlist)
ask (numberlist, integer)
append (integerlist,integerlist, integerlist)
member (integer, integerlist)
q(integer,string,stringlist)
same (integerlist,integerlist)
allelts(integerlist,integerlist)
message (integer)
checkanswer (integer, integer list, integer list, integer)

90a1
makewindow(1,7,7,IIProfessor Blanketbrain's Intelligence Test",O,O,25,80),
write("\n\n\tMake any number of selections using the RETURN key. "),
write ("\n\tWhen all selections have been made, press FlO .11),

18 Turbo Prolog Toolbox Owner's Handbook

nl,nl,ask([4,3,2,1],Totalok),
nl,nl,write(1I - The puzzle is over. 1I),nl,nl,
message (Totalok) , nl, nl,
write (" Please press the space bar."),
readcharU·

clau ••
q(l,"Question 1: Which animal(s) are the odd ones out?",

[dog,cat,duck,rabbit,whale,swan]).

q (2, "Question 2: Which number (s) are the odd ones out? II ,
["2","3","4","5","6","7"]).

q(3,"Question 3: Which colors are the odd ones out?",
[red,orange,yellow,pink,green,brown,black]).

q(4,"Question 4: Which name(s) are the odd ones out?",
[kim,tom,george,alison,mary,martha]).

solution(l, [3,6]).
solution (2, [3,5]).
solution (3, [4,6,7]).
solution (4, [1,2]).

message (4) :-
write ("
write ("

message (0) :
write ("
write ("

message (Totalok)
write ("
write ("

ask([J,O) .

You got all 4 correct. ") ,nl,
Professor Blanketbrain thinks you are a genius").

You got none of them correct."),nl,
Professor Blanketbrain thinks you can improve your knowledge") .

You got ",Totalok," correct. 1I),nl,
Not bad but not good either .") .

ask ([X I Y], Newscore)
ask(Y,Oldscore),q(X,Title,Choicelist),
menu mult(10, 10, 7, 7, Choicelist, Title, [],Oddlist),
solution(X,L),checkanswer(X,L,Oddlist,Score),
Newscore = Oldscore+Score.

checkanswer(X,L,Oddlist,l) :
same (L,Oddlist),
write (" Your answer to question ",X is),
write(1I correct. Please press the space bar. "),
nl,readchar().

checkanswer(X, , ,0) :-
write(1I - -Sorry, but your answer to question ",X is),
write(1I wrong - Please press the space bar."),
nl, readchar U .

same (A,B) :- allelts(A,B),allelts(B,A).

allelts([],).
allelts([X T Y],B) :-member(X,B),allelts(Y,B).

User Interface Tools 19

member (X, [X I]).
member(X,UYJ) :- member(X,Y).

append ([] ,X,X) .
append([XIL11,L2,[XIL3]) :- append(L1,L2,L3).

Using menu, menu_leave, and menu_mull in a
Program

The program XMENU.PRO demonstrates the use of menus in a program. It
asks the user to choose one or more numbers from each selection offered
and displays the choices made. Menus of various designs are
produced-with and without frames, with different highlights, and so on.
In the program, CR stands for Carriage Return (the Return key).

XMENU.PRO

iDclude "tdoms. pro"
iDclude "tpreds. pro"
iDclacle "status. pro"
iDclude "menu. pro"

pzecl1cat ••
test

clau •••
test

test

test

test

20

changestatus("Normal menu CR:Select ESC:Abort"),
menu (10, 10, 7,7, [first, second, third, fourth], "Normal menu", 3, CHOICE),
write("You chose: ",CHOICE),nl,faU.

changestatus("Normal menu with specified initial selection
CR:Select
ESC:Abort"),

menu (10, 10, 7, 7, [first,second,third,fourth],"Normal menu",3,CHOICE),
write("You chose: ",CHOICE) ,nl,fa1l.

changestatus(IIUse of menu without a frame CR:Select ESC:Abort"),
menu (10, 10, 112, 0, [first, second, third, fourth], "No frame" ,2,CHOICE),
write("You chose: ",CHOICE),nl,fa11.

changestatus("Use of menu leave CR:Select ESC:Abort"),
menu leave(5,O, 7, 7, [first~second,third,fourth],first,l,CHl),
menu-leave (10, 20, 7,7, [first,second,third,fourth],secon d,2,CH2),
menu=leave(15,40,7,7,[first,second,third,fourth],third,3,CH3),

Turbo Prolog Toolbox Owner's Handbook

removewindow, removewindow, removewindow,
write("You chose: ",CHl,", ",CH2,", ",CH3),nl,fall.

test :-

90al

changestatus("Use of menu mult "(F10:End CR:Select or delete
ESC:Abort")-;

menu mult (10, 10, 7,66, [first, second, third, fourth, fifth, "6", "7"],
- "test", [3,6] CHOICEL),

write("You chose: ",CHOICEL),nl,fall.

makewindow (1,23, 0, "test", 0, 0, 24, 80),
makestatus(112,"Choose a number"),
test,
changestatus ("End of demo") ,n!.

longmenu, 'ongmenu_'eave, and
longmenu_mulf

The tools just discussed, menu, menu_leave, and menu_mult, are limited to a
maximum of 23 items on any menu-that's 25lines on the screen, less 2 for
the border drawn around the menu. The predicates longmenu,
longmenu_leave, and longmenu_mult in the file LONGMENU.PRO, on the
other hand, allow arbitrarily long lists of menu items. They behave like
their more restrictive counterparts except that each has an extra parameter
after the ROWand COL parameters. This parameter determines the
number of menu items to be displayed on the screen at anyone time; the
remaining choices are displayed by using the cursor keys, PgUp, and PgDn.
For example, the parameters of longmenu are given by

longmenu (Row, Col,Maxrows, Wattr, Fattr, Stringlist, Header, StartChoice, Selection)

Using the longmenu Tool Predicates in a Program

The file XLONGMNU.PRO contains the following program, which requests
its user to make one or more selections from a list of 50 altema ti ves (using
the up and down arrow keys to view them), and then displays the choice or
choices made. The user is also informed as to whether longmenu,
longmenu_leave, or longmenu_mult was applied to construct the part of the
program: that he or she has just used.

User Interface Tools 21

XLONGMNU.PRO

1Dclucle "tdoms. pro"
1Dclucle "tpreds.pro"
1Dclucle "lon9lllenu.pro"
1Dclucle II status. pro"

FecI1cate.
test
for (INTEGER, INTEGER, INTEGER)
str (STRING)

c1au ••

22

for (X,X,).
for(I,A,B) :- B)A,A1 = At1,for(I,A1,B).

str(first).
str(second) .
str(third).
str (S) :- for (I, 4, 50), str _int (S, I) .

test

test

test

test

test

changestatus(IILon9lllenu is used to select from more than
23 alternatives CR:Select ESC:Abort"),

fiDdal.l. (X, str (X), L),
lon9lllenu (10,10,5,7,7, L, "lon9lllenu", 0, CHOICE),
write(IILast time you chose: ",CHOICE),nl,fall.

changestatus (IIlon9lllenu with pre-selected starting point for the cursor
CR:Select ESC:Abort"),

fiAdall (X, str (X) , L) ,
lon9lllenu (10, 10, 5, 7,7, L, "lon9lllenu", 3, CHOICE) ,
write(IILast time you chose: ",CHOICE),nl,fall.

changestatus(IIUsing lon9lllenu to create an unframed menu
CR:Select ESC:Abort"),

fiAdall (X, str (X) , L) ,
lon9lllenu(10,10,5,112,0,L,"This message will not be visible",2,CHOICE),
write(IILast time you chose: ",CHOICE),nl,faU.

changestatus("Lon9lllenu leave: Make one selection from each menu
displayed CR:Select ESC:Abort"),

fiAdall (X, str (X) , L) ,
lon9lllenu leave(5,0,5, 7, 7,L,first,1,CHl),
lon9lllenu -leave (10,20, 5, 7,7, L, second,2,CH2),
lon9lllenu -leave (15,40, 5, 7,7, L, third,3,CH3),
removewindow, removewindow, removewindow,
write(IILast time you chose: ",CH1,", ",CH2,", ",CH3),nl,fall.

changestatus ("Use longmenu mult to allow any number of options
FlO : End CR: (Un) select ESC:Abort"),

Turbo Prolog Toolbox Owner's Handbook

pl

fiDdall (X, str (X) , L) ,
longmenu mult (10, 10, 5, 7,7, L, "test", [2], CHOICEL),
write("Last time you chose: ",CHOICEL),nl,fdl.

makewindow(1,7,O,"test",O,0,24,80),
write ("Use cursor keys to inspect the rest of the menu items\n\n"),
makestatus(112,"Choose a number"),
test,
write("End of demo").

Box Menus

With a box menu, users can select items from more than one column of
choices. The Turbo Prolog system, for example, displays a box menu
containing file names when the empty string is given as a response to the
Load option of Files. The boxmenu tool predicate is contained in the file
BOXMENU.PRO and takes theform

boxmenu (Row, Col, NoOfRows, NoOfCols, Wattr, Fattr, Stringlist, Header,
StChoice,Choicel

where

• Row and Col determine the position of the window.
• NoOfRows determines the number of rows in the window.
• NoOfCols determines the number of columns in the window.
• ~ttr and Fattr determine respectively the attributes for the window

itself and for its frame-if Fattr is zero, there is no frame on the window.
• Stringlist contains the list of possible selections.

, • Header is the text in the top of the window.

• StChoice determines where the bar should be placed when the menu is
first displayed.

• Choice is bound to the selection made.

For example,
~oI/1,

boxmenu (5, 5,,\~, 7,5, [a,b,c, d,e, f,g,h, i, j,k, l,m,n], "letters", 3,CHOICE)

displays a menu at row 5, column 5 of the screen, which occupies 7 rows
and 40 columns in total-including the frame, since Fattr is non-zero. The
items on the menu are the letters a,b,c, ... ,n, and the menu is headed with

User Interface Tools 23

the string letters. When the box menu is first displayed, the third menu
entry is highlighted, and the letter selected is returned in the variable
Choice.

BOXMENU.PRO also contains its own corresponding versions of
menu_leave and menu_multo boxmenu_leave and boxmenu_mult are related to
menu_leave and menu_mult (respectively) in the same way that boxmenu and
menu are related. boxmenu_leave takes the same parameters as boxmenu,
whereas boxmenu_mult takes the form

boxmenu mult(Row,Col,NoOfRows,NoOfCols,Wattr,Fattr,Stringlist,Header,
- StChoiceList,ChoiceList)

The only difference is that the parameter in whiC;h tbe sele.9tions made are
returned is npw a list of INTEGERs .. ~h& fh f' sJp r1/1;1(1. ' tt fNt5 a "e
hI,? 111/,];1 && a cuJt-ti, /It? To f/,(' I 1\ re 1 f?;-(l'Sf stLiS t Cho/c:::e I

Using boxmenu and boxmenu_mulf in a Program

Once again, the sample program (in XBOXMENU.PRO) involves selecting
numbers in different ways. First, one selection each must be made from
three box menus, and the choices are then displayed. Next, as a
demonstration of boxmenu_mult, several choices can be made from one
menu.

XBOXMENU.PRO

iDclude "tdoms. pro"
iDclude "tpreds. pro"
iDclude "boxmenu. pro"
iDclucl. "status. pro"

predicat ••
test
for (INTEGER, INTEGER, INTEGER)
str (STRING)

c1au ...
for(X,X,).

24

for(I,A,B) :- B)A,Al = A+l,for(I,Al,B).

str(one) .
str(two) .
str(three).
str(S) :- for(I,4,250),str_int(S,I).

Turbo Prolog Toolbox Owner's Handbook

test

test

test

90&1

f1Dclal1 (X, str (X) , L) ,
boxmenu(0,0,18, 78, 7, 7,L,"This is a demonstration of boxmenu",

0, CHOICE) ,
write(IILast time you chose the number:",CHOICE),nl,f&l1.

changestatus ("Now choose three numbers, one from each menu"),
f1Dclal1 (X, str (X) , L) ,
boxmenu leave(0,0,10,50, 7, 7,L,

-IIThis is a demonstration of boxmenu leave",O,CHI),
boxmenu leave(4,20,10,50, 7, 7,L, -

-IIThis is a demonstration of boxmenu leave II ,0, CH2) ,
boxmenu leave(8,40,10,50, 7, 7,L, -

-IIThis is a demonstration of boxmenu leave",0,CH3),
removewindow, remove window , removewindow, -
write(IILast time you chose the numbers: ",CHI,", II,CH2,", ",CH3),
nl,f&l1.

changestatus ("Now choose several numbers
FIO:End CR:Select or remove"),

f1Ddall (X, str (X) , L) ,
boxmenu mult (0, 0, 18, 78, 7,7, L,

-IIThis is a demonstration of boxmenu mult",
[5,10,20],CHOICEL), -

write(IILast time you chose the numbers:",CHOICEL),nl,f&l1.

makewindow (1, 7,0,1111,0,0,25,80),
makewindow(1, 7,0, "test", 20, 0, 4, 80),
makestatus (112, "Choose a number"),
test,
write(IIEnd of demonstration"),nl,readkey(J.

A Line Menu

The tool predicate linemenu implements a menu on a single line and is
contained in the file LINEMENU.PRO. It takes the form

linemenu (Row, Attr, Attr, Stringlist, Integer)

which has five parameters:

• The Row on which the line menu is to appear.
• The two attributes of the window containing the menu and its

frame-both of internal type Attr.

• A Stringlist of the items on the menu.

User Interface Tools 25

• A variable of Integer type that will become instantiated to an integer
code for choices made in the usual way.

Thus,

linemenu(0/7/0/[run/compile/edit/options/files,
setup, quit], CHOICE)

produces a line menu rather like the top line of Turbo Prolog's pull-down
menu system.

Using IInemenu in a Program

This program, in the file XLINEMNU.PRO, asks the user to select a
programming language, first from a framed line menu and then from an
unframed line menu. It then displays the choice made in each case.

XLiNEMNU.PRO

1nclwle "tdoms. pro"
1nclwle "tpreds. pro"
1nclwle "linemenu.pro"
1nclwle "status.pro"

90 &1
makewindow(1, 7, O,"test", 0, 0,24,80),
cursor(5,O),
makestatus (112,"Choose a programming language 11),
linemenu(O, 7, 7, [IBasicl ,IFortranl ,IPascall ,IApll,ILispl,IProlog"],CH1),
write ("Last time you chose item number ", CHl) I nI,
changestatus ("Now choose from an unframed menu") I

linemenu (0, 7, 0, [IBasicl,IFortran" I IPascall,IApll,"Lisplt ,"Prolog"], CHOICE),
changestatus (1111) I

write(ItThis time you chose item number "/CHOICE),nl,
write (ItEnd of demolt) ,nl, readkey(J.

Pull-down Menus

PULLDOWN.PRO contains pull-down menus that allow menu items to be
grouped into related families, as in the Turbo Prolog user interface. Once
you move the cursor to an item in the main menu line and then press
Return, another menu appears, pulled down vertically below the horizontal

26 Turbo Prolog Toolbox Owner's Handbook

menu item (see Figure 2.2). This vertical menu contains items closely
related to the horizontal heading. Of course, some horizontal menu items
have no corresponding vertical menu (such as Run, Compile, and Edit in
Turbo Prolog's main system menu).

lun COIIpile Edit Options !JII!I Setup lluit _ I.
iltCle.e "Uoe •. pro" Save
IltCle'e "t'l'e' •• pro" Dlrector~

Print
rullCATIS Cop~
_(..... COl.dtr.attr.stri .. Li.t •• tri ... iat lenaMe
_iaIUIOII.COL.A"I.Am.STIIIIGLIST.mlllG rile Hute
__ HSYIIIOL. 1011. mi. mlllGLIST .lOWiCOI.IIIT nodu Ie list
lleaaZ(llY. ml IIGLI ST. lOW. 1011. ROIl. SYltIOLl Zap file in editol'

I~ ~~

CLAUSES

IIilkellla'OIoI(l. 7 ••• • .. • ••• 1.25.81). Operating s~"teoo
_ .. (5.1 •• 7.7.I ic.p.a:d.li •• .-.1'01L---------'

"'IIIic. i. !lOIlI' r.VID'ite lanluale?'·.4.aIOICIJ.

Me_(I0Il. COL. WAUl. rA"I. LIST .IIIAI". STAlTaIOICI. CHOICI) :-
__ iaiUIOII.COL.WAm.rml.LlST.IlIAID.IIOOrlOll.LlIU.
Sr1=st'AlrctIOICI-l.lMx(•• ST1.Sr2).IWC=lIOOnoY-l •• la(ST2.IWC.STAJrIOll).
Me_I(coat. STAII'fIOU .IM"I. LI sr .lIOOlIOII. LIII. CHOI CI).
1'_lIIIi .. OII.

Use fil'at lettel' or o.tio. 01' select lIiU -) 01' (-

Figure 2.2: A Sample Pull-down Menu

The pulldown tool predicate in PULLOOWN.PRO implements a pull-down
menu of this type. The pull-down window is declared as follows:

pulldown (Attr,Menulist, Choice, SubChoice)

Its parameters are given by

pulldown (Attr,Menulist, Choice, SubChoice)

where

• Attribute is the color attribute to be used in all the windows (and their
frames) that are part of the pull-down menu system.

• Menulist is a list constructed using the curtain functor (as described in
the following paragraphs), which contains the text for each of the menus
that can be pulled down.

• On return from pulldown, Choice is bound to the code number for the
horizontal menu item on which the cursor was resting when a selection
was made.

User Interface Tools 27

• On return from pulldown, SubChoice is bound to the code number for the
actual menu selection, made by pressing Return.

(If there is no vertical menu corresponding to a horizontal menu item and
that horizontal menu is selected by pressing Return, SubChoice is bound to
zero and Choice is bound to the code number for the horizontal menu item.)

The following parameters create a main pull-down menu similar to Turbo
Prolog's main menu:

pull down (7,
[curtain (5, "Run", []),
curtain (13, "Compile", []),
curtain (25, "Edit", []),
curtain (35, "Option", ["Memory", "Obj File","Exe File"]),
curtain (47, "File", ["Load", "Save", "Directory", "Print"]),
curtain (56, "Setup", ["Color", "Window size", "DIR"]),
curtain (67, "Quit", [])],

Choice,Sub_Choice),

In a pull-down menu system built using puZldown, the action taken when a
given menu item has been selected is determined by the pdwaction
predicate. This allows the program to perform commands with the pull
down window remaining on the screen. If pdwaction fails, Choice and
SubChoice are bound to the relevant values; the entire menu system is
removed from the screen and pulldown succeeds. If, on the other hand,
pdwaction succeeds, then puZldown continues to loop and the last selected
menu item remains highlighted.

To use pulldown, you must include the database predicate pdwstate in your
program's database declarations as follows:

clataba ••
pdwstate (ROW, COL, SYMBOL, ROW, COL)

Menulist is specified by giving a list of values for the curtain functor. It takes
three parameters, as in

curtain (COL, STRING, STRINGLIST)

The first parameter specifies which column the horizontal menu item
should begin on, the second gives the name of that menu item, and the
third is the list of items that are to appear in the corresponding vertical
menu. Thus,

curtain (4, "Animals", ["Dog", "Cat", "Bullfinch"])

28 Turbo Prolog Toolbox Owner's Handbook

specifies part of a pull-down menu system in which, if the Animals heading
is selected, a submenu appears containing Dog, Cat, and Bullfinch.

A simple model showing part of Turbo Prolog's user interface can be
constructed using pUlldown with the following MENULIST:

[curtain (7, "Run", [ll , .
curtain (14, "Compile", []),
curtain (26, "Edit", []),

]

curtain (35, "Options", ["Memory", "Obj File" ,Exe File"ll,
curtain (47, "Files", ["Load", "Save", "Directory", "Print"]),

When the user makes a choice, any actions to be carried out must be
specified by a clause with the pdwaction predicate. This clause takes just two
integer parameters: The first gives the code of the horizontal (or main)
menu item, and the second specifies the corresponding vertical menu item
selected (which is zero if no vertical menu exists). Thus, if pulldown were
used with the above MENULIST and the Save option of the Files menu
were selected, then the corresponding action would be defined by
completing the right-hand side of the clause:

pdwaction(5,2) :-

Besides pressing Return, the user can also select a given item from a pu1l
down menu by pressing the highlighted letter of that item. pulldown
highlights the first capital letter of each menu item or, if no letters are
capitalized, the first lowercase letter.

Using pulldown in a Program

The following sample program from XPULLDW.PRO displays simple
messages on the screen. If horizontal menu item 5 (Quit) is selected,
however, the action is determined by

pdwaction(5,O) :- msg(l5,20,"Please press the space bar"),exit.

which displays the message Please press the space bar at row 15, column 20.
The standard predicate exit then returns control to the Turbo Prolog
system.

After running this program as supplied on the Toolbox disk, you may find
it revealhlg to replace the above pdwaction clause with the following:

pdwaction(5,O) :- fa1l.

User Interface Tools 29

If the program is then re-run and the Quit menu option selected, you'll see
the action of pulldown when pdwstate fails.

XPU LLDW. PRO

include "tdoms. pro"

databa.e
pdwstate(ROW,COL,SYMBOL,ROW,COL)

1nclude "tpreds. pro"
1nclude "status.pro"
1nclude "pulldown. pro"

predicate.
msg (ROW, COL, STRING)

clau.e.

r Pulldown tries first to call pdwaction with the windows open .• ,
r If no pdwaction is found CHOICE and SUBCHOICE are returned and·' r the windows are removed .• ,

r

pdwaction(1,l) :- msg(3,10,"Input 1 selected").
pdwaction(1,2) :- msg(4,10,"Input 2 selected").
pdwaction (1,3) : - msg (5,10, "Input 3 selected").
pdwaction(2,0) :- msg(5,25,"List all").
pdwaction(3,1) :- msg(3,42,"Load something").
pdwaction(3,2) :- msg(4,42,"Save something").
pdwaction(3,3) :- msg(5,42,"Delete some garbage").
pdwaction(3,4) :- msg(6,42,"Change directory").
pdwaction(4,1) :- msg(3,45,"Actions with directories").
pdwaction(4,2) :- msg(4,45,"Change colors").
pdwaction(5,0) :- msg(15,10,"Please press the space bar."),exit.

msg(R,C,S) :-
makewindow (1, 7,7, "" ,R, C, 5, 30),
window str (S),
readkey(),
removewindow.

1 2 3 4 5 6 7
01234567890123456789012345678901234567890123456789012345678901234567890123456789 .,

30

INPUT LIST FILES SETUP QUIT

makewindow (1, 7,0,1"1,0,0,25,80),
pull down (7,

[curtain (5, "Input", ["First", "Second", "Third"]),
curtain (20, "List", []),
curtain(36, "Files", ["Load", "Save", "Delete", "directory")),
curtain(50, "Setup", ["Directories", "Colors")),

Turbo Prolog Toolbox Owner's Handbook

curtain (65,IQuit" ,[J)
I, CH, SUBCH),

write("\n CH = ",CH),
write("\n SUBCH = ",SUBCH),nl.

Tree Menu Input

The file TREE.PRO includes tools to build tree menus. A tree menu may
come in handy when your underlying data structure is a tree-for example,
in designing an expert-system shell or even a customized expert system.
Expert systems are merely databases filled with detailed facts on a specific
subject, which are then manipulated by an inference engine. The treemenu
tool predicate takes three arguments:

treemenu(SYMBO~,TREE,SELECTOR)

A SYMBOL can be up, down, left, or right to indicate which way the tree is to
be drawn when it is displayed. More details follow on the TREE definition.
The SELECTOR parameter returns a code for the menu item chosen.

In each case, the code to be returned when a certain tree item is selected is
included in the definition of that item via the tree functor. This functor takes
three arguments: The first is a S1RING giving the text for that menu item;
the second is the code to be returned if that menu item is selected; and the
third is a TREELIST specifying the rest of the tree. Thus, a TREE domain is
defined by

SELECTOR = INTEGER
TREE = tree (STRING, SELECTOR, TREELIST)
TREELIST = TREE*

The SELECTOR can actually be of any type you prefer.

You select from a menu with the arrow keys and the Return or FlO key as
usual.

When a selection has been made, the predicate treeaction is called with the
SELECTOR as the parameter. This makes it possible to perform an action
with the tree remaining on the screen. (See also pdwaction for the pull-down
menu.)

User Interface Tools 31

Using treemenu in a Program

The following sample program (from XTREE.PRO) illustrates how treemenu
is used.

XTREE.PRO

code=3000

inclucle "tdoms. pro"

domain.
SELECTOR = INTEGER
TREE = tree (STRING, SELECTOR, TREELIST) \
TREELIST = TREE* ., 11. \- , .. ,~r.\ tou '1i.)/J ,T'V\ .(> l'\h e".e w 1 "1 • 0 "'l I I

clataba.. ~ I 1) '.)":i (. " ,I). fl ~ +- .. \
treewindow(ROW,COL,R8W;CCtiR9ii,eet.) """ \J S+ t ~~. 1"'£ ~~, Q..&...uL
treechoice(SELECTOR) ,-<' , ~'rti\...+iQ'\r'tS

iDclucie "tpreds. pro"
iDclucie "status. pro"
inclucle "menu. pro"
iDclucie "tree. pro"

clau •••
treeaction() :

cursor (R, C),
menu (R, C, 7, 7, [continue, select) , test, 0, CHI ,
CH = 2.

preclicat ••
test
show (SYMBOL)

clau •••

32

show (DIRECTION)
treemenu(DIRECTION,tree ("start", 1,

[tree ("start problem", 2,
[tree ("gasoline help", 3, [)),
tree("electrical system",4,

[tree ("battery flat", 5,
[tree ("another", 6, [)),
tree ("recharge", 7,[)),
tree ("push start", 8, [)) J),

tree("wet weather", 9, [)))),
tree ("alternative", 10, [)))),

tree ("overheating", 11, [)),
tree ("smell", 12, [)),
tree ("vibration", 13, [)),
tree ("start last", 14,

[tree ("bad running", 15,
[tree("bad idling",16,[)),
tree ("lack_of _power", 17, [)))),

Turbo Prolog Toolbox Owner's Handbook

CHOICE) ,

tree ("brakes", 18, (1),
tree ("wiper", 19, (1),
tree ("lights", 20, []),
tree (lhorn",21, (]) 1) 1),

clearwindow,
write(IChoice=",CHOICE),nl.

test :- makewindow(5, 112, 112, 1111, 5, 5,20, 70),
write("You are invited to make a selection from a tree menu.\n\n"),
write(IIThe menu will be shown with the tree drawn in a total of\n\n"),
write(lIfour different attitudes.\n\n"),
write(IIEach time you press FlO or ESC, or make a selection

by pressing\n\n"),
write ("RETURN while the cursor is in a field, the menu

will reappear\n\n"),
write(lIwith the tree drawn in a new attitude.\n\n"),
write("You can move around the tree by using the cursor keys.\n\n"),
write ("" Press the space bar to begin"" "II), readkey (),
removewindow,fail. -

test :- show(right),fail.
test :- show(left),fail.
test :- show(down),faU.
test :- show(up),faU.

90al
repeat, test.

A Line Input Driver

This section describes three tools, contained in LINEINP.PRO, which accept
input from a user in a given screen field. In each case, a call to the
corresponding tool predicate results in a window being displayed that
contains the given field. Default text appears in the field. Users can press
Return or FlO to accept the default text, or modify it in the usual way. The
main advantage of these three tools is that they allow you to control all
keystrokes-including function keys and arrow keys.

The first of the three, the tool predicate lineinput, is declared as follows:

lineinput (ROW, COL, LEN,ATTR,ATTR,STRING, STRING, STRING)

It takes the form:

line input (Row, Col, Len, Wattr, Fattr, Prompt, BeforeString, AfterString)

User Interface Tools 33

FILE:DD.DAT

Prompt BeforeString

The predicate lineinput creates a window containing BeforeString at position
(Row,Col) on the screen with attribute Attr, and it allows input in the field of
length Len characters as indicated. You can either type new text or edit
existing BeforeString text using the arrow and delete keys. Once all
information is entered, the user types FlO or Return, and the modified
string is returned in AfterString. If Esc is pressed during input, lineinput
fails.

The two other versions of lineinput both take the same set of parameters.
lineinput_leave leaves the input field on the screen after text entry has been
completed; lineinput_repeat succeeds after each text input (and stacks a
backtracking point) unless Esc is pressed, in which case it fails. Thus,
several texts can be entered in the same field by using the lineinput_repeat ...
fail combination. For instance,

type forever :- lineinput_repeat(3,5,40,7,7,"Type anything","",_), fail.

accepts input from a user and does nothing with it until he or she presses
Esc.

In order to use lineinput, lineinpuCleave, or lineinput_repeat, the following
database predicates must be declared in the containing program:

databa ••
insmode
lineinpstate (STRING, COL)
lineinpflag

Using the Three lineinputTool Predicates in a Program

This simple illustrative program (from XLINEINt'.PRO) demonstrates all
three lineinput tool predicates in LINEINP.PRO in turn. In each case, one or
more texts are displayed, which can then be freely modified by the user.
Once FlO, Return, or Esc has been pressed, the resulting text input is
displayed.

34 Turbo Prolog Toolbox Owner's Handbook

iDclwle "tdoms. pro"

clataba ..
insmode
lineinpstate (STRING, COL)
lineinpflag

o1a •••
insmode.

iDclwle "tpreds. pro"
iDclwle "lineinp.pro"
iDclwle "status.pro"

~edicat ••
test

o1au •••
test

XUNEINP.PRO

line input (10, 10, 45, 7,7, "Which computer do you have:", "IBM PC", TXT),
write("Resulting text input: ",TXT),nl,faU.

test

test

90al

changestatus ("Modify each of the three texts, pressing CR after each"),
lineinput leave(7,10,40, 7, 7, "Text1: ","This is old text l",TXTl),
lineinput-leave(10,10,40,7,7,"Text2: ","This is old text 2",TXT2),
lineinput-Ieave(13,10,40,7,7,"Text3: ","This is old text 3",TXT3),
removewindow, removewindow, removewindow,
write("TEXTl = ",TXTl),nl,
write("TEXT2 = ",TXT2),nl,
write("TEXT3 = ",TXT3),nl,
fail.

write(lI\nPress the space bar for a demo of lineinputJepeat ll
),

readkey(),
clearwindow,
changestatus (Illineinput repeat requests for new

lines until the ESC key is pressed."),
line input repeat (7,10,40, 7, 7,"Text: II,IIII,TXT),
shiftwindow (OLD) ,
shiftwindow(2) ,
write(ITEXT=",TXT),nl,
shiftwindow (OLD),
fail.

makewindow (2, 7,0,1111,0,0,24,80),
makestatus (112, "Input some new text or modify the old text"),
test.

User Interface Tools 35

Reading a File Name

The tool predicate readfilename in FILENAME.PRO implements a file name
input facility similar to that of Turbo Prolog's user interface. readfilename
allows the user to type in only the file's first name; the default file type is
added to that first name automatically, just as Turbo Prolog adds the .PRO
extension to file names when LOADing and SAVEing programs.
Alternatively, if the user just presses Return with the window empty, then a
complete directory appears in a window on the screen, from which the user
can select a file name by using the arrow keys and pressing Return. Again,
this is the same as the Turbo Prolog system.

read filename is declared as follows:

readfilename (ROW, COL, ATTR, ATTR, STRING, STRING, STRING)

It takes the form

readfilename(Row,Col,Wattr,Fattr,Extension,OldFileName, NewFileName)

where

• Row and Col determine the position of the input field on the screen.
• l'V.zttr and Fattr are the window and frame attributes respectively.
• Extension is the STRING that is to be added to the file name if no file

type is specified.

• OldFileName is the file name to be displayed in the window when it is
first displayed. Users can edit this text and then press Return or FlO
once their preferred file name is in the window.

• NewFileName becomes bound to the new file name with the Extension
added automatically to the user's input if no file type was specified.

A program that uses read filename must include the file LINEINP.PRO-in
addition to TPREDS.PRO, TDOMS.PRO, and FILENAME.PRO-and
contain the following database declarations at an appropriate point:

clataba ••
insmode

36

lineinpstate (STRING, COL)
lineinpflag

Turbo Prolog Toolbox Owner's Handbook

Using readfilename in a Program

The following sample program is given in XFILENAM.PRO.

1Dclucle "tdoms. pro"

clataba ••
insmode
lineinpstate (STRING, COL)
lineinpflag

1Dclucle "tpreds. pro"
1Dclucle "lineinp.pro"
1Dclv.de "filename.pro"
1Dclucle "status.pro"

90al

XFILENAM.PRO

makewindow (2, 7,7, "Instructions", 0, 0, 24, 35), disk (DIR),
nl, wri te (" 1. Set the directory\n to your TOOLS dir: \n" , DIR) , nl, nl,
makewindow(3,7,7,"Results",0,35,24,45) ,
setdir(5,5),disk(DIR),write("Directory=",DIR),nl,nl,
shiftwindow(2),
write (" Now try the following in turn: ") ,nl,
write (" ============================"), nl, nl,
write (" 2. Just press RETURN"),nl,
write (" 3. Give the file name \"test\"") ,nl,
write (" 4. Try the file name \"test.txt\""),nl,
write (" 5. Delete the old name and\n then press RETURN"),
nl, nl, nl, nl,
write (" - CTRL-BACKSPACE deletes the\n old file name"),
write("\n\n\n - Use CTRL-BREAK to stop"),
shiftwindow(3) ,
makestatus (112," Give some file names and inspect the result of

readfilename.") ,
repeat,
refreshstatus,
read filename (20, 41, 7,7, pro, "oldname. datil ,NEWNAME),
write (IFilename=",NEWNAME) ,nl,
fail.

Context-Sensitive Help

This section describes tools for the implementation of context-sensitive
Help facilities. The Help texts are placed in a single Help file by running

User Interface Tools 37

the program in HELPDEF.PRO. When that program is executed, the screen
display looks like this:

r-------Definition of helpfiles--------.

- n
Name of current helptext: ______ _
Window lal:!el: ____________ _

Window attribute: _ Frame attribute: _

Start row: • Start col:. No of rows:. No of cols: •

11111 : to- :; -: - 1111111

.--------,---I1Help text~--------,

Use first lettel' of option 01' select lIIith -) 01' (-

Figure 2.3: Screen Display for HELPDEF.PRO

Each Help text to be stored in the Help file is given a name (which can be
any STRING) by typing it in the Name of current help text field. Run the
program, place the cursor in this field by using the arrow keys, and press
Return. Type the name helpl into the prompt window and press Return.
Next, specify the string that will be used as a label for the window
containing this particular Help text. Move the cursor to the beginning of the
Window label field, and type the label HELP FROM helpl (there's no need to
press Return afterwards). Now fill in the five fields describing the window
and its frame in the same way: make the window and frame attributes 7;
start the window at row 4, column 10; and give it another 6 rows and 20
columns.

Now you are ready to enter the Help text itself. Move the cursor to the Edit
help text field and press Return. Type in or edit the Help text using the
standard Turbo Prolog editing commands. Enter the following text:

Our first example of help
Is a poem to soothe troubled users.

Roses are red
Violets are blue

38 Turbo Prolog Toolbox Owner's Handbook

Sugar is sweet
And users are too!

Leave the editor by pressing FlO. Now save this first Help text in a file:
Move the cursor to the Save help definition field and press Return. When
prompted for a file name enter, XHELP • DEF.

Having done this, let's type in another Help text. Return the cursor to the
Name of current helptext field and press Return. Give this second Help text
the name help2. Now continue as before, labeling the containing window
MORE HELP STILL (just type over the old text), and use the same window size
attributes as last time, but start this one in row 12, column 30. The Help text
for help2 should be as follows:

This is help from help2.
In other words, our second
example of help.

No matter where you go,
there you are.

Finally, save this second help text in the same file, XHELP.DEF, and press
Esc to terminate execution.

HELPDEF.PRO creates two files as a result of this run: XHELP.DEF (which
contains details of the windows the texts are to occupy and an index to the
help texts stored), and XHELP.HLP (which contains the actual texts you
entered in a form that can be used by the tool predicates.)

The database tool predicate helpcontext implements a last in-first out stack
mechanism for Help contexts, using the database tool predicate helptext to
gain access to each Help text. When a program moves into a new context,
the tool predicate push_helpcontext can be used to push a new Help context
O:1to the stack. When that program leaves the current context, the tool
predicate pop_helpcontext is used to remove the current help context and re
establish the old. If it is poSSible for the program to fail while in the current
context, the predicate temp_help_context should be used instead of
push_helpcontext-it automatically removes the Help context on
backtracking.

To obtain Help in a given context, the user calls the tool predicate help,
which is defined in the file HELP.PRO.

User Interface Tools 39

XHELP.PRO uses the Help file just created to illustrate these
mechanisms-try it now. Having set the Help context to helpl, the program
displays Help messages from the helptext with that name. The parts of this
text not visible in the Help window can be displayed by using the arrow
keys.

To leave the Help context, press Esc. The program now enters Help context
help2, and the appropriate Help text is displayed. Pressing Esc returns you
to Help context helpl; press Esc again to return control to the Turbo Prolog
system.

Help Contexts in Tool Predicates

Many of the Toolbox predicates contain calls to make use of context
sensitive Help facilities. In the distribution versions, these Help calls have
been commented out of the definitions. To reinstate them, remove the
opening and ending slashes and asterisks (/* and * /) from the definitions
in XHELP.PRO. Users must create these Help facilities before the calls can
call them.

40 Turbo Prolog Toolbox Owner's Handbook

1Dclude "tdoms. pro"

cIouiu
HELPUNIT = h (STRING)
HELP CONTEXT = SYMBOL
FILEPOS = REAL
FILE = helpfile

databa ••

XHELP.PRO

helptext (HELPCONTEXT ,ATTR, ATTR, STRING, ROW, COL, ROW, COL, FILEPOS)
helpcontext(HELPCONTEXT)
helpfile (STRING)

1Dclude "help.pro"

90al
.... nl (helpfile ("xhelp.hlp")),
consult ("xhelp.def"),
push helpcontext(helpl),
help;
push helpcontext (help2),
help;
pop helpcontext,
help.

Resizing Windows

RESIZE. PRO contains the definition of the tool predicate resizewindow,
which doesn't take any parameters. The call

resizewindow

prompts the user to resize the current window. The arrow keys (and the
Control key for larger steps) are used for resizing, just as in the Turbo
Prolog system.

To move windows on most PCs, you can use the shift-arrow keys. On some
PCs, you must use number keys: press 4 to move left, 2 to move down, 6 to
move right, and 8 to move up.

User Interface Tools 41

Using resizewindow in a Program

XRESIZE.PRO demonstrates the use of resizewindow. Notice that you are
expected to provide defining clauses for the predicate writescr, which is
used to refresh the screen during window resizing. Its declaration is
contained in RESIZE.PRO. Note also that the definition of resizewindow uses
predicates defined in STATUS.PRO, so STATUS.PRO must be included in
any program that uses resizewindow.

1Dclucle "tdoms.pro"

databa ••
windowsize(ROW,COL)

precl1cat ••
writescr

1Dclud. "tpreds. pro"
1Dclucle "status.pro"
1Dclucle "resize. pro"

clau •••
writescr :- keypressed,!.
writescr :-

XRESIZE.PRO

write(IIThe resizing tool predicate allows a window to be resized\n"),
write(tlin the same way as with the Turbo Prolog system. \n\n"),
fail.

writescr :- keypressed,!.
writescr :-

attribute (112),
write (tiThe main advantage of the tool version is that

you can modify\n"),
write (tithe resize predicate to suit your own needs. \n\n"),
attribute (7) •

goal

42

makewindow(1,7,O,"I,O,O,24,80),
makewindow(2,7,7,ltest",5,5,14,70),
resizewindow.

Turbo Prolog Toolbox Owner's Handbook

A Mixed Bag of BIOS Calls

This section describes a few functions that are easily implemented with
calls to the BIOS standard predicate. The definitions of the various BIOS
calling tool predicates are collected together in the file BIOS.PRO. Some of
the tool predicates are implemented as described in the Turbo Prolog
Owner's Handbook (see "Low-Level Support," Chapter 11). These are

• dosver(REAL), which returns the DOS version number;
• diskspace(INTEGER,REAL,REAL), which, for a given disk, returns the

total available disk storage space and the number of bytes currently free;

• mkdir(STRING), which creates a new subdirectory; and

• rmdir(STRING), which removes a subdirectory.

Four others are provided in the Toolbox: getverify and setverify for setting
and reading the BIOS verify switch; border for changing the color of the
screen border; and fin dmatch, which can be used to obtain directory
information from BIOS.

SeHing and Reading the Verify Switch

When the BIOS verify switch is ON, every DOS write operation is followed
by a read operation to ensure that the data has been stored correctly.
getverify returns the state of the verify switch, and setverify sets the verify
switch. They are both called with an INTEGER parameter. For example, if a
call

getverify (Switch)

binds Switch to 0, then verify is OFF; whereas if Switch is bound to 1, then
verify is ON.

Similarly,

setverify (1)

turns verify ON and

setverify (0)

User Interface Tools 43

turns verify OFF.

Changing the Color of the Screen Border

The tool predicate border is used to change the color of the border of the
screen when the screen is working in the 25*80 alphanumeric mode. For
example,

border (15)

changes the color of the border to white.

Reading File Names from the Directory

It is sometimes necessary to find files on a certain disk, disk drive, or
directory, or to obtain the size or creation date of a file. The tool predicate
findmatch is very useful in this connection, since it allows the program to
search a directory for file names that match a given string mask. All
available matching-file information is returned in findmatch's parameters.
findmatch takes a total of ten parameters, the first two being input
parameters and the remainder being output parameters. Thus, in a call

findrnatch(SearchFileSpec,SearchAttr,MatchFileNarne,MFAttr,
MFHour,MFMin,MFYear,MFMonth,MFDay,MFSize)

SearchFileSpec is a normal DOS file specification (for example, of the form
C:*.*), and SearchAttr is a bitmask indicating the bounds of the directory
search as follows:

o ordinary files
1 read-only files
2 hidden files
4 system files
8 volume label

16 subdirectory
32 archive files (used by BACKUP and RESTORE)

So that

44

findrnatch(IB:\\SPECIAL*.PRO",3,MatchFileNarne,MFAttr,
MFHour,MFMin,MFYear,MFMonth,MFDay,MFSize)

Turbo Prolog Toolbox Owner's Handbook

binds MatchFileName to the name of a file in the SPECIAL directory on
Drive B:, which is either a hidden file or a read-only file; MF Attr to a value
indicating its attribute mask according to the above table; MFHour, MFMin,
MFYear, MFMonth, and MFDay to the creation time and date of that file; and
MFSize to the size of that file.

User Interface Tools 45

46 Turbo Prolog Toolbox Owner's Handbook

c H A p T E R

3

Screen-Layout Tools

The Turbo Prolog Toolbox provides tool predicates for designing and
implementing screen layouts easily. In this chapter, you'll learn how to
define a screen layout and how to edit, save, and load the definition. You'll
associate values and actions with fields-and specify no input fields. A few
sample programs follow, then more advanced techniques are discussed:
specifying new keys and screen-definition types, producing inter
changeable screen layouts, and creating new screen definitions from old.
Finally, formatting and printing reports are explained.

If you follow through the examples and type in the instructions shown,
you'll find it easier to understand the various concepts behind screen
layout definitions.

Many of these screen tools are not restricted to the row and column
dimensions of the PC screen; they allow you to work with a virtual screen.
So you can offer users any size of screen-though, of course, only one
monitor-sized screenful of a larger window can be viewed at a time.
Moreover, the screen-layout tools are designed so that you can work with a
PC-sized screen first, then move to virtual-screen capabilities only when it
becomes necessary: The real-screen tools and the virtual-screen tools are
entirely compatible.

Whether you're working with real screens or virtual screens, screen-layout
definitions are created by running the program in SCRDEF.PRO. These
layout definitions are then used by the screen-handling tool predicate

Screen-Layout Tools 47

scrhnd. The definition of scrhnd for real screens is contained in
SCRHND.PRO; for virtual screens, that definition is in VSCRHND.PRO.
These definitions are entirely compatible. In fact, you can use
VSCRHND.PRO even when working with real displays, although the total
program code size will be greater.

scrhnd enables you to associate actions and a value with each data field
specified in a layout definition. For example, having defined two fields in
which prices are entered, the action associated with each of these two fields
may be to pop up a menu from which items with specified prices can be
selected, and to add the price of the item chosen to a running total. This
running total can then be used to determine the value to be displayed in a
third field that is reserved for the total cost of the two items.

Basic Screen-Layout Definition

Run the program SCRDEF.PRO and select the Define Screen Layout option
from its main menu. The screen should now look like Figure 3.1.

iMlng screen layout

:. r-. \ :; 1:. :."\ : -: .:: :.:\ ::: . . :. ..': :: . : .. ~ : -: ~ ... : ,-';;.::' ::1.. _ .

Figure 3.1 : The Define Screen Layout Option

To specify fields for text display or data entry with SCRDEF.PRO, move the
cursor to the desired position and use the Function keys to define a field.

48 Turbo Prolog Toolbox Owner's Handbook

Let's work through an example that will result in the following screen
layout.

Mai ling Li st Ent~y:

fi~st Name(s) : ______ _
Last Name: _______ _

St~eet:

City:

State:
Zip Code: _

Supplementa~y Info~mation: ___ _

Discount: Telephone: __ _

Figure 3.2: Screen Layout for Mailing List Entries

To define this screen layout, first move the cursor to row 2, column 22 (or
2,22) of the screen (the top left-hand corner of the screen is row 0, column
0). Type in the phrase Mailing List Entry. Then move the cursor to position
(3,22) and type in ****************. Next, move the cursor to (5,22) and
enter First Name (s) :. You have defined three fixed fields of text.

Next, move the cursor to position (5,36), where the first data field should
start. Define this position to be the start of a data field by pressing F4. (The
status line at the bottom of the screen shows the effects of the various
function keys.) SCRDEF.PRO then prompts for the name by which the
defined field will be known within a Prolog program: Let's call it
FirstNames. Type this in the prompt window and press Return. You are
prompted for the type of the field. Since this must be a string field, select
the String option from the menu and press Return. Now define the length
of the field by pressing the right arrow key until a field of the correct size is
shaded on the screen. Press the right arrow key twenty-three times and
observe how the data field is shaded. Now press Return, and the definition
is complete.

Since the cursor is still in a field, the name of that field and its type (if it is a
data field) are displayed at· the top of the screen. Move the cursor to

Screen-Layout Tools 49

position (7,22). Note that when you move the cursor from the data field just
defined, the relevant information at the top of the screen is deleted.

The remaining fields in Figure 3 are defined similarly; you should now
complete them. When you have defined all fields, press FlO. To save this
layout definition in a file, select the Save Screen Layout option from the
menu. When prompted for a file name, save this definition under the name
XMAIL.SCR.

The contents of XMAIL.SCR constitute a screen definition file. Such a file
contains clauses for three database predicates corresponding to the
following declarations:

elataba ••
field (FieldName, Type, Row, Column, Length)
text field (Row, Column, Length, FieldString)
windowsize(Height,Width)

The database predicate windowsize uses Height and Width to determine the
size of the window through which the user can view the real or virtual
screen. Clauses for text field specify the text fields in the (virtual) screen
layout, with each text field specified by its position (Row,Column), the
Length of the field, and its contents (FieldString). Clauses for the database
predicate field specify the data fields: FieldName gives the name of a field,
Row and Column specify the starting position of that field within the
(virtual) screen window, Length names the length of that field, and Type
specifies which type of data this field can accept.

In this example, SCRDEF.PRO generates the following text-file description
of the screen layout (to see this description, select the Edit Screen Definition
File option of SCRDEF.PRO and enter the file XMAIL.SCR).

50

field (IFirstNames", str, 5, 36, 23)
field (IILastName ll , str, 7,33,26)
field ("Street", str, 9, 33, 26)
field ("City", str, 11, 33, 26)
field ("State", str, 13, 33,26)
field (IZipCode", str, 15, 33, B)
field(ISupplnfo",str,17,49,10)
field ("Discount", real, 19, 31, B)
field(ITel",str,19,50,14)
txtfield(2,22,19,"Mailing list entry:")
txtfield (3, 22,19,"*******************")
txtfield(5,22,14,"First Name(s):")
txtfield(7,22,11,"Last Name: ")
txtfield(9,22,7,IStreet:")
txtfield(1l,22,1l,"City: ")
txtfield(13,22,11,"State: ")
txtfield (15, 22, 9, "ZipCode: ")

Turbo Prolog Toolbox Owner's Handbook

txtfield(17,22,27,"Supplementary information: ")
txt field (19, 22, 9, "Discount: ")
txt field (19, 39, 11, II Telephone: ")
windowsize(20,77)

This 'example layout design is specified. Nonnally, however, you would
run SCRDEF.PRO with only the most basic of layout specifications and
experiment with various layouts until a satisfactory layout is achieved.

SCRDEF.PRO provides tools to help you play around with different
layouts, including: deletion of a text or data field previously defined (press
F3), insertion of a virtual screen line (F8), and the ability to resize the
containing window (Shift-FlO). The section "Facilities in SCRDEF.PRO"
shows you how to use these facilities and describes how it is possible for
screen layouts to contain boxes (drawn with the cursor keys). In the next
section, however, you'll see how the screen handler, scrhnd, uses the screen
definition just created.

Basic Use of the Screen Handler

The program XMAIL.PRO makes use of a screen-layout definition and calls
the tool predicate scrhnd from either SCRHND.PRO or VSCRHND.PRO.
Since the definitions are compatible, the following example uses
SCRHND.PRO.

The sequence

consult("xmail.scr"),
createwindow (TopLineSwitch) ,
scrhnd (TopLineSwi tch, KeyU sedForReturn)

contains scrhnd, which activates the screen-layout defined in XMAIL.SCR.

The second line, createwindow, is a tool predicate that creates a window in
which the screen-layout specification obtained by consulting MAILDEF.SCR
is displayed.

scrhnd takes two parameters and uses the values consulted from
XMAIL.SCR to fonn a screen display. The application's user then types
information into the appropriate fields in this screen-a name, address, and
telephone number, for example. Indeed, the user can fill in the entries for
each field and edit them in various order until he or she terminates input
by pressing FlO or Esc.

Screen-Layout Tools 51

KeyUsedForReturn, the parameter in the third line of the example sequence,
is bound to the code for the key that terminates the screen handler. If
TopLineSwitch is bound to ON, a line is displayed at the top of the screen
giving the name of the field that currently contains the cursor. No such line
is displayed if TopLineSwitch is bound to OFF.

Suppose that the user makes the entries shown in Figure 3.3.

:- . .. : ~. . t: :. ~. :1:

Mailing List Entry:
******************* first Name(s): ______ _
Last Name: _______ _

Street:

City:

State:

Zip Code: ..
Supplementary Information: ••• __ _

Discount:_._ Telephone:' -
Figure 3.3: Sample, Mailing-List Entries

On return from scrhnd, entries are automatically made in the database for
the predicate value declared by

clataba ••
value (FieldName, String)

as follows:

value (IFirstNamesl,"Wilbur James")
value (ILastNamel,IThompson")
value (IStreet l ,"37 East 28th Street")
value (ICityl,"New York")
value (IStatel,"NY")
value ("Tel", "212-348-1234")
value ("ZipCodel ,"23456")
value ("Discount", "28")

The following sample application (XMAIL.PRO) allows users to enter
information using the screen layout defined earlier and then displays an
address label constructed from the data entered. The program assumes that
the example screen layout in the preceding paragraphs has been saved in a
file called XMAIL.SCR. All the domain and (database) predicate definitions

52 Turbo Prolog Toolbox Owner's Handbook

necessary for using scrhnd are contained in the include file
HNDBASIS.PRO.

iDcl.ude "handbasis. pro"

90al
consult (lIxmail. scr"),
createwindow (on),
scrhnd (on,),
clearwindow,
value(IFirstNames",FName),
value(ILastName",LName),
value(IStreet",Street),
value(ICity",City),
value(IState",State),
value ("Tel", Tel),
value(IZipCode",Zip),
value(IDiscount",Discount),nl,nl,TAB

XMAIL.PRO

write ("+---II),nl,
write (FName, II ", LName, "\n", Street, "\n", City, "\n", State, "\n") ,nl,
write(IIYour reference number will be your telephone number:",Tel),nl,
write(lIyou have been granted ",Discount,"% discount."),nl,
write("+-------------------------~-------------------------------------II~.

Facilities in SCRDEF.PRO

You can use the program SCRDEF.PRO to generate screen-layout defini
tions along the lines of the earlier examples. When SCRDEF is executed, the
following menu appears.

Screen-Layout Tools 53

r--Scmn definition--
--Save SCl'een layout
Load meen I ~out
Edit layout de inition file

Figure 3.4: Menu Displayed by SCRDEF.PRO

You can then do one of the following: Define a screen layout, Save the
current screen-layout definition in a file, Load a previously saved screen
layout definition, or Edit (or browse) through a file containing a screen
layout definition. Pressing the first letter of each menu item (shown here in
boldface type) calls up that command. In the following sections, each of
these commands are described in more detail.

Define Screen Layout

The Define command enables the screen-layout editor so that you can
define a new screen layout or modify an existing one. Editing takes place in
a window that initially has 21 rows and 78 columns. This window is your
view on a virtual screen having up to 32,768 rows and 32,768 columns. You
move around this virtual screen using the usual Turbo Prolog editor
cursor-movement commands (listed in Chapter 12 of the Turbo Prolog
Owner's Handbook.

During the Define command execution, the top of the screen holds a status
line describing the current cursor position. If the cursor is positioned in a
defined field, the status line also contains a description of that field, giving
the field name and type. During Edit, a Help line at the bottom of the
screen contains a list of those function keys having special meaning during
layout definition:

54 Turbo Prolog Toolbox Owner's Handbook

Fl:Hlp F3:Del fld F4:Def fld F5:Box F7:Del line F8:Ins line S-FIO:Resize FIO:End

The functions provided by these keys are as follows:

Help facilities FI
Pressing FI causes a window containing Help text to pop up; you can
either browse through the text or search for a specific text using the Turbo
Prolog editor's Search command. Pressing Esc or FlO returns control to the
screen-layout editor.

Inserting fixed fields
Pressing any key other than a cursor-movement or function key
immediately defines a fixed field containing that character and any text
typed to its right.

Deleting a field F3
If the cursor is currently positioned anywhere in a defined field, pressing
F3 deletes that field from the screen-layout definition.

Defining data fields F4
F4 is used to define a data field. When pressed, you are prompted for a
name by which that field will be known. Next, the type of field required

. must be specified as INTEGER, REAL, or STRING. (This type-checking
facility is easy to expand and/or modify as described later in "Adding Your
Own Screen-Definition Types.") Finally, you must specify the length of the
field, using the arrow keys. Terminate the field definition by pressing
Return.

Enter box-drawing mode F5
Pressing F5 switches you into box-drawing mode, where the cursor keys
are used to draw straight line segments. Screen layouts can thus
incorporate boxes, which can be used to group related fields or to organize
the layout. Boxes can be drawn anywhere on the virtual screen; also, they
can overlap. Press FlO to leave box-drawing mode and return the cursor
keys to their normal function. The box-drawing facility is most effectively
used by swapping between normal and box mode and using the space bar
to delete drawing errors as necessary. Extended ASCII graphics characters
are stored in fixed fields to represent the line segments that make up the
boxes.

Delete a line F7
To remove a line on the screen, press F7.

Screen-Layout Tools 55

Insert a line F8
To insert a blank line on the screen, press F8.

Resize the window Shift-FlO
To resize the screen-layout editor window, hold Shift down and press FlO.
A new Help line appears at the bottom of the screen that specifies which
keys may be used to resize the window (which, by default, is as large as it
can be).

Return to the main menu
Press FlO or Esc.

Save Screen Layout

FlO, Esc

This command saves a screen-layout definition in a disk file. After the File
Name: prompt, the user can press Return to view a box menu of .SCR files
and check which file names have already been used. Pressing Esc then
takes the user back a step to the File Name: prompt.

Load Screen Layout

This command loads a previously saved screen layout from a disk file.
Pressing Return in response to the File Name: prompt produces a box menu
of .SCR files, from which you can select a file to work with. When the
screen-definition file is loaded, SCRDEF.PRO checks that

• the clauses conform to the syntax for the appropriate database
predicate,

• no two fields have the same name,
• no two fields overlap,
• any string in a text field is not longer than the length of that text field.

If an error is detected, the main Turbo Prolog editor is entered, and the
cursor is positioned at the error. Once the error has been corrected and the
editor exited by pressing FlO, the Load operation is rerun from the
beginning.

56 Turbo Prolog Toolbox Owner's,Handbook

Edit Layout Definition File

This command enables the user to edit or browse through a screen
definition file. Be careful when editing defining clauses here; doing so can
lead to inconsistencies.

Associating Values with Fields

In order to demonstrate how values are associated with fields in a screen
layout definition, let's work through a small example. This time, it's a
program designed to simulate a simple adding machine. The user types in
two numbers, and a field shows the total of the entries (if any) in the two
fields. When the program is executed, the display looks like Figure 3.5.

First Number: __

Second Number: _

Total: _

Figure 3.5: Screen Layout for the Adding Machine Simulator

The first step is to define the screen layout using SCRDEF.PRO. Let's
assume that you've already done this, and the screen-layout definition is in
the file ADDERDEF.SCR. Assume further that the names of the fields are
FirstNo, SecondNo, and Total and that they are all of REAL type. The
contents of ADDERDEF.SCR thus resemble the following:

Screen-Layout Tools 57

field (IFirstNo", real, 5,38, 9)
field (" SecondNo" , real, 7,38, 9)
field ("Total", real, 10, 38, 9)
txt field (5,23, 13, "First Number: ")
txt field (7,23,14, "Second Number: II)
txtfield (10, 30, 6, "Total: ")
windowsize(21,77)

When this screen-definition file is used in conjunction with scrhnd, the user
is presented with the specified screen layout and should type in strings
corresponding to valid real numbers for the FirstNo and SecondNo fields.
scrhnd records these values as strings in the database for the value predicate.
Thus, if the user types 23 and 76 respectively, the corresponding database
entries are

value (IFirstNo", "23") •
value (ISecondNo", "76") .

. In order to associate a value with the Total field, which depends on the
FirstNo and SecondNo values entered by the user, use the tool predicate
field_value. It takes two parameters, the name of a field and the value to be
displayed in that field. Thus,

field value(ITotal",T) :-
-value(IFirstNo",N1),
str real(N1,Num1),
value (ISecondNo",N2),
str real(N2,Num2),!,
Tnum = Num1tNum2,
str _real (T, Tnum) .

field_value (ITotal",N1) :- value("FirstNo",N1),!.

field_value ("Total",N2) :- value("SecondNo",N2),!.

field_value (IITotal", "Oil) .

defines the value to be displayed in the Total field as: the sum of FirstNo
and SecondNo, if both have been entered; the value of one, if that is all that
the user entered; or zero, if the user hasn't made any entries.

