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Preface

Since the publication of the first edition of this book in 1989, the field of
nonlinear fiber optics has virtually exploded. A major factor behind such a
tremendous growth was the advent of fiber amplifiers, made by doping silica
or fluoride fibers with rare-earth ions such as erbium and neodymium. Such
amplifiers revolutionized the design of fiber-optic communication systems, in-
cluding those making use of optical solitons whose very existence stems from
the presence of nonlinear effects in optical fibers. Optical amplifiers permit
propagation of lightwave signals over thousands of kilometers as they can com-
pensate for all losses encountered by the signal in the optical domain. At the
same time, fiber amplifiers enable the use of massive wavelength-division mul-
tiplexing (WDM) and have led to the development of lightwave systems with
capacities exceeding 1 Tb/s. Nonlinear fiber optics plays an increasingly im-
portant role in the design of such high-capacity lightwave systems. In fact,
an understanding of various nonlinear effects occurring inside optical fibers is
almost a prerequisite for a lightwave-system designer.

The third edition is intended to bring the book up-to-date so that it remains
a unique source of comprehensive coverage on the subject of nonlinear fiber
optics. An attempt was made to include recent research results on all topics
relevant to the field of nonlinear fiber optics. Such an ambitious objective
increased the size of the book to the extent that it was necessary to split it
into two separate books. This book will continue to deal with the fundamental
aspects of nonlinear fiber optics. A second book Applications of Nonlinear
Fiber Optics is devoted to its applications; it is referred to as Part B in this text.

Nonlinear Fiber Optics, 3rd edition, retains most of the material that ap-
peared in the first edition, with the exception of Chapter 6, which is now de-
voted to the polarization effects relevant for light propagation in optical fibers.
Polarization issues have become increasingly more important, especially for
high-speed lightwave systems for which the phenomenon of polarization-mode
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dispersion (PMD) has become a limiting factor. It is thus necessary that stu-
dents learn about PMD and other polarization effects in a course devoted to
nonlinear fiber optics.

The potential readership is likely to consist of senior undergraduate stu-
dents, graduate students enrolled in the M. S. and Ph. D. degree programs, en-
gineers and technicians involved with the telecommunication industry, and sci-
entists working in the fields of fiber optics and optical communications. This
revised edition should continue to be a useful text for graduate and senior-level
courses dealing with nonlinear optics, fiber optics, or optical communications
that are designed to provide mastery of the fundamental aspects. Some uni-
versities may even opt to offer a high-level graduate course devoted to solely
nonlinear fiber optics. The problems provided at the end of each chapter should
be useful to instructors of such a course.

Many individuals have contributed, either directly or indirectly, to the com-
pletion of the third edition. I am thankful to all of them, especially to my stu-
dents whose curiosity led to several improvements. Several of my colleagues
have helped me in preparing the third edition. I thank them for reading drafts
and making helpful suggestions. I am grateful to many readers for their occa-
sional feedback. Last, but not least, I thank my wife, Anne, and my daughters,
Sipra, Caroline, and Claire, for understanding why I needed to spend many
weekends on the book instead of spending time with them.

Govind P. Agrawal

Rochester, NY



Chapter 1

Introduction

This introductory chapter is intended to provide an overview of the fiber char-
acteristics that are important for understanding the nonlinear effects discussed
in later chapters. Section 1.1 provides a historical perspective on the progress
in the field of fiber optics. Section 1.2 discusses various fiber properties such
as optical loss, chromatic dispersion, and birefringence. Particular attention is
paid to chromatic dispersion because of its importance in the study of nonlin-
ear effects probed by using ultrashort optical pulses. Section 1.3 introduces
various nonlinear effects resulting from the intensity dependence of the refrac-
tive index and stimulated inelastic scattering. Among the nonlinear effects that
have been studied extensively using optical fibers as a nonlinear medium are
self-phase modulation, cross-phase modulation, four-wave mixing, stimulated
Raman scattering, and stimulated Brillouin scattering. Each of these effects is
considered in detail in separate chapters. Section 1.4 gives an overview of how
the text is organized for discussing such a wide variety of nonlinear effects in
optical fibers.

1.1 Historical Perspective

Total internal reflection—the basic phenomenon responsible for guiding of
light in optical fibers—is known from the nineteenth century. The reader is
referred to a 1999 book for the interesting history behind the discovery of
this phenomenon [1]. Although uncladded glass fibers were fabricated in the
1920s [2]–[4], the field of fiber optics was not born until the 1950s when the
use of a cladding layer led to considerable improvement in the fiber charac-

1
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teristics [5]–[8]. The idea that optical fibers would benefit from a dielectric
cladding was not obvious and has a remarkable history [1].

The field of fiber optics developed rapidly during the 1960s, mainly for the
purpose of image transmission through a bundle of glass fibers [9]. These early
fibers were extremely lossy (loss >1000 dB/km) from the modern standard.
However, the situation changed drastically in 1970 when, following an earlier
suggestion [10], losses of silica fibers were reduced to below 20 dB/km [11].
Further progress in fabrication technology [12] resulted by 1979 in a loss of
only 0.2 dB/km in the 1.55-µm wavelength region [13], a loss level limited
mainly by the fundamental process of Rayleigh scattering.

The availability of low-loss silica fibers led not only to a revolution in the
field of optical fiber communications [14]–[17] but also to the advent of the
new field of nonlinear fiber optics. Stimulated Raman- and Brillouin-scattering
processes in optical fibers were studied as early as 1972 [18]–[20]. This work
stimulated the study of other nonlinear phenomena such as optically induced
birefringence, parametric four-wave mixing, and self-phase modulation [21]–
[25]. An important contribution was made in 1973 when it was suggested that
optical fibers can support soliton-like pulses as a result of an interplay between
the dispersive and nonlinear effects [26]. Optical solitons were observed in a
1980 experiment [27] and led to a number of advances during the 1980s in the
generation and control of ultrashort optical pulses [28]–[32]. The decade of the
1980s also saw the development of pulse-compression and optical-switching
techniques that exploited the nonlinear effects in fibers [33]–[40]. Pulses as
short as 6 fs were generated by 1987 [41]. Several reviews and books cover
the enormous progress made during the 1980s [42]–[52].

The field of nonlinear fiber optics continued to grow during the decade
of the 1990s. A new dimension was added when optical fibers were doped
with rare-earth elements and used to make amplifiers and lasers. Although
fiber amplifiers were made as early as 1964 [53], it was only after 1987 that
their development accelerated [54]. Erbium-doped fiber amplifiers attracted
the most attention because they operate in the wavelength region near 1.55 µm
and can be used for compensation of losses in fiber-optic lightwave systems
[55], [56]. Such amplifiers were used for commercial applications beginning
in 1995. Their use has led to a virtual revolution in the design of multichannel
lightwave systems [14]–[17].

The advent of fiber amplifiers also fueled research on optical solitons [57]–
[60] and led eventually to the concept of dispersion-managed solitons [61]–
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Figure 1.1 Schematic illustration of the cross section and the refractive-index profile
of a step-index fiber.

[63]. In another development, fiber gratings, first made in 1978 [64], were de-
veloped during the 1990s to the point that they became an integral part of light-
wave technology [65]. Nonlinear effects in fiber gratings and photonic-crystal
fibers have attracted considerable attention since 1996 [66]–[71]. Clearly, the
field of nonlinear fiber optics has grown considerably in the 1990s and is ex-
pected to do so during the twenty-first century. It has led to a number of ad-
vances important from the fundamental as well as the technological point of
view. The interest in nonlinear fiber optics should continue in view of the
development of the photonic-based technologies for information management.

1.2 Fiber Characteristics

In its simplest form, an optical fiber consists of a central glass core surrounded
by a cladding layer whose refractive index n2 is slightly lower than the core
index n1. Such fibers are generally referred to as step-index fibers to dis-
tinguish them from graded-index fibers in which the refractive index of the
core decreases gradually from center to core boundary [72]–[74]. Figure 1.1
shows schematically the cross section and refractive-index profile of a step-
index fiber. Two parameters that characterize an optical fiber are the relative
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core-cladding index difference

∆ =
n1�n2

n1
; (1.2.1)

and the so-called V parameter defined as

V = k0a(n2
1�n2

2)
1=2

; (1.2.2)

where k0 = 2π=λ , a is the core radius, and λ is the wavelength of light.
The V parameter determines the number of modes supported by the fiber.

Fiber modes are discussed in Section 2.2, where it is shown that a step-index
fiber supports a single mode if V < 2:405. Optical fibers designed to sat-
isfy this condition are called single-mode fibers. The main difference between
the single-mode and multimode fibers is the core size. The core radius a is
typically 25–30 µm for multimode fibers. However, single-mode fibers with
∆ � 0:003 require a to be < 5 µm. The numerical value of the outer radius b
is less critical as long as it is large enough to confine the fiber modes entirely.
A standard value of b = 62:5 µm is commonly used for both single-mode
and multimode fibers. Since nonlinear effects are mostly studied using single-
mode fibers, the term optical fiber in this text refers to single-mode fibers un-
less noted otherwise.

1.2.1 Material and Fabrication

The material of choice for low-loss optical fibers is pure silica glass synthe-
sized by fusing SiO2 molecules. The refractive-index difference between the
core and the cladding is realized by the selective use of dopants during the fab-
rication process. Dopants such as GeO2 and P2O5 increase the refractive index
of pure silica and are suitable for the core, while materials such as boron and
fluorine are used for the cladding because they decrease the refractive index of
silica. Additional dopants can be used depending on specific applications. For
example, to make fiber amplifiers and lasers, the core of silica fibers is codoped
with rare-earth ions using dopants such as ErCl3 and Nd2O3. Similarly, Al2O3
is sometimes added to control the gain spectrum of fiber amplifiers.

The fabrication of optical fibers involves two stages [75]. In the first stage,
a vapor-deposition method is used to make a cylindrical preform with the de-
sired refractive-index profile and the relative core-cladding dimensions. A typ-
ical preform is 1-m long with 2-cm diameter. In the second stage, the preform
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Figure 1.2 Schematic diagram of the MCVD process commonly used for fiber fabri-
cation. (After Ref. [75].)

is drawn into a fiber using a precision-feed mechanism that feeds it into a
furnace at a proper speed. During this process, the relative core-cladding di-
mensions are preserved. Both stages, preform fabrication and fiber drawing,
involve sophisticated technology to ensure the uniformity of the core size and
the index profile [75]–[77].

Several methods can be used for making a preform. The three commonly
used methods are modified chemical vapor deposition (MCVD), outside vapor
deposition (OVD), and vapor-phase axial deposition (VAD). Figure 1.2 shows
a schematic diagram of the MCVD process. In this process, successive layers
of SiO2 are deposited on the inside of a fused silica tube by mixing the va-
pors of SiCl4 and O2 at a temperature of � 1800ÆC. To ensure uniformity, the
multiburner torch is moved back and forth across the tube length. The refrac-
tive index of the cladding layers is controlled by adding fluorine to the tube.
When a sufficient cladding thickness has been deposited with multiple passes
of the torch, the vapors of GeCl4 or POCl3 are added to the vapor mixture to
form the core. When all layers have been deposited, the torch temperature is
raised to collapse the tube into a solid rod known as the preform.

This description is extremely brief and is intended to provide a general
idea. The fabrication of optical fibers requires attention to a large number of
technological details. The interested reader is referred to the extensive litera-
ture on this subject [75]–[77].

1.2.2 Fiber Losses

An important fiber parameter is a measure of power loss during transmission
of optical signals inside the fiber. If P0 is the power launched at the input of a
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Figure 1.3 Measured loss spectrum of a single-mode silica fiber. Dashed curve shows
the contribution resulting from Rayleigh scattering. (After Ref. [75].)

fiber of length L, the transmitted power PT is given by

PT = P0 exp(�αL) ; (1.2.3)

where the attenuation constant α is a measure of total fiber losses from all
sources. It is customary to express α in units of dB/km using the relation (see
Appendix A for an explanation of decibel units)

αdB =�
10
L

log

�
PT

P0

�
= 4:343α ; (1.2.4)

where Eq. (1.2.3) was used to relate αdB and α .
As one may expect, fiber losses depend on the wavelength of light. Figure

1.3 shows the loss spectrum of a silica fiber made by the MCVD process [75].
This fiber exhibits a minimum loss of about 0.2 dB/km near 1.55 µm. Losses
are considerably higher at shorter wavelengths, reaching a level of a few dB/km
in the visible region. Note, however, that even a 10-dB/km loss corresponds to
an attenuation constant of only α � 2� 10�5 cm�1, an incredibly low value
compared to that of most other materials.

Several factors contribute to the loss spectrum of Fig. 1.3, with material
absorption and Rayleigh scattering contributing dominantly. Silica glass has
electronic resonances in the ultraviolet (UV) region and vibrational resonances
in the far-infrared (FIR) region beyond 2 µm but absorbs little light in the
wavelength region 0.5–2 µm. However, even a relatively small amount of
impurities can lead to significant absorption in that wavelength window. From
a practical point of view, the most important impurity affecting fiber loss is the
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OH ion, which has a fundamental vibrational absorption peak at � 2:73 µm.
The overtones of this OH-absorption peak are responsible for the dominant
peak seen in Fig. 1.3 near 1.4 µm and a smaller peak near 1.23 µm. Special
precautions are taken during the fiber-fabrication process to ensure an OH-ion
level of less than one part in one hundred million [75]. In state-of-the-art fibers,
the peak near 1.4 µm can be reduced to below the 0.5-dB level. It virtually
disappears in especially prepared fibers [78]. Such fibers with low losses in
the entire 1.3–1.6 µm spectral region are useful for fiber-optic communications
and were available commercially by the year 2000 (e.g., all-wave fiber).

Rayleigh scattering is a fundamental loss mechanism arising from density
fluctuations frozen into the fused silica during manufacture. Resulting local
fluctuations in the refractive index scatter light in all directions. The Rayleigh-
scattering loss varies as λ�4 and is dominant at short wavelengths. As this loss
is intrinsic to the fiber, it sets the ultimate limit on fiber loss. The intrinsic loss
level (shown by a dashed line in Fig. 1.3) is estimated to be (in dB/km)

αR =CR=λ 4
; (1.2.5)

where the constant CR is in the range 0.7–0.9 dB/(km-µm4) depending on the
constituents of the fiber core. As αR = 0:12–0.15 dB/km near λ = 1:55 µm,
losses in silica fibers are dominated by Rayleigh scattering. In some glasses,
αR can be reduced to a level � 0:05 dB/km [79]. Such glasses may be useful
for fabricating ultralow-loss fibers.

Among other factors that may contribute to losses are bending of fiber and
scattering of light at the core-cladding interface [72]. Modern fibers exhibit a
loss of � 0:2 dB/km near 1.55 µm. Total loss of fiber cables used in optical
communication systems is slightly larger (by � 0:03 dB/km) because of splice
and cabling losses.

1.2.3 Chromatic Dispersion

When an electromagnetic wave interacts with the bound electrons of a dielec-
tric, the medium response, in general, depends on the optical frequency ω .
This property, referred to as chromatic dispersion, manifests through the fre-
quency dependence of the refractive index n(ω). On a fundamental level, the
origin of chromatic dispersion is related to the characteristic resonance fre-
quencies at which the medium absorbs the electromagnetic radiation through
oscillations of bound electrons. Far from the medium resonances, the refrac-
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Figure 1.4 Variation of refractive index n and group index ng with wavelength for
fused silica.

tive index is well approximated by the Sellmeier equation [72]

n2
(ω) = 1+

m

∑
j=1

B jω2
j

ω2
j �ω2 ; (1.2.6)

where ω j is the resonance frequency and Bj is the strength of jth resonance.
The sum in Eq. (1.2.6) extends over all material resonances that contribute
to the frequency range of interest. In the case of optical fibers, the parame-
ters Bj and ω j are obtained experimentally by fitting the measured dispersion
curves [80] to Eq. (1.2.6) with m = 3 and depend on the core constituents [74].
For bulk-fused silica, these parameters are found to be [81] B1 = 0:6961663,
B2 = 0:4079426, B3 = 0:8974794, λ1 = 0:0684043 µm, λ2 = 0:1162414 µm,
and λ3 = 9:896161 µm, where λ j = 2πc=ω j and c is the speed of light in
vacuum.

Fiber dispersion plays a critical role in propagation of short optical pulses
because different spectral components associated with the pulse travel at dif-
ferent speeds given by c=n(ω). Even when the nonlinear effects are not impor-
tant, dispersion-induced pulse broadening can be detrimental for optical com-
munication systems. In the nonlinear regime, the combination of dispersion
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Figure 1.5 Variation of β2 and d12 with wavelength for fused silica. The dispersion
parameter β2 = 0 near 1.27 µm.

and nonlinearity can result in a qualitatively different behavior, as discussed
in later chapters. Mathematically, the effects of fiber dispersion are accounted
for by expanding the mode-propagation constant β in a Taylor series about the
frequency ω0 at which the pulse spectrum is centered:

β (ω) = n(ω)
ω
c
= β0 +β1(ω�ω0)+

1
2

β2(ω�ω0)
2
+ � � � ; (1.2.7)

where

βm =

�
dmβ
dωm

�
ω=ω0

(m = 0;1;2; : : :): (1.2.8)

The parameters β1 and β2 are related to the refractive index n and its deriva-
tives through the relations

β1 =
1
vg

=
ng

c
=

1
c

�
n+ω

dn
dω

�
; (1.2.9)

β2 =
1
c

�
2

dn
dω

+ω
d2n
dω2

�
; (1.2.10)

where ng is the group index and vg is the group velocity. Physically speak-
ing, the envelope of an optical pulse moves at the group velocity while the
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Figure 1.6 Measured variation of dispersion parameter D with wavelength for a
single-mode fiber. (After Ref. [75].)

parameter β2 represents dispersion of the group velocity and is responsible for
pulse broadening. This phenomenon is known as the group-velocity dispersion
(GVD), and β2 is the GVD parameter.

Figures 1.4 and 1.5 show how n, ng, and β2 vary with wavelength λ in fused
silica using Eqs. (1.2.6), (1.2.9), and (1.2.10). The most notable feature is that
β2 vanishes at a wavelength of about 1.27 µm and becomes negative for longer
wavelengths. This wavelength is referred to as the zero-dispersion wavelength
and is denoted as λD. However, note that dispersion does not vanish at λ = λD.
Pulse propagation near this wavelength requires inclusion of the cubic term in
Eq. (1.2.7). The coefficient β3 appearing in that term is called the third-order-
dispersion (TOD) parameter. Such higher-order dispersive effects can distort
ultrashort optical pulses both in the linear [72] and nonlinear regimes [82].
Their inclusion is necessary only when the wavelength λ approaches λD to
within a few nanometers.

The curves shown in Figs. 1.4 and 1.5 are for bulk-fused silica. The dis-
persive behavior of actual glass fibers deviates from that shown in these figures
for the following two reasons. First, the fiber core may have small amounts of
dopants such as GeO2 and P2O5. Equation (1.2.6) in that case should be used
with parameters appropriate to the amount of doping levels [74]. Second, be-
cause of dielectric waveguiding, the effective mode index is slightly lower than
the material index n(ω) of the core, reduction itself being ω dependent [72]–
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Figure 1.7 Variation of dispersion parameter D with wavelength for three kinds of
fibers. Labels SC, DC, and QC stand for single-clad, double-clad, and quadruple-clad
fibers, respectively. (After Ref. [84].)

[74]. This results in a waveguide contribution that must be added to the mate-
rial contribution to obtain the total dispersion. Generally, the waveguide con-
tribution to β2 is relatively small except near the zero-dispersion wavelength
λD where the two become comparable. The main effect of the waveguide con-
tribution is to shift λD slightly toward longer wavelengths; λD � 1:31 µm for
standard fibers. Figure 1.6 shows the measured total dispersion of a single-
mode fiber [75]. The quantity plotted is the dispersion parameter D that is
commonly used in the fiber-optics literature in place of β2. It is related to β2
by the relation

D =
dβ1

dλ
=�

2πc
λ 2 β2 �

λ
c

d2n
dλ 2 : (1.2.11)

An interesting feature of the waveguide dispersion is that its contribution
to D (or β2) depends on fiber-design parameters such as core radius a and
core-cladding index difference ∆. This feature can be used to shift the zero-
dispersion wavelength λD in the vicinity of 1.55 µm where the fiber loss is
minimum. Such dispersion-shifted fibers [83] have found applications in opti-
cal communication systems. They are available commercially and are known
by names such as zero- and nonzero-dispersion-shifted fibers, depending on
whether D � 0 at 1.55 µm or not. Those fibers in which GVD is shifted to
the wavelength region beyond 1.6 µm exhibit a large positive value of β2.
They are called dispersion-compensating fibers (DCFs). The slope of the curve
in Fig. 1.6 (called the dispersion slope) is related to the TOD parameter β3.
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Fibers with reduced slope have been developed in recent years for wavelength-
division-multiplexing (WDM) applications.

It is possible to design dispersion-flattened optical fibers having low dis-
persion over a relatively large wavelength range 1.3–1.6 µm. This is achieved
by using multiple cladding layers. Figure 1.7 shows the measured dispersion
spectra for two such multiple-clad fibers having two (double-clad) and four
(quadruple-clad) cladding layers around the core applications. For compar-
ison, dispersion of a single-clad fiber is also shown by a dashed line. The
quadruply clad fiber has low dispersion (jDj � 1 ps/km-nm) over a wide wave-
length range extending from 1.25 to 1.65 µm. Waveguide dispersion can also
be used to make fibers for which D varies along the fiber length. An example
is provided by dispersion-decreasing fibers made by tapering the core diameter
along the fiber length [85], [86].

Nonlinear effects in optical fibers can manifest qualitatively different be-
haviors depending on the sign of the GVD parameter. For wavelengths such
that λ < λD, the fiber is said to exhibit normal dispersion as β2 > 0 (see Fig.
1.5). In the normal-dispersion regime, high-frequency (blue-shifted) compo-
nents of an optical pulse travel slower than low-frequency (red-shifted) com-
ponents of the same pulse. By contrast, the opposite occurs in the anomalous-
dispersion regime in which β2 < 0. As seen in Fig. 1.5, silica fibers exhibit
anomalous dispersion when the light wavelength exceeds the zero-dispersion
wavelength (λ > λD). The anomalous-dispersion regime is of considerable in-
terest for the study of nonlinear effects because it is in this regime that optical
fibers support solitons through a balance between the dispersive and nonlinear
effects.

An important feature of chromatic dispersion is that pulses at different
wavelengths propagate at different speeds inside a fiber because of a mismatch
in their group velocities. This feature leads to a walk-off effect that plays an
important role in the description of the nonlinear phenomena involving two or
more closely spaced optical pulses. More specifically, the nonlinear interac-
tion between two optical pulses ceases to occur when the faster moving pulse
completely walks through the slower moving pulse. This feature is governed
by the walk-off parameter d12 defined as

d12 = β1(λ1)�β1(λ2) = v�1
g (λ1)� v�1

g (λ2); (1.2.12)

where λ1 and λ2 are the center wavelengths of two pulses and β1 at these
wavelengths is evaluated using Eq. (1.2.9). For pulses of width T0, one can
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define the walk-off length LW by the relation

LW = T0 =jd12j: (1.2.13)

Figure 1.5 shows variation of d12 with λ2 for fused silica using Eq. (1.2.12)
with λ1 = 0:532 µm. In the normal-dispersion regime (β2 > 0), a longer-
wavelength pulse travels faster, while the opposite occurs in the anomalous-
dispersion region. For example, if a pulse at λ2 = 1:06 µm copropagates with
the pulse at λ1 = 0:532 µm, it will separate from the shorter-wavelength pulse
at a rate of about 80 ps/m. This corresponds to a walk-off length LW of only
25 cm for T0 = 20 ps. The group-velocity mismatch plays an important role
for nonlinear effects involving cross-phase modulation [47].

1.2.4 Polarization-Mode Dispersion

As discussed in Chapter 2, even a single-mode fiber is not truly single mode
because it can support two degenerate modes that are polarized in two or-
thogonal directions. Under ideal conditions (perfect cylindrical symmetry and
stress-free fiber), a mode excited with its polarization in the x direction would
not couple to the mode with the orthogonal y-polarization state. In real fibers,
small departures from cylindrical symmetry because of random variations in
core shape and stress-induced anisotropy result in a mixing of the two polar-
ization states by breaking the mode degeneracy. Mathematically, the mode-
propagation constant β becomes slightly different for the modes polarized in
the x and y directions. This property is referred to as modal birefringence. The
strength of modal birefringence is defined as [87]

Bm =
jβx�βyj

k0
= jnx�nyj; (1.2.14)

where nx and ny are the modal refractive indices for the two orthogonally po-
larized states. For a given value of Bm, the two modes exchange their powers
in a periodic fashion as they propagate inside the fiber with the period [87]

LB =
2π

jβx�βyj
=

λ
Bm

: (1.2.15)

The length LB is called the beat length. The axis along which the mode index
is smaller is called the fast axis because the group velocity is larger for light
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propagating in that direction. For the same reason, the axis with the larger
mode index is called the slow axis.

In standard optical fibers, Bm is not constant along the fiber but changes
randomly because of fluctuations in the core shape and anisotropic stress. As
a result, light launched into the fiber with a fixed state of polarization changes
its polarization in a random fashion. This change in polarization is typically
harmless for continuous-wave (CW) light because most photodetectors do not
respond to polarization changes of the incident light. It becomes an issue for
optical communication systems when short pulses are transmitted over long
lengths [15]. If an input pulse excites both polarization components, the two
components travel along the fiber at different speeds because of their differ-
ent group velocities. The pulse becomes broader at the output end because
group velocities change randomly in response to random changes in fiber bire-
fringence (analogous to a random-walk problem). This phenomenon, referred
to as polarization-mode dispersion (PMD), was studied extensively during the
1990s because of its importance for long-haul lightwave systems [88]–[98].

The extent of pulse broadening can be estimated from the time delay ∆T
occurring between the two polarization components during propagation of an
optical pulse. For a fiber of length L and constant birefringence Bm, ∆T is
given by

∆T =

���� L
vgx

�
L

vgy

����= Ljβ1x�β1yj= Lδβ1; (1.2.16)

where δβ1 = k0(dBm=dω) is related to fiber birefringence. Equation (1.2.16)
cannot be used directly to estimate PMD for standard telecommunication fibers
because of random changes in birefringence occurring along the fiber. These
changes tend to equalize the propagation times for the two polarization com-
ponents. In fact, PMD is characterized by the root-mean-square (RMS) value
of ∆T obtained after averaging over random perturbations. The variance of ∆T
is found to be [90]

σ 2
T = h(∆T )

2i= 2(∆0lc)
2
[exp(�L=lc)+L=lc�1]; (1.2.17)

where ∆0 is the intrinsic modal dispersion and the correlation length lc is de-
fined as the length over which two polarization components remain correlated;
typical values of lc are of the order of 10“ m. For L > 0:1 km, we can use
l c � L to find that

σT � ∆0

p
2lcL� Dp

p
L; (1.2.18)
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Figure 1.8 Variation of birefringence parameter B m with thickness d of the stress-
inducing element for four different polarization-preserving fibers. Different shapes of
the stress-applying elements (shaded region) are shown in the inset. (After Ref. [101].)

where Dp is the PMD parameter. For most fibers, values of Dp are in the range
0.1–1 ps/

p
km. Because of its

p
L dependence, PMD-induced pulse broad-

ening is relatively small compared with the GVD effects. However, PMD be-
comes a limiting factor for high-speed communication systems designed to op-
erate over long distances near the zero-dispersion wavelength of the fiber [92].

For some applications it is desirable that fibers transmit light without chang-
ing its state of polarization. Such fibers are called polarization-maintaining or
polarization-preserving fibers [99]–[104]. A large amount of birefringence is
introduced intentionally in these fibers through design modifications so that
relatively small birefringence fluctuations are masked by it and do not affect
the state of polarization significantly. One scheme breaks the cylindrical sym-
metry, making the fiber core elliptical in shape [104]. The degree of birefrin-
gence achieved by this technique is typically � 10�6. An alternative scheme
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Figure 1.9 Evolution of state of polarization along a polarization-maintaining fiber
when input signal is linearly polarized at 45Æ from the slow axis.

makes use of stress-induced birefringence and permits Bm � 10�4. In a widely
adopted design, two rods of borosilicate glass are inserted on the opposite sides
of the fiber core at the preform stage. The resulting birefringence depends
on the location and the thickness of the stress-inducing elements. Figure 1.8
shows how Bm varies with thickness d for four shapes of stress-inducing el-
ements located at a distance of five times the core radius [101]. Values of
Bm � 2� 10�4 can be achieved for d = 50–60 µm. Such fibers are often
named after the shape of the stress-inducing element, resulting in whimsical
names such as “panda” and “bow-tie” fibers.

The use of polarization-maintaining fibers requires identification of the
slow and fast axes before an optical signal can be launched into the fiber.
Structural changes are often made to the fiber for this purpose. In one scheme,
cladding is flattened in such a way that the flat surface is parallel to the slow
axis of the fiber. Such a fiber is called the “D fiber” after the shape of the
cladding [104] and makes axes identification relatively easy. When the polar-
ization direction of the linearly polarized light coincides with the slow or the
fast axis, the state of polarization remains unchanged during propagation. In
contrast, if the polarization direction makes an angle with these axes, polariza-
tion changes continuously along the fiber in a periodic manner with a period
equal to the beat length [see Eq. (1.2.15)]. Figure 1.9 shows schematically the
evolution of polarization over one beat length of a birefringent fiber. The state
of polarization changes over one-half of the beat length from linear to elliptic,
elliptic to circular, circular to elliptic, and then back to linear but is rotated by
90Æ from the incident linear polarization. The process is repeated over the re-
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maining half of the beat length such that the initial state is recovered at z = LB
and its multiples. The beat length is typically � 1 m but can be as small as
1 cm for a strongly birefringent fiber with Bm � 10�4.

1.3 Fiber Nonlinearities

The response of any dielectric to light becomes nonlinear for intense electro-
magnetic fields, and optical fibers are no exception. On a fundamental level,
the origin of nonlinear response is related to anharmonic motion of bound elec-
trons under the influence of an applied field. As a result, the total polarization
P induced by electric dipoles is not linear in the electric field E, but satisfies
the more general relation [105]–[108]

P = ε0

�
χ (1) �E+ χ (2) : EE+ χ (3) ... EEE+ � � �

�
; (1.3.1)

where ε0 is the vacuum permittivity and χ( j) ( j = 1;2; : : :) is jth order suscep-
tibility. In general, χ( j) is a tensor of rank j+1. The linear susceptibility χ(1)
represents the dominant contribution to P. Its effects are included through the
refractive index n and the attenuation coefficient α discussed in Section 1.2.
The second-order susceptibility χ(2) is responsible for such nonlinear effects as
second-harmonic generation and sum-frequency generation [106]. However,
it is nonzero only for media that lack an inversion symmetry at the molecu-
lar level. As SiO2 is a symmetric molecule, χ(2) vanishes for silica glasses.
As a result, optical fibers do not normally exhibit second-order nonlinear ef-
fects. Nonetheless, the electric-quadrupole and magnetic-dipole moments can
generate weak second-order nonlinear effects. Defects or color centers inside
the fiber core can also contribute to second-harmonic generation under certain
conditions (see Chapter 10).

1.3.1 Nonlinear Refraction

The lowest-order nonlinear effects in optical fibers originate from the third-
order susceptibility χ(3), which is responsible for phenomena such as third-
harmonic generation, four-wave mixing, and nonlinear refraction [106]. Un-
less special efforts are made to achieve phase matching, the nonlinear pro-
cesses that involve generation of new frequencies (e.g. third-harmonic gen-
eration and four-wave mixing) are not efficient in optical fibers. Most of the
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nonlinear effects in optical fibers therefore originate from nonlinear refraction,
a phenomenon referring to the intensity dependence of the refractive index. In
its simplest form, the refractive index can be written as

ñ(ω ; jEj2) = n(ω)+n2jEj
2
; (1.3.2)

where n(ω) is the linear part given by Eq. (1.2.6), jEj2 is the optical intensity
inside the fiber, and n2 is the nonlinear-index coefficient related to χ(3) by the
relation (see Section 2.3)

n2 =
3

8n
Re(χ (3)

xxxx); (1.3.3)

where Re stands for the real part and the optical field is assumed to be lin-
early polarized so that only one component χ(3)xxxx of the fourth-rank tensor
contributes to the refractive index. The tensorial nature of χ(3) can affect the
polarization properties of optical beams through nonlinear birefringence. Such
nonlinear effects are covered in Chapter 6.

The intensity dependence of the refractive index leads to a large number
of interesting nonlinear effects; the two most widely studied are self-phase
modulation (SPM) and cross-phase modulation (XPM). Self-phase modulation
refers to the self-induced phase shift experienced by an optical field during its
propagation in optical fibers. Its magnitude can be obtained by noting that the
phase of an optical field changes by

φ = ñk0L = (n+n2jEj
2
)k0L; (1.3.4)

where k0 = 2π=λ and L is the fiber length. The intensity-dependent nonlinear
phase shift φNL = n2k0LjEj2 is due to SPM. Among other things, SPM is
responsible for spectral broadening of ultrashort pulses [25] and formation of
optical solitons in the anomalous-dispersion regime of fibers [26].

Cross-phase modulation refers to the nonlinear phase shift of an optical
field induced by another field having a different wavelength, direction, or state
of polarization. Its origin can be understood by noting that the total electric
field E in Eq. (1.3.1) is given by

E =
1
2 x̂ [E1 exp(�iω1t)+E2 exp(�iω2t)+ c:c:] ; (1.3.5)

when two optical fields at frequencies ω1 and ω2, polarized along the x axis,
propagate simultaneously inside the fiber. (The abbreviation c.c. stands for
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complex conjugate.) The nonlinear phase shift for the field at ω1 is then given
by

φNL = n2k0L(jE1j
2
+2jE2j

2
); (1.3.6)

where we have neglected all terms that generate polarization at frequencies
other than ω1 and ω2 because of their non-phase-matched character. The two
terms on the right-hand side of Eq. (1.3.6) are due to SPM and XPM, respec-
tively. An important feature of XPM is that, for equally intense optical fields
of different wavelengths, the contribution of XPM to the nonlinear phase shift
is twice that of SPM. Among other things, XPM is responsible for asymmetric
spectral broadening of copropagating optical pulses. Chapters 6 and 7 discuss
the XPM-related nonlinear effects.

1.3.2 Stimulated Inelastic Scattering

The nonlinear effects governed by the third-order susceptibility χ(3) are elastic
in the sense that no energy is exchanged between the electromagnetic field and
the dielectric medium. A second class of nonlinear effects results from stimu-
lated inelastic scattering in which the optical field transfers part of its energy
to the nonlinear medium. Two important nonlinear effects in optical fibers fall
in this category; both of them are related to vibrational excitation modes of
silica. These phenomena, known as stimulated Raman scattering (SRS) and
stimulated Brillouin scattering (SBS), were among the first nonlinear effects
studied in optical fibers [18]–[20]. The main difference between the two is
that optical phonons participate in SRS while acoustic phonons participate in
SBS.

In a simple quantum-mechanical picture applicable to both SRS and SBS, a
photon of the incident field (called the pump) is annihilated to create a photon
at a lower frequency (belonging to the Stokes wave) and a phonon with the
right energy and momentum to conserve the energy and the momentum. Of
course, a higher-energy photon at the so-called anti-Stokes frequency can also
be created if a phonon of right energy and momentum is available. Even though
SRS and SBS are very similar in their origin, different dispersion relations
for acoustic and optical phonons lead to some basic differences between the
two. A fundamental difference is that SBS in optical fibers occurs only in the
backward direction whereas SRS can occur in both directions.

Although a complete description of SRS and SBS in optical fibers is quite
involved, the initial growth of the Stokes wave can be described by a simple
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relation. For SRS, this relation is given by

dIs

dz
= gRIpIs; (1.3.7)

where Is is the Stokes intensity, Ip is the pump intensity, and gR is the Raman-
gain coefficient. A similar relation holds for SBS with gR replaced by the
Brillouin-gain coefficient gB. Both gR and gB have been measured exper-
imentally for silica fibers. The Raman-gain spectrum is found to be very
broad, extending up to 30 THz [18]. The peak gain gR � 7� 10�14 m/W
at pump wavelengths near 1.5 µm and occurs for the Stokes shift of � 13 THz.
In contrast, the Brillouin-gain spectrum is extremely narrow, with a band-
width of <100 MHz. The peak value of Brillouin gain occurs for the Stokes
shift of �10 GHz for pump wavelengths near 1.5 µm. The peak gain is
� 6�10�11 m/W for a narrow-bandwidth pump [19] and decreases by a factor
of ∆νp=∆νB for a broad-bandwidth pump, where ∆νp is the pump bandwidth
and ∆νB is the Brillouin-gain bandwidth.

An important feature of SRS and SBS is that they exhibit a threshold-like
behavior, i.e., significant conversion of pump energy to Stokes energy occurs
only when the pump intensity exceeds a certain threshold level. For SRS in a
single-mode fiber with αL� 1, the threshold pump intensity is given by [20]

Ith
p � 16(α=gR): (1.3.8)

Typically Ith
p � 10 MW/cm2, and SRS can be observed at a pump power� 1 W.

A similar calculation for SBS shows that the threshold pump intensity is given
by [20]

Ith
p � 21(α=gB): (1.3.9)

As the Brillouin-gain coefficient gB is larger by nearly three orders of mag-
nitude compared with gR, typical values of SBS threshold are �1 mW. The
nonlinear phenomena of SRS and SBS are discussed in Chapters 8 and 9, re-
spectively.

1.3.3 Importance of Nonlinear Effects

Most measurements of the nonlinear-index coefficient n2 in silica fibers yield a
value in the range 2.2–3:4�10�20 m2/W (see Appendix B), depending on both
the core composition and whether the input polarization is preserved inside the
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fiber or not [109]. This value is small compared to most other nonlinear media
by at least two orders of magnitude. Similarly, the measurements of Raman-
and Brillouin-gain coefficients in silica fibers show that their values are smaller
by two orders of magnitude or more compared with other common nonlinear
media [47]. In spite of the intrinsically small values of the nonlinear coeffi-
cients in fused silica, the nonlinear effects in optical fibers can be observed at
relatively low power levels. This is possible because of two important char-
acteristics of single-mode fibers—a small spot size (mode diameter < 10 µm)
and extremely low loss (< 1 dB/km) in the wavelength range 1.0–1.6 µm.

A figure of merit for the efficiency of a nonlinear process in bulk media
is the product ILeff where I is the optical intensity and Leff is the effective
length of interaction region [110]. If light is focused to a spot of radius w0,
then I = P=(πw2

0), where P is the incident optical power. Clearly, I can be
increased by focusing the light tightly to reduce w0. However, this results
in a smaller Leff because the length of the focal region decreases with tight
focusing. For a Gaussian beam, Leff � πw2

0=λ , and the product

�
ILeff

�
bulk =

�
P

πw2
0

�
πw2

0

λ
=

P
λ

(1.3.10)

is independent of the spot size w0.
In single-mode fibers, spot size w0 is determined by the core radius a. Fur-

thermore, because of dielectric waveguiding, the same spot size can be main-
tained across the entire fiber length L. In this case, the interaction length Leff
is limited by the fiber loss α . Using I(z) = I0 exp(�αz), where I0 = P=(πw2

0)

and P is the optical power coupled into the fiber, the product I Leff becomes

�
ILeff

�
fiber =

Z L

0
I(z)exp(�αz)dz =

P
πw2

0α
[1� exp(�αL)]: (1.3.11)

A comparison of Eqs. (1.3.10) and (1.3.11) shows that, for sufficiently long
fibers, the efficiency of a nonlinear process in optical fibers can be improved
by a factor [110]

(ILeff)fiber

(ILeff)bulk
=

λ
πw2

0α
; (1.3.12)

where αL � 1 was assumed. In the visible region, the enhancement factor is
� 107 for λ = 0:53 µm, w0 = 2 µm, and α = 2:5� 10�5 cm�1 (10 dB/km).
In the wavelength region near 1.55 µm (α = 0:2 dB/km), the enhancement
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factor can approach 109. It is this tremendous enhancement in the efficiency
of the nonlinear processes that makes silica fibers a suitable nonlinear medium
for the observation of a wide variety of nonlinear effects at low power levels.
Relatively weak nonlinearity of silica fibers becomes an issue in applications
for which it is desirable to use a short fiber length (< 0:1 km). It is possible
to make fibers by using nonlinear materials for which n2 is larger than silica.
Optical fibers made with lead silicate glasses have n2 values larger by about
a factor of ten [111]. Even larger values (n2 = 4:2� 10�18 m2/W) have been
measured in chalcogenide-glass fibers [112]. Such fibers are attracting consid-
erable attention for making fiber devices such as amplifiers, tapers, switches,
and gratings, and are likely to become important for nonlinear fiber optics
[113]–[117].

1.4 Overview

This book is intended to provide a comprehensive account of the nonlinear
phenomena in optical fibers. The field of nonlinear fiber optics has grown to
the extent that its coverage requires two volumes. This volume covers fun-
damental aspects whereas a separate volume is devoted to device and system
applications. Broadly speaking, Chapters 1–3 provide the background mate-
rial and the mathematical tools needed for understanding the various nonlinear
effects. Chapters 4–7 discuss the nonlinear effects that lead to spectral and
temporal changes in an optical wave without changing its energy. Chapters
8–10 consider the nonlinear effects that generate new optical waves through
an energy transfer from the incident waves.

Chapter 2 provides the mathematical framework needed for a theoretical
understanding of the nonlinear phenomena in optical fibers. Starting from
Maxwell’s equations, the wave equation in a nonlinear dispersive medium is
used to discuss the fiber modes and to obtain a basic propagation equation sat-
isfied by the amplitude of the pulse envelope. The procedure emphasizes the
various approximations made in the derivation of this equation. The numeri-
cal methods used to solve the basic propagation equation are then discussed
with emphasis on the split-step Fourier method, also known as the beam-
propagation method.

Chapter 3 focus on the dispersive effects that occur when the incident
power and the fiber length are such that the nonlinear effects are negligible.
The main effect of GVD is to broaden an optical pulse as it propagates through
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the fiber. Such dispersion-induced broadening is considered for several pulse
shapes with particular attention paid to the effects of the frequency chirp im-
posed on the input pulse. The higher-order dispersive effects, important near
the zero-dispersion wavelength of fibers, are also discussed.