The final step is to update a copy of HNDBASIS.PRO by editing it to
include the above clauses for field_value. HNDBASIS.PRO provides the
basic framework for programs that use the screen-handling tools. It
contains all the necessary database predicate and domain definitions, and a
reminder that, in general, a program using scrhnd should define clauses for
the field_action, field_value, and noinput tool predicates.

58 Turbo Prolog Toolbox Owner's Handbook

HNDBASlS.PRO

1**
A minimal structure for a program that uses the screen handlers.
**1

1**
Domains

**1

inclwle "tdoms. proll

dcuw
FNAME = SYMBOL
TYPE = int (): str (): real ()

1**
Database Predicates

**1

databa ••

r Database declarations used in SCRHND * /
insmode
act field (FNAME)
screen (SYMBOL,DBASEDOM)
value (FNAME,STRING)
field (FNAME, TYPE, ROW, COL, LEN)
txtfield (ROW, COL, LEN, STRING)
windsize(ROW,COL).

r Global insertmode */
r Actual field * /

r Saving different screens * /
r Value of a field */

r Screen definition * /

notopline

r Database predicates used by VSCRHND */
windstart(ROW,COL)
mycursord (ROW, COL)

r Database declarations used in LlNEINP * /
lineinpstate (STRING, COL)
lineinpflag

1**
Include tools

**1

inclwle "tpreds. pro II
inclwle "menu.pro"
inclwle "status.pro"
inclwle "lineinp.pro"
iDclwle II scrhnd. pro"

clau •••

Screen-Layout Tools 59

1**
field action

**1

1**
field value

**1

field_value (FNAME, VAL) : - value (FNAME, VAL), I •

1**
noinput

**1

noinput U : - fall.

Note that the default value for a field is defined as the value the user types
by the clause

field_value (FNAME,VAL) :- value (FNAME,VAL),I.

Now, copy HNDBASIS.PRO into the editor and move your cursor to the
first line after the field_value comment line. Insert the clauses worked out a
few pages earlier for the Total field's value-all ten lines of code. Then, at
the very end of the program, type in these lines:

9'0a1
consult (" ADDERDEF . SCR") ,
createwindow(off),
scrhnd(off,_).

Save the modified file under the name MYADDER.PRO

Compile and execute the result. Experiment with the adding machine
produced, using the arrow keys to select the two input fields. Notice what
happens when you type a new value over an existing one, type in non
numeric values, or press Del.

60 Turbo Prolog Toolbox Owner's Handbook

Associating Actions with Fields

The tool predicate field_action takes one parameter-a field name-and
allows one or more actions to be carried out if Return is pressed while the
cursor is in that field. Let's work on the example you just created: You'll
arrange things so that whenever Return is pressed in the Total field, the
current value of the Total field is copied into a new field, the Memory field,
which functions like the Memory button on some calculators.

First, redefine the screen layout as shown in Figure 3.6.

Fi~5t Numbe~: __

Second Numbel': _

Total: _

Figure 3.6: The Adding Machine with Memory

Save results in a screen-definition file, XMADDER.SCR, whose contents
should be similar to the following:

field ("FirstNo" , real, 5,38,9)
field (" SecondNo" , real, 7,38, 9)
field ("Memory", real, 8,56, 9)
field ("Total", real, 9,38,9)
txtfield(9,30,6, "Total: ")
txtfield (5, 23, 13, "First Number: ")
txtfield (7,23,14, "Second Number: ")
txtfield (7,57,6, "Memory")
windowsize(21,77)

Screen-Layout Tools 61

Next, take MYADDER.PRO, which is actually HNDBASIS.PRO with the
following altered field_value clauses:

field value(ITotal",T) :-
-value (IFirstNo" ,Nl),
str real (Nl, Numl),
value (" SecondNo" , N2) ,
str real (N2,Num2), !,
Tnum = Numl+Num2,
str _real (T, Tnum) .

field value(ITotal",Nl)
-value(IFirstNo",Nl),!.

field value ("Total" ,N2) :
-value (ISecondNo" ,N2), ! .

field_value(ITotall,IO").

field value(FNAME,VAL) :
-value (FNAME, VAL) , ! .

Change the field action for Total from the default defined by

to

field_action U : - !, fail.

field action ("Total")
-l'etl'lct(value(IMemory",)) ,fail.

field action(ITotal") :-
-field value(ITotal",T),
.... 1'£. (value ("Memory" , T)) .

When Return is pressed in the Total field, therefore, the current value of
Total is asserted for Memory.

Now, change the goal so that XMADDER.SCR is consulted rather than
ADDERDEF.SCR, and you're done.

The following program, XMADDER.PRO, shows the completed code. Try
modifying it so that when Return is pressed in either FirstNo or SecondNo,
the current value of Memory becomes the value of that field (while the value
of Memory remains unaltered).

62 Turbo Prolog Toolbox Owner's Handbook

check determ code=2000

1Dclude "tdoms. pro"

dou,in.
FNAME = SYMBOL
TYPE = int()i str()i real()

databa ••
r Database declarations used in SCRHND */

insmode
actfield (FNAME)
screen (SYMBOL, DBASEDOM)
value (FNAME,STRING)
field (FNAME, TYPE, ROW, COL, LEN)
txtfield(ROW,COL,LEN,STRING)
windowsize(ROW,COL).
notopline

r Database declarations used in VSCRHND * /
windowstart (ROW, COL)
mycursord (ROW, COL)

r Database declarations used in LlNEINP */
lineinpstate (STRING, COL)
lineinpflag

1Dclucle "tpreds. pro"
1Dclucle "menu. pro"
1Dclucle "status.pro"
1Dclucl. "lineinp.pro"
include "scrhnd.pro"

qo.l
consult (lIxmadder.scr"),
createwindow (off) ,

XMADDER.PRO

makestatus (112, II Type some numbers"),
scrhnd(off,J.

cl.u •••

r Global insertmode * /
r Actual field * /

r Saving different screens * /
r Value of a field * /

r Screen definition * /

1**
field action

**1

field action("Total") :-
- r.tr.ct (value ("Memory", J), f.il.

field action(ITotal") :
-field value("Total",T),
... .rtI(value(IMemory",T)) .

Screen-Layout Tools 63

1**
field value

**1

field value("Total",T) :-
-value ("FirstNo", Nl) ,
str real (Nl, Numl) ,
value ("SecondNo" ,N2),
str real (N2,Num2),!,
Tnum = NumltNum2,
str_real(T,Tnum).

field value ("Total", Nl)
-value("FirstNo",Nl),!.

field value ("Total" , N2) :
-value("SecondNo",N2),!.

field_value ("Total","O") :-!.

field value (FNAME, VAL) :
-value (FNAME, VAL) , ! .

1**
noinput

**1

noinput U : - f.il.

No-Input Fields

You may have spotted one slight problem with the adding-machine-plus
memory program: The user can type values into the Memory field.
Fortunately, any such user-initiated entry is overridden when the program
makes a proper entry in that field. Nevertheless, it's still an untidy feature.
And the same failing applies to the Total field, although the effect is less
noticeable.

Thanks to the noinput predicate, blocking users from entering text into
specific fields is easy to arrange. In this case, just specify the Memory and
Total fields as no-input fields by replacing the default defining clause for
noinput (near the end of the program) in HNDBASIS as follows:

noinput("Memory").
no input ("Total") .

Make these alterations, then verify that you can't enter information in the
Memory and Total fields.

64 Turbo Prolog Toolbox Owner's Handbook

Computing Travel Time

Suppose you need to catch a plane and want to know how fast you'll have
to drive to get to the airport on time. Naturally, you have with you your
computer, the Turbo Prolog system and Toolbox, and a source of power.
You call up the following program, XTRA VEL.PRO, which looks at the
desired arrival time and the distance left to go, and works out the average
speed necessary to meet the deadline. It uses the screen-layout definition)
in XTRA VEL.SeR, which the screen handler displays in the format shown
in Figure 3.7.

.. . -
Figure 3.7: The XTRAVEL Screen Layout

Going from top to bottom, the useful data field names are arrivetime,
timenow, miles, and speed. There is also a field called flip, which displays a
speedometer dial (and demonstrates just how powerful the Toolbox
screen-handling facilities are).

Another useful feature is that the timenow field is continually updated, like
a real time clock. You accomplish this by defining the field value for
timenow as follows:

field value(tirnenow,TlME) :-
, -tirne(Ho,M,S,H),

T = St((HtSO) div 100),
str int(Seconds,T),std(Seconds,SecondsSt),
str-int(Minutes,M),std(Minutes,MinutesSt),
str=int(Hour,Ho),

Screen-Layout Tools 65

std(Hour,Hour5t),
concat (Hour5t, ": II ,51) ,concat (51, MinutesSt, 52) ,concat (S2, ": II ,S3),
concat(S3,SecondsSt,Time).

Here, the predicate std ensures that the time is always displayed in the
standard hh:mm:ss format. The standard predicate time accesses the system
clock.

The user can reset the clock whenever Return is pressed with the cursor in
the timenow field. Hence, a field action for timenow is defined as follows:

field action(timenow) :-
-makewindow(1, 7, 7,"5et new time",5,5,8,40),

write (IIHours: \t"), readint (H) ,nl,
write (IIMinutes: \t") ,readint (M) ,nl,
write (IISeconds: \t") ,readint (5),
time (H,M, 5, 0), fall.

field action(timenow) :
-removewindow.

To determine the necessary speed and display it in the speed field, convert
the strings into numbers:

field value(speed,NecSpeed) :-
-field value (timenow, TimeStr),

value (arrivetime,ArriveStr),
timediff(ArriveStr,TimeStr,TimeSecs),
value(miles,Mile5tr),!,
str real (MileStr,NoOf Miles),
ReaISpeed = NoOfMiles/(TimeSecs/3600),
str_real(NecSpeed,ReaISpeed).

field value(Fn,X) :
-value (Fn, X) , ! .

{/* Values from normal user input*/l

As you can see, timedif/(ArriveStr,TimeStr,TimeSecs) returns TimeSecs as the
difference, in seconds, between ArriveStr and TimeStr, which are time
periods represented as strings in the form hh:mm:ss.

The no-input section is easy:

noinput(speed).
noinput (timenow) .

To complete the basic program, give it a goal and define the predicates
used to specify the field values and actions:

clcu1Da
!LIST = INTEGER*

66 Turbo Prolog Toolbox Owner's Handbook

~eclicat ••
time split (STRING, INTEGER, INTEGER, INTEGER)
timediff(STRING,STRING,REAL)
str_intgl (STRING, ILIST)

90U
consult (lixtravel. scr"),
createwindow(off),
scrhnd(off,_).

c:1a", •••
str intgl(IIII,[)) :-!.
str -intgl (STR, [H I T)) :-

- fronttoken(STR,INTSTR,REST),
str int (INTSTR, H) , ! ,
str-intgl(REST,T).
str-intgl(STR,T) :
fronttoken(STR, ,REST),
str_intgl(REST,T).

timesplit(TimeStr,H,M,S) :-
str intgl(Timestr,Intglist),
Intglist = [H,M,S).

timediff (TimeStrl, TimeStr2, DiffSecs)
timesplit(TimeStrl,Hl,Ml,Sl),
timesplit(TimeStr2,H2,M2,S2),
TotSecsl = Hl*3600.0tMl*60tSl,
TotSecs2 = H2*3600.0tM2*60tS2,
DiffSecs = TotSecsl-TotSecs2.

All that remains is to complete the speedometer. To do so, add the database
predicate declaration

flip (STRING)

to the existing ones. This defines a field value for the field flip as follows:

field value(flip,STR2) :- !,
-r.tract(flip(STR)),

frontchar (STR,CH,STR1),
str char(CHS,CH),
concat (STR1,CHS,STR2),
... RtI(flip(STR2)),! .

You also need to add the clause

Here's the complete program listing.

Screen-Layout Tools

").

67

check determ code=2000

1Dcl.acle "tdoms. pro"

dou1D.
FNAME = SYMBOL
TYPE = intI); str(); real()

databa ••
r Database declarations used in SCRHND */

insmodeT
actfield(FNAME)
screen (SYMBOL, DBASEDOM)
value (FNAME,STRING)
field (FNAME, TYPE, ROW, COL, LEN)
txt field (ROW, COL, LEN, STRING)
windowsize (ROW, COL) •
notopline

r Database predicates used by VSCRHND */
windstart(ROW,COL)
mycursord(ROW,COL)

r Database declarations used in LlNEINP */
lineinpstate(STRING,COL)
lineinpflag

flip (STRING)

1Dcl.ucl. "tpreds. pro"
1Dcl.ucl. II status. pro"
1Dcl.ucle "lineinp. pro"
1Dcl.ucl. II scrhnd. pro"

XTRAVEL.PRO

p:r:.clicat ••
timesplit(STRING,INTEGER,INTEGER,INTEGER)
timediff (STRING, STRING, REAL)
std (STRING, STRING)

goo.l
consult("xtravel.scr"), createwindow(off), scrhnd(off,J.

clau •••

r Global insertmode * /
r Actual field * /

r Saving different screens * /
r Value of a field */

r Screen definition * /

1**
field action

**1

68

field action(timenow) :-
- makewindow (1, 7,7, "Set new time II ,5,5,8,40),

write (IIHours: \t"), readint (H) ,nl,
write (IIMinutes: \t"), readint (M) ,nl,

Turbo Prolog Toolbox Owner's Handbook

write("Seconds:\t"),readint(S),
time (H,M, S, 0), fall.

field action (timenow)
-removewindow.

field action(speed)
-makewindow(1, 7, 7, "ERROR Window",S,S,8,40),
write("\n\n This is not an input field"),
sound(100,300),
Readchar (),
removewindow.

/**
field value

**/

field value (timenow, TIME) : - !,
-time (Ho,M,S,H),

T = S+((H+SO) div 100),
str int(Seconds,T),std(Seconds,SecondsSt),
str -int (Minutes,M), std (Minutes,MinutesSt),
str -int (Hour,Ho),
std(Hour,HourSt),
concat (HourSt,":", Sl) ,concat (Sl,MinutesSt,S2), concat (S2,":", S3),
concat(S3,SecondsSt,Time).

field value(speed,NecSpeed) :- !,
-field value(timenow,TimeStr),

value (arrivetime,ArriveStr),
timediff(ArriveStr,TimeStr,TimeSecs),
value (miles,MileStr), !,
str real (MileStr,NoOf Miles),
ReaISpeed = NoOfMiles/(TimeSecs/3600),
str _real (NecSpeed, RealSpeed) .

field value (flip, STR2) : - !,
-retract(flip(STR)),

frontchar (STR, CH, STR1),
str char (CHS, CH),
concat (STR1,CHS,STR2),
a ... rtl(flip(STR2)),!.

r Values from normal user input .,
field_value (Fn,X) :- value(Fn,X),!.

flip(II ").

/**
noinput

**/

no input (speed) .
noinput(timenow).
noinput (flip) .

/**
Intermediate predicates

**/

Screen-Layout Tools 69

cio.uiD.
ILIST = INTEGER*

predicate.
str _ intgl (STRING, ILIST)

clau.e.
str intgl("",[ll :- !.
str-intgl(STR,[HIT]) :-

- fronttoken(STR,INTSTR,REST),
str int(INTSTR,H),!,
str-intgl(REST,T).
str-intgl(STR,T) :
fronttoken (STR, , REST) ,
str_intgl(REST,T) .

timesplit(TimeStr,H,M,S) :-
str intgl(Timestr,Intglist),
Intglist = [H,M,S].

timediff (TimeStrl, TimeStr2,DiffSecs)
time split (TimeStrl,Hl,Ml,Sl),
timesplit(TimeStr2,H2,M2,S2),
TotSecsl = HI *3600. O+Ml *60+S1,
TotSecs2 = H2*3600+M2*60+S2,
DiffSecs = TotSecsl-TotSecs2.

std(H,HS) :- str_len(H,L),L<2, !,concat("O",H,HS).
std(H,H).

Three Sample Programs

Following are three programs that show you different ways to use screen
handlers. One sorts through your database and pulls out entries that match
your specifications. The second helps you record sales transactions. Lastly,
the label-printing utility, XLABEL.PRO, is explained.

Sorting for Common Interests

The basic facilities provided by the screen handler make it easy to construct
programs with impressive user interfaces. The program in XCLUB.PRO
maintains a database containing people's names, addresses, and interests,
and searches the database for those people having a particular set of
interests. The sample database is called XCLUB.DBA. The menu shown in
Figure 3.8 is displayed when the program is executed.

70 Turbo Prolog Toolbox Owner's Handbook

~-~I'HOICE------,
Save new database
I n!ut new person 'lean entry
IisMaTataSe

Figure 3.8: XCLUB.PRO's Menu

The first option, Save New Database, saves the sorted database in a disk
file. When that option is selected, you are prompted for a file name, which
is given the extension .DBA by default.

The last option, List Database, displays the current contents of the database
on the screen.

If any of the remaining three options is selected, the screen shown in Figure
3.9 is displayed, with the bottom message line containing the appropriate
Help information. This screen layout is specified in the screen-definition file
XCLUB.5CR, ready for use by the screen handler.

Screen-Layout Tools 71

Database of people and theil' intel'ests
***************************** ~**

Na:
Addl'ess: ________ _

Age: • Sex: I (m fol' male Ol' f fol' female)

lntemts:

(Intel' i ntel'ests sepal'ated by one Of' mol'e spaces)

Figure 3.9: XCLUB.SCR's Screen Layout

The Input New Person option allows the user to fill in the entries shown in
Figure 3.9. Pressing FlO adds that person to the database in memory.

To update an Entry, you must fill in the Name field. The program then
searches for the first entry in the database with that Name field value. If the
entry can't be matched, the main menu is displayed. If a matching entry is
found, the remaining fields in Figure 3.9 are filled in automatically; you can
then modify them. When you're done, press FlO to return to the main
menu.

The Find People With These Interests option allows you to type in a list of
interests, separated by one or more spaces (for example, golf
fishing aerobics). Press FlO to display successive screens of all the people
in the database with those interests.

Using Screen Handlers in a Sample Program

This program uses many of the tools introduced so far, particularly the
screen-handling facilities described in the section "Basic Use of the Screen
Handler."

72 Turbo Prolog Toolbox Owner's Handbook

HNDBASIS.PRO is used with the addition of the database predicate
person(Name,Address,Age,Sex,Interests) and the declaration of defining
clauses for the remaining predicates used. The default clauses for
field_action, field_value, and noinput remain the only defining clauses for
those predicates.

check determ code=3000

iDclud. "tdoms. pro"

dcu.in.
FNAME = SYMBOL
FNAMELIST = FNAME*
TYPE = intI); str(); real()

dcu.in.
r Domains for the demo * /

Name, Address = STRING
Age = INTEGER
Sex = m or f
Interest = symbol
Interests = Interest*
FILE = textfile

databa ••
r Database declarations used in SCRHND * /

insmode
act field (FNAME)
screen (SYMBOL, DBASEDOM)
value (FNAME, STRING)
field (FNAME, TYPE,ROW, COL, LEN)
txtfield(ROW,COL,LEN,STRING)
windowsize(ROW,COL).
notopline

r Database predicates used in VSCRHND */
windowstart (ROW, COL)
mycursord (ROW, COL)

r Database declarations used in L1NEINP */
lineinpstate(STRING,COL)
lineinpflag

r Local database */
person (Name,Address,Age, Sex, Interests)

iDclude "tpreds.pro"
include "menu. pro"
iDclude IIstatus.proll
include "lineinp.pro"
iDclude "filename.pro"
include II scrhnd. pro"

Screen-Layout Tools

XCLUB.PRO

r Global insert mode */
r Actual field * /

r Saving different screens * /
r Value of a field */

r Screen definition * /

73

predicat ••
r Predicates for the people demo *'

gsex (STRING, Sex)
ginterests(STRING,Interests)
gperson(Dbasedom)
wperson (Dbasedom)
listdba
wr(DBASEDOM)
process (INTEGER)
nondeterm member (INTEREST, INTERESTS)

go.l
makewindow(77,7,0,"",0,0,24,80),
makestatus (112, '"'),
consult ("xclub. scr"),
consult("xclub.dba"),
repeat,
changestatus (" Select an option."),
menu(10,25, 7, 7,

["Save new database",
"Input new person",
"Update an entry",
"Find people with your interests",
"List database" J ,

"CHOICE",
4,Ch) ,

process(CH),CH = O,!.

cl.utI ••
member (X, [X I J).
member (X, [_I LJ) : - member (X, L) .

field action() :- f.11.
field-value (FNAME, VALUE) : - value (FNAME, VALUE), ! .
noinput(_) :- f.11.

74

process(O).
process (1) :-

changestatus ("Type in a name for the database."),
readfilename(10,10,7,7,dba,"xclub.dba",FILE),
openwrite (textfile,FILE),
writedevice(textfile),
listdba,
close file (textfile) .

process (2) :-
r.tract (value (,)) ,f.11.

process (2) :- - -
createwindow (off) ,
changestatus ("Enter data on new person. Move cursor with arrows.

FlO :End"),
scrhnd (off,KEY) ,not (KEY=esc),
gperson(P) , •••• RI (P) ,f.11.

process (2) :-
removewindow.

process (3) :-
r.tract (value (,)), f.11.

process (3) :-
createwindow (off),
changestatus("To find an old record, give a name and press FlO."),

Turbo Prolog Toolbox Owner's Handbook

scrhnd (off,KEYl) ,not (KEY1=esc),
value(fl,N) ,
Name = N,
person (Name,Ad,Al,K, I),
wperson (person (Name,Ad,Al,K, I)),
changestatus ("Now you can modify the data. Press F1 0 to finish. ") ,
scrhnd (off,KEY2), not (KEY2=esc),
r.tract(person(Name,Ad,Al,K,I)),
gperson(P),
a ••• rta(P),
removewindow,!.

process (3) :
removewindow.

process (4) :-
r.tract (value (,)), fa11.

process (4) :- - -
createwindow (off) ,
changestatus(IIEnter interests and press F10"),
scrhnd (off, KEYl), not (KEYl=esc),
value (f5, S5), ginterests (S5, Interests),
person (Name,Ad,Al,K, I),
member (X, Interests) ,member (X, I),
wperson (person (Name, Ad,Al, K, I)),
changestatus(IITo inspect each matching entry, press F10."),
scrhnd (off,KEY2) ,not (KEY2=esc),
fa11.

process(4) :
removewindow.

process(S) :
clearwindow,listdba.

1**
Write and get data to and from the "value" predicate

**1

wperson() :- r.tract(value(,)),fa11.
wperson(person(Name,Address,Age,Sex,Interests))

Name = Sl, •••• rtl(value(fl,Sl)),
Address = S2, •••• rtl(value(f2,S2)),
str int (S3,Age) , rtl(value (f3,S3)),
gsex(S4,Sex),a ••• rtl(value(f4,S4)),
ginterests (S5, Interests) ,a ... rtl (value (f5, S5)) .

gperson(person(Name,Address,Age,Sex,Interests))
value(f1,Sl), Name = Sl,
value (f2, S2), Address = S2,
value(f3,S3), str int(S3,Age),
value (f4,S4), gsex (S4,Sex),
value(f5,S5), ginterests(S5,Interests),!.

1**
Conversions between a string and the corresponding domain

**1

gsex("m",m) .
gsex(IIfll,f).

ginterests (1111, [1) : - !.
ginterests (S, L) : - bound(S), fronUoken (S, ", ", Sl), !, ginterests (Sl, L) .

Screen-Layout Tools 75

ginterests (5, [H I TJ) : - bound, (5) , !, fronttoken (S,H, 51) ,ginterests (51, T) .
ginterests (5, [HJ) : - bound. (H) , !, H = S.
ginterests (5, [H I TJ) :- bound. (H) ,

ginterests(SS,T),concat(H,",",SSS),
concat (SSS,SS,S) .

/**
List the database

**/

wr (X) : - write (X), nl.

listdba :
person(A,B,C,D,E),
wr(person(A,B,C,D,E)),
fail.

listdba.

Recording Sales Transactions

This section describes the program XSHOP .PRO, which can form the basis
of an order-logging system for use in department stores and the like. When
the program is executed, the predicate scrhnd in XSHOP.SCR creates the
following screen.

- a L ng screen I ayou{
f'leans of paYlr~mt: _ ••• Customer Name:

Address'
Deliver: •
Extra Warranty: •

Telephone:: •••••

Price ~ .~ike.an.d.~idie.l •••••• ------- --------- -
.. 7 ..

Total:_

Amount from customer:_

Change:_

I. m 1-, ••
Figure 3.10: Sales Transaction Record

.. '
The program assumes that a customer can make three purchases at most;
pay by cash, check, or credit card; have the items delivered; and take out an
extra warranty agreement.

76 Turbo Prolog Toolbox Owner's Handbook

If Return is pressed with the cursor in the payment field, then a menu pops
up showing the available range of payment methods. The user selects one
of these from the menu, and the choice made is displayed in the payment
field. Pressing Return in the delivery and warranty fields toggles between the
words yes and no. The date and time fields display the date and time
obtained from the PC's internal clock, with the time field continually
updated. These two fields are no-input fields.

The top right-hand comer of the display contains the fields for the
customer's name, address, and telephone number, which must be typed in
by the user. (A complete sales system could use this information to generate
supplemental forms, such as delivery notes and warranty records.)

To avoid the entry of incorrect item codes and prices, the Make and Model
and Price fields are filled in automatically once the Item Code field has been
filled in. If the correct item code is entered, the two corresponding fields are
filled in automatically. Otherwise, a menu appears containing a list of the
items available. Once the user selects an item, all three fields for that item
are filled in by the program. Hence, all Make and Model and Price fields are
no-input fields.

Of the remaining fields, the Total and Change fields are also no-input fields.
Total is automatically updated by the program to reflect the total of the
prices of all items entered so far. Once the user has entered the amount paid
by the customer in the Money field, Change automatically shows the
difference between the two amounts.

check determ code=3000

iDclucle "tdoms. pro"

clOII&1D.
FNAME = SYMBOL
TYPE = int(); str(); real()
FILE = myprinter

clataba ••
r Database declarations used in SCRHND·'

insmode
actfield(FNAME)
screen (SYMBOL, DBASEDOM)
value (FNAME, STRING)
field (FNAME, TYPE, ROW, COL, LEN)
txt field (ROW, COL, LEN, STRING)

Screen-Layout Tools

XSHOP.PRO

r Global insertmode·' r Actual field .,
r Saving different screens .,

r Value of a field .,
r Screen definition .,

77

windowsize(ROW,COL).
notopline

r Database declarations used in VSCRHND */
windstart(ROW,COL)
mycursord (ROW, COL)

r Database declarations used in LlNEINP * /
lineinpstate(STRING,COL)
lineinpflag

r SPECIFIC FOR THIS APPLICATION */
payment (STRING)
delivery
warranty

wu •••
payment(cash).

iDclucle "tpreds. pro"
iDclucle "menu.pro"
iDclud.e "lineinp.pro"
iDclucle II status. pro"
iDclucle II scrhnd. pro"

90&1
consult (lIxshop. scr"),
makewindow(1,66,66,"Sal es Transaction Record",0,0,24,80),
makestatus(112,"Fill in the sales record and press FlO when finished",

0,0,25,80),
scrhnd(off,J.

~eclicat ••
index (INTEGER, STRINGLIST,STRING)
concatlist(STRINGLIST,STRING)

clau. •••
index (1, [HI],H) :- !.
index(N,[_IT],X) :- N>l,Nl = N-l,index(Nl,T,X).

concatlist ([], 1111) •
concatlist([HIT],S) :-

concatlist (T,Sl), concat (H,Sl,S) •

~eclicat ••
nondeterm product (STRING, STRING, REAL)

claua ••
product ("1111", "Washing Machine",200.35).
product(12222","Dishwasher",239.67).
product("3333","Fridge and Freezer",456.78).
product("4444","Radio",456.78).
product (155551,ITelevision",456. 78).

clau •••

1**
Main routines

**1

78 Turbo Prolog Toolbox Owner's Handbook

noinput(payment).
noinput(date).
noinput(change).
noinput(make3) .
no input (price3) .

no input (delivery) .
noinput (time) •
noinput (makel) .
noinput(pricel).

noinput (warranty) •
noinput (total) •
noinput(make2).
noinput (price2) .

1**
field action

**1

pr.dicate.
make (FNAME)

cl.u •••
field action(delivery) :- :retr.ct(delivery),!.
field-action (delivery) :- rtl(delivery).
field-action (warranty) :- :r.t:r.ct(warranty),!.
field-action (warranty) :- •••• rtl(warranty).
field-action (payment) :- r.t:r.ct(payment()),fa1l.
field-action (payment) :- -

-cursor (R, C),
LIST = [ICashl,ICheck","Credit card"],
menu(R,C,7,7,LIST,"Please select method of payment",l,PayNo),
index (Payno, LIST,STR),
•••• rtl(payment(STR)).

field action(iteml) !,make(iteml).
field-action (item2) :- !,make(item2).
field=action(item3) :- !,make(item3).

make (FNAME) :- ret:ract(value(FNAME,)),fa1l.
make (FNAME) :- -

cursor (R, C),
fiDdall (X, product (X, ,), CODELIST) ,
fiDdall(X,product(,X,-),LIST),
menu (R,C, 7, 7, LIST,"Please select the product",l,Prod),
index (Prod,CODELIST,CODE),
•••• rtl(value(FNAME,CODE)) .

1**
field value

**1

predicat ••
price (FNAME,REAL)

cl.ua ••
price (FNAME,PRICE)

value (FNAME, CODE), product (CODE, _, PRICE) , ! .
price C, 0) .

field value (time, TIME) : - !,
-time(H,M,S,),
str int(HS,H),str int(MS,M),str int(SS,S),
concatlist ([HS, ": ",MS, ":", SS], TIME) .

field value(date,DATE) :- !,
-date (D,M, Y),
str int (DS,D), str int (MS,M), str int (YS, Y),
concatlist ([DS, ": ",MS, ": ", YS] ,DATE) .

Screen-Layout Tools 79

field value (total, TotalS)
-price (iteml, pl),
price (item2,P2),
price(item3,P3),
Total = PI+P2+P3,

I . ,

str _real (TotalS, Total) .

field value(change,CS) :- !,
-value(money,MM),!,str real(MM,M),
price(iteml,PI), -

price{item2,P2),
price{item3,P3),
Total = M- (PI +P2+P3),
str_real{CS,Total) .

field value(iteml,CODE)
field-value (i tem2, CODE)
field=value (item3,CODE)

field value (makel, DESC)
field-value (make2, DESC)
field=value(make3,DESC)

!, value (iteml, CODE),
!,value(item2,CODE),
!,value(item3,CODE),

!, value (iteml,Code), product (Code, Desc,),
!,value(item2,Code),product(Code,Desc,-),
I, value (item3,Code), product (Code,Desc, =),

field value(pricel,PRICEs) :- I,
-value(iteml,Code),product(Code,_,PRICE),I,str_real(PRICEs,PRICE).

field value{price2,PRICEs) :- I,
-value(item2,Code),product(Code, ,PRICE),!,str real(PRICEs,PRICE).

field value(price3,PRICEs) :- I, - -
-value(item3,Code),product(Code,_,PRICE),I,str_real(PRICEs,PRICE).

field_value (payment, P) : - payment (P) , !.

field value(delivery,yes) :- delivery, I.
field= value (delivery, no) : - !.

field value(warranty,yes) :- warranty, I.
field=value(warranty,no) :- I.

r Catch other values from the database *'
field_value (Fn, X) : - value (Fn, X) , I .

A Label-Printing Program

The final example in this section is a label-printing utility contained in
XLABEL.PRO. Its screen-definition file is XLABEL.SCR, which uses scrhnd
to produce the following screen.

80 Turbo Prolog Toolbox Owner's Handbook

Wi Ison S Megmy Jnr,
1912 Sunset,
San Jose!
Cal ifornla USA
123456

rtve the cursor wi th the mow keyS and select by pressing RlnJRN

Figure 3.11: Label-Printing Utility Screen

Pressing Return in the Edit Label field calls the editmsg standard predicate,
so that the displayed label can be edited with the full Turbo Prolog editor.
Press FlO to terminate editing; then save the label in a disk file by pressing
Return with the cursor in the Save Label field. Retrieve a previously saved
label by pressing Return with the cursor in the Load Label field. The
Filename Label field displays the file name used for the last load or save
operation and is a no-input field. The Directory field allows a default
directory to be specified.

The Printer field specifies whether the printer is attached to PRN, COMl, or
COM2. Selecting that field produces a menu, from which one of these three
must be chosen. Once the number of labels to be printed has been set,
printing begins when the Print Labels field is selected.

However, before printing any labels, the fields on the right-hand side of the
screen must be adjusted to the desired printer characteristics. Thus, you
should do the following:

• DoubleStrike (dbstrike) must be turned ON or OFF.
• The number of lines to be printed per label and the desired level of

indentation must be set.

Screen-Layout Tools 81

• A choice must be made between fast, medium, and letter-quality speeds
of printing and the fonts to be used at each speed (specified with printer
escape sequences) .

• The appropriate Initializing and Doublestrike escape sequences must be
entered if they are different from the defaults.

(These settings work with an Epson or Epson-compatible printer.)

check determ code=2500

include "tdoms. pro"

domain.
FNAME = SYMBOL
TYPE = intI); str(); real()
FILE = myprinter

databa.e
r Database declarations used in SCRHND */

insmode
act field (FNAME)
screen (SYMBOL, DBASEDOM)
value (FNAME, STRING)
field (FNAME, TYPE, ROW, COL, LEN)
txtfield (ROW, COL, LEN, STRING)
windowsize(ROW,COL).
notopline

r Database declarations used in VSCRHND * /
windowstart (ROW, COL)
mycursord (ROW, COL)

r Database declarations used in LlNEINP */
lineinpstate (STRING, COL)
lineinpflag

label (STRING)
dbstrike
font (INTEGER)
printer (STRING)

iDc:lude "status. pro"
iDc:lude "tpreds.pro"
iDc:lude "menu.pro"
include "lineinp.pro"
include "filename. pro"
include "scrhnd.pro"

82

XLABEL.SCR

r Global insertmode * /
r Actual field * /

r Saving different screens * /
r Value of a field */

r Screen definition *1

Turbo Prolog Toolbox Owner's Handbook

/**
Internal predicates

**/

pr.dicat ••
displbl
printlabels
change (D8ASEDOM)
filename (STRING)
rdfile (STRING, STRING)
index (INTEGER, STRINGLIST, STRING)
nondeterm fonttext(INTEGER,STRING)
nondeterm printers (STRING)
nondeterm member (STRING, STRINGLIST)
nondeterm for (INTEGER, INTEGER, INTEGER)
write n(INTEGER,CHAR)
str lInes (STRING, STRINGLIST)
setprintercodes
printlabel (STRINGLIST)
printercode (STRING)

cl.u •••
change (value (X,)) :- r.tr.ct(value(X,)),f.i1.
change (label ()) :- r.tr.ct(label()),f.i1.
change(font()) :- r.tr.ct(font()),f.i1.
change (printer ()) :- r.tr.ct(prInter()),f.i1.
change(label(L8L)) :- !, •••• rtl(label(L8L)),displbl.
change (X) :- a ••• rtl(X).

displbl :-
label (L8L), !,
shiftwindow(5),
window str (L8L),
shift wIndow (1) .

filename (FILENAME) :
value (file,FNAME),!,
cursor (ROW, COL), Rl = ROW+2,
readfilename (Rl,COL, 7, 7,lbl,FNAME,FILENAME),
change (value (file, FILENAME)) •

rdfile (FILENAME, LABEL) :-
file str (FILENAME, LABEL) , ! •

rdfile (FILENAME,) :
makewindow(1,7,7,"1,5,20,4,45),
write(lI» File not found: ",FILENAME),
readkey(_),removewindow,f.il.

fonttext (1, "Fast"). fonttext (2, "Medium"). fonttext (3, "Quality") .

printers(prn). printers(coml). printers(com2).

printlabels :-
label (L8L) , str lines (L8L, LIST) ,
printer(PRINTER),
value (number,NN), str int (NN,NOOFLABELS),
openwrite(myprinter,PRINTER),
writedevice (myprinter),
setprintercodes,

Screen-Layout Tools 83

84

for (I, O,NOOFLABELS),
printlabel (LIST) ,
I> = NOOFLABELS-l,!,
close file (myprinter) .

printlabel(LIST) :-
value (indent, NN), str int (NN, N),
member (LINE,LIST), -
write n(N,' '),write(LlNE),nl,
fail.-

printlabel(LIST) :
listlen (LIST, LEN),
value (labellines, TT), str int (TT, TOT) , !,
SKIP = TOT-LEN, -
write_n(SKIP,'\n').

setprintercodes :-
value (initcode, INIT),
printercode(INIT),fa11.

setprintercodes :
dbstrike,
value (dbstrikecode,DBSTRIKE),
printercode(DBSTRIKE),fa11.

setprintercodes :-
font (N) ,str int (NO, N) ,
con cat ("font" , NO, FRONT) ,
value (FRONT,FRONTCODE),
printercode (FRONTCODE), fail.

setprintercodes.

printercode ("") : - !.
printercode(CODE) :

frontchar(CODE,'\\',REST),
f ronttoken (RES T , NUM, RES TCODE) ,
str int (NUM, CHI) ,
char int(CH,CHI),
write (CH), !,
printercode (RESTCODE) .

printercode(CODE) :-
frontchar (CODE, CH,REST),
write (CH) ,
printercode(REST).

index(l, [HI J,H) :- !.
index(N, [_lfJ,X) :- N>l,Nl = N-l,index(Nl,T,X).

member (X, [X I J).
member (X, [_I LJ) : - member (X, L) .

for(I,I,).
for(I,A,S) :- B>A,Al = Atl,for(I,Al,B) .

write n(O,) :- !.
write=n(N,CH) :- N>O,write(CH),Nl = N-l,write_n(Nl,CH).

str lines ('"', [J) :- !.
str -lines (STR, [H I TJ) :-

- search char (' \n' , STR, 0, N) ,
frontstr (N, STR, H, R) ,

Turbo Prolog Toolbox Owner's Handbook

frontchar(R, ,R1),!,
str lines (R1~T) .

str_Iines(STR,[STR]).

/**
Screen-handling predicates

**/

noinput(load) .
noinput (print) •
noinput(edit).

field action(load)

noinput (save) .
noinput(printer).
noinput(dir).

-cursor (ROW, COL) ,R1 = ROW+2,
read filename (R1, COL, 7,7, lbl, 1111, FILENAME) ,
rdfile(FILENAME,LABEL),
change (value (file, FILENAME)) ,
change(label(LABEL)).

field action(save) :
-filename(FILENAME),

label(LABEL),!,
file str (FILENAME, LABEL) .

field action(edit) :-
-label (LABEL),
shi ftwindow (5) ,

noinput(saveconfig).
noinput (font) •
no input (dbstrike) .

editmsg (LABEL, LABELl, "edit", "", "",0, "", RET),
shiftwindow(l),
refreshstatus,
RET><l, !,
change(label(LABEL1)) .

field action(edit) :- displbl.
field-action (dir) :- cursor(ROW,COL),setdir(ROW,COL).
field-action (file) :- filename().
field-action (print) :- printlabels.
field-action (dbstrike) :- retract(dbstrike),!.
field-action (dbstrike) :- a ••• rtl(dbstrike).
field-action (font) :-

-cursor (ROW, COL),
fiDclall(X, fonttext (,X) ,LIST),
menu (ROW, COL, 7, 7,LIST,"Choose font", 0, FRONT) ,
FRONT><O,
change(font(FRONT)).

field action(printer) :-
-cursor (ROW,COL),

fiDclall (X, printers (X), LIST),
menu (ROW, COL, 7,7, LIST, "Choose printer", 0, NR) ,
index (NR, LIST, PRINTER) ,
change(printer(PRINTER)).

field_action (saveconfig) :- save ("xlabel.dba") •

field value(dir,DISK) :- !,disk(DISK).
field-value (dbstrike,on) :- dbstrike,!.
field-value (dbstrike,off) :- !.
field-value (font, FRONT) :- !,font(NR),fonttext(NR,FRONT),!.
field-value (printer,X) :- !,printer(X),!.
field=value(FNAME,VAL) :- value(FNAME,VAL),!.

90al
makewindow (5, 7,7, "LABEL", 15, 0, 9, 80),

Screen-Layout Tools 85

makewindow(1, 7, 7,IILabel Printing",0,0,15,BO),
makestatus (112, II Move the cursor with the arrow keys and select

by pressing RETURN"),
consult("xlabel.dba"),
displbl,
scrhnd(off,J.

More Advanced Uses of the Screen Handler

Specifying New Special Keys

Within SCRHND.PRO and VSCRHND.PRO (the files containing the defini
tion of scrhnd), the action taken when a key is pressed is controlled by the
tool predicate scr. Thus, there are a number of clauses of the form

scr (char (C))

scr (up) :- .

scr (fkey (10))

scr(esc) :- .

Defining a new special key simply involves adding values to these clauses.
For example, the + key could be given a special meaning as follows:

scr(char('+')) :- value(fl, Vall), value(f2, Va12),
str int(Vall, NumVall),
str-int(Val2, NumVal2),
NumSum = NumVall + NumVa12,
str int (Sum, NumSum),
•••• rtl(value(total, Sum)).

Associating Help Text With a Field

If the cursor is currently in a data field, the predicate act field binds its single
parameter to the name of that field. Field actions are then initiated by a
clause of the form:

86

scr(cr) :- actfield(FieldName),
field action(FieldName),
f.11.-

scr (cr) : - scr (tab) .

r Name of active field *1
r Action for that field *1

r Otherwise go to the next field *1

Turbo Prolog Toolbox Owner's Handbook

You can use this mechanism to associate Help text with a field. Each field
that will be associated with a Help facility should have a corresponding file
containing the appropriate text. For the field time, you could have a file
called TIME.HLP that contains the text

Please specify the time
in the form hh:mm:ss,
taking care to use eight
characters total in all and to
separate the hours, minutes,
and seconds values with colons.

Now you can associate the field with the Help file by adding the following
clause for scr to a copy of SCRHND.PRO:

ser(fkey(l)) :- aetfield(FieldName),
eoneat (FieldName," . HLP", HelpFileName) ,
file str (HelpFileName,OurHelpText),
makewindow(......),
display (OurHelpText),
removewindow.

When the cursor is in a field that has a .HLP file defined, pressing Fl results
in the contents of that file being displayed in the given window.

Alternatively, displayhelp can be used to make the Help messages context
sensitive (see "Context-Sensitive Help" in Chapter 2) by defining the form

ser (fkey (1)) : -
aetfield (FieldName), displayhelp (FieldName) .

where displayhelp is an internal predicate defined in HELPDEF.PRO that
looks in the appropriate database for that FieldName and displays the text
for that Help context.

Adding Your Own Screen-Definition Types

The program file SCRHND.PRO permits screen definitions to contain fields
of three different types: INTEGER, REAL, and STRING. These are
controlled by the predicates types and valid and the domain TYPE. The
declarations and clauses that contain these domains and predicates are as
follows:

dOllliD.
TYPE = intI); str(); real()

Screen-Layout Tools 87

predicate.
valid (FNAME, TYPE, STRING)
types (INTEGER, TYPE, STRING)

clau.e.
valid (, str,).
valid(-,int,STR) :- str int(STR,).
valid C real,STR) :- str=real(STR,-_).

types(l,int,"integer").
types (2, real, "real") .
types(3,str,"string").

As an exercise, let's add a new type-DATE-to the collection of field types
known to the screen handler. It's done simply by augmenting the
declarations and clauses. Entries of this new type should be a date in the
format mm/ dd/yy (05/23/87 would represent May 23, 1987, for example).

The text string displayed at the top of the screen when the cursor is in a
field (during execution of SCRDEF.PRO or if the first parameter of scrhnd is
ON) is associated with that field by types. Thus, you need to add

types (4,date,"date") .

to the clauses for types.

Before the cursor is allowed to leave a given field, the value in that field is
verified to be of the correct type by the predicate valid.

valid (FieldName, FieldValueType, EntryString)

succeeds only if the EntryString that the user has inserted in FieldName has a
value of the correct FieldValueType. (You can specify more precise
validation-for example, file names entered could be checked in the
directory to confirm their existence.)

To verify entries of date type, add a clause like

valid(, date, EntryString) :
fronttoken(EntryString, Month, Restl),
str int(Month,),
fronttoken(RestI, ,Rest2),
fronttoken(Rest2,-Day, Rest3),
str int(Day,),
fronttoken (Rest3, , Year)
str_int(Year, _I. -

Finally, augment the declaration of the TYPE domain to include objects of
type DATE:

domain.
TYPE = intI); str(); real(); date()

88 Turbo Prolog Toolbox Owner's Handbook

These additions to SCRHND allow fields of DATE type. The same
alterations must be made to SCRDEF.PRO, except for valid, which is not
used in the latter program.

Using Several Screen Layouts Interchangeably

SCRHND.PRO contains the tool predicates screen and shiftscreen, which
allow you to use several screen layouts interchangeably. They are declared
as follows:

clat.bu.
screen(SYMBOL, DBASEDOM)

predicate.
shift screen (SYMBOL)

Suppose you want to use two different screen layouts, referred to by the
SYMBOLic names screenl and screen2. The basic idea is to move from one
screen to the other by a call to shiftscreen of the form

shift screen (NewScreen)

If you have been using screenl and NewScreen is bound to screen2, scrhnd
will operate with screen2 after the call.

Screen-definition files contain facts for the database predicates text field, field,
and windowsize. These facts are normally consulted before a call to scrhnd.
In order to use shiftscreen, store the facts for both screen definitions in a file
of facts for screen. If screenl were defined by

field("input1",str,9,27,17)
txtfield (7,27,17, "Input on screen 1 ")
windsize(20,77)

and screen2 were defined by

field ("input2", int, 9,27,25)
txtfield(7,27,16,"Screen Two Input")
windsize(20,77)

then we would store the following facts for screen:

screen (screen1, field ("input1", str, 9, 27,17)) .
screen(screen1,txtfield(7,27,17,"Input on screen 1")).
screen (screen1, windsize (20, 77)) •
screen (screen2, field ("input2", int, 9,27,25)) .
screen(screen2,txtfield(7,27,16,"Screen Two Input")).
screen(screen2,windsize(20,77)).

Screen-Layout Tools 89

The definition of shiftscreen shows how everything will work:

shiftscreen() :- zoRzoact(field(, , , ,)),fail.
shiftscreen(-) :- zoRract(txtfield(~ ~ ~)),fa11.
shiftscreen n : - zoetzoact (windsize (-, -)), lail.
shiftscreen (NAME) : - screen (NAME, TERM), a ... rtl (TERM) , fail.
shiftscreen U .

As with all the Toolbox tools, you aren't limited by screen and shiftscreen.
The straightforward use of consult is a perfectly viable alternative.

Creating New Screen Definitions from Old

The manner in which screen definitions are stored makes it possible to
combine several screen definitions to form a new one. For example, the
following Prolog fragment combines the definitions in GOODS.SCR,
ORDERS.SCR, CUSTOMER.SCR, and INF .SCR into a single screen
definition in INVOICE.5CR.

90al
run.

clau •••
run : - zo.tzoact (), fail.
run :- consult("goods.scr"),regscreen(goods),f.il.
run :- consult (llorders. scr") ,regscreen (orders), f.il.
run :- consult (llcustomer. scr") , regscreen (customer), f.il.
run :- consult("inf.scr"),regscreen(inf),f.il.
run :- save("invoice.scr").

regscreen(NAME) :-
zo.tzoact (field (A,B,C,D,E)),
•••• rtl (screen (NAME, field (A,B,C,D,E))), fail.

regscreen(NAME) :-
zo.tzoact(txtfield(A,B,C,D)),
a ••• rtl (screen (NAME, txtfield(A,B,C,D))) ,fa11.

regscreen(NAME) :-
zo.tzo.ct(windowsize(A,B,C,D)),
a •• eRl (screen (NAME,windowsize (A,B,C,D))) ,f.il.

regscreen (J .

Printing Formatted Reports

You,can write a Turbo Prolog program that will enter information into a
form, such as the one you get from the tax bureau every year, but it mea.ns
experimenting with write statements. With the Toolbox, you can use

90 Turbo Prolog Toolbox Owner's Handbook

SCRDEF.PRO to define a screen layout like the tax form and then use the
tool predicate report to actually print the current information on the forms.

The report predicate is contained in REPORT.PRO, which comments out the
write standard predicate call in the goal. This avoids everything hanging if
you attempt to run the program without the appropriate printer or printer
driver card connected to your computer.

Having consulted a screen-definition file, a call of the form

report (NoOfLinesRequired)

sends NoOfLinesRequired lines of the corresponding layout (including
values entered by the user) to the current outputdevice.

XREPORT.PRO is a revamped version of XSHOP.PRO (see "Recording
Sales Transactions"). It uses report to print a copy of the invoice created
during execution of XSHOP.PRO. To make the printed output attractive,
XSHOP.SCR also has been revamped; the new layout is contained in
XREPORT.5CR.

Screen-Layout Tools 91

1Dclacle "tdoms. pro"

cIou1D.
FNAME = SYMBOL
TYPE = int(); str(); real()
FIELD = field (STRING, COL)
FIELDLIST = FIELD*

databa.e
r Database declarations used in SCRHND ill

insmode
act field (FNAME)
screen (SYMBOL,DBASEDOM)
value (FNAME, STRING)
field (FNAME, TYPE, ROW, COL, LEN)
txtfield (ROW, COL, LEN, STRING)
windowsize (ROW, COL) •
notopline

r Database declarations used in SCRHNO *'
windstart (ROW, COL)
rnycursord (ROW, COL)

r Database declarations used in LlNEINP *'
lineinpstate(STRING,COL)

r SPECIFIC FOR THIS APPLICATION *'
payment (STRING)
delivery
warranty

1Dclacle "tpreds. pro"
1Dclwie "report. pro"

90al
consult("xreport.scr"),
rnakewindow(1,31,O,"I,O,O,25,80),

XREPORT.PRO

r Global insertmode ill
r Actual field *' r Saving different screens *'

r Value of a field *'
r Screen definition *'

write ("\t\tRemove the comment in the goal to send to the printer\n\n"),
r writedevice(printer). ill

report(20).

predicate.
nondeterrn product (STRING, STRING, REAL)

clau ...

92

product(ll1l1l,"Washing Machine",200.35).
product(122221,IDishwasher",239.67).
product(133331,"Fridge and Freezer",456.78).
product(144441,"Radio",456.78).
product(155551,ITelevision",456.78).

Turbo Prolog Toolbox Owner's Handbook

pz:eclicat ••
index (INTEGER,STRINGLIST, STRING)
concatlist(STRINGLIST,STRING)

clau •••
index(l, [HI],H) :- !.
index(N, UT],X) :- N>l,Nl = N-l,index(Nl,T,X).

concatlist ([] , 1111) •

concatlist ([H I T], S) :
concatlist(T,Sl),concat(H,Sl,S).

claua ••

1··************************ field value
**** •• **1
preclicate.

price (FNAME,REAL)

claua ••
price (FNAME,PRICE)

value (FNAME, CODE), product (CODE, _, PRICE), ! .
price C' 0) .

field value (time, TIME) : - !,
-time (H,M,S,),
str int(HS,H),str int(MS,M),str int(SS,S),
concatlist ([HS," :iI,MS,":" ,SS], TIME) .

field value(date,DATE) :- !,
-date (D,M, Y),
str int (DS, D) , str int (MS,M), str int (YS, Y) ,
concatlist ([DS,": ii, MS, II: II, YS] , DATE) .

field value(total,TotalS)
-price (iteml,Pl),
price (item2,P2),
price(item3,P3),

I .,

Total = PltP2tP3,
str_real(TotalS,Total).

field value(change,CS) :- !,
-value (money,MM), !, str real(MM,M),
price(iteml,Pl), -
price(item2,P2),
price(item3,P3),
Total = M-(PltP2tP3),
str_real(CS,Total).

field value(iteml,CODE)
field-value (item2, CODE)
field= value (item3, CODE)

field value(makel,DESC)
field-value (make2, DESC)
field= value (make3, DESC)

Screen-Layout Tools

!,value(iteml,CODE),!.
!,value(item2,CODE),! .
!,value(item3,CODE),! .

- !,value(iteml,Code),product(Code,Desc, I,!.
- !,value(item2,Code),product(Code,Desc,-),!.
- !,value(item3,Code),product(Code,Desc,=),!.

93

field value(pricel,PRICEs) :- I,
-value (iteml,Code), product (Code, _,PRICE), I, str _real (PRICEs, PRICE) .

field value(price2,PRICEs) :- I,
-value(item2,Code),product(Code, ,PRICE),I,str real(PRICEs,PRICE).

field value(price3,PRICEs) :- I, - -
-value(item3,Code),product(Code,_,PRICE),I,str_real(PRICEs,PRICE).

field_value (payment,P) :- payment(P),I.

field value(delivery,yes) :- delivery, I.
field=value(delivery,no) :- I.

field value (warranty, yes) : - warranty, I .
field= value (warranty, no) : - I.

r Catch other values from the database *'
field_value (Fn,X) :- value(Fn,X),I.

94

value(lname",IJ B Gruntfuttock") .
value(lstreet","3 Railway Terrace").
value(lIcityl,IISeattle").
value(lstatel,"Washington").
value ("tel", "222 333 4444").
value ("iteml", "1111") .
value(litem21,12222").
value (litem3", "3333") .
value(lmoney",llOOO.OO").
payment (IICheck") .
delivery.

Turbo Prolog Toolbox Owner's Handbook

c H A p T E R

4

Graphics Tools

This chapter describes tools that help you construct programs to
graphically represent information, such as financial statements and market
research results. These tool predicates also allow you to show numerical
information as bar charts, pie charts, and graphs.

The graphics tools described here use the domains and predicates defined
in the files GOOMS.PRO and GPREDS.PRO (and, in certain circumstances,
in GGLOBS.PRO). They must therefore be included in any program that
uses them. (If you're unfamiliar with modular programming, refer to
Appendix A, "Compiling a Project." It discusses project [.PRJ] and object
[.OBIl files.)

NOTE: These programs work on PCs with the Color Graphics Adapter
(CGA) or Enhanced Graphics Adapter (EGA). They do not work on
Hercules monochrome graphics cards.

Coping with Different Coordinate Systems

This section covers virtual-screen coordinates, low-level tool predicates
(using virtual coordinates), and scale definition.

Graphics Tools 95

Virtual-Screen Coordinates

Turbo Prolog's standard predicates for graphics use virtual-screen
coordinates. When the entire monitor screen is used, the virtual-screen
coordinate system refers to the upper left-hand comer as (0,0) and the
lower right-hand corner as (31999,31999). These coordinates are
automatically scaled down to the actual pixel (picture element) positions on
the monitor, whether the graphics card driving it provides 320 X 200, 640 X
200, or 640 X 350 pixels.

All the following standard predicates in Turbo Prolog take virtual-screen
coordinates as parameters:

line (Rowl, columnl, Row2, Column2, Color)
dot (Row, Column, Color)
penpos (Row, Column, Direction)
forward (Step)
back (Step)

If, for example, the Turbo Prolog standard predicate dot is called, as in

dot(16000,16000,1)

which uses the entire screen for graphics display, a colored dot appears at
the center of the screen.

When the graphics standard predicates are used in a window, virtual
coordinates within that window are relative to the upper left-hand corner
of the window. This corner is regarded as coordinate position (0,0). If, for
example, an unframed window is created with 12 rows and 80 columns, the
upper left-hand corner of the window is at (0,0) and the lower right-hand
corner is at [(32000X12/25)-1,31999]; that is, (15359,31999).

Low-level Tool Predicates and Virtual Coordinates

There are a number of low-level graphics tool predicates that are used to
implement the higher level ones. These include tool predicates that plot
points, shade shapes, and draw boxes, ellipses, and sectors. This section
explains four of the most useful predicates, which are implemented as
external predicates coded in C. Therefore, programs that use them need to
be compiled and linked as projects. (See Appendix A.) Since GGLOBS.PRO

96 Turbo Prolog Toolbox Owner's Handbook

contains all the relevant global declarations, it lists all the tool predicates
supplied in GRAPHICS.OBI, not just those presented here.

The Predicate plot Th ~ ",I(f. ~ -("."d,..;:b I' I.t ~ ho"'! J VIa-l
("t;",d~f~'1J t::tft1 t~/oll.J tPlt#t.,.,.., Olf' (tfl1~.1 ~ c!.pdtl V"{.,OIlll

The first tool, a more general plotting tool predicate than dot, is called plot.
It is declared as follows:

plot (VROW, VCOL,COLOR,SIZE,KIND) - (i,i,i,i,i) lanCJuaCJe c

A call of the form

plot (Vrow,Vcol,Color, Size, Shape) - (i,i,i,i,i) languaCJe c

plots a pixel, a dot inside a box frame, a filled-in box, or the letter X at the
virtual point (Vrow,Vcol). It plots the element in the named Color, with the
given Shape according to the value to which Shape is bound:

o One pixel is drawn.
1 A dot is drawn inside a box.
2 A box is drawn and filled.
3 The letter X is drawn.

The range for Vrow, Vcol, and Vsize is 0 to 31999 in each case.

The Predicate box

The tool predicate box draws a rectangle on the screen and is declared as
follows:

box (VROW,VCOL,VROW,VCOL,COLOR,COLOR,FILL) - (i,i,i,i,i,i,i) lanCJuaCJe c

A call of the form

box (Rowl, Coll,Row2, Co12,LineColor,Fi11Color, Fill)

with Rowl, Row2, Coil, and Col2 in the range 0 to 31999, draws a box
according to the value to which Fill is bound:

o A box is drawn with color LineColor but not filled.
1 A box is drawn with color LineColor and filled with the

color FillColor.

Graphics Tools 97

The Predicate ellipse

ellipse is declared in a similar way:

ellipse (VROW,VCOL,VRADIUS,REAL,COLOR,COLOR,FILL) - (i,i,i,i,i,i,i) language c

In this case, the call

ellipse (Row,Column,VerticalRadius,Ratio,FrameColor,Color,F ill)

draws an ellipse, provided that the following are true: Row, Column, and
VerticalRadius are in the range 0 to 31999; Ratio is a real number between 0
and 1 representing the ratio of the horizontal radius of the ellipse to its
vertical radius. If Fill is bound to 0, an ellipse is drawn but not filled in; if
Fill is 1, then an ellipse is drawn and filled.

The Predicate sector

Next in this group of low-level tool predicates comes sector, which draws
the outline of a sector of a circle. It is declared as follows:

sector (VROW, VCOL, VRADIUS, INCREMENT, DEGREES, DEGREES, COLOR, COLOR, FILL)
- (i,i,i,i,i,i,i,i) language c

A call takes the form

sector (Row,Col,Radius, Increment, StartAng, EndAng, BorderCol or,Fill,ColorFill)

Row and Column should be bound to values in the range 0 to 31999 and
Increment bound to an angle in the range 0 to 360 degrees. sector draws that
sector of a circle centered on (Row,Col) with radius Radius occupying the
angle between StartAng and EndAng-specified in degrees. A horizontal
radius from the center of the circle pointing toward the right-hand side of
the display screen denotes zero degrees. The sector is drawn in the given
Color and is filled if Fill is 1 and not filled if Fill is O. If it is filled, then
Increment specifies the size of the angle used to fill the sector. The specified
triangle is drawn in these increments.