Chapter 4 considers the nonlinear phenomenon of SPM occurring as a re-
sult of the intensity dependence of the refractive index. The main effect of SPM
is to broaden the spectrum of optical pulses propagating through the fiber. The
pulse shape is also affected if SPM and GVD act together to influence the opti-
cal pulse. The features of SPM-induced spectral broadening with and without
the GVD effects are discussed in separate sections. The higher-order nonlinear
and dispersive effects are also considered.

Chapter 5 is devoted to the study of optical solitons, a topic that has drawn
considerable attention because of its fundamental nature as well as potential
applications for optical fiber communications. The modulation instability is
considered first to emphasize the importance of the interplay between the dis-
persive and nonlinear effects that can occur in the anomalous-GVD regime
of optical fibers. The fundamental and higher-order solitons are then intro-
duced together with the inverse scattering method used to solve the nonlinear
Schrödinger equation. Dark solitons are also discussed briefly. The last section
considers higher-order nonlinear and dispersive effects with emphasis on the
soliton decay.

Chapters 6 and 7 focuses on the XPM effects occurring when two optical
fields copropagate simultaneously and affect each other through the intensity
dependence of the refractive index. The XPM-induced nonlinear coupling can
occur not only when two beams of different wavelengths are incident on the
fiber but also through the interaction between the orthogonally polarized com-
ponents of a single beam in a birefringent fiber. The latter case is discussed
first in Chapter 6 by considering the nonlinear phenomena such as the optical
Kerr effect and birefringence-induced pulse shaping. Chapter 7 then focuses
on the case in which two optical beams at different wavelengths are launched
into the fiber. The XPM-induced coupling between the two beams can lead
to modulation instability even in the normal-dispersion regime of the fiber. It
can also lead to asymmetric spectral and temporal changes when the XPM
effects are considered in combination with the SPM and GVD effects. The
XPM-induced coupling between the counterpropagating waves is considered
next with emphasis on its importance for fiber-optic gyroscopes.

Chapter 8 considers SRS, a nonlinear phenomenon in which the energy
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from a pump wave is transferred to a Stokes wave (downshifted by about 13
THz) as the pump wave propagates through the optical fiber. This happens
only when the pump power exceeds a threshold level. The Raman gain and the
Raman threshold in silica fibers are discussed first. Two separate sections then
describe SRS for the case of a CW or quasi-CW pump and for the case of ultra-
short pump pulses. In the latter case a combination of SPM, XPM, and GVD
leads to new qualitative features. These features can be quite different depend-
ing on whether the pump and Raman pulses experience normal or anomalous
GVD. The case of anomalous GVD is considered in the last section with em-
phasis on fiber-Raman soliton lasers. The applications of SRS to optical fiber
communications are also discussed.

Chapter 9 is devoted to SBS, a nonlinear phenomenon that manifests in op-
tical fibers in a way similar to SRS, but with important differences. Stimulated
Brillouin scattering transfers a part of the pump energy to a counterpropagating
Stokes wave, downshifted in frequency by only an amount �10 GHz. Because
of the small bandwidth (�10 MHz) associated with the Brillouin gain, SBS
occurs efficiently only for a CW pump or pump pulses whose spectral width
is smaller than the gain bandwidth. The characteristics of the Brillouin gain
in silica fibers are discussed first. Chapter 9 then describes the theory of SBS
by considering important features such as the Brillouin threshold, pump de-
pletion, and gain saturation. The instabilities associated with SBS are also
discussed. The experimental results on SBS are described with emphasis on
fiber-Brillouin lasers and amplifiers. The last section is devoted to the impli-
cations of SBS for optical fiber communications.

Chapter 10 focuses on nonlinear parametric processes in which energy ex-
change among several optical waves occurs without an active participation
of the nonlinear medium. Parametric processes occur efficiently only when
a phase-matching condition is satisfied. This condition is relatively easy to
satisfy for a nonlinear process known as four-wave mixing. The parametric
gain associated with the four-wave-mixing process is obtained by consider-
ing nonlinear interaction among the four waves. The experimental results and
the phase-matching techniques used to obtain them are discussed in detail.
Parametric amplification is considered next together with its applications. The
last two sections are devoted to second-harmonic generation in photosensitive
fibers. The phenomenon of photosensitivity has attracted considerable atten-
tion during the 1990s because of its potential technological applications and is
used routinely to make fiber gratings.
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Problems

1.1 Calculate the propagation distance over which the injected optical power
is reduced by a factor of two for three fibers with losses of 0.2, 20, and
2000 dB/km. Also calculate the attenuation constant α (in cm�1) for the
three fibers.

1.2 A single-mode fiber is measured to have λ2
(d2n=dλ 2

) = 0:02 at 0.8 µm.
Calculate the dispersion parameters β2 and D.

1.3 Calculate the numerical values of β2 (in ps2/km) and D [in ps/(km-nm)]
at 1.5 µm when the modal index varies with wavelength as n(λ ) =

1:45� s(λ �1:3 µm)
3, where s = 0:003 µm�3.

1.4 A 1-km-long single-mode fiber with the zero-dispersion wavelength at
1.4 µm is measured to have D = 10 ps/(km-nm) at 1.55 µm. Two pulses
from Nd:YAG lasers operating at 1.06 and 1.32 µm are launched si-
multaneously into the fiber. Calculate the delay in the arrival time of
the two pulses at the fiber output assuming that β2 varies linearly with
wavelength over the range 1.0–1.6 µm.

1.5 Equation (1.3.2) is often written in the alternate form ñ(ω ; I) = n(ω)+

nI
2I, where I is the optical intensity. What is the relationship between

n2 and nI
2? Use it to obtain the value of n2 in units of m 2/V2 if nI

2 =

2:6�10�20 m2/W.
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Chapter 2

Pulse Propagation in Fibers

For an understanding of the nonlinear phenomena in optical fibers, it is neces-
sary to consider the theory of electromagnetic wave propagation in dispersive
nonlinear media. The objective of this chapter is to obtain a basic equation that
governs propagation of optical pulses in single-mode fibers. Section 2.1 intro-
duces Maxwell’s equations and important concepts such as the linear and non-
linear parts of the induced polarization and the frequency-dependent dielectric
constant. The concept of fiber modes is introduced in Section 2.2 where the
single-mode condition is also discussed. Section 2.3 considers the theory of
pulse propagation in nonlinear dispersive media in the slowly varying envelope
approximation with the assumption that the spectral width of the pulse is much
smaller than the frequency of the incident radiation. The numerical methods
used to solve the resulting propagation equation are discussed in Section 2.4.

2.1 Maxwell’s Equations

Like all electromagnetic phenomena, the propagation of optical fields in fibers
is governed by Maxwell’s equations. In the International System of Units
(Système international d’unités or SI), these equations are [1]

∇�E = �
∂B
∂ t

; (2.1.1)

∇�H = J+
∂D
∂ t

; (2.1.2)

∇ � D = ρ f ; (2.1.3)

31
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∇ � B = 0; (2.1.4)

where E and H are electric and magnetic field vectors, respectively, and D and
B are corresponding electric and magnetic flux densities. The current density
vector J and the charge density ρf represent the sources for the electromagnetic
field. In the absence of free charges in a medium such as optical fibers, J = 0
and ρ f = 0.

The flux densities D and B arise in response to the electric and magnetic
fields E and H propagating inside the medium and are related to them through
the constitutive relations given by [1]

D = ε0E+P; (2.1.5)

B = µ0H+M; (2.1.6)

where ε0 is the vacuum permittivity, µ0 is the vacuum permeability, and P
and M are the induced electric and magnetic polarizations. For a nonmagnetic
medium such as optical fibers, M = 0.

Maxwell’s equations can be used to obtain the wave equation that describes
light propagation in optical fibers. By taking the curl of Eq. (2.1.1) and using
Eqs. (2.1.2), (2.1.5), and (2.1.6), one can eliminate B and D in favor of E and
P and obtain

∇�∇�E =�
1
c2

∂ 2E
∂ t2 �µ0

∂ 2P
∂ t2 ; (2.1.7)

where c is the speed of light in vacuum and the relation µ0ε0 = 1=c2 was used.
To complete the description, a relation between the induced polarization P
and the electric field E is needed. In general, the evaluation of P requires a
quantum-mechanical approach. Although such an approach is often necessary
when the optical frequency is near a medium resonance, a phenomenological
relation of the form (1.3.1) can be used to relate P and E far from medium
resonances. This is the case for optical fibers in the wavelength range 0.5–
2 µm that is of interest for the study of nonlinear effects. If we include only
the third-order nonlinear effects governed by χ(3), the induced polarization
consists of two parts such that

P(r; t) = PL(r; t)+PNL(r; t); (2.1.8)

where the linear part PL and the nonlinear part PNL are related to the electric
field by the general relations [2]–[4]

PL(r; t) = ε0

Z ∞

�∞
χ (1)

(t� t 0) �E(r; t 0)dt0; (2.1.9)
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PNL(r; t) = ε0

Z Z Z ∞

�∞
χ (3)

(t� t1; t� t2; t� t3)
...

� E(r; t1)E(r; t2)E(r; t3)dt1dt2dt3: (2.1.10)

These relations are valid in the electric-dipole approximation and assume that
the medium response is local.

Equations (2.1.7)–(2.1.10) provide a general formalism for studying the
third-order nonlinear effects in optical fibers. Because of their complexity, it is
necessary to make several simplifying approximations. In a major simplifica-
tion, the nonlinear polarization PNL in Eq. (2.1.8) is treated as a small pertur-
bation to the total induced polarization. This is justified because the nonlinear
effects are relatively weak in silica fibers. The first step therefore consists of
solving Eq. (2.1.7) with PNL = 0. Because Eq. (2.1.7) is then linear in E, it is
useful to write in the frequency domain as

∇�∇� Ẽ(r;ω)� ε(ω)
ω2

c2 Ẽ(r;ω) = 0; (2.1.11)

where Ẽ(r;ω) is the Fourier transform of E(r; t) defined as

Ẽ(r;ω) =

Z ∞

�∞
E(r; t)exp(iωt)dt: (2.1.12)

The frequency-dependent dielectric constant appearing in Eq. (2.1.12) is
defined as

ε(ω) = 1+ χ̃ (1)
(ω); (2.1.13)

where χ̃ (1)
(ω) is the Fourier transform of χ(1)(t). As χ̃ (1)

(ω) is in general
complex, so is ε(ω). Its real and imaginary parts can be related to the refractive
index n(ω) and the absorption coefficient α(ω) by using the definition

ε = (n+ iαc=2ω)
2
: (2.1.14)

From Eqs. (2.1.13) and (2.1.14), n and α are related to χ(1) by the relations

n(ω) = 1+ 1
2Re[χ̃ (1)

(ω)]; (2.1.15)

α(ω) =
ω
nc

Im[χ̃ (1)
(ω)]; (2.1.16)

where Re and Im stand for the real and imaginary parts, respectively. The
frequency dependence of n and α has been discussed in Section 1.2.



34 Pulse Propagation in Fibers

Two further simplifications can be made before solving Eq. (2.1.11). First,
because of low optical losses in fibers in the wavelength region of interest, the
imaginary part of ε(ω) is small in comparison to the real part. Thus, we can
replace ε(ω) by n2

(ω) in the following discussion of fiber modes and include
fiber loss later in a perturbative manner. Second, as n(ω) is often independent
of the spatial coordinates in both the core and the cladding of step-index fibers,
one can use

∇�∇�E� ∇(∇ �E)�∇2E =�∇2E; (2.1.17)

where the relation ∇ �D = ε∇ �E = 0 was used from Eq. (2.1.3). With these
simplifications, Eq. (2.1.11) takes the form

∇2Ẽ+n2
(ω)

ω2

c2 Ẽ = 0: (2.1.18)

This equation is solved in the next section on fiber modes.

2.2 Fiber Modes

At any frequency ω , optical fibers can support a finite number of guided modes
whose spatial distribution Ẽ(r;ω) is a solution of the wave equation (2.1.18)
and satisfies all appropriate boundary conditions. In addition, the fiber can
support a continuum of unguided radiation modes. Although the inclusion of
radiation modes is crucial in problems involving transfer of power between
bounded and radiation modes [5], they do not play an important role in the
discussion of nonlinear effects. As fiber modes are covered in many text-
books [5]–[7], they are discussed only briefly in this section.

2.2.1 Eigenvalue Equation

Because of the cylindrical symmetry of fibers, it is useful to express the wave
equation (2.1.18) in cylindrical coordinates ρ ;φ ; and z:

∂ 2Ẽ
∂ρ2 +

1
ρ

∂ Ẽ
∂ρ

+
1

ρ2

∂ 2Ẽ
∂φ2 +

∂ 2Ẽ
∂ z2 +n2k2

0Ẽ = 0; (2.2.1)

where k0 = ω=c = 2π=λ and Ẽ is the Fourier transform of the electric field E,
i.e.,

E(r; t) =
1

2π

Z ∞

�∞
Ẽ(r;ω)exp(�iωt)dω : (2.2.2)
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Similar relations exist for the magnetic field H(r; t). As E and H satisfy
Maxwell’s equations (2.1.1)–(2.1.4), only two components out of six are inde-
pendent. It is customary to choose Ẽz and H̃z as the independent components
and express Ẽρ ; Ẽφ ; H̃ρ , and H̃φ in terms of Ẽz and H̃z. Both Ẽz and H̃z satisfy
Eq. (2.2.1). The wave equation for Ẽz is easily solved by using the method of
separation of variables, resulting in the following general form:

Ẽz(r;ω) = A(ω)F(ρ)exp(�imφ)exp(iβ z); (2.2.3)

where A is a normalization constant, β is the propagation constant, m is an
integer, and F(ρ) is the solution of

d2F
dρ2 +

1
ρ

dF
dρ

+

�
n2k2

0�β 2
�

m2

ρ2

�
F = 0; (2.2.4)

where the refractive index n = n1 for ρ � a for a fiber of core radius a but takes
the value n2 outside the core (ρ > a).

Equation (2.2.4) is the well-known differential equation for Bessel func-
tions. Its general solution inside the core can be written as

F(ρ) =C1Jm(κρ)+C2Nm(κρ); (2.2.5)

where Jm is the Bessel function, Nm is the Neumann function, and

κ = (n2
1k2

0�β 2
)

1=2
: (2.2.6)

The constants C1 and C2 are determined using the boundary conditions. As
Nm(κρ) has a singularity at ρ = 0, C2 = 0 for a physically meaningful solution.
The constant C1 can be absorbed in A appearing in Eq. (2.2.3). Thus,

F(ρ) = Jm(κρ); ρ � a: (2.2.7)

In the cladding region (ρ � a), the solution F(ρ) should be such that it decays
exponentially for large ρ . The modified Bessel function Km represents such a
solution. Therefore,

F(ρ) = Km(γρ); ρ � a; (2.2.8)

where
γ = (β 2

�n2
2k2

0)
1=2

: (2.2.9)
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The same procedure can be followed to obtain the magnetic field compo-
nent H̃z. The boundary condition that the tangential components of Ẽ and H̃
be continuous across the core-cladding interface requires thatẼz, H̃z, Ẽφ , and

H̃φ be the same when ρ = a is approached from inside or outside the core. The
equality of these field components at ρ = a leads to an eigenvalue equation
whose solutions determine the propagation constant β for the fiber modes.
Since the whole procedure is well known [5]–[7], we write the eigenvalue
equation directly:

�
J0

m(κa)
κJm(κa)

+
K0

m(γa)
γKm(γa)

��
J0

m(κa)
κJm(κa)

+
n2

2

n2
1

K0

m(γa)
γKm(γa)

�
=

�
mβ k0(n

2
1�n2

2)

an1κ2γ2

�2

;

(2.2.10)
where a prime denotes differentiation with respect to the argument and we used
the important relation

κ2
+ γ2

= (n2
1�n2

2)k
2
0: (2.2.11)

The eigenvalue equation (2.2.10) in general has several solutions for β for
each integer value of m. It is customary to express these solutions by βmn,
where both m and n take integer values. Each eigenvalue βmn corresponds
to one specific mode supported by the fiber. The corresponding modal field
distribution is obtained from Eq. (2.2.3). It turns out [5]–[7] that there are two
types of fiber modes, designated as HEmn and EHmn. For m = 0, these modes
are analogous to the transverse-electric (TE) and transverse-magnetic (TM)
modes of a planar waveguide because the axial component of the electric field,
or the magnetic field, vanishes. However, for m > 0, fiber modes become
hybrid, i.e., all six components of the electromagnetic field are nonzero.

2.2.2 Single-Mode Condition

The number of modes supported by a specific fiber at a given wavelength de-
pends on its design parameters, namely the core radius a and the core-cladding
index difference n1� n2. An important parameter for each mode is its cut-off
frequency. This frequency is determined by the condition γ = 0. The value
of κ when γ = 0 for a given mode determines the cut-off frequency from Eq.
(2.2.11). It is useful to define a normalized frequency V by the relation

V = κca = k0a(n2
1�n2

2)
1=2

; (2.2.12)

where κc is obtained from Eq. (2.2.11) by setting γ = 0.
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The eigenvalue equation (2.2.10) can be used to determine the values of
V at which different modes reach cut-off. The procedure is complicated, but
has been described in many texts [5]–[7]. Since we are interested mainly in
single-mode fibers, we limit the discussion to the cut-off condition that allows
the fiber to support only one mode. A single-mode fiber supports only the
HE11 mode, also referred to as the fundamental mode. All other modes are
beyond cut-off if the parameter V < Vc, where Vc is the smallest solution of
J0(Vc) = 0 or Vc � 2:405. The actual value of V is a critical design parameter.
Typically, microbending losses increase as V=Vc becomes small. In practice,
therefore, fibers are designed such that V is close to Vc. The cut-off wavelength
λc for single-mode fibers can be obtained by using k0 = 2π=λc and V = 2:405
in Eq. (2.2.12). For a typical value n1� n2 = 0:005 for the index difference,
λc = 1:2 µm for a = 4 µm, indicating that such a fiber supports a single mode
only for λ > 1:2 µm. In practice, core radius should be below 2 µm for a fiber
to support a single mode in the visible region.

2.2.3 Characteristics of the Fundamental Mode

The field distribution E(r; t) corresponding to the HE11 mode has three non-
zero components Eρ , Eφ , and Ez, or in Cartesian coordinates Ex, Ey, and Ez.
Among these, either Ex or Ey dominates. Thus, to a good degree of approxima-
tion, the fundamental fiber mode is linearly polarized in either x or y direction
depending on whether Ex or Ey dominates. In this respect, even a single-mode
fiber is not truly single mode because it can support two modes of orthogo-
nal polarizations. The notation LPmn is sometimes used to denote the linearly
polarized modes, which are approximate solutions of Eq. (2.2.1). The funda-
mental mode HE11 corresponds to LP01 in this notation [6].

The two orthogonally polarized modes of a single-mode fiber are degen-
erate (i.e., they have the same propagation constant) under ideal conditions.
In practice, irregularities such as random variations in the core shape and size
along the fiber length break this degeneracy slightly, mix the two polariza-
tion components randomly, and scramble the polarization of the incident light
as it propagates down the fiber. As discussed in Section 1.2.4, polarization-
preserving fibers can maintain the linear polarization if the light is launched
with its polarization along one of the principal axes of the fiber. Assuming that
the incident light is polarized along a principal axis (chosen to coincide with
the x axis), the electric field for the fundamental fiber mode HE11 is approxi-
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mately given by

Ẽ(r;ω) = x̂fA(ω)F(x;y)exp[iβ (ω)z]g; (2.2.13)

where A(ω) is a normalization constant. The transverse distribution inside the
core is found to be

F(x;y) = J0(κρ); ρ � a; (2.2.14)

where ρ = (x2
+ y2

)
1=2 is the radial distance. Outside the fiber core, the field

decays exponentially as [5]

F(x; y) = (a=ρ)1=2J0(κa)exp[�γ(ρ�a)]; ρ � a; (2.2.15)

where Km(γρ) in Eq. (2.2.8) was approximated by the leading term in its
asymptotic expansion and a constant factor was added to ensure the equality
of F(x; y) at ρ = a. The propagation constant β (ω) in Eq. (2.2.13) is ob-
tained by solving the eigenvalue equation (2.2.10). Its frequency dependence
results not only from the frequency dependence of n1 and n2 but also from the
frequency dependence of κ . The former is referred to as material dispersion
while the latter is called waveguide dispersion. As discussed in Section 1.3,
material dispersion generally dominates unless the light wavelength is close to
the zero-dispersion wavelength. The evaluation of β (ω) generally requires a
numerical solution of Eq. (2.2.10) although approximate analytic expressions
can be obtained in specific cases [5]. The effective mode index is related to β
by neff = β=k0.

As the use of modal distribution F(x;y) given by Eqs. (2.2.14) and (2.2.15)
is cumbersome in practice, the fundamental fiber mode is often approximated
by a Gaussian distribution of the form

F(x;y) � exp[�(x2
+ y2

)=w2
]; (2.2.16)

where the width parameter w is determined by fitting the exact distribution to
a Gaussian form or by following a variational procedure. Figure 2.1 shows the
dependence of w=a on the fiber parameter V defined by Eq. (2.2.12). The com-
parison of the actual field distribution with the fitted Gaussian is also shown
for a specific value V = 2:4. The quality of fit is generally quite good [8], par-
ticularly for V values in the neighborhood of 2. Figure 2.1 shows that w � a
for V = 2, indicating that the core radius provides a good estimate of w for
telecommunication fibers for which V � 2. Note that w can be significantly
larger than a for V < 1:8. The use of Gaussian approximation is of consider-
able practical value because of its relative simplicity.
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Figure 2.1 Variation of mode-width parameter w with V obtained by fitting the fun-
damental fiber mode to a Gaussian distribution. Traces on the right show the quality
of fit for V = 2:4. (After Ref. [8].)

2.3 Pulse-Propagation Equation

The study of most nonlinear effects in optical fibers involves the use of short
pulses with widths ranging from �10 ns to 10 fs. When such optical pulses
propagate inside a fiber, both dispersive and nonlinear effects influence their
shape and spectrum. In this section we derive a basic equation that governs
propagation of optical pulses in nonlinear dispersive fibers. The starting point
is the wave equation (2.1.7). By using Eqs. (2.1.8) and (2.1.17), it can be
written in the form

∇2E�
1
c2

∂ 2E
∂ t2 = µ0

∂ 2PL

∂ t2 +µ0
∂ 2PNL

∂ t2 ; (2.3.1)

where the linear and nonlinear parts of the induced polarization are related to
the electric field E(r; t) through Eqs. (2.1.9) and (2.1.10), respectively.

2.3.1 Nonlinear Pulse Propagation

It is necessary to make several simplifying assumptions before solving Eq.
(2.3.1). First, PNL is treated as a small perturbation to PL. This is justified
because nonlinear changes in the refractive index are < 10�6 in practice. Sec-
ond, the optical field is assumed to maintain its polarization along the fiber
length so that a scalar approach is valid. This is not really the case, unless
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polarization-maintaining fibers are used, but the approximation works quite
well in practice; it will be relaxed later in Chapter 6. Third, the optical field
is assumed to be quasi-monochromatic, i.e., the pulse spectrum, centered at
ω 0, is assumed to have a spectral width ∆ω such that ∆ω=ω0 � 1. Since
ω 0 � 1015 s�1, the last assumption is valid for pulses as short as 0.1 ps. In the
slowly varying envelope approximation adopted here, it is useful to separate
the rapidly varying part of the electric field by writing it in the form

E(r; t) = 1
2 x̂[E(r; t)exp(�iω0t)+ c:c:]; (2.3.2)

where x̂ is the polarization unit vector, and E(r; t) is a slowly varying function
of time (relative to the optical period). The polarization components PL and
PNL can also be expressed in a similar way by writing

PL(r; t) =
1
2 x̂[PL(r; t)exp(�iω0t)+ c:c:]; (2.3.3)

PNL(r; t) =
1
2 x̂[PNL(r; t)exp(�iω0t)+ c:c:]: (2.3.4)

The linear component PL can be obtained by substituting Eq. (2.3.3) in Eq.
(2.1.9) and is given by

PL(r; t) = ε0

Z ∞

�∞
χ (1)

xx (t� t 0)E(r; t 0)exp[iω0(t� t 0)]dt0

=
ε0

2π

Z ∞

�∞
χ̃ (1)

xx (ω)Ẽ(r;ω�ω0)exp[�i(ω�ω0)t]dω ; (2.3.5)

where Ẽ(r;ω) is the Fourier transform of E(r; t) and is defined similarly to Eq.
(2.1.12).

The nonlinear component PNL(r; t) is obtained by substituting Eq. (2.3.4)
in Eq. (2.1.10). Considerable simplification occurs if the nonlinear response is
assumed to be instantaneous so that the time dependence of χ(3) in Eq. (2.1.10)
is given by the product of three delta functions of the form δ (t� t1). Equation
(2.1.10) then reduces to

PNL(r; t) = ε0χ (3) ... E(r; t)E(r; t)E(r; t): (2.3.6)

The assumption of instantaneous nonlinear response amounts to neglecting
the contribution of molecular vibrations to χ(3) (the Raman effect). In gen-
eral, both electrons and nuclei respond to the optical field in a nonlinear man-
ner. The nuclei response is inherently slower compared with the electronic
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response. For silica fibers the vibrational or Raman response occurs over a
time scale 60–70 fs. Thus, Eq. (2.3.6) is approximately valid for pulse widths
>1 ps. The Raman contribution is included later in this section.

When Eq. (2.3.2) is substituted in Eq. (2.3.6), PNL(r; t) is found to have
a term oscillating at ω 0 and another term oscillating at the third-harmonic
frequency 3ω 0. The latter term requires phase matching and is generally neg-
ligible in optical fibers. By making use of Eq. (2.3.4), PNL(r; t) is given by

PNL(r; t) � ε0εNLE(r; t); (2.3.7)

where the nonlinear contribution to the dielectric constant is defined as

εNL =
3
4 χ (3)

xxxxjE(r; t)j2: (2.3.8)

To obtain the wave equation for the slowly varying amplitude E(r; t), it is
more convenient to work in the Fourier domain. This is generally not possible
as Eq. (2.3.1) is nonlinear because of the intensity dependence of εNL. In one
approach, ε NL is treated as a constant during the derivation of the propagation
equation [9], [10]. The approach is justified in view of the slowly varying
envelope approximation and the perturbative nature of PNL. Substituting Eqs.
(2.3.2)–(2.3.4) in Eq. (2.3.1), the Fourier transform Ẽ(r;ω�ω0), defined as

Ẽ(r;ω �ω0) =

Z ∞

�∞
E(r; t)exp[i(ω�ω0)t]dt; (2.3.9)

is found to satisfy the Helmholtz equation

∇2Ẽ + ε(ω)k2
0Ẽ = 0; (2.3.10)

where k0 = ω=c and
ε(ω) = 1+ χ̃ (1)

xx (ω)+ εNL (2.3.11)

is the dielectric constant whose nonlinear part εNL is given by Eq. (2.3.8).
Similar to Eq. (2.1.14), the dielectric constant can be used to define the refrac-
tive index ñ and the absorption coefficient α̃ . However, both ñ and α̃ become
intensity dependent because of εNL. It is customary to introduce

ñ = n+n2jEj
2
; α̃ = α +α2jEj

2
: (2.3.12)

Using ε = (ñ + iα̃=2k0)
2 and Eqs. (2.3.8) and (2.3.11), the nonlinear-index

coefficient n2 and the two-photon absorption coefficient α2 are given by

n2 =
3
8n

Re(χ (3)
xxxx); α2 =

3ω0

4nc
Im(χ (3)

xxxx): (2.3.13)
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The linear index n and the absorption coefficient α are related to the real and
imaginary parts of χ̃ (1)

xx as in Eqs. (2.1.15) and (2.1.16). As α2 is relatively
small for silica fibers, it is often ignored. The parameter n2 should not be
confused with the cladding index of Section 2.2 even though the same notation
has been used. From here onward, n2 is a measure of the fiber nonlinearity.

Equation (2.3.10) can be solved by using the method of separation of vari-
ables. If we assume a solution of the form

Ẽ(r;ω �ω0) = F(x;y)Ã(z;ω �ω0)exp(iβ0z); (2.3.14)

where Ã(z;ω) is a slowly varying function of z and β 0 is the wave number
to be determined later, Eq. (2.3.10) leads to the following two equations for
F(x;y) and Ã(z;ω):

∂ 2F
∂x2 +

∂ 2F
∂y2 +[ε(ω)k2

0� β̃ 2
]F = 0; (2.3.15)

2iβ0
∂ Ã
∂ z

+(β̃ 2
�β 2

0 )Ã = 0: (2.3.16)

In obtaining Eq. (2.3.16), the second derivative ∂2Ã=∂ z2 was neglected since
Ã(z;ω) is assumed to be a slowly varying function of z. The wave number β̃
is determined by solving the eigenvalue equation (2.3.15) for the fiber modes
using a procedure similar to that used in Section 2.2. The dielectric constant
ε(ω) in Eq. (2.3.15) can be approximated by

ε = (n+∆n)2
� n2

+2n∆n; (2.3.17)

where ∆n is a small perturbation given by

∆n = n2jEj
2
+

iα̃
2k0

: (2.3.18)

Equation (2.3.15) can be solved using first-order perturbation theory [11].
We first replace ε with n2 and obtain the modal distribution F(x;y), and the
corresponding wave number β (ω). For a single-mode fiber, F(x;y) corre-
sponds to the modal distribution of the fundamental fiber mode HE11 given by
Eqs. (2.2.14) and (2.2.15), or by the Gaussian approximation (2.2.16). We then
include the effect of ∆n in Eq. (2.3.15). In the first-order perturbation theory,
∆n does not affect the modal distribution F(x;y). However, the eigenvalue β̃
becomes

β̃ (ω) = β (ω)+∆β ; (2.3.19)
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where

∆β =
k0

RR ∞
�∞ ∆njF(x;y)j2 dxdyRR ∞
�∞ jF(x;y)j2 dxdy

: (2.3.20)

This step completes the formal solution of Eq. (2.3.1) to the first order in
perturbation PNL. Using Eqs. (2.3.2) and (2.3.12), the electric field E(r; t) can
be written as

E(r; t) = 1
2 x̂fF(x;y)A(z; t)exp[i(β0z�ω0t)]+ c:c:g; (2.3.21)

where A(z; t) is the slowly varying pulse envelope. The Fourier transform
Ã(z;ω�ω0) of A(z; t) satisfies Eq. (2.3.16), which can be written as

∂ Ã
∂ z

= i[β (ω)+∆β �β0]Ã; (2.3.22)

where we used Eq. (2.3.19) and approximated β̃ 2� β 2
0 by 2β0(β̃ � β0). The

physical meaning of this equation is clear. Each spectral component within the
pulse envelope acquires, as it propagates down the fiber, a phase shift whose
magnitude is both frequency and intensity dependent.

At this point, one can go back to the time domain by taking the inverse
Fourier transform of Eq. (2.3.22), and obtain the propagation equation for
A(z; t). However, as an exact functional form of β (ω) is rarely known, it is
useful to expand β (ω) in a Taylor series about the carrier frequency ω0 as

β (ω) = β0 +(ω�ω0)β1 +
1
2(ω�ω0)

2β2 +
1
6 (ω�ω0)

3β3 + � � � ; (2.3.23)

where

βm =

�
dmβ
dωm

�
ω=ω0

(m = 1;2; : : :): (2.3.24)

The cubic and higher-order terms in this expansion are generally negligible
if the spectral width ∆ω � ω0. Their neglect is consistent with the quasi-
monochromatic assumption used in the derivation of Eq. (2.3.22). If β2� 0 for
some specific values of ω0 (in the vicinity of the zero-dispersion wavelength
of the fiber, as discussed in Section 1.3.3), it may be necessary to include the
cubic term. We substitute Eq. (2.3.23) in Eq. (2.3.22) and take the inverse
Fourier transform by using

A(z; t) =
1

2π

Z ∞

�∞
Ã(z;ω�ω0)exp[�i(ω�ω0)t]dω : (2.3.25)
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During the Fourier-transform operation, ω�ω0 is replaced by the differential
operator i(∂=∂ t). The resulting equation for A(z; t) becomes

∂A
∂ z

=�β1
∂A
∂ t
�

iβ2

2
∂ 2A
∂ t2 + i∆βA: (2.3.26)

The term with ∆β includes the effect of fiber loss and nonlinearity. By using
Eqs. (2.3.18) and (2.3.20), ∆β can be evaluated and substituted in (2.3.26).
The result is

∂A
∂ z

+β1
∂A
∂ t

+
iβ2

2
∂ 2A
∂ t2 +

α
2

A = iγ jAj2A; (2.3.27)

where the nonlinear parameter γ is defined as

γ =
n2ω0

cAeff
: (2.3.28)

In obtaining Eq. (2.3.27) the pulse amplitude A is assumed to be normal-
ized such that jAj2 represents the optical power. The quantity γ jAj2 is then
measured in units of m�1 if n2 is expressed in units of m2/W (see Appendix
B). The parameter Aeff is known as the effective core area and is defined as

Aeff =

�RR ∞
�∞ jF(x;y)j2dxdy

�2

RR ∞
�∞ jF(x;y)j4dxdy

: (2.3.29)

Its evaluation requires the use of modal distribution F(x;y) for the fundamen-
tal fiber mode. Clearly Aeff depends on fiber parameters such as the core ra-
dius and the core-cladding index difference. If F(x;y) is approximated by a
Gaussian distribution as in Eq. (2.2.16), Aeff = πw2. The width parameter w
depends on the fiber parameters and can be obtained using Fig. 2.1 and Eq.
(2.2.12). Typically, Aeff can vary in the range 20–100 µm2 in the 1.5-µm re-
gion depending on the fiber design. As a result, γ takes values in the range
1–10 W�1/km if n2 � 2:6�10�20 m2/W is used (see Appendix B). In a large-
effective-area fiber (LEAF), Aeff is increased intentionally to reduce the impact
of fiber nonlinearity.

Equation (2.3.27) describes propagation of picosecond optical pulse in
single-mode fibers. It is often referred to as the nonlinear Schrödinger (NLS)
equation because it can be reduced to that form under certain conditions. It
includes the effects of fiber losses through α , of chromatic dispersion through
β1 and β2, and of fiber nonlinearity through γ . The physical significance of
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the parameters β1 and β2 has been discussed in Section 1.2.3. Briefly, the
pulse envelope moves at the group velocity vg � 1=β1 while the effects of
group-velocity dispersion (GVD) are governed by β2. The GVD parameter
β2 can be positive or negative depending on whether the wavelength λ is be-
low or above the zero-dispersion wavelength λD of the fiber (see Fig. 1.5). In
the anomalous-dispersion regime (λ > λ D), β2 is negative, and the fiber can
support optical solitons. In standard silica fibers, β2 � 50 ps2/km in the visi-
ble region but becomes close to �20 ps2/km near wavelengths � 1:5 µm, the
change in sign occurring in the vicinity of 1.3 µm.

2.3.2 Higher-Order Nonlinear Effects

Although the propagation equation (2.3.27) has been successful in explaining
a large number of nonlinear effects, it may need modification depending on the
experimental conditions. For example, Eq. (2.3.27) does not include the effects
of stimulated inelastic scattering such as SRS and SBS (see Section 1.3.2). If
peak power of the incident pulse is above a threshold level, both SRS and SBS
can transfer energy from the pulse to a new pulse, which may propagate in the
same or the opposite direction. The two pulses interact with each other through
the Raman or Brillouin gain and XPM. A similar situation occurs when two
or more pulses at different wavelengths (separated by more than individual
spectral widths) are incident on the fiber. Simultaneous propagation of multi-
ple pulses is governed by a set of equations similar to Eq. (2.3.27), modified
suitably to include the contributions of XPM and the Raman or Brillouin gain.

Equation (2.3.27) should also be modified for ultrashort optical pulses
whose width is close to or < 1 ps [12]–[22]. The spectral width of such
pulses becomes large enough that several approximations made in the deriva-
tion of Eq. (2.3.27) become questionable. The most important limitation turns
out to be the neglect of the Raman effect. For pulses with a wide spectrum
(> 0:1 THz), the Raman gain can amplify the low-frequency components of a
pulse by transferring energy from the high-frequency components of the same
pulse. This phenomenon is called intrapulse Raman scattering. As a result of
it, the pulse spectrum shifts toward the low-frequency (red) side as the pulse
propagates inside the fiber, a phenomenon referred to as the self-frequency
shift [12]. The physical origin of this effect is related to the delayed nature of
the Raman (vibrational) response [13]. Mathematically, Eq. (2.3.6) cannot be
used in the derivation of Eq. (2.3.27); one must use the general form of the
nonlinear polarization given in Eq. (2.1.10).
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The starting point is again the wave equation (2.3.1). Equation (2.1.10) de-
scribes a wide variety of third-order nonlinear effects, and not all of them are
relevant to our discussion. For example, nonlinear phenomena such as third-
harmonic generation and four-wave mixing are unlikely to occur unless an
appropriate phase-matching condition is satisfied (see Chapter 10). Nonres-
onant, incoherent (intensity-dependent) nonlinear effects can be included by
assuming the following functional form for the third-order susceptibility [17]:

χ (3)
(t� t1; t� t2; t� t3) = χ (3)R(t� t1)δ (t� t2)δ (t� t3); (2.3.30)

where R(t) is the nonlinear response function normalized in a manner similar
to the delta function, i.e.,

R ∞
�∞ R(t)dt = 1. By substituting Eq. (2.3.30) in Eq.

(2.1.10) the nonlinear polarization is given by

PNL(r; t) = ε0χ (3)E(r; t)
Z t

�∞
R(t� t1)jE(r; t1)j

2 dt1; (2.3.31)

where it is assumed that the electric field and the induced polarization vectors
point along the same direction. The upper limit of integration in Eq. (2.3.31)
extends only up to t because the response function R(t� t1) must be zero for
t1 > t to ensure causality.

The analysis of Section 2.3.1 can still be used by working in the frequency
domain. Using Eqs. (2.3.2)–(2.3.4), Ẽ is found to satisfy [18]

∇2Ẽ + n2
(ω)k2

0Ẽ =�ik0α + χ (3)ω2

c2

Z Z ∞

�∞
R̃(ω�ω1)

� Ẽ(ω1;z)Ẽ(ω2;z)Ẽ
�

(ω1 +ω2�ω ;z)dω1dω2; (2.3.32)

where R̃(ω) is the Fourier transform of R(t). As before, one can treat the terms
on the right-hand side as a small perturbation and first obtain the modal distri-
bution by neglecting them. The effect of perturbation terms is to change the
propagation constant for the fundamental mode by ∆β as in Eq. (2.3.19) but
with a different expression for ∆β . One can then define the slowly varying am-
plitude A(z; t) as in Eq. (2.3.21) and obtain, after some algebra, the following
equation for pulse evolution inside a single-mode fiber [18]:

∂A
∂ z

+
α
2

A+β1
∂A
∂ t

+
iβ2

2
∂ 2A
∂ t2 �

β3

6
∂ 3A
∂ t3

= iγ
�

1+
i

ω0

∂
∂ t

��
A(z; t)

Z ∞

�∞
R(t 0)jA(z; t� t 0)j2dt0

�
; (2.3.33)
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Figure 2.2 Temporal variation of the Raman response function h R(t) obtained by
using the actual Raman-gain spectrum of silica fibers. (After Ref. [16].)

where γ is the nonlinear parameter as defined in Eq. (2.3.28). In general, the
effective core area Aeff is also a function of ω because the mode distribution
F(x;y) is frequency dependent. However, the variation of Aeff over the pulse
spectrum is typically negligible and can be included in a straightforward man-
ner [19]. The time derivative appearing on the right-hand side of Eq. (2.3.33)
results when Eq. (2.3.4) is used in Eq. (2.1.7) and the first-order time deriva-
tive of PNL is retained in the analysis used for ultrashort pulses. This term is
responsible for self-steepening and shock formation at a pulse edge and has
been discussed extensively since 1967 [23]–[37]. This term also includes the
nonlinear energy loss resulting from intrapulse Raman scattering. Equation
(2.3.33) may be valid even when the slowly varying envelope approximation
does not hold and can be used for pulses as short as a few optical cycles if
enough higher-order dispersive terms are included [36], [37].

The response function R(t) should include both the electronic and vibra-
tional (Raman) contributions. Assuming that the electronic contribution is
nearly instantaneous, the functional form of R(t) can be written as [16]–[21]

R(t) = (1� fR)δ (t)+ fRhR(t); (2.3.34)

where fR represents the fractional contribution of the delayed Raman response
to nonlinear polarization PNL. The Raman response function hR(t) is responsi-
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ble for the Raman gain whose spectrum is given by

gR(∆ω) =
ω0

cn0
fRχ (3)Im[h̃R(∆ω)]; (2.3.35)

where ∆ω = ω �ω0 and Im stands for the imaginary part. The real part of
h̃R(∆ω) can be obtained from the imaginary part by using the Kramers–Kronig
relations [3]. The Fourier transform of h̃R(∆ω) then provides the Raman re-
sponse function hR(t). Figure 2.2 shows the temporal variation of hR(t) ob-
tained by using the experimentally measured spectrum (see Fig. 8.1) of the
Raman gain in silica fibers [16].

Attempts have been made to determine an approximate analytic form of the
Raman response function. In view of the damped oscillations seen in Fig. 2.2,
a useful form is [17]

hR(t) =
τ2

1 + τ2
2

τ1τ2
2

exp(�t=τ2)sin(t=τ1): (2.3.36)

The parameters τ1 and τ2 are two adjustable parameters and are chosen to
provide a good fit to the actual Raman-gain spectrum. Their appropriate values
are τ1 = 12:2 fs and τ2 = 32 fs [17]. The fraction fR can also be estimated from
Eq. (2.3.35). By using the known numerical value of peak Raman gain fR is
estimated to be about 0.18 [16]–[18].

Equation (2.3.33) together with the response function R(t) given by Eq.
(2.3.34) governs evolution of ultrashort pulses in optical fibers. Its accuracy
has been verified by showing that it preserves the number of photons during
pulse evolution if fiber loss is ignored by setting α = 0 [18]. The pulse energy
is not conserved in the presence of intrapulse Raman scattering because a part
of the pulse energy is absorbed by silica molecules. Equation (2.3.33) includes
this source of nonlinear loss. It is easy to see that it reduces to the simpler
equation obtained in Section 2.3.1 [Eq. (2.3.27)] for optical pulses much longer
than the time scale of the Raman response function hR(t) because R(t) for
such pulses is replaced by the delta function δ (t). Noting that hR(t) becomes
nearly zero for t > 1 ps (see Fig. 2.2), this replacement is valid for picosecond
pulses having widths much greater than 1 ps. As the higher-order dispersion
term (involving β3) and the shock term (involving ω0) are negligible for such
pulses, Eq. (2.3.33) reduces to Eq. (2.3.27).