98 Turbo Prolog Toolbox Owner's Handbook

The Predicate IineShade

Finally, there is lineShade, declared as follows:

lineShade(VROW,VCOL,VROW,VCOL,VCOL,COLOR,KIND) - (i,i,i,i,i,i,i) language c

A call of the form

lineShade(Rowl,Coll,Row2,Co12,EndLine,FillColor,Direction)

draws a line between the points (Rowl,Col1) and (Row2,Col2), and shades
an area on one side of the line. The shading is toward the top of the screen,
toward the bottom, or toward the left or right side of the screen depending
on the value of the Direction parameter:

o Shadeup
1 Shadedown
2 Shadeleft
3 Shade right

The shading covers the area from the beginning line to the line indicated by
the EndLine parameter. When shading is toward the left or right of the

/ screen, Endline is the column number-from the Toolbox domain
VCOL-specifying a vertical line at which shading stops.

When shading up or down, Endline is represented by a VROW value.
Coercion between the domains VROW and VCOL is necessary (look at
lineShade's declaration). This is done by a code fragment of the form

... CoerceVariable = VROWvalue, lineshade(........ ,CoerceVariable, ..),

Rowl, Row2, Coll, Col2, and EndLine must all be in the range 0 to 31999. The
coding for Direction is as follows:

o Shade up to the row specified by EndLine
1 Shade down to the row specified by EndLine
2 Shade left to the column specified by EndLine
3 Shade right to the column specified by EndLine

Graphics Tools 99

In all cases, coerce the value of Endline to a value in the VeOL domain.

Using Low-level Tool Graphics Predicates in a Sample
Program

The following program is called XGEOMETR.PRO. It must be compiled as
a project. The figure following the listing shows the screen display
generated by the program. Since the display is set up for a color monitor,
some of the color differentiation is lost on the black-and-white screen shot
(Figure 4.1).

project "xgeometr"
,.

iDclwle "tdoms.pro"
iDclude "gdoms. pro"

clataba ••
news line (string)

iDclwle "gglobs. pro"
iDclude "tpreds.pro"
iDclude "gpreds .pro"

Fedicat ••

XGEOMTR.PRO

message (string, string, string, string, string)
wfs(char)
wait (integer)

pl
graphics(l,l,l),
makewindow(l, 6, 6, "Geometric shapes", 0, 0, 18, 40),
makewindow(3,7,0,"",18,0,6,40),
makewindow(4, 8, 0, "SPACE BAR MESSAGE" ,24,5,1,20),

message ("This demo includes predicates which may",
"be used to draw real art.", "",1111, "") ,

shiftwindow (1) ,
LineShade(0,0,18000,18000,18000,1,1),
LineShade (0,0,18000,18000,18000,3,0),
LineShade(0,0,18000,18000,18000,0,2),
LineShade (0, 0, 18000, 18000, 18000,2,3),
LineShade(18000,18000,0,24000,0,1,0),
wfs(),
message ("The graphics predicates include",

"predicates that draw different geometric",
"shapes: circles, ellipses, rectangles,",
"etc. Each may be colored and filled.",
"Here are some examples:"),

100 Turbo Prolog Toolbox Owner's Handbook

shiftwindow (1) ,
box(2000,2000,10000,15000,2,3,1),
box (7000, 7000,11000,20000,1,2,1),
box (8000, 8000, 9000, 18000,1,1,1),
ellipse(5000,5000,4000,0.5,1,2,1),
ellipse(9000,12000,8000,1.4,4,4,0),
sector (9000, 21000,5000,2,240,300,1,1,1),
sector(9000,21000,5000,2,300,360,2,2,1),
sector (9000, 21000, 5000,2,0,60,3,3,1),
wfs(J.

claue.
newsline(IIPress the space bar to continue. ") .
message(S1,S2,S3,S4,S5) :

shiftwindow(Old),shiftwindow(3),
clearwindow,
attribute (1), write (Sl, "\n"),
attribute(2),write(S2,I\n"),
attribute (3) ,write (S3, "\n"),
attribute (1) ,write (S4, "\n"),
attribute(2),write(S5,I\n"),
shiftwindow(Old).

wfs(C) :-
shiftwindow (4) ,
attribute (2),
newsline(S),field str(0,0,20,S),
keypressed,readchar(C),!,
field str(0,O,20," 1I),shiftwindow(3).

wfs(C) :- wait(2000),
:retract (newsline (String)), !,
frontstr (1, String, F, Rest),
concat (Rest, F, New) ,
a •• e:rtl(newsline(New)),
wfs(C).

wait(O) :- !. wait(N) :- N1 = N-1,wait(N1).

Graphics Tools 101

102

The graphics Predicates include predi
cates which draw dit£e~ent ge6Metri~
shapes: 'ci~cles~ ~Ilipses~ rectangles
etc. Each May be colored and tilled.
Here are SOMe exaMPles:

Figure 4.1 : Geomefrlc Shapes

Turbo Prolog Toolbox Owner's Handbook

Defining Scales

Several methods can be used to address a given point on the screen:

• Virtual-screen coordinates

• Scaled coordinates
• Text coordinates
• Actual-screen coordinates referring directly to the pixels used by the

hardware to form the display image

This section uses predicates found in GGRAPH.PRO and GDOMS.PRO to
accomplish this task. Virtual graphics coordinates have the advantage of
being hardware independent; however, you need to scale them to fit a
specific applicatIon. For instance, to graph monthly sales for one particular
year, a horizontal scale of 0 to 12 is probably the way to go. But that means
you'll have to convert between the values 1,2,3, ... ,12 and the horizontal
virtual-coordinate values that represent them.

As an alternative to virtual coordinates, the Toolbox provides several
predicates to manage scaled coordinates. In scaled coordinate systems, the
origin is the lower left-hand comer of the active window (which the
graphics standard predicate initializes to the entire screen).

A scaled coordinate system is defined by the lowest and highest values to be
displayed on the X axis and Y axis. As several scales may be in use
simultaneously, each scale is identified by a ScaleNumber in the same way
that windows in Turbo Prolog have a window number. Thus, the scale
defining equivalent of makewindow is defineScale, which takes the form

defineScale (ScaleNo, Xrnin, Xrnax, Ymin, Ymax)

This defines a scale identified by the INTEGER parameter ScaleNo, in which
values on the X axis run from Xmin to Xmax and on the Y axis from Y min to
Ymax. (Again, these are all INTEGER parameters.) When a scale is defined
by defineScale, the database declarations

clataba ••
scale (SCALENO,X,X,Y,Y)
activeScale (SCALENO)
axes (INTEGER, INTEGER, INTEGER, XMARKER, YMARKER, Col, Row, Col, Row)

Graphics Tools 103

must be included in your program. The tool predicate shiftScale
corresponds to shiftwindow in that the call

shift Scale (ScaleNo)

utilizes the value of the SCALENO parameter to enable you to switch
between scales.

Once a scale has been defined, any subsequent image is automatically
scaled to fit the actual window and rescaled if the window is resized.
Moreover, once defined, a scale can be modified easily using the database
predicates shown. For example, the following goal modifies the currently
active scale so that the range on the X axis is expanded to twice the original
range:

qoal
activeScale(N),
retract(scale(N,Xmin,Xmax,Ymin,Ymax)),!,
NewXmax = 2*Xmax,
a •• ertl(scale(N,Xmin,NewXmax,Ymin,Ymax)).

The tool predicate scalecursor is used to position the cursor in scaled
graphics. Its declaration takes the form

scalecursor (X, Y)

The call

scalecursor (23, 51)

places the cursor (that is, starts the text) at the scaled coordinate position
(23,51).

scalePlot is a tool predicate contained in GGRAPH.PRO and plots points
when scaled graphics are used. Its declaration takes the form

scalePlot(X,Y,COLOR)

so that the call

scalePlot(100,200,3)

plots a point at position (100,200) according to the scale currently active and
in color 3.

Another tool predicate, scaleLine, plots lines in scaled graphics. Its
declaration takes the form

scaleLine (X, Y, x, Y, COLOR)

104 Turbo Prolog Toolbox Owner's Handbook

In a call of the form

scaleLine (Xl, Yl,X2, Y2,Color)

(Xl,Y1) is the starting point of the line, (X2,Y2) is the end point of the line,
and Color determines the color of the line.

A more complicated image in a scaled display can be represented as a list
of points belonging to the domain DRAWING, which is defined in
GOOMS.PRO as

dcu.iD.
DRAWING = POINT*
POINT = p (X, Y)
X,Y = REAL

So, for example, the following DRAWING represents a square:

[p(20,30),p(50,30),p(50,60),p(20,60)]

An actual image is drawn from an element of the DRAWING domain by
the scalePolygon tool predicate. Its declaration takes the form

scalePolygon (COLOR, DRAWING)

The points specified by the DRAWING are plotted and connected to form a
polygon in the specified COLOR. For example,

scalePolygon (3, [p(3, 1), p (5, 3), p (3,5), p(1, 3)])

draws a diamond shape on the screen, scaled to fit the currently active
scale.

The tool predicate draw is used to draw a scaled polygon belonging to the
domain DRAWINGS. An object from the domain DRAWINGS is a list of
colored polygons in which the functor d binds a color to a DRAWING,
which is itself a polygon:

X,Y = REAL
POINT = p (X, Y)
DRAWING = POINT*
D = d(COLOR,DRAWING)
DRAWINGS = D*

For example,

draw([d(2,[p(70,100),p(90,195),p(100,230)]),

produces a triangle.

Graphics Tools 105

Drawing Axes on the Screen

The Toolbox provides four tool predicates that have to do with drawing
axes on a graphics display screen: makeAxes, refreshAxes, modifyAxes, and
axislabels. All rely on a database predicate definition of the form

axisPair (INTEGER, INTEGER, INTEGER, XMARKER, YMARKER, COL, ROW, COL, ROW)

In the entry

axisPair(AxesPairNo,AxesWindowNo,GraphWindowNo,
Xmarkers, Ymarkers, Left, Bottom, Right, Top)

AxesPairNo is the number of the scaled coordinate system used when you
need to refer to these axes again, and they are drawn in window number
Axes WindowNo.

When axes are defined using makeAxes, the first step on execution of the
makeAxes call is drawing the axes in the currently active window. A new
window is then created inside that active window so that subsequent
images in the coordinate system are automatically clipped if the image
being drawn exceeds the ranges for the currently active scale. The number
of this window is returned in Graph WindowNo. Left, Right, Bottom, and Top
specify the number of character positions that are to be left between the
edges of this window and the border of the screen.

The markings on the axes are defined by two markers of the form

marker (Unit, Formatspecifier, FieldWidth)

These markers define the following:

• what size the numbers on a numbered interval (Unit) on the relevant
axis are

• whether the numbering is in decimal or exponential form (that is,
FormatSpecijier equals d or e, respectively)

• how many character positions on the screen each such number may
occupy

The markers on the axes are modified using

modifyAxes (AxisPairNo,rnarker (Xunit,Xforrn, XWidth),
rnarker(Yunit,Yforrn,YWidth))

This modifies the relevant axisPair database entry.

106 Turbo Prolog Toolbox Owner's Handbook

A set of axes is refreshed by giving a goal of the form

refreshAxes (AxisPairNo)

The X and Y axes are labeled by calling

axisLabels(windowf,XaxisText,YaxisText)

The form of the predicate makeAxes consists of

makeAxes (AxesNo, AxesWindowNo, GraphWindow, Xmar ker s,
Ymarkers, Left, Bottom, Right, Top)

Using Scales and Axes in a Sample Program

The following sample program, XGRAPH.PRO, creates two windows, each
used for a different graph. The first window, window number 1, is used
with a scale defined as

define scale (1, 0, 100,-100, 100)

This scale is subsequently referred to as scale number 1. Then the axes are
defined with AxisPairNo set to 1, and the corresponding internal window is
also given the window number 1:

shiftwindow (1) ,
makeAxes (1, _,Gwindow,marker (10, d, 2) ,marker (10, d, 3) ,2,3,2,1)

(It is only for convenience that the corresponding window, scale, and axis
pairs have the same reference number in this example.)

The demo also illustrates how to modify axes so they can reflect changes in
the scales. This facility is used in the program to implement zooming
capabilities and the like.

Graphics Tools 107

~ 95···.
i BO'
9 65
h 50
t 35

20

300
280
260
240
220
200
180
160
140
120
100

5~~--~----~----~-

80

-10
-25

C -40
M -55

-70 60
40
20

FOJld T - YeaI' 1942 -i~~ Ir---r-""-' ---.--"--'T-_ .. ".,.... _.....,......J
O~~~~~~~~~ O.OeO 2.0e! 4.0el 6.0e! B.Oel 1.0e2

Length in MM
,.------------:Events-------------.
The following PJledicates use scaled cool'dinates: scaleCuJlsoJl!scalePlot and
scaleLine. As an exaMPle of theiJl use we will shift back to the fiJlst gJlaph
and the cOJlJlesponding cooJldinate SysteM, and then dJlaw a line. This May be
peJlf oJlllled by:

shiftwindow(GWindow) ,shiftScale(1), scaleLine(0,0,100,0, 1),

Figure 4.2: Scales and Axes In a Screen

code=3000
include "tdoms. pro"
include "gdoms. pro"
databa.e

Scale(ScaleNo,x,x,y,y)
activeScale(ScaleNo)

XGRAPH.PRO

axes (integer, integer, integer, xmarker, ymarker, col, row, col, row)
newsline (string)

include "gglobs.pro"
include "tpreds. pro"
include "gpreds. pro"
include "ggraph.pro"

predicate.
element (string, drawing)
process (char)
zoom(x,x,y,y)
message (string, string, string, string, string)
wfs(char)
wait (integer)
function (x)

r Used by this demo only */

108 Turbo Prolog Toolbox Owner's Handbook

pal
a •• ert.s(newsline(IIPress the space bar ")),
graphics(2,1,1),
makewindow(l,ll,l,IIWindow used for Graph 1",0,36,lB,44),
makewindow(2,12,1,IIWindow used for Graph 2",0,0,lB,35),
makewindow(3,13,1,IEvents",lB,0,7,BO),
makewindow(4,7,0,"SPACE BAR MESSAGE",24,30,1,20),

message(IIThe first graph is used for coordinates, which",
lion the X axis run from ° to 100 and on the Y axis",
"run from -100 to +100. This is accomplished by",
"defining a 'scale'. In this way the graph is",
"automatically scaled to fit the actual window. ",
"\tdefineScale (l, 0, 100, -100, 100) "),

defineScale (l, 0, 100, -100, 100),
wfs(),
message ("Now we can draw axes in the actual window",

"corresponding to that scale: II ,
1111 ,
"\tmakeAxes (l,Ano, Gno,marker (l0, d,2) ,marker (10,d, 3),1,1,1,1) ",
1111 ,
1111) ,

shiftwindow(l),
removewindow,
makewindow(l,ll,O,"Graph 1",0,36,lB,44),

makeAxes (l,

wfs(),

-' GWindow,
marker (10, d, 2) ,
marker(l0,d,3) ,
2,
3,
2,
1) ,

message (liThe axes may be labeled using, for example, ",
1111 ,
l\taxisLabels(l,\"Length in mm\I,\"Height in cm\")",
1111 ,
1111),

axisLabels(l,"Length in mml,"Height in cm"),
wfs(),
message(IIAny output may be directed to the graphics window by:",

1111 ,
"\ tshiftwindow (GraphWindowNo) ",
"\ t. •. draw function output. •.. ",
1111),

shiftwindow(GWindow),
function (0) ,
wfs(),
message (IINormal text can be written in the graph area. ",

.11.

r Axes pair 1 */
r Axes Window No. * /

r Graphics Window No. */

r Left */
r Bottom */
r Right */
r Top */

lI\tshiftwindow(Gno), cursor (0, 0), write (\"F (X) = 100*cos (6. 2S*X/50) \"l, ",
1111 ,
1111),

shiftwindow(GWindow),
cursor (0, 0), write ("F (X) = 100*cos (6. 2S*X/50) "),
wfse),

Graphics Tools 109

message ("The markings of the axes can be modified. Note",
"that the intervals have increased, and that",
"exponential notation is used on the Y axis instead of",
"decimal notation, due to the calls:",
"II
"\tmodifyAxes (l,marker (20,e, 4) ,marker (lS,d, 4)), refreshAxes (1), "),

modifyAxes (l,marker (20,e, S) ,marker (IS, d, 4)),
refreshAxes (l),
axisLabels(l,"Length in rnm","Height in em"),
shiftwindow(GWindow) ,
function (0) ,
wfs(),
message ("Window 2 is to be used for another graph--a drawing--",

"that is drawn relative to a new coordinate system.",
"This requires two calls:",
'"' ,
"\tdefineScale (2, 0, SOO, 0, 300)",
"\tmakeAxes (2, , GWindow2,marker (SO,d,3) ,marker (20, d, 3),1,1,2,1), "),

shiftwindow(2), -
makewindow (2, 12, 0, "Graph 2",0,0,18, 3S),
defineScale(2,0,SOO,0,300),
makeAxes (2, , GWindow2,marker (SO,d, 3) ,marker (20,d, 3),1,1,2,1),
element(carbody,E1),element(frontwindow,E2),
element (frontdoor, E3) , element (rearwindow, E4) ,
element(light,ES),
shiftwindow(Gwindow2) ,
draw ([d(l,E1),d (1,E2), d(1,E3), d(1,E4), d(l,ES) 1),
wfs(),
message ("Text may be positioned according to scaled",

"coordinates using scaleCursor: For example:",

'"' ,
"\tscaleCursor(l00,40),write(\"Ford T - Year 1942\")",
"") ,

shiftwindow(Gwindow2) ,
scaleCursor(l00,40),write("Ford T - Year 1942"),
wfs(),
message ("The following predicates use scaled coordinates:",

"scaleCursor, scalePlot, and scaleLine. As an example",
"of their use, we will shift back to the first graph",
"and the corresponding coordinate system, and then",
"draw a line. This can be performed by:",
"\tshiftwindow (GWindow), shiftScale (1), scaleLine (0, 0, 100, 0, 1), "),

shiftwindow(GWindow), shiftScale (1), scaleLine (0, 0,100, 0,1),
wfs(),
message ("Any drawing or graph can be modified by",

"changing the scale. In this example, it is used to",
"make the car look more sporty.",
'"', "\tdefineScale (3, 0, 400, 0, 400),", ""),

defineScale(3,0,SOO,0,900),
modifyAxes (2,marker (SO, d~3) ,marker (50, d, 3)),
refreshAxes (2),
shiftwindow (Gwindow2) ,
draw ([d (l,E1), d (l,E2), d (l,E3), d (l,E4), d (l,ES) 1),
wfs(),
message ("Change the coordinate system to ZOOM in or out.",

"Notice the effect when pressing either + or -." ,
"(Any of the keys l,r,u,d,<,> will cause an effect).",
'"' ,
"Use CTRL-BREAK to stop."),

110 Turbo Prolog Toolbox Owner's Handbook

J:etz.ct (newsline ()),
••• ml (newsline (iipress + - < > 1 r u or d. ")) ,
repeat,
wfs(e) ,
write (e),
process (e),
refreshAxes (2),
shiftwindow(Gwindow2),
draw([d(1,E1),d(1,E2),d(1,E3),d(1,E4),d(1,E5))),

flU.

cl.a •••
element (carbody ,

[p(70,100),p(90,195),p(190,205),p(240,300),
p(400,300),p(450,205),p(500,205),p(500,100),p(70,100))).

element (frontwindow,
[p(243,290),p(320,290),p(320,210),p(200,210),p(243,290I)).

element (frontdoor,
[p(200,205),p(200,105),p(320,105),p(320,205),p(200,205I)).

element (rearwindow,
[p(330,290),p(398,290),p(438,210),p(330,210),p(330,290Ill.

element (light, [p(85, 165), p(93, 165), p(98, 196))) .

process('+') :- zoom(O,-100,O,-60).
process('-') :- zoom(O,100,O,60).
process('l') :- zoom(50,50,O,O).
process('r') :- zoom(-50,-50,O,O).
process('u') :- zoom(O,O,-50,-50).
process('d') :- zoom(O,O,50,50).
process('w') :- zoom(O,-50,O,O).
process('t') :- zoom(O,O,O,-50).
process('<')

activescale(N), !,
scale(N,X1,X2, ,),!,
L = X2-X1,H = X1=X2,
zoom(L,H,O,O).

process('>') :
activescale(N),!,
scale(N, I ,Y1,Y2),!,
L = Y2-yI,H = Yl-Y2,
zoom(O,O,L,H) .

zoom(Dxl,Dxh,Dyl,Dyh) :
acti vescale (N) , !,
scale (N,Xmin,Xmax, Ymin, Ymax) , !,
NewXl = Xmin+Dxl,
NewYl = Ymin+Dyl,
NewXh = Xmax+Dxh,
NewYh = Ymax+Dyh,
NewXl <>NewXh,
NewYl<>NewYh,!,
J:.tJ:lct(scale(N"")),!,
•••• J:tI(scale(N,NewXI,NewXh,NewYl,NewYh)).

message(S1,S2,S3,S4,S5):-
shiftwindow (Old) , shift window (3) ,
clearwindow,write(S1,"\n",S2,"\n",S3,"\n",S4,"\n",S5),shiftwindow(Old).

Graphics Tools

r Big *' r Sman·,
r Left·'

r Right*'
r Up·'

r Down·'
r Wide·'
r TaU·'

111

wfs(e) :-
shiftwindow(4),clearwindow,
newsline(S),field str(0,0,20,S),
keypressed, readchar (e), !, shiftwindow(3) .

wfs (e) :- wait (3000),
r.tract(newsline(String)),!,
frontstr (l, String, F ,Rest),
concat (Rest, F, New) ,
.... rtl(newsline(New)),!,
wfs(e) .

wait(O) :- !. wait(N) :- Nl = N-l,wait(Nl).

function(N) :- N>lOO,!.
function(N) :- Y = 100*cos(6.28*N/50),scalePlot(N,Y,1),Nl = Ntl,function(Nl).

Other Tool Predicates for Handling
Coordinates

This section explains predicates that set or convert coordinates.

SeHing a Scale

The Toolbox predicate find Scale evaluates an image, then automatically
defines an appropriate scale so that the image fits into a given window. A
call takes the following form:

findScale (ScaleNo, Drawing, Xfactor, Yfactor)

Xfactor indicates the amount of stretch (if any) you desire in the X direction
when the images specified for this scale are represented on screen; Yfactor is
the amount of stretch in the Y direction. Hence, the following call defines a
scale that is twice as big on the X axis as the original DRAWING and is 1.3
times as big on the Y Axis. The identification number of the scale defined is
returned in the parameter ScaleNo:

setscale(ScaleNo, [p(l,1),p(9,1),p(9,9),p(1,9)), 2, 1.3)

112 Turbo Prolog Toolbox Owner's Handbook

Conversion Between Virtual and Text Coordinates

The conversion predicate virtuaCtext is found in GPREDS.PRO. It enables
conversion between virtual coordinates and character positions specified
by a text row and column number. Its declaration takes the form

virtual_text (VROW, VeOL, ROW, COL)

When converting from a character position to virtual coordinates, what
results is the coordinates of the upper left-hand comer of that character
position. Thus,

virtual_text(R,e,O,O)

binds Rand C to zero. The call (in SO-column mode)

virtual_text(R,C,24,79)

gives the virtual coordinates for the character in the lower right-hand
comer of the entire screen; that is, (30720,31600). This enables the use of
virtual coordinates based upon text coordinates but with their origin still at
(0,0).

GPREDS.PRO also contains the tool predicate that is called in the form

gwrite(Row,Col,String,Color,Direction)

It writes the given String horizontally if Direction equals 0 or vertically if
Direction equals 1. The first character is written in text position (Row,Col)
using the indicated Color.

Conversion Between Scaled and Text or Virtual
Coordinates

Conversion from or to scaled coordinates is handled by two tool predicates
included in the file GGRAPH.PRO, declared as follows:

scale virtual (X, Y, VROW, VCOL)
scale = text (X, Y, ROW, COL)

Conversions from scaled coordinates to either virtual or text coordinates
are carried out relative to the currently active window. The full range for
the scaled coordinates-found in the relevant scale definition of the form

Graphics Tools 113

scale (No, Xmin, Xmax,Ymin, Ymax)

-is assumed to fill the entire window, represented by No.

When converting from a character position to scaled coordinates, the
outcome is the coordinates of the lower left-hand corner of that character
position. This enables you to work with a coordinate system with origin
(0,0) in the lower left-hand comer of the active window.

All the conversion predicates are independent of the actual screen mode.
This is accomplished using two predicates: geteols(e), which binds C to the
actual number of columns on the entire screen, and getsereenmode(M),
which returns the current screen mode. Another useful related predicate is
sereenarea(Rows,Cols), which returns the number of rows and columns in the
drawing area of the active window. These low-level tool files are supplied
in GPREDS.PRO and GGRAPH.PRO.

Pie Charts

This section requires the file GPIE.PRO. Pie charts graphically show the
percentages or parts that make up a whole "pie." The Toolbox provides the
tool predicate pieChart, which draws a pie chart corresponding to the given
input parameters, namely:

pieChart(vrow,vcol,vradius, pieSegmentList)

The arguments of this predicate represent the following:

vrow and veol the coordinates for the center of the pie

vradius the radius of the pie

pieSegmentList[Sliee(PereentageValue,label,fill,frame),Sliee(.. .)]

114

a list of the "slices," each specified with:

percentage value: A negative percentage causes the slice
to stick out from the rest of the pie.

optional label: If the label ends with an = character, the
label is suffixed with the actual corresponding
percentage value.

Turbo Prolog Toolbox Owner's Handbook

color-fill value: A 0 color value means only the frame of
the slice is to be colored; a positive value means the
entire slice is to be filled.

frame-color value: This specifies the color you want the
frame and the label to be.

pieChart draws using virtual coordinates, that is, the center (specified as
(Row,Column» and the Radius are given in scaled coordinates. If the
percentages given do not add up to 100 percent, pieChart scales up the slices
specified so that they occupy the whole pie. This also allows the pie chart to
be drawn in windows of different sizes.

The definition of pieChart is in the file GPIE.PRO. It can be modified
and/ or expanded. For example, you can make the slice labels look
different. The pie slices are drawn by calling the external predicate sector,
which you met in an earlier section and which is implemented in C. Thus,
programs that use pie charts need to be compiled and linked as projects.

Using a Pie Chart in a Sample Program

The following program produces the pie chart shown in Figure 4.3, which
is shown right after the program listing.

project "xpie"

iDcl.ucle "tdoms. pro"
iDcl._ IIgdoms. pro"

databa.e
news line (string)

include "gglobs.pro"
iDcl.ucle "tpreds. pro"
incl_ "gpreds.pro"
iDcl._ "gpie. pro"

predicate.

XPIE.PRO

message (string, string, string, string, string)
wfs(char)
wait (integer)

Graphics Tools 115

goal
a •• ertl (newsline (IIPress the space bar to continue. ")) ,
graphics (1, 1, 1),
makewindow(I,6,0,"1,0,0,18,40),
makewindow (3, 7, 0, 1111, 18, 0, 6, 4 °) ,
makewindow(4, 8, 0, "SPACE BAR MESSAGE II ,24,5,1,20),
message (IIPIE CHARTS are easily drawn by giving",

lithe CENTER and RADIUS of the II ,
"piechart and the PERCENTAGE,",
"FRAMECOLOR, FILLCOLOR, and",
"LABEL for each slice in the pie."),

shift window (1) ,
pieChart(11000,19000,6000,

wfs(),

[slice(10.6,IJanuary",1,2),
slice(20.7,IFebruary",2,3),
slice(15.1,IMarch",3,2),
slice(23.5,IApril",1,3),
slice(5,IJune",2,1),
slice (17, "July", 3, 2) 1),

message (liTo attach an explanatory text to",
"a pie chart, you can use",
lithe gwrite tool predicate.",
1111 ,
1111) ,

shiftwindow (1),
gwrite(O, 5, "SALES: THE FIRST SIX MONTHS IN 1987",3,0),
gwrite(5,0,IEVALUATION:",1,0),
gwrite (6, 0, "------------", 1, 0),
gwrite(8,0,"\219 = good",3,0),
gwrite(10,0,"\219 = average",2,0),
gwrite(12,0,"\219 = bad",I,O),
gwri te (14, 0, "------------" ,1, 0) ,
wfs(),
message(IIIf certain slices need special",

"attention, they can be moved outward",
"and their labels suffixxed with",
"a percentage.",
1111),

shiftwindow(I),
clearwindow,
pieChart (11000, 19000, 6000,

[slice (10.6, IIJanuaryll, 1,2),
slice(-20.7,"February=",2,3),
slice (15 .1, "March", 3, 2),
slice(-23.5, "April=", 1,3),
slice(5,IJune",2,1),
slice (17, II July" ,3,2) 1),

gwrite (0, 5, "SALES: THE FIRST SIX MONTHS IN 1987",3,0),
gwrite (4, 0, "EVALUATION: ",3,0),
gwrite(6,0,"------------1,1,0),
gwrite(8, 0, "\219 = good",3,0),
gwrite(10,0,"\219 = average",2,0),
gwrite(12,0,"\219 = bad",I,O),
gwrite (14, 0, "------------",1,0),
wfs(),
message ("Two small pie charts can be ",

"used for comparing different periods. ",

116

1111 ,

Turbo Prolog Toolbox Owner's Handbook

1111 ,
"") ,

shift window (1) ,
clearwindow,
pieChart(15000,7000,3000,

[slice (10.6, "Jan", 1,2),
slice(20.7,"Feb",2,3),
slice (15 .1, "Mar", 3, 2),
slice (17, "Apr", 2, 1) J),

pieChart(15000,20000,3000,

wfs(),

[slice (16, "May", 1, 2),
slice(10.7,"Jun",2,3),
slice (15 .1, "Jul", 3,2),
slice (6, "Aug", 2, 1) J),

message("The next demo requires an EGA card.",
"16 colors are used to distinguish",
"the different slices.",
"Press E if the EGA card is attached;",
"otherwise, press the space bar"),

~.tr.at(newsline(I),
.... rts (newsline (iipress E when using EGA card ")) ,
wfs(Key) ,
str char(K,Key),
upper lower(K,"e"),
graphlcs(4,1,1),
makewindow (1, 6, 1, "",0,0,18,80),
makewindow(3,7,1,"",18,0,6,80),
makewindow (4, 8, 0, "SPACE BAR MESSAGE" ,24,30,1,20),
message("Pie chart using EGA mode with 640 x 200 pixels in 16 colors",

"" ,
"" I
"" ,
""),

shiftwindow (1) ,
gwrite(O,O,"SALES: JANUARY 1986 - MARCH 1987",1,0),
gwrite(3,0,"Colors of the two best months:",l,O),
gwrite(5,10,"\219",7,0),
gwrite (7,10, "\219",10,0),

pieChart (11000, 20000, 6500,
[slice (5, "Jan86", 1, 1),
slice(7,IFeb86",2,2),
slice(8,"Mar86",3,3),
slice(5,"Apr86",4,4),
slice (6, IMay86", 5, 5),
slice (6, "Jun86", 6, 6),
slice (-9, "Jul86=", 7,7),
slice(4,IAug86",B,B),
slice (8, "Sep86", 9, 9),
slice (-9, "Oct86=",10,10),
slice(6,"Nov86",11,11),
slice(3,"Dec86",12,12),
slice (5, "Jan87", 13, 13),
slice(7,"Feb87",14,14),
slice (3, "Mar87", 15, 15) J),

~.t~.ct(newsline(I),
•••• rts(newsline("Press the space bar to continue. ")),

Graphics Tools 117

wfs(),
graphics(5,1,1),
makewindow (1,6,1, '"',0,0,18,80),
makewindow(3,7,1,"1,18,0,6,80),
makewindow(4, 8, 0, "SPACE BAR MESSAGE II ,24,5,1,20),
message(IIEGA supports 640 x 350 pixel resolution in 16 colors.",

"Higher resolution implies a decrease in speed. ",
'"' ,
1111 ,
1111),

shiftwindow (1) ,
gwrite(O,O,"SALES: JANUARY 1986 - MARCH 1987",1,0),
gwrite(3,0,"The two best months:",l,O),
gwrite(5,5,"JuI86 \219",7,0),
gwrite(7,5,"Oct86 \219",10,0),

pieChart (11000, 20000,6000,
[slice (5, "Jan86", 1, 1),
slice (7, "Feb86", 2, 2),
slice (8, IMar86", 3, 3),
slice (5, IApr86", 4, 4),
slice(6,"May86",5,5),
slice (6, "Jun86", 6, 6),
slice(-9,"JuI86=",7,7),
slice(4,"Aug86",8,8) ,
slice (8,"Sep86", 9,9) ,
slice (-9,"Oct86=", 10,10) ,
slice (6,"Nov86", 11,11) ,
slice(3,"Dec86",12,12),
slice (5, "Jan87", 13,13),
slice(7,"Feb87",14,14),
slice (3, "Mar8?", 15, 15) 1),

wfs(J.

cl.us ••
message (SI, S2,S3,S4, S5)

shiftwindow (Old), shiftwindow (3),
clearwindow,
attribute (1) ,write(Sl,"\n") ,
attribute (2) ,write (S2, "\n") ,
attribute (1) ,write (S3, "\n") ,
attribute (2), write (S4, "\n") ,
attribute (1), write (S5, "\n") ,
shiftwindow (Old) .

wfs(C) :-
shiftwindow (4), clearwindow,
attribute (1),
newsline(S),field str(0,0,20,S),
keypressed, readchar(C) , !, shiftwindow(3) .

wfs (C) : - wait (8000),
r.tract(newsline(String)),!,
frontstr(l,String,F,Rest),
concat (Rest, F, New) ,

118

.... rt. (newsline (New)) ,
wfs(C) .

Turbo Prolog Toolbox Owner's Handbook

wait(O) :- !. wait(N) :- Nl = N-l,wait(Nl).

SALES THE FIRST SIX MONTHS IN 1987

EVALUATION:

• = good

11111111 :::: "~Lq,pe:Ii!"',agE!'

• = bad

The pie clil.;:llY'ot can he .rIIssociatp.d by
,m!' ::"'::],;:1,], ,jf:IL IJ"II .;;:~ '11:: IIJi](1' Y t: iE' l"'~ 'Ir. 1J.~:5: 1 n 91' :f II) lI,'" ,,~, :"'~ ,Ell, 11"'1111' .If II:~'
the gWY'oite tool p~edicate.

Figure 4.3: Sales: The First Six Months In 1987

Bar Charts

This section uses the file GBAR.PRO. Bar charts are another way of
representing sets of numerical data. You generate a bar chart by calling one
of these tool predicates:

bargraph (Left, Bottom, Right, Top, BarRatio, Barlist,Factor)
bargraph3d (Left, Bottom, Right, Top, BarRatio, Theta,Barlis t,Factor)

Either predicate can generate colored bar charts; the bargraph3d bar chart
resembles three-dimensional boxes. The position of the bar chart relative to
the borders of the currently active window is specified on a character basis
by the four parameters Left, Bottom, Right, and Top.

For a three-dimensional bar chart, the viewing angle is passed as an angle
measured in radians. The parameter BarRatio specifies the width of the
bars relative to the spacing between the bars. A spacing of 0.5 indicates that
the bars have the same width as the gaps between them.

The list of bars belongs to the domain

Graphics Tools 119

BARLIST = BAR*
BAR = bar (VHEIGHT, STRING, COLOR, COLOR) ; space

A bar is usually specified by its height, a label (which can be an empty
string), a frame color, and a fill color. A bar can also be a space, placed there
only to separate the bars visually. The bars are automatically scaled to fill
the specified area of the active window. The scaling factor is returned as the
last parameter.

USing bargraph and bargraph3d in a Sample
Program

This program is called XBAR.PRO. As the bar-chart tool predicates use the
box predicate, which is defined as an external predicate implemented in C,
this demo must be compiled as an project. The corresponding module list,
XBAR.PRJ, should therefore contain graphics+xbar+.

project "xbar"

include "tdorns. pro"
include "gdorns. pro"
include "gglobs. pro"
include "tpreds.pro"
include "gpreds. pro"
include "gbar. pro"

goal
Theta = 0.3,
GraphlRatio = 0.5,
graphics (1, 1, 1),
gwrite(O,12,"3-D BAR CHART.",3,O),
gwrite(I,12,"--------------",2,O),

XBAR.PRO

gwrite(2,1,"SALES IN BILLION $",1,1),
gwrite(24,O,"Resolution: 320x200 pixels in 4 colors",I,O),
BarGraph3D (3, 4, 4, 4, Theta, GraphlRatio,

120

[bar(2,"",1,2),
bar(3,"1984",1,3),
bar(5,"",1,2),
space,
bar (4, 1111,1,2),
bar(7,"1985",1,3),
bar (7,1111 ,1,2) ,
space,
bar (4, 1111,1,2),
bar(7,"1986",1,3),

Turbo Prolog Toolbox Owner's Handbook

bar(7,"",1,2),
space,
space,
space,
bar (10,"Estim. 1987",1,3)),J,

readchar (),
graphics (2, 1, 1),
makewindow (1, 1, 0, '"' , 0, 0,25, 8 0) ,
gwrite(0,30,"2-D BAR CHART",l,O),
gwrite(1,30,"-------------",1,0),
Graph2Ratio = 0.9,
gwrite (24,0, "Resolution: 640x200 in 2 colors.",l,O),
BarGraph (5, 5, 4, 4, Graph2Ratio,

[bar (52, "",1,0),
bar(33,"1983",1,1),
bar(70,"1,1,0),
space,
bar(49,"1,1,1),
bar (80, "1984",1,0),
bar (100, "",1,1),
space,
bar(40,"",1,0),
bar(50,"1985",1,1),
bar (70, "",1,0),
space,
bar(lOO,"Reference",l,l)),SFactor),

gwrite(22,0,"The graph is automatically scaled to fit a specified area.",l,O),
str real (ScaleStr, SFactor),
concat("The scaling factor in this example is =",ScaleStr,Str1),
gwrite(23,0,Str1,1,0),
readchar (),
graphics (4, 1, 1),
makewindow(4,7,0,"",0,0,25,80),
Graph3Ratio = 0.9,
gwrite(24,0,"Resolution: EGA 640 x 200 in 16 Colors",l,O),
BarGraph3D(7,7,7,7,Theta,Graph3Ratio,

[bar(2,"1,1,2),
bar(3,"1983",3,4),
bar(5,"",5,6),
space,
bar(4,"",7,8),
bar(7,"1984",9,10),
bar(7,"",Il,12),
space,
bar (4, "",13,14),
bar (7, "1985",15,1),
bar(7,"1,2,3),
space,
bar(10,"Reference",4,5)],_),

readchar (),
graphics (5, 1, 1),
makewindow(4,7,0,"",0,0,25,80), Graph3Ratio = 0.9,
gwrite (24,0, "Resolution: EGA 640 x 350 in 16 Colors",l,O),
BarGraph3D(7, 7,7, 7,Theta, Graph3Ratio,

[bar (2, 1111,1,2),
bar (3, "1983",3,4),
bar (5, 1111,5,6),
space,

Graphics Tools 121

bar(4,"1,7,8),
bar (7, "1984",9,10),
bar (7, '"',11,12),
space,
bar(4,1I1I,13,14),
bar(7,11985",15,1),
bar(7,'111,2,3),
space,
bar(10,"Reference",4,5)],),

readchar(_). -

S
A
L
E
S

I
N

B 5
I
L
L
I 2:
o
N

:$

1.984

3-D BAR-CHART.

7 7 77

1.985 1.986 EstiM. 1.987

Resolution: 32:0x2:00 pixels in 4 colo~s

Figure 4.4: Three-Dimensional Bar Chart

Color Graphics with the EGA Card

This section refers to the file GEGA.PRO. The Turbo Prolog standard
predicate graphics prepares the screen for graphics, since using the screen
for graphics display differs from using it for text. In graphics, each pixel on
the screen is represented by lor 2 bits in graphics modes 1 and 2 (the CGA
modes) and 4 bits in graphics mode 3, 4, and ~ (the EGA modes). In text,
however, each character is represented by two bytes, one giving the ASCII
code for that character and the other the attribute with which that character
is to be displayed.

In EGA graphics mode, the 4 bits representing each pixel allow you a
choice of 16 colors. One color is the background color-represented as color

122 Turbo Prolog Toolbox Owner's Handbook

O-so this leaves 15 colors to use when drawing and writing in graphics
mode.

The choice of colors is made using the attribute standard predicate, whether
in text or graphics mode. Thus,

attribute(l),write("This is written using color 1")

works in both text and graphics mode.

The graphics predicate takes three parameters:

Mode, Palette, BackGround

The choices of Palette have meaning only in eGA graphics mode 1 (see the
Turbo Prolog Owner's Handbook).

The EGA adapter supports a palette with programmable colors. Two tool
predicates may be used to manipulate these:

setEGApalette (ColorList)
setEGAregister (Register, Color)

They are found in the file GEGA.PRO, and the following example
demonstrates how they work.

Using the EGA PaleHes in a Sample Program

The sample program in the file XEGA.PRO enables its user to set up the
colors of an EGA screen and save the corresponding list of (17) integers in
the file eOLORS.DEF. You may want to experiment by building an
application that allows the user to switch between several color definitions.

1D.clwle "tdorns. pro"
iDclude "gdorns. pro"

douiDa
FILE = data file

databa ••
color (integer, integer)
actualcolor (integer)

Graphics Tools

XEGA.PRO

123

inelud. "tpreds.pro"
inelude IIgpreds. pro"
inelacle "gega. pro"

pr.dicate.
test (integer)
choice (key)
changecolor (integer)
shiftcolor (color)
getColorList (integer list)
showfield (integer)
loop

ella •••
r Default settings of the EGA palette registers *'

color(O,O) .
color(1,1) .
color(2,2).
color(3,3).
color (4,4) .
color(5,5) .
color(6,6) •
color (7, 7) •
color(8,56).
color(9,57).
color (10, 58) .
color (11, 59) .
color (12, 60) •
color (13, 61) .
color(14,62) .
color (15, 63) .
color(16,0) .

test(17) :- !.
test (N) :-

str int (S,N) ,
concat(IIColor ",S,Sn),
FieldRow = Nt3,N = N,
gwrite(FieldRow,20,Sn,N ,0),
N1 = Nt 1, -
test(N1).

choice (up) :- !,
shiftcolor(-1).

choice (down) :- !,
shiftcolor (1) .

choice (left) :- !,
changecolor(-1) .

choice (right) :- !,
changecolor(1).

choice(char('s')) :-!,
getColorList(L),
openwrite(datafile,"color.def"),
writedevice(datafile),
write(L) ,
close file (datafile),
writedevice(screen).

choice () :
beep.

124 Turbo Prolog Toolbox Owner's Handbook

shiftcolor (N) :
retract(actualcolor(C)),I,
NewC = abs (CtN+17) mod 17,
a •• ertl(actualcolor(NewC)),I.

changecolor(N) :
actualcolor(AC),
retract (color (AC,Color)), I,
NewColor = abs (ColortNt64) mod 64,
allml(color(AC,NewColor)),I.

getColorList([Bgrnd,C1,C2,C3,C4,CS,C6,C7,CB,C9,C10,C11,C12,C13,C14,C1S,
Border))

color (0, Bgrnd) ,
color (l,C1),
color(S,C5),
color(9,C9),
color (13, C13),
color(16,Border),I.

showfield (0) :
color(O,Color),I,

color (2, C2),
color (6, C6),
color(lO,C10) ,
color(l4,C14) ,

color (3, C3),
color (7, C7),
color (ll,Cll),
color (1S, C1S),

attribute(l),write(" (Background) =",Color).
show field (16) :-

color(16,COlor),I,
attribute(Color),write(1f (Border) =If,Color).

showfield (N) :
color(N,COlor),I,
attribute(Color),
write(1f ---> If,Color).

loop
actualcolor(OldAct),I,
FieldRow = OldActt3,
cursor (FieldRow,40),
showfield(OldAct),
readkey (K) ,
choice(K) ,
actualcolor(Regno),I,
color(Regno,Color),I,
setEGAregister (Regno, Color),
cursor (FieldRow,40),
write (If "),
f.il.

90al
graphics(S,l,l),

color (4, C4),
color(B,CB),
color (12, C12),

gwrite(O,lS,IfDEFINITION OF THE 17 EGA-PALETTE REGISTERSIf,l,O),
gwrite(2,20, IfRegister (0-16)",1,0),
gwrite(2,40,IfColor code (0-63)",1,0),
•••• rtl(actualcolor(l)),
getcolorlist(L),
setEGApalette(L),
test (1),
gwrite (3,20, "Background",l, 0),
gwrite (19, 20, "Border lf ,1,0),
cursor;(21,2),
attribute (1) ,write (If Use "), attribute (lS), write ("\24"),
attribute (1), write (If or If), attribute (lS), write (1\2S"),

Graphics Tools 125

attribute (1), write (" cursor keys to select registers and "),
attribute(15),write(I\26"),
attribute(l),write(" or "),
attribute (15) ,write ("\27"),
attribute(l),write(1I to change color."),
cursor (22, 2) ,write (IIPress "), attribute (15), write (s),
attribute (1) ,write (liTo save the defining 17 integers in the file

\ "col or . def\ II. "),
line (2400, 0, 2400, 31999, 1),
line (2400, 0, 31999, 0,1) ,
line(31999,0,31999,31999,1),
line(31999,31999,2400,31999,1),
repeat,
loop.

Loading .PIC Files I V\ J~Jt ~Ht.4.fit 't ~.qll 1b lo~J~(.1
H /-elt'}tJi-"hl..($ h,Jdi ~ ~ "flIt Al4 ~ e.

The Turbo Prolog tool predicates loadpic and savepic are supplied in the
.OBI file PICTOOLS.OBI, created from a program written in C. Any
program that uses them must therefore be incorporated into a project file, so
that the program can be linked with the .OBI file containing the tools. The
screen should be in mode 1.

It also follows that loadpic and savepic must be declared in the global
predicates section of any program that uses them. The global declarations
belonging to the graphics tools are collected in the file GGLOBS.PRO. In
this file, the declarations of loadpic and savepic take the following form:

qlobal predicate.

loadpic (String, Integer, Integer, Integer, Integer, Integer ,Integer)
- (i,i,i,i,i,i,i) language c

savepic(String) - (i) language c

A call to loadpic of the form

loadpic(FileName, StartRowPicFile, StartColPicFile,
StartRowScreen, StartColScreen, NoOfRows, NoOfCols)

in which all the parameters are bound, loads a full screen graphics image
from the file determined by Filename. For the purpose of addressing various
portions of this image, it is regarded as occupying 200 rows, numbered 0
through 199, and 320 columns, numbered 0 through 319. StartRowPicFile
and StartColPicFile specify the top left-hand comer of the sub-image to be
selected from the full screen image. NoOfRows and NoOfCols complete the
specification of this sub-image. StartRowScreen and StartColScreen specify

126 Turbo Prolog Toolbox Owner's Handbook

where on the screen the top left-hand corner of the sub-image is to be
displayed.

Using loadpic in a Sample Program

The following sample program (from XPICDEMO.PRO) demonstrates the
facilities provided by loadpic. It uses the two .PIC files, WELCOME.PIC and
TEST.PIC. For each image in these files, the program first displays the
whole image and then various parts of that image in various positions on
the screen. After each image or sub-image has been displayed, the program
waits for the user to press the space bar before continuing.

project "xpicdemo"

include "tdoms.pro"
include "gglobs. pro"
include "tpreds.pro"
iDclude IImenu.pro"

predicate.
picture (STRING)

90a1
picture (X),

XPICDEMO.PRO

graphics (1, 1,2),
loadpic(X,0,0,0,0,199,319),readchar(),
graphics (1, 1,3),
write("\nPIC 1: Whole screen"),readchar(),
loadpic(X,O,O, 0,0,199,319),readchar(),clearwindow,
write("\nPIC 2: Upper Left-Hand Corner 1I),readchar(),
loadpic (X, 0, 0, 0, 0,100,160) , readchar (), clearwindow-;
write("\nPIC 3: Bottom Left-Hand Corner 1I),readchar(),
loadpic(X,100,0, 100,0,100,160),readchar(),clearwindow,
write("\nPIC 4: Bottom Right-Hand Corner "),readchar(),
loadpic(X,100,160,100,160,100,160),readchar(),clearwIndow,
write ("\nPIC 5: Upper Right-Hand Corner "), readchar (),
loadpic(X,0,160, 0,160,100,160),readchar(),clearwindow,
write("\nPIC 6: Top Left Corner = ==> Bottom Right Corner 1I),readchar(),
loadpic(X,0,0,100,160,100,160),readchar(),clearwindow,
write("\nPIC 7: Middle ===> Upper Left-Hand Corner 1I),readchar(),
loadpic(X,50,80, 0,0,100,160),readchar(),clearwindow,fail. -

'clau.e. -
picture ("Welcome.pic") .
picture (IITest.pic fl

) •

Graphics Tools 127

loadpic's companion, savepic, saves a whole screen image in a file. Its
declaration was shown earlier in this section. A call of the form

savepic (Filename)

stores the currently selected graphics screen image in the file specified by
Filename.

Using loadpic and savepic to Create an On-Screen
Presentation

In this section, the loadpicand savepic predicates are used to construct a
program that saves each of several screen displays of large text letters in
.PIC files and then runs through them like a slide show. Thus, you can use
this program to construct a set of notes to accompany a lecture. In fact, the
program allows the production of any number of slides, each slide being
saved in a disk file when the # key is pressed. Esc is pressed when the
specification of slides is complete.

A simple menu offers the choice between making slides and viewing a
presentation. If you choose to view a presentation, the slides are shown in
the order they were made in, with each slide remaining on the screen until
the Space bar is pressed.

The program uses the screen image in TEST.PIC, which contains an
alphabet written in large (lowercase) letters. loadpic is used to select one of
the letters in this full-screen image so that the PC keyboard can be used like
a typewriter (lowercase letters only) during slide creation. The position
(Row and Column) of the top left-hand comer of each of the letters is held in
the predicate index. For example, the clause

index('p' ,84,94)

indicates that the top left-hand comer of the letter p begins at row 84,
column 94 of the full-screen image.

getnewpositions controls how letters you type are displayed on the screen.
findpicture helps to take special care of the Space bar and Return, both of
which affect the positioning of letters on the display screen but do not
produce images on a slide.

128 Turbo Prolog Toolbox Owner's Handbook

XSLlDES.PRO

project "xslides"

1Dclude "tdoms. pro"

databa ••
index (CHAR, INTEGER, INTEGER)
slide (INTEGER, STRING)

iDclude "gglobs. pro"
1Dclude "preds. pro"
1Dclude "menu. pro"

pr.dicate.
mydisplay (ROW; COL, INTEGER)
findpicture(char,ROW,COL,ROW,COL, INTEGER, INTEGER)
getnewpositions (ROW, COL, ROW, COL)
decide (INTEGER)

90al
makewindow(11,7,0,"",0,0,25,80),
repeat, text,
menu(10,10,64,23, ["Make some slides","See the slide show","Exit"],

"Choose an option",1,Choice),
decide (Choice), text,
fail.

clau •••
decide(1)

graphics(1,1,2) ,
attribute (2),
mydisplay(O,O,O).

decide (2) :-
slide(,B),graphics(1,1,2),
loadpic(B, 0, 0, 0,0,199,319),
readchar (),
clearwindow,
fail.

decide(3) :- exit.

mydisplay(Row,Col,Slideno)
readchar (X) ,X<>' \027' ,
findpicture(X,Row,Col,NewX,NewY,Slideno,NewSlideno),
mydisplay(NewX,NewY,NewSlideno) .

findpicture('\27',_,_,_,_,_,_) :- !,fail.

findpicture('t', , ,0,0,Slideno,NewSlideno)
str int (SN ~ SIideno) ,
c=oncat ("Slide", SN, FSN) ,
•••• :ttl (slide (Slideno, FSN)) ,
savepic (FSN),

Graphics Tools

I .,

129

graphics (1, 1,2),
NewSlideno = Slideno+l.

findpicture (" , CurrScrRow, CurrScrCol, NewScrRow, NewScrCol, S, S) : - !,
getnewpositions(CurrScrRow,CurrScrCol,NewScrRow,NewScrCol).

findpicture('\13' ,CurrScrRow, ,NewScrRow,O,S,S) :- !,
NewScrRow = CurrScrRow+25.

findpicture (X, CurrScrRow, CurrScrCol, NewScrRow, NewScrCol, S, S)
index(X,Rowl,Coll), Row = Rowl, Col = Coll,
loadPic (lite st. pic", Row, Col, CurrScrRow, CurrScrCol, 25,25) ,
getnewpositions(CurrScrRow,CurrScrCol,NewScrRow,NewScrCol) .

getnewpositions(X,Y,NewX,O) :- Y+34> = 300,NewX = X+25.
getnewpositions(X, ,0,0) :- X+25> = 199.
getnewpositions(X,Y,X,NewY) :- NewY = Y+34.

index('a',28,64).
index('d',25,158).
index('g',26,252).
index('j',53,127).
index('m',56,224).
index('p',84,96).
index('s',84,192).
index('v',112,62).
index ('y' ,112,160).

130

index (, h' , 25, 94) .
index (' e' , 28,188) .
index('h',54,64).
index('k',56,158).
index('n',56,252).
index('q',84,126).
index('t' ,84,224).
index('w',112,94).
index('z',112,192).

index('c',28,128) .
index('f',24,224) .
index('i',52,94).
index('I',56,188).
index('o' ,84,64).
index('r' ,84,158).
index('u',84,256).
index('x' ,112,128).

Turbo Prolog Toolbox Owner's Handbook

c H A p T E

Communication with Remote Serial
Devices

R

5

This chapter explains the communication tool predicates that the Toolbox
offers. The first section deals with general serial communications, followed
by several sample programs-including a subset of the popular XMODEM
file-transfer protocol. Next, modem communication is discussed, along
with the tools provided for this by the Toolbox. Finally, a complete menu
driven serial communications program is shown.

Before going on, note that you should be familiar with serial
communications in general and the IBM-PC communication hardware in
particular, especially the Asynchronous Adapter. More details can be found
in the IBM-PC technical reference manual. Similarly, if you intend to use
the communication tool predicates to communicate via a modem, study the
owner's manual that comes with your modem.

The Communication Tool Predicates

The communication tools provided in the Turbo Prolog Toolbox are a
powerful set of predicates that can be used in many different ways,
including the following:

Communication with Remote Serial Devices 131

• to connect the serial port of your PC to that of another PC, so you can
send and receive information either via the simple file-transfer program
provided or via your own enhanced (full error-checking and error
correcting) version

• to construct a terminal-emulation program, so your PC can talk to a
mini- or mainframe computer

• to connect your PC to a Hayes-compatible modem and communicate
with other machines using a phone line

The communication tool predicates are buffered and fully interrupt-driven
using the PC's interrupt controller. They work on either of the PC's serial
ports: COM1, which is located at I/O-address $03F8; or COM2, which is
located at I/O-address $02F8. Transmission rates can be freely selected
among the most commonly used baud rates, in the range 110 to 9600 baud.

The Toolbox gives you two types of communication tool predicates: those
you use with modems, and those you implement without modems. Those
tool predicates not related to the use of modems are in the file SERIAL.OBI,
and those that work with modems are in the file MODEM.OBI. The
programs that make use of these communication tool predicates must be
declared as part of a project and compiled as a project. (If you're not
familiar with modular programming, see Appendix A, "Compiling a
Project.") The accompanying global declarations are in the file
COMGLOBS.PRO, which must be included in all programs that use the
communications tools.

Hardware Considerations

When connecting a PC to a remote device, you must determine whether
each device is configured as DTE (Data Terminal Equipment) or DCE (Data
Communications Equipment). Since the IBM PC (and most IBM PC
compatibles) emulates DTE, it is only necessary to determine what signals
the remote device emulates. This information can usually be found in the
manual for that device. Once you've determined this, you can decide
which of the following pinouts is required.

The following list shows commonly used communications terms and their
meanings:

132 Turbo Prolog Toolbox Owner's Handbook

TX
RX
DSR
DTR
Ground
RTS
CTS

= Transmitted data
= Received data
= Data set ready
= Data terminal ready
= Signal ground
= Request to send
= Clear to send

Pinouts for DlE-to-DlE Configuration

The following pinout can generally be used when connecting two Pcs
together directly (hard-wired). A cable with this configuration is known as
a null modem cable.

mMPC RS232 ADAPTER REMOTE DEVICE

TX Pin 2 > Pin 3 RX
RX Pin 3 > Pin 2 TX
DSR Pin 6 > Pin 20 DTR
Ground Pin 7 > Pin 7Ground
DTR Pin 20 > Pin 6 DSR

In addition, to implement the RTS/CTS (Request To Send/Clear To Send)
handshaking protocol, the following connections must be made:

RTS Pin 4 > Pin 5 CTS
CTS Pin 5 > Pin 4 RTS

Pinouts for DlE-to-DCE Configuration

The following pinout is most commonly used when connecting a PC to a
modem. Be sure to check the owner's manual for the modem to see if it
emulates OCE. A cable with this configuration is known as a straight-thru
cable.

Communication with Remote Serial Devices 133

IBM PC RS232 ADAPTER REMOTE DEVICE

TX Pin 2 > Pin 2 RX
RX Pin 3 > Pin 3 TX
DSR Pin 6 > Pin 6 DTR
Ground Pin 7 > Pin 7Ground
DTR Pin 20 > Pin 20 DSR

Make the following connections for RTS/CTS handshaking:

RTS Pin 4 > Pin 4 CTS
CTS Pin 5 > Pin 5 RTS

General Serial Communications

Serial communications simply means transferring one data bit at a time
over a single wire. In this section, you'll learn how to open and close a
serial port, perform transmission procedures and queue sizing, and delete
buffers.

Opening a Serial Port

The tool predicate openRS232 initializes either COMl or COM2 so it is
ready to transmit or receive data. openRS232 will fail if the Asynchronous
Adapter (or equivalent) is not in the PC, or if one of its parameters is out of
range (for example, if an illegal value is given for the baud rate or I/O port
number). In a containing program, openRS232 must be declared as follows:

DetermOpenRS232 (Integer, Integer, Integer, Integer, Intege r,Integer,
Integer,Integer) - (i,i,i,i,i,i,i,i) language c

(This is done automatically if you include COMGLOBS.PRO in the
program.)

In a call of the form

openRS232(PortNo, InputBufSize, OutputBufSize, BaudRate,
Parity, WordLength, StopBits, Protocol)

all the parameters must be bound and the following values filled in.

134 Turbo Prolog Toolbox Owner's Handbook

PortNo

InputBufSize

OutputBufSize

BaudRate

Parity

V\brdLength

StopBits

Protocol

= 1 means use COM1.
= 2 means use COM2.

must be in the range 1 to 16383 and specifies the
number of bytes reserved for the input buffer.

must be in the range 1 to 32767 and specifies the number
of bytes reserved for the output buffer.

is determined according to the following:

= 0 means 110 Baud.
= 1 means 150 Baud.
= 2 means 300 Baud.
= 3 means 600 Baud.
= 4 means 1200 Baud.
= 5 means 2400 Baud.
= 6 means 4800 Baud.
= 7 means 9600 Baud.