For pulses shorter than 5 ps but wide enough to contain many optical cycles
(widths � 10 fs), we can simplify Eq. (2.3.33) using a Taylor-series expansion
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such that

jA(z; t� t 0)j2 � jA(z; t)j2� t 0
∂
∂ t
jA(z; t)j2: (2.3.37)

This approximation is reasonable if the pulse envelope evolves slowly along
the fiber. Defining the first moment of the nonlinear response function as

TR �

Z ∞

�∞
tR(t)dt = fR

Z ∞

�∞
t hR(t)dt = fR

d(Im h̃R)

d(∆ω)

����
∆ω=0

; (2.3.38)

and noting that
R ∞

0 R(t)dt = 1, Eq. (2.3.33) can be approximated by

∂A
∂ z

+
α
2

A+
iβ2

2
∂ 2A
∂T 2 �

β3

6
∂ 3A
∂T 3

= iγ
�
jAj2A+

i
ω0

∂
∂T

(jAj2A)�TRA
∂ jAj2

∂T

�
; (2.3.39)

where a frame of reference moving with the pulse at the group velocity vg (the
so-called retarded frame) is used by making the transformation

T = t� z=vg � t�β1z: (2.3.40)

A second-order term involving the ratio TR=ω0 was neglected in arriving at Eq.
(2.3.39) because of its smallness.

It is easy to identify the origin of the last three higher-order terms in Eq.
(2.3.39). The term proportional to β 3 results from including the cubic term
in the expansion of the propagation constant in Eq. (2.3.23). This term gov-
erns the effects of third-order dispersion and becomes important for ultrashort
pulses because of their wide bandwidth [30]. The term proportional to ω�1

0
results from including the first derivative of PNL. It is responsible for self-
steepening and shock formation [23]–[37]. The last term proportional to TR in
Eq. (2.3.39) has its origin in the delayed Raman response, and is responsible
for the self-frequency shift [12] induced by intrapulse Raman scattering. By
using Eqs. (2.3.35) and (2.3.38), TR can be related to the slope of the Raman
gain spectrum [13] that is assumed to vary linearly with frequency in the vicin-
ity of the carrier frequency ω0. Its numerical value has recently been deduced
experimentally [38], resulting in TR = 3 fs at wavelengths � 1:55 µm. For
pulses shorter than 1 ps, the Raman gain does not vary linearly over the entire
pulse bandwidth, and the use of Eq. (2.3.39) becomes questionable for such
short pulses. In practice, one may still be able to use it if TR is treated as a
fitting parameter.
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For pulses of width T0 > 5 ps, the parameters (ω0T0)
�1 and TR=T0 become

so small (< 0:001) that the last two terms in Eq. (2.3.39) can be neglected. As
the contribution of the third-order dispersion term is also quite small for such
pulses (as long as the carrier wavelength is not too close to the zero-dispersion
wavelength), one can use the simplified equation

i
∂A
∂ z

+
iα
2

A�
β2

2
∂ 2A
∂T 2 + γ jAj2A = 0: (2.3.41)

This equation can also be obtained from Eq. (2.3.27) by using the transforma-
tion given in Eq. (2.3.40). In the special case of α = 0, Eq. (2.3.41) is referred
to as the NLS equation because it resembles the Schrödinger equation with a
nonlinear potential term (variable z playing the role of time). To extend the
analogy further, Eq. (2.3.39) is called the generalized (or extended) NLS equa-
tion. The NLS equation is a fundamental equation of nonlinear science and
has been studied extensively in the context of solitons [39]–[46].

Equation (2.3.41) is the simplest nonlinear equation for studying third-
order nonlinear effects in optical fibers. If the peak power associated with an
optical pulse becomes so large that one needs to include the fifth and higher-
order terms in Eq. (1.3.1), the NLS equation needs to be modified. A simple
approach replaces the nonlinear parameter γ in Eq. (2.3.41) by

γ =
γ0A

1+bsjAj2
� γ0(1�bsjAj

2
); (2.3.42)

where bs is the saturation parameter governing the power level at which the
nonlinearity begins to saturate. For silica fibers, bsjAj2 � 1 in most practi-
cal situations, and one can use Eq. (2.3.41). If the peak intensity approaches
1 GW/cm2, one can use the approximation γ = γ0(1�bsjAj2) in Eq. (2.3.41).
The resulting equation is often called the cubic-quintic (or quintic) NLS equa-
tion [45] because it contains terms involving both the third and fifth powers of
the amplitude A. For the same reason, Eq. (2.3.41) is referred to as the cubic
NLS equation. Fibers made by using materials with larger values of n2 (such
as silicate and chalcogenide fibers) are likely to exhibit the saturation effects
at a lower peak-power level. Equation (2.3.42) may be more relevant for such
fibers. It should also be useful for optical fibers whose core is doped with high-
nonlinearity materials such as organic dyes [47] and semiconductors [48].

Equation (2.3.41) appears in optics in several different contexts. For ex-
ample, the same equation holds for propagation of CW beams in planar wave-
guides when the variable T is interpreted as the spatial coordinate. The β2
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term in Eq. (2.3.41) then governs beam diffraction in the plane of the waveg-
uide. This analogy between “diffraction in space” and “dispersion in time” is
often exploited to advantage since the same equation governs the underlying
physics.

2.4 Numerical Methods

The NLS equation [Eq. (2.3.39) or (2.3.41)] is a nonlinear partial differen-
tial equation that does not generally lend itself to analytic solutions except
for some specific cases in which the inverse scattering method [39] can be
employed. A numerical approach is therefore often necessary for an under-
standing of the nonlinear effects in optical fibers. A large number of numer-
ical methods can be used for this purpose [49]–[64]. These can be classified
into two broad categories known as: (i) the finite-difference methods; and (ii)
the pseudospectral methods. Generally speaking, pseudospectral methods are
faster by up to an order of magnitude to achieve the same accuracy [57]. The
one method that has been used extensively to solve the pulse-propagation prob-
lem in nonlinear dispersive media is the split-step Fourier method [51], [52].
The relative speed of this method compared with most finite-difference schemes
can be attributed in part to the use of the finite-Fourier-transform (FFT) algo-
rithm [65]. This section describes various numerical techniques used to study
the pulse-propagation problem in optical fibers with emphasis on the split-step
Fourier method and its modifications.

2.4.1 Split-Step Fourier Method

To understand the philosophy behind the split-step Fourier method, it is useful
to write Eq. (2.3.39) formally in the form

∂A
∂ z

= (D̂+ N̂)A; (2.4.1)

where D̂ is a differential operator that accounts for dispersion and absorption
in a linear medium and N̂ is a nonlinear operator that governs the effect of fiber
nonlinearities on pulse propagation. These operators are given by

D̂ = �
iβ2

2
∂ 2

∂T 2 +
β3

6
∂ 3

∂T 3 �
α
2
; (2.4.2)
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N̂ = iγ
�
jAj2 +

i
ω0

1
A

∂
∂T

(jAj2A)�TR
∂ jAj2

∂T

�
: (2.4.3)

In general, dispersion and nonlinearity act together along the length of the fiber.
The split-step Fourier method obtains an approximate solution by assuming
that in propagating the optical field over a small distance h, the dispersive and
nonlinear effects can be pretended to act independently. More specifically,
propagation from z to z+ h is carried out in two steps. In the first step, the
nonlinearity acts alone, and D̂ = 0 in Eq. (2.4.1). In the second step, dispersion
acts alone, and N̂ = 0 in Eq. (2.4.1). Mathematically,

A(z+h;T )� exp(hD̂)exp(hN̂)A(z;T ): (2.4.4)

The exponential operator exp(hD̂) can be evaluated in the Fourier domain us-
ing the prescription

exp(hD̂)B(z;T ) = F�1
T exp[hD̂(iω)]FT B(z;T ); (2.4.5)

where FT denotes the Fourier-transform operation, D̂(iω) is obtained from
Eq. (2.4.2) by replacing the differential operator ∂=∂T by iω , and ω is the
frequency in the Fourier domain. As D̂(iω) is just a number in the Fourier
space, the evaluation of Eq. (2.4.5) is straightforward. The use of the FFT al-
gorithm [65] makes numerical evaluation of Eq. (2.4.5) relatively fast. It is for
this reason that the split-step Fourier method can be faster by up to two orders
of magnitude compared with most finite-difference schemes [57].

To estimate the accuracy of the split-step Fourier method, we note that a
formally exact solution of Eq. (2.4.1) is given by

A(z+h;T ) = exp[h(D̂+ N̂)]A(z;T ); (2.4.6)

if N̂ is assumed to be z independent. At this point, it is useful to recall the
Baker–Hausdorff formula [66] for two noncommuting operators â andb̂,

exp(â)exp(b̂) = exp

�
â+ b̂+

1
2
[â; b̂]+

1
12

[â� b̂; [â; b̂]]+ � � �

�
; (2.4.7)

where [â; b̂] = âb̂� b̂â. A comparison of Eqs. (2.4.4) and (2.4.6) shows that the
split-step Fourier method ignores the noncommutating nature of the operators
D̂ and N̂. By using Eq. (2.4.7) with â = hD̂ and b̂ = hN̂, the dominant error
term is found to result from the single commutator 1

2 h2
[D̂; N̂]. Thus, the split-

step Fourier method is accurate to second order in the step size h.
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Figure 2.3 Schematic illustration of the symmetrized split-step Fourier method used
for numerical simulations. Fiber length is divided into a large number of segments
of width h. Within a segment, the effect of nonlinearity is included at the midplane
shown by a dashed line.

The accuracy of the split-step Fourier method can be improved by adopting
a different procedure to propagate the optical pulse over one segment from z
to z+h. In this procedure Eq. (2.4.4) is replaced by

A(z+h;T )� exp

�
h
2

D̂

�
exp

�Z z+h

z
N̂(z0)dz0

�
exp

�
h
2

D̂

�
A(z;T ): (2.4.8)

The main difference is that the effect of nonlinearity is included in the middle
of the segment rather than at the segment boundary. Because of the symmetric
form of the exponential operators in Eq. (2.4.8), this scheme is known as the
symmetrized split-step Fourier method [67]. The integral in the middle expo-
nential is useful to include the z dependence of the nonlinear operatorN̂. If the
step size h is small enough, it can be approximated by exp(hN̂), similar to Eq.
(2.4.4). The most important advantage of using the symmetrized form of Eq.
(2.4.8) is that the leading error term results from the double commutator in Eq.
(2.4.7) and is of third order in the step size h. This can be verified by applying
Eq. (2.4.7) twice in Eq. (2.4.8).

The accuracy of the split-step Fourier method can be further improved by
evaluating the integral in Eq. (2.4.8) more accurately than approximating it by
hN̂(z). A simple approach is to employ the trapezoidal rule and approximate
the integral by [68]

Z z+h

z
N̂(z0)dz0 �

h
2
[N̂(z)+ N̂(z+h)]: (2.4.9)



54 Pulse Propagation in Fibers

However, the implementation of Eq. (2.4.9) is not simple because N̂(z + h)
is unknown at the midsegment located at z + h=2. It is necessary to follow
an iterative procedure that is initiated by replacingN̂(z+h) by N̂(z). Equation
(2.4.8) is then used to estimate A(z+h;T ) which in turn is used to calculate the
new value of N̂(z+h). Although the iteration procedure is time-consuming, it
can still reduce the overall computing time if the step size h can be increased
because of the improved accuracy of the numerical algorithm. Two iterations
are generally enough in practice.

The implementation of the split-step Fourier method is relatively straight-
forward. As shown in Fig. 2.3, the fiber length is divided into a large number of
segments that need not be spaced equally. The optical pulse is propagated from
segment to segment using the prescription of Eq. (2.4.8). More specifically, the
optical field A(z;T ) is first propagated for a distance h=2 with dispersion only
using the FFT algorithm and Eq. (2.4.5). At the midplane z+h=2, the field is
multiplied by a nonlinear term that represents the effect of nonlinearity over
the whole segment length h. Finally, the field is propagated the remaining dis-
tance h=2 with dispersion only to obtain A(z+h;T ). In effect, the nonlinearity
is assumed to be lumped at the midplane of each segment (dashed lines in Fig.
2.3).

The split-step Fourier method has been applied to a wide variety of optical
problems including wave propagation in atmosphere [67], [68], graded-index
fibers [69], semiconductor lasers [70], unstable resonators [71], and waveguide
couplers [72], [73]. It is referred to as the beam-propagation method when
applied to the propagation of CW optical beams in nonlinear media where
dispersion is replaced by diffraction [69]–[73].

For the specific case of pulse propagation in optical fibers, the split-step
Fourier method was first applied in 1973 [40]. Its use has become widespread
since then [74]–[91] because of its fast execution compared with most finite-
difference schemes [51]. Although the method is relatively straightforward
to implement, it requires that step sizes in z and T be selected carefully to
maintain the required accuracy. In particular, it is necessary to monitor the
accuracy by calculating the conserved quantities such as the pulse energy (in
the absence of absorption) along the fiber length. The optimum choice of step
sizes depends on the complexity of the problem. Although a few guidelines
are available [92]–[97], it may sometimes be necessary to repeat the calcula-
tion by reducing the step size to ensure the accuracy of numerical simulations.
The time window should be wide enough to ensure that the pulse energy re-
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mains confined within the window. Typically, window size is 10–20 times
the pulse width. In some problems, a part of the pulse energy may spread so
rapidly that it may be difficult to prevent it from hitting the window bound-
ary. This can lead to numerical instabilities as the energy reaching one edge
of the window automatically reenters from the other edge (the use of the FFT
algorithm implies periodic boundary conditions). It is common to use an “ab-
sorbing window” in which the radiation reaching window edges is artificially
absorbed even though such an implementation does not preserve the pulse en-
ergy. In general, the split-step Fourier method is a powerful tool provided care
is taken to ensure that it is used properly.

2.4.2 Finite-Difference Methods

Although the split-step Fourier method is commonly used for analyzing non-
linear effects in optical fibers, its use becomes quite time-consuming when
the NLS equation is solved for simulating the performance of wavelength-
division-multiplexed (WDM) lightwave systems. In such systems, the tempo-
ral resolution should be a small fraction of the entire bandwidth of the WDM
signal. For a 100-channel system, the bandwidth approaches 10 THz, requir-
ing a temporal resolution of �10 fs. At the same time, the temporal window
should be typically 1–10-ns wide, resulting in more than 105 mesh points in
time domain. Even though each FFT operation is relatively fast, a large num-
ber of FFT operations on a large-size array leads to an overall computation
time measured in hours (even days) on some of the fastest computers available
in 1999. For this reason, there has been renewed interest in finite-difference
methods in recent years.

Several different finite-difference schemes have been used to solve the
NLS equations [57], [64]; some of the common ones are the Crank–Nicholson
scheme and its variants, the hopscotch scheme and its variants, and the leap-
frog method. A careful comparison of several finite-difference schemes with
the split-step Fourier method shows that the latter is efficient only when the
field amplitude varies slowly with time [64]. However, it is difficult to recom-
mend a specific finite-difference scheme because the speed and accuracy de-
pend to some extent on the number and form of the nonlinear terms included
in the generalized NLS equation. A linearized Crank–Nicolson scheme can be
faster by more than a factor of five under certain conditions.

Another situation in which finite-difference schemes are useful corresponds
to propagation of ultrashort optical pulses whose width is so short that the pulse



56 Pulse Propagation in Fibers

contains only a few optical cycles. The slowly varying envelope approxima-
tion does not always hold for such short pulses. In recent years attempts have
been made to relax this approximation, and many new numerical techniques
have been proposed [96]–[104]. Some of these techniques require the use of
a finite-difference method in place of the split-step Fourier method. Finite-
difference techniques for solving the paraxial wave equation have developed
in parallel with the split-step Fourier method and are sometimes the method
of choice. They can be extended beyond the validity of the paraxial approx-
imation by using techniques such as the Lanczos orthogonalization [99] and
the Padé approximation [104]. Other extensions include algorithms that can
handle bidirectional beam propagation [103]. Most of these techniques have
been developed in the context of beam propagation in planar waveguides, but
they can be readily adopted for pulse propagation in optical fibers.

There are several limitations inherent in the use of the NLS equation for
pulse propagation in optical fibers. The slowly varying envelope approxima-
tion has already been mentioned. Another one is related to the fact that back-
ward propagating waves are totally ignored. If the fiber has a built-in index
grating, a part of the pulse energy will be reflected backward because of Bragg
diffraction. Such problems require simultaneous consideration of forward and
backward propagating waves. The other major limitation is related to the ne-
glect of the vector nature of the electromagnetic fields. In essence, polarization
effects are completely ignored. As was seen in Section 1.2.4, optical fibers
exhibit birefringence. The inclusion of the birefringence effects requires con-
sideration of all components of electric and magnetic field vectors.

In the case of a linear medium, the algorithms that solve Maxwell’s equa-
tions [Eqs. (2.1.1)–(2.1.4)] directly in the time domain by using finite-difference
methods have been developed for many years [105]–[109]. Such algorithms
have now been extended to the case of nonlinear media [110]–[115]. The de-
layed nature of nonlinear response was incorporated by using Eqs. (2.3.31)
and (2.3.34) together with the functional form of the Raman response function
given in Eq. (2.3.36). Conceptually, the main difference between the finite-
difference time-domain (FDTD) method and the split-step Fourier method is
that the former deals with all electromagnetic components without eliminat-
ing the carrier frequency ω0 in contrast with what was done in Section 2.3 in
deriving the NLS equation.

The FDTD method is certainly more accurate because it solves Maxwell’s
equations directly with a minimum number of approximations. However, im-



Problems 57

provement in accuracy is achieved only at the expense of a vast increase in
the computational effort. This can be understood by noting that the time step
needed to resolve the optical carrier is by necessity a fraction of the optical
period and should often be < 1 fs. The step size along the fiber length is also
required to be a fraction of the optical wavelength. It may be necessary to
use this method for ultrashort pulses (T0 <10 fs) whose width is comparable
to the optical period. In most applications of nonlinear fiber optics, pulses are
much wider than the optical period, and Eq. (2.3.33) and its approximate forms
such as Eq. (2.3.41) provide a reasonably accurate solution of the underlying
Maxwell’s equations.

Problems

2.1 Use Maxwell’s equations to express the field components Eρ , Eφ , Hρ ,
and Hφ inside the fiber core in terms of Ez and Hz. Neglect the nonlinear
part of the polarization in Eq. (2.1.8) for simplicity.

2.2 Derive eigenvalue equation (2.2.10) by matching the boundary condi-
tions at the core-cladding interface of a step-index fiber. Consult Refer-
ences [5]–[7] if necessary.

2.3 Use the eigenvalue equation (2.2.10) to derive the single-mode condition
in optical fibers.

2.4 A single-mode fiber has an index step of 0.005. Calculate the core radius
if the fiber has a cut-off wavelength of 1 µm. Assume a core index of
1.45.

2.5 Derive an expression for the confinement factor Γ of single-mode fibers
defined as the fraction of the total mode power contained inside the fiber
core. Use the Gaussian approximation made in Eq. (2.2.16) for the fun-
damental fiber mode.

2.6 Estimate the full width at half maximum (FWHM) of the spot size asso-
ciated with the fiber mode and the fraction of the mode power inside the
core when the fiber of Problem 2.4 is used to transmit 1.3-µm light.

2.7 Derive Eq. (2.3.7) from Eq. (2.3.6). Explain the origin of the factor 3
4 in

the definition of εNL. Verify that Eq. (2.3.13) for n2 follows from it.
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2.8 Solve Eq. (2.3.15) by using perturbation theory to obtain the first-order
correction for the propagation constant when εNL is small. Show that
this correction is given by Eq. (2.3.20).

2.9 Show that Eq. (2.3.27) can be obtained by taking the Fourier transform
indicated in Eq. (2.3.25) together with Eq. (2.3.22). Fill in all the miss-
ing steps.

2.10 Calculate the effective core area when the fiber of Problem 2.4 is used
to transmit 1.3-µm light.

2.11 Take the Fourier transform of the Raman response function given by Eq.
(2.3.36) and plot the real and imaginary parts as a function of frequency.
What is the physical meaning of the resulting curves?

2.12 The Raman-gain spectrum of a fiber is approximated by a Lorentzian
profile whose FWHM is 5 THz. The gain peak is located at 15 THz
from the carrier frequency of the pulse. Derive an expression for the
Raman response function of this fiber.
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Chapter 3

Group-Velocity Dispersion

The preceding chapter discussed how the combined effects of group-velocity
dispersion (GVD) and self-phase modulation (SPM) on optical pulses propa-
gating inside a fiber can be studied by solving a pulse-propagation equation.
Before considering the general case, it is instructive to study the effects of
GVD alone. This chapter considers the pulse-propagation problem by treating
fibers as a linear optical medium. In Section 3.1 we discuss the conditions un-
der which the GVD effects dominate over the nonlinear effects by introducing
two length scales associated with GVD and SPM. Dispersion-induced broad-
ening of optical pulses is considered in Section 3.2 for several specific pulse
shapes, including Gaussian and ‘sech’ pulses. The effects of initial frequency
chirping are also discussed in this section. Section 3.3 is devoted to the effects
of third-order dispersion on pulse broadening. An analytic theory capable of
predicting dispersive broadening for pulses of arbitrary shapes is also given in
this section. Section 3.4 discusses how the GVD limits the performance of op-
tical communication systems and how the technique of dispersion management
can be used to combat them in practice.

3.1 Different Propagation Regimes

In Section 2.3 we obtained the nonlinear Schrödinger (NLS) equation that gov-
erns propagation of optical pulses inside single-mode fibers. For pulse widths
>5 ps, one can use Eq. (2.3.41) given by

i
∂A
∂ z

=�
iα
2

A+
β2

2
∂ 2A
∂T 2 � γ jAj2A; (3.1.1)
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where A is the slowly varying amplitude of the pulse envelope and T is mea-
sured in a frame of reference moving with the pulse at the group velocity
vg (T = t�z=vg). The three terms on the right-hand side of Eq. (3.1.1) govern,
respectively, the effects of fiber losses, dispersion, and nonlinearity on pulses
propagating inside optical fibers. Depending on the initial width T0 and the
peak power P0 of the incident pulse, either dispersive or nonlinear effects may
dominate along the fiber. It is useful to introduce two length scales, known as
the dispersion length LD and the nonlinear length LNL [1]–[3]. Depending on
the relative magnitudes of LD, LNL, and the fiber length L, pulses can evolve
quite differently.

Let us introduce a time scale normalized to the input pulse width T0 as

τ =
T
T0

=
t� z=vg

T0
: (3.1.2)

At the same time, we introduce a normalized amplitude U as

A(z;τ) =
p

P0 exp(�αz=2)U(z;τ); (3.1.3)

where P0 is the peak power of the incident pulse. The exponential factor in
Eq. (3.1.3) accounts for fiber losses. By using Eqs. (3.1.1)–(3.1.3), U(z;τ) is
found to satisfy

i
∂U
∂ z

=
sgn(β2)

2LD

∂ 2U
∂τ2 �

exp(�αz)
LNL

jU j2U; (3.1.4)

where sgn(β2) = �1 depending on the sign of the GVD parameter β2 and

LD =
T 2

0

jβ2j
; LNL =

1
γP0

: (3.1.5)

The dispersion length LD and the nonlinear length LNL provide the length
scales over which dispersive or nonlinear effects become important for pulse
evolution. Depending on the relative magnitudes of L; LD, and LNL, the prop-
agation behavior can be classified in the following four categories.

When fiber length L is such that L� LNL and L � LD, neither dispersive
nor nonlinear effects play a significant role during pulse propagation. This can
be seen by noting that both terms on the right-hand side of Eq. (3.1.4) can be
neglected in that case. (It is assumed that the pulse has a smooth temporal
profile so that ∂2U=∂τ2 � 1.) As a result, U(z;τ) = U(0;τ), i.e., the pulse
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maintains its shape during propagation. The fiber plays a passive role in this
regime and acts as a mere transporter of optical pulses (except for reducing
the pulse energy because of fiber losses). This regime is useful for optical
communication systems. For L � 50 km, LD and LNL should be larger than
500 km for distortion-free transmission. One can estimate T0 and P0 from Eq.
(3.1.5) for given values of the fiber parameters β2 and γ . At λ = 1:55 µm,
jβ2j � 20 ps2/km, and γ � 3 W�1km�1 for standard telecommunication fibers.
The use of these values in Eq. (3.1.5) shows that the dispersive and nonlinear
effects are negligible for L < 50 km if T0 > 100 ps and P0 � 1 mW. However,
LD and LNL become smaller as pulses become shorter and more intense. For
example, LD and LNL are � 100 m for T0 � 1 ps and P0 � 1 W. For such
optical pulses, both the dispersive and nonlinear effects need to be included if
fiber length exceeds a few meters.

When the fiber length is such that L � LNL but L � LD, the last term in
Eq. (3.1.4) is negligible compared to the other two. The pulse evolution is then
governed by GVD, and the nonlinear effects play a relatively minor role. The
effect of GVD on propagation of optical pulses is discussed in this chapter.
The dispersion-dominant regime is applicable whenever the fiber and pulse
parameters are such that

LD

LNL
=

γP0T 2
0

jβ2j
� 1: (3.1.6)

As a rough estimate, P0 � 1 W for 1-ps pulses if we use typical values for the
fiber parameters γ and jβ2j at λ = 1:55 µm.

When the fiber length L is such that L � LD but L � LNL, the disper-
sion term in Eq. (3.1.4) is negligible compared to the nonlinear term (as long
as the pulse has a smooth temporal profile such that ∂2U=∂τ2 � 1). In that
case, pulse evolution in the fiber is governed by SPM that leads to spectral
broadening of the pulse. This phenomenon is considered in Chapter 4. The
nonlinearity-dominant regime is applicable whenever

LD

LNL
=

γP0T 2
0

jβ2j
� 1: (3.1.7)

This condition is readily satisfied for relatively wide pulses (T0 > 100 ps)
with a peak power P0 � 1 W. Note that SPM can lead to pulse shaping in
the presence of weak GVD effects. If the pulse develops a sharp leading or
trailing edge, the dispersion term may become important even when Eq. (3.1.7)
is initially satisfied.
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When the fiber length L is longer or comparable to both LD and LNL, dis-
persion and nonlinearity act together as the pulse propagates along the fiber.
The interplay of the GVD and SPM effects can lead to a qualitatively differ-
ent behavior compared with that expected from GVD or SPM alone. In the
anomalous-dispersion regime (β2 < 0), the fiber can support solitons. In the
normal-dispersion regime (β2 > 0), the GVD and SPM effects can be used
for pulse compression. Equation (3.1.4) is extremely helpful in understand-
ing pulse evolution in optical fibers when both dispersive and nonlinear effects
should be taken into account. However, this chapter is devoted to the linear
regime, and the following discussion is applicable to pulses whose parameters
satisfy Eq. (3.1.6).

3.2 Dispersion-Induced Pulse Broadening

The effect of GVD on optical pulses propagating in a linear dispersive medium
[4]–[17] are studied by setting γ = 0 in Eq. (3.1.1). If we define the normal-
ized amplitude U(z;T ) according to Eq. (3.1.3), U(z;T ) satisfies the following
linear partial differential equation:

i
∂U
∂ z

=
β2

2
∂ 2U
∂T 2 : (3.2.1)

This equation is similar to the paraxial wave equation that governs diffraction
of CW light and becomes identical to it when diffraction occurs in only one
transverse direction and β 2 is replaced by �λ=(2π), where λ is the wave-
length of light. For this reason, the dispersion-induced temporal effects have a
close analogy with the diffraction-induced spatial effects [2].

Equation (3.2.1) is readily solved by using the Fourier-transform method.
If Ũ(z;ω) is the Fourier transform of U(z;T ) such that

U(z;T ) =
1

2π

Z ∞

�∞
Ũ(z;ω)exp(�iωT )dω ; (3.2.2)

then it satisfies an ordinary differential equation

i
∂Ũ
∂ z

=� 1
2β2ω2Ũ ; (3.2.3)

whose solution is given by

Ũ(z;ω) = Ũ(0;ω)exp

�
i
2

β2ω2z

�
: (3.2.4)
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Equation (3.2.4) shows that GVD changes the phase of each spectral compo-
nent of the pulse by an amount that depends on both the frequency and the
propagated distance. Even though such phase changes do not affect the pulse
spectrum, they can modify the pulse shape. By substituting Eq. (3.2.4) in Eq.
(3.2.2), the general solution of Eq. (3.2.1) is given by

U(z;T ) =
1

2π

Z ∞

�∞
Ũ(0;ω)exp

�
i
2

β2ω2z� iωT

�
dω ; (3.2.5)

where Ũ(0;ω) is the Fourier transform of the incident field at z = 0 and is
obtained using

Ũ(0;ω) =

Z ∞

�∞
U(0;T )exp(iωT )dT: (3.2.6)

Equations (3.2.5) and (3.2.6) can be used for input pulses of arbitrary shapes.

3.2.1 Gaussian Pulses

As a simple example, consider the case of a Gaussian pulse for which the
incident field is of the form [8]

U(0;T ) = exp

�
�

T 2

2T 2
0

�
; (3.2.7)

where T0 is the half-width (at 1/e-intensity point) introduced in Section 3.1. In
practice, it is customary to use the full width at half maximum (FWHM) in
place of T0. For a Gaussian pulse, the two are related as

TFWHM = 2(ln 2)1=2T0 � 1:665T0: (3.2.8)

By using Eqs. (3.2.5)–(3.2.7) and carrying out the integration, the amplitude at
any point z along the fiber is given by

U(z;T ) =
T0

(T 2
0 � iβ2z)1=2

exp

�
�

T 2

2(T 2
0 � iβ2z)

�
: (3.2.9)

Thus, a Gaussian pulse maintains its shape on propagation but its width T1
increases with z as

T1(z) = T0[1+(z=LD)
2
]
1=2

; (3.2.10)

where the dispersion length LD = T 2
0 =jβ2j. Equation (3.2.10) shows how GVD

broadens a Gaussian pulse. The extent of broadening is governed by the dis-
persion length LD. For a given fiber length, short pulses broaden more because
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Figure 3.1 Dispersion-induced broadening of a Gaussian pulse inside a fiber at z =
2LD and z= 4LD. Dashed curve shows the incident pulse at z= 0.

of a smaller dispersion length. At z = LD, a Gaussian pulse broadens by a fac-
tor of

p
2. Figure 3.1 shows the extent of dispersion-induced broadening for

Gaussian pulses by plotting jU(z;T )j2 at z = 0; 2LD, and 4LD.
A comparison of Eqs. (3.2.7) and (3.2.9) shows that although the incident

pulse is unchirped (with no phase modulation), the transmitted pulse becomes
chirped. This can be seen clearly by writing U(z;T ) in the form

U(z;T ) = jU(z;T )jexp[iφ(z;T )]; (3.2.11)

where

φ(z;T ) =�
sgn(β2)(z=LD)

1+(z=LD)
2

T 2

T 2
0

+
1
2

tan�1
�

z
LD

�
: (3.2.12)

The time dependence of the phase φ(z;T ) implies that the instantaneous fre-
quency differs across the pulse from the central frequency ω0. The difference
δω is just the time derivative �∂φ=∂T [the minus sign is due to the choice
exp(�iω0t) in Eq. (2.3.2)] and is given by

δω(T ) =�
∂φ
∂T

=
sgn(β2)(2z=LD)

1+(z=LD)
2

T
T 2

0

: (3.2.13)

Equation (3.2.13) shows that the frequency changes linearly across the pulse,
i.e., a fiber imposes linear frequency chirp on the pulse. The chirp δω depends
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on the sign of β 2. In the normal-dispersion regime (β 2 > 0), δω is negative at
the leading edge (T < 0) and increases linearly across the pulse; the opposite
occurs in the anomalous-dispersion regime (β2 > 0).

Dispersion-induced pulse broadening can be understood by recalling from
Section 1.3 that different frequency components of a pulse travel at slightly
different speeds along the fiber because of GVD. More specifically, red com-
ponents travel faster than blue components in the normal-dispersion regime
(β 2 > 0), while the opposite occurs in the anomalous-dispersion regime (β2 <

0). The pulse can maintain its width only if all spectral components arrive to-
gether. Any time delay in the arrival of different spectral components leads to
pulse broadening.

3.2.2 Chirped Gaussian Pulses

For an initially unchirped Gaussian pulse, Eq. (3.2.10) shows that dispersion-
induced broadening of the pulse does not depend on the sign of the GVD pa-
rameter β2. Thus, for a given value of the dispersion length LD, the pulse
broadens by the same amount in the normal- and anomalous-dispersion regimes
of the fiber. This behavior changes if the Gaussian pulse has an initial fre-
quency chirp [9]. In the case of linearly chirped Gaussian pulses, the incident
field can be written as [compare with Eq. (3.2.7)]

U(0;T ) = exp

�
�
(1+ iC)

2
T 2

T 2
0

�
; (3.2.14)

where C is a chirp parameter. By using Eq. (3.2.11) one finds that the in-
stantaneous frequency increases linearly from the leading to the trailing edge
(up-chirp) for C > 0 while the opposite occurs (down-chirp) for C < 0. It is
common to refer to the chirp as positive or negative depending on whether C
is positive or negative.

The numerical value of C can be estimated from the spectral width of the
Gaussian pulse. By substituting Eq. (3.2.14) in Eq. (3.2.6),Ũ(0;ω) is given by

Ũ(0;ω) =

�
2πT 2

0

1+ iC

�1=2

exp

�
�

ω2T 2
0

2(1+ iC)

�
: (3.2.15)

The spectral half-width (at 1/e-intensity point) from Eq. (3.2.15) is given by

∆ω = (1+C2
)

1=2
=T0: (3.2.16)
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Figure 3.2 Broadening factor for a chirped Gaussian pulse as a function of distance.
Dashed curve corresponds to the case of an unchirped Gaussian pulse. For β 2 < 0, the
same curves are obtained if the sign of C is reversed.

In the absence of frequency chirp (C = 0), the spectral width is transform-
limited and satisfies the relation ∆ωT0 = 1. The spectral width is enhanced by
a factor of (1+C2

)
1=2 in the presence of linear chirp. Equation (3.2.16) can be

used to estimate jCj from measurements of ∆ω and T0.
To obtain the transmitted field, Ũ(0;ω) from Eq. (3.2.15) is substituted in

Eq. (3.2.5). The integration can be carried out analytically with the result

U(z;T ) =
T0

[T 2
0 � iβ2z(1+ iC)]1=2

exp

�
�

(1+ iC)T 2

2[T 2
0 � iβ2z(1+ iC)]

�
: (3.2.17)

Thus, even a chirped Gaussian pulse maintains its Gaussian shape on propaga-
tion. The width T1 after propagating a distance z is related to the initial width
T0 by the relation [9]

T1

T0
=

"�
1+

Cβ2z
T 2

0

�2

+

�
β2z
T 2

0

�2
#1=2

: (3.2.18)

This equation shows that broadening depends on the relative signs of the GVD
parameter β2 and the chirp parameter C. Whereas a Gaussian pulse broadens
monotonically with z if β2C > 0, it goes through an initial narrowing stage
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when β2C < 0. Figure 3.2 shows this behavior by plotting the broadening
factor T1=T0 as a function of z=LD for C = 2. In the case β2C < 0, the pulse
width becomes minimum at a distance

zmin =
jCj

1+C2 LD: (3.2.19)

The minimum value of the pulse width at z = zmin is given by

T min
1 =

T0

(1+C2)1=2
: (3.2.20)

By using Eqs. (3.2.16) and (3.2.10) one finds that at z = zmin the pulse width
is Fourier-transform-limited because ∆ωT min

1 = 1.
Initial narrowing of the pulse for the case β2C < 0 can be understood by

referring to Eq. (3.2.13), which shows the dispersion-induced chirp imposed
on an initially unchirped Gaussian pulse. When the pulse is initially chirped
and the condition β2C < 0 is satisfied, the dispersion-induced chirp is in op-
posite direction to that of the initial chirp. As a result the net chirp is reduced,
leading to pulse narrowing. The minimum pulse width occurs at a point at
which the two chirps cancel each other. With a further increase in the propa-
gation distance, the dispersion-induced chirp starts to dominate over the initial
chirp, and the pulse begins to broaden. The net chirp as a function of z can
be obtained from Eq. (3.2.17) by using Eqs. (3.2.11) and (3.2.13); it shows the
qualitative behavior discussed in the preceding.

3.2.3 Hyperbolic-Secant Pulses

Although pulses emitted from many lasers can be approximated by a Gaussian
shape, it is necessary to consider other pulse shapes. Of particular interest is
the hyperbolic-secant pulse shape that occurs naturally in the context of optical
solitons and pulses emitted from some mode-locked lasers. The optical field
associated with such pulses often takes the form

U(0;T ) = sech

�
T
T0

�
exp

�
�

iCT 2

2T 2
0

�
; (3.2.21)

where the chirp parameter C controls the initial chirp similarly to that of Eq.
(3.2.14). The transmitted field U(z;T ) is obtained by using Eqs. (3.2.5), (3.2.6),
and (3.2.21). Unfortunately, it is not easy to evaluate the integral in Eq. (3.2.5)



72 Group-Velocity Dispersion

Figure 3.3 Pulse shapes at z = 2LD and z = 4LD of a pulse whose shape at z = 0
(dashed curve) is described by a “sech” profile. Compare with Fig. 3.1 where the case
of a Gaussian pulse is shown.

in a closed form for non-Gaussian pulse shapes. Figure 3.3 shows the transmit-
ted pulse shapes calculated numerically at z = 2LD and z = 4LD for the case
of unchirped pulses (C = 0). A comparison of Figs. 3.1 and 3.3 shows that the
qualitative features of dispersion-induced broadening are nearly identical for
the Gaussian and “sech” pulses. Note that T0 appearing in Eq. (3.2.21) is not
the FWHM but is related to it by

TFWHM = 2ln(1+
p

2)T0 � 1:763T0: (3.2.22)

This relation should be used if the comparison is made on the basis of FWHM.
The same relation for a Gaussian pulse is given in Eq. (3.2.8).

3.2.4 Super-Gaussian Pulses

So far we have considered pulse shapes with relatively broad leading and trail-
ing edges. As one may expect, dispersion-induced broadening is sensitive to
pulse edge steepness. In general, a pulse with steeper leading and trailing
edges broadens more rapidly with propagation simply because such a pulse
has a wider spectrum to start with. Pulses emitted by directly modulated semi-
conductor lasers fall in this category and cannot generally be approximated by
a Gaussian pulse. A super-Gaussian shape can be used to model the effects of
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Figure 3.4 Pulse shapes at z = LD and z = 2LD of a pulse whose shape at z = 0
(dashed curve) is described by a super-Gaussian profile. Compare with Fig. 3.1 where
the case of a Gaussian pulse is shown.

steep leading and trailing edges on dispersion-induced pulse broadening. For
a super-Gaussian pulse, Eq. (3.2.14) is generalized to take the form [16]

U(0;T ) = exp

"
�

1+ iC
2

�
T
T0

�2m
#
; (3.2.23)

where the parameter m controls the degree of edge sharpness. For m = 1 we
recover the case of chirped Gaussian pulses. For larger value of m, the pulse
becomes square shaped with sharper leading and trailing edges. If the rise
time Tr is defined as the duration during which the intensity increases from 10
to 90% of its peak value, it is related to the parameter m as

Tr = (ln9)
T0

2m
�

T0

m
: (3.2.24)

Thus the parameter m can be determined from the measurements of Tr and T0.
Figure 3.4 shows the pulse shapes at z = 0, LD, and 2LD in the case of

an unchirped super-Gaussian pulse (C = 0) with m = 3. It should be com-
pared with Fig. 3.1 where the case of a Gaussian pulse (m = 1) is shown.
The differences between the two can be attributed to the steeper leading and
trailing edges associated with a super-Gaussian pulse. Whereas the Gaussian
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Figure 3.5 Variation of broadening factor σ=σ 0 with distance for several super-
Gaussian pulses with different values of m. The case m= 1 corresponds to a Gaussian
pulse. Pulse edges become steeper with increasing values of m.

pulse maintains its shape during propagation, the super-Gaussian pulse not
only broadens at a faster rate but also distorts in shape. Enhanced broaden-
ing of a super-Gaussian pulse can be understood by noting that its spectrum
is wider than that of a Gaussian pulse because of steeper leading and trailing
edges. As the GVD-induced delay of each frequency component is directly re-
lated to its separation from the central frequency ω0, a wider spectrum results
in a faster rate of pulse broadening.

For complicated pulse shapes such as those seen in Fig. 3.4, the FWHM
is not a true measure of the pulse width. The width of such pulses is more
accurately described by the root-mean-square (RMS) width σ defined as [8]

σ = [hT 2i�hT i2]1=2
; (3.2.25)

where

hT pi=
R ∞
�∞ T pjU(z;T )j2 dTR ∞
�∞ jU(z;T )j2 dT

: (3.2.26)

To see how pulse broadening depends on the steepness of pulse edges, Fig. 3.5
shows the broadening factor σ=σ0 of super-Gaussian pulses as a function of
the propagation distance for values of m ranging from 1 to 4. Here σ0 is the
initial RMS width of the pulse at z = 0. The case m = 1 corresponds to a
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Gaussian pulse; the pulse edges become increasingly steeper for larger values
of m. Noting from Eq. (3.2.24) that the rise time is inversely proportional to
m, it is evident that a pulse with a shorter rise time broadens faster. The curves
in Fig. 3.5 are drawn for the case of initially unchirped pulses (C = 0). When
the pulses are initially chirped, the magnitude of pulse broadening depends
on the sign of the product β 2C. The qualitative behavior is similar to that
shown in Fig. 3.2 for the case of a Gaussian pulse (m = 1). In particular, even
super-Gaussian pulses exhibit initial narrowing when β2C < 0. It is possible
to evaluate the broadening factor analytically using Eqs. (3.2.5) and (3.2.23)–
(3.2.26) with the result [17]

σ
σ0

=

"
1+

Γ(1=2m)

Γ(3=2m)

Cβ2z
T 2

0

+m2
(1+C2

)
Γ(2�1=2m)

Γ(3=2m)

�
β2z
T 2

0

�2
#1=2

;

(3.2.27)
where Γ is the gamma function. For a Gaussian pulse (m = 1) the broadening
factor reduces to that given in Eq. (3.2.18).

3.2.5 Experimental Results

The initial compression of chirped pulses has been observed experimentally
using pulses emitted from a directly modulated semiconductor laser. In one
experiment [10], the incident pulse at a wavelength of 1.54 µm was positively
chirped (C > 0). It compressed by about a factor of 5 after propagating 104 km
in the anomalous-GVD regime of a fiber with β 2 � �20 ps2/km. In another
experiment, the semiconductor laser emitted a negatively chirped pulse (C < 0)
at a wavelength of 1.21 µm [11]. After propagating a distance of 1.5 km in the
normal-dispersion regime (β2 = 15 ps2/km), the pulse width decreased from
190 to 150 ps. When the fiber length was increased to 6 km, the pulse width in-
creased to 300 ps, in agreement with the qualitative behavior shown in Fig. 3.2.
In a different experiment much shorter optical pulses (initial FWHM � 26 ps)
at 1.3 µm were obtained from a distributed-feedback (DFB) semiconductor
laser by using the gain-switching technique [15]. As the pulses were nega-
tively chirped (C < 0), a dispersion-shifted fiber was employed with a positive
GVD at 1.3 µm (β2 � 12 ps2/km). The pulse compressed by a factor of three
after propagating inside a 4.8-km-long fiber and then started to broaden with a
further increase in the fiber length.

Compression of chirped picosecond pulses through GVD in optical fibers
has been used to advantage in some experiments in which a gain-switched
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DFB semiconductor laser was used as a source of solitons [18]–[21]. Even
though a relatively broad optical pulse (duration 20–40 ps) emitted from such
lasers is far from being transform limited, its passage through a fiber of opti-
mized length with positive GVD produces compressed optical pulses that are
nearly transform limited. In a 1989 demonstration of this technique [20], 14-ps
pulses were obtained at the 3-GHz repetition rate by passing the gain-switched
pulse through a polarization-preserving, dispersion-shifted, 3.7-km-long opti-
cal fiber with β2 = 23 ps2/km at the 1.55-µm operating wavelength. In another
experiment, a narrowband optical filter was used to control the spectral width
of the gain-switched pulse before its compression [21]. An erbium-doped fiber
amplifier then amplified and compressed the pulse simultaneously. It was pos-
sible to generate nearly transform-limited 17-ps optical pulses at repetition
rates of 6–24 GHz. Pulses as short as 3 ps were obtained by 1990 with this
technique [22].

In a related method, amplification of picosecond pulses in a semiconduc-
tor laser amplifier produces optical pulses chirped such that they can be com-
pressed by using optical fibers with anomalous GVD [23]–[25]. The method
is useful in the wavelength region near 1.5 µm because silica fibers commonly
exhibit anomalous GVD in that spectral region. The technique was demon-
strated in 1989 by using 40-ps input pulses obtained from a 1.52-µm mode-
locked semiconductor laser [23]. The pulse was first amplified in a semicon-
ductor laser amplifier and then compressed by about a factor of two by prop-
agating it through an 18-km-long fiber with β2 = �18 ps2/km. Such a com-
pression mechanism was useful for transmitting a 16-Gb/s signal over 70 km
of standard telecommunication fiber [24].

3.3 Third-Order Dispersion

The dispersion-induced pulse broadening discussed in Section 3.2 is due to
the lowest-order GVD term proportional to β 2 in Eq. (2.3.23). Although the
contribution of this term dominates in most cases of practical interest, it is
sometimes necessary to include the third-order term proportional to β3 in this
expansion. For example, if the pulse wavelength nearly coincides with the
zero-dispersion wavelength λD, β2 � 0; the β3 term then provides the dominant
contribution to the GVD effects [6]. For ultrashort pulses (width T0 < 1 ps), it
is necessary to include the β 3 term even when β 2 6= 0 because the expansion
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parameter ∆ω=ω 0 is no longer small enough to justify the truncation of the
expansion in Eq. (2.3.23) after the β 2 term.

This section considers the dispersive effects by including both β2 and β3
terms while still neglecting the nonlinear effects. The appropriate propagation
equation for the amplitude A(z;T ) is obtained from Eq. (2.3.39) after setting
γ = 0. Using Eq. (3.1.3), U(z;T ) satisfies the following equation:

i
∂U
∂ z

=
β2

2
∂ 2U
∂T 2 +

iβ3

6
∂ 3U
∂T 3 : (3.3.1)

This equation can also be solved by using the Fourier technique of Section 3.2.
In place of Eq. (3.2.5) the transmitted field is obtained from

U(z;T ) =
1

2π

Z ∞

�∞
Ũ(0;ω)exp

�
i
2

β2ω2z+
i
6

β3ω3z� iωT

�
dω ; (3.3.2)

where the Fourier transform Ũ(0;ω) of the incident field is given by Eq.
(3.2.6). Equation (3.3.2) can be used to study the effect of higher-order disper-
sion if the incident field U(0;T ) is specified. In particular, one can consider
Gaussian, super-Gaussian, or hyperbolic-secant pulses in a manner analogous
to Section 3.2. An analytic solution in terms of the Airy functions can be
obtained for Gaussian pulses [6].

3.3.1 Changes in Pulse Shape

As one may expect, pulse evolution along the fiber depends on the relative
magnitudes of β2 and β3, which in turn depend on the deviation of the optical
wavelength λ 0 from λD. At λ0 = λD, β2 = 0, and typically β 3 � 0:1 ps3/km.
However, jβ2j � 1 ps2/km even when λ 0 differs from λD by as little as 10 nm.
In order to compare the relative importance of the β2 and β3 terms in Eq.
(3.3.1), it is useful to introduce a dispersion length associated with the third-
order dispersion (TOD) term as

L0D = T 3
0 =jβ3j: (3.3.3)

The TOD effects play a significant role only if L0D � LD or T0jβ2=β3j � 1.
For a 100-ps pulse, this condition implies that β2 < 10�3 ps2/km when β3 =

0:1 ps3/km. Such low values of β2 are realized only if λ 0 and λD differ by
< 10�2 nm! In practice, it is difficult to match λ 0 and λD to such an accu-
racy, and the contribution of β 3 is generally negligible compared with that of
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Figure 3.6 Pulse shapes at z = 5L0

D of an initially Gaussian pulse at z = 0 (dotted
curve) in the presence of higher-order dispersion. Solid curve is for the case of λ 0 =

λD. Dashed curve shows the effect of finite β2 in the case of LD = L0

D.

β2. This was indeed the case in the experiments in which 1.32-µm picosecond
pulses were propagated over a few-kilometer-long fiber [26], [27],. The situa-
tion changes completely for ultrashort pulses with widths in the femtosecond
range. For example, β 2 can be as large as 1 ps2/km for T0 = 0:1 ps before the
contribution of β 3 becomes negligible. As L0D � 10 m for such values of T0,
the effect of TOD can be studied experimentally by propagating 100-fs pulses
across a few-meter-long fiber.

Figure 3.6 shows the pulse shapes at z = 5L0D for an initially unchirped
Gaussian pulse [C = 0 in Eq. (3.2.14)] for β 2 = 0 (solid curve) and for a value
of β2 such that LD = L0D (dashed curve). Whereas a Gaussian pulse remains
Gaussian when only the β 2 term in Eq. (3.3.1) contributes to GVD (Fig. 3.1),
the TOD distorts the pulse such that it becomes asymmetric with an oscillatory
structure near one of its edges. In the case of positive β3 shown in Fig. 3.6, os-
cillations appear near the trailing edge of the pulse. When β3 is negative, it is
the leading edge of the pulse that develops oscillations. When β2 = 0, oscilla-
tions are deep, with intensity dropping to zero between successive oscillations.
However, these oscillations damp significantly even for relatively small values
of β 2. For the case LD = L0D shown in Fig. 3.6 (β2 = β3=T0), oscillations have
nearly disappeared, and the pulse has a long tail on the trailing side. For larger
values of β2 such that LD � L0D, the pulse shape becomes nearly Gaussian as
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Figure 3.7 Evolution of a super-Gaussian pulse with m = 3 along the fiber length
for the case of β2 = 0 and β3 > 0. Higher-order dispersion is responsible for the
oscillatory structure near the trailing edge of the pulse.

the TOD plays a relatively minor role.

Equation (3.3.2) can be used to study pulse evolution for other pulse shapes
(with or without chirp). By way of an example, Fig. 3.7 shows evolution of
an unchirped super-Gaussian pulse at the zero-dispersion wavelength (β2 = 0)
with C = 0 and m = 3 in Eq. (3.2.23). It is clear that pulse shapes can vary
widely depending on the initial conditions. In practice, one is often inter-
ested in the extent of dispersion-induced broadening rather than details of pulse
shapes. As the FWHM is not a true measure of the width of pulses shown in
Figs. 3.6 and 3.7, we use the RMS width σ defined in Eq. (3.2.25). In the
case of Gaussian pulses, it is possible to obtain a simple analytic expression
of σ that includes the effects of β 2, β3, and the initial chirp C on dispersion
broadening [9].

3.3.2 Broadening Factor

To calculate σ from Eq. (3.2.25), we need to find the nth moment hT ni of T
using Eq. (3.2.26). As the Fourier transform Ũ(z;ω) of U(z;T ) is known from
Eq. (3.3.2), it is useful to evaluate hT ni in the frequency domain. By using the
Fourier transform Ĩ(z;ω) of the pulse intensity jU(z;T )j2,

Ĩ(z;ω) =

Z ∞

�∞
jU(z;T )j2 exp(iωT )dT; (3.3.4)
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and differentiating it n times, we obtain

lim
ω!0

∂ n

∂ωn Ĩ(z;ω) = (i)n
Z ∞

�∞
T njU(z;T )j2 dT: (3.3.5)

Using Eq. (3.3.5) in Eq. (3.2.26) we find that

hT ni=
(�i)n

Nc
lim
ω!0

∂ n

∂ωn Ĩ(z;ω); (3.3.6)

where the normalization constant

Nc =

Z ∞

�∞
jU(z;T )j2 dT �

Z ∞

�∞
jU(0;T )j2 dT: (3.3.7)

From the convolution theorem

Ĩ(z;ω) =

Z ∞

�∞
Ũ(z;ω �ω 0

)Ũ�

(z;ω 0

)dω 0

: (3.3.8)

Performing the differentiation and limit operations indicated in Eq. (3.3.6), we
obtain

hT ni=
(i)n

Nc

Z ∞

�∞
Ũ�

(z;ω)
∂ n

∂ωnŨ(z;ω)dω : (3.3.9)

In the case of a chirped Gaussian pulse Ũ(z;ω) can be obtained from
Eqs. (3.2.15) and (3.3.2) and is given by

Ũ(z;ω) =

�
2πT 2

0

1+ iC

�1=2

exp

�
iω2

2

�
β2z+

iT 2
0

1+ iC

�
+

i
6

β3ω3z

�
: (3.3.10)

If we differentiate Eq. (3.3.10) two times and substitute the result in Eq. (3.3.9),
we find that the integration over ω can be performed analytically. Both hT i and
hT 2i can be obtained by this procedure. Using the resulting expressions in Eq.
(3.2.25), we obtain [9]

σ
σ0

=

"�
1+

Cβ2z
2σ2

0

�2

+

�
β2z
2σ2

0

�2

+(1+C2
)

2 1
2

�
β3z

4σ3
0

�2
#1=2

; (3.3.11)

where σ0 is the initial RMS width of the chirped Gaussian pulse (σ0 =T0=
p

2).
As expected, Eq. (3.3.11) reduces to Eq. (3.2.18) for β 3 = 0.

Equation (3.3.11) can be used to draw several interesting conclusions. In
general, both β2 and β3 contribute to pulse broadening. However, the depen-
dence of their contributions on the chirp parameter C is qualitatively different.
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Figure 3.8 Variation of broadening factor with propagated distance for a chirped
Gaussian pulse in the vicinity of λD such that LD = 2L0

D. Dashed curve corresponds
to the case of λ0 = λD so that LD is infinite (β2 = 0).

Whereas the contribution of β2 depends on the sign of β2C, the contribution of
β3 is independent of the sign of both β 3 and C. Thus, in contrast to the behav-
ior shown in Fig. 3.2, a chirped pulse propagating exactly at the zero-dispersion
wavelength never experiences width contraction. However, even small depar-
tures from the exact zero-dispersion wavelength can lead to initial pulse con-
traction. This behavior is illustrated in Fig. 3.8 where the broadening factor
σ=σ0 is plotted as a function of propagation distance for C = 2 and LD = 2L0D.
Dashed curve shows for comparison broadening expected when β2 = 0. In
the anomalous-dispersion regime the contribution of β2 can counteract the β3
contribution in such a way that dispersive broadening is less than that expected
when β2 = 0 for z � L0D. For large values of z such that z � LD=jCj, Eq.
(3.3.11) can be approximated by

σ=σ0 = (1+C2
)

1=2
[1+(LD=2L0D)

2
]
1=2

(z=LD); (3.3.12)

where we have used Eqs. (3.1.5) and (3.3.3). The linear dependence of the
RMS pulse width on the propagation distance for large z is a general feature
that holds for arbitrary pulse shapes, as discussed in the next section.

Equation (3.3.11) can be generalized to include the effects of a finite source
bandwidth [9]. Spontaneous emission in any light source produces amplitude
and phase fluctuations that manifest as a finite bandwidth δω of the source
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spectrum centered at ω0 [28]. If the source bandwidth δω is much smaller than
the pulse bandwidth ∆ω [given by Eq. (3.2.16) for chirped Gaussian pulses],
its effect on the pulse broadening can be neglected. However, for many light
sources used in optical communications [such as light-emitting diodes (LEDs)
and multimode semiconductor lasers] this condition is not satisfied, and it be-
comes necessary to include the effect of source bandwidth. In the case of a
Gaussian spectrum, the generalized form of Eq. (3.3.11) is given by [9]

σ 2

σ 2
0

=

�
1+

Cβ2z
2σ2

0

�2

+(1+V 2
ω)

�
β2z
2σ2

0

�2

+(1+C2
+V 2

ω)
2 1

2

�
β3z

4σ3
0

�2

;

(3.3.13)
where Vω = 2σω σ0 and σω is the RMS width of the Gaussian source spectrum.
This equation describes broadening of chirped Gaussian pulses in a linear dis-
persive medium under quite general conditions. It can be used to discuss the
effect of GVD on the performance of fiber-optic communication systems.

3.3.3 Arbitrary-Shape Pulses

The formal similarity of Eq. (3.2.1) with the Schrödinger equation can be ex-
ploited to obtain an analytic expression of the RMS width for pulses of arbi-
trary shape while including the third- and higher-order dispersive effects [29].
For this purpose, we write Eq. (3.3.1) in an operator form as

i
∂U
∂ z

= ĤU; (3.3.14)

where the operator Ĥ includes, in its general form, dispersive effects to all
orders and is given by

Ĥ =�
∞

∑
n=2

in

n!

�
∂

∂T

�n

=
β2

2
∂ 2

∂T 2 +
iβ3

6
∂ 3

∂T 3 + � � � : (3.3.15)

Using Eq. (3.2.26) and assuming that U(z;T ) is normalized such that
R ∞
�∞ jU j

2 dT
= 1, the first and second moments of T are found to evolve with z as

dhT i
dz

= ih[Ĥ;T ]i; (3.3.16)

dhT 2i
dz

= �h[Ĥ; [Ĥ;T ]]i; (3.3.17)
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where [Ĥ;T ]� ĤT �T Ĥ stands for the commutator.
Equations (3.3.16) and (3.3.17) can be integrated analytically and result in

the following general expressions [29]:

hT i = a0 +a1z; (3.3.18)

hT 2i = b0 +b1z+b2z2
; (3.3.19)

where the coefficients depend only on the incident field U0(T ) �U(0;T ) and
are defined as

a0 =

Z ∞

�∞
U�

0 (T )TU0(T )dT; (3.3.20)

a1 = i
Z ∞

�∞
U�

0 (T )[Ĥ;T ]U0(T )dT; (3.3.21)

b0 =

Z ∞

�∞
U�

0 (T )T 2U0(T )dT; (3.3.22)

b1 = i
Z ∞

�∞
U�

0 (T ))[Ĥ;T 2
]U0(T )dT; (3.3.23)

b2 = �
1
2

Z ∞

�∞
U�

0 (T )[Ĥ; [Ĥ;T 2
]]U0(T )dT: (3.3.24)

Physically, hT i governs asymmetry of pulse shape while hT2i is a measure
of pulse broadening. Higher-order moments hT 3i and hT 4i can also be calcu-
lated by this technique and govern the skewness and kurtosis of the intensity
profile, respectively. For initially symmetric pulses, a0 = 0. If the effects of
third- and higher-order dispersion are negligible it is easy to show that a1 is
also zero. With hT i = 0 in that case, the pulse retains its symmetric nature
during its transmission through optical fibers when β2 dominates. Note that
σ 2 � hT 2i�hT i2 varies quadratically along the fiber length for pulses of arbi-
trary shape and chirp even when third- and higher-order dispersive effects are
included.

As a simple example, consider the case of an unchirped ‘sech’ pulse dis-
cussed in Section 3.2.3 numerically and retain only the effects of GVD (βm = 0
for m > 2). Using U0(T ) = (2T0)

�1=2sech(t=T0) in Eqs. (3.3.20)–(3.3.24) one
can show that a0 = a1 = b1 = 0 while

b0 = (π2
=12)T 2

0 ; b2 = β 2
2 =(3T 2

0 ): (3.3.25)
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Noting that σ2
0 = b0 and σ2

= b0 +b2z2, the broadening factor becomes

σ
σ0

=

"
1+

�
πβ2z

6σ2
0

�2
#1=2

; (3.3.26)

where σ0 = (π=
p

12)T0 is the RMS width of the input pulse. This result should
be compared with Eq. (3.3.11) obtained for a Gaussian pulse after setting C = 0
and β3 = 0. Noting that π=6 � 0:52, one can conclude that a “sech” pulse
broadens almost at the same rate and exhibits the same qualitative behavior
as a Gaussian pulse when the comparison is made on the basis of their RMS
widths.

The preceding analysis can readily be extended to chirped pulses. For a
chirped Gaussian pulse, all integrals in Eqs. (3.3.20)–(3.3.24) can be evaluated
in a closed form, and one recovers Eq. (3.3.11) for the broadening factor. For
a super-Gaussian pulse Eq. (3.2.27) is obtained when third-order dispersion is
neglected. It is possible to obtain σ=σ 0 in a closed form for a super-Gaussian
pulse even when both β 2 and β 3 are finite but the resulting expression is quite
complex [17].

The effect of third-order dispersion is to make the intensity profile asym-
metric and introduce a long oscillating tail similar to that seen in Fig. 3.6.
The quantity hT i provides a simple measure of this asymmetry. If we con-
sider again the example of a ‘sech’ pulse, we find that hT i is zero initially but
changes linearly with z at a rate given by a1 = β3=(6T 2

0 ). The same behavior
occurs for a Gaussian pulse but hT i changes at a different rate. These results
are in agreement with the numerically calculated pulse shapes in Fig. 3.6. As
seen there, pulse develops a long tail on the trailing edge for positive values of
β3, resulting in hT i> 0.

The most important conclusion that one can draw from Eqs. (3.3.19) and
(3.3.26) is that, for a long fiber whose length L� LD, the GVD-induced pulse
broadening scales as L=LD irrespective of the pulse shape. As the disper-
sion length LD � T 2

0 =jβ2j scales as T2
0 , it decreases rapidly as pulses become

shorter. As an example, LD = 100 km for pulses with T0 = 10 ps launched
into a dispersion-shifted fiber having jβ2j= 1 ps2/km but becomes only 1 km
if pulse width is reduced to T0 = 1 ps. Such a pulse will broaden by a factor
�100 in a 100-km-long fiber. Because L can exceed thousands of kilometers
for fiber-optic communication systems designed to transmit information over
transoceanic distances, it is evident that GVD-induced pulse broadening limits
the performance of most lightwave systems. The next section is devoted to the
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GVD-induced limitations and the dispersion-management schemes developed
to overcome them in practice.

3.3.4 Ultrashort-Pulse Measurements

As the GVD and TOD effects can change the shape and width of ultrashort
pulses considerably, one should consider how such pulses can be measured
experimentally. For pulses broader than 100 ps, pulse characteristics can be
measured directly by using a high-speed photodetector. Streak cameras can be
used for pulses as short as 1 ps. However, most of them work best in the visible
spectral region and cannot be used at wavelengths near 1.55 µm.

A common technique for characterizing ultrashort optical pulses is based
on the nonlinear phenomenon of second-harmonic generation. In this method,
known as the autocorrelation technique, the pulse is sent through a nonlinear
crystal together with a delayed (or advanced) replica of its own [30]. A second-
harmonic signal is generated inside the crystal only when two pulses overlap
in time. Measuring the second-harmonic power as a function of the delay time
produces an autocorrelation trace. The width of this trace is related to the width
of the original pulse. The exact relationship between the two widths depends
on the pulse shape. If pulse shape is known a priori, or it can be inferred indi-
rectly, the autocorrelation trace provides an accurate measurement of the pulse
width. This technique can measure widths down to a few femtoseconds but
provides little information on details of the pulse shape. In fact, an autocor-
relation trace is always symmetric even when the pulse shape is known to be
asymmetric. The use of cross correlation, a technique in which an ultrashort
pulse of known shape and width is combined with the original pulse inside a
second-harmonic crystal, solves this problem to some extent. The auto- and
cross-correlation techniques can also make use of other nonlinear effects such
as third-harmonic generation [31] and two-photon absorption [32]. All such
methods, however, record intensity correlation and cannot provide any infor-
mation on the phase or chirp variations across the pulse.

An interesting technique, called frequency-resolved optical gating (FROG)
and developed during the 1990s, solves this problem quite nicely [33]–[37]. It
not only can measure the pulse shape but can also provide information on how
the optical phase and the frequency chirp vary across the pulse. The technique
works by recording a series of spectrally resolved autocorrelation traces and
uses them to deduce the intensity and phase profiles associated with the pulse.
It has been used to characterize pulse propagation in optical fibers with consid-
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erable success [35]–[37]. A related technique, known as time-resolved optical
gating (TROG), has been introduced recently [38]. In this method, the pulse is
passed through a dispersive medium (e.g., an optical fiber) whose GVD can be
varied over a certain range, and a number of autocorrelation traces are recorded
for different GVD values. Both the intensity and phase profiles can be deduced
from such autocorrelation traces.

3.4 Dispersion Management

In a fiber-optic communication system, information is transmitted over a fiber
by using a coded sequence of optical pulses whose width is determined by
the bit rate B of the system. Dispersion-induced broadening of pulses is un-
desirable as it interferes with the detection process and leads to errors if the
pulse spreads outside its allocated bit slot (TB = 1=B). Clearly, GVD limits
the bit rate B for a fixed transmission distance L [39]. The dispersion prob-
lem becomes quite serious when optical amplifiers are used to compensate for
fiber losses because L can exceed thousands of kilometers for long-haul sys-
tems. A useful measure of the information-transmission capacity is the bit
rate–distance product BL. This section discusses how the BL product is lim-
ited by fiber dispersion and how it can be improved by using the technique of
dispersion management.

3.4.1 GVD-Induced Limitations

Consider first the case in which pulse broadening is dominated by the large
spectral width σω of the source. For a Gaussian pulse, the broadening factor
can be obtained from Eq. (3.3.13). Assuming that the contribution of the β3
term is negligible together with C = 0 and Vω � 1, the RMS pulse width σ is
given by

σ = [σ 2
0 +(β2Lσω)

2
]
1=2

= [σ 2
0 +(DLσλ )

2
]
1=2

; (3.4.1)

where L is the fiber-link length and σλ is the RMS spectral width of the source
in wavelength units. The dispersion parameter D is related to the GVD param-
eter β2 as indicated in Eq. (1.2.11).

One can relate σ to the bit rate B by using the criterion that the broadened
pulse should remain confined to its own bit slot (TB = 1=B). A commonly used
criterion is 4σ < TB [39]; for a Gaussian pulse, at least 95% of the pulse energy
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remains within the bit slot when this condition is satisfied. The limiting bit rate
is obtained using 4Bσ < 1. Assuming σ0 � σ , this condition becomes

BLjDjσλ < 1=4: (3.4.2)

As an illustration, consider the case of multimode semiconductor lasers [28]
for which σλ � 2 nm. If the system is operating near λ = 1:55 µm using
standard fibers, D� 16 ps/(km-nm). With these parameter values, Eq. (3.4.2)
requires BL< 8 (Gb/s)-km. For a 100-km-long fiber, GVD restricts the bit rate
to relatively low values of only 80 Mb/s. However, if the system is designed to
operate near the zero-dispersion wavelength (occurring near 1.3 µm) such that
jDj< 1 ps/(km-nm), the BL product increases to beyond 100 (Gb/s)-km.

Modern fiber-optic communication systems operating near 1.55 µm re-
duce the GVD effects using dispersion-shifted fibers designed such that the
minimum-loss wavelength and the zero-dispersion wavelengths nearly coin-
cide. At the same time, they use lasers designed to operate in a single longi-
tudinal mode such that the source spectral width is well below 100 MHz [28].
Under such conditions, Vω � 1 in Eq. (3.3.13). If we neglect the β3 term and
set C = 0, Eq. (3.3.13) can be approximated by

σ = [σ 2
0 +(β2L=2σ0)

2
]
1=2

: (3.4.3)

A comparison with Eq. (3.4.1) reveals a major difference: Dispersion-induced
broadening now depends on the initial width σ0. In fact, σ can be minimized
by choosing an optimum value of σ 0. The minimum value of σ is found to
occur for σ0 = (jβ2jL=2)1=2 and is given by σ = (jβ2jL)

1=2. The limiting bit
rate is obtained by using 4Bσ < 1 or the condition

B(jβ2jL)
1=2

< 1=4: (3.4.4)

The main difference from Eq. (3.4.2) is that B scales as L�1=2 rather than L�1.
Figure 3.9 compares the decrease in the bit rate with increasing L by choosing
D = 16 ps/(km-nm) and σλ = 0, 1, and 5 nm. Equation (3.4.4) was used in the
case σλ = 0.

For a lightwave system operating exactly at the zero-dispersion wavelength,
β2 = 0 in Eq. (3.3.13). Assuming Vω � 1 and C = 0, the pulse width is given
by

σ = [σ 2
0 +

1
2(β3L=4σ 2

0 )
2
]
1=2

: (3.4.5)

Similar to the case of Eq. (3.4.3), σ can be minimized by optimizing the in-
put pulse width σ0. The minimum value of σ0 is found to occur for σ0 =
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Figure 3.9 Limiting bit rate as a function of the fiber length for σ λ = 0, 1 and 5
nm. The case σλ = 0 corresponds to an optical source whose spectral width is much
smaller than the bit rate. Dashed line shows the case β2 = 0.

(jβ3jL=4)1=3. The limiting bit rate is obtained by using the condition 4Bσ < 1
and is given by [39]

B(jβ3jL)
1=3

< 0:324: (3.4.6)

The dispersive effects are most forgiving in this case. For a typical value β3 =
0.1 ps3/km, the bit rate can be as large as 150 Gb/s for L = 100 km. It decreases
to only 70 Gb/s even when L increases by a factor of 10 because of the L�1=3

dependence of the bit rate on the fiber length. The dashed line in Fig. 3.9
shows this dependence using Eq. (3.4.6) with β 3 = 0.1 ps3/km. Clearly, the
performance of a lightwave system can be considerably improved by operating
it close to the zero-dispersion wavelength of the fiber.

3.4.2 Dispersion Compensation

Even though operation at the zero-dispersion wavelength is most desirable
from the standpoint of pulse broadening, other considerations may preclude
such a design. For example, at most one channel can be located at the zero-
dispersion wavelength in a wavelength-division-multiplexed (WDM) system.
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Moreover, as discussed in Chapter 10, strong four-wave mixing occurring
when GVD is relatively low forces WDM systems to operate away from the
zero-dispersion wavelength so that each channel has a finite value of β2. Of
course, GVD-induced pulse broadening then becomes of serious concern. The
technique of dispersion management provides a solution to this dilemma. It
consists of combining fibers with different characteristics such that the aver-
age GVD of the entire fiber link is quite low while the GVD of each fiber
section is chosen to be large enough to make the four-wave-mixing effects
negligible [40]. In practice, a periodic dispersion map is used with a period
equal to the amplifier spacing (typically 50–100 km). Amplifiers compensate
for accumulated fiber losses in each section. Between each pair of amplifiers,
just two kinds of fibers, with opposite signs of β2, are combined to reduce the
average dispersion to a small value. When the average GVD is set to zero,
dispersion is totally compensated.

Such a dispersion-compensation technique takes advantage of the linear
nature of Eq. (3.2.1). The basic idea can be understood from Eq. (3.2.5) repre-
senting the general solution of Eq. (3.2.1). For a dispersion map consisting of
two fiber segments, Eq. (3.2.5) becomes

U(Lm; t) =
1

2π

Z ∞

�∞
Ũ(0;ω)exp

�
i
2

ω2
(β21L1 +β22L2)� iωt

�
dω ; (3.4.7)

where Lm = L1+L2 is the dispersion-map period, and β2 j is the GVD parame-

ter of the fiber segment of length Lj ( j = 1, 2). By using Dj =�(2πc=λ 2
)β2 j,

the condition for dispersion compensation can be written as

D1L1 +D2L2 = 0: (3.4.8)

As A(Lm; t) = A(0; t) when Eq. (3.4.8) is satisfied, the pulse recovers its initial
width after each map period even though pulse width can change significantly
within each period.

Equation (3.4.8) can be satisfied in several different ways. If two segments
are of equal lengths (L1 = L2), the two fibers should have D1 = �D2. Fibers
with equal and opposite values of GVD can be made by shifting the zero-
dispersion wavelength appropriately during the manufacturing stage. How-
ever, a large quantity of standard fiber is already installed in existing light-
wave systems. Because this fiber has anomalous GVD with D � 16 ps/(km-
nm), its dispersion can be compensated by using a relatively short segment of
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dispersion-compensating fiber (DCF), designed to have ‘normal’ GVD with
values of D >�100 ps/(km-nm).

The idea of using a DCF has been around since 1980 [41]. However, it
was only after the advent of optical amplifiers in 1990 that the development
of DCFs accelerated in pace [42]–[51]. There are two basic approaches to
designing DCFs. In one approach, the DCF supports a single mode, but it is
designed with a relatively small value of the fiber parameter V . As discussed in
Section 2.2, the fundamental mode is weakly confined when V � 1. Because
a large fraction of the mode propagates inside the cladding layer where the
refractive index is smaller, the waveguide contribution to the GVD is quite
different for such fibers, resulting in D � �100 ps/(km-nm). A depressed-
cladding design is often used in practice.

Single-mode DCFs suffer from several problems. First, 1 km of DCF com-
pensates dispersion for only 8–10 km of standard fiber. Second, DCF losses
are relatively high in the 1.55-µm wavelength region (α � 0:5 dB/km). Third,
because of a relatively small mode diameter, the optical intensity is larger at a
given input power, resulting in enhanced nonlinear effects. Most of the prob-
lems associated with a single-mode DCF can be solved to some extent by using
a two-mode fiber designed with values of V such that the higher-order mode is
near cutoff (V � 2:5). Such fibers have almost the same loss as the single-mode
fiber but can be designed such that the dispersion parameter D for the higher-
order mode has large negative values [44]–[46]. Indeed, values of D as large as
�770 ps/(km-nm) have been measured for elliptical-core fibers [46]. A 1-km
length of such a DCF can compensate the GVD of a 40-km-long fiber, adding
relatively little to the total link loss. An added advantage of the two-mode DCF
is that it allows for broadband dispersion compensation [44]. However, its use
requires a mode-conversion device capable of transferring radiation from the
fundamental to the higher-order mode supported by the DCF. Several such
all-fiber devices have been developed [52]–[54]. As an alternative, a chirped
fiber grating can be used for dispersion compensation [55].

3.4.3 Compensation of Third-Order Dispersion

When the bit rate of a single channel exceeds 100 Gb/s, one must use ultrashort
pulses (width �1 ps) in each bit slot. For such short optical pulses, the pulse
spectrum becomes broad enough that it is difficult to compensate GVD over
the entire bandwidth of the pulse (because of the frequency dependence of β2).
The simplest solution to this problem is provided by fibers, or other devices,
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designed such that both β 2 and β3 are compensated simultaneously [56]–[70].
The necessary conditions for designing such fibers can be obtained from Eq.
(3.3.2). For a fiber link containing two different fibers of lengths L1 and L2,
the conditions for broadband dispersion compensation are given by

β21L1 +β22L2 = 0 and β31L1 +β32L2 = 0; (3.4.9)

where β2 j and β3 j are the GVD and TOD parameters for fiber of length Lj ( j =
1;2). It is generally difficult to satisfy both conditions simultaneously over
a wide wavelength range. However, for a 1-ps pulse, it is sufficient to sat-
isfy Eq. (3.4.9) over a 4–5 nm bandwidth. This requirement is easily met for
DCFs [56], especially designed with negative values of β3 (sometimes called
reverse-dispersion fibers). Fiber gratings, liquid-crystal modulators, and other
devices can also be used for this purpose [62]–[68].

Several experiments have demonstrated signal transmission over distances
�100 km at high bit rates (100 Gb/s or more) using simultaneous compen-
sation of both GVD and TOD. In a 1996 experiment, a 100-Gb/s signal was
transmitted over 560 km with 80-km amplifier spacing [57]. In a later ex-
periment, bit rate was extended to 400 Gb/s by using 0.98-ps optical pulses
within the 2.5-ps time slot [58]. Without compensation of the TOD, the pulse
broadened to 2.3 ps after 40 km and exhibited a long oscillatory tail extending
over 5–6 ps (see Fig. 3.6). With partial compensation of TOD, the oscillatory
tail disappeared and the pulse width reduced to 1.6 ps. In another experi-
ment [59], a planar lightwave circuit was designed to have a dispersion slope
of �15:8 ps/nm2 over a 170-GHz bandwidth. It was used to compensate the
TOD over 300 km of a dispersion-shifted fiber for which β3 � 0:05 ps/(km-
nm2) at the operating wavelength. The dispersion compensator eliminated the
long oscillatory tail and reduced the width of the main peak from 4.6 to 3.8 ps.
The increase in pulse width from its input value of 2.6 ps can be attributed to
the PMD effects.

The dispersion-compensation technique has also been used for femtosec-
ond optical pulses. For a pulse with T0 = 0:1 ps, the TOD length L0D is only
10 m for a typical value β 3 = 0:1 ps3/km. Such pulses cannot propagate more
than a few meters before becoming severely distorted even when β2 is com-
pensated fully so that its average value is zero. Nonetheless, a 0.5-ps pulse
(T0 � 0:3 ps) was transmitted over 2.5 km of fiber using a 445-m-long DCF
with β2 � 98 ps2/km and β3 ��0:5 ps3/km [60]. The output pulse was slightly
distorted because β3 could not be fully compensated. In a later experiment, a
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Figure 3.10 Experimentally observed shapes of a 0.5-ps input pulse at the output of a
2.5-km GVD-compensated fiber link. The value of β 3 was changed from 0.124 (left)
to �0.076 ps3/km (right) using a liquid-crystal modulator. (After Ref. [62].)

liquid-crystal modulator was used to compensate for the residual β3 [62], and
the pulse remained nearly unchanged after propagating over 2.5 km of the
dispersion-compensated fiber link. In a 1999 experiment [66], the use of the
same technique with a different DCF (length 1.5 km) permitted transmission
of a 0.4-ps pulse (T0 � 0:25 ps) over 10.6 km of fiber with little distortion in
the pulse shape. The main advantage of a liquid-crystal modulator is that it
acts as a programmable pulse shaper. It can even be used to enhance the TOD
effects artificially. As an example, Fig. 3.10 shows the pulse shapes at the out-
put of a 2.5-km GVD-compensated fiber link when the effective value of β3
changes from 0.124 to �0.076 ps3/km [62]. The observed pulse shapes are in
agreement with those predicted by Eq. (3.3.2) as long as the nonlinear effects
remain negligible.

When both β2 and β3 are nearly compensated, propagation of femtosec-
ond optical pulses is limited by the fourth-order dispersive effects governed
by the parameter β4. In a 1999 experiment, the combination of a DCF and
a frequency-resolved, programmable, dispersion compensator compensated
β2; β3, and β4 simultaneously over a 30-nm-wide wavelength range [67]. This
scheme allowed transmission of a 0.2-ps pulse train with 22-nm bandwidth
over a distance of 85 km. In a later experiment, 0.25-ps pulses could be trans-
mitted over 139 km when dispersion up to fourth order was compensated using
a DCF with a negative slope [70]. Input pulses were prechirped appropriately
with a phase modulator. On the system level, a single high-speed channel at
640 Gb/s (obtained through time-division multiplexing) has been transmitted
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over 92 km by compensating β 2 and β3 over the entire link consisting of
standard, dispersion-shifted, and reverse-dispersion fibers [69].

Problems

3.1 A dispersion-shifted fiber is measured to have D = 2 ps/(km-nm) at
1.55 µm. It has an effective core area of 40 µm2. Calculate the dis-
persion and nonlinear lengths when (i) 10-ps pulses with 100-mW peak
power and (ii) 1-ps pulses with 1-W peak power are launched into the
fiber. Are nonlinear effects important in both cases?

3.2 A chirped Gaussian pulse is well described by Eq. (3.2.14) with C = 5
and T0 = 50 ps. Determine the temporal and spectral widths (FWHM) of
this pulse.

3.3 Prove that for an unchirped Gaussian pulse of arbitrary width, the prod-
uct ∆ν∆t approximately equals 0.44, where ∆t and ∆ν are the temporal
and spectral widths (both measured as FWHM), respectively.

3.4 Repeat Problem 3.3 for an unchirped “sech” pulse and prove that ∆ν∆t
approximately equals 0.315.

3.5 Starting with Eq. (3.2.23), derive an expression for the RMS width of a
super-Gaussian pulse.

3.6 Show that a chirped Gaussian pulse is compressed initially inside a
single-mode fiber when β 2C < 0. Derive expressions for the minimum
width and the fiber length at which the minimum occurs.

3.7 Evaluate the integral in Eq. (3.3.2) numerically for an unchirped Gaus-
sian pulse with 1-ps width (FWHM) assuming β 2 = 0 and β3 = 0.1 ps3/km.
Plot the pulse shapes for L = 2 and 4 km. What happens to the pulse
shape if the sign of β 3 is reversed or the input pulse is chirped?

3.8 Calculate the RMS width of an unchirped Gaussian pulse using Eqs.
(3.3.18)–(3.3.24). Retain the β 2 and β3 terms in Eq. (3.3.15) but neglect
all others.

3.9 Estimate the limiting bit rate for a 60-km single-mode fiber link at 1.3-
and 1.55-µm wavelengths assuming transform-limited 50-ps (FWHM)
input pulses. Assume β 2 = 0 and�20 ps2/km and β3 = 0.1 and 0 ps3/km
at 1.3 and 1.55 µm wavelengths, respectively.
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3.10 An optical communication system is operating with chirped Gaussian
input pulses. Assume β 3 = 0 and Vω �1 in Eq. (3.3.13) and obtain a
condition on the bit rate in terms of the parameters C, β2, and L.
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Chapter 4

Self-Phase Modulation

An interesting manifestation of the intensity dependence of the refractive in-
dex in nonlinear optical media occurs through self-phase modulation (SPM), a
phenomenon that leads to spectral broadening of optical pulses [1]–[9]. SPM
is the temporal analog of self-focusing. Indeed, it was first observed in 1967
in the context of transient self-focusing of optical pulses propagating in a CS2-
filled cell [1]. By 1970, SPM had been observed in solids and glasses by using
picosecond pulses. The earliest observation of SPM in optical fibers was made
with a fiber whose core was filled with CS2 [7]. This work led to a system-
atic study of SPM in a silica-core fiber [9]. This chapter considers SPM as a
simple example of the nonlinear optical effects that can occur in optical fibers.
Section 4.1 is devoted to the case of pure SPM by neglecting the GVD effects.
The effects of GVD on SPM are discussed in Section 4.2 with particular em-
phasis on the SPM-induced frequency chirp. Section 4.3 extends the results to
include the higher-order nonlinear effects such as self-steepening.

4.1 SPM-Induced Spectral Broadening

A general description of SPM in optical fibers requires numerical solutions of
the pulse-propagation equation (2.3.39) obtained in Section 2.3. The simpler
equation (2.3.41) can be used for pulse widths T0 > 5 ps. A further simplifi-
cation occurs if the effect of GVD on SPM is negligible so that the β2 term
in Eq. (2.3.41) can be set to zero. The conditions under which GVD can be
ignored were discussed in Section 3.1 by introducing the length scales LD and
LNL [see Eq. (3.1.5)]. In general, the pulse width and the peak power should
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be such that LD � L > LNL for a fiber of length L. Equation (3.1.7) shows that
the GVD effects are negligible for relatively wide pulses (T0 > 100 ps) with a
large peak power (P0 > 1 W).

4.1.1 Nonlinear Phase Shift

In terms of the normalized amplitude U(z;T ) defined as in Eq. (3.1.3), the
pulse-propagation equation (3.1.4), in the limit β2 = 0, becomes

∂U
∂ z

=
ie�αz

LNL
jU j2U; (4.1.1)

where α accounts for fiber losses. The nonlinear length is defined as

LNL = (γP0)
�1
; (4.1.2)

where P0 is the peak power and γ is related to the nonlinear-index coefficient n2
as in Eq. (2.3.28). Equation (4.1.1) can be solved substituting U =V exp(iφNL)
and equating the real and imaginary parts so that

∂V
∂ z

= 0;
∂φNL

∂ z
=

e�αz

LNL
V 2

: (4.1.3)

As the amplitude V does not change along the fiber length L, the phase equation
can be integrated analytically to obtain the general solution

U(L;T ) =U(0;T )exp[iφNL(L;T )]; (4.1.4)

where U(0;T ) is the field amplitude at z = 0 and

φNL(L;T ) = jU(0;T )j2(Leff=LNL); (4.1.5)

with the effective length Leff defined as

Leff = [1� exp(�αL)]=α : (4.1.6)

Equation (4.1.4) shows that SPM gives rise to an intensity-dependent phase
shift but the pulse shape remains unaffected. The nonlinear phase shift φNL in
Eq. (4.1.5) increases with fiber length L. The quantity Leff plays the role of an
effective length that is smaller than L because of fiber losses. In the absence of
fiber losses, α = 0, and Leff = L. The maximum phase shift φmax occurs at the
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pulse center located at T = 0. With U normalized such that jU(0;0)j = 1, it is
given by

φmax = Leff=LNL = γP0Leff: (4.1.7)

The physical meaning of the nonlinear length LNL is clear from Eq. (4.1.7)—it
is the effective propagation distance at which φmax = 1. If we use a typical
value γ = 2 W�1km�1 in the 1.55-µm wavelength region, LNL = 50 km at a
power level P0 = 10 mW and decreases inversely with an increase in P0.