= 0 means no parity.
= 1 means odd parity.
= 2 means even parity.

= 0 means 5 data bits.
= 1 means 6 data bits.
= 2 means 7 data bits
= 3 means 8 data bits.

= 0 means 1 stop bit.
= 1 means 2 stop bits.

= 0 means communication with no protocol (that is,
neither XON/XOFF nor RTS/CTS).

= 1 means communication with XON/XOFF but
without RTS/CTS (our preferred mode).

= 2 means communication with RTS/CTS
but without XON/XOFF. If RTS (Request To Send) is
high, then CTS will go high when the external device is
ready to receive (and vice-versa).
= 3 means communication with either XON/XOFF or

RTS/CTS.

Communication with Remote Serial Devices 135

For instance, a Hewlett-Packard (HP) LaserJet printer requires the
following: a transmission speed of 9600 baud; a data format consisting of
no parity, eight data bits, and one stop bit; and the RTS/CTS protocol.
Thus, a call of the form

openRS232(1, 256, 256, 7, 0, 3, 0, 2)

initializes the COMI port for printing using an HP LaserJet printer with
input and output buffers of 256 bytes.

Closing a Serial Port

The tool predicate closeRS232 closes an open communication port. This
means the PC interrupt mechanisms are restored to the state they were in
before the corresponding openRS232 was executed and the in put/ output
buffers de-allocated. It is extremely important to close a communication
port before an application terminates because the interrupt routines
redirect interrupts IRQ3 and IRQ4 from the interrupt controller. closeRS232
fails if the communication port referred to isn't open or doesn't exist.

closeRS232 is declared in a containing program by a declaration of the form

Determ closeRS232 (Integer) - (i) language c

A call

closeRS232 (PortNo)

affects COMI if PortNo is bound to 1 and COM2 if PortNo is bound to 2.
Thus, closePort defined by

closePort(PortNo) :
closeRS232(PortNo),!.

closePort(PortNo) :-
write(II\nPort COM",PortNo, cannot be closed"),readchar(J.

either closes a serial I/O port or displays an error message if an attempt is
made to close an unopened port.

Obtaining Transmission Status Information

The tool predicate status_RS232 returns information concerning the current
state of transmission. This information can be used during debugging, for

136 Turbo Prolog Toolbox Owner's Handbook

example, or in the production of an error-checking and error-correcting
file-transfer package.

status_RS232 returns a status value that is a bit mask, so that it is often
necessary to use the bitand standard predicate to de-mask the value. The
status value is reset before each write and read operation, and it is good
practice to check the transmission status after each transmission.
status_RS232 fails if the specified I/O port has not been opened.

It is declared as follows:

Determ status_RS232(Integer,Integer) - (i,o) language c

A call of the form

status_RS232\PortNo,Status)

in which PortNo is bound to the code for an opened I/O port (PortNo=l
means COM1, PortNo=2 means COM2) binds Status to the bit mask value
representing the current transmission status as shown:

Status =0
=1

=2
=4
=8
= 16
=32
=64
= 128
=256
= 512
= 1024

Transmission ok.
Input characters have been lost because the
input queue was full when characters were
received.
Parity error detected.
Over-run detected.
Framing error detected.
Break signal detected.
An XOFF has been received.
An XON has been received.
An XOFF has been transmitted.
An XON has been transmitted.
Input buffer is empty when trying to read.
Output buffer is full when trying to write.

Thus, the predicate check_status is defined by the following and can be used
to display transmission status messages:

Communication with Remote Serial Devices 137

check status :- status RS232(1,Status),
-check stat(Status,1, "Input Characters have been lost"),
check-stat(Status,2, "Parity error"),
check-stat(Status,4, "Overrun detected"),
check-stat (Status, 8, "Framing error detected"),
check-stat (Status, 16, "Break signal detected"),
check-stat(Status,32, "An XOFF has been received"),
check-stat (Status, 64, "An XON has been received"),
check-stat (Status, 128, "An XOFF has been transmitted"),
check-stat (Status, 256, "An XON has been transmitted"),
check-stat(Status,512, "Input bijffer empty"),
check=stat(Status,1024,"Output buffer full").

check stat(Status,BitMask,Mess) :
-bitand(Status,BitMask,V), V<>O,!,nl,write(Mess).

Transmit a Character from a Serial Port

The tool predicate txCh_RS232 places a character in the output buffer if the
buffer is not full. That character is then transmitted when the receiver is
ready. Since the low-level transmission is interrupt driven, it is fully
transparent when viewed from a Turbo Prolog program. A program is not
normally aware of when transmission from the buffer takes place.
However, the status of a transmission can always be monitored by calling
the predicate status_RS232. txCh_RS232 fails if the output buffer is full or
the specified communication port is not open. It must be declared in any
containing program by means of a declaration of the form

Determ tXCh_RS232 (Integer, Char) - (i,i) language c

Then a call of the form

txCh _RS232 (PortNo, CHI

transmits the character CH to the output buffer for port number PortNo,
where PortNo=l means the COMl serial communication port and PortNo=2
means the COM2 serial communication port.

To monitor the transmission state after a character has been transmitted,
use the predicate send_ch, defined as follows:

send chICH) :- txCh RS232(1,CH),!.
send-ch () :- write (IIError sending character II),

- status RS232(1,Status),
write("Status code=",Status).

138 Turbo Prolog Toolbox Owner's Handbook

Receiving a Character from a Serial Port

The tool predicate rxch-.RS232 returns any characters from the input buffer,
according to this declaration:

Determ rxch_RS232 (Integer, Char) - (i,o) language c

So that a call of the form

rxch _ RS232 (PortNo, CH)

binds CH to the next available character (if any) from the input buffer for
port number PortNo, where PortNo=l means the COMl communication
port and PortNo=2 means the COM2 communication port.

rxch_RS232 fails if the input buffer is empty or the specified port is not
open. If anything goes wrong, you can obtain more information about the
current transmission state by calling the status_RS232 tool predicate as
described earlier.

Obtaining Input and Output Queue Sizes

The tool predicate queuesize_RS232 returns the size of the input and output
queues. These, respectively, contain the characters that the low-level
routines have received but have not been read yet by the calling Turbo
Prolog program and the characters the Turbo Prolog program has written
but have not been transmitted yet. queuesize_RS232 is declared as follows:

Determ queuesize_RS232(Integer, Integer, Integer) - (i,o,o) language c

In a call of the form

queuesize _ RS232 (PortNo, SizeOfInputQueue, SizeOfOutputQueue)

with PortNo bound to the code for a serial I/O port (PortNo=l means
COMl, PortNo=2 means COM2), SizeOfInputQueue and SizeOjOutputQueue
become bound, respectively, to the number of characters in the input and
output queues. queuesize _RS232 fails if the specified COM port is not open.
Thus, the clause tesCqueue defined by

test queue :- queuesize RS232(1,SizeI,SizeO),
- write(IINo of characters in input queue: ",SizeI),

write("No of characters in output queue: ",SizeO).

Communication with Remote Serial Devices 139

displays the sizes of the input and output queues on the screen.

Deleting the Output Buffer

delOutBuf_RS232 deletes the contents of the output queue. This predicate is
useful in circumstances where it is necessary to retransmit a certain block of
data. It fails if the specified port is not open. delOutBuf_RS232 is declared as

Determ delOutBuf_RS232(Integer) - (i) language c

so that a call of the form

delOutBuf _ RS232 (PortNo)

with PortNo bound to the code for an I/O port, deletes the contents of the
output buffer for that port.

Deleting the Input Buffer

delInBuf_RS232 deletes the contents of the input queue. It is useful in cases
where data input during a transmission phase should be suppressed.
dellnBuf_RS232 fails if the specified port is not open. It is declared as
follows:

Determ delInBuf _RS232 (Integer) - (i) language c

In a call of the form

delInBuf _ RS232 (PortNa)

with PortNo bound to the code for an I/O port, deletes the contents of the
input buffer for that port. The call

delInBuf _ RS232 (1)

deletes the contents of the buffer for COMl.

140 Turbo Prolog Toolbox Owner's Handbook

Some Complete Sample Programs

Following are four sample communication programs. They include a
printer driver, a terminal emulator, polled communication, and an
XMODEM subset.

A Printer Driver That Lets You Modify the File Being
Printed

The following sample program, XPRINTER.PRO, reads the contents of the
text file DATA.TRS, converts those characters to uppercase, and then sends
the result to an HP LaserJet printer (or compatible) connected via COM1. It
can be modified for use with your own serial printer by changing the
parameters in openRS232(.. .).

The program contains a "time out" feature. If you are unable to transmit a
character for any reason, the transmission is attempted for 5 seconds, after
which time the transmission status is displayed and transmission halted. To
time this, the program uses the ticks tool predicate, which is contained in
both SERIAL.OBJ and MODEM.OBJ. It suspends the current program for a
certain amount of time and is declared as

ticks (Integer)

A call of the form

ticks (TimeInHundredthsOfSec)

with TimelnHu nd red ths Of Sec bound to 50, for example, suspends the
current program for half a second.

Communication with Remote Serial Devices 141

project "xprinter"

domain.
FILE = sp

include "comglobs.pro"

predicate.
run
process until eof
openfile(file~string)
transmit (char)

XPRINTER.PRO

trans ch delay (char, integer)
wait_untIl_ernpty_output_buffer(integer)

90a1
run.

clau •••
run :-

PortNo = 1,
InputBufSize = 1,
OutputBufSize = 4000,
BaudRate = 7,
Parity = 0,
WordLength = 3,
StopBits = 0,
Protocol = 2,
openRS232(PortNo, InputBufSize, OutputBufSize, BaudRate,

Parity, WordLength, StopBits, Protocol),
openfile(sp,IDATA.TRS"),!,
process until eof, closefile (sp),
write(lI\nPrint succeeded"),
wait until empty output buffer (lOa),
closeRS232(1). - -

run : - closeRS232 (1) .

r COM1 */
r Size of input buffer * /

r Size of output buffer */
r 9600 bits per second * /

r No parity */
r Eight data bits */
r One stop bits * /

r XON/XOFF can not be used */

/**
Open a file for reading - if possible

**1

open file (Sp, FileName) :- openread(Sp,FileName),!, readdevice(Sp).
openfile(_,FileNarne) :- write(lI\nlmpossible to open ",FileName),fail.

1**
Read a character from the current readdevice,

convert it to uppercase and print it.
Continue this process until eef or a "Ume out" event.

**1

process until eof :
eof(sp)~transrnit(/\OI2/),!. r Send Form Feed */

142 Turbo Prolog Toolbox Owner's Handbook

process until eof :-
readchar(CH), str char(S,CH), upper lower(S2,S), str_char(S2,CH2),
transmit(CH2), process_until_eof. -

transmit('\OlO') :-
!,trans ch delay('\013' ,10),trans ch delay('\OlO',lO).

transmit (CH) :- trans_ch_delay(CH,lO). - -

trans ch delay(CH,) :- txCh RS232(1,CH),!.
trans-ch-delay(CH,I) :- 1>0,T,12 = 1-l,ticks(50),trans ch delay(CH,12).
trans-ch-delay(,) :- - -

-closefile(sp), closeRS232(1),
write("\nPrinter is not ready, program aborted"), f.11.

1**
Wait until output buffer is empty

**1

wait until empty output buffer() :- queuesize RS232(1, ,Queue), Queue = O,!.
wait-until-empty-output-buffer(l) :- - -

- 1>O,T, 12 ;; 1-l,tlcks(10),
wait until empty output buffer (I2) .

wait_until=empty=output_bufferU :- write("\nTime out").

Terminal Emulation

In this section, you'll see how to construct a terminal-emulation program
using the tool predicates in the sample file XTERM.PRO. The program
allows your PC to act as a terminal when connected either to another PC
(via the COMl ports of each machine) or to a larger mini- or mainframe
computer.

Some of the serial communications tool predicates are used to define a
predicate terminal that allows interrupt-based transmission and reception.
Everything received from COMl is shown in the Receive window, and
characters typed at the keyboard are transmitted through COMl and
echoed to the Transmit window. This process continues until Escape (ASCII
code 27) is pressed, and the program terminates.

project "xterm"

include "tdoms. pro"
include "comglobs.pro"
include "tpreds. pro"

XTERM.PRO

Communication with Remote Serial Devices 143

include "status.pro"
include "menu. pro"

predicate.
run
terminal
chk rdch
chk-wrch
rdch CRLF RS232 (char)
trans _ ch (char)

Clod
run.

clau •••
run :-

makewindow(2, 42,36," Transmit window", 0,0,12,80),
makewindow(3, 63,5," Receive window", 12,0,12,80),
PortNo = 1,
InputBufSize = 1,
OutputBufSize = 1,
BaudRate = 7,
Parity = 0,
WordLength = 3,
StopBits = 0,
Protocol = 0,
openRS232 (PortNo, InputBufSize, OutputBufSize, BaudRate,

Parity, WordLength, StopBits, Protocol),
terminal, !, closeRS232 (1) .

run :- cioseRS232 (1) .

/**
TERMINAL MODE

Transmission without time out
**/

terminal chk_rdch, chk_wrch,terrninal.

chk rdch rdch_CRLF_RS232 (CH), !,gotowindow(3), write (CH) .
chk-rdch.

chk wrch :-
- gotowindow(2), cursor (R, C), cursor (R,C) ,not (keypressed), ! .

chk_wrch :- readchar(CH),CH<>'\027', wrch_CRLF(CH).

rdch_CRLF_RS232 (CH) :- rxch_RS232(1,CH), CH<>'\013'.

wrch CRLF('\013') :- !,nl, trans ch('\013'), trans_ch('\010').
wrch=CRLF(CH) :- write(CH), trans_ch(CH).

trans ch (CH) : - txCh RS232 (1, CH), !.
trans=ch(CH) :- trans_chICH).

r COM1 */
r Size of input buffer * /

r Size of output buffer */
r 9600 bits per second * /

r No parity * /
r Eight data bits * /
r One stop bits */

r Fully asynchronous */

144 Turbo Prolog Toolbox Owner's Handbook

Polled Communication with Time Out

Gluing together all the ideas from the sample programs so far, you can
easily build a program that allows the polled transmission and reception of
data with a time out feature, and that displays a suitable message in case of
any communications problems. The Toolbox provides one called
XPOLLING.PRO. Polling simply means that the sending device checks
whether the receiving device is ready to receive information.

Project "xpolling"

1Dclude "tdoms. pro"
1Dclude "tpreds. pro"
include "menu. pro"
include "comglobs.pro"

predicate.
send str (STRING)
send-ch CRLF(CHAR,INTEGER)
send-ch (CHAR, INTEGER)
receIve str ()
receive - ch (CHAR, INTEGER)
wait ok(INTEGER,INTEGER,INTEGER)
wr status (INTEGER)
check_status (INTEGER, INTEGER, STRING)

90al
openRS232 (1,256,256,7,0,3,0,2),

XPOLLlNG.PRO

send str(IIHello, all our readers\n"),
closeRS232(1).

clau.e.
r Transmit a string *'

send str("") :- !.
send-str(S) :- frontchar(S,CH,S2),

- write(CH), send ch CRLF(CH,50),
send_str(S2). - -

send ch CRLF('\lO' ,I) :- !,send ch('\13' ,I), send_ch('\lO' ,I).
send=ch=CRLF(CH,I) :- send_ch(CH,I).

send chICH,) :- wrch RS232(1,CH),!.
send-chICH,!) :- status RS232(1,Status), !,

- wait_ok(Status,I,!2), send_ch(CH,I2).

r Receive a string and copy it to a file *'
receive str() :-

receive ch(CH,50),!,
write(CR),
writedevice(FP), writedevice(df), write(CH), writedevice(FP),

Communication with Remote Serial Devices 145

receive str().
receive _ str ()-:

receive chICH,) :- rdch RS232(1,CH), CH<>'\013', 1.
receive-ch(CH,-) :- rdch-RS232(1,CH), !.
receive-ch(CH,I) :- status RS232(1,Status), !,

wait_ok(Status,I,I2)~ receive_ch(CH,I2).

r Time out*/
wait ok(,1,12) :- I > 0,12 = 1-1,ticks(10),!.
wait=ok(Status,_,50) :- wr_status(Status).

r De-mask status value */
wr status(O) :- !.
wr-status(Status) :-

- shiftwindow (WD), shiftwindow (1) ,
check status(Status,1, "Input Characters have been lost"),
check-status (Status,2, "Parity Error"),
check-status (Status,4, "Overrun detected"),
check-status (Status, B, "Framing error detected"),
check-status (Status, 16, "Break signal detected"),
check-status(Status,32, "An XOFF has been received"),
check-status(Status,64, "An XON has been received"),
check-status (Status,12B,"An XOFF has been transmitted"),
check-status(Status,256,"An XON has been transmitted"),
check-status(Status,512,"Input buffer empty when attempt to read"),
check-status (Status, 1024, "Output buffer full when attempt to write"),
write (lI\nPress SPACE to continue or ESC to abort"), readchar (Ch),
shiftwindow(2), shiftwindow(3),
shiftwindow(WD),CH<>'\27' .

check status(Status,BitMask,Mess) :
-bitand(Status,BitMask,V), V<>O, !, nl, write(Mess).

check_status(_,_,_).

Transmission with a True Subset of the XMODEM
Protocol

This section contains a program, XXMODEM.PRO, that transmits and
receives data in packets according to a true subset of the XMODEM
protocol. The packet format is

Packet No, Complement to Packet No, ... 12B bytes of data ... , Checksum

XMODEM is a file-transfer transmission standard that performs error
checking. After a block of data is transferred, a checksum (the sum of the
ASCII codes of all the characters in the block) is sent. The receiving
computer computes a checksum of the block it receives and compares it
with the checksum sent. The following transmission abbreviations are used:

146 Turbo Prolog Toolbox Owner's Handbook

ACK ACKnowledgment
NAK Negative AcKnowledgment
SOH Start Of data cHaracter
EOT End Of Transmission

The sequence of events between transmitter and receiver can be
summarized as follows:

TRANSMITTER

Send SOH
Send packet

RECEIVER
SendNAK

Everything is ok : Send ACK
Everything is not ok : Send NAK

(This sequence is repeated until the transmission is accepted. When all the
required packets have been transmitted, the transmitter takes the lead
again.)

SendEOT
SendACK

If something goes wrong during transmission (say, a checksum error is
detected by the receiver), then the tool predicates delInBuf and delOutBuf
are used to empty the buffers before transmission is re-attempted.

project "xxmodem"

domain.
FILE = sp;dp

databa.e
last char(Char)
retrans _ coun (Integer)

iDcl.ude "tdoms. pro"
include "comglobs. pro"
iDcl.ucie "tpreds.pro"
include "menu. pro"

domain.
Package = package(char,char,dataL)
DataL = chart

predicate.
run

XXMODEM.PRO

Communication with Remote Serial Devices 147

decide (integer)

send file (char)
receIve file (char)
reset last char
read list (Integer, dataL)
mkList(integer, dataL)
write_list (dataL)

r Transmission predicates "'/
Send Package(package)
send-data (integer, dataL, char)
reset retransmit counter
increment retransmit counter
send_and jiai t (char, char, integer)

receive package(char,char,package)
wait trans ready
receIve data(integer,char,dataL)
rxch RS232 delay (integer, char)
check notEOT

check next char (char)
ignore until received (char)
test for nak-

mess (string, char)
assert char(char)
headline (char)
opd _headline (integer, char, char)

goal
run.

c1au •••
run :-

makewindow(3, 81,21," Package window", 0,44,12,36),
makewindow(1, 42,36," Message window", 0,0,12,44),
makewindow(2, 63,S," Transmission window", 12,0,12,80),

PortNo = 1,
InputBufSize = 256,
OutputBufSize = 256,
BaudRate = 7,
Parity = 0,
WordLength = 3,
StopBits = 0,
Protocol = 2,
openRS232(PortNo, InputBufSize, OutputBufSize, BaudRate,

Parity, WordLength, StopBits, Protocol),
repeat,
menu (10, 20, 64, 23,

["Transmit Data.TRS",
"Receive Data.RCV",
"Quit"],
"Choose an option" ,Choice),

decide(Choice),
fail.

r Receive with a time out * /

r COM1 */
r Size of input buffer * /

r Size of output buffer * /
r 9600 bits per second * /

r No parity * /
r Eight data bits * /
r One stop bits * /

r XONIXOFF can not be used */

148 Turbo Prolog Toolbox Owner's Handbook

r Transmit a file using packaging */
decide (1) :-

openread(sp,IDATA.TRS"), readdevice(sp),
send file('\OOl'), !, closefile(sp).

decide (1) :- close file (sp) .

r Receive a file using packaging * /
decide (2) :-

openwrite (dp, "DATA. RCV"), writedevice (dp),
receive file('\OOl'), !, closefile(dp).

decide (2) :- closefile(dp).

r Quit*/
decide (3) :- closeRS232 (1), exit.

1**
Transmit a file

**1

send file(Pno) :-
- read list(O,DataL),!, char int(PNO,V), V2 = -V, char_int(CPNO,V2),

send-package (package (PNO, CPNO, DataL)),
V3 =-Vt1, char int(PN02,V3),
send_file (PN02).

send file U :-

r read_list (read characters from a file) failed */
r Everything is ok--send an EOT and wait for ACK * /

mess(IISend EOT and wait on ACK",' '),
send_and_wait('\04','\06',5).

1**
Receive a file

**1

receive file(PNO) :-
char int(PNO,V), V2 = -v, char_int(CPNO,V2),
reset last char,
receive package(PNO,CPNO,package(, ,DATAL)),!,
write IIst(DATAL), - -
V3 = Vt1, char int(PN02,V3),
receive_file(PN02).

r receivedJ>ackage failed, that means a EOT has been received */
r or the transmission is in time out */

reset last char :- not(last charI I),!.
reset=last=char :- retract(Iast_char(_)),l.

1***
Support predicates for send_file and receivejile

readJist: If possible, read 128 bytes from file and convert it to a list.
writeJist: Write a list of characters to the current output device
**1

Communication with Remote Serial Devices 149

readlist(128,[]):- !.
read-list(I,[HITJ) :- readchar(H), 1,12 = It1, read list(I2,T).
read=list(I,L) :- 1>0, Len = 128-1, mkList(Len,L).

mkList(O, []) :- !.
mkList(I,['\026'IT]) :- 12 = 1-1, mkList(I2,T).

write list([]) :- !.
write=list([HIT]) :- write(H), write_list(T).

1**
Transmit a package

**1

send_Package (package (PNO,CPNO,DataLII :- headline(PNOI,

r Wait for a NAt< from the receiver .,
mess(IIWait for NAK ... ",' 'I,
ignore _until_received(' \021'), delInbuf _RS232 (1),

r Send SOH·'
txCh RS232 (1,' \001'),
mess(IISend SOH",' '), ticks(201, delInbuf_RS232(11,

r Send package number and the complements·,
mess(IITransmit PNO ",PNO),
txCh RS232(1,Pnol, ticks(l), test for nak,
mess("Transmit CPNO ",CPNO), --
txCh_RS232(1,CPNO), ticks(l), test_for_nak,

mess (IITransmit Data ... ",' '),
send data (O,DataL,' \0'),
mess(IIWait for ACK ... ",' '),
check next char (' \006'),
reset=retransmit_counter, I.

send_Package(package(PNO,CPNO,dataL»

r Something has gone wrong .,
r We will retransmit the same package five times at most·,

increment retransmit counter,
mess ("Retransmitting-package II ,PNO),
delInBuf RS232(l), delOutBuf RS232(l),
send_Package (package (PNO, CPNO, DataL)) .

r Send data and checksum .,

r Wait for acknowledgment .,

1**
Retransmission predicates used by send_Package

**1

reset retransmit counter :- DOt(retrans count II, I.
reset=retransmit=counter :- r.tract(retrans_coun(_», I.

increment retransmit counter :-
DOt(retrans coun(»,a ••• rts(retrans coun(1»,!.

increment retransmit counter :- -
retract(retrans coun(I», 1<5, 12 = 1+1, I,

a ••• rts(retrans coun(I2».
increment retransmit counter :

dellnBuf_RS232(1), delOutBuf_RS232 (1),

150 Turbo Prolog Toolbox Owner's Handbook

mess("\nError transmitting package, Transmission ABORTED\n",' 'I,
fail.

send and wait(CH1,CH2,) :-
- txCh RS232(1,CH1),rxch RS232 delay(10,CH),CH = CH2,1.

send and waitt ,CH2,):- - -
- dellnbuf=RS232(l) ,rxch_RS232_delay(10,CH) ,CH = CH2.

1**
Receive a package (128 characters)

**1

receive package(PNO,CPNO,package) :
headline (PNO) ,
mess ("Continue send NAK's and wait for SOH ... ",' '),
wait trans ready, r Send NAK until aSOH is received *'
mess (IlWait -for package number PNO=", PNO) ,
check next char (PNO) , r Check for correct package number *'
mess ("WaiCfor complement number CPNO=U ,CPNO),
check_next _char (CPNO), r And its complement *'
mess ("Receive DATA •.. ",' '),
receive_data (0, '\0' ,DataL), I, r Receive data and checksum */

r Everything is all right - Send an acknowledgment */
mess (UData ok - send ACK",' '),
txCh RS232(1,'\006'),
Package = package(PNO,CPNO,dataL).

receive_package (PNO,CPNO,package) :-

r IfwaiUrans_ready failed, then check if EOT received */
mess (UTransmission error or reception of EOT",' '),
check _ notEOT,

r Transmission of current package crashed - Send a NAK */
delInBuf RS232 (1), delOutBuf RS232 (1) ,
mess("It-was a transmission error while receiving package PNO=",PNO),
mess("Send NAK because of error in transmission",' 'I,
txCh RS232(1,'\021'),ticks(10), dellnBuf RS232(1),
receIve_package (PNO, CPNO, package) . -

check notEOT : - Dot (last_char C)) , I .

check notEOT :- last_char(CH),CH<>'\004',r.tr.ct(last_char(CH)),I.

assert char(CH) :- r.tr.ct(last char ()), •••• rtl(last char(CH)),I.
assert=char(CH) :- •••• rtl(last=char(CH)),I. -

r Send NAK until reception of SOH */
txCh _ RS232 (1,' \021'), ticks (10),

r If a character is received, it should be SOH */
rxch RS232(1,CH), assert char(CH),
CH =-'\001',1. -

wait trans ready :- check notEOT,I, wait_trans_ready.
wait =trans =ready -

Communication with Remote Serial Devices

r Try again */

r last_char is updated
by waiurans_ready */

151

mess("EOT received - Send ACK",' '),
txCh_RS232 (1,' \006') ,faU. rSend ACK after receive EOT*!

1**
Receive a data block (128 characters).

Fails if a character is not received In the specified time out period.
Data and the corresponding checksum will be echoed to the screen.

**1

receive data (128, CheckSum, [J) :- !,check next char (CheckSum) .
receive=data(1,Csum1,[CHIT]) :- rxch_RS232_delaY(50,CH),

r Compute the checksum on the fly *1
char int(Csum1,V1), char int(Ch,V2),
V3 = -V1+V2, char int (Csuiii2, V3),
12 = It1, opd headline(I2,Csum2,CH),
receive_data (12, Csum2, T) .

r Receive characters from COM1 with a 5-second time out period *!
rxch RS232 delay(,CHI :- rxch RS232(1,CH),!.
rxch=RS232=delaY(1,CH) :- 1>0,T,12 = 1-1,ticks(5),rxch_RS232_delay(12,CH).

1**
Transmit a data block.
Fails if the receiver sends a NAK.
Data will be echoed to the screen.

**1

send data (, [1, CheckSum)
send-data (I, [HIT],Csum1)

- test for nak,
txCh =RS232 (1, H),

!,txCh_RS232 (I, CheckSum) .

char int (H, V), char int (Csuml, VI) ,
V2 =-VtVI, char int(Csum2,V2),
12 = ItI, opd headline(12,Csum2,H),
send_data(12,T,Csum2).

test for nak :-
- rxch RS232 (1, CHI ,CH = '\021',! ,mess (IIReceived NAK","), faU.

test for nak.

1**
Miscellaneous predicates

**1

ignore until received(CH) :- check next char(CH),!.
ignore=until=received(CH) :- ignore_untIl_received(CH).

check next char(CH) :- rxch RS232(I,CHI),!,CHI = CH.
check=next=char(CH) :- check_next_char(CH) .

mess(S,CH) :-

152

writedevice(WD), writedevice(screen),
shiftwindow(W), shiftwindow(l),
char int (CH, V), write ("\n", S, V),
shiftwindow (W) ,
writedevice (WD),
readdevice(1D),readdevice(keyboard),readdevice(ID) .

Turbo Prolog Toolbox Owner's Handbook

headline (PNO) :-
writedevice(WD), writedevice(screen),
gotowindow(3), cursor(R,), cursor(R,33),
char int(Pno,V), write("\nPackage NO:",V," Data:"),
writedevice(WD).

opd headline (I, Checksum, CH) :-
- writedevice (WD), writedevice (screen),

gotowindow (2), write (CH),
gotowindow(3), char int(Checksum,V),
cursor(R,C), write(!," Checksum:",V), cursor(R,C),
writedevice (WD) .

Modem Communication

This section explains how to use the modem-related tools to send a break
signal, set the modem mode, send commands, and send and receive
information.

Sending a Break Signal to a Modem

The break signal is used in serial communications to either "wake up" the
remote device or terminate a dialog. The tool predicate sendBreak_RS232
sends a break signal to the I/O port indicated by its single integer
parameter (1 means COMl, 2 means COM2). sendBreak_RS232 fails if the
specified port has not been opened. It is declared as follows:

Determ sendBreak _ RS232 - language c

The receiving PC detects a break signal using the status_RS232 tool
predicate.

Setting the Modem Mode

Communication with a Hayes or Hayes-compatible modem involves two
basic modes of operation. There are the command strings sent from the
computer to the modem to establish a connection (sending a break signal,
dialing the telephone number of the remote computer, and the like). Then
there is the transmission of pure data, such as a file-transfer operation. The

Communication with Remote Serial Devices 153

following section deals with the predicates that perform both operations.
But first, you must set the modem mode.

The tool predicate setModemMode sets the communication mode for a
Hayes-compatible modem. Before calling setModemMode, COM1 or COM2
must already have been initialized using the open_RS232 tool predicate.
Indeed, setModemMode fails if the specified port has not been opened. It
must be declared in any containing program by a declaration of the form

Determ setModemMode(Integer, String, Char, Integer)
- (i,i,i,i) language c

so that a call of the form

setModemMode (PortNo, CommandAtt, CommandTerminator, BreakTime)

sets the modem mode as follows:

PortNo

CommandAtt

CommandTerminator

BreakTime

= 1 means COM1 serial communication port.
= 2 means COM2 serial communication port.

= Modem command prefix-normally AI, which
means the modem should expect a command.

= Null string (that is, "") means the modem
should expect data.

= Command suffix-normally CR ('\13').
= '\0' denotes no data terminator.

= A number in the range 0 to 32767 denoting the
length of time (in hundredths of a second) for
which a break signal is to be placed on the line;
normally in the range 10 to 25.

The predicate set_modem (defined as follows) can be used to switch between
modes in a menu-driven program for a modem connected to COM2:

r Send a break signal */
set_modem ("break") :- !,setModemMode(2,"AT",'\013' ,10),sendBreak_RS232 (2) .

r Prefix every command with "AT" and suffix it with CR ./
set_modem(lIat on") :- !,setModemMode(2,IAT",'\013' ,10).

r No transformation at all- Useful when transmitting data */
set modem(lIat off") :- !,setModemMode(2,'II','\000' ,10).
set=modem(_) :- wrstr_modem(L,_).

154 Turbo Prolog Toolbox OWner's Handbook

Sending a Command or Data to a Modem

The tool predicate txStr_Modem sends a command or pure data string to the
modem using the parameters set by the most recent call to the
setModemMode predicate-in particular, the string is sent via the serial I/O
port affected by that call. txStr _Modem fails if the modem port is not
initialized. It should be declared in any containing program as follows:

Determ txStr_Modem(String,Integer) - (i,o) language c

A call of the form

txstr _Modem (TxString, NoOfCharsTransmitted)

with TxString bound to the command or data string to be transmitted binds
NoOfCharsTransmitted to the actual number of characters transmitted. This
may be different from the number of characters in TxString, since a
telephone line can be faulty-for instance, because of noise on the
telephone line. sometimes, you may have to retransmit some or all of
TxString. Also, in a modem command string, extra characters are added to
the string according to the settings of the parameters in the most recent call
to setModemMode.

Note that the length of the string transmitted can never be larger than the
size of the output buffer.

For example, the following clause defines the predicate dial, which calls the
telephone number of a remote computer:

dial (No) :-
txStr Modem(IIZ II,),
ticks(lOO), -
txStr Modem(IIC1 1I ,),
ticks(lOO) , -
txStr Modem(IIH11I,),
ticks(lOO), -
concat (liD II ,No,DialNo),
txStr _Modem (DialNo, J ,

ticks(2000).

r Reset the modem to initial state* /
r Wait for command to be executed * /

r Carrier on *1

r Hang up */

r The remote modem must be in
auto-answer mode for this to work * /

r There should now be a connection * /

Receiving a Response from a Modem

The tool predicate rxStr _Modem takes a single string parameter that is
bound to the characters received (if any) from the remote modem. If there is

Communication with Remote Serial Devices 155

a command terminator (see setModemMode) in the input buffer or any
preceding ATtention character, the returned string won't include these extra
characters-unless the command terminator is the NULL character ('\000'),
in which case everything in the input buffer is returned in the string
parameter. rxStr _Modem fails if a serial I/O port has not been opened for
the modem.

In any containing program, rxStr _Modem should be declared as follows:

rxStr_Modem(String) - (0) language c

The following example shows how txStr _Modem and rxStr _Modem can be
used to obtain an error code:

get errorcode :-
- txStr Modem ("Il" ,),

ticksTlOO), -
rxStr Modem (Responsel) ,
ticksTlOO) ,
rxStr Modem (Response2) ,
ticksTlOO),
rxStr _Modem (Response3) .

r Ask for error code */

r Should be '11' * /

r Should be error code */

r Should be 'OK' * /

A Menu-Driven Serial Communications
Program

In this section, all the serial communications tool predicates are combined
into a complete serial communications package (XCOMMU.PRO). This
package has a very smart menu-driven user interface, constructed with
tools from chapters 2 and 3. The Toolbox's serial communications tool
predicates make it surprisingly easy to build.

XCOMMU.PRO

1***
Complete serial communications package

***1

nobreak

project "xcommu"

domain.
FILE = sf; df

156 Turbo Prolog Toolbox OWner's Handbook

clataba ••
editbuf (string)
port (integer, string)

iDcl.ude "tdoms. pro"
iDcl.ude "comglobs. pro"
iDcl.ude "tpreds. pro"
iDcl.ude "menu. pro"

predicate.
decide (integer)

r Polled transmission with time out */
send str(string,integer)
send-ch (char, integer, integer)
send-ch CRLF (char, integer, integer)
receIve - str (integer)
recei ve - ch (char, integer, integer)
wait_ok ("integer, integer, integer)

r Interrupt-based Terminal Emulation */
interactive com
chk rdch -
chk-wrch
rdch _ CRLF _RS232 (integer ,char)

r Interrupt-based Terminal Modem Communication */
interactive modem
chk rdmodem-
chk-wrmodem
chk-modem(string,string)
init modem line
chk modem delay (integer, integer)
send str modem (string, integer, integer)
trans modem (string, integer, integer, integer)
receive_modem (integer, integer, integer)

r Read and write to console the status of transmission */
wr status (integer)
chk_stat(integer,integer,string)

r Miscellaneous * /
mess (string)
rdch keyb(char)
get_FileName (string, string)

goal
makewindow(l, 23,130," Message window ", 4,35,8,45),
makewindow(2, 42,36," Transmit window ", 3,0,10,80),
makewindow(3, 63,S," Receive window ",13,0,10,80),
makewindow(6, 10,7," Configuration ",0,0,3,80),
•••• rtl(editbuf("")),
•••• rt. (port (1, "COMMU")),
•••• rt.(port(2,IMODEM")),
repeat,
port(ComPort,"COMMU"),
port (ModPort, "MODEM") ,
shiftwindow(6), clearwindow,
write(1I The communication port is COMI,ComPort,", The modem is COM",ModPort),

Communication with Remote Serial Devices 157

shiftwindow(2), shiftwindow (3),
menu (10,20,64,23,

["Open communication port",
"Close communication port",
"Send File using Protocol",
"Receive File using Protocol",
"Terminal Mode",
"No of Characters in buffers",

"" ,
"Initialize modern port",
"Close modern port",
"Send File using modern",
"Recei ve File using modern",
"Terminal Mode using modern",
nil ,
"Editor",
"Operating system",
"Switch COM PORTS",
"Quit") ,
"Choose an option",O,Choice),

decide (Choice) ,
fall.

clau •••
r Open communication port */

decide (1) :-
port (PortNo, "COMMU"),
InputBufSize = 256,
OutputBufSize = 256,
BaudRate = 7,
Parity = 0,
WordLength = 3,
StopBits = 0,
menu(10,10,64,23, ["Without RTS/CTS and XON/XOFF",

"XON/XOFF without RTS/CTS",
RTS/CTS without XON/XOFF",
"RTS/CTS and XON/XOFF"),
"Choose an option",O,Choice),

Protocol = CHOICE-I,
openRS232 (PortNo, InputBufSize,OutputBufSize,BaudRate,P arity,

WordLength,StopBits,Protocol),!.

decide (1) :-
mess ("0pen RS232 failed").

r Close communication port */
decide (2) :-

r 1 */
r 2 */
r 3*/
r 4 */
r 5 */
r 6 */

r 8 */
r9 */

r 10 */
r 11 */
r 12 */

r 14 */
r 15 */
r 16 */
r 17*/

r COM Port is PortNo */
r Size of input buffer * /

r Size of output buffer */
r 9600 bits per second * /

r No parity * /
r Eight data bits * /
r One stop bits * /

port (PortNo, "COMMU"), closeRS232 (PortNo), '! . r Close PortNo */
decide (2) :-

mess("Close RS232 failed").

r Send file using protocol * /
decide (3) :-

port (PortNo, "COMMU"),
shi ftwindow (2) ,
get filename(IIName of file to be transmitted: ",FileName),
fife str(FileName,S), send str(S,PortNo),!.

decide (3) :- mess ("Transmission failed").

158 Turbo Prolog Toolbox Owner's Handbook

r Receive file using protocol * /
decide (4) :

port(PortNo,ICOMMU"),
shiftwindow (3) ,
get filename(IIName of file to be received: ", FileName) ,
openwrite (df,FileName), receive str (PortNo), closefile (df), !.

decide (4) :- mess(IITransmission failed").

r Terminal Mode */
decide (5) :-

shiftwindow(2), write(lI\nTerminal Mode, Press Esc to abort\n"),
interactive com.

r Number of characters in buffers */
decide (6) :

port(PortNo,ICOMMU"),
queuesize RS232 (PortNo, CharInput, CharOutput), !,
makewindow(5,109,82,1I Information ",6,20,5,50),
write ("\nNo of Characters in input buffer ", CharInput),
write ("\nNo of Characters in output buffer : ", Charoutput),
readchar (), removewindow.

decide (6) :- meS-s(IINo Queues").

r Initialize modem port */
decide (8) :-

port (PortNo, "MODEM"), r PortNo is modem port */
InputBufSize = 256, r Size of input buffer */
OutputBufSize = 256, r Size of output buffer */
BaudRate = 4, r 1200 bits per second */
Parity = 2, r Even parity */
WordLength = 2, r Seven data bits */
StopBits = 0, r One stop bits */
Protocol = 3, r RTS/CTS and XONIXOFF */
openRs232 (PortNo, InputBufSize,OutputBufSize, BaudRate, Par ity,

WordLength, StopBits, Protocol) ,
SetModemMode (PortNo, "AT",'\013' ,25),!.

decide(8) :- mess(IIInitialization of MODEM port failed").

r Close modem port */
decide (9) :

port(PortNo,"MODEM"),
closeRS232(PortNo),!.

decide (9) :- mess(IIClose Modem Port failed").

r Send file using modem port */
decide(lO) :

port(PortNo,"MODEM"),
shiftwindow(2),
get filename(IIName of file to be transmitted: ",FileName),
file str (FileName, S) ,
send-str modem(S,PortNo,l),!.

decide(lO)-:- iiiess("Transmission via modem failed").

r Receive file using modem port * /
decide (11) :

port(PortNo,IMODEM"),
shiftwindow(3),
get_filename(IIName of file to be received: ",FileName),

Communication with Remote Serial Devices

r Close PortNo * /

159

openwrite(df,FileName),
receive str(PortNo), closefile(df), !.

decide (11) : --mess (IITransmission via Modem failed") .

r Set modem in Terminal Mode * /
decide (12) :

shiftwindow(2),
ini t modem line,
write(lI\nTerminal Mode, Press Esc to abort\n"),
interactive modem.

r Editor*/
decide (14)

makewindow(5,109,82," Edit Window ",6,10,15,60),
editbuf(Str), edit(Str,Str2),
r.tJ:.ct (editbuf (Str)), ... utl (editbuf(Str2)),!.

r Operating system * /
decide (15) :- system(IIII).

r Option to switch comm pot1S commu = 2 and modem = 1 */
decide (16) :-

r.tJ:.ct(port(, I), fail.
decide (16) :- - -

r Quit*/

•••• 1't.(port(1,IMODEM")),
••• e1'ta (port (2, "COMMUN)) .

decide(17) :
closeRS232(1),f.1l.

decide (17) :-
closeRS232 (2) ,fail.

decide (17) :- exit.

1**
Polled transmission with time out

**1

r Transmit a string */
send str ('11',) : - !.
send-str(S,PortNo) :-

- frontchar(S,CH,S2),
write(CH), send ch CRLF(CH,50,PortNo),
send_str(S2,PortNo).

send ch CRLF('\10',I,PortNo) :-
- !-;-send ch('\13',I,PortNo), send ch('\lO',I,PortNo).

send_ch_CRLF1cH,I,PortNo) :- send_ch(CH,I,PortNo).

send chICH, ,PortNo) :- txCh RS232(PortNo,CH),!.
send-ch(CH,l,PortNo):- -

- status RS232(PortNo,Status), !,
wait_ok(Status,I,I2), send_ch(CH,I2,PortNo).

r Receive a string and copy it to a file * /
receive str(PortNo) :-

receive ch (CH,50,PortNo), !, write (CH),
writedevice(FP), writedevice(df), write(CH), writedevice(FP),

r Close COM1 */

r Close COM2 */

160 Turbo Prolog Toolbox Owner's Handbook

receive str(PortNo).
receive _ str (j".

receive chICH, ,PortNo) :- rxch RS232(PortNo,CH), CH<>'\013', !.
receive-ch(CH,-,PortNo) :- rxch=RS232(PortNo,CH), !.
receive - ch (CH, I, PortNo)

status RS232 (PortNo,Status),
wait_ok(Status,1,12), receive_ch(CH,12,PortNo).

r Test for time out */
wait ok(,1,12) :- I > 0,12 = 1-1,ticks(10),!.
wait=ok(Status,_,50) :- wr_status(Status).

r Transmit a string using modem port */
send str modem(lIlI, ,) :- !.
send-str -modem (S, PortNo, ChCoun)

- frontchar (S, CH, S2) ,
write(CH), send ch CRLF(CH,50,PortNo),
chk modem delay (ChCoun,NewChCoun),
send_str_modem(S2,PortNo,NewChCoun).

r Some modem are without handshake */
chk modem delay(10,1) !,Ticks(8).
chk=modem=delay(1,12) 12 = 1+1.

r De-mask status value */
wr status(O) :- !.
wr-status(Status) :-

- shiftwindow(WD), shiftwindow(l),
chk stat (Status, 1, "Input Characters have been lost"),
chk-stat(Status,2, "Parity Error"),
chk-stat(Status,4, "Overrun detected"),
chk-stat (Status, 8, "Framing error detected"),
chk-stat(Status,16, "Break signal detected"),
chk-stat(Status,32, "An XOFF has been received"),
chk-stat(Status,64, "An XON has been received"),
chk-stat (Status, 128, "An XOFF has been transmitted"),
chk-stat(Status,256,"An XON has been transmitted"),
chk-stat(Status,512,"Input buffer empty when attempt to read"),
chk -stat (Status, 1024, "Output buffer full when attempt to write"),
write(lI\nPress Space to continue or Esc to abort"), readchar(Ch),
shiftwindow(2), shiftwindow(3),
shiftwindow(WD),CH<>'\27'.

chk stat(Status,BitMask,Mess) :-
- bitand(Status,BitMask,V), V<>O, !, nl, write(Mess).

chk_ stat C, _, _) .

/**
TERMINAL MODE

Interrupt-based transmission without time out
**/

r Terminal Mode */
interactive com chk _ rdch, chk _ wrch, interactive_com.

chk rdch' :
port(PortNo,ICOMMU"),

Communication with Remote Serial Devices 161

rdch CRLF RS232 (PortNo, CH), l, shiftwindow (3), write (CH) .
chk rdch.- -

chk wrch :- shiftwindow(2), cursor(R,C), cursor(R,C), not(keypressed),!.
chk-wrch :-

- port(PortNo,"COMMU"),!,
rdch keyb(CH),CH<>'\027',
write (CH) ,
tXCh_RS232 (PortNo,CH).

rdch CRLF RS232(PortNo,CH) :- rxch RS232(PortNo,CH), CH<>'\013',l.
rdch =CRLF=RS232 (PortNo, CHI : - rxch =RS232 (PortNo, CHI .

/**
TERMINAL MODE - MODEM COMMUNICATION
Interrupt-based transmission without time out

**/

interactive_modem() :- chk_rdmodem, chk_wrmodem,interactive_modem.

chk rdmodem :- RxStr modem(Mess),shiftwindow(3), write(Mess), fa11.
chk-rdmodem. -

chk wrmodem : - shiftwindow (2), cursor (R, C), cursor (R, C), not (keypressed) , ! .
chk=wrmodem :- readln(L), upper_lower(L,L2), chk_modem(L,L2).

1* Command to the modem when it is in terminal mode *'
1* Send a break signal */

chk modem(,"break") :- !,
- port (PortNo, "MODEM"), !,

SetModemMode(PortNo,"AT",'\013',10),SendBreak_RS232.

1* Prefix every commands with "AT" and suffix it with CR */
chk modem(,"at on") :- !,

- port (PortNo, "MODEM"), !,
SetModemMode (PortNo, "AT",' \013',10) .

1* No transformation at a11- might be useful when transmitting data * /
chk modem(,"at off") :- !,

- port (PortNo, "MODEM"), !,
SetModemMode (PortNo, "",' \013' , 10) .

chk_modem(L,_) :- TxStr_modem(L,_).
1* No trans form at all * /

1**
MODEM SUPPORT PREDICATES

**/

init modem line :-
- shiftwindow (OldWD),

trans modem("Z ",2,1,10),
trans - modem("C1", 2, 1, 10),
shiftwindow(OldWd) .

trans modem (Mstr, Noof Answ, NoOFRetr, Delay)

162

-ticks(10),
shiftwindow(2) ,
write ("\n" ,Mstr),
TxStr _modem (Mstr, J ,

1* Old window */
r Reset the modem to initial state */

1* Set carrier high */

1* Transmission window */

1* Command to modem * /

Turbo Prolog Toolbox Owner's Handbook

shiftwindow (3),
receive _ modem (NoofAnsw, NoOfRetr,Delay) .

receive modem(O, ,) :- !.
receive-modem(I,R,Delay) :

ticks (Delay) ,
RxStr modem (Mess1) ,
write(Mess1), 12=1-1, !,
receive_modem(I2,R,50).

receive _ modemC, 1, J :- trans _ modem("I2", 5, 0, 400), !, fa11.

1**
Miscellaneous

**}

mess (Str) :-
shiftwindow(WD), shiftwindow(1),
write("\n\n",Str),
write ("\nPress Space to continue"), readchar (J,
shift window (2), shift window (3) ,
shift window (WD) .

r Read char from keyboard and transform CR to LF */
rdch keyb(CH) :- readchar(CH), CH<>'\013',!.
rdch=keyb('\010').

r Get file name from console */
get FileName(Mess,FileName)

- makewindow(4,12,52," Input ",12,10,3,50);
write (Mess),
readln (FileName), FileName<>"", !, removewindow.

get FileName(,FileName) :-
- makewindow(4,23,12," Input ",12,10,12,50),

r Receive window */

r No more to receive * /

r First delay is highest * /

rCH = '\010',*/

disk(Disk), dir(Disk,"*.txt",FileName),!,removewindow,removewindow.
get FileName(,"") :_

- removewIndow, removewindow, fa11.

Communication with Remote Serial Devices 163

164 Turbo Prolog Toolbox Owner's Handbook

c H A p T E R

6

Importing Data from Other Systems

With the tool predicates described in this chapter, it is possible to read
databases generated by the well-known database managers Reflex and
dBASE III, and to read specific cell values from the spreadsheets Lotus
1-2-3 and Symphony. This means you can import records generated by
these packages and manipulate them in your Turbo Prolog application
program.

To access a Reflex file from a Turbo Prolog program, you need to include
the file REFLEX.PRO. Similarly, to access a dBASE III file, include the file
DBASE3.PRO; to access a 1-2-3 or Symphony file, include the file
LOTUS.PRO. (Remember modular programming is explained in Appendix
A, "Compiling a Project.")

In all three cases, it is also necessary to link in the module REALINlS.OBJ
provided on the distribution disk. REALINlS.OBJ performs a conversion
between four integers and a real; the source for REALINlS.OBJ is defined
in REALINTS.C. You should have Turbo Prolog version 1.10 or later to use
these tool predicates, because they utilize binary file access.

All tools in this section require READEXT.PRO, which performs general
conversions.

Let's begin with importing Reflex files, move on to dBASE III files, then
finish with Lotus 1-2-3 and Symphony files.

Importing Data from Other Systems 165

Accessing a Reflex File

To access a Reflex me, you must first call the tool predicate Init_Reflex,
which builds Prolog data structures describing the Reflex records. It's
found in the me REFLEX.PRO, and its declaration takes the form

Init_Reflex(INTEGER,FLDNAMES,REFLEXTYPEL,TEXTPOOLS)

The corresponding nonstandard domain declarations are as follows:

FLDNAMES = STRING

REFLEXTYPEL = REFLEXTYPE*
REFLEXTYPE = u; t; rt; d; r; i

TXTPOOLS = TXTPOOL*
TXTPOOL = REPTXT*
REPTEXT = text(INTEGER,STRING)

r Reflex field names * /

r Internal Reflex type
for each field */

r Indexed strings * /

Using the tool predicate Rd_ReflexFile, all the Reflex data records in a given
me can be read and collected into a single Turbo Prolog list all at once. This
list belongs to the tool domain REFLEXRECL, which is declared as follows:

REFLEXRECL = REFLEXREC*
REFLEXREC = REFLEXELEM*
REFLEXELEM = date(INTEGER);

real(REAL);
int (INTEGER) ;
text(STRING);
untyped;
error

r The database is a list of records * /
r A record is a list of elements * /

r 16-bit int representing number*/
r of days since December 31, 1899 * /

r 64-bit IEEE floating-point real */
r 16-bit signed integer * /

r A string representing a text * /
r No data stored * /

Together, a record list from the domain REFLEXRECL and the list of field
names from the domain FLDNAMES form a complete data structure
describing a Reflex database.

The sample Reflex me, XREFLEX.RXD, is a personnel database constructed
so that Reflex displays its structure as shown in the following Reflex Field
& Sort Settings tool:

166 Turbo Prolog Toolbox Owner's Handbook

Field Type Formula Sort # ND Format Prec

Name Text 2 a

Birth Date Date dd-mmm-

Department Repeating Text

Salary Numeric 1 D Currenc 2

Age Integer 22 Fixed 0

Marital Status Repeating Text

A corresponding Turbo Prolog record from the domain REFLEXREC has
the form:

[text ("Frank Borland"),
date (4722),
text ("Mascot") ,
real(102),
int(73),
text ("None"))

r Name field */
r No. of days since Dec. 31, 1899 * /

r Department * /
r Salary */

rAge */
r Marital status * /

(NOTE: Each record is a list inside the list of records.)

The corresponding list of field names from the tool domain FLDNAMES is:

["Name", "Birth Date", "Department",
"Salary", "Age", "Marital Status")

The declaration of Rd_ReflexFile is as follows:

Rd_ReflexFile (INTEGER,REFLEXTYPEL,TEXTPOOLS, REFLEXRECL)

with all parameters except the last being input parameters, obtained from
the call to Init_Reflex. The following example shows how to access the

Importing Data from Other Systems 167

Reflex file XREFLEX.RXD from a Turbo Prolog program, using init_Reflex
and rd_ReflexFile:

AccessAll(ReflexRecs) :
openread(fp,"XREFLEX.RXD"), readdevice(fp),
filemode(fp,O),

r Build data structure */
init_Reflex(TotRecs,FldNames,TypeL,TextPools),

r Read all data records */
rd_DataRecs(TotRecs,TypeL,TextPools,ReflexRecs),

rUst the records */
makewindow(85,41,36," Reflex(tm) All Data Records ",

0,0,25,40),
list_Recs (FldNames,ReflexRecs), DoPrompt.

r Binary mode */

The two last literals (makewindow and Zist_Recs) are not necessary, but they
display the contents of the Reflex file in a readable manner.

Reading One Reflex Record at a Time

If the Reflex file to be read is very large, you may find that it takes too
much time to read all the records or the resulting list is too big to load into
memory. Fortunately, a tool predicate is provided that makes it possible to
read one record at a time, do some computation, remove the storage
allocation via backtracking if desired, and then read the next record.

In order to access Reflex records singly, it is first necessary to call the tool
predicate init_Reflex, which calls the first record. The tool predicate that
allows access to the next Reflex record is Rd_ReflexRec, which has this
declaration:

Rd_ReflexRec(INTEGER,REFLEXTYPEL,TEXTPOOLS,REFLEXREC)

The following example shows you how to use Init_Reflex and Rd_ReflexRec
to read a Reflex file record by record:

OneByOne :-
openread(fp,IIXreflex.rxd"), readdevice(fp),
filemode (fp, 0),

r Build data structure */

168

Init Reflex(TotRecs,FldNames,TypeL,TextPools),
makewindow(85,72,33,11 Reflex(tm) Sequential Access ",

0,40,25,40),

Turbo Prolog Toolbox Owner's Handbook

r Read one by one *'
Rd_ReflexRec(TotRecs,TypeL,TextPools,Rec),

r Do some computations using the record Rae ... *'
r List the record *'

nl,nl,list rec(FldNarnes,Rec),
PressAKey,-faU.

The predicate Rd_ReflexRec is non-deterministic: While there are still
records in the Reflex file, it reads the next record in the structure Rec and
then returns from the call. When the calling predicate fails, Rd_ReflexRec
generates a new solution by reading the next Reflex record.

XREFLEX.PRO contains the program shown below, which is an expansion
of the previous examples into a complete program.

XREFLEX.PRO

project "xreflex"

cIouiu
FILETAB = fp

global predicate.
real_ints (REAL, INTEGER, INTEGER, INTEGER, INTEGER) - (o,i,i,i,i) language c

iDclacle "readext. pro"
iDclu.cle "reflex.pro"

predicat ••
r List data records *'

list Recs (FldNames, ReflexRecL)
list-rec (FldNames, ReflexRec)
list-elem(ReflexElem)
PressAKey
doPrompt

el.a •••
list Recs(, []) :- !.
list-Recs(FldNames,[ReflexRecIReflexRecs))

- nl,nl,
list rec (FldNames, ReflexRec),
PressAKey,
list _ Recs (FldNames, ReflexRecs) .

list rec ([) , [)) : - !.
list-rec([FldNameIFldNames),[ElemIElems))

- writef("\n%-20: ",FldName),
list elem (Elem) ,
list=rec(FldNames,Elems) .

list elem(untyped) :- write ("Untyped") .
list=elem(text(Str)) :- write(Str).

Importing Data from Other Systems 169

list elem(date(Date)) :- write(Date).
list-elem(real(Real)) :- write(Real).
list=elem(int(Int)) :- write(Int).

PressAKey :-
makewindow(, , , ,MinR, ,NoofR,),trace(on),
cursor(R,_)~ R(-=-MinRtNoofR-4,!:

PressAKey :- doPrompt,cursor(R,C), scroll(R,O),cursor(O,C).

doPrompt :-
makewindow(Nr,Att, , ,MinR,MinC,NoofR,NoofC),
MinR2 = MinRtNoofR=l~ MinC2 = MinCtNoofC/3t1,
str len(" Press a key", Len) , Len2 = Lent1, bitxor(Att,8,Att2),
makewindow(Nr,Att2, 0, "" ,MinR2,MinC2, 1, Len2) ,
write(" Press a key"),
readdevice(FP), readdevice(keyboard), readchar(), readdevice(FP),
removewindow. -

1**
Goal

***1
9'oa1

openread(fp,"xreflex.rxd"), readdevice(fp),
filemode (fp, 0) ,

r Build data structure *1
init Reflex(TotRecs,FldNames,TypeL,TxtPools),
filepos(fp,DataFilePos,O),

r Read all data records *'
makewindow(85,41,36," Reflex(tm) All Data Records ",0,0,25,40),
rd Reflexfile (TotRecs, TypeL, TxtPools,ReflexRecs),
list Recs (FldNames,ReflexRecs), doPrompt,
window _attr (27) ,

r Read data records sequentially *'
makewindow(85,72,33," Reflex(tm) Sequential Access ",0,40,25,40),
filepos(fp,DataFilePos,O),
rd ReflexRec(TotRecs, TypeL, TxtPools,Rec),
nl~nl,
list rec(FldNames,Rec),
PressAKey,fail.

Accessing a dBASE III File

The first step in accessing a dBASE III file from a Turbo Prolog program is
to call the tool predicate IniCDbase3 in the file DBASE3.PRO, which builds
data structures describing dBASE III records. It has the following
declara tion:

Init_Dbase3(REAL,FLDNAMEL,FLDDESCL)

170 Turbo Prolog Toolbox Owner's Handbook

in which the nonstandard domains are declared as follows:

FLDDESCL = FLDDESC*
FLDDESC = FLDDESC(DBASE3TYPE,INTEGER)
DBASE3TYPE = ch:r:l:m:d

FLDNAMEL = STRING*

r Description for each field * /

Using the tool predicate Rd_dBase3File, the dBASE III data records can be
read and collected in a list belonging to the tool domain DBASE3RECL,
which has the following declaration:

DBASE3RECL = DBASE3REC*
DBASE3REC = DBASE3ELEM*
DBASE3ELEM = char (STRING):

BOOL = CHAR

real (REAL) :
logical (BOOL) :
memo (STRING) :
date (STRING)

r The database is a list of records * /
r Fields in each record */

r Characters * /
r 64-bit IEEE floating-point * /

r Logical */
r Memo text loaded from a .DBT file * /

r Format YYYY MM DO * /

r Y y N n T t F f or Space */

The record list from the domain DBASE3RECL and the list of field names
from the domain FLDNAMEL make up a complete data structure
describing a dBASE III (vl.1) database file.

The Toolbox file XDBASE3.DBF is a dBASE III file containing personnel
data organized as follows:

Field Type Width

Name Char/String 25

Birth....Date Date 8

Salary Numeric 8.2

Age Numeric 2

Memo Memo

The corresponding Turbo Prolog record takes the form

[string("Frank Borland"),
date("19131205"),
real(10250.95),
real (73),
memo("Frank Borland's memo"]

Importing Data from Other Systems

r Name field */
r Birth date * /

r Salary */
rAge */

171

NOTE: This record is located in a list of other records.

The corresponding list of field names takes the form

["Name", "Birth_Date ll
, "Salary", "Age", "Memo"]

Inside the toolbox, the declaration of Rd_dBase3File is

Rd_dBASE3File(REAL,FILE,FLDDESCL,DBASE3RECL)

The example below shows how to use this predicate to access the dBASE III
file XDBASE3.DBF and the memo file XDBASE3.DBT.

AccessAll(DbaseRecs) :-
openread (fp, "xdbase3. dbf"), filemode (fp, 0), readdevice (fp),
openread (mfp, "xdbase3 . dbt ") , filemode (mfp, 0) ,

r Build data structure * /
Init_Dbase3(TotRecs,FldNameL,FldDescL),

r Read all data records */
rd_dBase3File(TotRecs,mfp,FldDescL,RecL),

r List all records * /
makewindow(85,41,36," dBASE III(tm) All Data Records ",0,0,25,40),
list_recL(FldNameL,RecL), DoPrompt.

The two last literals (makewindow and lis CRees) are not necessary, but they
display the contents of the dBASE III file in a readable manner.

Reading One dBASE III Record at a Time

The tool predicate rd_dBase3Ree allows you to read dBASE III records
sequentially. Thus, with rd_d Base3 Ree, it is possible to read a record, do
some computation, remove the storage allocation via backtracking, and
then read the next record. The following example shows how:

OneByeOne :-
openread (fp, "xdbase3. dbf"), filemode (fp, 0), readdevice (fp),
openread (mfp, "xdbase3. dbt"), filemode (mfp, 0),

r Build data structure */
Init_Dbase3(TotRecs,FldNameL,FldDescL),

r Read records one by one */

172

makewindow(85,72,33,"dBASE III(tm) Sequential Access",0,40,25,40),
rd dBASE3Rec(TotRecs,mfp,FldDescL,Rec),
ljst_recL(FldNameL, [Rec]),fail.

Turbo Prolog Toolbox Owner's Handbook

The predicate rd_dBase3Ree also is non-deterministic: While there are more
records in the dBASE III file, it reads the next record in the structure Ree
and returns it to the caller. When the calling predicate fails, rd_dBase3Ree
generates a new solution (that is, reads the next record if there is one). It
has the following declaration:

Rd_dBase3Rec(REAL,FILE,FLDDESCL,DBASE3REC)

Both predicates, Rd_dBase3Ree and Rd_dBase3File, can be seen in the
following complete program, XDBASE3.PRO.

XDBASE3.PRO

project "xdbase3"

domain.
FILE = fp ; mfp

global predicat ••
real_ints(REAL,INTEGER,INTEGER,INTEGER,INTEGER) - (o,i,i,i,i) language c

include "readext. pro"
include "dbase3.pro"

predicate.
r Listing of the database *1

list reel (FldNameL, dBase3Reel)
list-rec(FldNameL,dBase3Rec)
list-elem(dBase3Elem)
NoofNL (Integer)
PressAKey
doPrompt

clau.e.
1*** * * * ** * * * * * * * * * * ** * * * * * * * ** *** * * * * * * * * ** ** ** * * *

List Data from .DBF & .DBT
* * ** * * * * * * * * * * * * * * * ** * ** ** ** ** *** *** * * * * *** * ** * * * * * * * *** ** * * * * * * * * * * * * I

list recL(,[]) :- !.
list-recL(FldNameL, [RecIRecL]) :

- nl,nl,
list ree (FldNameL, Ree), PressAkey,
list=reeL(FldNarneL,ReeL) .

list ree ([], []) : - !.
list-ree([FldNarneIFldNames], [ElemIElems])

- writef("\n%-12: ",FldName),
list elem (Elem) ,
list=ree(FldNames,Elems) .

list elem(ehar(Str)) :- write (Str) .
list=elem(real(Real)) :- write(Real).

Importing Data from Other Systems 173

list elem(logical (CH)) : - write (CH) .
list-elem(memo(Str)) :- write(Str).
list=elem(date(Date)) :- write (Date) .

NoofNL(N) :- N< = O,!.
NoofNL(N) :- nl, N2 = N-1, NoofNL(N2).

PressAKey :-
makewindow(, , , , MinR, ,NoofR,),
cursor(R,j; R<-=-MinRtNoofR-8,!-:-

PressAKey :- doPrompt,cursor(R,C), scroll(R,O),cursor(O,C).

doPrompt :-
makewindow(Nr,Att, , ,MinR,MinC,NoofR,NoofC),
MinR2 = MinRtNoofR=t; MinC2=MinCtNoofC/3t 1,
str len(" Press a key",Len), Len2 = Len+1, bitxor(Att,8,Att2),
makewindow (Nr,Att2, 0, 1111 ,MinR2,MinC2, 1, Len2),
write(" Press a key"),
readdevice(FP), readdevice(keyboard), readchar(), readdevice(FP),
removewindow. -

j* *** * * * * * * * * * * * * ** ** ******* * ** * ** ** * * * * * * * * * * * * * * * *** ** ** * * * * * ** * * * * * *
Goal

* *** * * * ** * * * * * ** * * * * * * * * ** * * * ** * ** * * * ** ** * * * ** ** * * * ** * * * ** * ** * * ** * * * * * /
goal

openread(fp,"xdBase3.dbf"), filemode(fp,O), readdevice(fp),
openread(mfp,"xdBase3.dbt"),filemode(mfp,0),

r Build data structure *j
init_dBase3(TotRecs,FldNameL,FldDescL),

r Remember file positions * j
filepos(fp,Fposfp,O), filepos(mfp,Fposmfp,O),

r Read all data records *j
rd_dBase3File(TotRecs,mfp,FldDescL,RecL),

r List all records *'
makewindow(85,41,36," dBASE 3 (tm) All Data Records ",0,0,25,40),
list recL(FldNameL,RecL), DoPrompt,
window _attr (27),

r Read records one by one *'
filepos (fp, Fposfp, 0), filepos (mfp, Fposmfp, 0),
makewindow(85,72,33," dBASE 3(tm) Sequential Access ",0,40,25,40),
rd dBase3Rec(TotRecs,mfp,FldDescL,Rec),
list_recL(FldNameL, [Rec]l,fail.

Accessing a Lotus 1-2-3 or Symphony File

Lotus 1-2-3 and Symphony files consist of WKS and WRK records,
respectively. (.WKS is the file-name extension automatically given to Lotus

174 Turbo Prolog Toolbox Owner's Handbook

1-2-3 files, and. WRI< is the extension given to Symphony files.) Each record
controls some aspect of the file, such as ranges and cell formats. The WKS
and WRK record formats have three parts that specify an opcode, the
record length, and the data. Each opcode and record length is stored as a
two-byte integer, least significant byte first. The data is represented as a
series of zero or more data bytes.

Since the purpose of the tool predicates in this section is to allow access to
some figures from a spreadsheet, only a few types of WKS and WRK
records need concern you, namely:

Opcode 0 (Version)
Length 2 bytes
Meaning 1-2-3 or Symphony version number
Data 0-1 file format version number:

1028 is a 1-2-3 file

Opcode 13
Length
Meaning
Data 0
Data 1-2
Data 3-4
Data 5-6

Opcode 14
Length
Meaning
Data 0
Data 1-2
Data 3-4
Data 5-12

1029 is a Symphony file
1030 is 1-2-3 (v2.0) or Symphony 1.1

(Integer)
7 bytes
describes integer number cell
format byte
column number
row number
integer value

(Number)
13 bytes
defines floating-point number cell
format byte
column number
row number
64-bit IEEE floating-point real value

Importing Data from Other Systems 175

(Formula)
variable to 2064 bytes
defines a formula cell
format byte
column number
row number

Opcode 16
Length
Meaning
Data 0
Data 1-2
Data 3-4
Data 5-12 formula numeric value (64-bit IEEE floa ting-poin t

format)
Data 13-n formula definition (can be ignored in this case)

The corresponding Turbo Prolog Toolbox domain declarations take the
form

LOTUSRECL = LOTUSREC*

LOTUSREC = version (INTEGER) ;
elem(INTEGER, INTEGER, VALUE);

VALUE = int (INTEGER) ;
real (REAL) ;
formula (REAL) ;
label (STRING) ;

If a fragment of a Symphony spreadsheet has the form

ABC D

2 Diff 123.654

2 3

3

r Version number */

r Integer number cell * /
r Real number cell */

r Defines a formula cell */
r Defines a label cell */

then the corresponding Turbo Prolog data structure would have the form

LotusRecL = [version(1029),
elem(O, 0, int (2)),
elem(O, l,label (IIDiff")),
elem(0,2,real (123.654)),
elem(l, 0, int (3)) 1

r Symphony 1.0 */
r row 1, column A */
r row 1, column B */
r row 1, column C */
r row 2, column A * /

Since a Lotus file can be accessed in two different ways (either by reading
all cells in a single operation or by searching for a specific cell), let's deal
with the two methods separately. In both cases, however, as with Reflex
and dBASE III databases, there's no need to carry out any initialization. The
tool predicates that handle Lotus files automatically create the necessary
data structures.

176 Turbo Prolog Toolbox Owner's Handbook

Reading All Cells

The tool predicate Rd_LotusFile reads all cells in a spreadsheet into a data
structure. It is declared as follows:

Rd_LotusFile(LOTUSRECL)

The following example shows how to read all the cells from the
spreadsheet stored in the file XLOTUS. WRK on your Toolbox disk.

ReadAllCells(RecL) :-
openread (fp, "XLOTUS .wrk"), readdevice (fp), filemode (fp, 0),

r Read all cells */
rd _ LotusFile (Reel,) .

r Ustcells */
makewindow(85,26,36," Lotus 1-2-3 & Symphony (tm) ",0,0,25,80),
list_recs(O,RecL).

Reading a Specific Cell

The tool predicate Rd_LotusCell searches for an instantiated cell in a
spreadsheet file. The permissible flow patterns for Rd_LotusCell are

Rd LotusCell(Rec) - (i),(o)
Rd-LotusCell(elem(Row,Col,Value))

- - (i,i,i), (i,i,o), (i,o,o), ... , (0,0,0).

The following program fragment shows how to search for a cell located at
row 3 in the file XLOTUS.WRK:

SearchRec :-
openread (fp, "Demo. wrk"), readdevice (fp), filemode (fp, 0),

r Read sequentially, searching for specific cell * /
Rd_LotusCell(elem(3,_,R)), write ("\nCell: ",R).

This fragment along with the previous one, are in XLOTUS.PRO, whose
listing follows.

XLOTUS.PRO

project "xlotus"

clcu.1Da
FILE = fp

Importing Data from Other Systems 177

91ob&l predicate.
real_ints (REAL, INTEGER, INTEGER, INTEGER, INTEGER) - (o,i,i,i,i) language e

iDcl.ude "readext.pro"
iDcl.ude "lotus. pro"

predicate.
list Rees(Integer,LotusReeL)
list-Ree(Integer,Integer,LotusRee)
wr Version(Integer)
wr-elem(Value)
NoofNL(Integer)
PressAKey
doPrompt

c1aue.
list Rees(, []) :- !.
list -Rees (CurRow, [Ree I ReeL])

- list ree(CurRow,CurRow2,Ree),
PressAKey,
list _ Rees (CurRow2, ReeL) .

list ree(CurRow,CurRow,elem(CurRow,Col,Int))
- eursor(Row,J, Col2 = Col*8, eursor(Row,CoI2), wr_elem(Int).

list ree(CurRow,Row,elem(Row,Col,Int)) :- !,
- NL = Row-CurRow,

NoofNL(NL), Col2 = Col*8,
eursor(Row2,_), eursor(Row2,CoI2), wr_elem(Int).

list ree(CurRow,CurRow,version(V)) :-
- write(lI\t\tVersion: "),wr_Version(V).

wr Version(1028) :- write(IILotus 1-2-3 1.0").
wr-Version(1029) :- write(IISymphony 1.0").
wr=Version(1030) :- write(IILotus 1-2-3 v2.0 or Symphony 1.1").

wr elem(int(I)) :- writef(II\8",I).
wr-elem(real(I)) :- writef(I\8",I).
wr=elem(label(S)) :- writef(II\8",S).

NoofNL(N) :- N< = 0, !"
NoofNL(N) :- ni, N2 = N-1 , NoofNL(N2).

PressAKey :-
makewindow(I I I , MinR, , NoofR,),
eursor(R,)~ R<-=-MinRtNoofR-4,!~

PressAKey :- doPrompt,eursor(R,C), seroll(R,O),eursor(O,C).

doPrompt :-

178

makewindow(Nr,Att, , IMinR,MinC/NoofR,NoofC),
MinR2 = MinRtNoofR=r; MinC2 = MinCtNoofC/3t 1,
str len(1I Press a key",Len), Len2 = Len+1, bitxor(Att,8,Att2),
makewindow(Nr/ Att2,0,"II,MinR2/ MinC2,1,Len2),
write (" Press a key"),
readdeviee (FP), readdeviee (keyboard), readehar U, readdeviee (FP) ,
removewindow.

Turbo Prolog Toolbox Owner's Handbook

1**
Goal

**1
90a1

openread (fp, "xlotus.wrk"), readdevice (fp), filemode (fp, 0),

r Read all records at once *'
rd LotusFile(RecL),
makewindow(85,40,36," Lotus 1-2-3 & Symphony - All Records ",

0,0,25,80),
write ("\n\n" ,ReeL), doPrompt,

r Read sequentially, searching for specific record *'
filepos (fp, 0, 0),
write(lI\n\nSearch for a record at column Oil),
rd Lotuscell(elem(Row,O,R)), Elem1 = elem(Row,O,R),
write (II, Record: ", Elem1),

write("\n\nSearch for a record at row 3 and column 3"),
rd Lotuscell (elem(3,3,R2)), Elem2 = elem(3,3,R2),
wrIte(", Record: ",Elem2),
doPrompt,

r List records in "Spreadsheet" way *'
makewindow(85,26,36," Lotus 1-2-3 & Symphony (tm) ",0,0,25,80),
list_recs(O,RecL).

Importing Data from Other Systems 179

180 Turbo Prolog Toolbox Owner's Handbook

c H A p T E R

7

The Parser Generator

This chapter demonstrates how to use the Toolbox's parser generator to
take a grammar specified by you and automatically create a parser for that
grammar. The chapter is organized in five main parts.

The first part is an overview of parsers, parser generators, and how they
work. It is intended to introduce the topic to those with limited knowledge
of parsers. The second part discusses how to define a grammar that
conforms to the Toolbox's requirements. The third section gives two
complete examples of input to and output from the parser generator, along
with examples of associated scanners. The fourth section describes how to
compile and use the Toolbox parser genera tor, and the final section
discusses how to recreate it using "bootstrapping."

What Does a Parser Do?

A parser is a program that can recognize the underlying structure of a
source text. For example, a Pascal compiler applies a parser to recognize the
if, while, repeat, and case statements as well as the procedures, functions,
and expressions in a Pascal source file. Parsers are used not only with
prograriuning languages but also with command interpreters to interpret
user input for various other types of programs--€xpert system shells and
natural-language interfaces, for example.

The Parser Generator 181

A parser translates source text into a format that is suitable for the next
phase of a compiler, interpreter, or other program. The next phase in the
case of a compiler, for instance, is typically code generation. In doing the
translation, a parser usually performs the following sequence of steps:

1. Asks the scanner (commonly referred to as the lexical analyzer) for the
next token in the input source.

2. Checks that the token is part of the legal pattern specified by the
language's grammar; that is, error checking.

3. Imposes on the token, in relation to previous and/or succeeding
tokens, a structure that can be used by subsequent phases of the
compiler, interpreter, or other program.

The Different Types of Parsers

First, let's define some terms. A sentence is a list of terminal symbols. A
production is a translation rule that you specify. A parsing table matches each
terminal symbol with a production rule.

There are two main classes of parsers: top-down and bottom-up. Given a
sentence to parse, top-down parsers start with the most general production
(the start-symbol) in the grammar and try to produce a list of productions
that generate that sentence.

On the other hand, bottom-up parsers start with a given sentence and work
backwards to prove that it is an instance of one of the grammar's
production rules. A bottom-up parser usually requires access to a parsing
table. The table simply records-for each terminal symbol-which
production rule the parser should use when that terminal symbol is next
considered in the parser's attempt to verify the input sentence.

When working through the given sentence, a bottom-up parser looks ahead
a certain amount. Otherwise it won't be able to tell, for example, whether a
sentence that begins with if is going to be of the form if .. then .. or the form
if .. then .. else ...

Most parser generators produce bottom-up parsers, because it's relatively
easy to generate a parsing table to drive a bottom.up parser for almost any
reasonable grammar. On the other hand, you can construct a top-down
parser to be general enough that each of the parsers produced by the parser

182 Turbo Prolog Toolbox Owner's Handbook

generator is a special case of it. However, the initial (general) parser must
be able to backtrack-a feature that is built-in to Prolog.

The Toolbox uses a top-down parser for several reasons, the main one
being that it is easier to build structures during the parsing process. Also,
the difference-list technique in Prolog (explained later in this chapter)
makes it comparatively easy to construct a very efficient top-down parser
with an arbitrary look-ahead length and with backtracking. As you will
discover, the resulting parsing speed of generated parsers can be very high.
If you code the scanner (lexical analyzer) in C or assembler, you could
design parsers that run with nearly the same speed as Turbo Prolog.

Lexical Analysis: The Scanner

The scanner is perhaps the simplest part of any compiler. It reads the source
input a character at a time, searching for the next token. The Pascal
statement

X := Y + 1:

would be broken up into the tokens

X, :=, Y, +, 1 and :

The scanner can also attach some attributes to each token. For example, the
tokens X and Y in the above Pascal statement can be assigned an attribute
to indicate that they are identifiers.

Describing the Grammar

'Ole structures to be recognized by a parser are normally described by a
grammar. There are many advantages to using a grammar, including:

• It gives a precise and easy to understand syntactic specification for the
programs of a particular language.

• Creating a parser for a well-designed grammar can easily be automated.
• A grammar structures the input so that it is smoothly translated into

object code and errors in the source input are easily detected. In the

The Parser Generator 183

case of the Toolbox parser generator, there is a close connection between
the grammar and the domain definitions for the Turbo Prolog program
(scanner) that handles the input.

A grammar can be described in several ways. The Toolbox uses a type of
context-free grammar specification called Backus Naur Form (BNF) to
describe the grammars the parser generator uses. Using BNF, you list the
allowed productions (that is, rules) for forming valid sentences in the
language specified by the grammar. Let's delve into Backus Naur Form
(BNF) at this point.

Backus Naur Form Grammar

A grammar generally involves four entities: terminals, non-terminals, a start
symbol, and production rules.

Terminals are the basic symbols from which sentences are created in a
language. The word token is a synonym for terminal. For example, in the
following sentence,

mary likes big cars

the terminals are mary, likes, big, and cars

Non-terminals are symbols that are special as far as the grammar is
concerned; they denote sets of strings. For example, given the following
production rule,

<SENTENCE> ::= <SUBJECT> likes <OBJECT>

the non-terminals are <SENTENCE>, <SUBJECT>, and <OBJECT>.

One non-terminal in the grammar is always selected as the start symbol. As
its name implies, the start symbol is where a parser begins when
determining how to parse its source input and denotes the language being
defined. The non-terminal <SENTENCE> in the previous production rule is
the start symbol.

Production rules define the ways in which grammatical structures can be
built from one another and from terminals. The syntax for a production
rule is

<non-terminal> ::= a string of non-terminals and terminals

184 Turbo Prolog Toolbox Owner's Handbook

An example of a production rule is

<SENTENCE> ::= <SUBJECT> likes <OBJECT>
does <SUBJECT> like <OBJECT>

In the preceding example, two possible translations of the non-terminal
<SENTENCE> are being defined.

Some notational conventions to keep in mind when using BNF are

1. Non-terminals are surrounded by < and> to easily distinguish them
from terminal symbols; for example, <STATEMENT>.

2. The asterisk (If.) is used in production rules to indicate the possibility of
zero or more instances of the non-terminal or terminal symbol. For
example, a language could be defined as a series of zero or more
statements: <LANGUAGE> ::= <STATEMENT>*

3. The plus sign (+) is used in production rules to indicate the possibility
of one or more instances of the non-terminal or terminal symbol. For
example, an identifier in a language could be defined as

<IDENTIFIER> : :=<LETTER>{ <LETTER-OR-DIGIT>}+

indicating that an identifier is made up of alphanumerics but
must start with an alphabetic character.

4. The I mark is used to indicate "or" in a production rule. For example,

<LETTER-OR-DIGIT> ::= <LETTER> I <DIGIT>

5. A non-terminal surrounded by [and] in a production rule may be used
zero or one times. That is, it is optional. For example,

<PRODBODY> ::= <PRODNAME> [<SEPARATOR> I

The grammar

<SENTENCE> ::= <SUBJECT> likes <OBJECT>
does <SUBJECT> like <OBJECT>

<SUBJECT> ::= john I mary
<OBJECT> ::= <ADJECTIVE> <NOUN>
<ADJECTIVE> ::= big I medium I small
<NOUN> ::= books I cars

defines a total of six production rules: Two define the non-terminal
<SENTENCE>, and four define each of the remaining non
terminals-<SUBJECT>, <OBJECT>, <ADJECTIVE>, and <NOUN>. The

The Parser Generator 185

words likes, does, like, john, mary, big, medium, small, cars, and books are the
terminal symbols of the language. In other words, they are the symbols
from which all valid sentences are made up according to the production
rules. The production rule

<SUBJECT> = john I mary

indicates that a symbol belonging to the grammatical category <SUBJECT>
is either the word john or (as denoted by the I character) mary.

It follows that

mary likes big cars

is a valid sentence in the language described by this grammar because of
the following chain of productions:

A <SENTENCE> takes the form <SUBJECT> likes <OBJECT>.
mary is a <SUBJECT>.
An <OBJECT> takes the form <ADJECTIVE> <NOUN>.
big is an <ADJECTIVE>.
cars is a <NOUN>.
Therefore big cars is an <OBJECT>.
Therefore mary likes big cars is a <SENTENCE>.

For a real programming-language grammar, reread the section "BNF
Syntax for Turbo Prolog" in Chapter 12 of the Turbo Prolog Owner's
Handbook. It contains a complete BNF grammar for Turbo Prolog, specified
more formally than in the example above.

The Toolbox Parser Generator

A parser generator is a program that generates a parser from a grammar
specification. Since not everyone is an expert in parser writing, a parser
generator enables even non-experts to construct parsers.

The Toolbox parser generator takes a grammar specified using the BNF
notation described earlier and generates a parser that can recognize
sentences that conform to the grammar. After determining that a sentence
conforms to the original grammar, a tree is built that shows the structure of
the original source input.

186 Turbo Prolog Toolbox Owner's Handbook

Following are two subsections. The first discusses the rules that you must
follow when describing a grammar for input to the Toolbox parser
generator. The second section gives an example of a programming
language construct, followed by its grammar specification in both BNF
notation and the Toolbox's required notation. This gives you another
example of the conversion process and also points out some subtleties in
describing a grammar.

Specifying the Input to the Parser Generator

A formal specification of the format you must use when inputting
information to the parser generator is given at the end of this section. The
formal specification is in BNF format, so refer back to "Describing the
Grammar" in this chapter if you have any questions about how BNF works.
The next section shows an example of a grammar in standard BNF
notation, followed by the equivalent code as required by the Toolbox's
parser genera tor.

Note the distinction between the format or syntax of the parser generator's
input and its formal description. BNF notation is used to describe a
language that itself closely conforms to BNF notation.

First, let's follow through an informal specification in words.

Parser-generator input consists of three optional kinds of sections: user
defined predicates, user-defined domains, and production rules.

If you wish to manually code some parsing predicates, they should be
declared to the parser generator at the beginning of your grammar
definition, after the keywords userdefined predicates. Similarly, user
defined domains should be declared next, after the keywords userdefined
domains, before the predicates.

Following userdefined sections, there can be any number of production
rule sections, but the .keyword productions must precede each such section.
A production begins with the name of that production in uppercase letters.
There are two kind of productions: list productions and general
productions.

A list production is a production name followed by an asterisk or a plus
sign. An asterisk means zero or more occurrences of that grammatical
object can appear in a valid sentence; a plus means one or more. Then, a list

The Parser Generator 187

production can contain an optional separator specification. When no
separator is given, the list simply doesn't have any separator symbols. For
example, you can declare that an expression list is a (possibly empty) list of
expressions separated by commas as follows:

EXPLIST = EXP* separator comma

This specification generates the following Turbo Prolog domain declaration
in the domain-definition file of the parser-generator system (more details
on this file later):

EXPLIST = EXP*

This domain declaration is independent of whether an asterisk or a plus is
used and whether a separator is used or not.

A general production consists of one or more groups of individual
productions, each with the same priority. The priority groups are separated
by two minus signs (--), while the productions in each group are separated
by a comma (,).

An individual production can be preceded by the keyword rightassoc. If the
production is right associative, then its name can be followed by a (possibly
empty) list of grammatical tokens. These are either names of other
productions or scanner tokens. It can have an optional parameter list for
when the scanner places some attributes in the token-for example, the
value of an integer or the name of an identifier.

After the list of grammatical tokens comes an arrow(-», which is followed
by a specification of the Prolog term that should be built from this
production. This term can have zero or more arguments, the arguments
being the names of productions or Turbo Prolog terms.

The production names in the list of grammatical tokens must be exactly the
same, and in the same order, as the production names used in the
corresponding Prolog term: The first production name in the grammatical
token list must correspond to the first name in the term and so on. If two
corresponding names are not equal, a conversion between the two names is
inserted in the parser. For example,

MYPRODNAME = upper(STRING) -> MYPRODNAME

generates the following parsed predicate:

s prodname([t(upper(STRING),) ILLj,LL,MYPRODNAME) :-!,
- STRING = MYPRODNAME.

188 Turbo Prolog Toolbox Owner's Handbook

The BNF grammar in Table 7.1 shows how input for the parser generator
must be specified.

Table 7.1: A BNF Grammar for Parser-Generator Input

<PARSERGENERATORINPUT> : :=

<PRODUCTIONS> : :=

<PRODUCTION> : :=

<PRODBODY> : :=

<STAR PLUS> : :=

<SEPARATOR> : :=

<PRODGROUPS> : :=

<PRIORGROUP>

<SINGPROD>

<AS SOC> : :=

<GRAMTOKL>

<GRAMTOK>

<TOKK> : :=

<TERM> : :=

<PRODNAMES> : :=

<PRODNAME>

<UPPERCASESTRING> : :=

<LOWERCASESTRING>

The Parser Generator

uaerdeflDed production. <PRODNAMES>
u.erdefiDed doaaiD. <PROD NAMES>
production. <PRODUCTIONS>

<PRODUCTION>+

<PRODNAME> = <PRODBODY>

<PRODGROUPS>
<PRODNAME> <STAR PLUS> [<SEPARATOR>]

* I +

<STRING>

<PRIORGROUP> {- - <PRIORGROUP> } *

<SINGPROD> { , <SINGPROD> } *

[<ASSOC>] <GRAMTOKL> -> <TERM>

rightassoe

<GRAMTOK>*

<PRODNAME> I <TOKK>[:CURSOR]

<LOWERCASESTRING> «PRODNAMES»
<LOWERCASESTRING>

<LOWERCASESTRING>
<LOWERCASESTRING> (<PRODNAMES>)
<PROD NAME>

<PRODNAME> { , <PRODNAMES>} *

<UPPERCASESTRING>

{AIBICIDIEIFIGIHIIIJIKILIMI
NIOIPIQIRISITIUIVIWIXIYIZ }+

{a Ihlel dl e I flglhl i I j I killmi
nlolplqlrlsltlulvlwlxlylz }+

189

There are a few differences between the standard BNF syntax described at
the beginning of the chapter and the BNF syntax that the Toolbox requires
its input to be in:

• The < and> characters that normally surround a non-terminal are not
allowed .

• Instead of the ::= operator to indicate the body of a production, the
Toolbox uses =.

Creating Your Own Grammar

In the following pages, you'll see how to write a grammar that describes a
language capable of recognizing the following construct:

whil. Dot finished do
if a + 7 * fIx) > XA 2 then

write ("true") .b.
write("false");

if a > 0 then
a = 0;

After describing the grammar using standard BNF notation, we'll convert it
to the format required by the Toolbox.

A valid program in this programming language consists of a series of
statements or sentences. These sentences may contain while statements,
if .. then .. else .. statements, write statements, and assignments. In the while,
if, and assignment statements, expressions are used. These can contain
addition, multiplication, exponentiation and relational operators, function
calls, and variables and constants.

To define this language by a suitable grammar, first state that the language
is a sequence of zero or more statements, each terminated by a semicolon:

<LANGUAGE> :: = { <STATEMENT>; I

Next, describe the permissible kinds of statements:

<STATEMENT> ::= whil. <EXP> do <STATEMENT>

190

if <EXP> then <STATEMENT> .1.. <STATEMENT>
if <EXP> then <STATEMENT>
<IDENTIFIER> = <EXP>
writ. (<EXP>)

Turbo Prolog Toolbox Owner's Handbook

Finally, describe the expressions:

<EXP> :: = <EXP> <RELOP> <EXP>

where

(<EXP>)
<IDENTIFIER>
<STRING>
<INTEGER>
<EXP> + <EXP>
<EXP> - <EXP>
<EXP> * <EXP>
<EXP> / <EXP>
<EXP> A <EXP>
<IDENTIFIER> (<EXP>)
DOt <EXP>

<RELOP> :: = > 1 < 1 = 1 <= 1 >=
<IDENTIFIER> :: = <LETTER> { <LETTER> 1 <DIGIT> 1*
<STRING> :: = " { <LETTER> } * "
<INTEGER> ::= <DIGIT> (<DIGIT> 1*
<LETTER> ::= AIBICIDIEIFIGIHI I IJIKI LIMINIOIPIQIRIS ITIUIVIWIXIYIZ 1

alblcidielflglhliljlkillminiolplqlrlsitlulvlwixlylzi
<DIGIT> ::= 0111213141516171819

Note that there are several deficiencies in the above grammar. Most
notably, there are no provisions for a signed integer and no characters like
punctuations and so forth in strings. Also note that the above grammar is
described using BNF notation. It does not conform to the rules that were
described in the last section. The following is the Toolbox version of the
grammar and can be given directly to the Toolbox parser generator:

productiona
EXP = EXP plus EXP

EXP minus EXP
-> plus(EXP,EXP),
-> minus (EXP, EXP)

EXP mult EXP
EXP div EXP

-> mult(EXP,EXP),
-> div(EXP,EXP)

rightassoc EXP power EXP -> power (EXP, EXP)

EXP less EXP -> less(EXP,EXP),
EXP greater EXP -> greater(EXP,EXP),
EXP equal EXP -> equivalent(EXP,EXP),
EXP greater equal EXP -> greater equal (EXP, EXP) ,
EXP less_equal EXP -> less _ equal(EXP, EXP)

id(STRING) lpar EXP rpar

int (INTEGER)
str (STRING)
lpar EXP rpar
Dot EXP

The Parser Generator

-> call(STRING,EXP),
-> int (INTEGER),
-> str(STRING),
-> EXP,
-> Dot(EXP)

191

STATEMENT = if EXP tbeD STATEMENT el.. STATEMENT
- -> lftbeDel •• (EXP,STATEMENT,STATEMENT),

if EXP tbeD STATEMENT
- -> lftbeD(EXP,STATEMENT),

Whil. EXP do STATEMENT
-> Whil. (EXP, STATEMENT) ,

id(STRING) equal EXP
-> assignment (STRING,EXP),

write lpar STRING rpar
- -> write (STRING)

LANGUAGE = STATEMENT* separator semicolon

There were two primary changes made in converting the grammar above
from straight BNF to the Toolbox's format. First, cosmetic changes were
needed to remove the < and> surrounding non-terminals and change ::= to
=. Then, the grammar had to show how a Turbo Prolog term should be
associated with each defining production in the source language grammar.

Notice that if represented as a scanner token is if_ and that write becomes
write_. This is a useful habit to adopt to avoid confusion between Turbo
Prolog keywords and scanner tokens. Likewise, the tokenized forms of (
and) are lpar and rpar respectively. Also, integer values in the source text
are given in terms of the functor int(..) and identifiers in terms of id(..).

Two complete examples of how the Toolbox parser generator works are
provided in the next section of this chapter. After studying these complete
examples, input the grammar given above to the parser generator, develop
an appropriate scanner for the grammar and test the system with the above
statements as input.

As mentioned previously, some terminal symbols carry an attribute along
with them. For example, the terminal <IDENTIFIER> carries the name of
the identifier and the terminal <INTEGER> carries the value of the integer.

There are many issues connected with such a grammar, including:

• Precedence: Addition and multiplication are normally given different
priorities so that multiplication binds tighter than addition. For
example, when evaluating the expression 2 + 3 ,. 4, the result of 3 ,. 4 is
normally evaluated first. Priorities like this are normally reflected in the
grammar.

• Associativity: In an expression like 2 + 3 + 4, the addition opera tor is
usually assumed to be left associative. The operation 2 + 3 is carried out
first and not 3 + 4. In the expression 2A 3A 4, the operation 3A 4 should be
carried out first.

192 Turbo Prolog Toolbox Owner's Handbook

• Ambiguity: There is often more than one way to combine the input to a
parser into a grammatical structure. The if .. then .. else .. sentence is the
most common example. In the context of the above grammar, consider
the construction:
1f a tba
1f b tba sentI
el •• sent2

• The grammar does not specify whether the construction should be
interpreted as

1f a tba (1f b theA sentI el •• sent2)

or as

1f a tba (1£ b theA sentI) .le. sent2

In the Toolbox parser generator, these problems have been resolved by the
putting the following constraints on how the source-language grammar
should be specified:

• Precedence: Productions for one production name should be separated
into groups having the same priority. Thus, plus (+) and minus (-)
should share the same group; multiplication (X) and division (I) should
belong to another.

• Associativity: Operators are, by default, left associative. If they are right
associative like the exponentiation operator, they must be preceded by
the Toolbox keyword rightassoc.

• Ambiguity: In considering the order of the productions, the parser
chooses productions appearing earlier in the production list in
preference to those appearing later. In the example above, according to
the grammar specified, the if statement with the else clause comes
before the if statement without an else. Therefore, the second of the two
interpretations above will be the one the parser chooses. In other words,
the order in which productions are defined in the grammar dictates the
priority by which the production rules are used.

Examples Demonstrating the Parser Generator

This section gives two complete examples of how to use the parser
generator. The first example is introduced with a demonstration of how a
grammar would typically be represented using the Toolbox's specifications.

The Parser Generator 193

The second example is preceded by a discussion of how to incorporate
error handling into your grammar/parser.

After reading through the examples, use Turbo Prolog to create the parser
generator P ARSER.EXE and experiment with the examples.

There are two important things to keep in mind while reading the
following sections. First, for every grammar given as input, the Toolbox
parser generator produces a parser similar to the file XP ARS.P AR in basic
structure. The program is complicated only by considerations of priority,
associativity, efficiency, and error detection. Second, in every case you must
write the scanner that tokenizes the source language input so it is suitable
for use by the automatically generated parser. Use the scanner from the
second example, XMINIGOL.SCA, to make this task easier. Only minor
modifications should be necessary to make it work with a different
grammar.

The Toolbox Version of a Grammar

The input to the Toolbox parser generator must show how a Turbo Prolog
term should be associated with each defining production in the source
language grammar. Thus, given the following source language statement as
input,

if A < 0 tbeD B = 4 el.e B = 3 * A

or its equivalent as a list of tokens output from the scanner,

[if ,id ("A") ,1e .. thaD, int (0) ,then, id ("B") , becomes, int (4),
elie,id("B") ,becomes,int(3) ,mult,id(IA") 1

you should require the generated parser to output the Prolog term:

1fthenebe(less(id("A"),int(0)),becomes(id("B"),int(4)),
becomes (id ("B") ,mult (int (3), id ("A"))))

Rather than do this for every possible sentence of the source language, base
the specification of your requirements on the grammar of the source
language. Suppose that you wish to generate a parser for (arithmetic)
expressions that satisfy the following grammar (note that the description of
this grammar conforms closely to the Toolbox's grammar specification
rules):

EXPRESSION = EXPRESSION plus EXPRESSION

194 Turbo Prolog Toolbox OWner's Handbook

EXPRESSION minus EXPRESSION

EXPRESSION mult EXPRESSION
EXPRESSION div EXPRESSION

rightassoc EXPRESSION power EXPRESSION

id(STRING)
int (INTEGER)

This says that an EXPRESSION can take one of seven different forms, with
five of the forms containing sub-expressions. Thus, each of the following is
a sentence in the above grammar:

id(IAMOUNT")
int (456)
int(23) mult id(ICOST")
id(IJANSALES") plus id("FEBSALES") minus id("ADCOSTS")
id(M) mult id(C) power int(2)

Notice that the grammar is given in a form that uses language elements as
they would appear when output from the scanner. In particular, identifiers
and integer values have to be attached to the functors id and into The two
minus signs (-) separate defining productions for the graIIUnPr that have
the same priority, and the keyword rightassoc indicates a production that is
right associative.

Example of the Parser Generator's Input Grammar

Your input to the parser generator has to show how a Turbo Prolog term
should be associated with each defining production in the source-language
grammar. Just as the BNF grammar had to be converted to the Toolbox
format in the previous section, you must do the same for the grammar
defined here. This is shown in Table 7.1; everything inside the central box
must be given to the parser generator as input. The grammar given below
is contained in XP ARS.GRM.

The Parser Generator 195

Table 7.2: Corresponding Terms for Grammar Production

Grammar as
Scanned Tokens

productiOll8
EXP = EXP plus EXP

EXP minus EXP

EXP mult EXP
EXP div EXP

Turbo Prolog Term from
Generated Parser

-> plus (EXP ,EXP),
-> minus (EXP ,EXP)

-> mult(EXP,EXP),
-> div(EXP,EXP)

rightassoc EXP power EXP -> power (EXP, EXP)

id (STRING) -> id (STRING),
int (INTEGER) -> int (INTEGER)

Notice the arrow (-» between the source-language grammar production
and its corresponding Prolog term. Although the functors plus(), minusO,
and so on are given the same names as the scanner token from which they
derive, this is not mandatory. The user has to implement these clauses in
the program that uses the parser.

Example of a Parser Domains File Generated by fhe
Parser

The grammar specification in Table 7.2 generates the domain definitions
(shown in Table 7.2) in the parser generator's domain-definition file. These
domain definitions are in the file XP ARS.DOM.

XPARS.DOM

1**
Domain definitions

**/

dOlU.1Da
EXP = plus (EXP,EXP) ;

minus (EXP ,EXP) ;
mult(EXP,EXP) ;

196 Turbo Prolog Toolbox Owner's Handbook

div(EXP,EXP) ;
power (EXP ,EXP);
id(STRING);
int (INTEGER)

TOK = plus 0 ;
minus ();
mult 0 ;
divO;
power ();
id (STRING) ;
int (INTEGER);
niH

Example of a Scanner for the Generated Parser

An example of a scanner for the simple programming language grammar
given in Table 7.1 is. in the file XP ARS.SCA. The program is constructed
using the Turbo Prolog standard predicate fronttoken.

XPARS.SCA

r Remove the comments around the include directive below in */
r order to run XPARS.SCA as a standalone program. * /

r Include "xpars.dom" */

domain.
ttok = t(tok,integer)
tokl = ttok*

pr.dicat ••
tokl(string,tokl)
maketok(string,tok, string, string)
str _ tok (string, tok)

c1au •••
tokl(STR, [t(TOK,O) ITOKL])

fronttoken (STR, STRTOK, STR1) , ! ,
maketok(STRTOK,TOK,STR1,STR2),
tokl(STR2,TOKL) .

tokl(_,[]) .

str tok("+",plus) :- !.
str-tok·{"-",minus) :- !.
str-tok("*",mult) :- !.
str-tok ("1", div) :- !.
st(tok(""",power) :- !.

The Parser Generator 197

maketok(STR,TOK,S,S) :- str tok(STR,TOK),!.
maketok(INTSTR,int(INTEGER)~S,S) :- str int(INTSTR,INTEGER),!.
maketok(STRING,id(STRING) ,S,S) :- isname(STRING),!.

If you remove the comment marks around the include directive, as
mentioned in the source code to the scanner, you can run it as a standalone
program. When the scanner is run and given the goal

tokl(11/A+34*2",A) .

the result will be

A = [t(int(1),O),t(div,O),t(id(IA"),O),t(plus,O),
t (int (34),0), t (mult, 0), t (int (2),0))

1 Solution

Notice that the tokenized forms of (and) are lpar and rpar, respectively.
This is a useful habit to adopt in order to avoid confusion between Turbo
Prolog keywords and scanner tokens. Also, integer values in the source text
are given in terms of the functor int(..) and identifiers in terms of id(..).

Example of Generated Parser

XP ARS.P AR contains the parser that was generated by the Toolbox parser
generator to recognize the above sentence as conforming to the example
grammar given in Table 7.1. Its contents are given below:

XPARS.PAR

/**
Parsing predicates

**/

pr.dicat ••
s exp(TOKL,TOKL,EXP)
s-expl (TOKL, TOKL,EXP)
s-exp5(TOKL,TOKL,EXP,EXP)
s-exp2(TOKL,TOKL,EXP)
s-exp6(TOKL,TOKL,EXP,EXP)
s - exp3 (TOKL, TOKL, EXP)
s - exp 7 (TOKL, TOKL, EXP , EXP)
(exp4 (TOKL, TOKL, EXP)

claua ••
s exp(LLl,LLO,EXP) :-
- s_expl(LLl,LLO,EXP).

198 Turbo Prolog Toolbox OWner's Handbook

s expl(LL1,LLO,EXP) :-
- s exp2 (LL1,LL2,EXP),

s=exp5(LL2,LLO,EXP,EXP_).

s exp2(LL1,LLO,EXP) :-
- s exp3(LLl,LL2,EXP),

s=exp6(LL2,LLO,EXP,EXP_).

s exp3 (LL1, LLO, EXP) : -
- s exp4(LL1,LL2,EXP),

s=exp7(LL2,LLO,EXP,EXP_).

s exp4([t(id(STRING),) ILL),LL,id(STRING)) :- !.
s-exp4([t(int(INTEGER),) ILL),LL,int(INTEGER)) !.
s= exp4 (LL,_,_) :- syntax_error (exp4,LL) ,f&11.

s exp5([t(plus,) ILL1),LLO,EXP,EXP) :- !,
- s exp2(LLI,LL2,EXP1), -

s -exp5 (LL2, LLO, plus (EXP ,EXP1) ,EXP).
s exp5([t(minus,) ILL1),LLO,EXP,EXP) := !,
- s exp2(LL1~LL2,EXP1), -

s - exp5 (LL2,LLO,minus (EXP,EXP1) ,EXP).
s_exp5 (LL, LL, EXP, EXP) . -

s exp6([t(mult,) ILL1),LLO,EXP,EXP) :- !,
- s exp3(LLI,LL2,EXP1), -

s-exp6(LL2,LLO,mult(EXP,EXP1),EXP).
s exp6([t(div,) ILL1),LLO,EXP,EXP) :- T,
- s exp3(LL1,LL2,EXP1), -

s-exp6(LL2,LLO,div(EXP,EXP1),EXP).
s_exp6(LL,LL,EXP,EXP). -

s exp7 ([t (power,) I LL1) ,LLO,EXP, power (EXP ,EXP1)) !,
- s exp3(LL1~LLO,EXP1).

s_exp7(LL,LL,EXP,EXP).

Example of the Scanner and Generated Parser Used
Together

The generated parser can't be run as a standalone program without several
modifications. Below is an example program that incorporates both the
scanner and the parser:

XPARS.PRO

include "xpars.dom"

includ. "xpars.sca"

The Parser Generator

r Domain declarations for the parser */

r scanner called by the parser */

199

predicate.
syntax_error (STRING, TOKL)

1Aclude "xpars.par"

cl_u •••
syntax_errorC,J :- write("No error detection").

r The generated parser requires */
r this predicate to be declared */

r Parser created t7j the Toolbox * /

Try running the program and giving it the same goal previously given to
the scanner:

90-1: tokl(11/A+34*2",Tok_list).

As expected, the result is

Tok list = [t (int (1),0), t (div, 0), t (id (IIA"), 0), t (plus, 0),
- t (int (34),0),t (mult, 0), t(int (2) ,0) 1

1 Solution

Now take the output generated by the scanner <the tokenized version of the
original source string> and give it directly to the parser:

goal: s exp([t (int (1),0), t (div 10), t (id ("A"), 0),
t (plus, 0), t (int (34),0), t (mult, 0), t (int (2),0) 1, _,EXP) .

The result of this goal is

EXP = plus (div(int (1), id ("A")) ,mult (int (34), int (2)))
1 Solution

So, EXP represents the final output from the parser.

Each parsing predicate takes something off the list input in its first
parameter and returns a shorter list in its second parameter. The presence
of these two lists has lead to the term "parsing with difference lists" for this
technique. If you are unfamiliar with it, run the program with trace turned
on.

As a final example, try the goal

Here the scanner has been told to tokenize the input string and then pass it
on to the parser. The solution is, therefore, a combination of the solutions to
the previous examples:

200 Turbo Prolog Toolbox Owner's Handbook

Tok list = [t(int(1),O),t(div,O),t(id("A"),O),t(plus,O),
- t (int (34),0), t (mult, 0) , t(int (2) ,0) 1,

EXP = plus (div (int (1), id ("A")) ,mult (int (34), int (2)))
1 Solution

Error Handling

The input for the Toolbox parser generator described in Table 7.1 is fairly
typical, except for coping with the complications of error trapping.

If there are type errors in the source-language input to the generated parser,
or if one of the variables referred to does not have a value, you can set up
the generated parser to point to the offending token in the source text. For
this purpose, it is possible to obtain the source-text cursor position of each
of the <source-language grammar) terminal symbols by appending
:CURSOR to the relevant scanner token. For example,

LABEL = id(STRING) : CURSOR -> id(STRING,CURSOR)

specifies that you want to record source-text positions of all LABELs. By a
straightforward extension of this idea, it is possible to record more than one
cursor position in a single production:

RANGE = int(INTEGER):CURSOR rangesep int(INTEGER):CURSOR->
range(INTEGER,CURSOR,INTEGER,CURSOR)

Notice that domains to the left and right of the ~ should also agree here.

Suppose your source language comprises only H .. then .. else .. statements, in
which the logical expression can consist only of integer values and the <
sign. Suppose also that only assignment statements can follow the then and
else parts. Then the input to the parser generator could take the form

SENTENCE = if EXP theD ASSIGNMENT .1 •• ASSIGNMENT ->
iftheoela. (EXP , ASS IGNMENT, ASSI GNMENT)

ASSIGNMENT = id(STRING) equal EXP -> assignment(STRING, EXP)

EXP = int (INTEGER) lessthan int (INTEGER) -> logical (INTEGER, INTEGER)

assuming that the tokenized forms of = and < are equal and lessthan,
respectively.

Now, let's change this so that the parser generator produces code to keep
track of the cursor position for the identifier involved:

The Parser Generator 201

SENTENCE = if EXP thaD ASSIGNMENT el •• ASSIGNMENT ->
ifth.a.l •• (EXP,ASSIGNMENT,ASSIGNMENT)

ASSIGNMENT = id(STRING) : CURSOR equal EXP -> assignment(STRING,CURSOR,EXP)

EXP = int(INTEGER) lessthan int(INTEGER) -> logical(INTEGER,INTEGER)

Next, consider function assignments of the form

f(X) = an expression involving identifiers, multiplication, and exponentiation

Let's give a specification that allows you to keep track of the cursor:

FUNCDEF = id(STRING):CURSOR lpar id(STRING):CURSOR rpar equal EXP ->
function (STRING, CURSOR, STRING, CURSOR)

EXP = id(STRING) : CURSOR -> id(STRING,CURSOR)
EXP mult EXP -> mult(EXP,EXP)
rightassoc EXP power EXP -> power(EXP,EXP)
id(STRING) : CURSOR lpar EXP rpar -> call(STRING,CURSOR,EXP)

Using the Whole System In a Working Sample

Following is another example that implements a parser for an ALGOL-like
language, called Minigol. This grammar is in the file XMINIGOL.GRM. The
files used in this example can form the basis for further experiments with
grammars for different languages. First, give the grammar for the parser
generator to generate a Minigol parser:

Ulerdef1ucl clouiu
PROCID

production.
EXP = EXP plus EXP

EXP minus EXP

EXP mult EXP
EXP div EXP

-> plus(EXP,EXP),
-> minus (EXP ,EXP)

-> mult(EXP,EXP),
-> div(EXP,EXP)

rightassoc EXP power EXP

202

-> power(EXP,EXP),
EXP exclmmark -> factorial (EXP) ,
EXP questionmark EXP colon EXP

-> conditional(EXP,EXP,EXP)

id(STRING) lpar PARMLIST rpar

id(STRING)
minus EXP
int(INTEGER)
real (REAL)
str (STRING)

-> call(PROCID,PARMLIST),
-> var (STRING) ,
-> neg(EXP),
-> int (INTEGER),
-> real (REAL) ,
-> str (STRING),

Turbo Prolog Toolbox Owner's Handbook

char (CHAR)
lpar EXP rpar

-> char (CHAR) ,
-> EXP

PARMLIST = EXP+ separator comma

SENT = if EXP thID SENT el.e SENT
if- EXP tbeD SENT
wbIle EXP do SENT
toto int (INTEGER)
toto id(STRING)

-> iftheDelae (EXP, SENT, SENT),
-> iftha(EXP, SENT),
-> wbile(EXP,SENT),
-> goto line(INTEGER),
-> goto =lbl (STRING)

Now, put the file XMINIGOL.GRM through the parser generator to create
the files XMINlGOL.OOM and XMINIGOL.P AR.

The Generated Domain Definitions

XMINIGOL.DOM contains the domain definitions that the generated
parser and the scanner (which you have yet to write) need to use. Check
that the code is as follows:

1**
Domain definitions

**/

cIou1Da
EXP =

PARMLIST =

SENT =

TOK =

plus(EXP,EXP);
minus(EXP,EXP);
mult(EXP,EXP);
div(EXP ,EXP);
power(EXP,EXP);
factorial(EXP);
conditional (EXP ,EXP ,EXP);
call (PROCID,PARMLIST);
var (STRING) ;
neg (EXP) ;
int (INTEGER) ;
real (REAL) ;
str (STRING) ;
char (CHAR)

EXP*

l:ftb.aelae (EXP, SENT, SENT) ;
lftbeD(EXP,SENT);
wbile (EXP ,SENT) ;
goto line (INTEGER) ;
goto =lbl (STRING)

plus ();
minus();
mult ();
divO;
power();

The Parser Generator 203

exclmmark () :
questionrnar k () :
colon() :
id(STRING):
lpar 0:
rparO:
int (INTEGER) :
real (REAL) :
str (STRING) :
char (CHAR):
if 0:
t:hUO:
e1aeO:
while 0 :
doO:
gotoO:
comma:
Dil

The Generated Parser

XMINIGOL.P AR contains the generated parser. Just glance through it for
now. (Later, after you've understood the underlying structure of the
parsing predicates, take a more detailed look and make your own
modifications.)

1**
Parsing predicates

**1

predicat ••
s parmlist (TOKL, TOKL,PARMLIST)
s - parmlistl (TOKL, TOKL, PARMLIST)
s-exp (TOKL, TOKL, EXP)
s-expl(TOKL,TOKL,EXP)
s-exp5(TOKL,TOKL,EXP,EXP)
s-exp2(TOKL,TOKL,EXP)
s-exp6(TOKL,TOKL,EXP,EXP)
s-exp3(TOKL,TOKL,EXP)
s - exp 7 (TOKL, TOKL, EXP , EXP)
s-exp4(TOKL,TOKL,EXP)
s-exp8(TOKL,TOKL,STRING,EXP)
s=sent(TOKL,TOKL,SENT)

clau •••
s exp(LL1,LLO,EXP) :-
- s_expl(LL1,LLO,EXP).

s expl(LL1,LLO,EXP) :-
- s exp2 (L11, LL2,EXP),

s=exp5(LL2,LLO,EXP,EXP_).

s exp2(LL1,LLO,EXP) :-
- s_exp3(LL1,LL2,EXP),

204 Turbo Prolog Toolbox Owner's Handbook

s_exp6(LL2,LLO,EXP,EXP_I.

s exp3(LL1,LLO,EXP 1 :-
- s exp4(LL1,LL2,EXPI,

s=exp7(LL2,LLO,EXP,EXP_I.

s exp4([t(id(STRINGI,) ILLl],LLO,EXP 1 :- !,
- s exp8(LL1,LLO,STRING,EXP I. -

s exp4(Tt(minus, IILL1],LLO,neg(EXPII :- !,
- s exp4(LL1;LLO,EXPI.

s exp4(Tt(int(INTEGERI, IILL],LL,int(INTEGER)) :- I

s - exp4 ([t (real (REAL), lILL], LL, real (REAL)) : - !.
s-exp4([t(str(STRINGI;) ILL],LL,str(STRING)) :- !.
s-exp4([t(char(CHAR), T!LL],LL,char(CHAR)) :- !.
s-exp4([t(lpar,) I LLlT,LLO,EXP) :- !,
- s exp(LL1;LL2,EXP),

expect(t(rpar,),LL2,LLOI.
s_exp4(LL,_,_1 :- syntax_error (exp4,LL),fail.

s sent ([t (if ,) I LL1] , LLO, lftheul .. (EXP, SENT, SENT1)) '-
- s exp(LL1,L12,EXP),

expect (t (tUIl,), LL2, LL3) ,
s sent (LL3,LL4;SENT) ,
expect(t(e1 •• ,),LL4,LL5),
s sent(LL5,LLO;SENT1),!.

s sent([t(if ,) ILLl],LLO,lfthc(EXP,SENT)) :- !,
- s exp(LL1,LL2,EXP),

expect(t(tUIl,),LL2,LL3),
s sent(LL3,LLO;SENT).

s sent(Tt(whU.,) ILL1],LLO,whU.(EXP,SENT)) !,
- s exp(LL1,LL2,EXP),

expect(t(do,),L12,LL3),
s sent(LL3,LLO,SENT).

s sent(1t(pto,) ILL1],LLO,goto line(INTEGER))
- expect(t(Int(INTEGER),),LL1,LLO),!.

s sent((t(pto,) ILLl],LLO,goto lbl(STRING)1 :- !,
- expect(t(Id(STRING), I,LL1,LLO).

s_sent(LL,_,_) :- syntax_error(sent,LL),fall.

s exp5([t(plus,) ILL1],LLO,EXP,EXP) :- !,
- s exp2 (LLI,LL2,EXP1), -

s-exp5(LL2,LLO,plus(EXP,EXP1),EXP).
s exp5(Tt(minus,) ILL1],LLO,EXP,EXP) := !,
- s exp2 (LL1;LL2,EXPl), -

s-exp5(LL2,LLO,minus(EXP,EXP1I,EXP).
s_exp5(LL,LL,EXP,EXP). -

s exp6([t(mult,) ILL1],LLO,EXP,EXP) :- !,
- s exp3(LLI,LL2,EXP1), -

s - exp6 (LL2,LLO,mult (EXP,EXP1) ,EXP).
s exp6(Tt(div,) ILL1],LLO,EXP,EXP) :- T,
- s exp3(LL1,LL2,EXP1), -

s-exp6(LL2,LLO,div(EXP,EXP1),EXP).
s_exp6(LL,LL,EXP,EXP). -

s exp7 ([t (power,) I LL1] , LLO, EXP, power (EXP,EXP1)) :- !,
- s exp3 (LL1;LLO,EXP1) .

s exp7(Tt(exclmmark,) ILL],LL,EXP,factorial(EXP)) :- !.
s=exp7([t(questionmark,_)ILL1],LLO,EXP,EXP_) :- !,

The Parser Generator 205

s exp4(LLl,LL2,EXPl),
expect (t (colon,),LL2,LL3),
s exp4(LL3,LL4,EXP2),
s - exp7 (LL4, LLO,conditional (EXP ,EXPl,EXP2) ,EXP).

s_exp7(LL,LL,EXP,EXP). -

s exp8([t(lpar,) ILLl],LLO,STRING,call(PROCID,PARMLIST)) :- !,
- s parmlist(LLl,LL2,PARMLIST),

expect(t(rpar,),LL2,LLO),STRING = PROCID.
s_exp8 (LL,LL,STRING,iu(STRING)) :- !.

s parmlist(LLl,LLO,[EXPIPARMLIST]) :-
- s exp(LLl,LL2,EXP),

s=parmlistl (LL2,LLO,PARMLIST).

s parmlistl([t(comma,) ILLl],LL2,PARMLIST) :- !,
- s parmlist(LLl,LL2,PARMLIST).

s_parmlIstl(LL,LL, []).

The Scanner

It's easier to try out the parser once you've implemented a scanner for
Minigol. What you need is a program that examines a Minigol source text
and tokenizes it into the tokens given in XMINIGOL.OOM.

The file XMINIGOL.SCA contains such a program, although five lines have
been commented out so that it can be incorporated into the larger program
in the next section. If you wish to run the scanner in standalone mode, it is
necessary to uncomment these five lines.