The SPM-induced spectral broadening is a consequence of the time de-
pendence of φNL. This can be understood by noting that a temporally varying
phase implies that the instantaneous optical frequency differs across the pulse
from its central value ω 0. The difference δω is given by

δω(T ) =�∂φNL

∂T
=�

�
Leff

LNL

�
∂

∂T
jU(0;T )j2; (4.1.8)

where the minus sign is due to the choice of the factor exp(�iω0t) in Eq.
(2.3.2). The time dependence of δω is referred to as frequency chirping. The
chirp induced by SPM increases in magnitude with the propagated distance.
In other words, new frequency components are generated continuously as the
pulse propagates down the fiber. These SPM-generated frequency components
broaden the spectrum over its initial width at z = 0.

The extent of spectral broadening depends on the pulse shape. Consider,
for example, the case of a super-Gaussian pulse with the incident field U(0;T )
given by Eq. (3.2.23). The SPM-induced chirp δω(T ) for such a pulse is

δω(T ) =
2m
T0

Leff

LNL

�
T
T0

�2m�1

exp

"
�
�

T
T0

�2m
#
; (4.1.9)

where m= 1 for a Gaussian pulse. For larger values of m, the incident pulse be-
comes nearly rectangular with increasingly steeper leading and trailing edges.
Figure 4.1 shows variation of the nonlinear phase shift φNL and the induced
frequency chirp δω across the pulse at Leff = LNL in the cases of a Gaussian
pulse (m = 1) and a super-Gaussian pulse (m = 3). As φNL is directly propor-
tional to jU(0;T )j2 in Eq. (4.1.5), its temporal variation is identical to that of
the pulse intensity. The temporal variation of the induced chirp δω has sev-
eral interesting features. First, δω is negative near the leading edge (red shift)
and becomes positive near the trailing edge (blue shift) of the pulse. Second,
the chirp is linear and positive (up-chirp) over a large central region of the
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Figure 4.1 Temporal variation of SPM-induced phase shift φ NL and frequency chirp
δω for Gaussian (dashed curve) and super-Gaussian (solid curve) pulses.

Gaussian pulse. Third, the chirp is considerably larger for pulses with steeper
leading and trailing edges. Fourth, super-Gaussian pulses behave differently
than Gaussian pulses because the chirp occurs only near pulse edges and does
not vary in a linear fashion.

4.1.2 Changes in Pulse Spectra

An estimate of the magnitude of SPM-induced spectral broadening can be ob-
tained from the peak value of δω in Fig. 4.1. More quantitatively, we can
calculate the peak value by maximizing δω(T ) from Eq. (4.1.9). By setting its
time derivative to zero, the maximum value of δω is given by

δω max =
m f (m)

T0
φmax; (4.1.10)
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where φmax is given in Eq. (4.1.7) and f (m) is defined as

f (m) = 2

�
1� 1

2m

�1�1=2m

exp

�
�
�

1� 1
2m

��
: (4.1.11)

The numerical value of f depends on m only slightly; f = 0:86 for m = 1 and
tends toward 0.74 for large values of m. To obtain the broadening factor, the
width parameter T0 should be related to the initial spectral width ∆ω0 of the
pulse. For an unchirped Gaussian pulse, ∆ω0 = T�1

0 from Eq. (3.2.16), where
∆ω0 is the 1/e half-width. Equation (4.1.10) then becomes (with m = 1)

δωmax = 0:86 ∆ω0φmax; (4.1.12)

showing that the spectral broadening factor is approximately given by the
numerical value of the maximum phase shift φ max. In the case of a super-
Gaussian pulse, it is difficult to estimate ∆ω0 because its spectrum is not
Gaussian. However, if we use Eq. (3.2.24) to obtain the rise time, Tr = T0=m,
and assume that ∆ω 0 approximately equals T�1

r , Eq. (4.1.10) shows that the
broadening factor of a super-Gaussian pulse is also approximately given by
φ max. With φ max � 100 possible for intense pulses or long fibers, SPM can
broaden the spectrum considerably. In the case of intense ultrashort pulses, the
broadened spectrum can extend over 100 THz or more, especially when SPM
is accompanied by other nonlinear processes such as stimulated Raman scat-
tering and four-wave mixing. Such an extreme spectral broadening is referred
to as supercontinuum [4].

The actual shape of the pulse spectrum S(ω) is obtained by taking the
Fourier transform of Eq. (4.1.4). Using S(ω) = jŨ(L;ω)j2, we obtain

S(ω) =

����
Z ∞

�∞
U(0;T )exp[iφNL(L;T ) + i(ω�ω0)T ]dT

����
2

: (4.1.13)

In general, the spectrum depends not only on the pulse shape but also on the
initial chirp imposed on the pulse. Figure 4.2 shows the spectra of an unchirped
Gaussian pulse for several values of the maximum phase shift φmax. For a
given fiber length, φ max increases linearly with peak power P0 according to
Eq. (4.1.7). Thus, spectral evolution seen in Fig. 4.2 can be observed experi-
mentally by increasing the peak power. Figure 4.3 shows the experimentally
observed spectra [9] of nearly Gaussian pulses (T0 � 90 ps), obtained from
an argon-ion laser, at the output of a 99-m-long fiber with 3.35-µm core di-
ameter (parameter V = 2:53). The experimental spectra are also labeled with
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Figure 4.2 SPM-broadened spectra for an unchirped Gaussian pulse. Spectra are
labeled by the maximum nonlinear phase shift φmax. (After Ref. [9].)

φ max and should be compared with the calculated spectra of Fig. 4.2. Slight
asymmetry seen in the experimental traces can be attributed to the asymmetric
shape of the incident pulse [9]. The overall agreement between theory and the
experiment is remarkably good.

The most notable feature of Figs. 4.2 and 4.3 is that SPM-induced spec-
tral broadening is accompanied by an oscillatory structure covering the entire
frequency range. In general, the spectrum consists of many peaks, and the out-
ermost peaks are the most intense. The number of peaks depends on φmax and
increases linearly with it. The origin of the oscillatory structure can be under-
stood by referring to Fig. 4.1 where the time dependence of the SPM-induced
frequency chirp is shown. In general, the same chirp occurs at two values of
T , showing that the pulse has the same instantaneous frequency at two dis-
tinct points. Qualitatively speaking, these two points represent two waves
of the same frequency but different phases that can interfere constructively
or destructively depending on their relative phase difference. The multipeak
structure in the pulse spectrum is a result of such interference [1]. Mathemat-
ically, the Fourier integral in Eq. (4.1.13) gets dominant contributions at the
two values of T at which the chirp is the same. These contributions, being
complex quantities, may add up in phase or out of phase. Indeed, one can use
the method of stationary phase to obtain an analytic expression of S(ω) that is
valid for large values of φ max. This expression shows that the number of peaks
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Figure 4.3 Experimentally observed spectra for a nearly Gaussian pulse at the output
of a 99-m-long fiber. Spectra are labeled by the maximum phase shift φ max related
linearly to the peak power. (After Ref. [9].)

M in the SPM-broadened spectrum is given approximately by the relation [3]

φmax � (M� 1
2)π: (4.1.14)

Equation (4.1.14) together with Eq. (4.1.12) can be used to estimate the
initial spectral width ∆ω 0 or the pulse width T0 if the pulse is unchirped [6].
The method is accurate however only if φ max � 1. To obtain a more accurate
measure of spectral broadening, one should use the RMS spectral width ∆ωrms

defined as
∆ω2

rms = h(ω�ω0)
2i�h(ω�ω0)i2; (4.1.15)

where the angle brackets denote an average over the SPM-broadened spectrum
given in Eq. (4.1.13). More specifically,

h(ω�ω0)in =
R ∞
�∞(ω�ω0)

nS(ω)dωR ∞
�∞ S(ω)dω

: (4.1.16)
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Figure 4.4 Comparison of SPM-broadened spectra for unchirped Gaussian and super-
Gaussian pulses at a peak power corresponding to φmax = 4:5π .

Using a procedure similar to that of Section 3.3, the spectral broadening factor
for a Gaussian pulse is given by [10]

∆ωrms

∆ω0
=

�
1+

4

3
p

3
φ2

max

�1=2

; (4.1.17)

where ∆ω0 is the initial RMS spectral width of the pulse.

4.1.3 Effect of Pulse Shape and Initial Chirp

As mentioned before, the shape of the SPM-broadened spectrum depends on
the pulse shape and on the initial chirp if the input pulse is chirped [11]. Fig-
ure 4.4 compares the pulse spectra for Gaussian (m = 1) and super-Gaussian
(m = 3) pulses obtained using Eq. (3.2.23) in Eq. (4.1.13) and performing
the integration numerically. In both cases, input pulses are assumed to be
unchirped (C = 0). The fiber length and the peak power are chosen such that
φmax = 4:5π . The qualitative differences between the two spectra can be un-
derstood by referring to Fig. 4.1, where the SPM-induced chirp is shown for
the Gaussian and super-Gaussian pulses. The spectral range is about three
times larger for the super-Gaussian pulse because the maximum chirp from
Eq. (4.1.10) is about three times larger in that case. Even though both spec-
tra in Fig. 4.4 exhibit five peaks, in agreement with Eq. (4.1.14), most of the
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Figure 4.5 Effect of initial frequency chirp on SPM-broadened spectra of a chirped
Gaussian pulse for C = 5 and C =�5. The two spectra should be compared with the
left spectrum in Fig. 4.4 where C = 0. In all cases φmax = 4:5π .

energy remains in the central peak for the super-Gaussian pulse. This is so
because the chirp is nearly zero over the central region in Fig. 4.1 for such
a pulse as a consequence of the nearly uniform intensity of a super-Gaussian
pulse for jT j < T0. The frequency chirp occurs mainly near the leading and
trailing edges. As these edges become steeper, the tails in Fig. 4.4 extend
over a longer frequency range but, at the same time, carry less energy because
chirping occurs over a small time duration.

An initial frequency chirp can also lead to drastic changes in the SPM-
broadened pulse spectrum. This is illustrated in Fig. 4.5, which shows the
spectra of a Gaussian pulse with positive and negative chirps [C =� 5 in Eq.
(3.2.23)] under conditions identical to those of Fig. 4.4, i.e., φmax = 4:5π . A
comparison of these spectra with the spectrum of the unchirped Gaussian pulse
(left plot in Fig. 4.4) shows how the initial chirp leads to qualitative changes
in SPM-induced spectral broadening. A positive chirp increases the number of
spectral peaks while the opposite occurs in the case of a negative chirp. This
can be understood by noting that the SPM-induced frequency chirp is linear
and positive (frequency increases with increasing T ) over the central portion
of a Gaussian pulse (see Fig. 4.1). Thus, it adds with the initial chirp for
C > 0, resulting in an enhanced oscillatory structure. In the case of C < 0, the
two chirp contributions are of opposite signs except near the pulse edges. The
outermost peaks in Fig. 4.5 for C = �5 are due to the residual chirp near the
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leading and trailing edges.
For negative values of the chirp parameter C, pulse spectrum at the fiber

output can become narrower than that of initially unchirped pulses. Such a
spectral narrowing has been seen experimentally using 100-fs pulses (emit-
ted from a mode-locked Ti:sapphire laser operating near 0.8 µm) and chirping
them with a prism pair before launching them into a 48-cm-long fiber [11].
The 10.6-nm spectral width of input pulses was nearly unchanged at low peak
powers but became progressively smaller as the peak power was increased. It
reduced to 3.1 nm at a 1.6-kW peak power. The output spectral width also
changed with the fiber length at a given peak power and exhibited a minimum
value of 2.7 nm for a fiber length of 28 cm at the 1-kW peak power. The
spectrum rebroadened for longer fibers. These results can be understood qual-
itatively by noting that the spectrum narrows as long as the SPM-induced chirp
compensates the initial chirp. For a quantitative modeling of the experimental
data it is necessary to include the effects of GVD for 100-fs pulses used in the
experiment. This issue is covered in Section 4.2.

4.1.4 Effect of Partial Coherence

In the preceding discussion, SPM-induced spectral broadening occurs only for
optical pulses because, as seen in Eq. (4.1.5), the nonlinear phase shift mim-
ics temporal variations of the pulse shape. Indeed, the SPM-induced chirp in
Eq. (4.1.8) vanishes for continuous-wave (CW) radiation, implying that a CW
beam would not experience any spectral broadening in optical fibers. This
conclusion, however, is a consequence of an implicit assumption that the in-
put optical field is perfectly coherent. In practice, all optical beams are only
partially coherent. The degree of coherence for laser beams is large enough
that the effects of partial coherence are negligible in most cases of practical
interest. For example, SPM-induced spectral broadening of optical pulses is
relatively unaffected by the partial temporal coherence of the laser source as
long as the coherence time Tc of the laser beam is much larger than the pulse
width T0.

When the coherence time becomes shorter than the pulse width, effects
of partial coherence must be included [12]–[18]. In the case of a CW beam,
SPM can lead to spectral broadening during its propagation inside an optical
fiber. The physical reason behind such broadening can be understood by noting
that partially coherent light exhibits both intensity and phase fluctuations. The
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Figure 4.6 SPM-induced spectral broadening of a partially coherent CW beam for
several values of Z. The curve marked Z = 0 shows the input Gaussian spectrum.

SPM converts intensity fluctuations into additional phase fluctuations [see Eq.
(4.1.5)] and broadens the optical spectrum. Alternatively, SPM reduces the
coherence time Tc as the CW beam propagates inside the fiber, making it less
and less coherent.

The optical spectrum of partially coherent light at the fiber output is ob-
tained using the Wiener–Khintchine theorem [19]:

S(ω) =

Z ∞

�∞
Γ(z;τ)exp(iωτ)dτ ; (4.1.18)

where the coherence function Γ(z;τ) is defined as

Γ(z;τ) = hU�(z;T )U(z;T + τ)i: (4.1.19)

The optical field U(z;T ) inside the fiber at a distance z is known from Eq.
(4.1.4). The angle brackets denote an ensemble average over fluctuations in
the input field U(0;T ). The statistical properties of U(0;T ) depend on the
optical source and are generally quite different for laser and nonlaser sources.

The average in Eq. (4.1.19) can be performed analytically for thermal
sources because both the real and imaginary parts of U(0;T ) follow a Gaus-
sian distribution for such a source. Even though the laser light used commonly
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in nonlinear-optics experiments is far from being thermal, it is instructive to
consider the case of a thermal field. The coherence function of Eq. (4.1.19) in
that specific case is found to evolve as [13]

Γ(Z;τ) = Γ(0;τ)[1+Z2(1�jΓ(0;τ)j2)]�2
; (4.1.20)

where Z = Leff=LNL is the normalized propagation distance. For a perfectly co-
herent field, Γ(0;τ) = 1. Equation (4.1.20) shows that such a field remains per-
fectly coherent on propagation. In contrast, partially coherent light becomes
progressively less coherent as it travels inside the fiber. Such a coherence
degradation can be understood by noting that SPM converts intensity fluctua-
tions into additional phase fluctuations, making light less coherent.

The spectrum is obtained by substituting Eq. (4.1.20) in Eq. (4.1.18). The
integral can be performed analytically in some specific cases [12], but in gen-
eral requires numerical evaluation (through the FFT algorithm, for example).
As an example, Fig. 4.6 shows the optical spectra at several propagation dis-
tances assuming a Gaussian form for the input coherence function,

Γ(0;τ) = exp[�(τ2
=2T 2

c )]; (4.1.21)

where Tc is the coherence time of the input field. As expected, shortening of the
coherence time is accompanied by SPM-induced spectral broadening. Little
broadening occurs until light has propagated a distance equal to the nonlinear
length LNL, but the spectrum broadens by about a factor of 8 at Z = 5. The
spectral shape is quite different qualitatively compared with those seen in Fig.
4.2 for the case of a completely coherent pulse. In particular, note the absence
of a multipeak structure.

One may ask how the SPM-broadened spectrum of an optical pulse is
affected by the partial coherence of the optical source. Numerical simula-
tions show that each peak of the multipeak structure seen in Fig. 4.2 begins to
broaden when the coherence time becomes comparable to or shorter than the
pulse width. As a result, individual peaks begin to merge together. In the limit
of very short coherence time, the multipeak structure disappears altogether,
and spectral broadening has features similar to those seen in Fig. 4.6. The
SPM-induced coherence degradation and the associated spectral broadening
has been observed experimentally by using stimulated Raman scattering (see
Chapter 8) as a source of partially coherent light [14].
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4.2 Effect of Group-Velocity Dispersion

The SPM effects discussed in Section 4.1 describe the propagation behavior
realistically only for relatively long pulses (T0 > 100 ps) for which the dis-
persion length LD is much larger compared with both the fiber length L and
the nonlinear length LNL. As pulses become shorter and the dispersion length
becomes comparable to the fiber length, it becomes necessary to consider the
combined effects of GVD and SPM [8]. New qualitative features arise from
an interplay between GVD and SPM. In the anomalous-dispersion regime of
an optical fiber, the two phenomena can cooperate in such a way that the pulse
propagates as an optical soliton (Chapter 5). In the normal-dispersion regime,
the combined effects of GVD and SPM can be used for pulse compression.
This section considers the temporal and spectral changes that occur when the
effects of GVD are included in the description of SPM [20]–[31].

4.2.1 Pulse Evolution

The starting point is the nonlinear Schrödinger (NLS) equation (2.3.41) or Eq.
(3.1.4). The later equation can be written in a normalized form as

i
∂U
∂ξ

= sgn(β2)
1
2

∂ 2U
∂τ2 �N2e�αzjU j2U; (4.2.1)

where ξ and τ represent the normalized distance and time variables defined as

ξ = z=LD; τ = T=T0; (4.2.2)

and the parameter N is introduced by using

N2 =
LD

LNL
� γP0T 2

0

jβ2j
: (4.2.3)

The physical significance of N will become clear in Chapter 5 where the integer
values of N are found to be related to the soliton order. The practical signifi-
cance of the parameter N is that solutions of Eq. (4.2.1) obtained for a specific
N value are applicable to many practical situations through the scaling law of
Eq. (4.2.3). For example, if N = 1 for T0 = 1 ps and P0 = 1 W, the calculated
results apply equally well for T0 = 10 ps and P0 = 10 mW or T0 = 0:1 ps and
P0 = 100 W. As evident from Eq. (4.2.3), N governs the relative importance
of the SPM and GVD effects on pulse evolution along the fiber. Dispersion
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Figure 4.7 Evolution of pulse shapes (upper plot) and optical spectra (lower plot)
over a distance of 5LD for an initially unchirped Gaussian pulse propagating in the
normal-dispersion regime of the fiber (β2 > 0) with parameters such that N = 1.

dominates for N � 1 while SPM dominates for N � 1. For values of N � 1,
both SPM and GVD play an equally important role during pulse evolution. In
Eq. (4.2.1), sgn(β2) = �1 depending on whether GVD is normal (β2 > 0) or
anomalous (β2 < 0). The split-step Fourier method of Section 2.4 can be used
to solve Eq. (4.2.1) numerically.

Figure 4.7 shows evolution of the shape and the spectrum of an initially
unchirped Gaussian pulse in the normal-dispersion regime of a fiber using
N = 1 and α = 0. The qualitative behavior is quite different from that ex-
pected when either GVD or SPM dominates. In particular, the pulse broadens
much more rapidly compared with the N = 0 case (no SPM). This can be un-
derstood by noting that SPM generates new frequency components that are
red-shifted near the leading edge and blue-shifted near the trailing edge of the
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Figure 4.8 Evolution of pulse shapes (upper plot) and optical spectra (lower plot) un-
der conditions identical to those of Fig. 4.7 except that the Gaussian pulse propagates
in the anomalous-dispersion regime (β2 < 0).

pulse. As the red components travel faster than the blue components in the
normal-dispersion regime, SPM leads to an enhanced rate of pulse broadening
compared with that expected from GVD alone. This in turn affects spectral
broadening as the SPM-induced phase shift φNL becomes less than that occur-
ring if the pulse shape were to remain unchanged. Indeed, φmax = 5 at z= 5LD,
and a two-peak spectrum is expected in the absence of GVD. The single-peak
spectrum for z=LD = 5 in Fig. 4.7 implies that the effective φmax is below π
because of pulse broadening.

The situation is different for pulses propagating in the anomalous-dispersion
regime of the fiber. Figure 4.8 shows the pulse shapes and spectra under con-
ditions identical to those of Fig. 4.7 except that the sign of the GVD parameter
has been reversed (β2 < 0). The pulse broadens initially at a rate much lower
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Figure 4.9 Broadening factor of Gaussian pulses in the cases of normal (β 2 > 0) and
anomalous (β2 < 0) GVD. The parameter N = 1 in both cases. Dashed curve shows
for comparison the broadening expected in the absence of SPM (N = 0).

than that expected in the absence of SPM and then appears to reach a steady
state for z > 4LD. At the same time, the spectrum narrows rather than exhibit-
ing broadening expected by SPM in the absence of GVD. This behavior can be
understood by noting that the SPM-induced chirp given by Eq. (4.1.9) is pos-
itive while the dispersion-induced chirp given by Eq. (3.2.13) is negative for
β2 < 0. The two chirp contributions nearly cancel each other along the center
portion of the Gaussian pulse when LD = LNL (N = 1). Pulse shape adjusts
itself during propagation to make such cancelation as complete as possible.
Thus, GVD and SPM cooperate with each other to maintain a chirp-free pulse.
The preceding scenario corresponds to soliton evolution; initial broadening of
the Gaussian pulse occurs because the Gaussian profile is not the characteristic
shape associated with a fundamental soliton. Indeed, if the input pulse is cho-
sen to be a “sech” pulse [Eq. (3.2.21) with C = 0], both its shape and spectrum
remain unchanged during propagation. When the input pulse deviates from a
‘sech’ shape, the combination of GVD and SPM affects the pulse in such a
way that it evolves to become a ‘sech’ pulse, as seen in Fig. 4.8. This aspect is
discussed in detail in Chapter 5.
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4.2.2 Broadening Factor

Figures 4.7 and 4.8 show that the main effect of SPM is to alter the broadening
rate imposed on the pulse by the GVD alone. Figure 4.9 shows the broaden-
ing factor σ=σ0 as a function of z=LD for N = 1 when unchirped Gaussian
pulses are launched into the fiber. Here σ is the RMS width defined by Eq.
(3.2.25) and σ0 is its initial value. The dashed line shows for comparison
the broadening factor in the absence of SPM (N = 0). The SPM enhances
the broadening rate in the normal-dispersion regime and decreases it in the
anomalous-dispersion regime. The slower broadening rate for β2 < 0 is use-
ful for 1.55-µm optical communication systems for which β2 � �20 ps2/km
when standard fibers (the zero-dispersion wavelength near 1.3-µm) are used.
The performance of such systems is dispersion limited to the extent that the bit
rate–distance product BL is typically below 100 (Gb/s)-km for chirped pulses
with C =�5. It has been shown that the BL product can be nearly doubled by
increasing the peak power in the range 20–30 mW [26]. This enhancement is
due to the SPM-induced pulse narrowing seen in Fig. 4.8 for the case β2 < 0.

It is generally necessary to solve Eq. (4.2.1) numerically to study the com-
bined effects of GVD and SPM. However, even an approximate analytic ex-
pression for the pulse width would be useful to see the functional dependence
of the broadening rate on various physical parameters. Several approaches
have been used to solve the NLS equation approximately [32]–[39]. A varia-
tional approach was used as early as 1983. It assumes that the pulse maintains
a certain shape during propagation inside the fiber while its width or chirp can
change with z. In the case of a Gaussian pulse of the form of Eq. (3.2.14), the
parameters T0 and C are allowed to vary with z. Their evolution equations can
be obtained using the variational principle [32] or the path-integral formula-
tion [33]. This method is quite powerful because it provides physical insight
in the evolution behavior even for initially chirped pulses. However, its valid-
ity is limited to values of N < 1 for which the pulse shape does not change
drastically. This approach is also useful for solitons as discussed in Chapter 5.

In a different approach [35], the NLS equation is first solved by neglecting
the GVD effects. The result is used as the initial condition, and Eq. (4.2.1)
is solved again by neglecting the SPM effects. The approach is similar to the
split-step Fourier method of Section 2.4 except that the step size is equal to the
fiber length. The RMS pulse width can be calculated analytically by following
the method discussed in Section 3.3. In the case of an unchirped Gaussian
pulse incident at the input end of a fiber of length L, the broadening factor is
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given by [35]

σ
σ0

=

�
1+

p
2φmax

L
LD

+

�
1+

4

3
p

3
φ2

max

�
L2

L2
D

�1=2

; (4.2.4)

where φmax is the SPM-induced maximum phase shift given by Eq. (4.1.7).
This expression is fairly accurate for φmax < 1.

In another approach, Eq. (4.2.1) is solved in the frequency domain [36].
Such a spectral approach shows that SPM can be viewed as a four-wave-mixing
process [22] in which two photons at pump frequencies are annihilated to cre-
ate two photons at frequencies shifted toward the blue and red sides. These
newly created spectral components result in SPM-induced spectral broaden-
ing of the pulse. The oscillatory structure of the SPM spectra is due to the
phase-matching requirement of four-wave mixing (see Chapter 10). Although
in general the equation describing evolution of the spectral components should
be solved numerically, it can be solved analytically in some cases if the pulse
shape is assumed not to change significantly.

Another method that has been used with success studies evolution of the
pth moment hT pi as defined in Eq. (3.2.26), using the NLS equation (3.1.1)
or (4.2.1). If the fiber loss is neglected assuming that it is compensated using
optical amplifiers and Eq. (3.1.1) is first multiplied by TpA� and then integrated
over T , hT pi evolves as [37]

dhT pi
dz

=
iβ2

2W

Z ∞

�∞
T p

�
A�

∂ 2A
∂T 2 �A

∂ 2A�

∂T 2

�
dT; (4.2.5)

where W =
R ∞
�∞ jA(z;T )j2 dT represents the pulse energy that does not change

along the fiber in the absence of losses. The integral on the right-hand side
of Eq. (4.2.5) can be evaluated in a closed form if we use Eq. (4.1.4) as the
approximate solution for A(z;T ). This is a major simplification because it
amounts to assuming that the pulse shape does not change along the fiber.

With the preceding simplification, evolution of the RMS width of the pulse,
defined as σ = [hT 2i�hT i2]1=2, is governed by

dσ
dz

=
γβ2Sp

2σ
z; (4.2.6)

where Sp depends on both the shape and the peak power of the input pulse and
is defined as

Sp =
1

W

Z ∞

�∞
jA(0;T )j4 dT: (4.2.7)
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Figure 4.10 Evolution of an initially unchirped Gaussian pulse for N = 30 at z=L D =

0:1 in the normal-dispersion regime of an optical fiber.

Equation (4.2.6) can be integrated readily to obtain

σ 2(z) = σ2
0 + 1

2γβ2Spz2
; (4.2.8)

where σ0 is the RMS width of the input pulse at z = 0. This remarkably simple
result can be used for any pulse shape after Sp is calculated from Eq. (4.2.7). It
provides a reasonably accurate estimate of the pulse width when its predictions
are compared with the numerical results such as those shown in Fig. 4.9. A
variant of the moment method has been used to include the effects of fiber
losses and to predict not only the pulse width but also the spectral width and
the frequency chirp [38]. The moment method can also be used for dispersion-
managed lightwave systems in which optical amplifiers are used periodically
for compensating fiber losses [39]. See Chapter 7 of Part B for further details.

4.2.3 Optical Wave Breaking

Equation (4.2.1) suggests that the effects of SPM should dominate over those
of GVD for values of N� 1, at least during the initial stages of pulse evolution.
In fact, by introducing a new distance variable as Z =N2ξ = z=LNL, Eq. (4.2.1)
can be written as

i
∂U
∂Z

� d
2

∂ 2U
∂τ2 + jU j2U; (4.2.9)
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where fiber losses are neglected and d = β 2=(γP0T 2
0 ) is a small parameter.

Using the transformation

U(z;T ) =
p

ρ(z;T ) exp

�
i
Z T

0
v(z;T )dT

�
; (4.2.10)

in Eq. (4.2.9), the pulse-propagation problem reduces approximately to a fluid-
dynamics problem in which the variables ρ and v play, respectively, the role
of density and velocity of a fluid [40]. In the optical case, these variables rep-
resent the power and chirp profiles of the pulse. For a square-shape pulse, the
pulse-propagation problem becomes identical to the one related to “breaking
of a dam” and can be solved analytically. This solution is useful for light-
wave systems using the NRZ format and provides considerable physical in-
sight [41]–[43].

The approximate solution, although useful, does not account for a phe-
nomenon termed optical wave breaking [44]–[50]. It turns out that GVD can-
not be treated as a small perturbation even when N is large. The reason is that,
because of a large amount of the SPM-induced frequency chirp imposed on
the pulse, even weak dispersive effects lead to significant pulse shaping. In the
case of normal dispersion (β 2 > 0), the pulse becomes nearly rectangular with
relatively sharp leading and trailing edges and is accompanied by a linear chirp
across its entire width [20]. It is this linear chirp that can be used to compress
the pulse by passing it through a dispersive delay line.

The GVD-induced pulse shaping has another effect on pulse evolution. It
increases the importance of GVD because the second derivative in Eq. (4.2.1)
becomes large near the pulse edges. As a consequence, the pulse develops a
fine structure near its edges. Figure 4.10 shows pulse evolution for N = 30
for the case of an initially unchirped Gaussian pulse. The oscillatory structure
near pulse edges is present already at z=LD = 0:06. Further increase in z leads
to broadening of the pulse tails. Figure 4.11 shows the pulse shape and the
spectrum at z=LD = 0:08. The noteworthy feature is that rapid oscillations
near pulse edges are always accompanied by the sidelobes in the spectrum.
The central multipeak part of the spectrum is also considerably modified by
GVD. In particular, the minima are not as deep as expected from SPM alone.

The physical origin of temporal oscillations near the pulse edges is related
to optical wave breaking [44]. Both GVD and SPM impose frequency chirp on
the pulse as it travels down the fiber. However, as seen from Eqs. (3.2.13) and
(4.1.9), although the GVD-induced chirp is linear with time, the SPM-induced
chirp is far from being linear across the entire pulse. Because of the nonlinear
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Figure 4.11 Shape and spectrum of an initially unchirped (C = 0) Gaussian pulse at
z=LD = 0:08. All parameters are identical to those of Fig. 4.10. Spectral sidelobes and
temporal structure near pulse edges are due to optical wave breaking.

nature of the composite chirp, different parts of the pulse propagate at different
speeds [49]. In particular, in the case of normal GVD (β2 > 0), the red-shifted
light near the leading edge travels faster and overtakes the unshifted light in the
forward tail of the pulse. The opposite occurs for the blue-shifted light near
the trailing edge. In both cases, the leading and trailing regions of the pulse
contain light at two different frequencies that interfere. Oscillations near the
pulse edges in Fig. 4.10 are a result of such interference.

The phenomenon of optical wave breaking can also be understood as a
four-wave-mixing process (see Section 10.1). Nonlinear mixing of two dif-
ferent frequencies ω1 and ω 2 in the pulse tails creates new frequencies at
2ω 1�ω 2 and 2ω 2�ω1. The spectral sidelobes in Fig. 4.11 represent these
new frequency components. Temporal oscillations near pulse edges and the
spectral sidelobes are manifestations of the same phenomenon. It is interest-
ing to note that optical wave breaking does not occur in the case of anomalous
GVD. The reason is that the red-shifted part of the pulse cannot take over the
fast-moving forward tail. Instead, the energy in the pulse tail spreads out, and
the pulse acquires a pedestal [49].

The results shown in Figs. 4.10 and 4.11 are obtained for an unchirped
pulse (C = 0). Pulses emitted from practical laser sources are often chirped
and may follow quite a different evolution pattern depending on the sign and
magnitude of the chirp parameter C [46]. Figure 4.12 shows the pulse shape
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Figure 4.12 Pulse shape and spectrum under conditions identical to those of Fig. 4.11
except that the input Gaussian pulse is chirped with C = 20.

and the spectrum under conditions identical to those of Fig. 4.11 except for the
chirp parameter, which has a value C = 20. A comparison of the two figures
illustrates how much an initial chirp can modify the propagation behavior. For
an initially chirped pulse, the shape becomes nearly triangular rather than rect-
angular. At the same time, the spectrum exhibits an oscillatory structure in the
wings while the central SPM-like structure (seen in Fig. 4.11 for the case of
an unchirped pulse) has almost disappeared. These changes in the pulse shape
and spectrum can be understood qualitatively by recalling that a positive initial
chirp adds to the SPM-induced chirp. As a result, optical wave breaking sets in
earlier for chirped pulses. Pulse evolution is also sensitive to fiber losses. For
an actual comparison between theory and experiment it is necessary to include
both the chirp and losses in numerical simulations.

4.2.4 Experimental Results

The combined effects of GVD and SPM in optical fibers were first observed
in an experiment in which 5.5-ps (FWHM) pulses from a mode-locked dye
laser (at 587 nm) were propagated through a 70-m fiber [20]. For an input
peak power of 10 W (N � 7), output pulses were nearly rectangular and had a
positive linear chirp. The pulse shape was deduced from autocorrelation mea-
surements as pulses were too short to be measured directly (see Section 3.3.4).



Effect of Group-Velocity Dispersion 119

Figure 4.13 Output spectrum of 35-ps input pulses showing SPM-induced spectral
broadening. Initial pulse spectrum is also shown for comparison. (After Ref. [44].)

In a later experiment, much wider pulses (FWHM� 150 ps) from a Nd:YAG
laser operating at 1.06 µm were transmitted through a 20-km-long fiber [23].
As the peak power of the input pulses was increased from 1 to 40 W (cor-
responding to N in the range 20–150), the output pulses broadened, became
nearly rectangular and then developed substructure near its edges, resulting in
an evolution pattern similar to that shown in Fig. 4.10. For such long fibers,
it is necessary to include fiber losses. The experimental results were indeed in
good agreement with the predictions of Eq. (4.2.1).

The evidence of optical wave breaking was seen in an experiment in which
35-ps (FWHM) pulses at 532 nm (from a frequency-doubled Nd:YAG laser)
with peak powers of 235 W were propagated through a 93.5-m-long polariza-
tion-maintaining fiber [44]. Figure 4.13 shows the experimentally observed
spectrum of the output pulses. Even though N � 173 in this experiment, the
formal similarity with the spectrum shown in Fig. 4.11 is evident. In fact, the
phenomenon of optical wave breaking was discovered in an attempt to explain
the presence of the sidelobes in Fig. 4.13. In a 1988 experiment [47], the fre-
quency chirp across the pulse was directly measured by using a combination of
a streak camera and a spectrograph. The spectral sidelobes associated with the
optical wave breaking were indeed found to be correlated with the generation
of new frequencies near the pulse edges. In a later experiment [48], rapid oscil-
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lations across the leading and trailing edges of the optical pulse were directly
observed by using a cross-correlation technique that permitted subpicosecond
resolution. The experimental results were in excellent agreement with the pre-
dictions of Eq. (4.2.1).

4.2.5 Effect of Third-Order Dispersion

If the optical wavelength λ 0 nearly coincides with the zero-dispersion wave-
length λD so that β2 � 0, it is necessary to include the effects of third-order
dispersion (TOD) on SPM-induced spectral broadening [51]–[60]. The pulse-
propagation equation is obtained from Eq. (2.3.34) by setting β2 = 0 and ne-
glecting the higher-order nonlinear terms. If we introduce the dispersion length
L0

D from Eq. (3.3.3) and define ξ 0 = z=L0

D as the normalized distance, we obtain

i
∂U
∂ξ 0

= sgn(β3)
i
6

∂ 3U
∂τ3 � N̄2e�αzjU j2U; (4.2.11)

where

N̄2 =
L0

D

LNL
=

γP0T 3
0

jβ3j
: (4.2.12)

Similar to Eq. (4.2.1), the parameter N̄ governs the relative importance of the
GVD and SPM effects during pulse evolution; GVD dominates for N̄ � 1
while SPM dominates for N̄ � 1. Equation (4.2.11) can be solved numerically
using the split-step Fourier method of Section 2.4. In the following discussion
we assume β3 > 0 and neglect fiber losses by setting α = 0.

Figure 4.14 shows the shape and the spectrum of an initially unchirped
Gaussian pulse at ξ 0 = 5 for the case N̄ = 1. The pulse shape should be com-
pared with that shown in Fig. 3.6 where SPM effects were absent (N̄ = 0). The
effect of SPM is to increase the number of oscillations seen near the trailing
edge of the pulse. At the same time, the intensity does not become zero at
the oscillation minima. The effect of GVD on the spectrum is also evident in
Fig. 4.14. In the absence of GVD, a symmetric two-peak spectrum is expected
(similar to the one shown in Fig. 4.2 for the case φmax = 1:5π) since φ max = 5
for the parameter values used in Fig. 4.14. The effect of GVD is to introduce
spectral asymmetry without affecting the two-peak structure. This behavior is
in sharp contrast with the one shown in Fig. 4.6 for the normal-dispersion case
where GVD hindered splitting of the spectrum.

Pulse evolution exhibits qualitatively different features for large values of
N. As an example, Fig. 4.15 shows the shape and spectrum of an initially
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Figure 4.14 Pulse shape and spectrum of unchirped Gaussian pulses propagating
exactly at the zero-dispersion wavelength with N̄ = 1 and z= 5L0

D.

unchirped Gaussian pulse at ξ0 = 0:1 for the case N̄ = 10. The pulse devel-
ops an oscillatory structure with deep modulation. Because of rapid temporal
variations, the third derivative in Eq. (4.2.11) becomes large locally, and the
GVD effects become more important as the pulse propagates inside the fiber.
The most noteworthy feature of the spectrum is that the pulse energy becomes
concentrated in two spectral bands, a feature common for all values ofN̄ � 1.
As one of the spectral bands lies in the anomalous-dispersion regime, the pulse
energy in that band can form a soliton [59]. The energy in the other spectral
band, lying in the normal-dispersion regime of the fiber, disperses with prop-
agation. The soliton-related features are discussed later in Chapter 5. The
important point to note is that, because of SPM-induced spectral broadening,
the pulse does not really propagate at the zero-dispersion wavelength even if
β 2 � 0 initially. In effect, the pulse creates its own β2 through SPM. Roughly
speaking, the effective value of β 2 is given by

jβ2j � β3jδωmax=2πj; (4.2.13)

where δωmax is the maximum chirp given by Eq. (4.1.10). Physically, β 2 is
determined by the position of the dominant outermost spectral peaks in the
SPM-broadened spectrum.

In dispersion-managed fiber links, β 2 is large locally but nearly vanishes
on average. The effects of TOD play an important role in such links, especially
for short optical pulses [61]. The spectral and temporal evolution depends on
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Figure 4.15 Pulse shape and spectrum under conditions identical to those of Fig. 4.14
except that N̄ = 10 and z=L0

D = 0:1.

whether the dispersion-compensating fiber (DCF) is placed before or after the
the standard fiber (pre- or postcompensation). In the case of postcompensation,
the pulse develops an oscillating tail because of TOD and exhibits spectral
narrowing. These features have been seen experimentally by transmitting 0.4-
ps pulses over a 2.5-km-long dispersion-compensated fiber link.

4.3 Higher-Order Nonlinear Effects

The discussion of SPM so far is based on the simplified propagation equation
(2.3.41). For ultrashort optical pulses (T0 < 1 ps), it is necessary to include the
higher-order nonlinear effects through Eq. (2.3.39). If Eq. (3.1.3) is used to
define the normalized amplitude U , this equation takes the form

∂U
∂ z

+ i
sgn(β2)

2LD

∂ 2U
∂τ2 =

sgn(β3)

6 L0

D

∂ 3U
∂τ3

+ i
e�αz

LNL

�
jU j2U + is

∂
∂τ

(jU j2U)� τRU
∂ jU j2

∂τ

�
; (4.3.1)

where LD, L0

D, and LNL are the three length scales defined as

LD =
T 2

0

jβ2j
; L0

D =
T 3

0

jβ3j
; LNL =

1
γP0

: (4.3.2)
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The parameters s and τR govern the effects of self-steepening and intrapulse
Raman scattering, respectively, and are defined as

s =
1

ω0T0
; τR =

TR

T0
: (4.3.3)

Both of these effects are quite small for picosecond pulses but must be consid-
ered for ultrashort pulses with T0 < 0:1 ps.

4.3.1 Self-Steepening

Self-steepening results from the intensity dependence of the group velocity
[62]–[65]. Its effects on SPM were first considered in liquid nonlinear me-
dia [2] and later extended to optical fibers [66]–[70]. Self-steepening leads to
an asymmetry in the SPM-broadened spectra of ultrashort pulses [71]–[75].

Before solving Eq. (4.3.1) numerically, it is instructive to consider the dis-
persionless case by setting β 2 = β3 = 0. Equation (4.3.1) can be solved ana-
lytically in this specific case if we also set τR = 0 [64]. Defining a normalized
distance as Z = z=LNL and neglecting fiber losses (α = 0), Eq. (4.3.1) becomes

∂U
∂Z

+ s
∂

∂τ
(jU j2U) = ijU j2U: (4.3.4)

Using U =
p

I exp(iφ) in Eq. (4.3.4) and separating the real and imaginary
parts, we obtain the following two equations:

∂ I
∂Z

+3sI
∂ I
∂τ

= 0; (4.3.5)

∂φ
∂Z

+ sI
∂φ
∂τ

= I: (4.3.6)

Since the intensity equation (4.3.5) is decoupled from the phase equation (4.3.6),
it can be solved easily using the method of characteristics. Its general solution
is given by [66]

I(Z;τ) = f (τ�3sIZ); (4.3.7)

where we used the initial condition I(0;τ) = f (τ), where f (τ) describes the
pulse shape at z = 0. Equation (4.3.7) shows that each point τ moves along a
straight line from its initial value, and the slope of the line is intensity depen-
dent. This feature leads to pulse distortion. As an example, consider the case
of a Gaussian pulse for which

I(0;τ)� f (τ) = exp(�τ2): (4.3.8)
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Figure 4.16 Self-steepening of a Gaussian pulse in the dispersionless case. Dashed
curve shows the input pulse shape at z= 0.

From Eq. (4.3.7), the pulse shape at a distance Z is obtained by using

I(Z;τ) = exp[�(τ�3sIZ)2]: (4.3.9)

The implicit relation for I(Z;τ) should be solved for each τ to obtain the
pulse shape at a given value of Z. Figure 4.16 shows the calculated pulse
shapes at sZ = 0:1 and 0.2 for s = 0:01. As the pulse propagates inside the
fiber, it becomes asymmetric, with its peak shifting toward the trailing edge.
As a result, the trailing edge becomes steeper and steeper with increasing Z.
Physically, the group velocity of the pulse is intensity dependent such that the
peak moves at a lower speed than the wings.

Self-steepening of the pulse eventually creates an optical shock, analo-
gous to the development of an acoustic shock on the leading edge of a sound
wave [64]. The distance at which the shock is formed is obtained from Eq.
(4.3.9) by requiring that ∂ I=∂τ be infinite at the shock location. It is given
by [67]

zs =
� e

2

�1=2 LNL

3s
� 0:39(LNL=s): (4.3.10)

A similar relation holds for a “sech” pulse with only a slight change in the nu-
merical coefficient (0.43 in place of 0.39). For picosecond pulses with T0 = 1
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Figure 4.17 Spectrum of a Gaussian pulse at a distance z= 0:2LNL=s, where s= 0:01
and LNL is the nonlinear length. Self-steepening is responsible for the asymmetry in
the SPM-broadened spectrum. The effects of GVD are neglected.

ps and P0 � 1 W, the shock occurs at a distance zs � 100 km. However, for
femtosecond pulses with T0 < 100 fs and P0 > 1 kW, zs becomes < 1 m. As
a result, significant self-steepening of the pulse can occur in a few-centimeter-
long fiber. Optical shocks with an infinitely sharp trailing edge never occur in
practice because of the GVD; as the pulse edge becomes steeper, the disper-
sive terms in Eq. (4.3.1) become increasingly more important and cannot be
ignored. The shock distance zs is also affected by fiber losses α . In the dis-
persionless case, fiber losses delay the formation of optical shocks; if αzs > 1,
the shock does not develop at all [67].

Self-steepening also affects SPM-induced spectral broadening. In the dis-
persionless case, φ(z;τ) is obtained by solving Eq. (4.3.6). It can then be used
to calculate the spectrum using

S(ω) =

����
Z ∞

�∞
[I(z;τ)]1=2 exp[iφ(z;τ)+ i(ω �ω0)τ ]dτ

����
2

: (4.3.11)

Figure 4.17 shows the calculated spectrum at sz=LNL = 0:2 for s = 0:01. The
most notable feature is spectral asymmetry— the red-shifted peaks are more
intense than blue-shifted peaks. The other notable feature is that SPM-induced
spectral broadening is larger on the blue side (called the anti-Stokes side in
the terminology used for stimulated Raman scattering) than the red side (or
the Stokes side). Both of these features can be understood qualitatively from
the changes in the pulse shape induced by self-steepening. The spectrum is
asymmetric simply because pulse shape is asymmetric. A steeper trailing edge
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Figure 4.18 Pulse shapes and spectra at z=LD = 0:2 (upper row) and 0.4 (lower row)
for a Gaussian pulse propagating in the normal-dispersion regime of the fiber. The
other parameters are α = 0, β3 = 0, s= 0:01, and N = 10.

of the pulse implies larger spectral broadening on the blue side as SPM gen-
erates blue components near the trailing edge (see Fig. 4.1). In the absence
of self-steepening (s = 0), a symmetric six-peak spectrum is expected be-
cause φmax � 6:4π for the parameter values used in Fig. 4.17. Self-steepening
stretches the blue portion. The amplitude of the high-frequency peaks de-
creases because the same energy is distributed over a wider spectral range.

4.3.2 Effect of GVD on Optical Shocks

The spectral features seen in Fig. 4.17 are considerably affected by GVD,
which cannot be ignored when short optical pulses propagate inside silica
fibers [76]–[83]. The pulse evolution in this case is studied by solving Eq.
(4.3.1) numerically. Figure 4.18 shows the pulse shapes and the spectra at
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Figure 4.19 Experimentally observed spectra of 40-fs input pulses at the output of a
7-mm-long fiber. Spectra are labeled by the peak intensity of input pulses. The top
spectrum corresponds to N � 7:7. (After Ref. [76].)

z=LD = 0:2 and 0.4 in the case of an initially unchirped Gaussian pulse propa-
gating with normal dispersion (β2 > 0) and β3 = 0. The parameter N defined in
Eq. (4.2.3) is taken to be 10, resulting in LD = 100LNL. In the absence of GVD
(β2 = 0), the pulse shape and the spectrum shown in the upper row of Fig.
4.18 reduce to those shown in Figs. 4.16 and 4.17 in the case of sz=LNL = 0:2.
A direct comparison shows that both the shape and spectrum are significantly
affected by GVD even though the propagation distance is only a fraction of the
dispersion length (z=LD = 0:2). The lower row of Fig. 4.18 shows the pulse
shape and spectrum at z=LD = 0:4; the qualitative changes induced by GVD
are self-evident. For this value of z=LD, the propagation distance z exceeds the
shock distance zs given by Eq. (4.3.10). It is the GVD that dissipates the shock
by broadening the steepened trailing edge, a feature clearly seen in the asym-
metric pulse shapes of Fig. 4.18. Although the pulse spectra do not exhibit
deep oscillations (seen in Fig. 4.17 for the dispersionless case), the longer tail
on the blue side is a manifestation of self-steepening. With a further increase in
the propagation distance z, the pulse continues to broaden while the spectrum
remains nearly unchanged.

The effect of self-steepening on pulse evolution has been seen experimen-
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tally in liquids and solids as a larger spectral broadening on the blue side com-
pared with that on the red side [4]. In these early experiments, GVD played
a relatively minor role, and the spectral structure similar to that of Fig. 4.17
was observed. In the case of optical fibers, the GVD effects are strong enough
that the spectra similar to those of Fig. 4.18 are expected to occur in practice.
In an experiment on pulse compression [76], 40-fs optical pulses at 620 nm
were propagated over a 7-mm-long fiber. Figure 4.19 shows the experimen-
tally observed spectra at the fiber output for several values of peak intensities.
The spectrum broadens asymmetrically with a longer tail on the blue side than
on the red side. This feature is due to self-steepening. In this experiment, the
self-steepening parameter s � 0:026, and the dispersion length LD � 1 cm if
we use T0 = 24 fs (corresponding to a FWHM of 40 fs for a Gaussian pulse).
Assuming an effective core area of 10 µm2, the peak power corresponding to
the top trace of Fig. 4.19 is about 200 kW. This value results in a nonlinear
length LNL � 0:16 mm and N � 7:7. Equation (4.3.1) can be used to simu-
late the experiment by using these parameter values. Inclusion of the β3 term
is generally necessary to reproduce the detailed features of the experimen-
tally observed spectra of Fig. 4.19 [69]. Similar conclusions were reached in
another experiment in which asymmetric spectral broadening of 55-fs pulses
from a 620-nm dye laser was observed in a 11-mm-long optical fiber [77].

4.3.3 Intrapulse Raman Scattering

The discussion so far has neglected the last term in Eq. (4.3.1) that is respon-
sible for intrapulse Raman scattering. In the case of optical fibers, this term
becomes quite important for ultrashort optical pulses (T0 < 1 ps) and should
be included in modeling pulse evolution of such short pulses in optical fibers
[79]–[83]. The effects of intrapulse Raman scattering are most dramatic in
the context of solitons, where they lead to new phenomena such as decay and
self-frequency shift of solitons (see Chapter 5). However, even in the case
of normal GVD, the inclusion of both self-steepening and intrapulse Raman
scattering is essential for an agreement between theory and experiments.

Figure 4.20(a) shows the experimentally recorded pulse spectrum after
109-fs ‘sech’ pulses (T0 � 60 fs) with 7.4 kW peak power were sent through a
6-m-long fiber [83]. The fiber had β 2 � 4 ps2/km and β3 � 0:06 ps3/km at the
1260-nm wavelength used in this experiment. The three traces b–d show the
prediction of Eq. (4.3.1) under three different conditions. Both self-steepening
and intrapulse Raman scattering were neglected in the trace b and included in
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Figure 4.20 Experimental spectrum of 109-fs input pulses at the output of a 6-m-
long fiber (a) and predictions of the generalized NLS equation with (b) s= τ R = 0, (c)
s= 0, and (d) both s and τR nonzero. Letters (A)–(E) mark different spectral features
observed experimentally. (After Ref. [83].)

the trace d, while only the latter was included in the trace c. All experimen-
tal features, marked as (A)–(E), were reproduced only when both higher-order
nonlinear effects were included in the model. Inclusion of the fourth-order
dispersion was also necessary for a good agreement. Even the predicted pulse
shapes were in agreement with the cross-correlation traces obtained experi-
mentally.

The SPM and other nonlinear effects such as stimulated Raman scatter-
ing and four-wave mixing, occurring simultaneously inside optical fibers, can
broaden the spectrum of an ultrashort pulse so much that it may extend over
100 nm or more. Such extreme spectral broadening is called supercontinuum,
a phenomenon that attracted considerable attention during the 1990s because
of its potential applications [84]–[93]. Pulse spectra extending over as much as
300 nm have been generated using various types of optical fibers. Among other
applications, supercontinuum is useful for WDM lightwave systems because
its spectral filtering can provide an optical source capable of emitting synchro-
nized pulse trains at hundreds of wavelengths simultaneously [86]–[88].
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Problems

4.1 A 1.06-µm Q-switched Nd:YAG laser emits unchirped Gaussian pulse
with 1-nJ energy and 100-ps width (FWHM). Pulses are transmitted
through a 1-km-long fiber having a loss of 3 dB/km and an effective
core area of 20 µm2. Calculate the maximum values of the nonlinear
phase shift and the frequency chirp at the fiber output.

4.2 Use a fast-Fourier-transform algorithm to calculate the spectrum of the
chirped output pulse of Problem 4.1. Does the number of spectral peaks
agree with the prediction of Eq. (4.1.14)?

4.3 Repeat Problem 4.1 for a hyperbolic-secant pulse.

4.4 Determine the shape, width, and peak power of the optical pulse that
will produce a linear chirp at the rate of 1 GHz/ps over a 100-ps region
when transmitted through the fiber of Problem 4.1.

4.5 Calculate numerically the SPM-broadened spectra of a super-Gaussian
pulse (m = 3) for C = �5, 0, and 5. Assume a peak power such that
φmax = 4:5π . Compare your spectra with those shown in Fig. 4.5 and
comment on the main qualitative differences.

4.6 Use the split-step Fourier method of Section 2.4 for solving Eq. (4.2.1)
numerically. Generate curves similar to those shown in Figs. 4.7 and 4.8
for a ‘sech’ pulse using N = 1 and α = 0. Compare your results with the
Gaussian-pulse case and discuss the differences qualitatively.

4.7 Use the computer program developed for Problem 4.7 to study numeri-
cally optical wave breaking for an unchirped super-Gaussian pulse with
m = 3 by using N = 30 and α = 0. Compare your results with those
shown in Figs. 4.10 and 4.11 for a Gaussian pulse.

4.8 Show that the solution (4.3.9) is indeed the solution of Eq. (4.3.4) for
an input Gaussian pulse. Calculate the phase profile φ(Z;τ) at sZ = 0:2
analytically (if possible) or numerically.
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[11] M. Oberthaler and R. A. Höpfel, Appl. Phys. Lett. 63, 1017 (1993).
[12] J. T. Manassah, Opt. Lett. 15, 329 (1990); Opt. Lett. 16, 1638 (1991).
[13] B. Gross and J. T. Manassah, Opt. Lett. 16, 1835 (1991).
[14] M. T. de Araujo, H. R. da Cruz, and A. S. Gouveia-Neto, J. Opt. Soc. Am. B 8,

2094 (1991).
[15] H. R. da Cruz, J. M. Hickmann, and A. S. Gouveia-Neto, Phys. Rev. A 45, 8268

(1992).
[16] J. N. Elgin, Opt. Lett. 18, 10 (1993); Phys. Rev. A 47, 4331 (1993).
[17] S. Cavalcanti, G. P. Agrawal, and M. Yu, Phys. Rev. A 51, 4086 (1995).
[18] J. Garnier, L. Videau, C. Gouédard, and A. Migus, J. Opt. Soc. Am. B 15, 2773

(1998).
[19] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge

University Press, New York, 1995).
[20] H. Nakatsuka, D. Grischkowsky, and A. C. Balant, Phys. Rev. Lett. 47, 910

(1981).
[21] D. Grischkowsky and A. C. Balant, Appl. Phys. Lett. 41, 1 (1982).
[22] J. Botineau and R. H. Stolen, J. Opt. Soc. Am. 72, 1592 (1982).
[23] B. P. Nelson, D. Cotter, K. J. Blow, and N. J. Doran, Opt. Commun. 48, 292

(1983).
[24] W. J. Tomlinson, R. H. Stolen, and C. V. Shank, J. Opt. Soc. Am. B 1, 139 (1984).
[25] I. N. Sisakyan and A. B. Shvartsburg, Sov. J. Quantum Electron. 14, 1146

(1984).
[26] M. J. Potasek and G. P. Agrawal, Electron. Lett. 22, 759 (1986).
[27] A. Kumar and M. S. Sodha, Electron. Lett. 23, 275 (1987).
[28] M. J. Potasek and G. P. Agrawal, Phys. Rev. A 36, 3862 (1987).
[29] J. M. Hickmann, J. F. Martino-Filho, and A. S. L. Gomes, Opt. Commun. 84,

327 (1991).
[30] A. Kumar, Phys. Rev. A 44, 2130 (1991).
[31] P. Weidner and A. Penzkofer, Opt. Quantum Electron. 25, 1 (1993).



132 Self-Phase Modulation

[32] D. Anderson, Phys. Rev. A 27, 3135 (1983).

[33] A. M. Fattakhov and A. S. Chirkin, Sov. J. Quantum Electron. 14, 1556 (1984).
[34] D. Anderson, IEE Proc. 132, Pt. J, 122 (1985).

[35] M. J. Potasek, G. P. Agrawal, and S. C. Pinault, J. Opt. Soc. Am. B 3, 205 (1986).
[36] C. Pask and A. Vatarescu, J. Opt. Soc. Am. B 3, 1018 (1986).
[37] D. Marcuse, J. Lightwave Technol. 10, 17 (1992).

[38] P. A. Bélanger and N. Bélanger, Opt. Commun. 117, 56 (1995).
[39] Q. Yu and C. Fan, IEEE J. Quantum Electron. 15, 444 (1997).

[40] Y. Kodama and S. Wabnitz, Opt. Lett. 20, 2291 (1995).
[41] Y. Kodama and S. Wabnitz, Electron. Lett. 31, 1761 (1995).

[42] Y. Kodama, Wabnitz, and K. Tanaka Opt. Lett. 21, 719 (1996).
[43] A. M. Kamchatnov and H. Steudel, Opt. Commun. 162, 162 (1999).

[44] W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, Opt. Lett. 10, 457 (1985).
[45] A. M. Johnson and W. M. Simpson, J. Opt. Soc. Am. B 2, 619 (1985).
[46] H. E. Lassen, F. Mengel, B. Tromborg, N. C. Albertsen, and P. L. Christiansen,

Opt. Lett. 10, 34 (1985).
[47] J.-P. Hamaide and P. Emplit, Electron. Lett. 24, 818 (1988).

[48] J. E. Rothenbeg, J. Opt. Soc. Am. B 6, 2392 (1989); Opt. Lett. 16, 18 (1991).
[49] D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga-Teixeiro, J. Opt. Soc.

Am. B 9, 1358 (1992).
[50] D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro,

J. Opt. Soc. Am. B 10, 1185 (1993).
[51] K. J. Blow, N. J. Doran, and E. Cummins, Opt. Commun. 48, 181 (1983).

[52] V. A. Vysloukh, Sov. J. Quantum Electron. 13, 1113 (1983).
[53] G. P. Agrawal and M. J. Potasek, Phys. Rev. A 33, 1765 (1986).

[54] P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, Opt. Lett. 11, 464
(1986).

[55] G. R. Boyer and X. F. Carlotti, Opt. Commun. 60, 18 (1986); Phys. Rev. A 38,
5140 (1988).

[56] P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, Opt. Lett. 12, 628
(1987).

[57] A. S. Gouveia-Neto, M. E. Faldon, and J. R. Taylor, Opt. Lett. 13, 770 (1988).
[58] S. Wen and S. Chi, Opt. Quantum Electron. 21, 335 (1989).

[59] P. K. A. Wai, H. H. Chen, and Y. C. Lee, Phys. Rev. A 41, 426 (1990).
[60] J. N. Elgin, Opt. Lett. 15, 1409 (1992).

[61] S. Shen, C. C. Chang, H. P. Sardesai, V. Binjrajka, and A. M. Weiner, IEEE J.
Quantum Electron. 17, 452 (1999).

[62] L. A. Ostrovskii, Sov. Phys. JETP 24, 797 (1967).



References 133

[63] R. J. Jonek and R. Landauer, Phys. Lett. 24A, 228 (1967).

[64] F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, Phys. Rev. 164,
312 (1967).

[65] D. Grischkowsky, E. Courtens, and J. A. Armstrong, Phys. Rev. Lett. 31, 422
(1973).

[66] N. Tzoar and M. Jain, Phys. Rev. A 23, 1266 (1981).

[67] D. Anderson and M. Lisak, Phys. Rev. A 27, 1393 (1983).

[68] E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov, and V. N. Serkin, JETP
Lett. 42, 87 (1985); Sov. Phys. Dokl. 31, 494 (1986).

[69] E. Bourkoff, W. Zhao, R. L. Joseph, and D. N. Christoulides, Opt. Lett. 12, 272
(1987); Opt. Commun. 62, 284 (1987).

[70] W. Zhao and E. Bourkoff, IEEE J. Quantum Electron. 24, 365 (1988).

[71] R. L. Fork, C. V. Shank, C. Herlimann, R. Yen, and W. J. Tomlinson, Opt. Lett.
8, 1 (1983).

[72] G. Yang and Y. R. Shen, Opt. Lett. 9, 510 (1984).

[73] J. T. Manassah, M. A. Mustafa, R. R. Alfano, and P. P. Ho, Phys. Lett. 113A,
242 (1985); IEEE J. Quantum Electron. 22, 197 (1986).

[74] D. Mestdagh and M. Haelterman, Opt. Commun. 61, 291 (1987).

[75] B. R. Suydam, in Supercontinuum Laser Source, R. R. Alfano, ed. (Springer-
Verlag, New York, 1989), Chap. 6.

[76] W. H. Knox, R. L. Fork, M. C. Downer, R. H. Stolen, and C. V. Shank, Appl.
Phys. Lett. 46, 1120 (1985).

[77] G. R. Boyer and M. Franco, Opt. Lett. 14, 465 (1989).

[78] J. R. de Oliveira, M. A. de Moura, J. M. Hickmann, and A. S. L. Gomes, J. Opt.
Soc. Am. B 9, 2025 (1992).

[79] A. B. Grudinin, E. M. Dianov, D. V. Korobkin, A. M. Prokhorov, V. N. Serkin,
and D. V. Khaidarov, JETP Lett. 46, 221 (1987).

[80] W. Hodel and H. P. Weber, Opt. Lett. 12, 924 (1987).

[81] V. Yanosky and F. Wise, Opt. Lett. 19, 1547 (1994).

[82] C. Headley and G. P. Agrawal, J. Opt. Soc. Am. B 13, 2170 (1996).

[83] G. Boyer, Opt. Lett. 24, 945 (1999).

[84] R. R. Alfano (ed.), Supercontinuum Laser Source, (Springer-Verlag, New York,
1989).

[85] B. Gross and J. T. Manassah, J. Opt. Soc. Am. B 9, 1813 (1992).

[86] T. Morioka, K. Mori, and M. Saruwatari, Electron. Lett. 29, 862 (1993).

[87] T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki, and M. Saruwatari, Elec-
tron. Lett. 31, 1064 (1995).

[88] M. C. Nuss, W. H. Knox, and U. Koren, Electron. Lett. 32, 1311 (1996).



134 Self-Phase Modulation

[89] M. Guy, S. V. Chernikov, and J. R. Taylor, IEEE Photon. Technol. Lett. 9, 1017
(1997).

[90] T. Okuno, M. Onishi, and M. Nishimura, IEEE Photon. Technol. Lett. 10, 72
(1998).

[91] Y. Takushima, F. Futami, and K. Kikuchi, IEEE Photon. Technol. Lett. 10, 1560
(1998).

[92] M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, Opt. Fiber Technol. 4,
215 (1998).

[93] G. A. Nowak, J. Kim, and M. N. Islam, Appl. Opt. 38, 7364 (1999).



Chapter 5

Optical Solitons

A fascinating manifestation of the fiber nonlinearity occurs through optical
solitons, formed as a result of the interplay between the dispersive and nonlin-
ear effects. The word soliton refers to special kinds of wave packets that can
propagate undistorted over long distances. Solitons have been discovered in
many branches of physics. In the context of optical fibers, not only are soli-
tons of fundamental interest but they have also found practical applications in
the field of fiber-optic communications. This chapter is devoted to the study
of pulse propagation in optical fibers in the regime in which both the group-
velocity dispersion (GVD) and self-phase modulation (SPM) are equally im-
portant and must be considered simultaneously.

The chapter is organized as follows. Section 5.1 considers the phenomenon
of modulation instability and shows that propagation of a continuous-wave
(CW) beam inside optical fibers is inherently unstable because of the nonlinear
phenomenon of SPM and leads to formation of a pulse train in the anomalous-
dispersion regime of optical fibers. Section 5.2 discusses the inverse-scattering
method and uses it to obtain soliton solutions of the underlying wave-propaga-
tion equation. The properties of the fundamental and higher-order solitons are
considered in this section. Section 5.3 is devoted to other kinds of solitons
forming in optical fibers, with emphasis on dark solitons. Section 5.4 consid-
ers the effects of external perturbations on solitons. Perturbations discussed
include fiber losses, amplification of solitons, and noise introduced by optical
amplifiers. Higher-order nonlinear effects such as self-steepening and intra-
pulse Raman scattering are the focus of Section 5.5.
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136 Optical Solitons

5.1 Modulation Instability

Many nonlinear systems exhibit an instability that leads to modulation of the
steady state as a result of an interplay between the nonlinear and dispersive
effects [1]–[30]. This phenomenon is referred to as the modulation instability
and was studied during the 1960s in such diverse fields as fluid dynamics [2]–
[4], nonlinear optics [5]–[7] and plasma physics [8]–[11]. In the context of
optical fibers, modulation instability requires anomalous dispersion and man-
ifests itself as breakup of the CW or quasi-CW radiation into a train of ultra-
short pulses. This section discusses modulation instability in optical fibers as
an introduction to soliton theory.

5.1.1 Linear Stability Analysis

Consider propagation of CW light inside an optical fiber. The starting point is
the simplified propagation equation (2.3.41). If fiber losses are ignored, this
equation takes the form

i
∂A
∂ z

=
β2

2
∂ 2A
∂T 2 � γ jAj2A; (5.1.1)

and is referred to as the nonlinear Schrödinger (NLS) equation in the soliton
literature. As discussed in Section 2.3, A(z;T ) represents the amplitude of
the pulse envelope, β2 is the GVD parameter, and the nonlinear parameter
γ is responsible for SPM. In the case of CW radiation, the amplitude A is
independent of T at the input end of the fiber at z = 0. Assuming that A(z;T )

remains time independent during propagation inside the fiber, Eq. (5.1.1) is
readily solved to obtain the steady-state solution

Ā =

p
P0 exp(iφNL); (5.1.2)

where P0 is the incident power and φ NL = γP0z is the nonlinear phase shift
induced by SPM. Equation (5.1.2) implies that CW light should propagate
through the fiber unchanged except for acquiring a power-dependent phase
shift (and for reduction in power in the presence of fiber losses).

Before reaching this conclusion, however, we must ask whether the steady-
state solution (5.1.2) is stable against small perturbations. To answer this ques-
tion, we perturb the steady state slightly such that

A = (

p
P0 +a)exp(iφNL) (5.1.3)
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and examine evolution of the perturbation a(z;T ) using a linear stability anal-
ysis. Substituting Eq. (5.1.3) in Eq. (5.1.1) and linearizing in a, we obtain

i
∂a
∂ z

=
β2

2
∂ 2a
∂T 2 � γP0(a+a�): (5.1.4)

This linear equation can be solved easily in the frequency domain. However,
because of the a� term, the Fourier components at frequencies Ω and �Ω are
coupled. Thus, we should consider its solution in the form

a(z;T ) = a1 exp[i(Kz�ΩT )]+a2 exp[�i(Kz�ΩT)]; (5.1.5)

where K and Ω are the wave number and the frequency of perturbation, re-
spectively. Equations (5.1.4) and (5.1.5) provide a set of two homogeneous
equations for a1 and a2. This set has a nontrivial solution only when K and Ω
satisfy the following dispersion relation

K =� 1
2 jβ2Ωj[Ω2

+ sgn(β2)Ω
2
c ]

1=2
; (5.1.6)

where sgn(β2) =�1 depending on the sign of β2,

Ω2
c =

4γP0

jβ2j
=

4
jβ2jLNL

; (5.1.7)

and the nonlinear length LNL is defined by Eq. (3.1.5). Because of the factor
exp[i(β0z�ω0t)] that has been factored out in Eq. (2.3.21), the actual wave
number and the frequency of perturbation are β0�K and ω 0�Ω, respectively.
With this factor in mind, the two terms in Eq. (5.1.5) represent two different
frequency components, ω 0 +Ω and ω 0�Ω, that are present simultaneously.
It will be seen later that these frequency components correspond to the two
spectral sidebands that are generated when modulation instability occurs.

The dispersion relation (5.1.6) shows that steady-state stability depends
critically on whether light experiences normal or anomalous GVD inside the
fiber. In the case of normal GVD (β2 > 0), the wave number K is real for
all Ω, and the steady state is stable against small perturbations. By contrast,
in the case of anomalous GVD (β 2 < 0), K becomes imaginary for jΩj <
Ωc, and the perturbation a(z;T ) grows exponentially with z as seen from Eq.
(5.1.5). As a result, the CW solution (5.1.2) is inherently unstable for β2 < 0.
This instability is referred to as modulation instability because it leads to a
spontaneous temporal modulation of the CW beam and transforms it into a
pulse train. Similar instabilities occur in many other nonlinear systems and are
often called self-pulsing instabilities [31]–[34].
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Figure 5.1 Gain spectra of modulation instability at three power levels for an optical
fiber with β2 =�20 ps2/km and γ = 2 W�1/km.

5.1.2 Gain Spectrum

The gain spectrum of modulation instability is obtained from Eq. (5.1.6) by
setting sgn(β2) =�1 and g(Ω) = 2Im(K), where the factor of 2 converts g to
power gain. The gain exists only if jΩj< Ωc and is given by

g(Ω) = jβ2Ωj(Ω2
c �Ω2

)
1=2

: (5.1.8)

Figure 5.1 shows the gain spectra at three power levels using parameter values
appropriate for standard silica fibers in the wavelength region near 1.55 µm.
The gain spectrum is symmetric with respect to Ω = 0 such that g(Ω) vanishes
at Ω = 0. The gain becomes maximum at two frequencies given by

Ωmax =�
Ωcp

2
=�

�
2γP0

jβ2j

�1=2

; (5.1.9)

with a peak value

gmax � g(Ωmax) =
1
2 jβ2jΩ

2
c = 2γP0; (5.1.10)

where Eq. (5.1.7) was used to relate Ωc to P0. The peak gain is independent of
the GVD parameter β2 and increases linearly with the incident power.
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The modulation-instability gain is affected by the loss parameter α that has
been neglected in the derivation of Eq. (5.1.8). The main effect of fiber losses is
to decrease the gain along fiber length because of reduced power [15]–[17]. In
effect, Ωc in Eq. (5.1.8) is replaced by Ωc exp(�αz=2). Modulation instability
still occurs as long as αLNL < 1. The effect of higher-order dispersive and
nonlinear effects such as self-steepening and intrapulse Raman scattering can
also be included using Eq. (2.3.39) in place of Eq. (5.1.1) as the starting point
[20]–[22]. The third-order dispersion β 3 does not affect the gain spectrum
of modulation instability. The main effect of self-steepening is to reduce the
growth rate and the frequency range over which gain occurs from the values
seen in Fig. 5.1. Equation (5.1.8) provides a simple estimate of the modulation-
instability gain in most cases of practical interest.

As discussed in Chapter 10, modulation instability can be interpreted in
terms of a four-wave-mixing process that is phase-matched by SPM. If a probe
wave at a frequency ω1 = ω0 +Ω were to copropagate with the CW beam at
ω 0, it would experience a net power gain given by Eq. (5.1.8) as long as jΩj<
Ωc. Physically, the energy of two photons from the intense pump beam is used
to create two different photons, one at the probe frequency ω1 and the other at
the idler frequency 2ω 0�ω1. The case in which a probe is launched together
with the intense pump wave is referred to as induced modulation instability.

Even when the pump wave propagates by itself, modulation instability can
lead to spontaneous breakup of the CW beam into a periodic pulse train. Noise
photons (vacuum fluctuations) act as a probe in this situation and are amplified
by the gain provided by modulation instability. As the largest gain occurs for
frequencies ω 0�Ωmax, where Ωmax is given by Eq. (5.1.9), these frequency
components are amplified most. Thus, a clear-cut evidence of spontaneous
modulation instability at the fiber output is provided by two spectral sidebands
located symmetrically at �Ωmax on each side of the central line at ω0. In
the time domain, the CW beam is converted into a periodic pulse train with a
period Tm = 2π=Ωmax.

One may wonder whether modulation instability can occur in the normal-
dispersion region of optical fibers under certain conditions. It turns out that
cross-phase modulation, occurring when two optical beams at different wave-
lengths or with orthogonal polarizations propagate simultaneously, can lead
to modulation instability even in normally dispersive fibers. This case is dis-
cussed in Chapters 6 and 7. Even a single CW beam can become unstable
in normally dispersive media if the medium response is sluggish. The gain
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Figure 5.2 Autocorrelation trace and optical spectrum of 100-ps input pulses showing
evidence of modulation instability at a peak power of 7.1 W. (After Ref. [18].)

peak occurs at a frequency Ωmax = T�1
NL , where TNL is the nonlinear response

time [30]. For silica fibers TNL is so short (a few femtoseconds) and Ωmax is
so large that even the use of the NLS equation becomes questionable. How-
ever, when such fibers are doped with other materials (rare-earth ions, dyes, or
semiconductors), it may be possible to observe the effects of a finite nonlinear
response time.

5.1.3 Experimental Observation

Modulation instability in the anomalous-dispersion regime of optical fibers
was first observed in an experiment in which 100-ps (FWHM) pulses from
a Nd:YAG laser operating at 1.319 µm were transmitted through a 1-km-
long fiber having β 2 ��3 ps2/km [18]. Figure 5.2 shows the autocorrelation
trace and the optical spectrum measured at the fiber output for a peak power
P0 = 7:1 W. The location of spectral sidebands is in agreement with the pre-
diction of Eq. (5.1.9). Furthermore, the interval between the oscillation peaks
in the autocorrelation trace is inversely related to Ωmax as predicted by theory.
The secondary sidebands seen in Fig. 5.2 are also expected when pump de-
pletion is included. In this experiment, it was necessary to use 100-ps pulses
rather than CW radiation to avoid stimulated Brillouin scattering (see Chapter
9). However, as the modulation period is�1 ps, the relatively broad 100-ps in-
put pulses provide a quasi-CW environment for the observation of modulation
instability.

In a related experiment, modulation instability was induced by sending a
weak CW probe wave together with the intense pump pulses [19]. The probe
was obtained from a single-mode semiconductor laser whose wavelength could
be tuned over a few nanometers in the vicinity of the pump wavelength. The
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Figure 5.3 Autocorrelation traces showing induced modulation instability at two dif-
ferent probe wavelengths. The modulation period can be adjusted by tuning the semi-
conductor laser acting as a probe (after Ref. [18].)

CW probe power of 0.5 mW was much smaller compared with the pump-
pulse peak power of P0 = 3 W. However, its presence led to breakup of each
pump pulse into a periodic pulse train whose period was inversely related to
the frequency difference between the pump and probe waves. Moreover, the
period could be adjusted by tuning the wavelength of the probe laser. Figure
5.3 shows the autocorrelation traces for two different probe wavelengths. As
the observed pulse width is < 1 ps, this technique is useful for generating
subpicosecond pulses whose repetition rate can be controlled by tuning the
probe wavelength.

When optical pulses with widths <100 ps are used, modulation instabil-
ity can be initiated by SPM. If spectral broadening induced by SPM is large
enough to exceed Ωmax, the SPM-generated frequency components near Ωmax

can act as a probe and get amplified by modulation instability. This phe-
nomenon is called SPM-induced modulation instability. One can estimate the
fiber length L at which the spectral width approaches Ωmax by using δω max

from Eq. (4.1.9) and requiring that Ωmax � δω max. In the case of a Gaussian
pulse this condition is satisfied when

L� (2LDLNL)
1=2

; (5.1.11)

where LD = T 2
0 =jβ2j is the dispersion length introduced in Section 3.1. Numer-

ical solutions of Eq. (5.1.1) confirm the occurrence of SPM-induced modula-
tion instability [23]. In particular, the input pulse develops deep modulations at
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the frequency Ωmax=2π and the spectrum exhibits sidelobes at that frequency.
The SPM-induced modulation instability has also been observed experimen-
tally [23].

5.1.4 Ultrashort Pulse Generation

The linear stability analysis of the steady-state solution of Eq. (5.1.1) provides
only the initial exponential growth of weak perturbations with the power gain
given by Eq. (5.1.8). Clearly, an exponential growth cannot be sustained in-
definitely because the frequency components at ω0�Ω grow at the expense
of the pump wave at ω 0, and pump depletion slows down the growth rate.
Moreover, the sidebands at ω 0 �Ω eventually become strong enough, and
the perturbation becomes large enough, that the linear stability analysis breaks
down. Evolution of the modulated state is then governed by the NLS equation
(5.1.1). A simple approach solves this equation in the frequency domain as a
four-wave mixing problem [29]; it is discussed in detail in Chapter 10. The
main disadvantage of this approach is that it cannot treat generation of higher-
order sidebands located at ω0�mΩ (m = 2;3; : : :) that are invariably created
when the first-order sidebands (m = 1) become strong.

The time-domain approach solves the NLS equation directly. Numerical
solutions of Eq. (5.1.1) obtained with the input corresponding to a CW beam
with weak sinusoidal modulation imposed on it show that the nearly CW beam
evolves into a train of narrow pulses, separated by the period of initial modu-
lation [14]. The fiber length required to realize such a train of narrow pulses
depends on the initial modulation depth and is typically � 5LD. With fur-
ther propagation, the multipeak structure deforms and eventually returns to the
initial input form. This behavior is found to be generic when Eq. (5.1.1) is
solved by considering arbitrary periodic modulation of the steady state [35].
The foregoing scenario suggests that the NLS equation should have periodic
solutions whose form changes with propagation. Indeed, it turns out that the
NLS equation has a multiparameter family of periodic solutions [35]–[43]. In
their most general form, these solutions are expressed in the form of Jacobian
elliptic functions. In some specific cases, the solution can be written in terms
of trigonometric and hyperbolic functions [39].

From a practical standpoint, with a proper choice of fiber length, modula-
tion instability can be used for generating a train of short optical pulses whose
repetition rate can be externally controlled. As early as 1989, 130-fs pulses at
a 2-THz repetition rate were generated through induced modulation instabil-
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ity [44]. Since then, this technique has been used to create optical sources ca-
pable of producing periodic trains of ultrashort pulses at high but controllable
repetition rates. Several experiments have used dispersion-decreasing fibers
for this purpose [45]–[49]. Initial sinusoidal modulation in these experiments
was imposed by beating two optical signals. In a 1992 experiment [46], the
outputs of two distributed feedback semiconductor lasers, operating continu-
ously at slightly different wavelengths near 1.55 µm, were combined in a fiber
coupler to produce a sinusoidally modulated signal at a beat frequency that
could be varied in the 70–90 GHz range by controlling the laser temperature.
The beat signal was amplified to power levels �0.3 W by using a fiber ampli-
fier and then propagated through a 1-km dispersion-shifted fiber, followed by a
dispersion-decreasing fiber whose GVD decreased from 10 to 0.5 ps/(km-nm)
over a length of 1.6 km. The output consisted of a high-quality pulse train at
70 GHz with individual pulses of 1.3-ps width. By 1993, this technique led to
generation of a 250-fs pulse train at repetition rates 80–120 GHz [49].

The use of a dispersion-decreasing fiber is not essential for producing
pulse trains through modulation instability. In an interesting experiment, a
comb-like dispersion profile was produced by splicing pieces of low- and high-
dispersion fibers [50]. A dual-frequency fiber laser was used to generate the
high-power signal modulated at a frequency equal to the longitudinal-mode
spacing (59 GHz). When such a modulated signal was launched into the fiber,
the output consisted of a 2.2-ps pulse train at the 59-GHz repetition rate. In
another experiment [51], a periodic train of 1.3-ps pulses at the 123-GHz repe-
tition rate was generated by launching the high-power beat signal into a 5-km-
long dispersion-shifted fiber. The experimental results were in good agreement
with the numerical simulations based on the NLS equation.

The main problem with the preceding technique is that its use requires a
relatively long fiber (�5 km) and relatively high input powers (�100 mW)
for the pulse train to build up. This problem can be solved by enclosing the
fiber within a cavity. The gain provided by modulation instability converts
such a device into a self-pulsing laser. As early as 1988, a ring-cavity config-
uration was used to generate a pulse train through modulation instability [52].
Sine then, modulation instability occurring inside an optical resonator has at-
tracted considerable attention [53]–[57]. Mathematical treatment in the case
of a Fabry–Perot resonator is quite cumbersome because one must use a set of
two coupled NLS equations for the counterpropagating optical fields. It turns
out that modulation instability can occur even in the normal-dispersion regime
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of the fiber because of the feedback provided by cavity mirrors [54]. Moreover,
the relatively small feedback occurring at the fiber–air interface (about 4%) is
enough for this fundamental change to occur [55]. As a result, a self-pulsing
fiber laser can be made without actually using any mirrors. Numerical and an-
alytical results show that such a laser can generate ultrashort pulse trains with
repetition rates in the THz range by using CW pump beams with power levels
�10 mW [56].

5.1.5 Impact on Lightwave Systems

Modulation instability affects the performance of long-haul optical communi-
cation systems in which fiber loss is compensated periodically using optical
amplifiers [58]–[65]. Computer simulations showed as early as 1990 that it
can be a limiting factor for systems employing the nonreturn-to-zero (NRZ)
format for data transmission [58]. Since then, the impact of modulation in-
stability has been studied both numerically and experimentally [63]. Physi-
cally, spontaneous emission of amplifiers can provide a seed for the growth
of sidebands through induced modulation instability. As a result, signal spec-
trum broadens substantially. Since GVD-induced broadening of optical pulses
depends on their bandwidth, this effect degrades system performance. Exper-
imental results on a lightwave system operating at 10 Gb/s showed consider-
able degradation for a transmission distance of only 455 km [62]. As expected,
system performance improved when GVD was compensated partially using a
dispersion-compensating fiber.

The use of optical amplifiers can induce modulation instability through
another mechanism and generate additional sidebands in which noise can be
amplified in both the normal and anomalous GVD regime of optical fibers [59].
The new mechanism has its origin in the periodic sawtoothlike variation of the
average power P0 occurring along the link length. To understand the physics
more clearly, note that a periodic variation of P0 in z is equivalent to the cre-
ation of a nonlinear index grating because the term γP0 in Eq. (5.1.4) becomes
a periodic function of z. The period of this grating is equal to the amplifier
spacing and is typically in the range 40–50 km. Such a long-period grating
provides a new coupling mechanism between the spectral sidebands located at
ω0 +Ω and ω0�Ω and allows them to grow when the perturbation frequency
Ω satisfies the Bragg condition.

The analysis of Section 5.1.1 can be extended to include periodic variations
of P0. If we replace P0 in Eq. (5.1.4) by P0 f (z), where f (z) is a periodic
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function, expand f (z) in a Fourier series as f (z) =∑cm exp(2πimz=LA), the
frequencies at which the gain peaks are found to be [59]

Ωm =�
�

2πm
β2LA

�
2γP0c0

β2

�1=2

; (5.1.12)

where the integer m represents the order of Bragg diffraction, LA is the spacing
between amplifiers (grating period), and the Fourier coefficient cm is related to
the fiber loss α as

cm =
1� exp(�αLA)

αLA +2imπ
: (5.1.13)

In the absence of grating, or when m = 0, Ω0 exists only for anomalous dis-
persion, in agreement with Eq. (5.1.9). However, when m 6= 0, modulation-
instability sidebands can occur even for normal dispersion (β2 > 0). Physi-
cally, this behavior can be understood by noting that the nonlinear index grat-
ing helps to satisfy the phase-matching condition necessary for four-wave mix-
ing when m 6= 0. Fortunately, this phenomenon is not likely to affect system
performance significantly because neither the amplifier spacing nor the fiber
parameters are uniform in practice.