XMINIGOL.SCA

douin.

r CURSOR = integer */
r PROCID = STRING */

CURSORTOK = t(TOK,CURSOR)
TOKL = CURSORTOK*

r Include "XMINIGOLDOM" */

predicat ••

r scan_error(STRING,CURSOR) */
tokl(CURSOR,STRING,TOKL)
maketok (CURSOR, STRING, TOK, STRING, STRING, CURSOR)
str tok(STRING,TOK)
scan str(CURSOR,STRING,STRING,STRING)
search_ch(CHAR,STRING, INTEGER, INTEGER)

206 Turbo Prolog Toolbox Owner's Handbook

skipspaces (STRING, STRING, INTEGER)
isspace (CHAR)

c1auae.

r scan_errorl..J:- write("No error recovery"). *'
tokl(POS,STR,[t(TOK,POSl) ITOKL]) :

skipspaces(STR,STRl,NOOFSP),
POSI = POS+NOOFSP,
fronttoken (STRl, STRTOK, STR2), !,
maketok(POS,STRTOK,TOK,STR2,STR3,LENl),
str len (STRTOK, LEN) ,
POS2 = POSl+LEN+LENl,
tokl(POS2,STR3,TOKL).

toklC,_, [J).

skipspaces(STR,STR2,NOOFSP)
frontchar (STR, CH, STRl), isspace (CH), !,
skipspaces(STRl,STR2,Nl),
NOOFSP = Nl + 1.

skipspaces (STR,STR, 0) •

isspace(' ').
isspace('\t').
isspace (' \n') .

str tok(I/,I/,comma) :- !.
str-tok(I/+",plus) :- !.
str-tok("-",minus) :- !.
str-tok(I/*I/,mult) :- !.
str-tok (1//", div) :- !.
str-tok(I/"",power) :- !.
str-tok(I/?I/,questionmark) !.
str-tok(I/: 1/, colon) :- !.
str-tok("!I/,exclmmark) :- !.
str-tok("(",lpar) :- !.
str-tok(")",rpar) :- !.
str-tok(llf",if) :- !.
str-tok("tha",tha) !.
str-tok("e1ae",el. ••) !.
str-tok(lwh11e",while) :- !.
str-tok("clo",do) :- !.
str=tok("goto",90tO) :- I.

maketok(,STR,TOK,S,S,O):-str tok(STR,TOK),!.
maketok (-, 11111, char (T) ,SI, S3, 21 : - !, frontchar (SI, T, S2), frontchar (S2, _, S3) .
maketok(CURSOR,"\"I/,str(STR),SI,S2,LEN) :- !,

scan str(CURSOR,Sl,S2,STR),str len(STR,LENl),LEN = LEN1+l.
maketok (, INTSTR, int (INTEGER) ,S, S, 0) -:- str int (INTSTR, INTEGER), ! .
maketok(-,REALSTR,real(REAL),S,S,O) :- str real(REALSTR,REAL),I.
maketok(-,STRING,id(STRING),S,S,O) :- isname(STRING),!.
maketok (CURSOR, _, _, _, _, J : - scan_error ("Illegal token", CURSOR) , fail.

scan str(,IN,OUT,STR) :-
- search ch(,1/, ,IN,O,N),

frontstr (N, IN,STR,OUT1), !,
frontchar(OUT1, ,OUT).

scan _ str (CURSOR, _, _, _I scan_error (IIString not terminated", CURSOR) , fail.

The Parser Generator 207

search ch(CH,STR,N,N) :
frontchar(STR,CH, I,!.

search ch(CH,STR,N,Nl) :
frontchar (STR, , SI) ,
N2 = N+1, -
search _ ch (CH, SI, N2, Nl) .

If you remove the comments and run the scanner with the goal

90&1: tokl(O,"if a+2*f(7) tha qoto labell
el •• whil. bool qoto 7", Tok _list) •

the result is

Tok list = [t(if ,0),t(id("a"),3),t(plus,4),t(int(2),5),t(mult,6),t(id(IIfll), 7),
- t (lpar, 8), t (int (7),9), t (rpar, 10), t (tha, 12), t (qoto, 17),

t (id (lilabell") ,22), t (.11.,29), t (whil., 34), t (id (lihool") ,40),
t (qoto, 45), t (int (7),50))

The main file, XMINIGOL.PRO, contains a program that gives a framework
for implementing a compiling system like the Turbo Prolog system itself,
but in which Minigol is the language used. This program provides a pull
down menu with the options Files, Edit, and Compile. An editor window is
used to create and edit the source-language text. Once some Minigol
statements have been typed in, they are given to the Minigol parser
automatically, and the compiled result is displayed on the screen. Try
reen tering the Minigol source text

if a+2*f(7)+1 then qoto labell el •• whil. bool do qoto 7

to this friendlier set-up, and verify that the result is

ifthen (plus (var ("a") ,mult (int (2), call (IIfll, lint (7))))),
goto _lbl (Illabell "))

check determ code=4000

iDclu.de "tdoms. pro"

douiD..
CURSOR = INTEGER
PROCID = STRING

clataba ••
source (STRING)
filename (STRING)

208

XMINIGOL.PRO

Turbo Prolog Toolbox Owner's Handbook

pdwstate (ROW, COL, SYMBOL, ROW, COL)
insmode
lineinpstate (STRING, COL)
lineinpflag
error (STRING, CURSOR)

1Dclacle "tpreds .pro"
1Dclacle "status .pro"
1Dclacle "pulldown.pro"
1Dclacle "lineinp. pro"
1Dclacle "filename.pro"

1Dclacle "xminigol.dom"

predicat ••
scan_error (STRING, CURSOR)

1Dclacle "xminigol.sca"

predicat ••
strlist str (STRINGLIST, STRING)
ed(STRING,CURSOR)
change (DBASEDOM)
reset flags
nondeterm repparse
parse
better error (CURSOR)
new_error (STRING, CURSOR)

predicat ••
expect (CURSORTOK, TOKL, TOKL)
syntax error (STRING, TOKL)
checkeiiipty (TOKL)

1Dclacle "xminigol.par"

clau ••
better error (CURSOR)

error (, OLDCURSOR) ,OLDCURSOR >= CURSOR,!, f.il.
better_error lJ .
new error(,) :- I'.tl'.ct(error(,)),f.11.
new=error(MSG,CURSOR) :- •••• I'tI(error(MSG,CURSOR)).

expect (TOK, [TOKIL],L) :- !.
expect(t(TOK,),[t(,CURSOR) I],)

better error(CURSOR), - -
str tolC (STR, TOK) ,
concat(STR," expected",MSG),
new_error (MSG,CURSOR) ,f.il.

syntax error(PROD,[t(,CURSOR) I])
better error(CURSOR), -
concat("Syntax error in ",PROD,MSG),
new_error (MSG, CURSOR) , f.il.

scan_error (MSG, CURSOR) : - ed (MSG, CURSOR), f.il.

The Parser Generator 209

checkempty([]) :- !.
checkempty([t(,CURSOR) I] I

better error(CURSORI,
new_error (IlSyntax error II , CURSOR) •

strlist str([],"II.
strlist-str([HIT],STR) :

concat(H," ",HI),
strlist str(T,STRI),
concat(Hl,STRl,STR).

ed(MSG,CURSORI :-
source (TXT),
editmsg(TXT,TXTI,II,III,MSG,CURSOR,"I,RET),
RET><I, !,
change (source (TXTI)) .

reset flags : - :retract (error C, J) , fail.
reset flags .

change (source (I) : - :retract (source ()), fall.
change (filename (I) :- :retract(filename()),fail.
change (X) :- allertl(X). -

repparse.
repparse :- error(MSG,CURSOR),ed(MSG,CURSOR),!,repparse.

parse :-
repparse,
reset flags,
source (STRl),
tokl(O,STRl,L),
s sent(L,Ll,X),
checkempty(Ll),!,
makewindow (2, 23,23, 1111,0,0,25,80),
write (X),
readkey(),
removewindow.

parse :-
write("» Parsing aborted"),nl,beep.

pdwaction(l,O) :
shiftwindow(OLD),shiftwindow(l),
parse,
shiftwindow(OLD),
refreshstatus.

pdwaction(2,0) :
shiftwindow(OLD),shiftwindow(l),
source (TXT),
editmsg(TXT, TXTl, 1111, 1111,1111,0,1111 ,RET),
shiftwindow(OLD),
RET><l,! ,
change (source (TXTlI) I

refreshstatus.
pdwaction(2,01 :- refreshstatus.
pdwaction(3,1) :-

210

read filename (5,40, 66,66, txt, 1111 ,NEWI,
change (filename (NEW)) ,
file_str(NEW,NEWSOURCEI,!,

Turbo Prolog Toolbox Owner's Handbook

change (source (NEWSOURCE)),
shiftwindow (OLDW) ,
shi ftwindow (1) ,
window str (NEWSOURCE),
shiftwlndow (OLDW) ,
refreshstatus.

pdwaction(3,1) .
pdwaction(3,2) :-

source (SOURCE),
filename (OLD),
readfilename(5,40,66,66,txt,OLD,NEW),
change (filename (NEW)) ,
file str (NEW, SOURCE) ,
refreshstatus,!.

pdwaction (3,2) .
pdwaction(3,3) :- setdir(5,40,66,66).
pdwaction(4,0) :-

lineinput(5,70,40,66,66,"Are you sure (yIn) ? ","",ANS),
upper lower(ANS,ANSl),
ANSl><"y" .

filename ("minigol. txt") .
source ("") .

90al

r
1 2 3 4 5 6 7

01234567890123456789012345678901234567890123456789012345678901234567890123456789

*/
COMPILE EDIT FILES QUIT

makewindow(1, 23, 23, "Edit", 3, 0, 21,80),
makestatus(112," Select with arrows or use first uppercase letter"),
pull down (66, [curtain(7,"Compile", [I),

curtain(26,"Edit", [I),
curtain(44,"Files",["Load","Save","Dir")),
curtain (64, "Quit" , [J)

], ,).

Using the XMINIGOL example files as a basis, you can easily implement
the scanner (lexical analyzer) and parser for your own compiler. In order to
experiment with your own source language, you can modify the example
program this way:

1. Generate a new parser with the parser generator.
2. Change the scanner, XMINIGOL.SCA, so that it recognizes the new

keywords.
3. Include the new scanner, parser, and domain definitions in a main

program that should be a copy of XMINIGOL.PRO. Change the call of
the top production name from s_sent to the name of the new top
production in the newly generated parser.

The Parser Generator 211

The Parser Generator System

Before using the parser generator, it is necessary to compile it to an .EXE
file. The parser generator is built from the·following files, which are all on
the distribution disks:

PARSER.GRM
PARSGEN.PRO
PARSMAIN.PRO
PARSER.SCA
PARSER.PAR
PARSER.DEF
PARSER.PRJ

- the grammar for parser input
- the parser genera tor
- the parser generator's user interface
- the scanner
- the parser
- global definitions
- project description

The parser generator also requires these previously defined files:

LINEINP.PRO
FILENAME.PRO
STATUS.PRO
PULLDOWN.PRO

To compile the parser-generation system, select Options from the Turbo
Prolog main menu and choose Compile Project. Type in the project name
PARSER.PRJ, then select Compile.

Like Turbo Prolog itself, the parser system uses a pull-down menu through
which it is possible to load, edit, and save a grammar as a text file. The first
step is to load the file containing the prepared parser-generator input (or to
type it in directly using the Edit option). Activating the main-menu entry
Generate Parser, now generates the required parser, which consists of two
parts, each part in a separate file.

If the name of the file containing the parser-generator input is
PASCAL.GRM, the generated parser's domain declarations will be in the
file P ASCAL.DOM, and the predicate declarations and clauses will be
generated in the file PASCAL.PAR. The generated parser can be viewed by
selecting Display Parser from the main menu.

212 Turbo Prolog Toolbox .Owner's Handbook

The System Around the Generated Parser

The generated parser is, of course, a Turbo Prolog program. To detect
syntax errors in source-language input, it contains just two predicates that
should be adequate for most purposes. These two predicates-expect and
syntax_error-have the following declarations:

Feclicat ••
expect (CURSORTOK, TOKL, TOKL)
syntax_error (STRING, TOKL)

expect is called when a given grammatical entity should be followed by a
token. It is called with the expected token as the first parameter and the
sublist of the scanned list currently being processed as the second
parameter. The tail of this list is returned in the third parameter if its head
is the correct token; otherwise, expect fails.

syntax_error is called when no matching production is found in a group of
productions. It is called with the name of the production as its first
parameter and the sublist of the scanned list currently being processed as
its second parameter.

The first production tried is not always the correct one. Some of the expect
and syntax_error calls that succeed may not correspond to a syntax error: A
real syntax error occurs only if no matching production can be found.

Such a syntax error can be isolated by remembering the deepest level
reached in the source text. Each time expect or syntax_error is called, the new
cursor position is compared to the old. If the new cursor position is greater
than the previous position, it should be saved as the deepest level achieved.
Experience shows that this works pretty well but, as always, you should
experiment with other methods.

Bootstrapping a Parser

Bootstrapping a parser means that you can take a parser generator and
input a grammar that describes itself. The parser generator then generates
another parser generator. In other words, it clones itself.

A common question is, Where did the first parser generator come from?
The first one in this case is the Toolbox parser generator, which has been

The Parser Generator 213

written for you. Now that you have it, however, you can do what is called
"bootstrapping" and use it to generate the parser generator again.

All you need to do is treat the BNF grammar given in Table 7.1 as the
grammar of the source language for which you want to generate a parser.
You need to augment this grammar as done with the simple expressions in
the previous section "Creating Your Own Grammar." The following
grammar shows the result. It assumes the following tokenized forms for
terminal symbols in the parser generator's grammar:

Terminal Symbol

->
=
*
+
userdefined
predicates
aomains

,
separator

(
)

production. PARSER = SECTION*

SECTION =

Tokenized Form

arrow
equal
star
plus
userdefined_
7J.redicates_
domains_
priorsep
comma
separator_
colon
lpar
rpar

userdefined predicates PRODNAMES -> userpreds (PRODNAMES),
userdefined-domains PRODNAMES -> userdoms (PRODNAMES),
productions)RODUCTIONS -> productions _ (PRODUCTIONS)

PRODUCTIONS = PRODUCTION+

PRODUCTION = PRODNAME equal PRODBODY -> p(PRODNAME,PRODBODY)

PRODBODY = upper(STRING):CURSOR STAR PLUS SEPARATOR->
list (PRODNAME, CURSOR, STAR-PLUS, SEPARATOR) ,
PRODGROUPS -> groups(PRODGROUPS)

STAR PLUS = star -> star,
- plus -> plus

SEPARATOR = separator_id(STRING) -> sep(STRING), -> none

PRODGROUPS = PRIORGROUP+ separator priorsep

PRIORGROUP = SINGPROD+ separator comma

214 Turbo Prolog Toolbox Owner's Handbook

SINGPROD = ASSOC GRAMTOKL arrow:CURSOR TERM ->
prod (ASSOC,GRAMTOKL,CURSOR,TERM)

ASSOC = rightassoc -> right,
- -> left

GRAMTOKL = GRAMTOK*

GRAMTOK = upper(STRING):CURSOR -> prodname(PRODNAME,CURSOR),
TOKK CURSORDEMAND -> tok(TOKK,CURSORDEMAND)

CURSORDEMAND = colon PRODNAME -> curdemand(PRODNAME), -> none

TOKK = id(STRING):CURSOR lpar PRODNAMES rpar->
cmp(STRING,CURSOR,PRODNAMES) ,

id(STRING) :CURSOR -> name(STRING,CURSOR)

TERM = upper(STRING):CURSOR -> dom(PRODNAME,CURSOR),
id (STRING) : CURSOR lpar PRODNAMES rpar ->

term (STRING, CURSOR, PRODNAMES) ,
id(STRING) :CURSOR -> name(STRING,CURSOR)

PRODNAME = upper(STRING) -> PRODNAME

PRODNAMES = PRODNAME+ separator comma

The Parser Generator 215

216 Turbo Prolog Toolbox Owner's Handbook

p A R T

2

Reference Guide

217

218 Turbo Prolog Toolbox Owner's Handbook

c H A p T E R

8

Reference Guide

Introduction

This section defines and describes, in alphabetical order, all the Turbo
Prolog Toolbox tools. All the essential information a bout each
tool-predicate, declaration, flow pattern, function, parameters,
environment, and so on-is included. The environment comprises the
programs required to run the tool.

In addition, the following table summarizes the environments of all the
Toolbox files, listing the files required by each specific file.

The files are listed in alphabetical order, under the headings Prolog Files,
Object Files, and Example Files.

Reference Guide 219

Prolog Files

BIOS
BOXMENU
COMGLOBS
DBASE3
FILENAME
GBAR

GDOMS
GEGA
GGLOBS
GGRAPH
GPIE

GPREDS
HELP
HELPDEF

HNDBASIS

LINEINP
LINEMENU
LONGMENU
LOTUS
MENU
MIXSCR

PARSGEN
PARSMAIN

PULLDOWN
READEXT
REFLEX
REPORT
RESIZE
SCRDEF

220

Table 8.1 : The Turbo Prolog Toolbox Flies

None
TDOMS.PRO, TPREDS.PRO
None
TDOMS.PRO, TPREDS.PRO, READEXT.PRO, REALINTS.OBJ
TDOMS.PRO, TPREDS.PRO, LINEINP.PRO
TDOMS.PRO, GDOMS.PRO, GGLOBS.PRO, TPREDS.PRO,
GPREDS.PRO, GRAPHICS.OBJ, EGAGRAPH.OBJ
None
TDOMS.PRO
GDOMS.PRO
TDOMS.PRO, GDOMS.PRO, TPREDS.PRO, GPREDS.PRO
TDOMS.PRO, TPREDS.PRO, GDOMS.PRO, GPREDS.PRO,
GRAPHICS.OBJ EGAGRAPH.OBJ
GOOMS.PRO
TDOMS.PRO, TPREDS.PRO
TDOMS.PRO, LONGMENU.PRO, STA TUS.PRO,
TPREDS. PRO,LINEINP. PRO,
FILENAME.PRO, SCRHND.PRO, HELP.SCR
TDOMS.PRO, TPREDS.PRO, MENU.PRO, STATUS.PRO,
LINEINP.PRO, SCRHND.PRO or VSCRHND.PRO
TDOMS.PRO, TPREDS.PRO
TDOMS.PRO, TPREDS.PRO
TOOMS.PRO, TPREDS.PRO
TDOMS.PRO, TPREDS.PRO, READEXT.PRO, REALINTS.OBJ
TDOMS.PRO, TPREDS.PRO
GOODS.SCR, ORDERSCR, CUSTOMERSCR, INF.SCR,
INVOICE.SCR
PARSER.PRJ, PARSERDEF, TPREDS.PRO
PARSER. PRJ (PARSGEN.OBJ), PARSERDEF, TPREDS.PRO,
LINEINP.PRO, FILENAME.PRO, STATUS.PRO,
PULLDOWN.PRO, PARSER.SCA, PARSER.PAR
TDOMS.PRO, TPREDS.PRO
None
TDOMS.PRO, TPREDS.PRO, READEXT.PRO, REALINTS.OBJ
TOOMS.PRO
STATIJS.PRO, TOOMS.PRO, TPREDS.PRO
TOOMS.PRO, TPREDS.PRO, MENU.PRO, STATUS.PRO,
LINEINP.PRO, FILENAME.PRO, RESIZE.PRO

Turbo Prolog Toolbox OWner's Handbook

SCRHND
STATUS
TDOMS
TPREDS
TREE
VSCRHND

Object Files

SERIAL.OB}
GRAPHICS.OB}
PICTOOLS.OB}
TICKS.OB}
EGAGRAPH.OB}

Example Files

XBAR

XBOXMENU
XCAREER
XCLUB

XCOMMU

XDBASE3

XEGA

XFILENAM

XGEOMETR

XGRAPH

XHELP
XIQ
XLABEL

Reference· Guide

TooMS.PRO, TPREDS.PRO, LINEINP.PRO, STATUS.PRO
TDOMS.PRO, TPREDS.PRO
None
TDOMS.PRO
TDOMS.PRO, TPREDS.PRO
TDOM.PRO, TPREDS.PRO, LINEINP.PRO, STA TUS.PRO

COMGLOBS.PRO
GooMS.PRO, GGLOBS.PRO
GooMS.PRO, GGLOBS.PRO
COMGLOBS.PRO

XBAR.PRJ, TDOMS.PRO, GooMS.PRO, GLOBS.PRO,
TPREDS.PRO, GPREDS.PRO, GBAR.PRO, GRAPHICS.OB},
EGAGRAPH.OBJ
TooMS.PRO, TPREDS.PRO, BOXMENU.PRO, STA TUS.PRO
TooMS.PRO, TPREDS.PRO, MENU. PRO
TooMS.PRO, TPREDS.PRO, MENU.PRO, STATUS.PRO,
LINEINP.PRO, FILENAME.PRO, SCRHND.PRO, XCLUB.SCR,
XCLUB.DBA
XCOMMU.PR} (SERIAL.OB}, MODEM.OB}, TRICKS.OB}),
TooMS.PRO, COMGLOBS.PRO, TPREDS.PRO, MENU.PRO
XDBASE3.PR}, READEXT.PRO, DBASE3.PRO,
REALINTS.OB},
XDBASE3.DBF, XDBASE3.DBT
TDOMS.PRO, GooMS.PRO, TPREDS.PRO, GPREDS.PRO,
GEGA.PRO
TooMS.PRO, TPREDS.PRO, LINEINP.PRO, FILENAME.PRO,
STATUS. PRO
XGEOMETR.PR} (GRAPHICS.OBn, EGAGRAPH.OB},
TOOMS.PRO, GooMS.PRO,
GGLOBS.PRO, TPREDS.PRO, GPREDS.PRO
TOOMS.PRO, GooMS.PRO, GGLOBS.PRO, TPREDS.PRO,
GPREDS.PRO, GGRAPH.PRO, GRAPHICS.OB},
EGAGRAPH.OB}
TooMS.PRO, HELP.PRO
TooMS.PRO, TPREDS.PRO, MENU.PRO
TooMS.PRO, STATUS.PRO, TPREOS.PRO, MENU.PRO,
LINEINP.PRO, FILENAME.PRO, SCRHND.PRO,
XLABEL.DBA

221

XLCAREER
XLINEINP
XLINEMNU
XLONGMNU

XLOTUS

XMADDER

XMAIL
XMENU
XMINIGOL

XPARS.ooM
XPARS.GRM
XPARS.PAR
XPARS.PRO
XPARS.SCA
XPICDEMO

XPIE

XPOLLING

XPRINTER
XPULLDW
XREFLEX

XREPORT
XRESlZE
XSHOP

XSLIDES

XSTATUS
XTERM

XTREE

222

rooMS.PRO, TPREDS.PRO, MENU. PRO
rooMS.PRO, TPREDS.PRO, LINEINP.PRO, STATUS.PRO
rooMS.PRO, TPREDS.PRO, LINEMENU.PRO, STATUS.PRO
rooMS.PRO, TPREDS.PRO, LONGMENU.PRO,
STATUS.PRO
LOTUS.PRJ, (REALINTS.OBJ) , READEXT.PRO, LOTUS.PRO,
XLOTUS.WRK
rooMS.PRO, TPREDS.PRO, MENU.PRO, STATUS.PRO,
LINEINP.PRO, SCRHND.PRO, XMADDER.SCR
HNDBASIS.PRO, XMAIL.SCR
TooMS.PRO, TPREDS.PRO, STATUS.PRO, MENU.PRO
rooMS.PRO, TPREDS.PRO, STATUS.PRO,
PULLDOWN.PRO,
LINEINP.PRO, FILENAME.PRO, XMINIGOL.ooM,
XMINIGOL.SCA, XMINIGOL.PAR
None
None
XPARS.ooM
XPARS.ooM, XPARS.SCA, XPARS.PAR
XPARS.ooM
XPICDEMO.PRJ (PICTOOLS.OBJ), rooMS.PRO,
GooMS.PRO,
GGLOBS.PRO, TPREDS.PRO, WELCOME.PIC, TEST.PIC
XPIE.PRJ (GRAPHICS.OBj, EGAGRAPH.OBJ), rooMS.PRO,
GooMS.PRO,
GGLOBS.PRO, TPREDS.PRO, GPREDS.PRO, GPIE.PRO
XPOLLING.PRj (SERIAL.OBj, TICKS.OBJ), TooMS.PRO,
COMGLOBS.PRO, TPREDS.PRO, MENU.PRO
XPRINTER.PRj, (SERIAL.OBj, TICKS.OBJ), COMGLOBS.PRO
rooMS.PRO, TPREDS.PRO, STATUS.PRO, PULLooWN.PRO
XREFLEX.PRJ (REALINTS.OBJ), READEXT.PRO,
REFLEX.PRO, REFLEX.RXD
rooMS.PRO, TPREDS.PRO, REPORT.PRO, XREPORT.SCR
rooMS.PRO, TPREDS.PRO, STATUS.PRO, RESIZE.PRO
TooMS.PRO, XSHOP.SCR, TPREDS.PRO, MENU.PRO,
LINEINP.PRO, STATUS.PRO, SCRHND.PRO
XSLIDES.PRJ (PICTOOLS.OBJ), TooMS.PRO, TPREDS.PRO,
MENU.PRO
TooMS.PRO, TPREDS.PRO, STA TUS.PRO
XTERM.PRJ, (SERIAL.OBJ, TICKS.OBJ), rooMS. PRO,
COMGLOBS.PRO, TPREDS.PRO, STATUS.PRO
TooMS.PRO, TPREDS.PRO, STATUS.PRO, MENU.PRO,
TREE.PRO

Turbo Prolog Toolbox OWner's Handbook

XVIRTUAL TooMS.PRO, TPREDS.PRO, MENU.PRO, STATUS.PRO,
LINEINP.PRO, VSCRHND.PRO, XVIRTUAL.SCR

XXMODEM XXMODEM.PR] (SERIAL.OB], TICKS.OB]), TooMS.PRO,
COMGLOBS.PRO, TPREDS.PRO, MENU.PRO

Reference Guide 223

axislabels

Predicate
axisLabels(AxesNo,XaxisText, YaxisText)

Declaration
axisLabels(Integer,String,String)

Flowpattem
axisLabels(i,i,i)

Function
Used to label a pair of axes.

Parameters
AxesNo identifies the pair of axes to be affected and is the axes identifier
returned frommakeAxes. XaxisText and YaxisText are the strings to be used
for labeling the X and Y axes respectively.

Remarks
In order to use axisLabels, the following database predicates must be
declared in the containing program:

databa ••
Scale (ScaleNo,x,x, y, y)
acti veScale (ScaleNo)
axes (Integer, Integer, Integer,Xmarker,Ymarker, Col,Row, Co l,Row)

Example
axisLabels(l,"Length","Height")

Contained in
GGRAPH.PRO

Environment
TooMS.PRO, GooMS.PRO, TPREDS.PRO, GPREDS.PRO

See also
modifyAxes, makeAxes, refreshAxes

224 Turbo Prolog Toolbox Owner's Handbook

bargraph

Predicate
barGraph(Left,Bottom,Right,Top ,Bar Ratio ,BarList,Factor)

Declaration
barGraph(Col,Row,Col,Row,BarRatio,BarList,Factor)

Flowpattem
barGraph(i,i,i,i,i,i,i,o)

Function
The predicate barGraph makes it possible to display numerical data in bar
chart form.

Parameters
The first four parameters determine how much space there should be
between the borders of the active window in which the bar chart is drawn
and the edge of the screen. The parameter BarRatio specifies the width of
the bars relative to the spacing between the bars. A spacing of 0.5 indicates
that the bars have the same width as the gaps between them.

BarList belongs to the domain

BARLIST = BAR*
BAR = bar(VHEIGHT,STRING,COLOR,COLOR) ; space

Normally a bar is specified by its height, a label (which may be an empty
string), a frame color, and a fill color. A bar also can be a space that separates
the bars visually. The bars are automatically scaled to fill the specified area
of the active window. The scaling factor is returned as the last parameter.

Example
barGraph(3 ,4,4,4,0,5,

[bar(2,"" ,1,2),
bar(3, "1984" ,1,3),
bar (5, "",1,2),
space,
bar(4,"",1,2),
bar(7,"1985" ,1,3),
bar(7,"",1,2)],_)

Reference Guide 225

Contained in
GBAR.PRO

Environment
TOOMS.PRO, GOOMS.PRO, GGLOBS.PRO, TPREDS.PRO, GPREDS.PRO

See also
barGraph3d

226 Turbo Prolog Toolbox Owner's Handbook

barGraph3d

Predicate
barGraph3d(Le/f,Bottom,Right,Top,BarRatio,Angle,BarList,Factor)

Declaration
barGraph3d(Col,Row,Col,Row,BarRatio,Theta,BarList,Factor)

Flowpattem
barGraph3d(i,i,i,i,i,i,i,o)

Function
The predicate barGraph3d lets you display numerical data in bar-chart form
in which the bars appear three-dimensional.

Parameters
The first four parameters are text coordinates, used to determine how much
space there should be between the borders of the active window in which
the bar chart is drawn and the edge of the screen.

The parameter Angle specifies the angle from which the three-dimensional
bars are to be viewed, measured in radians.

The parameter BarRatio specifies how much space the bars take up relative
to the spacing between the bars. A spacing of 0.5 indicates equal space for
the bars and the gaps between them.

BarList belongs to the domain

BARLIST = BAR*
BAR = bar(VHEIGHT,STRING,COLOR,COLOR) ; space

Normally a bar is specified by its height, a label (which may be an empty
string), a frame color, and a fill color. A bar can also be a space to separate
the bars visually. The bars are automatically scaled to fill the specified area
of the active window. The scaling factor is returned as the last parameter.

Example
barGraph3d(3,4,4,4,O.55,O.5,[bar(2,III1,l,2),space,bar(3,II 1984",l,3)J,->,

Contained in
GBAR.PRO

Environment
TOOMS.PRO, GOOMS.PRO, GGLOBS.PRO, TPREDS.PRO, GPREDS.PRO

Reference Guide 227

See also
barGraph

228 Turbo Prolog Toolbox OWner's Handbook

border

Predicate
border(Color)

Declaration
border(Integer)

Flowpattem
border(i)

Function
Sets the screen border color in text mode using a eGA graphics card. (It is
also possible to set the border color using an EGA graphics card. Refer to
the tool predicate setEGAregister.

Parameters
Color specifies the desired screen border color as one of the 16 possibilities,
coded as shown in Table 8-3 of the Turbo Prolog Owner's Handbook.

Example
border(15)

Contained in
BIOS.PRO

Environment
TOOMS.PRO, TPREDS.PRO

See also
setEGAregister

Reference Guide 229

box

Predicate
box(Row,Col,Row2,CoI2,LineColor ,FillColor ,Fill)

Declaration
box(VRow, VCol, VRow, VCol,Color,Color ,Fill) - (i,i,i,i,i,i,i) language c

Flowpattem
box(i,i,i,i,i,i,i)

Function
Draws a four-sided box shape on the graphics display screen.

Parameters
box draws a box using virtual coordinates with the upper left-hand comer
at (Row,Col) and lower right-hand corner (Row2,CoI2) with the indicated
Color. Depending on the value of Fill, the box is filled with the color
FillColor. The Fill parameter can be 1 or 0, indicating that the box will or
will not be filled, respectively.

Remarks
The predicate box is implemented in C.

Range for Rows: 0-31999
Range for Columns: 0-31999

It requires the creation of a project.

Example
box(2000 ,2000 ,20000 ,20000 ,1,2,0)

Contained in
GRAPHICS.OBI

EQ.vironment
GOOMS.PRO, GGLOBS.PRO

230 Turbo Prolog Toolbox Owner's Handbook

boxmenu

Predicate
boxmenu(PosRow,PosCol,NoOfRows,NoOfCols, lftbttr,Fattr,ItemList,Title,InitItem,Choice)

Declaration
boxmenu(Row,Col,Row,Col,Attr,Attr,StringList,String,Integer ,Integer)

Flowpattem
boxmenua,i,i,i,i,i,i,i,i,o)

Function
The boxmenu predicate allows a menu selection to be made from a collec
tion of menu items displayed across a row.

Parameters
PosRow and PosCol define the upper left-hand comer of the window that
contains the menu. The size of the window is determined by NoOfRows and
NoOfCols. Wlttr and Fattr specify the attributes of the window and its
frame, respectively. ItemList is a list of strings, one for each menu item. Title
determines the text in the frame of the window. When the menu is
displayed, menu choice number InitItem is highlighted by the cursor. Choice
is an integer indicating the selection made, coded as

o = Esc was pressed
1 = First menu item selected
2 = Second menu item selected

and so on.

Remarks
The window containing the menu is automatically adjusted if it is placed
too far to the left or too pear to the bottom of the screen. The predicate fails
if the list of menu items has length zero.

Example
boxmenu(5,10,5,50,7,7,[Basic,pascal,Lisp,Prolog],"Language",2,CHOICE)

Contained in
BOXMENU.PRO

Environment
TOOMS.PRO, TPREDS.PRO

Reference Guide 231

Recognized keys
Cursor keys, Esc, FlO, Return, Home, End, PgUp, PgDn

See also
boxmenu_leave, boxmenu_mult

232 Turbo Prolog Toolbox Owner's Handbook

Predicate
boxmenu_leave(PosRow,PosCol,NoOfRows,NoOfCols, Vilttr,Fattr,ItemList,Title,InitItem,Choice)

Declaration
boxmenu_leave(Row,Col,Row,Col,Attr,Attr,StringList,String,Integer,Integer)

Flowpattem
boxmenu _'eave(i,i,i,i,i,i,i,i,i,o)

Function
The boxmenu_leave predicate allows menu selection from more than one
column. After selection, the menu is left on the screen.

Parameters
PosRow and PosCol define the upper left-hand corner of the window that
contains the menu. NoOfRows and NoOfCols determine the size of the
window. Wlttr and Fattr specify the attributes of the window and its frame,
respectively. ItemList is a list of strings, one for each menu item. Title
determines the text in the frame of the window. When the menu is
displayed, menu choice number InitItem is highlighted by the cursor. Choice
is an integer indicating the selection made coded as

o = Esc was pressed
1 = First menu item selected
2 = Second menu item selected

and soon.

Remarks
The window containing the menu is automatically adjusted if it is placed
too far to the left or too near to the bottom of the screen. The predicate fails
if the list of menu items has length zero.

Example
boxmenu_'eave(5,10,5,50,7,7,[Basic,Pasca',Lisp,Prolog],"Language" ,2,CHOICE)

Contained in
BOXMENU.PRO

Environment
TOOMS.PRO, TPREDS.PRO

Reference Guide 233

Recognized keys
Cursor keys, Esc, FlO, Return, Home, End, PgUp, PgDn

See also
boxmenu, boxmenu_mult

234 Turbo Prolog Toolbox Owner's Handbook

Predicate
boxmenu_mult(Row,Col,NoOfRows,NoOfCols, Yizttr,Fattr,ItemList,Title,InitItems,ChoiceList)

Declaration
boxmenu_mult(Row,Col,Row,Col,Attr,Attr,StringList,String,IntegerList,IntegerList)

Flowpattem
boxmenu_mult(i,i,i,i,i,i,i,i,i,o)

Function
The boxmenu_mult predicate works like boxmenu but allows more than one
selection to be made.

Parameters
Row and Col define the position of the upper left-hand comer of the
window. NoOfRows and NoOfCols determine the size of the window
containing the menu. Yizttr and Fattr specify the attributes of the window
and its frame, respectively. ItemList is a list of strings, one for each menu
item. Title determines the text in the frame of the window. When the menu
is displayed, menu choice numbers InitItems is highlighted by the cursor.
ChoiceList is an integer list that becomes instantiated to the integer codes for
the selections made. If Esc is pressed during menu selection, ChoiceList is
bound to an empty list.

Remarks
The window containing the menu is automatically adjusted if it is placed
too far to the left or too near the bottom of the screen. The predicate fails if
the list of menu items has length zero.

Example
boxmenu_mult(5,10,s,50,7,7,[Basic,Pascal,Lisp,Prolog],"Language",[3],CHOICES)

Contained in
BOXMENU.PRO

Environment
TOOMS.PRO, TPREDS.PRO

Recognized keys
Cursor keys, Esc, FlO, Return, Home, End, PgUp, PgDn

Reference Guide 235

See also
boxmenu, boxmenu_leave

236 Turbo Prolog Toolbox OWner's Handbook

changestatus

Predicate
changestatus(StringEntry)

Declaration
changestatus(String)

Flowpattem
changestatus(i)

Function
Used to change the text in the status window.

Parameters
The text to which StringEntry is bound is displayed in the status line.

Example
changestatus("Press H for HELP")

Contained in
STATUS.PRO

Environment
TOOMS.PRO, TPREDS.PRO

See also
makestatus, refreshstatus, removestatus, tempstatus

Reference Guide 237

cioseRS232

Predicate
closeRS232(PortNo)

Declaration
closeRS232(In teger) - (i) language c

Flowpattem
closeRS232(i)

Function
The tool predicate CloseRS232 closes an open communication port so that
the PC interrupt mechanisms are restored to the state before the
corresponding OpenRS232 was executed and the input/output buffers de
allocated. It is extremely important to close a communication port before an
application terminates because the interrupt routines redirect interrupts
IRQ3 and IRQ4 from the interrupt controller. CloseRS232 fails if the
communication port referred to is not open or does not exist.

Parameters
If PortNo is bound to 1, COM1 is closed; if PortNo is bound to 2, COM2 is
closed.

Remarks
Requires the creation of a project.

Example
closeRS232(1)

Contained in
SERIAL.OBI

Environment
COMGLOBS.PRO

See also
openRS232

238 Turbo Prolog Toolbox OWner's Handbook

createwindow (used by scrhnd)

Predicate
createwindow(TopLineSwitch)

Declaration
createwindow(Symbol)

Flowpattem
createwindow(i)

Function
Creates a window through which the display created by scrhnd may be
viewed.

Parameters
If TopLineSwitch is bound to ON, then space is reserved in the window for a
line that gives the name of the field containing the cursor. If TopLineSwitch
is bound to OFF, no such reservation is made.

Remarks
It's not really a tool on its own but should be regarded as being closely
related to scrhnd.

Example
createwindow(on)

Contained in
SCRHND.PRO

Environment
TOOMS.PRO, TPREDS.PRO, LINEINP.PRO, STATUS.PRO

See also
scrhnd

Reference Guide 239

defineScale

Predicate
defineScale(ScaleNo,XO,X1, YO, Y1)

Declaration
defineScale(ScaleNo,X,X,Y,Y)

Flowpattem
defineScale(i,i,i,i,i)

Function
Defines a scale for a set of axes.

Parameters
(XO,Xl) and (YO,Yl) are the scaled limits of the X and Yaxes.

Example
defineScale(l,o ,100,0,100)

Contained in
GGRAPH.PRO

Environment
TOOMS.PRO, GOOMS.PRO, TPREDS.PRO, GPREDS.PRO

240 Turbo Prolog Toolbox Owner's Handbook

delinBuf_RS232

Predicate
delInBuf_RS232 (PortNo)

Declaration
delInBuf_RS232(Integer) - (i) language c

Flowpattem
delInBuf _RS232(i)

Function
Deletes the input queue.

Parameters
With PortNo bound to the code for an I/O port, it deletes the contents of the
input buffer for that port.

Remarks
It can be useful in cases where data input during a transmission phase
should be suppressed. dellnBuf_RS232 fails if the specified port is not open.

Requires the definition of a project.

Example
delOutBuf(1)

Contained in
SERIAL.OBI

Environment
COMGLOBS.PRO

See also
delOutBuf_RS232

Reference Guide 241

delOutBuf_RS232

Predicate
deIOutbuf_RS232(PortNo)

Declaration
deIOutBuf_RS232(Integer) - (i) language c

Flowpattem
deIOutBuf_RS232(i)

Function
Deletes the output queue.

Parameters
With PortNo bound to the code for an I/O port, it deletes the contents of the
output buffer for that port.

Remarks
This predicate can be useful when it is necessary to retransmit a certain
block of data. It fails if the specified port is not open.

Example
deIOutBuf_RS232(2)

Contained in
SERIAL.OBI

Environment
COMGLOBS.PRO, TICKS. OBI

See also
dellnBuf_RS232

242 Turbo Prolog Toolbox Owner's Handbook

diskspace

Predicate
diskspace<Disknumber,TotalNoOfBytes,NoOfFreeBytes)

Declaration
diskspace<Integer ,Real,ReaO

Flowpattem
diskspace(i,o,o)

Function
Returns the total number of bytes available and the number of free bytes on
the disk in the selected drive.

Parameters
-Disknumber = 0 Currently active drive
Disknumber = 1 Drive A:
Disknumber = 2 Drive B:
Disknumber = 3 Drive C:

Remarks
Also described in the Turbo Prolog Owner's Handbook (see "'Low-Level
Support" in Chapter 11).

Example
diskspace<O ,Total,Free)

Contained in
BIOS.PRO

Reference Guide 243

dosver

Predicate
dosver(Dos VersionNumber)

Declaration
dosver(Real)

Flowpattem
dosver(o)

Function
Returns the version number of the DOS system in use.

Parameters
DosVersionNumber is bound to a real that corresponds to the OOS version
number.

Remarks
Also described in the Turbo Prolog Owner's Handbook (see "Low-Level
Support" in Chapter 11).

Example
dosver(OurDOSNo)

Contained in
BIOS. PRO

244 Turbo Prolog Toolbox Owner's Handbook

draw

Predicate
draw(MyDrawings)

Declaration
draw(Drawings)

Flowpattem
draw(i)

Function
The tool predicate draw is used to draw a scaled polygon from the domain
DRAWINGS.

Parameters
Draws the object Drawings from the domain DRAWINGS. This is a list of
colored polygons in which the functor d binds a color to a DRAWING,
which is itself a list of points that should be connected to a polygon:

X,Y = REAL
POINT = p (X, Y)
DRAWING = POINT*
D = d(ColOR,DRAWING)
DRAWINGS = D*

Remarks
The drawing speed can be increased by declaring the domains X and Yas
INTEGERs instead of REALs.

Example
draw([d(1,[p(70,100),p(90,19S)]),d(3,lp(400,300),p(200,20S)])])

Contained in
GGRAPH.PRO

Environment
TOOMS.PRO, GOOMS.PRO, TPREDS.PRO, GPREDS.PRO,

Reference Guide 245

ellipse

Predicate
ellipse(Row,Col,Radius1,&tio,Color,FillColor,Fill)

Declaration
ellipse(VRow, VCol,Radius,ReaI,Color,Color,Fill) - (i,i,i,i,i,i,i) language c

Flowpattem
ellipse(i,i,i,i,i,i,i)

Function
Draws an ellipse in the currently active graphics window.

Parameters
The ellipse has its center at (Row,Col) and is drawn using the indicated
Color. The radius along the horizontal axis is Radius1, and the radius along
the vertical axis is scaled according to the Ratio parameter. Row, Col, and
Radius are all given as virtual coordinates. If Fill is bound to 1, the ellipse is
filled out with the color FillColor.

Remarks
The predicate ellipse is coded in C.

Example
ellipse(5000 ,5000 ,4000,0.5,1,2,1)

Contained in
GRAPHICS. OBI

Environment
GOOMS.PRO, GGLOBS.PRO

246 Turbo Prolog Toolbox Owner's Handbook

field_cction (programmer defined)

Predicate
field_action(MyFieldName)

Declaration
field _action(FName)

Flowpattem
field _action(i)

Function
Called by scrhnd in conjunction with a screen definition created using
SCRDEF.PRO to determine the actions to be taken when RetuIn is pressed
in a given field.

Parameters
Defines the action(s) to be taken when Return is pressed in the field to
which MyFieldName is bound.

Remarks
Default defining clauses for field_action are given in HNDBASIS.PRO (see
II Associating Actions with Fields" in Chapter 3). Other defining clauses
must be added by the programmer.

Example
field_action(dir);- setdir(......)

Contained in
SCRHND,VSCRHND

Environment
TPREDS.PRO, TOOMS.PRO, LINEINP.PRO, STATUS.PRO

See also
scrhnd

Reference Guide 247

field_value (programmer defined)

Predicate
field_va lue<MyFieldName,S tringForField)

Declaration
field _value(FName,String)

Flowpattem
field_value(i,o)

Function
Called by scrhnd in conjunction with a screen definition, created using
SCRDEF.PRO, to determine the value of a given field.

Parameters
Defines the value of the field to which MyFieldName is bound.

Remarks
Default defining clauses for field_value are given in HNDBASIS.PRO (see
"Associating Values with Fields" in Chapter 3). Other defining clauses
must be added by the programmer.

Example
field_value(disk,DISK) :- disk(DISK).

Contained in
SCRHND,VSCRHND

Environment
TPREDS.PRO, TDOMS.PRO, LINEINP.PRO, STATUS.PRO

See also
scrhnd

248 Turbo Prolog Toolbox Owner's Handbook

Findmatch

Predicate
findmatch(FileSpec,Attr,FileName,FileAttr,Hour ,Min, Year,Month,Day,Size)

Declaration
findmatch(S tring,Integer,String,Integer,Integer,In teger,Real,Integer lnteger lnteger)

Flowpattem
findmatch(i,i,o,o,o,o,o,o,o,o)

Function
The predicate findmatch searches the DOS file directory for file names that
match a given string mask and file attribute. For the matching files, all
available information is returned.

Parameters
Filespec = The usual DOS filespec (for example, C:*.*)

Attr represents a bit-mask value determined according to the following
table:

o Search for ordinary files
1 File is read only
2 Hidden file
4 System file
8 Volume label
16 Subdirectory
32 Archive file (used by backup & restore)

Hour is in the range 0 to 23, denoting the hour of the day when the file was
created; Min is in the range 0 to 59, representing the minutes past the hour
when the file was created; and Year, Month, and Day are the appropriate
values in the ranges 1980 to 2099, 1 to 12, and 1 to 31, respectively. FilesSize
denotes the size of the file (and is in the range 0 to 30 MB).

Example
findmatch(u*. *",63,N am e,Attrib ,Hour ,Min, Year ,Month,Day,Size)

Contained in
BIOS.PRO

Reference Guide 249

findScole

Predicate
jindScale(ScaleNo,MyDrawing,Xfactor,Yfactor)

Declaration
jindScale(ScaleNo ,Drawing,Factor,Factor)

Flowpattem
findScale(o,i,i,i)

Function
Evaluates a graphics image and then automatically defines an appropriate
scale so that the image can fit into a given window.

Parameters
The image is represented as a list of points, MyDrawing, belonging to the
domain DRAWING, which is defined as

X,Y = REAL
POINT = p (X, Y)
DRAWING = POINT*

Xfactor indicates the amount of stretch (if any) desired in the X direction,
when the images specified for this scale are represented on screen; Yfactor
indicates the amount of stretch in the Y direction expressed as a ratio to the
original.

Example
findScale(X,[p(1,V ,p(9,V,p(1,9)J ,2,1.3)

Contained in
GGRAPH.PRO

Environment
TOOMS.PRO, GOOMS.PRO, TPREDS.PRO, GPREDS.PRO, GGRAPH.PRO

See also
defineScale, shift Scale

250 Turbo Prolog Toolbox Owner's Handbook

getverify

Predicate
getverify(Switch)

Declaration
getverify(Integer)

Flowpattem
getverify(o)

Function
getverify returns the state of the DOS verify switch. When the verify switch
is ON, every write operation in the DOS system will be followed by a read
operation to ensure that the data has been stored correctly.

Parameters
If Switch is bound to 0, then the 005 verify switch is OFF; if Switch is
bound to 1, then the DOS verify switch is ON.

Example
getverify(X)

Contained in
BIOS. PRO

See also
setverify

Reference Guide 251

gwrife

Predicate
gwrite(Row,Column,StringParam,Color, VerticalOr Horizontal)

Declaration
gwrite(Row,Col,String,Color,Integer)

Flowpattem
gwrite(i,i,i,i,i)

Function
Writes a string in a graphics window.

Parameters
The string StringParam is written on the screen starting at the point
specified by (Row,Col) (regarded as text coordinates) in the given Color. If
the parameter VerticalOrHorizontal is bound to 1, the string is displayed
vertically downwards; if it is bound to zero, the string is displayed
horizontally as is the normal way.

Example
gwrite(S,7,"SALES LAST MONTH" ,3,0)

Contained in
GPREDS.PRO

Environment
GOOMS.PRO, TOOMS.PRO

252 Turbo Prolog Toolbox OWner's Handbook

help

Predicate
help

Declaration
help

Flowpattem
None

Function
Displays the Help messages associated with the current Help context,
determined by push_helpcontext and pop_helpcontext. These tool predicates
use Help texts from the database predicate helpcontext.

Remarks
The text to be displayed should be created by using the utility program
HELPDEF.PRO, which is described in "'Context-Sensitive Help" in Chapter
2.

Example
help

Contained in
HELP.PRO

Environment
TOOMS.PRO, TPREDS.PRO

See also
help, help text, pop_helpcontext, push_helpcontext, temp_helpcontext

Reference Guide 253

Predicate
init_dBase3(TotRecs,FldNameL,FldDescL)

Declaration
init _dBase3(Real,FldNameL,FldDescL)

Flowpattem
init_dBase3(o,o,o)

Function
The first step in accessing a dBASE III file from a Turbo Prolog program is
to call the tool predicate init_dBase3, which builds data structures
describing dBASE III records.

Parameters
FLDDESCL = FLDDESC*
FLDDESC = FLDDESC(DBASE3TYPE,Integer)
DBASE3TYPE = ch;r;l;m;d

FLDNAMEL = String*

Remarks
Requires the definition of a project.

Contained in
DBASE3.PRO

Environment

r Description for each field *1

TOOMS.PRO, lPREDS.PRO, READEXT.PRO, REALINTS.OBJ

See also
rd _dBase3File, rddBase3Rec

254 Turbo Prolog Toolbox Owner's Handbook

Predicate
init_Reflex(TotRecs,FldNames,ReflexTypeL,TextPools)

Declaration
init_Reflex(Integer,FldNames,ReflexTypeL,TxtPools)

Flowpattem
iniCReflex(o,o,o,o)

Function
To access a Reflex file, it is first necessary to call the tool predicate
init_Reflex, which builds Prolog data structures describing the Reflex data
records.

Parameters
Totrecs is bound to the total number of records in the file. The other
parameter is bound to structures from the following domains.

FLDNAMES = String*

REFLEXTYPEL = REFLEXTYPE*
REFLEXTYPE = u:t:rt:d:r:i

TXTPOOLS = TXTPOOL*
TXTPOOL = REPTXT*
REP TEXT = text(Integer,String)

Contained in
REFLEX. PRO

Environment

r Reflex field names */

r Internal Reflex type for each field * /

r Indexed strings * /

TOOMS.PRO, TPREDS.PRO, READEXT.PRO, REALIN1S.0BJ

See also
rd_ReflexFile, rd_ReflexRec

Reference Guide 255

lineinpuf

Predicate
lineinput(Row,Col,Len, lAbttr,Fattr,Prompt,BeforeString,AfterString)

Declaration
lineinput(Row,Col,Len,Attr,Attr,String,String,String)

Flowpattem
lineinput(i,i,i,i,i,i,i,o)

Function
Highlights a screen field by drawing a window around it, then accepts
input from the user for that field. Once the user's input has been accepted,
the window containing the field (and its contents) is deleted.

Parameters
Creates a window containing BeforeString at position (Row,Col) on the
screen with attribute Attr, and allows input in the field of length Len
characters indicated-either by typing new text or editing BeforeString
using the arrow and delete keys. Once input is complete, the user types FlO
or Return, and the modified string is returned in AfterString. If Esc is
pressed during input, lineinput fails.

Remarks
In order to use lineinput the following database predicates must be declared
in the containing program:

databa ••
insmode
lineinpstate (String, Col)
lineinpflag

If, during a call, the first key pressed is not a cursor key, then BeforeString is
deleted. F8 can be used to re-establish the default text, while Ctrl
Backspace-Del deletes it.

The input text may be up to 64K-the text will scroll in the window if
necessary.

Example
lineinput(3,5,40,7,7,"Address Label","Please type your first name",X)

256 Turbo Prolog Toolbox Owner's Handbook

Contained in
LINEINP.PRO

Environment
TOOMS.PRO,1PREDS.PRO

Recognized keys
Left and right cursor keys; Ctrl-Left arrow and Ctrl-Right arrow; Esc; FB;
FlO; Return; Home; End; Del; Backspace-Del; Ctrl-Backspace-Del; Ins

See also
lineinpuCleave, lineinpuCrepeat

Reference Guide 257

Iineinput_leave

Predicate
lineinput_leave(Row,Col,Len, V\bttr,Fattr,Prompt,BeforeString,AfterString)

Declaration
ineinpuCleave(Row,Col,Len,Attr,Attr,String,String,String)

Flowpattem
lineinput_leave(i,i,i,i,i,i,i,o)

Function
Highlights a screen field by drawing a window around it, then accepts
input from the user for that field. Once the user's input has been accepted,
the window containing the field (and its contents) remains on the screen.

Parameters
Creates a window containing BeforeString at position (Row,Col) on the
screen with attribute V\bttr, and allows input in the field of length Len
characters indicated-either by typing new text or editing BeforeString
using the arrow and delete keys. Once input is complete, the user types FlO
or Return, and the modified string is returned in AfterString. If Esc is
pressed during input, lineinput fails.

Remarks
In order to use lineinput_leave, the following database predicates must be
declared in the containing program:

databa ••
insmode
lineinpstate(String,Col)
lineinpflag

Example
lineinpuCleave(3,5,40,7,7,"", "Which printer font?",X)

Contained in
LINEINP.PRO

Environment
rooMS.PRO, TPREDS.PRO

See also
lineinput

258 Turbo Prolog Toolbox Owner's Handbook

linelnput_repeat

Predicate
lineinpuCrepeat(Row,Col,Len, ~ttr,Fattr,Prompt,BeforeString,AfterString)

Declaration
lineinpuCrepeat(Row,Col,Len,Attr,Attr,String,String,String)

Flowpattem
lineinpuCrepeat(i,i,i,i,i,i,i,o)

Function
Accepts input from a given screen field as with lineinput, but
lineinput_repeat succeeds after each text input and stacks a backtracking
point (unless Esc is pressed, in which case it fails).

Parameters
Creates a window containing BeforeString at position (Row,Col) on the
screen with attribute ~ttr, and allows input in the field of length Len
characters indicated-either by typing new text or editing BeforeString
using the arrow and Del keys. Once input is complete, the user types FlO or
Return, and the modified string is returned in AfterString. If Esc is pressed
during input, lineinput fails.

Remarks
In order to use lineinput_repeat the following database predicates must be
declared in the containing program:

clataba ••
insmode
lineinpstate (String, Col)
lineinpflag

Example
lineinput_repeat(3,4,40 ,7,7,'''' ,"Date:" ,Z)

Contained in
LINEINP.PRO

Environment
TOOMS.PRO, TPREDS.PRO

Reference Guide 259

Recognized keys
Left, Right; Ctrl-Left, Ctrl-Right; Esc, FB, FlO, Return, Home, End, Del,
Ctrl-Backspace, Ctrl-Backspace, Ins

See also
lineinput

260 Turbo Prolog Toolbox Owner's Handbook

IineMenu

Predicate
lineMenu(posRow, v.bttr,Fattr,ItemList,ChoiceCode)

Declaration
lineMenu(Row,Attr,Attr,StringList,Integer)

Flowpattem
lineMenu(i,i,i,i,o)

Function
The lineMenu predicate implements a pop-up horizontal line menu in
which the arrow keys can be used to indicate a menu item; a selection is
made by pressing FlO or Return.

Parameters
PosRow and PosCol define the upper left-hand corner of the window
containing the menu. Wattr and Fattr determine the attributes for the
window and its frame respectively.ltemList is a list of strings, one for each
menu item. Title determines the text in the frame of the window. ChoiceCode
becomes instantiated to an integer that specifies the selection made
according to the following code:

o = Esc was pressed during menu selection
I = First menu item was selected
2 = Second menu item was selected

and so on.

Example
lineMenu(O ,7,7,[Basic,Fortran,AplJ,ch1)

Contained in
LINEMENU.PRO

Environment
TOOMS.PRO, TPREDS.PRO

Reference Guide 261

IineShade

Predicate
lineShade(Row1,Col1,Row2,Co12,EndLine,FillColor,Direction)

Declaration
lineShade(VRow, VCol, VRow, VCol, VCol,Color,Kind) - (i,i,i,i,i,i,i) language c

Flowpattem
lineShade(i,i,i,i,i,i,i)

Function
Draws a line between two points given in virtual coordinates and shades
up, down, left, or right from that line to a specified row or column of the
graphics window.

Parameters
The line drawn is between the points (Row1,Col1) and (Row2,Col2), and an
area on one side of the line is then shaded. The shading is up, down, left, or
right depending on the Direction parameter:

o Shade Up
1 Shade Down
2 Shade Left
3 Shade Right

The shading covers the area from the line drawn to the horizontal or
vertical line indicated by the EndLine parameter. When shading is up or
down, Endline represents a horizontal line (a Row coordinate must be
given); when shading is to the left or right, Endline is taken to be the
column coordinate for a vertical line.

Remarks
The predicate LineShade is implemented in assembler: When shading up or
down, Endline is represented by a VRow value, and coercion between the
domains VRow and VCol is necessary (take a look at the declaration of
lineShade). This is done by a code fragment of the form

CoerceVariable = VRowvalue,lineShade(........ ,CoerceVariable, ..),

Row1, Row2, Column1, Column2, and EndLine all must be in the range 0 to
31999.

262 Turbo Prolog Toolbox Owner's Handbook

Example
lineshade(l 000,1000,1000,2000,2000,3,0)

Contained in
GRAPHICS.OBI

Environment
GOOMS.PRO

Reference Guide 263

loadpic

Predicate
loadpic(FileName,StartRowPicFile,StartColPicFile,StartRowScreen,

StartCoIScreen,NoOfRows,NoOfCols)

Declaration
loadpic(String,Integer,Integer,Integer,Integer,Integer'/nteger)-

(i,i,i,i,i,i,i) language c

Flowpattem
loadpic(i,i,i,i,i,i,i)

Function
Loads a full-screen graphics image from a .PIC file created using PCPAINT
(v1.0) or a program producing graphics-image files compatible with those
produced by PCP AINT.

Parameters
Loads an image from the file determined by Filename. For the purpose of
addressing various portions of this image, it is regarded as occupying 200
rows numbered 0 thru 199, and 320 columns, numbered 0 thru 319.
StartRowPicFile and StartColPicFile specify the top left-hand comer of the
sub-image to be selected from the full-screen image. NoOfRows and
NoOfCols complete the specification of this sub-image. StartRowScreen and
StartColScreen specify where on the screen the top left-hand corner of the
sub-image is to be displayed.

Remarks
Works only in graphics mode 1. Requires an accompanying project
definition.

Example
loadpic(H demo.pic" ,50 ,80,0,0,100,160)

Contained in
PICTOOLS.OBJ

Environment
GOOMS.PRO, GGLOBS.PRO

See also
savepic

264 Turbo Prolog Toolbox Owner's Handbook

longmenu

Predicate
longmenu(Row,Col,Maxrows, lAhttr,Fattr,ItemList,Title,InitItem,Choice)

Declaration
longmenu(Row,Col,Row,Attr,Attr,StringList,String,Integer,Integer)

Flowpattem
longmenu(i,i,i,i,i,i,i,i,o)

Function
The longmenu predicate implements a pop-up menu where the arrow keys
and PgUp, PgDn, Home, and End can be used to indicate a menu item; the
selection is actually made by pressing FlO or Return. longmenu allows
selection from over 23 choices.

Parameters
Rowand Col determine the position of the window. ~ttr and Fattr
determine the attributes for the window and its frame respectively (if Fattr
is zero, the window will not be framed). Maxrows determines how many
rows should be displayed on the screen at anyone time. ItemList lists the
items on the menu. Title is the text at the top of the menu window. InitItem
determines where the cursor is placed when the menu is first displayed.
Choice becomes bound to the integer code for the selection made as follows:

o = Esc was pressed
1 = First item was selected
2 = Second item was selected

and so on.