With the advent of wavelength-division multiplexing (WDM), it has be-
come common to employ the technique of dispersion management to reduce
the GVD globally while keeping it high locally by using a periodic dispersion
map. The periodic variation of β 2 creates another grating that affects modu-
lation instability considerably. Mathematically, the situation is similar to the
case already discussed except that β 2 rather than P0 in Eq. (5.1.4) is a periodic
function of z. The gain spectrum of modulation instability is obtained follow-
ing a similar technique [61]. The β 2 grating not only generates new sidebands
but also affects the gain spectrum seen in Fig. 5.1. In the case of strong disper-
sion management (relatively large GVD variations), both the peak value and
the bandwidth of the modulation-instability gain are reduced, indicating that
such systems should not suffer much from amplification of noise induced by
modulation instability. This does not mean dispersion-managed WDM sys-
tems are immune to modulation instability. Indeed, it has been shown that
WDM systems suffer from a resonant enhancement of four-wave mixing that
degrades the system performance considerably when channel spacing is close
to the frequency at which the modulation-instability gain is strongest [65]. On
the positive side, this enhancement can be used for low-power, high-efficiency,
wavelength conversion [66]. Modulation instability has also been used for
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measuring the distribution of zero-dispersion wavelength along a fiber by not-
ing that the instability gain becomes quite small in the vicinity of jβ2j= 0 [67].

5.2 Fiber Solitons

The occurrence of modulation instability in the anomalous-GVD regime of op-
tical fibers is an indication of a fundamentally different character of Eq. (5.1.1)
when β2 < 0. It turns out that this equation has specific pulselike solutions that
either do not change along fiber length or follow a periodic evolution pattern—
such solutions are known as optical solitons. The history of solitons, in fact,
dates back to 1834, the year in which Scott Russell observed a heap of water
in a canal that propagated undistorted over several kilometers. Here is a quote
from his report published in 1844 [68]:

I was observing the motion of a boat which was rapidly drawn
along a narrow channel by a pair of horses, when the boat sud-
denly stopped—not so the mass of water in the channel which it
had put in motion; it accumulated round the prow of the vessel in
a state of violent agitation, then suddenly leaving it behind, rolled
forward with great velocity, assuming the form of a large soli-
tary elevation, a rounded, smooth and well-defined heap of water,
which continued its course along the channel apparently without
change of form or diminution of speed. I followed it on horseback,
and overtook it still rolling on at a rate of some eight or nine miles
an hour, preserving its original figure some thirty feet long and a
foot to a foot and a half in height. Its height gradually diminished,
and after a chase of one or two miles I lost it in the windings of the
channel. Such, in the month of August 1834, was my first chance
interview with that singular and beautiful phenomenon which I
have called the Wave of Translation.

Such waves were later called solitary waves. However, their properties
were not understood completely until the inverse scattering method was devel-
oped [69]. The term soliton was coined in 1965 to reflect the particlelike nature
of those solitary waves that remained intact even after mutual collisions [70].
Since then, solitons have been discovered and studied in many branches of
physics including optics [71]–[79]. In the context of optical fibers, the use
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of solitons for optical communications was first suggested in 1973 [80]. By
the year 1999, several field trials making use of fiber solitons have been com-
pleted [81]. The word “soliton” has become so popular in recent years that a
search on the Internet returns thousands of hits. Similarly, scientific databases
reveal that hundreds of research papers are published every year with the word
“soliton” in their title. It should be stressed that the distinction between a soli-
ton and a solitary wave is not always made in modern optics literature, and it
is quite common to refer to all solitary waves as solitons.

5.2.1 Inverse Scattering Method

Only certain nonlinear wave equations can be solved by the inverse scattering
method [71]. The NLS equation (5.1.1) belongs to this special class of equa-
tions. Zakharov and Shabat used the inverse scattering method in 1971 to solve
the NLS equation [82]. This method is similar in spirit to the Fourier-transform
method used commonly for solving linear partial differential equations. The
approach consists of identifying a suitable scattering problem whose potential
is the solution sought. The incident field at z = 0 is used to find the initial
scattering data whose evolution along z is easily determined by solving the lin-
ear scattering problem. The propagated field is reconstructed from the evolved
scattering data. Since details of the inverse scattering method are available in
many texts [71]–[79], only a brief description is given here.

Similar to Chapter 4, it is useful to normalize Eq. (5.1.1) by introducing
three dimensionless variables

U =
Ap
P0

; ξ =
z

LD
; τ =

T
T0
; (5.2.1)

and write it in the form

i
∂U
∂ξ

= sgn(β2)
1
2

∂ 2U
∂τ2 �N2jU j2U; (5.2.2)

where P0 is the peak power, T0 is the width of the incident pulse, and the
parameter N is introduced as

N2
=

LD

LNL
=

γP0T 2
0

jβ2j
: (5.2.3)

The dispersion length LD and the nonlinear length LNL are defined as in Eq.
(3.1.5). Fiber losses are neglected in this section but will be included later.
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The parameter N can be eliminated from Eq. (5.2.2) by introducing

u = NU =

p
γLD A: (5.2.4)

Equation (5.2.2) then takes the standard form of the NLS equation:

i
∂u
∂ξ

+
1
2

∂ 2u
∂τ2 + juj2u = 0; (5.2.5)

where the choice sgn(β2) =�1 has been made to focus on the case of anoma-
lous GVD; the other case is considered in the next section. Note that an im-
portant scaling relation holds for Eq. (5.2.5). If u(ξ ;τ) is a solution of this
equation, then εu(ε2ξ ;ετ) is also a solution, where ε is an arbitrary scaling
factor. The importance of this scaling will become clear later.

In the inverse scattering method, the scattering problem associated with
Eq. (5.2.5) is [77]

i
∂v1

∂τ
+uv2 = ζv1; (5.2.6)

i
∂v2

∂τ
+u�v1 = �ζv2; (5.2.7)

where v1 and v2 are the amplitudes of the two waves scattered by the potential
u(ξ ;τ). The eigenvalue ζ plays a role similar to that played by the frequency
in the standard Fourier analysis except that ζ can take complex values when
u 6= 0. This feature can be identified by noting that, in the absence of potential
(u = 0), v1 and v2 vary as exp(�iζτ).

Equations (5.2.6) and (5.2.7) apply for all values of ξ . In the inverse scat-
tering method, they are first solved at ξ = 0. For a given initial form of u(0;τ),
Eqs. (5.2.6) and (5.2.7) are solved to obtain the initial scattering data. The
direct scattering problem is characterized by a reflection coefficient r(ζ ) that
plays a role analogous to the Fourier coefficient. Formation of the bound states
(solitons) corresponds to the poles of r(ζ ) in the complex ζ plane. Thus, the
initial scattering data consist of the reflection coefficient r(ζ ), the complex
poles ζ j, and their residues cj, where j = 1 to N if N such poles exist. Al-
though the parameter N of Eq. (5.2.3) is not necessarily an integer, the same
notation is used for the number of poles to stress that its integer values deter-
mine the number of poles.

Evolution of the scattering data along the fiber length is determined by us-
ing well-known techniques [71]. The desired solution u(ξ ;τ) is reconstructed
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from the evolved scattering data using the inverse scattering method. This step
is quite cumbersome mathematically because it requires the solution of a com-
plicated linear integral equation. However, in the specific case in which r(ζ )
vanishes for the initial potential u(0;τ), the solution u(ξ ;τ) can be determined
by solving a set of algebraic equations. This case corresponds to solitons. The
soliton order is characterized by the number N of poles, or eigenvalues ζj ( j =
1–N). The general solution can be written as [82]

u(ξ ;τ) =�2
N

∑
j=1

λ �

j ψ�

2 j; (5.2.8)

where
λ j =

p
c j exp(iζ jτ + iζ 2

j ξ ); (5.2.9)

and ψ�

2 j is obtained by solving the following set of algebraic linear equations:

ψ1 j +

N

∑
k=1

λ jλ �

k

ζ j�ζ �

k

ψ�

2k = 0; (5.2.10)

ψ�

2 j�
N

∑
k=1

λ �

j λk

ζ �

j �ζk

ψ1k = λ �

j : (5.2.11)

The eigenvalues ζ j are generally complex (2ζj = δ j+ iη j). Physically, the real
part δ j produces a change in the group velocity associated with the jth compo-
nent of the soliton. For the Nth-order soliton to remain bound, it is necessary
that all of its components travel at the same speed. Thus, all eigenvalues ζ j
should lie on a line parallel to the imaginary axis, i.e., δj = δ for all j. This
feature simplifies the general solution in Eq. (5.2.9) considerably. It will be
seen later that the parameter δ represents a frequency shift of the soliton from
the carrier frequency ω 0.

5.2.2 Fundamental Soliton

The first-order soliton (N = 1) corresponds to the case of a single eigenvalue.
It is referred to as the fundamental soliton because its shape does not change on
propagation. Its field distribution is obtained from Eqs. (5.2.8)–(5.2.11) after
setting j = k = 1. Noting that ψ21 = λ1(1+ jλ1j

4
=η2

)
�1 and substituting it in

Eq. (5.2.8), we obtain

u(ξ ;τ) =�2(λ �

1 )
2
(1+ jλ1j

4
=η2

)
�1
: (5.2.12)
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After using Eq. (5.2.9) for λ1 together with ζ1 =(δ + iη)=2 and introducing the
parameters τs and φs through �c1=η = exp(ητs� iφs), we obtain the following
general form of the fundamental soliton:

u(ξ ;τ) = η sech[η(τ� τs +δξ )]exp[i(η2�δ 2
)ξ=2� iδτ + iφs]; (5.2.13)

where η , δ , τs, and φs are four arbitrary parameters that characterize the soli-
ton. Thus, an optical fiber supports a four-parameter family of fundamental
solitons, all sharing the condition N = 1.

Physically, the four parameters η , δ , τ s, and φs represent amplitude, fre-
quency, position, and phase of the soliton, respectively. The phase φs can be
dropped from the discussion because a constant absolute phase has no physical
significance. It will become relevant later when nonlinear interaction between
a pair of solitons is considered. The parameter τs can also be dropped because
it denotes the position of the soliton peak: If the origin of time is chosen such
that the peak occurs at τ = 0 at ξ = 0, one can set τs = 0. It is clear from the
phase factor in Eq. (5.2.13) that the parameter δ represents a frequency shift of
the soliton from the carrier frequency ω0. Using the carrier part, exp(�iω 0t),
the new frequency becomes ω 0

0 = ω0 +δ=T0. Note that a frequency shift also
changes the soliton speed from its original value vg. This can be seen more
clearly by using τ = (t�β1z)=T0 in Eq. (5.2.13) and writing it as

ju(ξ ;τ)j= η sech[η(t�β 0

1z)=T0]; (5.2.14)

where β 0

1 = β1 + δ jβ2j=T0. As expected on physical grounds, the change in
group velocity (vg = 1=β1) is a consequence of fiber dispersion.

The frequency shift δ can also be removed from Eq. (5.2.13) by choosing
the carrier frequency appropriately. Fundamental solitons then form a single-
parameter family described by

u(ξ ;τ) = η sech(ητ)exp(iη2ξ=2): (5.2.15)

The parameter η determines not only the soliton amplitude but also its width.
In real units, the soliton width changes with η as T0=η , i.e., it scales inversely
with the soliton amplitude. This inverse relationship between the amplitude
and the width of a soliton is the most crucial property of solitons. Its relevance
will become clear later. The canonical form of the fundamental soliton is ob-
tained by choosing u(0;0) = 1 so that η = 1. With this choice, Eq. (5.2.15)
becomes

u(ξ ;τ) = sech(τ)exp(iξ=2): (5.2.16)
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One can verify by direct substitution in Eq. (5.2.5) that this solution is indeed
a solution of the NLS equation.

The solution in Eq. (5.2.16) can also be obtained by solving the NLS equa-
tion directly, without using the inverse scattering method. The approach con-
sists of assuming that a shape-preserving solution of the NLS equation exists
and has the form

u(ξ ;τ) =V (τ)exp[iφ(ξ ;τ)]; (5.2.17)

where V is independent of ξ for Eq. (5.2.17) to represent a fundamental soliton
that maintains its shape during propagation. The phase φ can depend on both
ξ and τ . If Eq. (5.2.17) is substituted in Eq. (5.2.5) and the real and imaginary
parts are separated, one obtains two equations for V and φ . The phase equation
shows that φ should be of the form φ(ξ ;τ) = Kξ � δτ , where K and δ are
constants. Choosing δ = 0 (no frequency shift), V (τ) is found to satisfy

d2V
dτ2 = 2V (K�V 2

): (5.2.18)

This nonlinear equation can be solved by multiplying it by 2(dV=dτ) and
integrating over τ . The result is

(dV=dτ)2
= 2KV 2�V 4

+C; (5.2.19)

where C is a constant of integration. Using the boundary condition that both V
and dV=dτ vanish as jτ j!∞, C is found to be 0. The constant K is determined
from the condition that V = 1 and dV=dτ = 0 at the soliton peak, assumed to
occur at τ = 0. Its use provides K =

1
2 , and hence φ = ξ=2. Equation (5.2.19)

is easily integrated to obtain V (τ) = sech(τ). We have thus recovered the
solution in Eq. (5.2.16) using a simple technique.

In the context of optical fibers, the solution (5.2.16) indicates that if a
hyperbolic-secant pulse, whose width T0 and the peak power P0 are chosen
such that N = 1 in Eq. (5.2.3), is launched inside an ideal lossless fiber, the
pulse will propagate undistorted without change in shape for arbitrarily long
distances. It is this feature of the fundamental solitons that makes them attrac-
tive for optical communication systems [80]. The peak power P0 required to
support the fundamental soliton is obtained from Eq. (5.2.3) by setting N = 1
and is given by

P0 =
jβ2j
γT 2

0

�
3:11 jβ2j
γT 2

FWHM

; (5.2.20)
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Figure 5.4 Temporal evolution over one soliton period for the third-order soliton.
Note pulse splitting near z0 = 0:5 and soliton recovery beyond that.

where the FWHM of the soliton is defined using TFWHM � 1:76T0 from Eq.
(3.2.22). Using typical parameter values, β2 =�1 ps2/km and γ = 3 W�1/km
for dispersion-shifted fibers near the 1.55-µm wavelength, P0 is � 1 W for
T0 = 1 ps but reduces to only 10 mW when T0 = 10 ps because of its T�2

0
dependence. Thus, fundamental solitons can form in optical fibers at power
levels available from semiconductor lasers even at a relatively high bit rate of
20 Gb/s.

5.2.3 Higher-Order Solitons

Higher-order solitons are also described by the general solution of Eq. (5.2.8).
Various combinations of the eigenvalues ηj and the residues cj generally lead
to an infinite variety of soliton forms. If the soliton is assumed to be symmetric
about τ = 0, the residues are related to the eigenvalues by the relation [83]

c j =
∏N

k=1 (η j +ηk)

∏N
k 6= j jη j�ηkj

: (5.2.21)

This condition selects a subset of all possible solitons. Among this subset, a
special role is played by solitons whose initial shape at ξ = 0 is given by

u(0;τ) = Nsech(τ); (5.2.22)
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Figure 5.5 Spectral evolution over one soliton period for the third-order soliton.

where the soliton order N is an integer. The peak power necessary to launch the
Nth-order soliton is obtained from Eq. (5.2.3) and is N2 times of that required
for the fundamental soliton. For the second-order soliton (N = 2), the field
distribution is obtained from Eqs. (5.2.8)–(5.2.11). Using ζ1 = i=2 and ζ2 =

3i=2 for the two eigenvalues, the second-order soliton is given by [84]

u(ξ ;τ) =
4[cosh(3τ)+3exp(4iξ )cosh(τ)]exp(iξ=2)

[cosh(4τ)+4cosh(2τ)+3cos(4ξ )]
: (5.2.23)

An interesting property of the forementioned solution is that ju(ξ ;τ)j2 is
periodic in ξ with the period ξ0 = π=2. In fact, this periodicity occurs for
all higher-order solitons. Using the definition ξ = z=LD from Eq. (5.2.1), the
soliton period z0 in real units becomes

z0 =
π
2

LD =
π
2

T 2
0

jβ2j
�

T 2
FWHM

2jβ2j
: (5.2.24)

Periodic evolution of a third-order soliton over one soliton period is shown in
Fig. 5.4. As the pulse propagates along the fiber, it first contracts to a fraction
of its initial width, splits into two distinct pulses at z0=2, and then merges again
to recover the original shape at the end of the soliton period at z = z0. This
pattern is repeated over each section of length z0.

To understand the origin of periodic evolution for higher-order solitons, it
is helpful to look at changes in the pulse spectra shown in Fig. 5.5 for the N = 3
soliton. The temporal and spectral changes result from an interplay between
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SPM and GVD. The SPM generates a frequency chirp such that the leading
edge of soliton is red-shifted while its trailing-edge is blue-shifted from the
central frequency. The SPM-induced spectral broadening is clearly seen in
Fig. 5.5 for z=z0 = 0:2 with its typical oscillatory structure. In the absence of
GVD, the pulse shape would have remained unchanged. However, anomalous
GVD contracts the pulse as the pulse is positively chirped (see Section 3.2).
Only the central portion of the pulse contracts because the chirp is nearly linear
only over that part. However, as a result of a substantial increase in the pulse
intensity near the central part of the pulse, the spectrum changes significantly
as seen in Fig. 5.5 for z=z0 = 0:3. It is this mutual interaction between the
GVD and SPM effects that is responsible for the evolution pattern seen in Fig.
5.4.

In the case of a fundamental soliton (N = 1), GVD and SPM balance each
other in such a way that neither the pulse shape nor the pulse spectrum changes
along the fiber length. In the case of higher-order solitons, SPM dominates
initially but GVD soon catches up and leads to pulse contraction seen in Fig.
5.4. Soliton theory shows that for pulses with a hyperbolic-secant shape and
with peak powers determined from Eq. (5.2.3), the two effects can cooperate
in such a way that the pulse follows a periodic evolution pattern with original
shape recurring at multiples of the soliton period z0 given by Eq. (5.2.24).
Near the 1.55-µm wavelength, typically β 2 =�20 ps2

=km for standard silica
fibers. The soliton period is � 80 m for T0 = 1 ps and scales as T2

0 , becoming
8 km when T0 = 10 ps. For dispersion-shifted fibers with β 2 ��2 ps2/km, z0
increases by one order of magnitude for the same value of T0.

5.2.4 Experimental Confirmation

The possibility of soliton formation in optical fibers was suggested as early
as 1973 [80]. However, the lack of a suitable source of picosecond optical
pulses at wavelengths >1.3 µm delayed their experimental observation until
1980. Solitons in optical fibers were first observed in an experiment [85] that
used a mode-locked color-center laser capable of emitting short optical pulses
(TFWHM � 7 ps) near 1.55 µm, a wavelength near which optical fibers exhibit
anomalous GVD together with minimum losses. The pulses were propagated
inside a 700-m-long single-mode fiber with a core diameter of 9.3 µm. The
fiber parameters for this experiment were estimated to be β2 � �20 ps2/ km
and γ � 1:3 W�1/km. Using T0 = 4 ps in Eq. (5.2.20), the peak power for
exciting a fundamental soliton is � 1 W.
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Figure 5.6 Autocorrelation traces (lower row) and pulse spectra (upper row) for sev-
eral values of input peak power P0. The corresponding traces for the input pulse are
shown inside the rectangular box. (After Ref. [85].)

In the experiment, the peak power of optical pulses was varied over a range
0.3–25 W, and their pulse shape and spectrum were monitored at the fiber out-
put. Figure 5.6 shows autocorrelation traces and pulse spectra at several power
levels and compares them with those of the input pulse. The measured spec-
tral width of 25 GHz of the input pulse is nearly transform limited, indicating
that mode-locked pulses used in the experiment were unchirped. At a low
power level of 0.3 W, optical pulses experienced dispersion-induced broaden-
ing inside the fiber, as expected from Section 3.2. However, as the power was
increased, output pulses steadily narrowed, and their width became the same as
the input width at P0 = 1:2 W. This power level corresponds to the formation
of a fundamental soliton and should be compared with the theoretical value of
1 W obtained from Eq. (5.2.20). The agreement is quite good in spite of many
uncertainties inherent in the experiment.

At higher power levels, output pulses exhibited dramatic changes in their
shape and developed a multipeak structure. For example, the autocorrelation
trace for 11.4 W exhibits three peaks. Such a three-peak structure corresponds
to two-fold splitting of the pulse, similar to that seen in Fig. 5.4 near z=z0 = 0:5
for the third-order soliton. The observed spectrum also shows characteristic
features seen in Fig. 5.5 near z=z0 = 0:5. The estimated soliton period for
this experiment is 1.26 km. Thus, at the fiber output z=z0 = 0:55 for the 700-
m-long fiber used in the experiment. As the power level of 11.4 W is also
nearly nine times the fundamental soliton power, the data of Fig. 5.6 indeed
correspond to the N = 3 soliton. This conclusion is further corroborated by
the autocorrelation trace for P0 = 22:5 W. The observed five-peak structure
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corresponds to three-fold splitting of the laser pulse, in agreement with the
prediction of soliton theory for the fourth-order soliton (N = 4).

The periodic nature of higher-order solitons implies that the pulse should
restore its original shape and spectrum at distances that are multiples of the
soliton period. This feature was observed for second- and third-order solitons
in a 1983 experiment in which the fiber length of 1.3 km corresponded to
nearly one soliton period [86]. In a different experiment, initial narrowing of
higher-order solitons, seen in Fig. 5.4 for N = 3, was observed for values of N
up to 13 [87]. Higher-order solitons also formed inside the cavity of a mode-
locked dye laser operating in the visible region near 620 nm by incorporating
an optical element with negative GVD inside the laser cavity [88]. Such a laser
emitted asymmetric second-order solitons, under certain operating conditions,
as predicted by inverse scattering theory.

5.2.5 Soliton Stability

A natural question is what happens if the initial pulse shape or the peak power
is not matched to that required by Eq. (5.2.22) so that the input pulse does
not correspond to an optical soliton. Similarly, one may ask how the soliton is
affected if it is perturbed during its propagation inside the fiber. Such questions
are answered by using perturbation methods developed for solitons and are
discussed later in Section 5.4. This section focus on formation of solitons
when the parameters of an input pulse do not correspond to a soliton.

Consider first the case when the peak power is not exactly matched and
the value of N obtained from Eq. (5.2.3) is not an integer. Soliton perturbation
theory has been used to study this case [84]. Because details are cumbersome,
only results are summarized here. In physical terms, the pulse adjusts its shape
and width as it propagates along the fiber and evolves into a soliton. A part of
the pulse energy is dispersed away in the process. This part is known as the
continuum radiation. It separates from the soliton as ξ increases and its contri-
bution to soliton decays as ξ�1=2. For ξ � 1, the pulse evolves asymptotically
into a soliton whose order is an integer Ñ closest to the launched value of N.
Mathematically, if

N = Ñ + ε ; jε j< 1=2; (5.2.25)

the soliton part corresponds to an initial pulse shape of the form

u(0;τ) = (Ñ +2ε)sech[(1+2ε=Ñ)τ ]: (5.2.26)
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The pulse broadens if ε < 0 and narrows if ε > 0. No soliton is formed when
N �1/2.

The effect of pulse shape on soliton formation can be investigated solving
Eq. (5.2.5) numerically. Figure 4.7 (Chapter 4) shows evolution of a Gaussian
pulse using the initial field u(0; τ) = exp(�τ2

=2). Even though N = 1, pulse
shape changes along the fiber because of deviations from the ‘sech’ shape re-
quired for a fundamental soliton. The interesting feature of Fig. 4.7 is that the
pulse adjusts its width and evolves asymptotically into a fundamental soliton.
In fact, the evolution appears to be complete by z=LD = 5, a distance that corre-
sponds to about three soliton periods. An essentially similar evolution pattern
occurs for other pulse shapes such as a super-Gaussian shape. The final width
of the soliton and the distance needed to evolve into a fundamental soliton
depend on the exact shape but the qualitative behavior remains the same.

As pulses emitted from laser sources are often chirped, we should also con-
sider the effect of initial frequency chirp on soliton formation [89]–[97]. The
chirp can be detrimental simply because it superimposes on the SPM-induced
chirp and disturbs the exact balance between the GVD and SPM effects neces-
sary for solitons. Its effect on soliton formation can be studied by solving Eq.
(5.2.5) numerically with an input amplitude

u(0; τ) = N sech(τ)exp(�iCτ2
=2); (5.2.27)

where C is the chirp parameter introduced in Section 3.2. The quadratic form
of phase variation corresponds to a linear chirp such that the optical frequency
increases with time (up-chirp) for positive values of C.

Figure 5.7 shows evolution of a fundamental soliton (N = 1) in the case
of a relatively low chirp (C = 0:5). The pulse compresses initially mainly be-
cause of the positive chirp; initial compression occurs even in the absence of
nonlinear effects. The pulse then broadens but is eventually compressed a sec-
ond time with the tail separating from the main peak gradually. The main peak
evolves into a soliton over a propagation distance ξ > 15. A similar behavior
occurs for negative values of C. Formation of a soliton is expected for small
values of jCj because solitons are generally stable under weak perturbations.
However, a soliton is destroyed if jCj exceeds a critical value Ccr. For N = 1,
a soliton does not form if C is increased from 0.5 to 2.

The critical value of the chirp parameter can be obtained using the inverse
scattering method [93]–[95]. More specifically, Eqs. (5.2.6) and (5.2.7) are
solved to obtain the eigenvalue ζ using u from Eq. (5.2.27). Solitons exist as
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Figure 5.7 Soliton formation in the presence of an initial linear chirp for the case
N = 1 and C = 0:5.

long as the imaginary part of ζ is positive. The critical value depends on N
and is found to be about 1:64 for N = 1. It also depends on the form of the
phase factor in Eq. (5.2.27). From a practical standpoint, initial chirp should
be minimized as much as possible. This is necessary because, even if the chirp
is not detrimental for jCj<Ccr, a part of the pulse energy is shed as dispersive
waves (continuum radiation) during the process of soliton formation [93]. For
example, only 83% of the input energy is converted into a soliton in the case
of C = 0:5 shown in Fig. 5.7, and this fraction reduces to 62% for C = 0:8.

It is clear from the preceding discussion that the exact shape of the input
pulse used to launch a fundamental (N = 1) soliton is not critical. Moreover,
as solitons can form for values of N in the range 0:5 < N < 1:5, even the width
and peak power of the input pulse can vary over a wide range [see Eq. (5.2.3)]
without hindering soliton formation. It is this relative insensitivity to the exact
values of input parameters that makes the use of solitons feasible in practical
applications. However, it is important to realize that, when input parameters
deviate substantially from their ideal values, a part of the pulse energy is invari-
ably shed away in the form of dispersive waves as the pulse evolves to form a
fundamental soliton [98]. Such dispersive waves are undesirable because they
not only represent an energy loss but can also affect the performance of soliton
communication systems [99]. Moreover, they can interfere with the soliton
itself and modify its characteristics. In the case of an input pulse with N close
to 1, such an interference introduces modulations on the pulse spectrum that
have also been observed experimentally [100].
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Starting in 1988, most of the experimental work on fiber solitons was de-
voted to their applications in fiber-optic communication systems [101]. Such
systems make use of fundamental solitons for representing “1” bits in a digital
bit stream and are covered in Part B (devoted to applications of nonlinear fiber
optics). In a practical situation, solitons can be subjected to many types of per-
turbations as they propagate inside an optical fiber. Examples of perturbations
include fiber losses, amplifier noise (if amplifiers are used to compensate fiber
losses), third-order dispersion, and intrapulse Raman scattering. These effects
are discussed later in this chapter.

5.3 Other Types of Solitons

The soliton solution given in Eq. (5.2.8) is not the only possible solution of the
NLS equation. Many other kinds of solitons have been discovered depending
on the dispersive and nonlinear properties of fibers. This section describes
several of them, focusing mainly on dark and bistable solitons.

5.3.1 Dark Solitons

Dark solitons correspond to the solutions of Eq. (5.2.2) with sgn(β2) = 1 and
occur in the normal-GVD region of fibers. They were discovered in 1973 and
have attracted considerable attention since then [102]–[131]. The intensity
profile associated with such solitons exhibits a dip in a uniform background,
hence the name dark soliton. Pulse-like solitons discussed in Section 5.2 are
called bright to make the distinction clear. The NLS equation describing dark
solitons is obtained from Eq. (5.2.5) by changing the sign of the time-derivative
term and is given by

i
∂u
∂ξ

�
1
2

∂ 2u
∂τ2 + juj2u = 0: (5.3.1)

Similar to the case of bright solitons, the inverse scattering method has
been used [103] to find dark-soliton solutions of Eq. (5.3.1) by imposing the
boundary condition that ju(ξ ;τ)j tends toward a constant nonzero value for
large values of jτ j. Dark solitons can also be obtained by assuming a solution
of the form u(ξ ;τ) =V (τ)exp[iφ(ξ ;τ)], and then solving the ordinary differ-
ential equations satisfied by V and φ . The main difference compared with the
case of bright solitons is that V (τ) becomes a constant (rather than being zero)
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Figure 5.8 Intensity and phase profiles of dark solitons for several values of the
blackness parameter B.

as jτ j ! ∞. The general solution can be written as [77]

ju(ξ ;τ)j �V (τ) = ηf1�B2sech2
[ηB(τ� τs)]g1=2

; (5.3.2)

with the phase given by

φ(ξ ;τ) = 1
2η2

(3�B2
)ξ +η

p
1�B2τ + tan�1

�
B tanh(ηBτ)
p

1�B2

�
: (5.3.3)

The parameters η and τs represent the soliton amplitude and the dip location,
respectively. Similar to the bright-soliton case, τs can be chosen to be zero
without loss of generality. In contrast with the bright-soliton case, the dark
soliton has a new parameter B. Physically, B governs the depth of the dip
(jBj � 1). For jBj = 1, the intensity at the dip center falls to zero. For other
values of B, the dip does not go to zero. Dark solitons for which jBj < 1
are called gray solitons to emphasize this feature; the parameter B governs
the blackness of such gray solitons. The jBj = 1 case corresponds to a black
soliton.

For a given value of η , Eq. (5.3.2) describes a family of dark solitons
whose width increases inversely with B. Figure 5.8 shows the intensity and
phase profiles of such dark solitons for several values of B. Whereas the phase
of bright solitons [Eq. (5.2.15)] remains constant across the entire pulse, the



Other Types of Solitons 161

phase of dark soliton changes with a total phase shift of 2sin�1 B, i.e., dark
solitons are chirped. For the black soliton (jBj = 1), the chirp is such that the
phase changes abruptly by π in the center. The phase change becomes more
gradual and smaller for smaller values of jBj. The time-dependent phase or
frequency chirp of dark solitons represents a major difference between bright
and dark solitons. One consequence of this difference is that higher-order dark
solitons neither form a bound state nor follow a periodic evolution pattern dis-
cussed in Section 5.2.3 in the case of bright solitons.

Dark solitons exhibit several interesting features [131]. Consider a black
soliton whose canonical form is obtained from Eq. (5.3.2), choosing η = 1 and
B = 1, and given by

u(ξ ;τ) = tanh(τ)exp(iξ ); (5.3.4)

where the phase jump of π at τ = 0 is included in the amplitude part. Thus, an
input pulse with “tanh” amplitude, exhibiting an intensity “hole” at the center,
would propagate unchanged in the normal-dispersion region of optical fibers.
One may ask, in analogy with the case of bright solitons, what happens when
the input power exceeds the N = 1 limit. This question can be answered by
solving Eq. (5.3.1) numerically with an input of the form u(0;τ) = N tanh(τ).
Figure 5.9 shows the evolution pattern for N = 3; it should be compared with
Fig. 5.4 where the evolution of a third-order bright soliton is shown. Two pairs
of gray solitons appear and move away from the central black soliton as the
propagation distance increases. At the same time, the width of the black soli-
ton decreases [110]. This behavior can be understood by noting that an input
pulse of the form N tanh(τ) can form a fundamental black soliton of amplitude
N tanh(Nτ) provided its width decreases by a factor of N. It sheds part of its
energy in the process that appears in the form of gray solitons. These gray
solitons move away from the central black soliton because of their different
group velocities. The number of pairs of gray solitons is N0�1, where N 0

= N
for integer values of N or the next integer close to it when N is not an integer.
The important feature is that a fundamental dark soliton is always formed for
N > 1.

Experimental realization of dark solitons is possible only with a finite
background instead of the infinite background associated with ideal dark soli-
tons. In practice, a pulse with a narrow dip at its center is used to excite
a dark soliton. Numerical calculations show that dark solitons with a finite
background pulse exhibit propagation properties nearly identical to those with
infinite background if the background pulse is wider by a factor of 10 or more
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Figure 5.9 Evolution of a third-order dark soliton showing narrowing of the central
dip and creation of two pairs of gray solitons.

compared with the soliton width [109]. Several techniques have been used
to generate optical pulses with a narrow dip in the center [106]–[108]. Such
pulses have been used for observing dark solitons in optical fibers. In one ex-
periment [106], 26-ps input pulses (at 595 nm) with a 5-ps-wide central hole
were launched along a 52-m fiber. In another experiment [107], the input to a
10-m fiber was a relatively wide 100-ps pulse (at 532 nm) with a 0.3-ps-wide
hole that served as a dark pulse. However, as the phase was relatively constant
over the hole width, such even-symmetry input pulses did not have the chirp
appropriate for a dark soliton. Nonetheless, output pulses exhibited features
that were in agreement with the predictions of Eq. (5.3.1).

The odd-symmetry input pulses appropriate for launching a dark soliton
were used in a 1988 experiment [108]. A spatial mask, in combination with a
grating pair, was used to modify the pulse spectrum such that the input pulse
had a phase profile appropriate for forming the dark soliton represented by Eq.
(5.3.4). The input pulses obtained from a 620-nm dye laser were � 2-ps wide
with a 185-fs hole in their center. The central hole widened at low powers but
narrowed down to its original width when the peak power was high enough to
sustain a dark soliton of that width. The experimental results agreed with the
theoretical predictions of Eq. (5.3.1) quite well. In this experiment, the optical
fiber was only 1.2 m long. In a 1993 experiment [121], 5.3-ps dark solitons,
formed on a 36-ps wide pulse obtained from a 850-nm Ti:sapphire laser, were
propagated over 1 km of fiber. The same technique was later extended to
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transmit dark-soliton pulse trains at a repetition rate of up to 60 GHz over 2 km
of fiber. These results show that dark solitons can be generated and maintained
over considerable fiber lengths.

During the 1990s, several practical techniques were introduced for gen-
erating dark solitons. In one method, a Mach–Zehnder modulator, driven
by nearly rectangular electrical pulses, modulates the CW output of a semi-
conductor laser [118]. In an extension of this method, electric modulation is
performed in one of the two arms of a Mach–Zehnder interferometer. A simple
all-optical technique consists of propagating two optical pulses, with a relative
time delay between them, in the normal-GVD region of the fiber [119]. The
two pulse broaden, become chirped, and acquire a nearly rectangular shape as
they propagate inside the fiber. As these chirped pulses merge into each other,
they interfere. The result at the fiber output is a train of isolated dark soli-
tons. In another all-optical technique, nonlinear conversion of a beat signal in
a dispersion-decreasing fiber is used to generate a train of dark solitons [124].
The technique is similar to that discussed in Section 5.1 for generating a regu-
lar pulse train except that fiber GVD is chosen to be in the normal-dispersion
regime everywhere along the fiber length. A 100-GHz train of 1.6-ps dark
solitons was generated by using this technique and propagated over 2.2 km of
(two soliton periods) of a dispersion-shifted fiber. Optical switching using a
fiber-loop mirror, in which a phase modulator is placed asymmetrically, can
also be used to generate dark solitons [125]. In another variation, a fiber with
comblike dispersion profile was used to generate dark soliton pulses with a
width of 3.8 ps at the 48-GHz repetition rate [128].

An interesting scheme uses electronic circuitry to generate a coded train of
dark solitons directly from the NRZ data in electric form [126]. First, the NRZ
data and its clock at the bit rate are passed through an AND gate. The resulting
signal is then sent to a flip-flop circuit in which all rising slopes flip the signal.
The resulting electrical signal drives a Mach–Zehnder LiNbO3 modulator and
converts the CW output from a semiconductor laser into a coded train of dark
solitons. This technique was used for data transmission, and a 10-Gb/s signal
was transmitted over 1200 km by using dark solitons [127]. Another relatively
simple method uses spectral filtering of a mode-locked pulse train by using a
fiber grating [129]. This scheme has also been used to generate a 6.1-GHz
train and propagate it over a 7-km-long fiber [130].

Dark solitons remain a subject of continuing interest. Numerical simula-
tions show that they are more stable in the presence of noise and spread more
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slowly in the presence of fiber loss compared with bright solitons. They are
also relatively less affected by many other factors that have an impact on the
use of bright solitons (amplifier-induced timing jitter, intrapulse Raman scat-
tering, etc.). These properties point to potential application of dark solitons for
optical communication systems. The reader is referred to Reference [131] for
further details.

5.3.2 Dispersion-Managed Solitons

The NLS equation (5.2.5) and its soliton solutions assume that the GVD pa-
rameter β2 is constant along the fiber. As discussed in Section 3.5, the tech-
nique of dispersion management is often used in the design of modern fiber-
optic communication systems. This technique consists of using a periodic dis-
persion map by combining fibers with different characteristics such that the
average GVD in each period is quite low while the local GVD at every point
along the fiber link is relatively large. The period of the dispersion map is typ-
ically 50–60 km. In practice, just two kinds of fibers with opposite signs of β2
are combined to reduce the average dispersion to a small value. Mathemati-
cally, Eq. (5.2.5) is replaced with

i
∂u
∂ξ

+
d(ξ )

2
∂ 2u
∂τ2 + juj2u = 0; (5.3.5)

where d(ξ ) is a periodic function of ξ with the period ξmap = Lmap=LD. Here
Lmap is the length associated with the dispersion map.

Equation (5.3.5) does not appear to be integrable by the inverse scattering
method. However, it has been found to have pulselike, periodic solutions.
These solutions are referred to as dispersion-managed solitons [132]–[135]. It
should be stressed that the term soliton is used loosely in this context because
the properties of dispersion-managed solitons are quite different from those of
the bright solitons discussed in Section 5.2. Not only the amplitude and the
width of dispersion-managed solitons oscillate in a periodic manner, but their
frequency also varies across the pulse, i.e., such solitons are chirped. Pulse
shape is also close to being Gaussian rather than the “sech” shape of bright
solitons found for constant-dispersion fibers. Even more surprisingly, such
solitons can exist even when average dispersion along the fiber link is normal.
Dispersion-managed solitons are covered in Chapter 8 of Part B.
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5.3.3 Bistable Solitons

The discussion in this chapter is based on a specific form of the nonlinear
polarization in Eq. (2.3.6), resulting in a refractive index that increases linearly
with the mode intensity I, i.e.,

ñ(I) = n+n2I: (5.3.6)

Such a form of refractive index is referred to as the Kerr nonlinearity. At very
high intensity levels, the nonlinear response of any material begins to saturate,
and it may become necessary to modify Eq. (5.3.6). For silica fibers, saturation
of the Kerr nonlinearity occurs at quite high intensity levels. However, if fibers
are made with other materials (such as chalcogenide glasses) or if a silica fiber
is doped with other nonlinear materials (such as an organic dye), the nonlinear
response can saturate at practical intensity levels. In that case, Eq. (5.3.6)
should be replaced with

ñ(I) = n+n2 f (I); (5.3.7)

where f (I) is some known function of the mode intensity I.
The NLS equation (5.2.5) can be generalized to accommodate Eq. (5.3.7)

and takes the form [136]

i
∂u
∂ξ

+
1
2

∂ 2u
∂τ2 + f (juj2)u = 0: (5.3.8)

Equation (5.3.8) is not generally integrable by the inverse scattering method.
However, it can be solved to find shape-preserving solutions by the method
outlined in Section 5.2. The approach consists of assuming a solution of the
form

u(ξ ;τ) =V (τ)exp(iKξ ); (5.3.9)

where K is a constant and V is independent of ξ . If Eq. (5.3.9) is substituted
in Eq. (5.3.8), V (τ) is found to satisfy

d2V
dτ2 = 2V [K� f (V 2

)]: (5.3.10)

This equation can be solved by multiplying it by 2(dV=dτ) and integrating
over τ . Using the boundary condition V = 0 as jτ j ! ∞, we obtain

(dV=dτ)2
= 4

Z V

0
[K� f (V 2

)]V dV: (5.3.11)
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This equation can be integrated to yield

2τ =

Z V

0

 Z V 2

0
[K� f (P)]dP

!�1=2

dV: (5.3.12)

where P = V 2. For a given functional form of f (P), we can determine the
soliton shape V (τ) from Eq. (5.3.12) if K is known.

The parameter K can be related to the soliton energy defined as Es =R ∞
�∞V 2 dτ . Using Eq. (5.3.11), Es depends on the wave number K as [136]

Es(K) =
1
2

Z Pm

0
[K�F(P)]�1=2 dP; (5.3.13)

where

F(P) =
1
P

Z P

0
f (P)dP; F(0) = 0; (5.3.14)

and Pm is defined as the smallest positive root of F(P) = K; it corresponds to
the peak power of the soliton.

Depending on the function f (P), Eq. (5.3.13) can have more than one so-
lution, each having the same energy Es but different values of K and Pm. Typi-
cally, only two solutions correspond to stable solitons. Such solitons are called
bistable solitons and have been studied extensively since their discovery in
1985 [136]–[148]. For a given amount of pulse energy, bistable solitons prop-
agate in two different stable states and can be made to switch from one state
to another [137]. An analytic form of the bistable soliton has also been found
for a specific form of the saturable nonlinearity [142]. Bistable behavior has
not yet been observed in optical fibers as the peak-power requirements are ex-
tremely high. Other nonlinear media with easily saturable nonlinearity may be
more suitable for this purpose.

5.4 Perturbation of Solitons

Fiber-optic communication systems operating at bit rates of 10 Gb/s or more
are generally limited by the GVD that tends to disperse optical pulses outside
their assigned bit slot. Fundamental solitons are useful for such systems be-
cause they can maintain their width over long distances by balancing the effects
of GVD and SPM, both of which are detrimental to system performance when
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solitons are not used. The use of solitons for optical communications was pro-
posed as early as 1973 [80], and their use had reached the commercial stage
by 2000 [81]. This success was possible only after the effects of fiber losses
on solitons were understood and techniques for compensating them were de-
veloped [149]–[156]. The advent of erbium-doped fiber amplifiers fueled the
development of soliton-based systems. However, with their use came the lim-
itations imposed by the amplifier noise. In this section, we first discuss the
method used commonly to analyze the effect of small perturbations on soli-
tons and then apply it to study the impact of fiber losses, periodic amplification,
amplifier noise, and soliton interaction.