Remarks
The window is automatically adjusted if it is placed too far to the left or too
near to the bottom of the screen. The predicate fails if the list of menu items
has length zero.

Example
longmenu(5,5,7,7,5,[a,b,c,d,e,f,g,h,i,j,k,l,m,nl,letters,O,CHOICE)

Contained in
LONGMENU.PRO

Reference Guide 265

Environment
rooMS.PRO, TPREDS.PRO

Recognized keys
Arrow keys, Esc, FlO, Return, Home, End, PgUp, PgDn

See also
longmenu_leave, longmenu_mult, menu

266 Turbo Prolog Toolbox Owner's Handbook

longmenu_leave

Predicate
longmenu_leave(Row,Col,Maxrows, V\httr,Fattr,ItemList,Title,Initltem,Choice)

Declaration
longmenu_leave(Row,Col,Row,Attr,Attr,StringList,String,Integer,IntegerList)

Flowpattem
longmenu _leave(i,i,i,i,i,i,i,i,o)

Function
The longmenu_leave predicate implements a pop-up menu where the arrow
keys, and PgUp, PgDn, Home, and End can be used to indicate a menu
item; the selection is actually made by pressing FlO or Return.
longmenu_leave allows selection from over 23 choices. After selection has
been made, the menu window is left on the screen.

Parameters
Rowand Col determine the position of the window. VJ.zttr and Fattr
determine the attributes for the window and its frame respectively (if Fattr
is zero, the window will not be framed). Maxrows determines how many
rows should be displayed on the screen at anyone time. ItemList lists the
items on the menu. Title is the text at the top of the menu window. InitItem
determines where the cursor is placed when the menu is first displayed.
Choice becomes bound to the integer code for the selection made as follows:

o = Esc was pressed
1 = First item was selected
2 = Second item was selected

and soon.

Remarks
The window is automatically adjusted if it is placed too far to the left or too
near the bottom of the screen. The predicate fails if the list of menu items
has length zero.

Example
longmenu_leave(5,5,7,7 ,5,[a,b,c,d,e,f,g,h,i,j,k,l,m,n},letters,O,CHOICE)

Contained in
LONGMENU.PRO

Reference Guide 267

Environment
TooMS.PRO, TPREDS.PRO

Recognized keys
Arrow keys, Esc, FlO, Return, Home, End, PgUp, PgDn

See also
longmenu, longmenu_mult, menu

268 Turbo Prolog Toolbox Owner's Handbook

longmenu_mult

Predicate
longmenu_mult(Row,Col,Maxrows,l'\httr,Fattr,ItemList,Title,InitItems ,ChoiceLis t)

Declaration
longmenu_mult(Row,Col,Row,Attr,Attr,StringList,String,Integer, List,

IntegerList)

Flowpattem
longmenu _ mult(i,i,i,i,i,i,i,i,o)

Function
The longmenu_mult predicate implements a pop-up menu where the arrow
keys and PgUp, PgDn, Home, and End can be used to indicate menu items;
several selections are allowed, each selection being made by pressing FlO or
Return. longmenu_mult allows multiple selections to be made from over 23
choices.

Parameters
Rowand Col determine the position of the window. V\httr and Fattr
determine the attributes for the window and its frame respectively (if Fattr
is zero the window will not be framed). Maxrows determines how many
rows should be displayed on the screen at anyone time. ItemList lists the
items on the menu. Title is the text at the top of the menu window.lnitItems
determines which entries should be highlighted when the menu is first
displayed. and ChoiceList becomes bound to a list of the integer codes for
the selections made as follows:

o = Esc was pressed
I = First item was selected
2 = Second item was selected

and so on.

Remarks
The window is automatically adjusted if it is placed too far to the left or too
near to the bottom of the screen. The predicate fails if the list of menu items
has length zero.

Example
longmenu_mult(5,5,7,7,5'[a,b,c,d,e,!,g,h,i,j,k,l,m,n],letters,O,ChoiceList)

Reference Guide 269

Contained in
LONGMENU.PRO

Environment
TOOMS.PRO, TPREDS.PRO

Recognized keys
Arrow keys, Esc, FlO, Return, Home, End, PgUp, PgDn

See also
longmenu, longmenu_leave, menu

270 Turbo Prolog Toolbox Owner's Handbook

makeAxes

Predicate
makeAxes(AxesNo,AxesWindowNo,GraphWindow,Xmarkers,Ymarkers,

Left,Bottom,Right,Top)

Declaration
makeAxes(Integer,Integer ,lnteger,XMarker,YMarker,Col,Row,Col,Row)

Flowpattem
makeAxes(i,o,o,i,i,i,i,i,i)

Function
makeAxes is used to draw a pair of axes.

Parameters
AxesNo is bound to a value that the programmer can use to refer to a
particular pair of axes. Axes WindowNo records in which window the axes
are drawn. When defining axes using makeAxes, the first step is to draw the
axes in the currently active window. Then a window is created inside that
active window. The number of this window is returned in GraphWindowNo.
Then, subsequent images drawn in that coordinate system are
automatically clipped when the image lies outside the range for the active
scale.

The markings on the axes are defined by an XMarker and a YMarker, both of
which take the form

marker (Unit, FormatSpecifier, FieldWidth)

This defines the interval Unit at which markings are to appear on the
relevant axis; whether the number marked is to appear in decimal form or
exponential form (FormatSpecifier equal to d or e respectively); and, finally,
the Field Width in which the numeric markings are to be displayed.

The last four parameters in makeAxes determine how much space should be
left between the borders of the window and the edge of the graphics screen.
All of these are given as text coordinates.

Example
makeAxes(l,-,-,marker(10,d,2),marker(10,d,3),2,3,2,l)

Reference Guide 271

Contained in
GGRAPH.PRO

Environment
rooMS.PRO, GOOMS.PRO, TPREDS.PRO, GPREDS.PRO, GGRAPH.PRO

See also
refreshAxes, modifyAxes, labelAxes

272 Turbo Prolog Toolbox Owner's Handbook

makestatus

Predicate
makestatus(StatusWindowAttr, StringEntry)

Declaration
makestatus(Attr, String)

Flowpattem
makes ta tus(i, i)

Function
Displays a status line at the bottom of the screen.

Parameters
The text to which StringEntry is bound is displayed in the status line that
has an attribute given by StatusWindowAttr.

Remarks
Uses window number 83 for the status line.

Example
makestatus("d = date t = time m = more 1 = less")

Contained in
STATUS.PRO

Environment
TOOMS.PRO, TPREDS.PRO

See also
refreshstatus, removestatus, tempstatus

Reference Guide 273

menu

Predicate
menu(PosRow,PosCol, ""ttr,Fattr,ItemList,Title,InitItem,ChoiceCode)

Declaration
menu(Row,Col,Attr,Attr,StringList,String,Integer,Integer)

Flowpattem
menu(i,i,i,i,i,i,i,o)

Function
The menu predicate implements a pop-up menu in which the arrow keys
can be used to indicate a menu item; a selection is made by pressing FlO or
Return.

Parameters
PosRow and PosCol define the upper left-hand comer of the window
containing the menu. Wattr and Fattr determine the attributes for the
window and its frame respectively. ItemList is a list of strings, one for each
menu item. Title determines the text in the frame of the window. InitItem
specifies which menu item the cursor is to highlight when the menu is first
displayed, and ChoiceCode becomes instantiated to an integer that specifies
the selection made according to the following code:

o = Esc was pressed during menu selection
1 = First menu item was selected
2 = Second menu item was selected

and soon.

Remarks
The window is automatically adjusted if it is placed too far to the left or too
near to the bottom of the screen. The predicate fails if the list of menu items
has length zero. If the number of menu items is greater than the number of
available rows within the containing window, a run-time error results.

Example
menu(S,10,7,7,[basic,pascal,lisp,prolog},"Language",2,ChoiceCode)

Contained in
MENU.PRO

274 Turbo Prolog Toolbox OWner's Handbook

Environment
TOOMS.PRO, TPREDS.PRO

Recognized keys
Arrow keys, Esc, FlO, Return, Home, End, PgUp, PgDn

See also
longmenu, menu_leave, menu_mult

Reference Guide 275

Predicate
menu_leave<PosRow,PosCol, It\httr,Fattr,ItemList,Title,InitItem,ChoiceCode)

Declaration
men u_leave<Row,Co I,Attr ,Attr,StringList,String,Integer 'nteger)

Flowpattem
menu_Ieavea,i,i,i,i,i,i,o)

Function
The menu_leave predicate implements a pop-up menu in which the arrow
keys can be used to indicate a menu item; a selection is made by pressing
FlO or Return. Unlike menu, however, menu_leave does not remove the
menu from the screen after a choice has been made.

Parameters
PosRow and PosCol define the upper left-hand corner of the window
containing the menu. Wattr and Fattr determine the attributes for the
window and its frame respectively. ItemList is a list of strings, one for each
menu item. Title determines the text in the frame of the window. InitItem
specifies which menu item the cursor is to highlight when the menu is first
displayed, and ChoiceCode becomes instantiated to an integer that specifies
the selection made according to the following code:

o = Esc was pressed during menu selection
1 = First menu item was selected
2 = Second menu item was selected

and so on.

Remarks
The window is automatically adjusted if it is placed too far to the left or too
near to the bottom of the screen. The predicate fails if the list of menu items
has length zero. If the number of menu items is greater than the number of
available rows within the containing window, a run-time error results.

Example
menu_leave(S,10,7,7,[basic,pascal,lisp,prologj,"Language",2,ChoiceCode)

Contained in
MENU.PRO

276 Turbo Prolog Toolbox Owner's Handbook

Environment
TDOMS.PRO, TPREDS.PRO

Recognized keys
Arrow keys, Esc, FlO, Return, Home, End, PgUp, PgDn

See also
longmenu, menu, menu_mult

Reference Guide 277

Predicate
menu_mult(PosRow,PosCol, Wlttr,Fattr,ItemList,Title,InitItems,ChoiceList)

Declaration
menu_mult(Row,Col,Attr,Attr,StringList,String,IntegerList,IntegerList)

Flowpattem
menu_mult(i,i,i,i,i,i,i,o)

Function
The menu_mult predicate implements a pop-up menu from which multiple
choices can be made. The arrow keys are used to indicate a menu item, and
each selection is made by pressing Return. The user presses FlO once all
selections have been made.

Parameters
PosRow and PosCol define the upper left hand corner of the window
containing the menu. Wattr and Fattr determine the attributes for the
window and its frame respectively. ItemList is a list of strings, one for each
menu item. Title determines the text in the frame of the window. InitItem
specifies which menu items should be highlighted when the menu is first
displayed, and ChoiceList becomes instantiated to a list of integers that
specify the selection made according to the following code:

o = Esc was pressed during menu selection
I = First menu item was selected
2 = Second menu item was selected

and soon.

Remarks
The window is automatically adjusted if it is placed too far to the left or too
near to the bottom of the screen. The predicate fails if the list of menu items
has length zero. If the number of menu items is greater than the number of
available rows within the containing window, a run-time error results.

Example
menu_mult(S,10,7,7,[basic,pascal,lisp,prologl,"Language",[21,ChoiceList)

Contained in
MENU.PRO

278 Turbo Prolog Toolbox Owner's Handbook

Environment
TOOMS.PRO, TPREDS.PRO

Recognized keys
Arrow keys, Esc, FlO, Return, Home, End, PgUp, PgDn

See also
longmenu, menu, menu_leave

Reference Guide 279

mkdir

Predicate
mkdir(NewSubDir)

Declaration
mkdir(String)

Flowpattem
mkdir(i)

Function
mkdir creates a new subdirectory corresponding to the DOS function
MKDIR.

Parameters
NewSubDir should be bound to a string containing a maximum of eight
letters; a new directory is created with that name.

Remarks
This predicate is also described in the Turbo Prolog Owner's Handbook.

Example
mkdir(samples)

Contained in
BIOS.PRO

See also
rmdir

280 Turbo Prolog Toolbox Owner's Handbook

modifyAxes

Predicate
modifyAxes(AxesNo,MyXmarker ,MyYmarker)

Declaration
modifyAxes(Integer,XMarker, YMarker)

Flowpattem
modifyAxes(i,i,i)

Function
Used to modify (the markings on) a set of axes.

Parameters
AxesNo identifies the pair of axes to be affected and is the axes identifier
returned from a previous call of makeAxes. MyXmarker and MyYmarker both
have the following format:

marker (Unit, FormatSpecifier, FieldWidth)

This defines the interval Unit at which markings are to appear on the
relevant axis; whether the number marked is to appear in decimal form or
exponential form (FormatSpecifier equal to d or e repectively); and, finally,
the FieldWidth in which the numeric markings are to be displayed.

Example
modifyAxes(2,marker(10,d,4),marker(10,d,S»

Contained in
GGRAPH.PRO

Environment
TOOMS.PRO, GOOMS.PRO, TPREDS.PRO, GPREDS.PRO

See also
makeAxes, refreshAxes

Reference Guide 281

noinput (programmer defined)

Predicate
noinput(MyFieldName)

Declaration
noinput(FName)

Flowpattem
noinput(i)

Function
Called by scrhnd in conjunction with a screen definition created using
SCRDEF.PRO, to determine those display fields in which the user can't
enter information.

Parameters
Declares the field to which MyFieldName is bound as one in which the user
is not allowed to type.

Remarks
A default defining clause for noinput is given in HNDBASIS.PRO (see "No
Input Fields" in Chapter 3). Other defining clauses must be added by the
programmer.

Example
noinput(clock)

Contained in
SCRHND,VSCRHND

Environment
TPREDS.PRO, TDOMS.PRO, LINEINP.PRO, STATUS.PRO

See also
scrhnd

282 Turbo Prolog Toolbox Owner's Handbook

openRS232

Predicate
openRS232(PortNo, InputBufSize, OutputBufSize, BaudRate,

Parity, YhrdLength, StopBits, Protocol)

Declaration
openRS232(In teger,Integer Integer,Integer,Integer Integer Integer Integer)

- (i,i,i,i,i,i,i,i) language c

Flowpattem
openRS232 (i,i,i ,i,i,i,i ,i)

Function
The tool predicate openRS232 initializes either COM1 or COM2 ready for
transmitting or receiving data. It fails if either the Asynchronous Adapter
(or equivalent) is not in the PC or one of its parameters is out of range (for
example, if an illegal value is given for baud rate or I/O port number).

Parameters

PortNo = 1 means use COM1.
= 2 means use COM2.

InputBufSize must be in the range 1 to 31767 and specifies the number
of bytes reserved for the input buffer.

OutputBufSize must be in the range 1 to 31767 and specifies the number
of bytes reserved for the output buffer.

BaudRate = 0 means 110 Baud.
= 1 means 150 Baud.
= 2 means 300 Baud.
= 3 means 600 Baud.
= 4 means 1200 Baud.
= 5 means 2400 Baud.
= 6 means 4800 Baud.
= 7 means 9600 Baud.

Parity = 0 means no parity.
= 1 means odd parity.
= 2 means even parity.

Reference Guide 283

lAhrdLength

StopBits

Protocol

Remarks

= 0 means 5 data bits.
= 1 means 6 data bits.
= 2 means 7 data bits.
= 3 means 8 data bits.

= 0 means 1 stop bit.
= 1 means 2 stop bits.

= 0 means communication with neither XON/XOFF
nor RTS/CTS.

= 1 means communication with XON /XOFF but
without RTS/CTS (the preferred mode).

= 2 means communication with RTS/CTS but
without XON /XOFF. If RTS (Request To Send) is
high, then CTS will go high when the external
device is ready to receive (and vice-versa).

= 3 means communication with either XON/XOFF or
RTS/CTS.

Correct hardware connection must have been established (see Chapter 5).
Requires the creation of a project.

Example
~enRS232(1,256,256,7,O,3,O,2)

Contained in
SERIAL.OBI

Environment
CONGLOBS.PRO, TICKS. OBI

See also
closeRS232

284 Turbo Prolog Toolbox Owner's Handbook

pdwacfion (programmer defined)

Predicate
pdwaction(HorizontalCode, VerticalCode)

Declaration
pdwaction(Integer)nteger)

Flowpattem
pdwaction(i,i)

Function
In a pull-down menu system built using pulldown, the action taken when a
menu item has been finally selected from all the various categories and
subcategories is determined by the pdwaction predicate. This allows the
program to perfonn actions while the pull-down window remains on the
screen. If pdwaction fails, then Choice and SubChoice in pulldown (see the
separate entry) are bound to the relevant values, the entire menu system is
removed from the screen, and pulldown succeeds. If, on the other hand,
pdwaction succeeds, then pulldown continues to loop and the last selected
menu item remains highlighted.

Parameters
HorizontalCode and VerticalCode determine the menu item for which the
actions described on the right-hand side of a given clause definition for
pdwaction will be invoked.

Remarks
To use pulldown you must include the database predicate pdwstate in your
program's database declarations as follows:

clataba ••
pdwstate (Row, Col, SYMBOL, Row, Col)

Example
pdwaction(5,2):- dir("I,"*.*",X),

Contained in
PULLDOWN.PRO

Environment
TOOMS.PRO, TPREDS.PRO

Reference Guide 285

See also
pulldown

286 Turbo Prolog Toolbox Owner's Handbook

pieChart

Predicate
pieChart(Row,Col,Radius ,PieSegmentList)

Declaration
pieChart(VRow, VCol, VRadius,PieSegmentList)

Flowpattem
pieChart(i,i,i,i)

Function
Used to display a list of values (percentages) as pie slices, so they make up
a whole pie; that is, the slices are adjusted so the total is 100 percent.

Parameters
(Row,Col) are the (virtual) coordinates of the center of the pie, which has the
given Radius (also expressed as a virtual coordinate value). PieSegmentList is
a list of pie slices each specified by:

• A percentage value: A negative percentage causes the slice to be moved
outwards, thus drawing attention to that particular slice.

• An optional label: If the label ends with an = character, the label is
suffixed with the actual percentage value.

• A fill color value: A zero color value indicates that only the frame of the
slice is to be colored; a positive value causes the slice to be filled.

• A frame color value: This color is used for the label, too.

Remarks
The domain PIESEGMENTLIST is defined in GPIE.PRO as follows:

PERCENT
PIESEGMENT
PIESEGMENTLIST

= REAL
= slice(PERCENT,String,Color,Color);space
= PIESEGMENT*

It requires the creation of a project.

Reference Guide 287

Example
pieChart(15000 ,20000,3000,

[slice(16," May" ,1,2),
slice(l 0 .7, "Jun II ,2,3),
slice(151,"Jul" ,3,2),
slice(6," Aug",2,1)J),

Contained in
GPIE.PRO

Environment
TOOMS.PRO. TPREDS, GOOMS.PRO, GPREDS.PRO, GGLOBS.PRO,
GRAPHICS. OBI

See also
Piechart

288 Turbo Prolog Toolbox Owner's Handbook

plot

Predicate
plot(Row,Col,Color,Size,PlotKind)

Declaration
plot(VRow, VCol,Color,Size,Kind) - (i,i,i,i,i) language c

Flowpattem
plot(i,i,i,i,i)

Function
Plots a point specified by virtual coordinates in the graphics window, using
different shapes.

Parameters
The virtual coordinates (Row, Col) specify the point with the given Color.
The size of the marking is determined by the parameters Size, using virtual
coordinates. PlotKind determines the shape plotted as follows:

0= One pixel
1 = A dot is drawn inside a box
2 = A box is drawn and filled
3 = An Xis drawn

Remarks
The predicate is implemented in C.

Range for the Row parameter: 0 to 31999
Range for the Col parameter: 0 to 31999
Range for the Size parameter: 0 to 31999

It requires the creation of a project.

Example
plot(16000,16000,15,1000,3)

Contained in
GRAPHICS.OB]

Environment
GOOMS.PRO, GGLOBS.PRO

Reference Guide 289

pop_helpconfexf

Predicate
pop _helpco n text

Declaration
pop _helpcontext

FlowpaHem
None, takes no parameters.

Function
When a program leaves the current context, the tool predicate
pop_helpcontext is used to remove the current helpcontext and re-establish the
old.

Parameters
None

Example
pop _helpco n text

Contained in
HELP.PRO

Environment
rooMS.PRO, TPREDS.PRO

See also
help, help text, push_helpcontext

290 Turbo Prolog Toolbox Owner's Handbook

pulldown

Predicate
pulldown(AttFor AllWindows,MenuList,Choice,Subchoice)

Declaration
pulldown(Attr ,MenuList,Integer,Integer)

where MenuList is defined by

MENUELEM = curtain(Col,String,StringList)
MENULIST = MENUELEM*

Flowpattem
pulldown(i,i,o ,0)

Function
pulldown allows a menu in which items can be grouped into related
families, as in the Turbo Prolog user interface. Once a choice has been made
from a horizontally displayed menu (Run, Compile, Edit, and so on), a
second menu is pulled down vertically below that horizontal menu item.
This second menu contains items closely related to the horizontal heading.

Parameters
AttForAllWindows is the attribute to be used in all the windows (and their
frames) forming the pull-down menu system. Menulist is a list constructed
using the curtain functor, which contains the text for each of the menus that
can be pulled down. On return from pulldown, Choice is bound to the code
for the horizontal-menu selection; on return from pulldown, Subchoice is
bound to the code for the vertical-menu selection, except that if there is no
vertical menu corresponding to a horizontal menu item, Subchoice is bound
to O. Menulist is specified by giving a list of values for the curtain functor. It
takes three parameters:

curtain(Col,S tring,StringList)

The first specifies which column the horizontal menu item should
commence on, the second gives the name of that menu item, and the third
lists the items that are to appear in the corresponding vertical menu. Thus,

curtain(4," Animals" ,["Dog", "Cat" ,"Bullfinch"})

specifies part of a pull-down menu system in which, if the Animals heading
is selected, a vertical menu appears containing Dog,Cat, and Bullfinch.

Reference Guide 291

Remarks
When a choice has been made from a pulldown menu, any actions to be
carried out must be specified by clauses for the pdwaction predicate.

Example
pulldown(7,[curtain(3,"Input",["First","Second","Third"J),

curtain(14,"List" ,[J),
curtain(23,"Files",["Load", "Save", "Delete", "Directory"J),
curtain(35," Setup" ,["Directories"," Colors" J),
curtain(46,"Quit" ,ll)]

,CR,SUBCR)

Contained in
PULLDOWN.PRO

Environment
TDOMS.PRO, TPREDS.PRO

See also
pdwaction

292 Turbo Prolog Toolbox Owner's Handbook

push_helpcontext

Predicate
push_helpcontext(NameOfHelpCon text)

Declaration
push_helpcontext<HelpContext)

Flowpattem
push _helpcontext(i)

Function
When a program moves into a new context, the tool predicate
push_helpcontext can be used to push the name of a new helpcontext onto the
stack.

Parameters
Enables the Help predicate to access the Help text known as
NameOfHelpContext, created by HELPDEF.PRO.

Remarks
HELPDEF.PRO is described in "Context-Sensitive Help," Chapter 2.

Example
push_helpcontext(submenul)

Contained in
HELP.PRO

Environment
TOOMS.PRO, TPREDS.PRO

See also
help, pop_helpcontext

Reference Guide 293

queueSize

Predicate
queueSize(PortNo, SizeOf!nputQueue, sizeOfOutputQueue)

Declaration
queueSize_RS232(Integer,Integer,Integer) - (i,o,o) language c

Flowpattem
queueSize_RS232 (i,o,o)

Function
queueSize_RS232 returns the size of the input and output queues: The first
contains the characters that the low-level routines have received and that
haven't been read yet by the calling Turbo Prolog program; the second
holds the characters the Turbo Prolog program has written but that haven't
been transmitted yet. queueSize fails if the specified COM port is not open.

Parameters
With PortNo bound to the code for a serial I/O port (PortNo=l means
COMl, PortNo=2 means COM2), Size0f!nputQueue and SizeOfOutputQueue
become bound to the number of characters in the input and output queues,
respectively.

Remarks
Requires the definition of a project.

Example
queue_RS232(2, X, Y)

Contained in
SERIAL.OBI

Environment
COMGLOBS.PRO, TICKS. OBI

294 Turbo Prolog Toolbox Owner's Handbook

Predicate
rd _dBase3File(TotRecs ,File,FldDescL,dBase3RecL)

Declaration
rd_dBase3File(Real,File,FldDescL,dBase3RecL)

Flowpattem
rd_dBase3File(i,i,i,o)

Function
Using the tool predicate rd_dBase3File, the dBASE III data records can be
read and collected in a list belonging to the tool domain DBASE3RECL,
which has the following declaration:

DBASE3RECL = DBASE3REC*
DBASE3REC = DBASE3ELEM*
DBASE3ELEM = char(String);

real (REAL) ;
logical (BOOL) ;
memo (String) ;
date (String)

BOOL = CHAR

Remarks
Requires the creation of a project.

Contained in
DBASE3.PRO

Environment

r The database is a list of records·'
r Fields in each records ., r Characters .,

r 64-bit IEEE floating point·'
r [ogical·'

r Memo text loaded from .OBT file·' r Format YYYY MM DO .,
r Y y N n T t F f or Space·'

TOOMS.PRO, TPREDS.PRO, DBASE3.PRO, READEXT.PRO

S~e also
init _dBase3, rd _dBase3Rec

Reference Guide 295

Predicate
rd_dBase3Rec(TotRecs,File,FldDescL,dBase3Rec)

Declaration
rd_dBase3Rec(Real,File,FldDescL,dBase3ReC>

Flowpattem
rd_dBase3Rec(i,i,i,o)

Function
The tool predicate rd_dBase3Rec allows you to read one record at a time of a
dBASE III file, the same way you access a Reflex file record by record. Thus,
using rd_dBase3Rec, it is possible to read a record, do some computation,
remove the storage allocation via backtracking, and then read the next
record.

DBASE3REC = DBASE3ELEM*
DBASE3ELEM = char (String);

real (REAL) ;
logical (BooL) ;
rnerno(String);
date (String)

BOOL = CHAR

Remarks
Requires the creation of a project.

Contained in
DBASE3.PRO

Environment

r Fields in each record */
r Characters */

r 64-bit IEEE floating point * /
r Logical */

r Memo text loaded from .OBT file */
r Format YYYY MM DO */

r Y y N n T t F f or Space */

TDOMS.PRO, TPREDS.PRO, DBASE3.PRO, READEXT.PRO,
REALINTS.OBJ

296 Turbo Prolog Toolbox Owner's Handbook

Predicate
rd_LotusCell(LotusRec)

Declaration
rd_LotusCeIULotusRec)

Flowpattem
rd_LotusCeIURec) - (i),(o)
rd_LotusCell(Elem(Row,Col, Value» - (i,i,i),(i,i,o), ... ,(0,0,0).

Function
The tool predicate rd_LotusCell is used to search for an instantiated cell in
the spreadsheet file.

Remarks
Requires the creation of a project.

Contained in
LOTUS.PRO

Environment
TOOMS.PRO, TPREDS.PRO, LOTUS.PRO, READEXT.PRO,
REALINTS.OBJ

See also
rd_LotusFile

Reference Guide 297

Predicate
rd _ LotusFile(LotusRecL)

Declaration
rd _ LotusFile(LotusRecL)

Flowpattem
rd_LotusFile(o)

Function
The tool predicate rd_LotusFile is used for reading all cells in a spreadsheet
into a data structure.

Parameters
LOTUSRECL = LOTUSREC*

LOTUSREC = version (Integer) ;
elem(Integer,Integer,VALUE);

VALUE = int (Integer) ;
real (REAL) ;
formula (REAL) ;
label (String);

Remarks
Requires the creation of a project.

Contained in
LOTUS.PRO

Environment

r Version number * j

r Integer number cell * j
r Real number cell *j

r Defines a formula cell *j
r Defines a label cell * /J

TooMS.PRO, TPREDS.PRO, LOTUS.PRO, READEXT.PRO,
REALINTS.OBJ

See also
rd_LotusCell

298 Turbo Prolog Toolbox Owner's Handbook

Predicate
rd _ReflexFile<TotRees,ReflexTypeL, T extPools,ReflexReeL)

Declaration
rd_ReflexFile(Integer,ReflexTypeL,TextPools,ReflexReeL)

Flowpattem
rd _ReflexFile< i,i,i,o)

Function
Using the tool predicate rd_ReflexFile, all the Reflex data records in a given
file can be read and collected into a single Turbo Prolog list at the same
time. This list belongs to the tool domain REFLEXRECL which is declared
as follows:

REFLEXRECL = REFLEXREC*
REFLEXREC = REFLEXELEM*
REFLEXELEM = date(Integer);

Parameters

real (REAL) ;
int (Integer) ;
text (String) ;
untyped;
error

r The database is a list of records */
r A record is a list of elements * /

r 16-bit int. representing number or/
r days since December 31, 1899 * /
r 64-bit IEEE floating point real */

r 16-bit Signed integer * /
r A string representing a text * /

r No data stored * /

The parameters To tRees, ReflexTypeL, and TextPools are the values returned
by the init _Reflex predicate.

Contained in
REFLEX.PRO

Environment
TOOMS.PRO, 1PREDS.PRO, REFLEX.PRO, READEXT.PRO,
REALINTS.OBJ

See also
IniCReflex, rd_ReflexRee

Reference Guide 299

Predicate
rd_ReflexRec(TotRecs,ReflexTypL,TextPools,ReflexRec)

Declaration
rd _ReflexRec(Integer ,ReflexTypL,T extPools ,ReflexRec)

Flowpattem
rd _ ReflexRec(i,i,i,o)

Function
The tool predicate rd_ReflexRec allows access to one Reflex record at a time.
In order to access Reflex records, it is first necessary to call the tool
predicate init_Reflex.

Parameters
The parameter REFLEXREC belongs to the domain:

REFLEXREC = REFLEXELEM*
REFLEXELEM = date(Integer);

Remarks

real (REAL) ;
int(Integer);
text(String);
untyped;
error

Requires the creation of a project.

Contained in
REFLEX.PRO

Environment

r A record is a list of elements */
r 16-bit int. representing number of
r days since December 31, 1899 * /
r 64-bit IEEE floating-point real * /

r 16-bit signed integer * /
r A string representing a text * /

r No data stored * /

TOOMS.PRO, TI'REDS.PRO, REFLEX. PRO, READEXT.PRO,
REALINTS.OBJ

See also
init _Reflex, rd _ReflexFile

300 Turbo Prolog Toolbox Owner's Handbook

readfilename

Predicate
readfilename(Row,Col, VVlttr,Fattr,Extension,OldFileName,NewFileName)

Declaration
readfilename(Row,Col,Attr ,Attr,String,String,String)

Flowpattem
read filename(i,i,i,i,i,i,o)

Function
Implements a file-name input facility similar to that in the Turbo prolog
user interface. Inside a window, the user can type just the file's first name
and have a default file type added-just as Turbo Prolog adds the .PRO
extension to file names when LOADing and SAVEing programs.
Alternatively, if the user presses Return with the window empty, then a
directory appears in a window on the screen, from which the user can
select a file name by using the arrow keys and pressing Return, as with
Turbo Prolog.

Parameters
Row and Col determine the position of the input field on the screen. Wattr
and Fattr are the window and frame attributes respectively. Extension is the
String that is to be appended to the file name if no file type is specified.
OldFileName is the file name to be displayed in the window when it is first
displayed. The user can edit this text or leave it unchanged, then press
Return or FlO once the required file name is in the window. NewFileName
becomes bound to the new file name, with the Extension added
automatically to the user's input if no file type is specified.

Remarks
A program that uses readfilename must contain the following database
declarations at an appropriate point:

clataba ••
insmode
lineinpstate(STRING,COL)
lineinpflag

Example
readfilename(10,10,7,7,pro,"oldname.dat",NewName)

Reference Guide 301

Contained in
FILENAME.PRO

Environment
TOOMS.PRO, 1PREDS.PRO, LINEINP.PRO

302 Turbo Prolog Toolbox Owner's Handbook

refreshstatus

Predicate
refreshstatus

Declaration
refreshstatus

Flowpattem
None, takes no parameters.

Function
Refreshes a status line created by makestatus. In particular, it can be used to
pull the status window to the foreground if window resizing has moved it
into the background.

Remarks
Uses window 83 for the status line.

Example
refreshstatus

Contained in
STATUS.PRO

Environment
TOOMS.PRO, TPREDS.PRO

See also
makestatus, removestatus, tempstatus

Reference Guide 303

removestatus

Predicate
removestatus

Declaration
removes ta tus

FlowpaHem
None, takes no parameters.

Function
Deletes a status line created by makestatus.

Remarks
Releases window number 83 from use as a status line.

Example
removestatus

Contained in
STATUS. PRO

Environment
TOOMS.PRO, TPREDS.PRO

See also
makestatus, refreshstatus, tempstatus

304 Turbo Prolog Toolbox Owner's Handbook

resizewindow

Predicate
resizewindow

Declaration
resizewindow

Flowpattem
None, takes no parameters.

Function
Allows the currently active window to be resized, using the arrow keys for
small increments and decrements in size and Ctrl with the arrow keys for
larger steps; Shift plus the arrow keys move the window. Home, End,
PgUp, and PgDn can also be used to move and resize the window. After
resizing the values of the maximum Rowand Column occupied by the
window, they are saved in the windowsize database.

Remarks
The declaration of the windowsize database is

cl&taba ••
windowsize (ROW, COL)

Each time a window is changed using resize, writescr is called. You must
define this predicate so that the screen is updated appropriately.

Example
resize

Contained in
RESIZE.PRO

Environment
STATUS.PRO, TOOMS.PRO, TPREDS.PRO

See also
status, writescr

Reference Guide 305

rmdir

Predicate
rmdir(SubDir)

Declaration
rmdir(Sfring)

Flow pattern None, takes no parameters.

Function
rmdir removes a subdirectory, functioning like the DOS RMDIR command.

Parameters
Subdir must be bound to the name of an existing subdirectory.

Remarks
rmdir is also described in the Turbo Prolog Owner's Handbook.

Example
rmdir(examples)

Contained in
BIOS.PRO

See also
mkdir

306 Turbo Prolog Toolbox Owner's Handbook

Predicate
rxch_RS232 (PortNo,CH)

Declaration
rxch _RS232 (Integer,Char)

Flowpattem
rxch_RS232(i,o)

Function
rxch_RS232 returns a character from the input buffer if there are any left.

Parameters
Binds CH to the next available character (if any) from the input buffer for
port number PortNo, where PortNo=l means the COMl communication
port and PortNo=2 means the COM2 communication port.

Remarks
rxch_RS232 fails if the input buffer is empty or the specified port is not
open. If anything goes wrong, more information can be obtained by calling
the status_RS232 tool predicate to obtain more information about the
current transmission state.

Requires a project definition.

Example
rxch_RS232(l,InChar)

Contained in
SERIAL.OBJ

Environment
COMGLOBS.PRO, TICKS.OBI

See also
status _RS232

Reference Guide 307

Predicate
rxStr _Modem(TextReceived)

Declaration
rxStr _Modem(String) - (0) language c

Flowpattem
rxStr _Modem(o)

Function
Takes a single string parameter that is bound to the characters received (if
any) from the remote modem. If there is a Command Terminator (see
setModemMode) in the input buffer or any preceding ATtention character,
the returned string won't include these extra characters unless the
Command Terminator is the NULL character ('\000'). In this case,
everything in the input buffer is returned in the string parameter.
rxStr _Modem fails if a serial I/O port has not been opened for the modem.

Parameters
TextReceived is bound to the characters received (if any) from the remote
modem.

Remarks
Requires the definition of a project.

Example
rxStr _Modem(MyString)

Contained in
MODEM.OBI

Environment
COMGLOBS.PRO

See also
SetModemMode

308 Turbo Prolog Toolbox Owner's Handbook

saveplc

Predicate
savepic(DosFileName)

Declaration
savepic(String) - (i) language c

Flowpattem
savepic(i)

Function
A graphics screen image is saved in a disk file and works in graphics mode
1 only.

Parameters
DosFileName determines the file name under which the image is stored.

Remarks
Requires an accompanying project definition

Example
savepic("PREITY.PIC")

Contained in
PICTOOLS.OBJ

Environment
TOOMS.PRO, TPREDS.PRO, GOOMS.PRO, GGLOBS.PRO

See also
loadpic

Reference Guide 309

scaleCursor

Predicate
scaleCursor(XscaleCoord, Y scaleCoord)

Declaration
scaleCursor(X, Y)

Flowpattem
scaleCursor(i,i)

Function
The predicate scaleCursor is used to position the cursor when working with
scaled graphics.

Parameters
The cursor is positioned at scale coordinate [XscaleCoord,YscaleCoord}.

Example
scaleCursor(l 00,100)

Contained in
GGRAPH.PRO

Environment
TOOMS.PRO, GOOMS.PRO, lPREDS.PRO, GPREDS.PRO

See also
draw, scaleLine, scalePlot, scalePolygon

310 Turbo Prolog Toolbox Owner's Handbook

scaleLine

Predicate
scaleLine(Xl, Yl,Xl, Y2,Color)

Declaration
scaleLine(X, Y,X, Y, Co lor)

Flowpattem
scaleLine(i,i,i,i ,i)

Function
Used to plot lines when working with a scaled coordinate system.

Parameters
(Xl,Y1) and (X2,Y2) are the points represented in scaled coordinates that
the line is to join. The line is drawn in the given Color.

Example
scaleLine(5,5,50,50,3)

Contained in
GGRAPH.PRO

Environment
TOOMS.PRO, GOOMS.PRO, TPREDS.PRO, GPREDS.PRO

See also
scalePlot, scaleCursor, scalePolygon

Reference Guide 311

scalePlot

Predicate
scalePlot(X, Y,Color)

Declaration
scalePlot(X, Y,Color)

Flowpattem
scalePlot(i,i,i)

Function
The predicate scalePlot is used to plot points when a scaled coordinate
system is in use.

Parameters
[X,YJ defines a point in the scaled coordinate system that is plotted in the
given Color.

Remarks
The drawing speed can be increased by declaring the domains X and Yas
INTEGERs instead of REALs.

Example
scalePlot(l 00 ,200 ,3)

Contained in
GGRAPH.PRO

Environment
TOOMS.PRO, GOOMS.PRO, TPREDS.PRO, GPREDS.PRO

See also
scaleLine, scaleCursor, scaZePolygon, draw

312 Turbo Prolog Toolbox Owner's Handbook

scalePolygon

Predicate
scalePolygon(MyColor ,MyDrawing)

Declaration
scalePolygon(Color,Drawing)

Flowpattem
scalePolygon(i,i)

Function
Draws a polygon using scaled coordinates.

Parameters
A polygon is drawn in the given Color. The parameter MyDrawing should
belong to the domain DRAWING, which is declared as

X, Y = REAL
POINT = p (X, Yl
DRAWING = POINT*

Remarks
The drawing speed can increased by declaring the domains X and Y as
INTEGERS instead of REALs.

Example
scalePolygon(3,lp(S,5),p(S,10),p(10,10),p(S,5)J)

Contained in
GGRAPH.PRO

Environment
TOOMS.PRO, GOOMS.PRO, TPREDS.PRO, GPREDS.PRO

Reference Guide 313

scale_text

Predicate
scale_text(MyScaleX,MyScale Y,MyTextRow,MyTextCol)

Declaration
scale_text(X, Y,Row,Col)

Flowpattem
scale_text(i ,i,o ,0)

Function
Converts between scaled. coordinates and text coordinates in a graphics
window.

Parameters
lMyScaleX,MyScaleY] are the scaled coordinates; lMyTextRow,MyTextColJ
are the text coordinates.

Example
scale_text(MyX,My¥'O,O)

Contained in
GGRAPH.PRO

Environment
TOOMS.PRO, GOOMS.PRO, TPREDS.PRO, GPREDS.PRO

314 Turbo Prolog Toolbox Owner's Handbook

Predicate
scale _virtual(MyScaleX,MyScale Y,MyVirtualRow,My VirtualCol)

Declaration
scale _virtual(X, Y, VRow, VCol)

Flowpattem
scale_virtual(i,i,o ,0)

Function
Converts between scaled and virtual coordinates.

Parameters
[MyScaleX,MyScaleY] are the scaled coordinates;
[MyVirtualRow,MyVirtualCol] are the virtual coordinates.

Example
scale_virtual(10,20,CorrespVrow,CorrespVcol)

Contained in
GGRAPH.PRO

Environment
TOOMS.PRO, GOOMS.PRO, 1PREDS.PRO, GPREDS.PRO, GGRAPH.PRO

Reference Guide 315

scrhnd

Predicate
scrhnd(TopLineSwitch, KeyUsedForReturn)

Declaration
scrhnd(Symbol,Key)

Flowpattem
scrhnd(i,o)

Function
Creates a screen display from a screen-layout definition constructed using
SCRDEF.PRO (which is described in "Facilities in SCRDEF.PRO" in
Chapter 3). It also enables fields in a layout to be defined as action, value, or
noinput fields via the predicates field_action, field_value, and noinput
respectively.

Parameters
scrhnd is used as part of a sequence of calls similar to the following:

consult ("MYLAYOUT.SCR"),
createwindow (TopLineSwitch),
scrhnd (TopLineSwi tch, KeyU sedForReturn)

They bring scrhnd into action on the screen layout definition in
MYLAYOUT.5CR.

scrhnd uses the values consulted from MYLAYOUT.SCR to form a screen
display conforming to the layout specified. The application's user can then
fill in the entries for each field and re-edit them in any order until he or she
terminates input by pressing FlO or Esc. The terminating key is returned in
the parameter KeyUsedForReturn. During data input with the screen layout
in MYLAYOUT.SCR, if TopLineSwitch is bound to ON, a line is displayed at
the top of the screen giving the name of the field that currently contains the
cursor. No such line is displayed if it is bound to OFF.

Remarks
Any containing program must declare the following domains and database
predicates. For ease of use, these and the basic framework for the definition
of field_action, field_value, and noinput have been collected together in
HNDBASIS.PRO.

dOMin.

316 Turbo Prolog Toolbox Owner's Handbook

clou1n.
FNAME = SYMBOL
TYPE = int (); str (); real ()

clataba ••
r database declarations used in SCRHND * /

insmode
act field (FNAME)
screen (SYMBOL, DBASEDOM)
value (FNAME, STRING)
field (FNAME, TYPE, ROW, COL, LEN)
txtfield (ROW, COL,LEN,STRING)
windsize(ROW,COL).
notopline

r database predicates used by VSCRHND */
windowstart(Row,Col)
mycursord (Row, Col)

r database declarations used in LlNEINP, which SCRHND calls*/

lineinpstate (STRING, COL)
lineinpflag

Example
scrhnd(on, .J
Contained iri

r Global insertmode * /
r Actual field * /

r Saving different screens * /
r Value of a field */

r Screen definition * /

SCRHND.PRO (real-screen version); VSCRHND.PRO (virtual-screen
version)

Environment
TOOMS.PRO, TPREDS.PRO, STATUS.PRO, LINEINP.PRO

See also
createwindow, field_action, field_value, noinput

Reference Guide 317

sector

Predicate
sector(Row,Col,Rad,Incr,StartAngle,EndAngle,BorderColor ,Fill Co lor ,Fill)

Declaration
Sector(VRow, VCol, VRadius,/ncrement,Degrees,Degrees,Color,Color ,Fill)

- (i,i,i,i,i,i,i,i,i) language c

Flowpattem
Sector(i,i,i,i,i,i,i,i,i)

Function
Draws a sector of a circle.

Parameters
Draws a sector of the circle with the center at (VRow, VCol) with the given
Radius and the given Color. The sector extends from the StartAngle to the
EndAngle, measured relative to a horizontal radius pointing towards the
right-hand side of the screen. The predicate can also fill the sector with the
specified FillColor. The sector is filled according to the Fill-parameter (1
indicates fill, 0 indicates no-fill). When the sector is filled, Incr is the angle
increment used when drawing the succession of radii that fill the sector.

Remarks
The predicate sector is implemented in C.

Range for Rows: 0-31999
Range for Columns: 0-31999
Range for Increment: 1-360
Range for Angles: 0-360

It requires the creation of a project.

Example
sector(16000 ,16000 ,2000 ,1,22,59,1,1)

Contained in
GRAPHICS. OBI

Environment
GGLOBS.PRO, GOOMS.PRO

318 Turbo Prolog Toolbox Owner's Handbook

sendBreak_RS232

Predicate
sendBreak_RS232

Declaration
sendBreak_RS232 -langUilge c

Flowpattem
sendBreak_RS232

Function
Sends a break signal to the specified I/O port. sendBreak_RS232 fails if the
specified port has not been opened. The receiver should detect the break
signal using the status_RS232 tool predicate.

Parameters
Sends a break signal to the I/O port, according to the normal code (1 means
COMl,2 means COM2).

Remarks
Requires the definition of a project.

Example
sendBreak_RS232

Contained in
MODEM.OBI

Environment
COMGLOBS.PRO, TICKS.OBI

See also
status_RS232

Reference Guide 319

setModemMode

Predicate
setModemMode(PortNo,CommandAtt,CommandTerminator,BreakTime)

Declaration
setModemMode(Integer, String, Char, Integer) - (i,i,i,i) language c

Flowpattem
setModemMode(i,i,i,i)

Function
Sets the communication mode for a Hayes-compatible modem.

Parameters
Sets the modem mode as follows:

PortNo

CommandAtt

CommandTerminator

BreakTime

Remarks

= 1 means COMI serial communication port.
= 2 means COM2 serial communication port.

= Modem command prefix-normally AT or the
empty string.

= Command suffix-normally CR ('\13').
= '\0' denotes 'no data terminator'.

= A number in the range 0 to 32,767 denoting
the length of time (in hundredths of a second)
for which a break signal is to be placed on the
line, normally in the range 10 to 25.

Before calling setModemMode, COMI or COM2 must already have been
initialized using the openRS232 tool predicate. Indeed, setModemMode fails if
the specified port has not been opened. Requires the definition of a project.

Example
setModemMode(2, "AT''', '\013',1nO)

Contained in
MODEM.OBJ

Environment
COMGLOBS.PRO, TICKS.OBJ

320 Turbo Prolog Toolbox Owner's Handbook

See also
openRS232

Reference Guide 321

setverify

Predicate
setverify(Switch)

Declaration
setverify(Integer)

Flowpattem
setverify(i)

Function
Sets the OOS verify switch. When the verify switch is on, every write
operation in the OOS system is followed by a read operation to ensure that
the data has been stored correctly.

Parameters
If called with Switch bound to zero, then the DOS verify switch is set to
OFF; if Switch is bound to 1 before a call, then the DOS verify switch is set
to ON.

Example
setverify(l)

Contained in
BIOS. PRO

See also
getverify

322 Turbo Prolog Toolbox OWner's Handbook

shiftScale

Predicate
shiftScale(MyScaleNo)

Declaration
shiftScale(ScaleNo)

Flowpattem
shiftScale(i)

Function
Used to move between scales that have been defined using defineScale.

Parameters
MyScaleno is the identifier for the scale returned from defineScale.

Example
shiftScale(2)

Contained in
GGRAPH.PRO

Environment
TOOMS.PRO, GOOMS.PRO, TPREDS.PRO, GPREDS.PRO

See also
defineScale, find Scale

Reference Guide 323

Predicate
status_RS232 (PortNo,S tatus)

Declaration
status_RS232 (Integer)nteger) - (i,o) language c

Flowpattem
status_RS232 (i,o)

Function
The tool predicate status-.RS232 returns information concerning the current
state of transmission. This information could be used during debugging,
for example, or in the production of an error-checking and error-correcting,
file-transfer package. status_RS232 returns a status value that is a bit mask,
so it is often necessary to use the hitand standard predicate to de-mask the
value. The status value is reset before each write and read operation, and
it's good practice to check the transmission status after each transmission.
status_RS232 fails if the specified I/O port has not been opened.

Parameters
If PortNo is bound to the code for an opened I/O port (PortNo=l means
COM1, PortNo=2 means COM2), Status is bound to the bit-mask value,
representing the current tranmission status as shown below:

Status

324

= 0 Transmission ok.
= 1 Input characters have been lost because the

input queue was full when characters were
received.

= 2 Parity error detected.
= 4 Over-run detected.
= 8 Framing error detected.
= 16 Break signal detected.
= 32 An XOFF has been received.
= 64 An XON has been received.
= 128 An XOFF has been transmitted.
= 256 An XON has been transmitted.
= 512 Input buffer is empty when trying to read.
= 1024 Output buffer is full when trying to write.

Turbo Prolog Toolbox Owner's Handbook

Remarks
Requires a project to be defined.

Example
status~S232(1,X)

Contained in
SERIAL.OBI

Environment
COMGLOBS.PRO, TICKS.OBI

See also
openRS232

Reference Guide 325

temp_helpcontext

Predicate
temp _helpcontext(NameOfHelpContext)

Declaration
temp_helpcontexUHelpContext)

Flowpattem
temp _helpcontext(i)

Function
If there is any possibility of the program failing while in the current
context, instead of push_helpcontext, use the predicate temp_helpcontext. It
automatically removes the helpcontext on backtracking.

Parameters
Enables the Help predicate to access the Help text known as
NameOfHelpContext created by HELPDEF.PRO.

Remarks
HELPDEF.PRO is described in "Context-Sensitive Help," Chapter 2.

Example
temp _helpcontext(submenu2)

Contained in
HELP.PRO

Environment
rDOMS.PRO, TPREDS.PRO

See also
push _helpco n text

326 Turbo Prolog Toolbox Owner's Handbook

tempstatus
Predicate
tempstatus(StatusWindowAttribute, StringEntry)

Declaration
tempstatus(Attr,String)

Flowpattem
tempstatus(i,i)

Function
Used instead of makestatus when a call to makestatus may fail. In the event of
backtracking to a tempstatus call, the status line is removed.

Parameters
The text to which StringEntry is bound is displayed in the status line, which
has attribute given by StatusWindowAttr.

Remarks
Uses window number 83 for the status line.

Example
tempstatus(7,'~Press H for Help")

Contained in
STATUS.PRO

Environment
TOOMS.PRO, TPREDS.PRO

See also
makestatus, refreshstatus, removestatus

Reference Guide 327

ticks

Predicate
ticks(TimelnHundredthsOfSec)

Declaration
ticks(Integer)

Flow paHems ticks (i)

Function
ticks is used to suspend program execution for a specified period of time.

Parameters
Used to specify the period for the wait state in hundredths of a second. So,
if TimelnHundredthsOfSec is bound to 150, program execution is suspended
for 1.5 seconds. Valid values range from 1 and 32767.

Remarks
Requires the definition of a project.

Contained in
TICKS. OBI

Environment
COMGLOBS.PRO

328 Turbo Prolog Toolbox Owner's Handbook

treemenu

Predicate
treemenu(DirectionOfTreeDisplay, MyTree, Choice)

Declaration
treemenu(Symbol, Tree, Selector)

where TREE and SELECTOR are defined as follows:

SELECTOR = Integer
TREE = tree(String, SELECTOR, TREELIST)
TREELIST = TREE*

(In actual use, the SELECTOR can be of any TYPE convenient to the
programmer).

Flowpattem
treemenu(i,i,o)

Function
Implements a tree menu on a virtual screen. (The cursor keys can be used
to move around the tree.) The user makes a menu selection by pressing
Return or FlO.

Parameters
Displays a tree menu in which the tree is drawn up, down, left, or right
according to the value DirectionOfTreeDisplay is bound to.

MyTree must be bound to a TREE definition that determines, for each item,
the text describing that item, its position in the tree, and the code to be
returned when that item is selected. To this end, use is made of the tree
functor, which takes three arguments. The first is a String that gives the text
for that menu item; the second is the code to be returned if that menu item
is selected; and the third is a Treelist that specifies the rest of the tree.

Choice becomes bound to the code for the menu item chosen.

Example
treemenu(up,tree("start",l,

ltree("start...problem",2,lfree("gasoline_help" ,J,ll)1,)]),
CH)

Contained in
TREEMENU.PRO

Reference Guide 329

Environment
rooMS.PRO, TPREDS.PRO

330 Turbo Prolog Toolbox Owner's Handbook

Predicate
txCh_RS232(PortNo,CH)

Declaration
txCh_RS232 (In teger, Char) - (i,i) language c

Flowpattem
txCh_RS232 (i,i)

Function
txCh_RS232 places a character in the output buffer if the buffer is not full.
That character is then transmitted when the receiver is ready. txCh_RS232
fails if the output buffer is full or the specified communication port is not
open.

Parameters
The character CH is transmitted to the output buffer for port number
PortNo, where PortNo=l means the COMl serial-communication port and
PortNo=2 means the COM2 serial-communication port.

Remarks
Since the low-level transmission is interrupt driven, it is fully transparent
when viewed from a Turbo Prolog program: The program will not
normally be aware of when transmission from the buffer takes place.
However, the status of a transmission can always be monitored. by calling
the predicate status_RS232.

Requires definition of a project.

Example
txCh_RS232(l, CH)

Contained in
SERIAL.OBI

Environment
COMGLOBS.PRO

See also
status_RS232

Reference Guide 331

Predicate
txStr _Modem(txString,NoOfCharsTransmitted)

Declaration
txStr _Modem(String, Integer) - (i,o) language c

Flow pattern
txStr _Modem(i,o)

Function
Sends a command or pure data string to the modem using the parameters
set by the most recent call to the SetModemMode predicate; The string is sent
via the serial I/O port affected by that call. txStr _Modem fails if the modem
port is not initialized.

Parameters
With txString bound to the command or data string to be transmitted, the
predicate binds NoOfCharsTransmitted to the actual number of characters
transmitted. (This may be different from the number of characters in
txString.) Note that the length of the string transmitted can never be larger
than the size of the output buffer.

Remarks
Requires the definition of a project.

Example
txStr _Modem(UZ",_)

Contained in
MODEM.OB]

Environment
COMGLOBS.PRO

See also
setModemMode

332 Turbo Prolog Toolbox Owner's Handbook

Predicate
virtuaCtext(MyVirtualRow,MyVirtualCol,TextRow,TextCol)

Declaration
virtuaCtext(VRow, VCol,Row,Col)

Flowpattem
virtuaCtext(i,i,o,o), (o,o,i,i)

Function
Conversion between virtual coordinates and text coordinates in a graphics
window.

Parameters
(MyVirtualRow,MyVirtualCol) are the virtual coordinates; (TextRow,TextCol)
are the text coordinates.

Example
virtual_text(R,C,24,79)

Contained in
GGRAPH.PRO

Environment
TOOMS.PRO, GOOMS.PRO, TPREDS.PRO, GPREDS.PRO

Reference Guide 333

writescr (programmer defined)

Predicate
writescr

Declaration
writescr

Flowpattem
None--takes no parameters.

Function
Restores the display after window resizing.

Parameters
None

Remarks
writescr is called by resizewindow so that you can refresh the display after a
user has resized a window. For example, it is used in SCRDEF.PRO when
the user resizes the screen window.

Contained in
RESIZE.PRO

Environment
TOOMS.PRO, TPREDS.PRO

See also
resizewindow

334 Turbo Prolog Toolbox Owner's Handbook

A p p E N D x

A

Compiling a Project

The section "Modular Programming" in Chapter 11 of the Turbo Prolog
Owner's Handbook explains this innovative Turbo Prolog feature. However,
a brief introduction follows.

Program modules are written, edited, and compiled separately, then linked
to create a single executable program. To make a change in the program,
you edit and recompile only the relevant module. In addition, since all
predicate and domain names are local, different modules can use the same
name for diverse functions.

Two concepts manage modular programming in Turbo Prolog: projects and
global declarations. Projects keep track of the modules that make up a pro
gram, while global declarations make it possible to perform type checking
and to call predicates across module boundaries.

The first step in modular programming is to name the project and create a
corresponding librarian file (a .LIB file in the Module List) containing the
names of the project's modules. Then you list all global declarations in a
single file, which you can include in each pertinent module via an include
directive. Finally, you compile and link the modules. All of these steps can
be accomplished using menu options in the Turbo Prolog menu.

Compiling a Project 335

Compiling Projects Provided in the Toolbox

To compile example programs that require .OBI files, select Options from
the Turbo Prolog main menu. Next select Project from the pull-down menu,
and enter the project name at the prompt.

The Prolog file XBAR.PRO, for example, also has the project file XBAR.PRI
on the disk or directory containing the sample programs. XBAR.PRI lists
the files that Turbo Prolog is to compile and link together to create the
XBAR.EXE file.

If you're not sure of a project name, press Return and a window containing
a directory of all project files pops up. You can use the arrow keys to select
the appropriate project file. Once you have selected a project, select
Compile on the main menu. All Prolog files are automatically compiled and
linked with the .OBI files. (NOTE: The project selected will be compiled,
not the file in the editor. Turbo Prolog will prompt you to save the file in
the editor, if you need to.)

Creating Your Own Project File

To create your own project file, select Files from the main menu and
Module List from the pull-down menu. Then, in the library editor (Turbo
Prolog editing window), enter the names of the Prolog files and the .OBI
files with a + extension (not the regular .PRO or .OBI extensions). For
example, the XPIE.PRI file contains

graphics+
xpie+

where graphics+ is the tool file GRAPHICS.OBI, and xpie+ is the example
program XPIE.PRO.

336 Turbo Prolog Toolbox Owner's Handbook

Glossary

arguments The objects and variables in a relation; in Turbo Prolog, the
arguments are contained within parentheses.

associative (left/right) Refers to the order in which operations are
performed. Turbo Prolog operators are left associative by default; the
keyword rightassoc must precede operations that are right associative.

attribute A positive whole number that determines the characteristics of a
window's display, such as color, normal/inverse video, and blinking/non
blinking.

backtracking A Turbo Prolog built-in mechanism that, when the
evaluation of a sub-goal is complete, returns to the previous sub-goal and
tries to satisfy it in a different way.

Backus Naur Form (BNF) A meta-language or system of notation used to
specify or describe the syntax of a language.

bootstrapping Using part of a computer program to bring about another
version of the program.

call a predicate Bringing a subroutine into effect by jumping to the
specified entry point. This transfers control of execution to the subprogram;
after execution ends, the main program resumes with the statement after
the call.

Glossary 337

clip To use only that part of an image that fits inside the specified active
window.

dialog window The window in which external goals are given and their
results recorded.

expert system A program that has been fed enough information for it to
mimic the ability of an expert in a specified field. Its database is
supplemented by an inference engine so that it can analyze given facts.

expression A set of symbols that can be evaluated for a value, or a notation
representing a value.

external goal A goal entered in the dialog window by the user and given
to the program currently being worked on.

fact A relation between objects.

global A qualifier that allows more than one module access to certain
domains and predicates.

goal The collection of sub-goals that Turbo Prolog attempts to satisfy.

grammar A description of the specifications and structures that are
allowed in a source text.

identifier A symbolic name you define to represent variables or constants
in a program.

integer A whole number in the range -32768 to 32767.

module A Turbo Prolog program with global declarations that is part of a
project file. You can write, edit, and compile modules separately, and then
combine them into a single executable program.

non-terminals Special symbols that denote sets of strings in a grammar.

parser A routine or program that analyzes the syntactical structure of a
string of characters, based on the syntax specified by the programming
language.

parameters The objects and variables in a relation.

PC Personal computer; usually refers to an IBM PC or compatible.

pixel Literally, picture element. The smallest element of a display that can
be assigned color and intensity.

338 Turbo Prolog Toolbox Owner's Handbook

poll To interrogate transmission devices to determine readiness to send or
receive data.

predicate The specification of the name of the relation involved in a fact or
rule, and the types of objects in the relation.

production A translation rule that you supply for forming valid sentences
in the language specified by the grammar.

production rule Specifications that define the ways in which grammatical
structures can be built from one another and from terminals.

project A Turbo Prolog program consisting of more than one module.

rule A relationship between a fact and a list of sub-goals that must be
satisfied for the fact to be true.

sentence A list of terminal symbols.

start symbol Where a parser begins determining how to parse its source
input; it and denotes the language being defined.

statement A set of instructions.

string An arbitrary number of characters enclosed by a pair of double
quotation marks (" ").

terminals The basic symbols from which sentences are created in a
language.

token A name, an unsigned (real or integer) number, or a non-space
character.

variable A name that represents the (possibly unknown) value of an object.

Glossary 339

340 Turbo Prolog Toolbox Owner's Handbook

Index

341

actfield 86
ADDERDEF.SCR 57
adding screen-definition types 87
ambiquity 193
assembler See OBI files 4
associating actions with fields 61
associating Help text with a field 86
associating values with fields 57
associativity 193
axislabels 224

B
bargraph 120, 225
bargraph3d 120, 227
BIOS calls 42
bootstrapping 213
border 229
box 230
boxmenu 23,231
BOXMENU.PRO 23
boxmenu_leave 24, 233
boxmenu_mult 24, 235

C
changestatus 237
closeRS232 136, 238
closing a serial port 136
COMCLOBS.PRO 132
communications

polled 144
polled transmission 145
queue sizes 139
serial 134

converting coordinates 112, 113
createwindow 51, 239
creating new definitions from old 90
C See OBI files
curtain functor 28

D
DATA.TRS 141
data field 48
DBASE3.PRO 165, 170
dBASE III files 170

342

declarations
database 4
domains 4

defineScale 103, 240
Define Screen Layouts 54
defining scales 103
deleting the input buffer 140
delInBuCRS232 140, 241
deIOutBuCRS232140, 242
directory file names 44
diskspace 243
displayhelp 87
dosver 244
dot 96
draw 105, 245
drawing axes 106

E
Edit layout definition file 57
editmsg81
ECA graphics 122

palettes 123
ellipse 246
error handling 201
EXE file 212
expect 213

F
field 50
field_action 58, 61, 247
field_value 58,248
FILENAME.PRO 36
findmatch 44, 249
findScale 112, 250
fixed fields 49, 55
formatted reports

printing 90
fronttoken 197

G
CBAR.PRO 119
COOMS.PRO 95
CECA.PRO 122
getcols 114

Turbo Prolog Toolbox Owner's Handbook

getscreenmode 114
getverify 43,251
GGLOBS.PRO 95
GGRAPH.PRO 113
GPIE.PRO 114
GPREDS.PRO 95, 112
grammar 183

Backus Naur Form 184
non-terminals 184
production rules 184
terminals 184
writing 190

graphic cards
Color Graphics Adapter 95
Enhanced Graphics Adapter 95
Hercules monochrome graphics
cards 95

graphics
box 97
ellipse 97
lineShade 99
plot 97
sector 98

GRAPHICS.OBJ 97
gwrite252

H
help 253
helpcontext 39
HELPDEF.PRO 37
Help text

associating with a field 86
HNDBASIS.PRO 58

I
importing data 165
Init_Dbase3170,254
init_Reflex 255
input buffer

deleting 140
installing the Toolbox 5
interchangeable screen layouts 89

L
label-printing program 80
LINEINP.PRO 33
lineinput 256
lineinputJeave 258
lineinput_repeat 259
lineMenu 261
LINEMENU.PRO 25
lineShade 262
loadpic 5, 126,264
Load screen layout 56
longmenu 21, 265
LONGMENU.PRO 21
longmenu_leave 21, 267
longmenu_mult 21, 269
LOTUS. PRO 16S
Lotus 1-2-3 files 174

M
makeAxes 106, 271
makestatus 273
menu 274
MENU.PR013
menu_leave 276
menu_mult 278
menus 13
Minigol parser 202
mkdir280
modem 153

break signals 153
MODEM.OBJ 132
modes of operation 153
receiving from 155
sending to 155

modifyAxes 106, 281

N
no-input fields 64
noinput 58, 64, 282

o
OBJ filesS

343

opening a serial port 134
openRS23213~283

output buffer 140

p
packet format 146
parser generator 181

bootstrapping 213
definition 181
description 186
examples 193
specifying input 187
syntax errors 213
types 182

pdwaction 28,285
pdwstate28
PIC files

loading 126
PICTOOLS.OBJ 126
pieChart 114, 287
plot 289
polled communication 144
pop _helpcontext 290
precedence 193
printer driver 141
printing formatted reports 90
productions 187
pu1ldown 291
PULLDOWN.PRO 26
push_helpcontext 39, 293

Q
queueSize 294
queuesize_RS232139

R
Rd_dBase3File 171, 295
rd_dBase3Rec 172, 296
Rd_LotusCe11177, 297
Rd_LotusFile 177, 298
Rd_ReflexFile 166, 299
rd_Ref1exRec 168, 300
READEXT.PRO 165
readfilename 36, 301

344

REALINTS.C 165
REALINTS.OBJ 165
receiving from a serial port 139
recording transactions 76
REFLEX. PRO 165
Reflex files 166
refreshAxes 107
refreshstatus 303
remote serial devices

commmunication with 131
removestatus 304
report 91
REPORT.PRO 91
reserved windows 7
RESIZE.PRO 41
resizewindow 305
resizing windows 41
rightassoc 188
rmdir306
running the Toolbox 5
rxch_RS232139,307
rxStr_Modem 155,308

S
savepic 126, 309
Save screen layout 56
scale_text 314
scale_virtual 315
scalecursor 104, 310
scaled coordinates 103
scaleLine 104, 311
scalePlot 104, 312
scalePolygon 105, 313
scanner 183
scr86
SCRDEF.PRO 47, 53
screen 89
screen-definition types

adding 87
screen-layout definitions 47

data field 49
fixed fields 49

screenarea 114

Turbo Prolog Toolbox Owner's Handbook

screen borders 44
screen handler

advanced uses 86
basic use 51

scrhnd 51, 316
SCRHND.PRO 51
sector 318
sendBreak_RS232 153, 319
SERIAL.OB] 132
serial communications package 156
seriall port

transmitting 138
serial port

closing 136
opening 134
receiving 139

set_modem 154
setModemMode 154, 320
setverify 43, 322
shiftScale 103, 323
shiftscreen 89
sorting databases 70
special keys

Esc 56
F155
FI056
F355
F455
F555
F755
F856
Shift-FlO 56

start symbol 184
STA TUS.PRO 11
status_RS232136,324
status lines 11
std66
Symphony files 174
syntax error 213

T
rooMS.PROl
temp _helpcontext 326

tempstatus 327
terminal 143
terminal emulation 143
TEST.PIC 127
textfield 50
ticks 328
time 66
time-out feature 141
timed iff 66
tool files 3

levels 3
tool predicates

changestatus 12
lineinput 33
low-level graphics 96
makestatus 11
menu 13
menu_leave 16
menu_mult 17
refreshstatus 12
removestatus 12
resizewindow 41
tempstatus 12

TPREDS.PRO 1
transmission status information 136
TREE.PR031
treemenu 31, 329
txCh_RS232 138, 331
txStr_Modem 155,332
types 87

U
userdefined domains 187
userdefined predicates 187

V
valid 87
Verify switch

reading 43
virtual-screen coordinates 96

plot 97
virtual_text 112, 333
virtual screens 47

345

VSCRHND.PRO 51

W
WELCOME.PIC 127
windows

resizing 41
window size 50
WKS records 175
write 91
writescr 334

X
XBARPRJ 120
XBARPRO 120
XBOXMENU.PRO 24
XCAREERPRO 16
XCLUB.DBA 70
XCLUB.PRO 70, 73
XCLUB.SCR 71
XCOMMU.PRO 156
XDBASE3.DBF 171
XDBASE3.DBT 172
XDBASE3.PRO 173
XEGA.PRO 123
XFILENAM.PRO 37
XGEOMTR.PRO 100
XGRAPH.PRO 108
XHELP.DEF 39
XHELP.PRO 41
XIQ.PR018
XLABEL.PRO 70
XLABEL.SCR SO, 82
XLCAREERPRO 17
XLINEINP.PRO 34
XLINEMNU.PRO 26

346

XLONGMNU.PRO 21
XLOTUS.PRO 177
XLOTUS.WRK 177
XMADDERPRO 63
XMADDERSCR 61
XMAIL.PRO 51, 52
XMAIL.SCR50, 51, 52
XMENU.PRO 20
XMINIGOL.DOM 203
XMINIGOL.GRM 202
XMINIGOL.PAR 204
XMINIGOL.SCA 206
XMODEM131
XMODEM protoco1146
XPARS.DOM 196
XPARS.GRM 195
XPARS.PAR 194,198
XPICDEMO.PRO 127
XPIE.PRO 115
XPOLLlNG.PRO 145
XPRINTERPRO 141
XREFLEX.PRO 169
XREFLEX.RXD 166
XREPORT.PRO 92
XRESIZE.PRO 42
XSHOP.PRO 76, 77
XSHOP.SCR 76
XSTATUS.PRO 12
XTERM.PRO 143
XTRA VEL.PRO 65, 68
XTRA VEL.SCR 65
XTREE.PRO 32
XXMODEM.PRO 147

Turbo Prolog Toolbox Owner's Handbook

Borland
Software

-BORLAND
INTERNATIONAL 4585 Scotts Valley Drive, Scotts Valley, CA 95066

Available at better dealers nationwide.
To order by credit card, call (BOO) 255-8008; CA (BOO) 742-1133;
CANADA (BOO) 237-1136.

"11'rJlr'fll ® '"f IfB""
IJ'~ I"~ '"J : 1 •• I1E1
Whether you're running WordStar,® Lotus,® dBASE,®

or any other program, SideKick puts all these desktop
accessories at your fingertips-Instantly!

A full-screen WordStar-like Editor to jot
down notes and edit files up to 25 pages
long.

A Phone Directory for names, addresses,
and telephone numbers. Finding a name or a
number is a snap.

An Autodialer for all your phone calls. It will
look up and dial telephone numbers for you.
(A modem is required to use this function.)

All the SideKick windows stacked up over Lotus 1-2-3."
From bottom to top: SideKick's "Menu Window," ASCII
Table, Notepad, Calculator, Appointment Calendar, Monthly
Calendar, and Phone Dialer.

A Monthly Calendar from 1901 through
2099.

Appointment Calendar to remind you
of important meetings and appointments.

A full-featured Calculator ideal for
business use. It also performs decimal
to hexadecimal to binary conversions.

An ASCII Table for easy reference.

Here's SideKick running over Lotus 1-2-3. In the
SideKick Notepad you'll notice data that's been imported
directly from the Lotus screen. In the upper right you can
see the Calculator.

The Critics' Choice
"In a simple, beautiful implementation of WordStar's
block copy commands, SideKick can transport all
or any part of the display screen (even an area
overlaid by the notepad display) to the notepad."

-Charles Petzold, PC MAGAZINE

"SideKick deserves a place in every PC."
-Gary Ray, PC WEEK

"SideKick is by far the best we've seen. It is also
the least expensive."

-Ron Mansfield, ENTREPRENEUR

"If you use a PC, get SideKick. You'll soon become
dependent on it." -Jerry Pournelle, BYTE

Suggested Retail Price: $84.95 (not copy protected)

Minimum system conliguration: IBM PC, XT, AT, PCjr and true compatibles. PC-DOS (MS-DOS) 2.0 or greater. 128K RAM. One disk
drive. A Hayes-compatible modem, IBM PCjr internal modem, or AT&T Modem 4000 is required lor the autodialer lunction.

SideKick is a registered trademark of Borland International, Inc. dBASE is a registered trademark of
Ashton-Tate. IBM, Xl, AT, and PCjr are registered trademarks of International Business Machines Corp.
AT&T is a registered trademark of American Telephone & Telegraph Company. Lotus and 1-2-3 are
registered trademarks of Lotus Development Corp. WordStar is a registered trademark of MicroPro
International Corp. Hayes is a trademark of Hayes Microcomputer Products, Inc.
Copyright 1987 Borland International BOR0060C

The Organizer For The Computer Age!
Traveling SideKick is BinderWare,@ both a binder you take with you when you travel
and a software program-which includes a Report Generator-that generates and

prints out all the information you'll need to take with you.

Information like your phone list, your client list,
your address book, your calendar, and your
appointments. The appointment or calendar files
you're already using in your SideKick~ can auto
matically be used by your Traveling SideKick. You
don't waste time and effort reentering information
that's already there.

One keystroke prints out a form like your address
book. No need to change printer paper;

What's inside Traveling SideKick

you simply punch three holes, fold and clip
the form into your Traveling SideKick binder, and
you're on your way. Because Traveling SideKick is
CAD (Computer-Age Designed), you don't fool
around with low-tech tools like scissors, tape, or
staples. And because Traveling SideKick is
electronic, it works this year, next year, and all the
"next years" after that. Old-fashioned daytime
organizers are history in 365 days.

What the software program and its
Report Generator do for you before
you go-and when you get back

Before you go:
• Prints out your calendar,

appointments, addresses, phone
directory, and whatever other
information you need from your
data files

When you return:
• Lets you quickly and easily enter all

the new names you obtained while
you were away into your
SideKick data files

It can also:
• Sort your address book by contact,

zip code or company name
• Print mailing labels
• Print information selectively
• Search files for existing addresses

or calendar engagements

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, Portable, PCjr, 3270 and true compatibles. PC-DOS (MS-DOS) 2.0 or later.
256K RAM mimi mum.

SideKick, BinderWare and Traveling SideKick are registered trademarks of Borland
International, Inc. IBM, AT, Xl, and PCjr are registered trademarks of International Business
Machines Corp. MS-DOS is a registered trademark of Microsoft Corp. Copyright 1987
Borland International BOR 0083A

RAM-resident
Increased productivity for IBM@pCs or compatibles

SuperKey's simple macros are electronic shortcuts to success.
By letting you reduce a lengthy paragraph into a single keystroke

of your choice, SuperKey eliminates repetition.

SuperKey turns 1,000 keystrokes into I!
Super Key can record lengthy keystroke sequences and play them back at the touch of a single key.
Instantly. Like magic.
In fact, with Super Key's simple macros, you can turn "Dear Customer: Thank you for your inquiry.
We are pleased to let you know that shipment will be made within 24 hours. Sincerely," into the
one keystroke of your choice!

SuperKey keeps your confidential files-confidential!
Without encryption, your files are open secrets. Anyone can walk up to your PC and read your
confidential files (tax returns, business plans, customer lists, personal letters, etc.).
With SuperKey you can encrypt any file, even while running another program. As long as you keep
the password secret, only you can decode your file correctly. SuperKey also implements the U.S.
government Data Encryption Standard (DES).

!if RAM resident-accepts new macro files !if Keyboard buffer increases 16 character
keyboard "type-ahead" buffer to 128
characters

even while running other programs
!if Pull-down menus
!if Superfast file encryption
!if Choice of two encryption schemes
!if On-line context-sensitive help
!if One-finger mode reduces key

commands to single keystroke

!if Real-time delay causes macro playback
to pause for specified interval

!if Transparent display macros allow
creation of menus on top of application
programs

!if Screen OFF/ON blanks out and restores
screen to protect against "burn in"

!if Data entry and format control using
"fixed" or "variable" fields

!if Command stack recalls last 256
characters entered !if Partial or complete reorganization of

keyboard

Suggested Retail Price: $99.95 (not copy protected)

Minimum system configuration: IBM PC, Xl, AT, PCjr, and true compatibles. PC-DOS (MS-DOS)
2.0 or greater. 128K RAM. One disk drive.

BORLAND
INTERNATIONAL

Super Key is a registered trademark of Borland International, Inc. IBM, XT, AT, and PCjr are
registered trademarks 01 International BUSiness Machines Corp. MS-DOS is a registered
trademark of Microsoft Corp. BOR 0062C

1'£11 11I811E IA1AIA'E
~r'~II: .AIAIE.

The high-performance database manager
that's so advanced it's easy to use!

Lets you organize, analyze and report information faster than ever before! If you manage mailing lists,
customer files, or even "your company's budgets-Reflex is the database manager for you!

Reflex is the acclaimed, high-performance database manager you've been waiting for. Reflex extends
database management with business graphics. Because a picture is often worth a 1000 words, Reflex
lets you extract critical information buried in mountains of data. With Reflex, when you look, you see.

The REPORT VIEW allows you to generate everything from mailing labels to sophisticated reports.
You can use database files created with Reflex or transferred from Lotus 1-2-3,e dBASE,e PFS: File,e
and other applications.

Reflex: The Critics' Choice

" ... if you use a PC, you should know about Reflex ... may be the best bargain in software today."
Jerry Pournelle, BYTE

"Everyone agrees that Reflex is the best-looking database they've ever seen."
Adam B. Green, InfoWorld

"The next generation of software has officially arrived." Peter Norton, PC Week

Reflex: don't use your PC without it!
Join hundreds of thousands of enthusiastic Reflex users and experience the power and ease of use of
Borland's award-winning Reflex.

Suggested Retail Price: $149.95 (not copy protected)

Minimum s,stem configuration: IBM PC, Xl, AT, and true compatibles. 384K RAM minimum. IBM Color Graphics Adapter, Hercules
Monochrome Graphics CArd, or equivalent. PC-DOS (MS-DOS) 2.0 or greater. Hard disk and mouse optional. Lotus 1-2-3, dBASE,
or PFS: File optional.

Reflex is a trademark of Borland/Analytica Inc. Lotus 1-2-3 is a registered trademark of Lotus
Development Corporation. dBASE is a registered trademark of Ashton-Tate. PFS: File is a
registered trademark of Software Publishing Corporation. IBM. XT. AT, and IBM Color Graphics
Adapter are registered trademarks of International Business Machines Corporation. Hercules
Graphics Card is a trademark of Hercules Computer Technology. MS-DOS is a registered
trademark of Microsofi Corp. Copyright 1987 Borland International BOA 0066C

REILEI: 111 "'IIII"~
Includes 22 "instant templates" covering a broad range 01

business applications (listed below). Also shows you how to
customize databases, graphs, cross tabs, and reports. It's an invaluable

analytical tool and an important addition to another one 01
our best sellers, Rellex: The Database Manager.

Fast-start tutorial examples:
Learn Reflex8 as you work with practical business applications. The Reflex Workshop Disk supplies
databases and reports large enough to illustrate the power and variety of Reflex features. Instructions in each
Reflex Workshop chapter take you through a step-by-step analysis of sample data. You then follow simple
steps to adapt the files to your own needs.
22 practical business applications:
Workshop's 22 "instant templates" give you a wide range of analytical tools:

Administration
• Scheduling Appointments
• Planning Conference Facilities
• Managing a Project
• Creating a Mailing System
• Managing Employment Applications

Sales and Marketing
• Researching Store Check Inventory
• Tracking Sales Leads
• Summarizing Sales Trends
• Analyzing Trends

Production and Operations
• Summarizing Repair Turnaround

• Tracking Manufacturing Quality Assurance
• Analyzing Product Costs

Accounting and Financial Planning
• Tracking Petty Cash
• Entering Purchase Orders
• Organizing Outgoing Purchase Orders
• Analyzing Accounts Receivable
• Maintaining Letters of Credit
• Reporting Business Expenses
• Managing Debits and Credits
• Examining Leased Inventory Trends
• Tracking Fixed Assets
• Planning Commercial Real Estate Investment

Whether you're a newcomer learning Reflex basics or an experienced "power user" looking for tips, Reflex:
The Workshop will help you quickly become an expert database analyst.

Minimum system configuration: IBM PC, AT, and Xl, and true compatibles. PC·DOS (MS·DOS) 2.0 or greater. 384K RAM minimum. Requires Reflel:
The Database Manager, and IBM Color Graphics Adapter, Hercules Monochrome Graphics Card or equivalent.

Suggested Retail Price: $69.95
(not copy protected)

Reflex is a registered trademark and Reflex: The Workshop is a trademark of Borland/Analytica, Inc. IBM, AT, and XT are registered trademarks of International Business
Machines Corp. Hercules is a trademark of Hercules Computer Technology. MS-DOS is a registered trademark of Microsoft Corp. Copyright 1987 Borland International

BOR 0088B

If you use an IBM® PC, you need

T U R B 0

Lightning®
Turbo Lightning teams up
with the Random House
Concise Word List to
check your spelling as
you type!

Turbo Lightning, using the
BO,OOO-word Random House
Dictionary, checks your spelling
as you type. If you misspell a
word, it alerts you with a
"beep." At the touch of a key,
Turbo Lightning opens a
window on top of your
application program and
suggests the correct spelling.
Just press one key and the
misspelled word is instantly
replaced with the correct word.

Turbo Lightning works
hand-in-hand with the
Random House Thesaurus
to give you instant access
to synonyms

Turbo Lightning lets you
choose just the right word from
a list of alternates, so you
don't say the same thing the
same way every time. Once
Turbo Lightning opens the
Thesaurus window, you see a
list of alternate words; select
the word you want, press
ENTER and your new word will
instantly replace the original
word. Pure magic!

If you ever write a
word, think a word, or
say a word, you need
Turbo Lightning

The Turbo Lightning Proofreader

The Turbo Lightning Thesaurus

You can teach Turbo
Lightning new words

You can teach your new Turbo
Lightning your name, business
associates' names, street
names, addresses, correct
capitalizations, and any
specialized words you use
frequently. Teach Turbo
Lightning once, and it
knows forever.

Turbo Lightning is the
engine that powers
Borland's Turbo Lightning
Library@

Turbo Lightning brings
electronic power to the
Random House Concise Word
List and Random House
Thesaurus. They're at your
fingertips-even while you're
running other programs. Turbo
Lightning will also "drive"
soon-to-be-released
encyclopedias, extended
thesauruses, specialized
dictionaries, and many other
popular reference works. You
get a head start with this
first volume in the Turbo
Lightning Library.

Suggested Retail Price: $99.95 (not copy protected)

Minimum system configuration: IBM PC, Xl, AI, PCjr, and true compatibles with 2 floppy disk drives. PC-DDS (MS-DOS) 2.0 or greater.
256K RAM. Hard disk recommended.

Turbo Lightning and Turbo Lightning Library are registered trademarks of Borland International. Inc.
IBM. XT. AT. and PCjr are registered trademarks of International Business Machines Corp. Random
House is a registered trademark of Random House. Inc. Copyright 1987 Borland International

BOR 0070B

Your Development Toolbox and Technical Reference Manual for Thrbo Lightning@

l I G H T N I N G

Lightning Word Wizard includes complete, commented Turbo
Pascal@ source code and all the technical information you'll

need to understand and work with Turbo Lightning's "engine."
More than 20 fully documented Turbo Pascal procedures

reveal powerful Turbo Lightning engine calls. Harness the full power
of the complete and authoritative Random House@ Concise

Word List and Random House Thesaurus.

Turbo Lightning's "Reference
Manual"
Developers can use the versatile on-line
examples to harness Turbo Lightning's
power to do rapid word searches. Lightning
Word Wizard is the forerunner of the data
base access systems that will incorporate
and engineer the Turbo Lightning Library@
of electronic reference works.

The ultimate collection of word
games and crossword solvers!
The excitement, challenge, competition,
and education of four games and three
solver utilities-puzzles, scrambles, spell
searches, synonym-seekings, hidden words,
crossword solutions, and more. You and
your friends (up to four people total) can
set the difficulty level and contest the high
speed smarts of Lightning Word Wizard!

Turbo Lightning-Critics' Choice
"Lightning's good enough to make programmers and users cheer, executives of other
software companies weep." Jim Seymour, PC Week

"The real future of Lightning clearly lies not with the spelling checker and thesaurus currently
included, but with other uses of its powerful look-up engine." Ted Silveira, Profiles

"This newest product from Borland has it all." Don Roy, Computing Nowl

Minimum system configuration: IBM PC, Xl, AT, PCjr, Portable, and true compatibles. 256K RAM minimum. PC-DOS (MS-DOS) 2.0
or greater. Turbo lightning software required. Optional-Turbo Pascal 3.0 or greater to edit and compile Turbo Pascal source code.

Suggested Retail Price: $69.95
(not copy protected)

Turbo Pascal. Turbo Lightning and Turbo Lightning Library are registered trademarks and Lightning Word Wizard is a trademark of Borland International. Inc. Random
House is a registered trademark of Random House. Inc. IBM. XT. AT. and PCjr are registered trademarks of International Business Machines Corp. MS-DOS is a
registered trademark of Microsoft Corp. Cq>yright 1987 Borland International BOR0087B

Version 3.0 with 8087 support and BCD reals

Free MicroCa/c Spreadsheet With Commented Source Code!
FEATURES:
One-Step Compile: No hunting & fishing
expeditions! Turbo finds the errors, takes you
to them, lets you correct them, and instantly
recompiles. You're off and running in
record time.

Built-in Interactive Editor: WordStar~like
easy editing lets you debug quickly.

Automatic Overlays: Fits big programs into
small amounts of memory.

THE CRITICS' CHOICE:
"Language deal of the century . . . Turbo Pascal:
it introduces a new programming environment
and runs like magic."

-Jeff Duntemann, PC Magazine

"Most Pascal compilers barely fit on a disk, but
Turbo Pascal packs an editor, compiler, linker,
and run-time library into just 39K bytes of
random access memory."

-Dave Garland, Popular Computing

MicroCalc: A sample spreadsheet on your disk
with ready-to-compile source code.

"What I think the computer industry is headed
for: well-documented, standard, plenty of
good features, and a reasonable price."

IBM~ PC Version: Supports Turtle Graphics,
color, sound, full tree directories, window
routines, input/output redirection, and
much more.

-Jerry Pour nelle, BYTE

LOOK AT TURBO NOW!

[it' More than 500,000 users worldwide.

[it' Turbo Pascal is the de facto industry
standard.

[it' Turbo Pascal wins PC MAGAZINE'S
award for technical excellence.

[it' Turbo Pascal named "Most
Significant Product of the Year" by
PC WEEK.

[it' Turbo Pascal 3.0-the fastest Pascal
development environment on the
planet, period.

Suggested Retail Price: $99.95; CP/M~-80 version without 8087 and BCD: $69.95

Features for 16-bit Systems: 8087 math co-processor support for intensive calculations.
Binary Coded Decimals (BCD): eliminates round-off error! A must for any serious business application.

Minimum system configuration: 128K RAM minimum. Includes 8087 & BCD features for 16-bit MS-DOS 2.0 or later and
CP/M-86 1.1 or later. CP/M-80 version 2.2 or later 48K RAM minimum (8087 and BCD features not available). 8087
version requires 8087 or 80287 co-processor.

Turbo Pascal is iI registered trademlrk of BoI1and International. Inc. CP/M is a registered trademark
of Digital Research Inc. IBM is a registered badernark of International Business Machines Corp.
MS-DOS is a registered trademark 01 MicrOSlft Corp. V«lrdStar is a registered tradenwk of
MicroPro International. Copyright 1987 Borland International BOA 00618

VERSION 2.0

Learn Pascal From The Folks Who Crealed
The Turbo Pascal@ Family

Borland International proudly presents Turbo Tutor, the perfect complement
to your Turbo Pascal compiler. Turbo Tutor is really for everyone-

even if you've never programmed before.

And if you're already proficient, Turbo Tutor can sharpen up the fine paints.
The manual and program disk focus on the whole spectrum of Turbo
Pascal programming techniques.

• For the Novice: It gives you a concise history of Pascal, tells you how to write a
simple program, and defines the basic programming terms you need to know.

• Programmer's Guide: The heart of Turbo Pascal. The manual covers the fine pOints
of every aspect of Turbo Pascal programming: program structure, data types, control
structures, procedures and functions, scalar types, arrays, strings, pointers, sets, files,
and records.

• Advanced Concepts: If you're an expert, you'll love the sections detailing such topics as
linked lists, trees, and graphs. You'll also find sample program examples for PC-DOS and
Ms-oos.e

10,000 lines of commented source code, demonstrations of 20 Turbo Pascal features, multiple
choice quizzes, an interactive on-line tutor, and more!

Turbo Tutor may be the only reference work about Pascal and programming you'll ever need!

Suggested Retail Price: $39.9S (not copy protected)

Minimum system configuration: Turbo Pascal 3.0. PC-DOS (MS-DOS) 2.0 or later. 192K RAM minimum (CP/M-80
version 2.2 or later: 64K RAM minimum).

BORLAND
INTERNATIONAL

TUIbo Pascal and Turbo Tutor Ire registered r.tdemIJks of Borland International Inc. CP/M is a
registered trademark of Digital Research Inc. MS-DOS is a registered trademark of Microsoft Corp.
Copyright 1987 Borland International BOA 0064C

Is The Perfect Complement To Turbo Pasca/~
It contains a complete library of Pascal procedures that

allows you to sort and search your data and build powerful database
applications. It's another set of tools from Borland that will give

even the beginning programmer the expert's edge.

THE TOOLS YOU NEED!
TURBO ACCESS Using B+ trees: The best way to organize and search your data. Makes it
possible to access records in a file using key words instead of numbers. Now available with
complete source code on disk, ready to be included in your programs.

TURBO SORT: The fastest way to sort data using the QUICKSORT algorithm-the method
preferred by knowledgeable professionals. Includes source code.

GINST (General Installation Program): Gets your programs up and running on other
terminals. This feature alone will save hours of work and research. Adds tremendous value
to all your programs.

GET STARTED RIGHT AWAY.-FREE DATABASE!
Included on every Toolbox diskette is the source code to a working database which
demonstrates the power and simplicity of our Turbo Access search system. Modify it to suit
your individual needs or just compile it and run.

THE CRITICS' CHOICE!
"The tools include a B+ tree search and a sorting system. I've seen stuff like this, but not as
well thought out, sell for hundreds of dollars." -Jerry Pournell, BYTE MAGAZINE

"The Turbo Database Toolbox is solid enough and useful enough to come recommended."
-Jeff Duntemann, PC TECH JOURNAL

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: 128K RAM and one disk drive (CP/M·80: 48K). 16·bit systems: Turbo Pascal 2.0 or greater for
MS· DOS or PC·DOS 2.0 or greater. Turbo Pascal 2.1 or greater for CP/M·86 1.0 or greater. 8·bit systems: Turbo Pascal 2.0 or
greater for CP/M·80 2.2 or greater.

Turbo Pascal and Turbo Database Toolbox are registered trademarks of Borland Intemational
Inc. CP/M is a registered trademark of Digital Research, inc. MS-DOS is a registered
trademark of Microsoft Corp. Copyright 1987 Borland international BOR 0063C

2VRBO PASCAl.

GRAPHlX2brX-BOX®
A Library of Graphics Routines for Use with Turbo Pasca/®

High-resolution graphics for your IBM" PC, AT," XT,'"' PCjf', true PC compatibles, and the Heath
Zenith Z-100:" Comes complete with graphics window management.

Even if you're new to Turbo Pascal programming, the Turbo Pascal Graphix Toolbox will get you started
right away. It's a collection of tools that will get you right into the fascinating world of high-resolution
business graphics, including graphics window management. You get immediate, satisfying results. And
we keep Royalty out of American business because you don't pay any-even if you distribute your own
compiled programs that include all or part of the Turbo Pascal Graphix Toolbox procedures

What you get includes:

• Complete commented source code on disk.
• Tools for drawing simple graphics.
• Tools for drawing complex graphics, including

curves with optional smoothing.
• Routines that let you store and restore graphic

images to and from disk.
• Tools allowing you to send screen images to

Epson@-compatible printers.

• Full graphics window management.
• Two different font styles for graphic labeling.
• Choice of line-drawing styles.
• Routines that will let you quickly plot functions

and model experimental data.
• And much, much more ...

"While most people only talk about low-cost personal computer software, Borland has been doing
something about it. And Borland provides good technical support as part of the price."

John Markov & Paul Freiberger, syndicated columnists.

If you ever plan to create Turbo Pascal programs that make use of business graphics or scientific
graphics, you need the Turbo Pascal Graphix Too/box.

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: IBM PC, Xl, AT, PCjr, true compatibles and the Heath Zenith Z-100. Turbo Pascal 3.0 or later. 192K
RAM minimum. Two disk drives CIId an IBM Color Graphics Adapter (CGA), IBM Enhanced Graphics Adapter (EGA), Hercules Graphics
Card or compatible.

Turbo Pascal and Turbo Graphix Toolbox are registered trademarks of Borland International,
Inc. IBM, Xl AT, and PCjr are registered trademarks of International Business Machines
Corporation. Hercules Graphics Card is a trademark of Hercules Computer Technology. Heath
Zenith Z-100 is a trademark of Zenith Data Systems. Epson is a registered trademark of
Epson Corp. Copyright 1987 Borland Intemational BOR 0068C

2VRBO PASCAl.

£DJ2OR2tnr.BOX@
It's All You Need To Build Your Own Text Editor

Or Word Processor
Build your own lightning-last editor and incor
porate it 'into your Turbo Pascar programs.
Turbo Editor Toolbox gives you easy-to-install
modules. Now you can integrate a fast and powerful
editor into your own programs. You get the source
code, the manual, and the know-how.

Create your own word processor. We provide all
the editing routines. You plug in the features you want.
You could build a WordStar@-like editor with pull-down
menus like Microsoft's@ Word, and make it work as fast
as WordPerfect.@

To demonstrate the tremendous power 01 Turbo Editor Toolbox, we give you the source code lor
two sample editors:

Simple Editor A complete editor ready to include in your programs. With windows, block commands, and
memory-mapped screen routines.

MicroStar A full-blown text editor with a complete pull-down menu user interface, plus a lot more.
Modify MicroStar's pull-down menu system and include it in your Turbo Pascal programs.

The Turbo Editor Toolbox gives you all the
standard features you would expect to find
in any word processor:

• Wordwrap
• UN-delete last line
• Auto-indent
• Find and Find/Replace with options
• Set left and right margin
• Block mark, move, and copy
• Tab, insert and overstrike modes,

centering, etc. MicroStar's pull-down menus.

And Turbo Editor Toolbox has features that word processors selling for several hundred dollars can't begin to match.
Just to name a few:

[!] RAM-based editor. You can edit very large [!] Multiple windows. See and edit up to eight
files and yet editing is lightning fast. documents-or up to eight parts of the same

[!] Memory-mapped screen routines. In- document-all at the same time.
stant paging, scrolling, and text display. [!] Multitasking. Automatically save your

[!] Keyboard installation. Change control text. Plug in a digital clock, an appointment
keys from WordStar-like commands to any that alarm-see how it's done with MicroStar's
you prefer. "background" printing.

Best of all, source code is included for everything in the Editor Toolbox.

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, 3270, PCir, and true compatibles. PC-DOS (MS-DOS) 2.0 or greater. 192K RAM.
You must be using Turbo Pascal 3.0 for IBM and compatibles.

Turbo Pascal and Turbo Editor Toolbox are registered trademarks of Borland International, Inc.
WordStar is a registered trademark of MicroPro International Corp. Word and MS-DOS are
registered trademarks of Microsoft Corp. WordPerfect is a trademark of Satellite Software
International. IBM, XT, AT, and PCjr are registered trademarks of International Business Machines
Corp. BOR 0067B

TURBO PASCAL

IUliEBICAI IIE11111111111111l1T

•

New from Borland's Scientific & Engineering Division!

A complete collection 01 Turbo Paseaf routines and programs
New from Borland's Scientific & Engineering Division, Turbo Pascal Numerical Methods Toolbox
implements the latest high-level mathematical methods to solve common scientific and engineering
problems. Fast.

So every time you need to calculate an integral, work with Fourier Transforms or incorporate any of the
classical numerical analysis tools into your programs, you don't have to reinvent the wheel. Because
the Numerical Methods Toolbox is a complete collection of Turbo Pascal routines and programs that
gives you applied state-of-the-art math tools. It also includes two graphics demo programs, Least
Squares Fit and Fast Fourier Transforms, to give you the picture along with the numbers.

The Numerical Methods Toolbox is a must for you if you're involved with any type of scientific or
engineering computing. Because it comes with complete source code, you have total control of
your application.

What Numerical Methods Toolbox will do for you now:

• Find solutions to equations
• Interpolations
• Calculus: numerical derivatives and

integrals
• Fourier transforms

• Matrix operations: inversions, determinants
and eigenvalues

• Differential equations
• Least squares approximations

5 free ways to look at "Least Squares Fit"!

As well as a free demo "Fast Fourier Transforms," you also get "Least Squares Fit" in 5
different forms-which gives you 5 different methods of fitting curves to a collection of data points.
You instantly get the picture! The 5 different forms are:

1. Power 4. 5-term Fourier
2. Exponential 5. 5-term
3. Logarithm Polynomial

They're all ready to compile and run "as is." To modify or add graphics to your own programs,
you simply add Turbo Graphix Toolboxe to your software library. Our Numerical Methods Toolbox is
designed to work hand-in-hand with our Turbo Graphix Toolbox to make professional graphics in
your own programs an instant part of the picture!

Suggested Retail Price: $99.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT and true compatibles. PC-DOS (MS-DOS) 2.0 or later. 256K. Turbo Pascal 2.0 or later.
The graphics modules require a graphics monitor with an IBM CGA, IBM EGA, or Hercules compatible adapter card, and require the Turbo
Graphix Toolbox. MS-DOS generic version will not support Turbo Graphix Toolbox routines. An 8087 or 80287 numeric co-processor is
not required, but recommended for optimal performance.

BORLAND
INTERNATIONAL

Turbo Pascal Numerical Methods Toolbox is a trademark and Turbo Pascal and Turbo Graphix
Toolbox are registered trademarks of Borland International, Inc. IBM, XT, and AT are
registered trademarks of International Business Machines Corp. MS-DOS is a registered
trademark of Microsoft Corp. Hercules is a trademark of Hercules Computer Technology.
Apple is a registered trademark of Apple Computer, Inc. Macintosh is a trademark of Mcintosh
Laboratory, Inc. licensed to Apple Computer. Copyright 1967 Borland International BOR 0219A

Secrets And Strategies 01 The Masters Are
Revealed For The First Time

®

Explore the world of state-of-the-art computer games with Turbo GameWorks. Using
easy-to-understand examples, Turbo GameWorks teaches you techniques to quickly create
your own computer games using Turbo Pascal.8 Or, for instant excitement, play the three

great computer games we've included on disk-compiled and ready to run.

TURBO CHESS

Test your chess-playing skills against your computer challenger. With Turbo GameWorks, you're on your way to
becoming a master chess player. Explore the complete Turbo Pascal source code and discover the secrets of
Turbo Chess.

"What impressed me the most was the fact that with this program you can become a computer chess analyst.
You can add new variations to the program at any time and make the program play stronger and stronger chess.
There's no limit to the fun and enjoyment of playing Turbo GameWorks Chess, and most important of all, with this
chess program there's no limit to how it can help you improve your game."

-George Koltanowski, Dean of American Chess, former President of
the United Chess Federation, and syndicated chess columnist.

TURBO BRIDGE

Now play the world's most popular card game-bridge. Play one-on-one with your computer or against up to
three other opponents. With Turbo Pascal source code, you can even program your own bidding or scoring
conventions.

"There has never been a bridge program written which plays at the expert level, and the ambitious user will
enjoy tackling that challenge, with the format already structured in the program. And for the inexperienced player,
the bridge program provides an easy-to-follow format that allows the user to start right out playing. The user can
'play bridge' against real competition without having to gather three other people."

-Kit Woolsey, writer of several articles and books on bridge,
and twice champion of the Blue Ribbon Pairs.

TURBO GO-MOKU

Prepare for battle when you challenge your computer to a game of Go-Moku-the exciting strategy game also
known as Pente.· In this battle of wits, you and the computer take turns placing X's and D's on a grid of 19X19
squares until five pieces are lined up in a row. Vary the game if you like, using the source code available on your
disk.

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: •• PC, Xl, AT, Portable, 3270, PClr, and true compallb.es. PC-DOS (MS-DOS) 2.0 or laler. 192K
RAM minimum. To edll and compile Ihe Turbo Pascal source code, you musl be using Turbo Pascal 3.0 for IBM PCs and
compatibles.

:=: Pente is a regislered trademark of Parker Brothers. IBM, XT, AT, and PCjr are registered
~ 3- D BORLAND Turbo Pascal and Turbo GameWorks are regis.tered trademarks of Borland International. Inc.

$ I N T ERN A TID N A L trademarks of International Business Machiles Corporation. MS-DOS is a registered trademark
of Microsoft Corporation. Copyright 1987 Borland International BOR0065C

the natural language of ArtiflCiallntelgence

Turbo Prolog brings fifth-generation supercomputer
power to your IBM®PC!

Turbo Prolog takes
programming into a new,
natural, and logical
environment
With Turbo Prolog,
because of its natural,
logical approach, both
people new to programming
and professional programmers
can build powerful applica
tions such as expert systems,
customized knowledge
bases, natural language
interfaces, and smart
information management systems.
Turbo Prolog is a declarative language which
uses deductive reasoning to solve
programming problems.

Turbo Prolog's development system
includes:
o A complete Prolog compiler that is a variation

of the Clocksin and Mellish Edinburgh
standard Prolog.

o A full-screen interactive editor.
o Support for both graphic and text windows.
o All the tools that let you build your own

expert systems and AI applications with
unprecedented ease.

--= BORLAND
-~ INTERNATIONAL

Turbo Prolog provides
a fully integrated pro
gramming environment
like Borland's Turbo
Pascal,® the de facto
worldwide standard.
You get the
complete Turbo
Prolog programming
system
You get the 2DD-page
manual you're holding,
software that includes
the lightning-fast Turbo
Prolog six-pass

compiler and interactive editor, and the
free GeoBase natural query language
database, which includes commented
source code on disk, ready to compile.
(GeoBase is a complete database designed
and developed around U.S. geography.
You can modify it or use it "as is.")

Minimum system configuration: IBM PC, Xl, AT, Portable, 3270, PCjr
and true compatibles. PC-DOS (MS-DOS) 2.0 or later. 384K RAM
minimum.

Suggested Retail Price: $99.95
(not copy protected)

Turbo Prolog is a trademark and Turbo Pascal is a registered trademark of Borland International, Inc.
IBM, AT, XT, and PCjr are registered trademarks of International Business Machines Corp. MS-DOS is a
registered trademark of Microsoft Corp. Copyright 1987 Borland International BOR 0016D

111111 IABIC®
The high-speed BASIC you've been waiting lor!

You probably know us for our Turbo Pascale and Turbo Prolog." Well, we've done
it again! We've created Turbo Basic, because BASIC doesn't have to be slow.

If BASIC taught you how to walk, Turbo Basic will teach you how to run!
With Turbo Basic, your only speed is "Full Speed Ahead"! Turbo Basic is a complete development
environment with a lightning fast compiler, an interactive editor and a trace debugging system. And
because Turbo Basic is also compatible with BASICA, chances are that you already know how to use
Turbo Basic.

Turbo Basic ends the basic confusion
There's now one standard: Turbo Basic. And because Turbo Basic is a Borland product, the price is
right, the quality is there, and the power is at your fingertips. Turbo Basic is part of the fast-growing
Borland family of programming languages we call the "Turbo Family." And hundreds of thousands of
users are already using Borland's languages. So, welcome to a whole new generation of smart PC
users!

Free spreadsheet included with source code!
Yes, we've included MicroCalc, our sample spreadsheet, complete with source code, So you can get
started right away with a "real program," You can compile and run it "as is," or modify it.

A technical look at Turbo BaSic
S Full recursion supported
S Standard IEEE floating-point format
S Floating-point support, with full 8087

executable program, with separate windows
for editing, messages, tracing, and execution

S Compile and run-time errors place you in
coprocessor integration. Software emulation
if no 8087 present

source code where error occurred
S Access to local, static and global variables
S New long integer (32-bit) data type S Program size limited only by available

memory (no 64K limitation)
S EGA and CGA support

S Full 80-bit preCision
S Pull-down menus

S Full integration of the compiler, editor, and S Full window management

Suggested Retail Price: $99.95 (not copy protected)

Minimum system configuration: IBM PC, AT. XT or true compatibles. 256K. One floppy drive. PC-DOS (MS-DOS) 2.0 or later.

Turbo Basic and Turbo Pascal are registered trademarks and Turbo Prolog is a trademark of
Borland International, Inc. IBM, AT, and XT are registered trademarks of International Business
Machines Corp. MS-DOS is a registered trademark of Microsoft Corp.
Copyright 1987 Borland International BOR 0265A

Includes tree
MicroCalc spreadsheet

with source code

A complete interactive development environment
With Turbo C, you can expect what only Borland delivers:
Quality, Speed, Power and Price. And with its compilation
speed of more than 7000 lines a minute, Turbo C makes

everything else look like an exercise in slow motion.

Turbo C: The C compiler for both amateurs and professionals
If you're just beginning and you've "kinda wanted to learn e," now's your chance to do it the easy way.
Turbo C's got everything to get you going. If you're already programming in C, switching to Turbo e will
considerably increase your productivity and help make your programs both smaller and faster.

Turbo C: a complete interactive development environment
Like Turbo Pascal~ and Turbo Prolog,'" Turbo e comes with an interactive editor that will show
you syntax errors right in your source code. Developing, debugging, and running a Turbo C
program is a snap!

Technical Specifications
~ Compiler: One-pass compiler generating native in- [y' Development Environment: A powerful "Make" is

line code, linkable object modules and assembler. included so that managing Turbo C program
The object module format is compatible with the development is easy. Borland's fast "Turbo
PC-DOS linker. Supports small, medium, compact, Linker" is also included. Also includes pull-down
large, and huge memory model libraries. Can mix menus and windows. Can run from the environ-
models with near and far pOinters. Includes ment or generate an executable file.
floating pOint emulator (utilizes 8087/80287 if [y' Links with relocatable object modules created
installed). using Borland's Turbo Prolog into a

~ Interactive Editor: The system includes a powerful, single program.
interactive full-screen text editor. If the compiler [y' ANSI C compatible. .
detects an error, the editor automatically pOSitions ~ Start-up routine ~ource ~ode Included ..
the cursor appropriately in the source code. ~ Both. co~mand line and Integrated environment

versions Included.

"Sieve" benchmark (25 iterations)

Turbo C Microsoft8 C Lattice C

Compile time 3.89 16.37 13.90

Compile and link time 9.94 29.06 27.79

Execution time 5.77 9.51 13.79

Object code size 274 297 301

Price $99.95 $450.00 $500.00

Benchmark run on a 6 Mhz IBM AT using Turbo.C version 1.0 and the Turbo Linker version 1.0; Microsoft C version 4.0 and the
MS overlay linker version 3.51; Lattice C version 3.1 and the MS object linker version 3.05.

Suggested Retail Price: $99.95* (not copy protected) 'Introductory offer good through July 1, 1987.

Minimum system configuration: IBM PC, XT, AT and true compatibles. PC-DOS (MS-DOS) 2.0 or later. One floppy drive. 320K

Turbo C and Turbo Pascal are registered trademarks and Turbo Prolog is a trademark of Borland
International, Inc. Microsoft C and MS-DOS ere registered trademarks of Microsoft Corp. Lattice C
is a registered trademark of Lattice, Inc. IBM, XT, and AT are registered trademarks of International
Business Machines Corp. BOR 0243

E"'EIA: "E B'frEI~
The solution to your most complex

equations-in seconds!
If you're a scientist, engineer, financial analyst, student, teacher, or any other professional working with
equations, Eureka: The Solver can do your Algebra, Trigonometry and Calculus problems in a snap.

Eureka also handles maximization and minimization problems, plots functions, generates reports, and
saves an incredible amount of time. Even if you're not a computer specialist, Eureka can help you
solve your real-world mathematical problems fast, without having to learn numerical approximation
techniques. Using Borland's famous pull-down menu design and context-sensitive help screens, Eureka
is easy to learn and easy to use-as simple as a hand-held calculator.

X + exp(X) = 10 solved instantly instead of eventually!
Imagine you have to "solve for X," where X + exp(X) = 10, and you don't have Eureka: The Solver.
What you do have is a problem, because it's going to take a lot of time guessing at "X." With Eureka,
there's no guessing, no dancing in the dark-you get the right answer, right now. (PS: X = 2.0705799,
and Eureka solved that one in .4 of a second!)

How to use Eureka: The Solver
It's easy.
1. Enter your equation into the

full-screen editor
2. Select the "Solve" command
3. Look at the answer
4. You're done

Some of Eureka's key features
You can key in:
S A formula or formulas
S A series of equations-and solve for

all variables
S Constraints (like X has to be

< or = 2)
S A function to plot
S Unit conversions
S Maximization and minimization problems
S Interest Rate/Present Value calculations
S Variables we call "What happens?," like

You can then tell Eureka to
• Evaluate your solution
• Plot a graph
• Generate a report, then send the output

to your printer, disk file or screen
• Or all of the above

Eureka: The Solver includes
S A full-screen editor
S Pull-down menus
S Context-sensitive Help
S On-screen calculator
S Automatic 8087 math co-processor

chip support
S Powerful financial functions
S Built-in and user-defined math and

financial functions
S Ability to generate reports complete with

plots and lists
"What happens if I change this Jariable to
21 and that variable to 27?"

S Polynomial finder
S Inequality solutions

Minimum system configuration: IBM PC. AT, XT, Portable.
3270 and true compatibles. PC-DOS (MS-DOS) 2.0 and
later. 384K.

Suggested Retail Price: $99.95·
(not copy protected)

Eureka: The Solver is a trademark of BorlClld International, Inc. IBM. AT. and XT are registered
trademarks of International Business Machiles Corp. MS-DOS is a registered trademark of
Microsoft Corp. Copyright 1987 Borland International BOR 0221A
'Introductory price expires July 1, 1987

.11,rlllfll® TIE IEBITI'
IJIJ Inl"~ : llSAIIIlBI Release 2.0

Macintosh'·

The most complete and comprehensive collection of
desk accessories available for your Macintosh!

Thousands of users already know that SideKick is the best collection of desk accessories available
for the Macintosh. With our new Release 2.0, the best just got better.

We've just added two powerful high-performance tools to SideKick-Outlook": The Outliner
and MacPlan'": The Spreadsheet. They work in perfect harmony with each other and while you
run other programs!

Out/ook: The Outliner
• It's the desk accessory with more power than a stand-alone outliner
• A great desktop publishing tool, Outlook lets you incorporate both text and graphics

into your outlines
• Works hand-in-hand with MacPlan
• Allows you to work on several outlines at the same time

MacPlan: The Spreadsheet
• Integrates spreadsheets and graphs
• Does both formulas and straight numbers
• Graph types include bar charts, stacked bar charts, pie charts and line graphs
• Includes 12 example templates free!
• Pastes graphics and data right into Outlook creating professional memos and reports, complete

with headers and footers.

SideKick: The Desktop Organizer,
Release 2.0 now includes

~ Outlook: The Outliner
~ MacPlan: The Spreadsheet
~ Mini word processor
~ Calendar
~ Phone Log
~ Analog clock
~ Alarm system
~ Calculator
~ Report generator
~ Telecommunications (new version now

supports XModem file transfer protocol)

• 1367~ Sa1l!~ I>.

015.94'£ Sale-sB

11129.61'£ TolalRtVfflUE-S

~ '"'
• IN: Expenses

o Q,319Q Labor

[]I" 4661G Matff'ub:

~ 6219i Ovtmud

(] 11.18'£ TollIlExpenas

El '"'
.'8.43'£ hf'tProfit

MacPlan does both spreadsheets and business
graphs. Paste them into your Outlook fifes and

generate professional reports.

Suggested Retail Price: $99.95 (not copy protected)
Minimum system configurations: Macintosh 512K or Macintosh Plus with one disk drive. One BOOK or two 400K drives are recommended.
With one 400K drive, a limited number of desk accessories will be instaliable per disk.

SideKick is a registered trademark and Outlook and MacPlan are trademarks 01 Borland
International, Inc. Macintosh is a trademark 01 Mcintosh Laboratory, Inc. licensed to Apple
Computer, Inc. Copyright 1987 Borland International BOR oo69D

I'~~IEI; ,., IA1AIA" r;,] • • AIABEI
The easy-to-use relational database that thinks like a spreadsheet.

Reflex for the Mac lets you crunch numbers by entering formulas and link
databases by drawing on-screen lines.

5 free ready-to-use templates are included on the examples disk:

• A sample 1040 tax application with Sched
ule A, Schedule B, and Schedule 0, each
contained in a separate report document.

• A portfolio analysis application with linked
databases of stock purchases, sales, and
dividend payments.

• A checkbook application.

• A client billing application set up for a law
office, but easily customized by any
professional who bills time.

• A parts explosion application that breaks
down an object into its component parts
for cost analysis.

Reflex lor the Mac accomplishes all of these tasks without programming-using
spreadsheet-like formulas. Some other Reflex for the Mac features are:

• Visual database design.
• "What you see is what you get" report and form layout

with pictures.
• Automatic restructuring 'of database files when data

types are changed, or fields are added and deleted.
• Display formats which include General, Decimal,

Scientific, Dollars, Percent.

• Data types which include variable length text, number,
integer, automatically incremented sequence number,
date, time, and logical.

• Up to 255 fields per record.
• Up to 16 files simultaneously open.
• Up to 16 Mac fonts and styles are selectable for

individual fields and labels .

., rile Edit Formot Detcrlbe Oelablle Search Mist Window
DlleBa.eO"erulew

r'''' lA==' I
components .Perts
Component Of

components I.foo!
ComponentOf 1.1eg 10--.. allembl

Mokl1sPor\

,spertl.toe
"PerU 5 •

After opening the "Overview" window, you
draw link lines between databases directly
onto your Macintosh screen.

The link lines you draw establish both
visual and electronic relationships between
your databases.

You can have multiple windows open
simultaneously to view all members of a
linked set-which are interactive and truly
relational.

Critic's Choice
" ... a powerful relational database ... uses a visual approach to information management." InloWorld

" ... gives you a lot of freedom in report design; you can even import graphics." A+ Magazine

" ... bridges the gap between the pretty programs and the power programs." Stewart Alsop, PC Letter

Suggested Retail Price: $99.95*
(not copy protected)

Minimum "",m conll,ur.,lon: Macirtosh 512K or Macintosh Plus with one disk drive. Second external drive recommended.

Reflex is a registered trademark of Borland! Analytica, Inc. Macintosh is a trademark of Mcintosh Laboratory, Inc. and is used with express permission of its owner.
Copyright 1987 Borland International

"Introductory price expires July 1, 1987

BOR0149A

The ultimate Pascal development environment

BDrland's new Turbo Pascal lor the Mac is so incredibly last that it can
compile 1,420 lines 01 source code in the 1.1 seconds it took you to read this!

And reading the rest of this takes about 5 minutes, which is plenty of time for Turbo Pascal for the Mac
to compile at least 60,000 more lines of source code!

Turbo Pascal lor the Mac does both Windows and "Units"
The separate compilation of routines offered by Turbo Pascal for the Mac creates modules called "Units,"
which can be linked to any Turbo Pascal program. This "modular pathway" gives you "pieces" which can
then be integrated into larger programs. You get a more efficient use of memory and a reduction in the
time it takes to develop large programs.

Turbo Pascal lor the Mac is so compatible with Lisae that they should be living together
Routines from Macintosh Programmer's Workshop Pascal and Inside Macintosh can be compiled and run
with only the subtlest changes. Turbo Pascal for the Mac is also compatible with the Hierarchical File
System of the Macintosh.

The 21-second Guide to Turbo Pascal for the Mac
• Compilation speed of more than 12,000 lines

per minute
• "Unit" structure lets you create programs in

modular form
• Multiple editing windows-up to 8 at once

Workshop Pascal (with minimal changes)
• Compatibility with Hierarchical File System of

your Mac
• Ability to define default volume and folder names

used in compiler directives
• Compilation options include compiling to disk or

memory, or compile and run
• Search and change features in the editor speed up

and simplify alteration of routines
• No need to switch between programs to compile

or run a program
• Ability to use all available Macintosh memory

without limit
• Streamlined development and debugging • "Units" included to call all the routines provided by
• Compatibility with Macintosh Programmer's Macintosh Toolbox

Suggested Retail Price: $99.95* (not copy protected)
"Introductory price expires July 1. 1987

Minimum system configuration: Macintosh 512K or Macintosh Plus with one disk drive.

BORLAND
INTERNATIONAL

Turbo Pascal and SideKick are registered trademarks of Borland International, Inc. and Reflex is a
registered trademark of Borland/ Analytica. Inc. MaCintosh is a trademark of Mcintosh Laboratories. Inc. licensed
to Apple Computer with its express permission. Lisa is a registered trademark of Apple Computer. tnc. Inside
Macintosh is a copyright of Apple Computer. Inc.
Copyright 1987 Borland International BOR 0167A

Borland
Software
OBDBll fODAY

-------- I'

J 4585 Scotts Valley Drive Scotts Valley, California 95066 'I'
I In , i
I To Orde~ I"'~' California, I'

By Credit call I'

I Card, ' ... ,' (800)
I (~:g) 742-1133 I

I 255-8008 In Canadacal/ '
(800) 237-1136 I'

I -------11
I

8OR0234 I

I

I

Turbo Prolog, the natural language of Artificial Intelligence,
is the most popular AI package in the world with more
than 100,000 users. Our new Turbo Prolog Toolbox

. extends its possibilities.

The Turbo Prolog Toolbox enhances Turbo Prolog-our 5th
generation computer programming language that brings supercomputer
power to your IBM PC and compatibles-with its more than 80 tools
and over 8,000 lines of source code that can be incorporated into your
programs, Quite easily.

Turbo Prolog Toolbox features include:
B Business graphics generation: boxes, circles, ellipses, bar

charts, pie charts, scaled graphics
B Complete communications package: supports XModem

protocol
B File transfers from Reflex," dBASE III," Lotus 1-2-3,"

Symphony"
B A unique parser generator: construct your own compiler or

Query language .
B ' Sophisticated user -interface design tools
B 40 example programs
B Easy-to-use screen editor: design your screen layout and I/O
B Calculated fields definition
B aver 8,000 lines of source code you can incorporate into

your own programs

Minimum system requirements: IBM PC, Xl, AT or true compatibles. PC-DOS (MS-DOS)
2.0 or later. Requires Turbo Prolog 1.10 or higher. Dual-floppy disk drive or hard disk. S12K.

Turbo Prolog Toolbox and Turbo Prolog are trademarks 01 Borland International, Inc. Rellex is a registered Irademark
of Borland/Analytica, Inc. dBASE III is a registered trademark 01 Ashton-Tate. Lotus 1-2-3 and Symphony are registered
trademarks of Lotus Development Corp. IBM, XT, and AT are registered trademarks of International Business Machines
Corp. MS-DOS is ~ registered trademark of Microsoft Corp. BOA 0239