5.4.1 Perturbation Methods

Consider the perturbed NLS equation written as

i
∂u
∂ξ

+
1
2

∂ 2u
∂τ2 + juj2u = iε(u); (5.4.1)

where ε(u) is a small perturbation that can depend on u, u�, and their deriva-
tives. In the absence of perturbation (ε = 0), the soliton solution of the NLS
equation is known and is given by Eq. (5.2.13). The question then becomes
what happens to the soliton when ε 6= 0. Several perturbation techniques have
been developed for answering this question [157]–[164]. They all assume that
the functional form of the soliton remains intact in the presence of a small
perturbation but the four soliton parameters change with ξ as the soliton prop-
agates down the fiber. Thus, the solution of the perturbed NLS equation can
be written as

u(ξ ;τ) = η(ξ )sech[η(ξ )(τ�q(ξ ))]exp[iφ(ξ )� iδ (ξ )τ ]: (5.4.2)

The ξ dependence of η ;δ ;q, and φ is yet to be determined. In the absence of
perturbation (ε = 0), η and δ are constants but q(ξ ) and φ(ξ ) are obtained by
solving the simple ordinary differential equations

dq
dξ

=�δ ;
dφ
dξ

=
1
2(η

2�δ 2
): (5.4.3)

The perturbation techniques developed for solitons include the adiabatic
perturbation method, the perturbed inverse scattering method, the Lie-trans-
form method, and the variational method [77]. All of them attempt to obtain a
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set of four ordinary differential equations for the four soliton parameters. As
an example, consider the variational method that makes use of the Lagrangian
formalism developed for classical mechanics and was applied to solitons as
early as 1979 [165]. It treats the soliton field u and its complex conjugate u�

as conjugate variables (similar to the position and the momentum of a parti-
cle in classical mechanics). The perturbed NLS equation can be restated as a
variational problem by casting it in the form of the Euler–Lagrange equation

∂
∂ξ

 
∂Lg

∂Xξ

!
+

∂
∂τ

�
∂Lg

∂Xτ

�
�

∂Lg

∂X
= 0; (5.4.4)

where X represents either u or u�, the subscripts τ and ξ denote differentiation
with respect to that variable, and the Lagrangian density is given by [166]

Lg =
i
2
(uu�ξ �u�uξ )�

1
2
(juj4�juτ j2)+ i(εu�� ε�u): (5.4.5)

It is easy to verify that Eq. (5.4.4) reproduces the NLS equation (5.4.1) with
the choice X = u�.

The main step in the variational analysis consists of integrating the La-
grangian density over τ as

L̄g(η ;δ ;q;φ) =
Z ∞

�∞
Lg(u;u

�
;τ)dτ ; (5.4.6)

and then using the reduced Euler–Lagrange equation to determine how the four
soliton parameters evolve with ξ . Using Eqs. (5.4.4)–(5.4.6), this procedure
leads to the following set of four ordinary differential equations [77]:

dη
dξ

= Re
Z ∞

�∞
ε(u)u�(τ)dτ ; (5.4.7)

dδ
dξ

= �Im
Z ∞

�∞
ε(u) tanh[η(τ�q)]u�(τ)dτ ; (5.4.8)

dq
dξ

= �δ +
1

η2 Re
Z ∞

�∞
ε(u)(τ�q)u�(τ)dτ ; (5.4.9)

dφ
dξ

= Im
Z ∞

�∞
ε(u)f1=η � (τ�q) tanh[η(τ�q)]gu�(τ)dτ

+
1
2 (η

2�δ 2
)+q

dδ
dξ

; (5.4.10)
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where Re and Im stand for the real and imaginary parts, respectively. This set
of four equations can also be obtained by using adiabatic perturbation theory or
perturbation theory based on the inverse scattering method [157]–[164]. The
reader is referred to Reference [77] for a comparison of various perturbation
methods.

5.4.2 Fiber Losses

Because solitons result from a balance between the nonlinear and dispersive
effects, the pulse must maintain its peak power if it has to preserve its soliton
character. Fiber losses are detrimental simply because they reduce the peak
power of solitons along the fiber length [see Eq. (1.2.3)]. As a result, the width
of a fundamental soliton also increases with propagation because of power
loss. Mathematically, fiber losses are accounted for by adding a loss term to
Eq. (5.1.1) so that it takes the form of Eq. (2.3.41). In terms of the soliton units
used in Section 5.2, the NLS equation becomes

i
∂u
∂ξ

+
1
2

∂ 2u
∂τ2 + juj2u =�

i
2

Γu; (5.4.11)

where
Γ = αLD = αT 2

0 =jβ2j: (5.4.12)

Equation (5.4.11) can be solved by using the variational method if Γ � 1
so that the loss term can be treated as a weak perturbation. Using ε(u) =
�Γu=2 in Eqs. (5.4.7)–(5.4.10) and performing the integrations, we find that
only soliton amplitude η and phase φ are affected by fiber losses and vary
along the fiber length as [149]

η(ξ ) = exp(�Γξ ); φ(ξ ) = φ(0)+ [1� exp(�2Γξ )]=(4Γ); (5.4.13)

where we assumed that η(0) = 1; δ (0) = 0, and q(0) = 0. Both δ and q remain
zero along the fiber.

Recalling that the amplitude and width of a soliton are related inversely, a
decrease in soliton amplitude leads to broadening of the soliton. Indeed, if we
write η(τ�q) in Eq. (5.4.2) as T=T1 and use τ = T=T0, T1 increases along the
fiber exponentially as

T1(z) = T0 exp(Γξ )� T0 exp(αz): (5.4.14)
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Figure 5.10 Variation of pulse width with distance in a lossy fiber for the fundamental
soliton. The prediction of perturbation theory is also shown. Dashed curve shows the
behavior expected in the absence of nonlinear effects. (After Ref. [167].)

An exponential increase in the soliton width with z cannot be expected to
continue for arbitrarily large distances. This can be seen from Eq. (3.3.12),
which predicts a linear increase with z when the nonlinear effects become neg-
ligible. Numerical solutions of Eq. (5.4.11) show that the perturbative solution
is accurate only for values of z such that αz � 1 [167]. Figure 5.10 shows
the broadening factor T1=T0 as a function of ξ when a fundamental soliton is
launched into a fiber with Γ = 0:07. The perturbative result is acceptable for
up to Γξ � 1. In the regime (ξ � 1), pulse width increases linearly with a
rate slower than that of a linear medium [168]. Higher-order solitons show a
qualitatively similar asymptotic behavior. However, their pulse width oscil-
lates a few times before increasing monotonically [167]. The origin of such
oscillations lies in the periodic evolution of higher-order solitons.

How can a soliton survive inside lossy optical fibers? An interesting scheme
restores the balance between GVD and SPM in a lossy fiber by changing
dispersive properties of the fiber [169]. Such fibers are called dispersion-
decreasing fibers (DDFs) because their GVD must decrease in such a way that
it compensates for the reduced SPM experienced by the soliton as its energy
is reduced by fiber loss. To see which GVD profile is needed, we modify Eq.
(5.4.11) to allow for GVD variations along the fiber length and eliminate the
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loss term using u = vexp(�Γξ=2), resulting in the following equation:

i
∂v
∂ξ

+
d(ξ )

2
∂ 2v
∂τ2 + e�Γξ jvj2v =�

i
2

Γu; (5.4.15)

where d(ξ ) = jβ2(ξ )=β2(0)j is the normalized local GVD. The distance ξ is
normalized to the dispersion length LD = T 2

0 =jβ2(0)j, defined using the GVD
value at the input end of the fiber.

Rescaling ξ using the transformation ξ0 =
R ξ

0 p(ξ )dξ , Eq. (5.4.15) be-
comes

i
∂v
∂ξ 0

+
1
2

∂ 2v
∂τ2 +

e�Γξ

d(ξ )
jvj2v = 0; (5.4.16)

If the GVD profile is chosen such that d(ξ ) = exp(�Γξ ), Eq. (5.4.16) reduces
to the standard NLS equation. Thus, fiber losses have no effect on soliton
propagation if the GVD of a fiber decreases exponentially along its length as

jβ2(z)j = jβ2(0)jexp(�αz): (5.4.17)

This result can be easily understood from Eq. (5.2.3). If the soliton peak power
P0 decreases exponentially with z, the requirement N = 1 can still be main-
tained at every point along the fiber if jβ2j were also to reduce exponentially.

Fibers with a nearly exponential GVD profile have been fabricated [170].
A practical technique for making such DDFs consists of reducing the core
diameter along fiber length in a controlled manner during the fiber-drawing
process. Variations in the core diameter change the waveguide contribution
to β2 and reduce its magnitude. Typically, GVD can be changed by a factor
of 10 over a length of 20–40 km. The accuracy realized by the use of this
technique is estimated to be better than 0.1 ps2/km [171]. Since DDFs are not
available commercially, fiber loss is commonly compensated by amplifying
solitons. This is the topic discussed next.

5.4.3 Soliton Amplification

As already discussed, fiber losses lead to broadening of solitons. Such loss-
induced broadening is unacceptable for many applications, especially when
solitons are used for optical communications. To overcome the effect of fiber
losses, solitons need to be amplified periodically so that their energy is re-
stored to its initial value. Two different approaches have been used for soliton
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Figure 5.11 (a) Lumped and (b) distributed-amplification schemes used for compen-
sation of fiber loss.

amplification [149]–[156]. These are known as lumped and distributed am-
plification schemes and are shown in Fig. 5.11 schematically. In the lumped
scheme [150], an optical amplifier boosts the soliton energy to its input level
after the soliton has propagated a certain distance. The soliton then readjusts
its parameters to their input values. However, it also sheds a part of its energy
as dispersive waves (continuum radiation) during this adjustment phase. The
dispersive part is undesirable and can accumulate to significant levels over a
large number of amplification stages.

This problem can be solved by reducing the spacing LA between amplifiers
such that LA � LD. The reason is that the dispersion length LD sets the scale
over which a soliton responds to external perturbations. If the amplifier spac-
ing is much smaller than this length scale, soliton width is hardly affected over
one amplifier spacing in spite of energy variations. In practice, the condition
LA � LD restricts LA typically in the range 20–40 km even when the dispersion
length exceeds 100 km [150]. Moreover, the lumped-amplification scheme be-
comes impractical at high bit rates requiring short solitons (T0 < 10 ps) because
dispersion length can then become quite short.

The distributed-amplification scheme uses either stimulated Raman scat-
tering [151]–[154] (see Chapter 8) or erbium-doped fibers [172]–[176]. Both
require periodic pumping along the fiber length. In the Raman case, a pump
beam (up-shifted in frequency from the soliton carrier frequency by nearly
13 THz) is injected periodically into the fiber. For solitons propagating in
the 1.55-µm wavelength region, one needs a high-power pump laser operating
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near 1.45 µm. In the case of erbium-doped fibers, the pump laser operates at
0.98 or 1.48 µm. The required pump power is relatively modest (�10 mW) in
the case of erbium doping but exceeds 100 mW for Raman amplification. In
both cases, optical gain is distributed over the entire fiber length. As a result,
solitons can be amplified adiabatically while maintaining N � 1, a feature that
reduces the dispersive part almost entirely [153].

Feasibility of the Raman-amplification scheme was first demonstrated in
1985 in an experiment in which soliton pulses of 10-ps width were propagated
over a 10-km-long fiber [152]. In the absence of Raman gain, the width of
solitons increased by � 50% because of loss-induced broadening. This is in
agreement with Eq. (5.4.14), which predicts T1=T0 = 1:51 for z = 10 km and
α = 0:18 dB/km, the values relevant for the experiment. The Raman gain was
obtained by injecting a CW pump beam at 1.46 µm from a color-center laser
in the direction opposite to that of soliton propagation. The pump power was
adjusted close to 125 mW such that the total fiber loss of 1.8 dB was exactly
balanced by the Raman gain. In a 1988 experiment [154], 55-ps solitons could
be circulated up to 96 times through a 42-km fiber loop without significant
increase in their width, resulting in an effective transmission distance of >

4000 km.
The lumped-amplification scheme was used starting in 1989 [155]. Since

erbium-doped fiber amplifiers became available commercially after 1990, they
have been used almost exclusively for loss compensation in spite of the lumped
nature of amplification provided by them. To understand how solitons can
survive in spite of large energy variations, we include the gain provided by
lumped amplifiers in Eq. (5.4.11) by replacing Γ with a periodic functionΓ̃(ξ )
such that Γ̃(ξ ) = Γ everywhere except at the location of amplifiers where it
changes abruptly. If we make the transformation

u(ξ ;τ) = exp

�
�

1
2

Z ξ

0
Γ̃(ξ )dξ

�
v(ξ ;τ)� a(ξ )v(ξ ;τ); (5.4.18)

where a(ξ ) contains rapid variations and v(ξ ;τ) is a slowly varying function
of ξ and use it in Eq. (5.4.11), v(ξ ;τ) is found to satisfy

i
∂v
∂ξ

+
1
2

∂ 2v
∂τ2 +a2

(ξ )jvj2v = 0: (5.4.19)

Note that a(ξ ) is a periodic function of ξ with a period ξ = LA=LD, where
LA is the amplifier spacing. In each period, a(ξ ) � a0 exp(�Γξ=2) decreases
exponentially and jumps to its initial value a0 at the end of the period.
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The concept of the guiding-center or path-averaged soliton [177] makes
use of the fact that a2

(ξ ) in Eq. (5.4.19) varies rapidly in a periodic fashion.
If the period ξA � 1, solitons evolve little over a short distance as compared
with the dispersion length LD. Over a soliton period, a2

(ξ ) varies so rapidly
that its effects are averaged out, and we can replace a2

(ξ ) by its average value
over one period. With this approximation, Eq. (5.4.19) reduces to the standard
NLS equation:

i
∂v
∂ξ

+
1
2

∂ 2v
∂τ2 + ha2

(ξ )ijvj2v = 0: (5.4.20)

The practical importance of the averaging concept stems from the fact that
Eq. (5.4.20) describes soliton propagation quite accurately when ξA � 1 [77].
In practice, this approximation works reasonably well for values up to ξA as
large as 0.25.

From a practical viewpoint, the input peak power Ps of the path-averaged
soliton should be chosen such that ha2

(ξ )i= 1 in Eq. (5.4.20). Introducing the
amplifier gain G = exp(ΓξA), the peak power is given by

Ps =
ΓξAP0

1� exp(�ΓξA)
=

G lnG
G�1

P0; (5.4.21)

where P0 is the peak power in lossless fibers. Thus, soliton evolution in lossy
fibers with periodic lumped amplification is identical to that in lossless fibers
provided: (i) amplifiers are spaced such that LA � LD; and (ii) the launched
peak power is larger by a factor G lnG=(G� 1). As an example, G = 10 and
Pin � 2:56P0 for 50-km amplifier spacing and a fiber loss of 0.2 dB/km.

Figure 5.12 shows pulse evolution in the average-soliton regime over a
distance of 10,000 km, assuming solitons are amplified every 50 km. When the
soliton width corresponds to a dispersion length of 200 km, the soliton is well
preserved even after 200 lumped amplifiers because the condition ξA � 1 is
reasonably well satisfied. However, if the dispersion length reduces to 25 km,
the soliton is destroyed because of relatively large loss-induced perturbations.

The condition ξA � 1 or LA � LD, required to operate within the average-
soliton regime, can be related to the width T0 by using LD = T 2

0 =jβ2j. The
resulting condition is

T0 �
p
jβ2jLA: (5.4.22)

The bit rate B of a soliton communication system is related to T0 through
TB = 1=B = 2q0T0, where TB is the bit slot and q0 represents the factor by
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Figure 5.12 Evolution of loss-managed solitons over 10,000 km for L D = 200 (left)
and LD = 25 km (right) when LA = 50 km, α = 0:22 dB/km, and β2 = 0:5 ps2/km.

which it is larger than the soliton width. Thus, the condition (5.4.22) can be
written in the form of a simple design criterion:

B2LA � (4q2
0jβ2j)

�1
: (5.4.23)

By choosing typical values β2 = �0:5 ps2/km, LA = 50 km, and q0 = 5, we
obtain T0 � 5 ps and B � 20 GHz. Clearly, the use of amplifiers for soliton
amplification imposes a severe limitation on both the bit rate and the amplifier
spacing in practice.

Optical amplifiers, needed to restore the soliton energy, also add noise orig-
inating from spontaneous emission. The effect of spontaneous emission is to
change randomly the four soliton parameters, η ;δ ;q, and φ in Eq. (5.4.2),
at the output of each amplifier [161]. Amplitude fluctuations, as one might
expect, degrade the signal-to-noise ratio (SNR). However, for applications of
solitons in optical communications, frequency fluctuations are of much more
concern. The reason can be understood from Eq. (5.4.2), and noting that a
change in the soliton frequency by δ affects the speed at which the soliton
propagates through the fiber. If δ fluctuates because of amplifier noise, soliton
transit time through the fiber also becomes random. Fluctuations in the arrival
time of a soliton are referred to as the Gordon–Haus timing jitter [178]. Prac-
tical implications of noise-induced timing jitter and the techniques developed
for reducing it (optical filtering, synchronous modulation, etc.) are discussed
in Part B in the context of soliton communication systems.
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5.4.4 Soliton Interaction

The time interval TB between two neighboring bits or pulses determines the bit
rate of a communication system as B = 1=TB. It is thus important to determine
how close two solitons can come without affecting each other. Interaction be-
tween two solitons has been studied both analytically and numerically [179]–
[191]. This section discusses the origin of mutual interaction and its affect on
individual solitons.

It is clear on physical grounds that two solitons would begin to affect each
other only when they are close enough that their tails overlap. Mathematically,
the total field u = u1 +u2, where

uj(ξ ;τ) = η jsech[η j(τ�qj)]exp(iφ j� iδ jτ); (5.4.24)

with j = 1;2. It is u that satisfies the NLS equation, rather than u1 and u2
individually. In fact, by substituting u = u1 + u2 in Eq. (5.2.5), we can obtain
the following perturbed NLS equation satisfied by the u1 soliton:

i
∂u1

∂ξ
+

1
2

∂ 2u1

∂τ2 + ju1j
2u1 =�2ju1j

2u2�u2
1u�2: (5.4.25)

The NLS equation for u2 is obtained by interchanging u1 and u2. The terms
on the right-hand side act as a perturbation and are responsible for nonlinear
interaction between two neighboring solitons.

Equations (5.4.7)–(5.4.10) can now be used to study how the four soliton
parameters η j;qj;δ j, and φ j (with j = 1;2) are affected by the perturbation.
Introducing new variables as

η� = η1�η2; q� = q1�q2; (5.4.26)

δ� = δ1�δ2; φ� = φ1�φ2; (5.4.27)

one can obtain after some algebra the following set of equations [163]:

dη
+

dξ
= 0;

dη�

dξ
= η3

+
exp(�q�)sin φ�; (5.4.28)

dδ
+

dξ
= 0;

dδ�
dξ

= η3
+

exp(�q�)cos φ�; (5.4.29)

dq�
dξ

= �δ�;
dφ�
dξ

=
1
2η
+

η�: (5.4.30)
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Figure 5.13 Relative spacing q between two interacting solitons as a function of fiber
length for several values of initial phase difference ψ0 (in degrees) when q0 = 4.

Equations for q
+

and φ
+

are omitted since their dynamics do not affect soliton
interaction. Further, η

+
and δ

+
remain constant during interaction. Using

η
+
= 2 for two interacting fundamental solitons, the remaining four equations

can be combined to yield:

d2q
dξ 2 =�4e�2q cos(2ψ);

d2ψ
dξ 2 = 4e�2q sin(2ψ); (5.4.31)

where we introduced two new variables as q = q�=2 and ψ = φ�=2. The
same equations are obtained using the inverse scattering method [180]. They
show that the relative separation q between two solitons depends only on their
relative phase. Two solitons may attract (come closer) or repel (move apart)
depending on the initial value of ψ .

Equations (5.4.31) can be solved analytically under quite general condi-
tions [184]. In the case in which two solitons initially have the same ampli-
tudes and frequencies, the solution becomes [77]

q(ξ ) = q0 +
1
2 ln[cosh2

(2ξ e�q0 sinψ0)+ cos2
(2ξ e�q0 cos ψ0)�1]: (5.4.32)

where q0 and ψ0 are the initial values of q and ψ , respectively. Figure 5.13
shows how the relative separation q(ξ ) changes along the fiber length for two
solitons with different phases. For ψ0 below a certain value, q becomes zero
periodically. This is referred to as a “collision” resulting from an attractive
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force between the two solitons. For values of ψ0 larger than π=8, q > q0 and
increases monotonically with ξ . This is interpreted in terms of a nonlinearity-
induced repulsive force between the two solitons. The specific cases ψ0 = 0
and π=2 correspond to two solitons that are initially in phase or out of phase,
respectively.

In the case of two in-phase solitons (ψ0 = 0), the relative separation q
changes with propagation periodically as

q(ξ ) = q0 + ln jcos(2ξ e�q0)j: (5.4.33)

Because q(ξ )� q0 for all values of ξ , two in-phase solitons attract each other.
In fact, q becomes zero after a distance

ξ =
1
2eq0 cos�1

(e�q0)� π
4 exp(q0); (5.4.34)

where the approximate form is valid for q0 > 5. At this distance, two solitons
collide for the first time. Because of the periodic nature of the q(ξ ) in Eq.
(5.4.33) the two solitons separate from each other and collide periodically.
The oscillation period is called the collision length. In real units, the collision
length is given by

Lcol =
π
2 LD exp(q0)� z0 exp(q0); (5.4.35)

where z0 is the soliton period given in Eq. (5.2.24). This expression is quite
accurate for q0 > 3, as also found numerically [181]. A more accurate expres-
sion, valid for arbitrary values of q0, is obtained using inverse scattering theory
and is given by [187]

Lcol

LD
=

π sinh(2q0)cosh(q0)

2q0 + sinh(2q0)
: (5.4.36)

In the case of two out-of-phase solitons (ψ0 = π=2), the relative separation
q changes with propagation as

q(ξ ) = q0 + ln[cosh(2ξ e�q0)]: (5.4.37)

As cosh(x) > 1 for all values of x, it is clear that q > q0 and increases mono-
tonically with ξ .

Numerical solutions of the NLS equation are quite instructive and allow
exploration of different amplitudes and different phases associated with a soli-
ton pair by using the following form at the input end of the fiber:

u(0;τ) = sech(τ�q0)+ r sech[r(τ +q0)]e
iθ
; (5.4.38)
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Figure 5.14 Evolution of a soliton pair over 90 dispersion lengths showing the effects
of soliton interaction for four different choices of amplitude ratio r and relative phase
θ . Initial separation q0 = 3:5 in all four cases.

where r is relative amplitude, θ = 2ψ0 is the initial phase difference, and 2q0
is the initial separation between the two solitons. Figure 5.14 shows evolution
of a soliton pair with an initial separation q0 = 3:5 for several values of param-
eters r and θ . In the case of equal-amplitude solitons (r = 1), the two solitons
attract each other in the in-phase case (θ = 0) and collide periodically along
the fiber length, just as predicted by perturbation theory. For θ = π=4, the soli-
tons separate from each other after an initial attraction stage in agreement with
the results shown in Fig. 5.13. For θ = π=2, the solitons repel each other even
more strongly, and their spacing increases with distance monotonically. The
last case shows the effect of slightly different soliton amplitudes by choosing
r = 1:1. Two in-phase solitons oscillate periodically but never collide or move
far away from each other.

The periodic collapse of neighboring solitons is undesirable from a prac-
tical standpoint. One way to avoid the collapse is to increase soliton sepa-
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ration such that Lcol � LT , where LT is the transmission distance. Because
Lcol � 3000z0 for q0 = 8, and z0 � 100 km typically, a value of q0 = 8 is
large enough for any communication system. Several schemes can be used to
reduce the soliton separation further without inducing the collapse. The inter-
action between two solitons is quite sensitive to their relative phase θ and the
relative amplitude r. If the two solitons have the same phase (θ = 0) but dif-
ferent amplitudes, the interaction is still periodic but without collapse [187].
Even for r = 1:1, the separation does not change by more than 10% during
each period if q0 > 4. Soliton interaction can also be modified by other factors
such as higher-order effects [189], bandwidth-limited amplification [190], and
timing jitter [191]. Higher-order effects are discussed in the following section.

5.5 Higher-Order Effects

The properties of optical solitons considered so far are based on the NLS equa-
tion (5.1.1). As discussed in Section 2.3, when input pulses are so short that
T0 < 5 ps, it is necessary to include higher-order nonlinear and dispersive ef-
fects through Eq. (2.3.39). In terms of the soliton units introduced in Section
5.2, Eq. (2.3.40) takes the form

i
∂u
∂ξ

+
1
2

∂ 2u
∂τ2 + juj2u = iδ3

∂ 3u
∂τ3 � is

∂
∂τ

(juj2u)+ τRu
∂ juj2

∂τ
; (5.5.1)

where the pulse is assumed to propagate in the region of anomalous GVD
(β2 < 0) and fiber losses are neglected (α = 0). The parameters δ3; s, and τR
govern, respectively, the effects of third-order dispersion (TOD), self-steepening,
and intrapulse Raman scattering. Their explicit expressions are

δ3 =
β3

6jβ2jT0
; s =

1
ω0T0

; τR =
TR

T0
: (5.5.2)

All three parameters vary inversely with pulse width and are negligible for
T0 � 1 ps. They become appreciable for femtosecond pulses. As an example,
δ3 � 0:03, s� 0:03, and τR � 0:1 for a 50-fs pulse (T0 � 30 fs) propagating at
1.55 µm in a standard silica fiber if we take TR = 3 fs.
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5.5.1 Third-Order Dispersion

When optical pulses propagate relatively far from the zero-dispersion wave-
length of an optical fiber, the TOD effects on solitons are small and can be
treated perturbatively. To study such effects as simply as possible, let us set
s = 0 and τR = 0 in Eq. (5.5.1) and treat the δ3 term as a small perturbation.
Using Eqs. (5.4.7)–(5.4.10) with ε(u) = δ3(∂

3u=∂τ3
), it is easy to show that

amplitude η , frequency δ , and phase φ of the soliton are not affected by TOD.
In contrast, the peak position q changes as [77]

dq
dξ

=�δ +δ3η2
: (5.5.3)

For a fundamental soliton with η = 1 and δ = 0, the soliton peak shifts lin-
early with ξ as q(ξ ) = δ3ξ . Physically speaking, the TOD slows down the
soliton and, as a result, the soliton peak is delayed by an amount that increases
linearly with distance. This TOD-induced delay is negligible in most fibers for
picosecond pulses for distances as large as ξ = 100 as long as β2 is not nearly
zero.

What happens if an optical pulse propagates at or near the zero-dispersion
wavelength of an optical fiber such that β 2 is nearly zero. Considerable work
has been done to understand propagation behavior in this regime [192]–[198].
The case β2 = 0 has been discussed in Section 4.2 using Eq. (4.2.5). Equation
(5.5.1) cannot be used in this case because the normalization scheme used for it
becomes inappropriate. Normalizing the propagation distance to L0D = T 3

0 =jβ3j
through ξ 0

= z=L0D, we obtain the following equation:

i
∂u
∂ξ 0

� sgn(β3)
i
6

∂ 3u
∂τ3 + juj2u = 0; (5.5.4)

where u = ÑU , with Ñ is defined by

Ñ2
=

L0D
LNL

=
γP0T 3

0

jβ3j
: (5.5.5)

Figure 5.15 shows the pulse shape and the spectrum at ξ0 = 3 for Ñ = 2
and compares them with those of the input pulse at ξ0 = 0. The most striking
feature is splitting of the spectrum into two well-resolved spectral peaks [192].
These peaks correspond to the outermost peaks of the SPM-broadened spec-
trum (see Fig. 4.2). As the red-shifted peak lies in the anomalous-GVD regime,
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Figure 5.15 Pulse shape and spectrum at z=L 0

D = 3 of a hyperbolic secant pulse prop-
agating at the zero-dispersion wavelength with a peak power such that Ñ = 2. Dotted
curves show for comparison the initial profiles at the fiber input.

pulse energy in that spectral band can form a soliton. The energy in the other
spectral band disperses away simply because that part of the pulse experiences
normal GVD. It is the trailing part of the pulse that disperses away with propa-
gation because SPM generates blue-shifted components near the trailing edge.
The pulse shape in Fig. 5.15 shows a long trailing edge with oscillations that
continues to separate away from the leading part with increasing ξ0. The im-
portant point to note is that, because of SPM-induced spectral broadening, the
input pulse does not really propagate at the zero-dispersion wavelength even if
β 2 = 0 initially. In effect, the pulse creates its own jβ2j through SPM. The ef-
fective value of jβ 2j is given by Eq. (4.2.7) and is larger for pulses with higher
peak powers.

An interesting question is whether soliton-like solutions exist at the zero-
dispersion wavelength of an optical fiber. Equation (5.5.4) does not appear to
be integrable by the inverse scattering method. Numerical solutions show [194]
that for Ñ > 1, a “sech” pulse evolves over a length ξ0 � 10=Ñ2 into a soliton
that contains about half of the pulse energy. The remaining energy is carried by
an oscillatory structure near the trailing edge that disperses away with propaga-
tion. These features of solitons have also been quantified by solving Eq. (5.5.4)
approximately [194]–[198]. In general, solitons at the zero-dispersion wave-
length require less power than those occurring in the anomalous-GVD regime.
This can be seen by comparing Eqs. (5.2.3) and (5.5.5). To achieve the same
values of N and Ñ, the required power is smaller by a factor of T0jβ2=β3j for
pulses propagating at the zero-dispersion wavelength.

With the advent of wavelength-division multiplexing (WDM) and disper-
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sion-management techniques, special fibers have been developed in which β3
is nearly zero over a certain wavelength range while jβ2j remains finite. Such
fibers are called dispersion-flattened fibers. Their use requires consideration
of the effects of fourth-order dispersion on solitons. The NLS equation then
takes the following form:

i
∂u
∂ξ

+
1
2

∂ 2u
∂τ2 + juj2u = δ4

∂ 4u
∂τ4 ; (5.5.6)

where δ4 = β4=(24jβ2jT
2

0 ).
The parameter δ4 is relatively small for T0 > 1 ps, and its effect can be

treated perturbatively. However, δ4 may become large enough for ultrashort
pulses that a perturbative solution is not appropriate. A shape-preserving,
solitary-wave solution of Eq. (5.5.6) can be found by assuming u(ξ ;τ) =
V (τ)exp(iKξ ) and solving the resulting ordinary differential equation for V (τ).
This solution is given by [199]

u(ξ ;τ) = 3b2sech2
(bτ)exp(8ib2ξ=5); (5.5.7)

where b = (40δ4)
�1=2. Note the sech2-type form of the pulse amplitude rather

than the usual “sech” form required for standard bright solitons. It should be
stressed that both the amplitude and the width of the soliton are determined
uniquely by the fiber parameters. Such fixed-parameter solitons are sometimes
called autosolitons.

5.5.2 Self-Steepening

The phenomenon of self-steepening has been studied extensively [200]–[204].
Since it has already been covered in Section 4.3, its impact on solitons is dis-
cussed only briefly. To isolate the effects of self-steepening governed by the
parameter s, it is useful to set δ 3 = 0 and τR = 0 in Eq. (5.5.1). Pulse evolution
inside fibers is then governed by

i
∂u
∂ξ

+
1
2

∂ 2u
∂τ2 + juj2u+ is

∂
∂τ

(juj2u) = 0: (5.5.8)

As discussed in Section 4.3, self-steepening creates an optical shock on the
trailing edge of the pulse in the absence of the GVD effects. This phenomenon
is due to the intensity dependence of the group velocity that results in the peak
of the pulse moving slower than the wings. The GVD dissipates the shock and
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Figure 5.16 Pulse shapes at ξ = 5 and 10 for a fundamental soliton in the presence of
self-steepening (s = 0:2). Dashed curve shows the initial shape for comparison. The
solid curves coincide with the dashed curve when s= 0.

smoothes the trailing edge considerably. However, self-steepening would still
manifest through a shift of the pulse center.

The self-steepening-induced shift is shown in Fig. 5.16 where pulse shapes
at ξ = 0, 5, and 10 are plotted for s = 0:2 and N = 1 by solving Eq. (5.5.8)
numerically with the input u(0;τ) = sech(τ). As the peak moves slower than
the wings for s 6= 0, it is delayed and appears shifted toward the trailing side.
The delay is well approximated by a simple expression τd = sξ for s < 0:3.
It can also be calculated by treating the self-steepening term in Eq. (5.5.8) as
a small perturbation. Although the pulse broadens slightly with propagation
(by � 20% at ξ = 10), it nonetheless maintains its soliton nature. This feature
suggests that Eq. (5.5.8) has a soliton solution toward which the input pulse is
evolving asymptotically. Such a solution indeed exists and has the form [166]

u(ξ ;τ) =V (τ +Mξ )exp[i(Kξ �Mτ)]; (5.5.9)

where M is related to a shift of the carrier frequency. The group velocity
changes as a result of the shift. The delay of the peak seen in Fig. 5.16 is
due to this change in the group velocity. The explicit form of V (τ) depends
on M and s [204]. In the limit s = 0, it reduces to the hyperbolic secant form
of Eq. (5.2.16). Note also that Eq. (5.5.8) can be transformed into a so-called
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Figure 5.17 Decay of a second-order soliton (N = 2) induced by self-steepening
(s= 0:2). Pulse evolution over five soliton periods is shown.

derivative NLS equation that is integrable by the inverse scattering method and
whose solutions have been studied extensively in plasma physics [205]–[208].

The effect of self-steepening on higher-order solitons is remarkable in that
it leads to breakup of such solitons into their constituents, a phenomenon re-
ferred to as soliton decay [201]. Figure 5.17 shows this behavior for a second-
order soliton (N = 2) using s = 0:2. For this relatively large value of s, the
two solitons have separated from each other within a distance of two soliton
periods and continue to move apart with further propagation inside the fiber.
A qualitatively similar behavior occurs for smaller values of s except that a
longer distance is required for the breakup of solitons. The soliton decay can
be understood using the inverse scattering method, with the self-steepening
term acting as a perturbation. In the absence of self-steepening (s = 0), the
two solitons form a bound state because both of them propagate at the same
speed (the eigenvalues have the same real part). The effect of self-steepening is
to break the degeneracy so that the two solitons propagate at different speeds.
As a result, they separate from each other, and the separation increases almost
linearly with the distance [202]. The ratio of the peak heights in Fig. 5.17 is
about 9 and is in agreement with the expected ratio (η2=η1)

2, where η1 and
η2 are the imaginary parts of the eigenvalues introduced in Section 5.2. The
third- and higher-order solitons follow a similar decay pattern. In particular,
the third-order soliton (N = 3) decays into three solitons whose peak heights
are again in agreement with inverse scattering theory.
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5.5.3 Intrapulse Raman Scattering

Intrapulse Raman scattering plays the most important role among the higher-
order nonlinear effects. Its effects on solitons are governed by the last term
in Eq. (5.5.1) and were observed experimentally in 1985 [209]. The need to
include this term became apparent when a new phenomenon, called the soli-
ton self-frequency shift, was observed in 1986 [210] and explained using the
delayed nature of the Raman response [211]. Since then, this higher-order
nonlinear effect has been studied extensively [212]–[230].

To isolate the effects of intrapulse Raman scattering, it is useful to set
δ3 = 0 and s = 0 in Eq. (5.5.1). Pulse evolution inside fibers is then governed
by

i
∂u
∂ξ

+
1
2

∂ 2u
∂τ2 + juj2u = τRu

∂ juj2

∂τ
: (5.5.10)

Using Eqs. (5.4.7)–(5.4.10) with ε(u) = �iτRu(∂ juj2=∂τ), it is easy to see
that the amplitude η of the soliton is not affected by the Raman effect but its
frequency δ changes as

dδ
dξ

=�
8

15
τRη4

: (5.5.11)

Because η is a constant, this equation is easily integrated with the result δ (ξ )=
(8τR=15)η4ξ . Using η = 1 and ξ = z=LD = jβ2jz=T 2

0 , the Raman-induced fre-
quency shift can be written in real units as

∆ωR(z) =�8jβ2jTRz=(15T 4
0 ): (5.5.12)

The negative sign shows that the carrier frequency is reduced, i.e., the soliton
spectrum shifts toward longer wavelengths or the “red” side.

Physically, the red shift can be understood in terms of stimulated Raman
scattering (see Chapter 8). For pulse widths �1 ps or shorter, the spectral
width of the pulse is large enough that the Raman gain can amplify the low-
frequency (red) spectral components of the pulse, with high-frequency (blue)
components of the same pulse acting as a pump. The process continues along
the fiber, and the energy from blue components is continuously transferred to
red components. Such an energy transfer appears as a red shift of the soliton
spectrum, with shift increasing with distance. As seen from Eq. (5.5.12) the
frequency shift increases linearly along the fiber. More importantly, it scales
with the pulse width as T�4

0 , indicating that it can become quite large for short
pulses. As an example, soliton frequency changes at a rate of � 50 GHz/km



Higher-Order Effects 187

Figure 5.18 Decay of a second-order soliton (N = 2) induced by intrapulse Raman
scattering (τR = 0.01).

for 1-ps pulses (T0 = 0:57 ps) in standard fibers with β 2 = �20 ps2/km and
TR = 3 fs. The spectrum of such pulses will shift by 1 THz after 20 km of
propagation. This is a large shift if we note that the spectral width (FWHM)
of such a soliton is < 0:5 THz. Typically, the Raman-induced frequency shift
cannot be neglected for pulses shorter than 5 ps.

The Raman-induced red shift of solitons was observed in 1986 using 0.5-
ps pulses obtained from a passively mode-locked color-center laser [210]. The
pulse spectrum was found to shift as much as 8 THz for a fiber length under
0.4 km. The observed spectral shift was called the soliton self-frequency shift
because it is induced by the soliton itself. In fact, it was in an attempt to explain
the observed red shift that the importance of the delayed nature of the Raman
response for transmission of ultrashort pulses was first realized [211].

The effect of intrapulse Raman scattering on higher-order solitons is simi-
lar to the case of self-steepening. In particular, even relatively small values of
τR lead to the decay of higher-order solitons into its constituents [218]. Fig-
ure 5.18 shows such a decay for a second-order soliton (N = 2) by solving
Eq. (5.5.10) numerically with τR = 0:01. A comparison of Figs. 5.17 and 5.18
shows the similarity and the differences for two different higher-order nonlin-
ear mechanisms. An important difference is that relatively smaller values of τR
compared with s can induce soliton decay over a given distance. For example,
if s = 0:01 is chosen in Fig. 5.17, the soliton does not split over the distance
z = 5z0. This feature indicates that the effects of τR are likely to dominate in
practice over those of self-steepening.
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Figure 5.19 Pulse spectrum at z=z0 = 5 for parameter values identical to those of Fig.
5.18. Dashed curve shows the spectrum of input pulses.

Another important difference seen in Figs. 5.17 and 5.18 is that both soli-
tons are delayed in the case of self-steepening, while in the Raman case the
low-intensity soliton is advanced and appears on the leading side of the in-
cident pulse. This behavior can be understood qualitatively from Fig. 5.19
where the pulse spectrum at z = 5z0 is compared with the input spectrum for
the second-order soliton (whose evolution is shown in Fig. 5.18). The most
noteworthy feature is the huge red shift of the soliton spectrum, about four
times the input spectral width for τR = 0:01 and z=z0 = 5. The red-shifted
broad spectral peak corresponds to the intense soliton shifting toward the right
in Fig. 5.18, whereas the blue-shifted spectral feature corresponds to the other
peak moving toward the left in that Figure. Because the blue-shifted compo-
nents travel faster than the red-shifted ones, they are advanced while the others
are delayed with respect to the input pulse. This is precisely what is seen in
Fig. 5.18.

A question one may ask is whether Eq. (5.5.10) has soliton-like solu-
tions. It turns out that pulselike solutions do not exist when the Raman term
is included mainly because the resulting perturbation is of non-Hamiltonian
type [162]. This feature of the Raman term can be understood by noting that
the Raman-induced spectral red shift does not preserve pulse energy because a
part of the energy is dissipated through the excitation of molecular vibrations.
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Figure 5.20 Temporal intensity profiles of kink solitons in the form of an optical
shock for several values of τR. (After Ref. [227].)

However, a kink-type topological soliton (with infinite energy) has been found
and is given by [227]

u(ξ ;τ) =
�

3τ
4τR

��
exp

�
3τ
τR

�
+1

��1=2

exp

�
9iξ
8τ2

R

�
: (5.5.13)

Kink solitons appear in many physical systems whose dynamics are gov-
erned by the sine–Gordon equation [71]. In the context of optical fibers, the
kink soliton represents an optical shock front that preserves its shape when
propagating through the fiber. Figure 5.20 shows the shock profiles by plot-
ting ju(ξ ;τ)j2 for several values of τR. Steepness of the shock depends on
τR such that the shock front becomes increasingly steeper as τR is reduced.
Even though the parameter N increases as τR is reduced, the power level P0
(defined as the power at τ = 0) remains the same. This can be seen by ex-
pressing P0 in terms of the parameter TR using Eqs. (5.2.3) and (5.5.2) so that
P0 = 9jβ2j=(16γT 2

R ). Using typical values for fiber parameters, P0 � 10 kW.
It is difficult to observe such optical shocks experimentally because of large
power requirements.

The kink soliton given in Eq. (5.5.13) is obtained assuming u(ξ ;τ) =
V (τ)exp(iKξ ), and solving the resulting ordinary differential equation for
V (τ). The solution shows that kink solitons form a one-parameter family
for various values of K and exist even in the normal-dispersion region of the
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Figure 5.21 Evolution of pulse shapes and spectra for the case N = 2. The other
parameter values are δ3 = 0.03, s = 0.05, and τR = 0.1.

fiber [228]. They continue to exist even when the self-steepening term in Eq.
(5.5.1) is included. The analytic form in Eq. (5.5.13) is obtained only for a
specific value K = 9=(8τ2

R). When K < τ2
R, the monotonically decaying tail

seen in Fig. 5.20 develops an oscillatory structure.

5.5.4 Propagation of Femtosecond Pulses

For femtosecond pulses having widths T0 < 1 ps, it becomes necessary to in-
clude all the higher-order terms in Eq. (5.5.1) because all three parameters δ3,
s, and τR become non-negligible. Evolution of such ultrashort pulses in optical
fibers is studied by solving Eq. (5.5.1) numerically [231]–[234]. As an exam-
ple, Fig. 5.21 shows the pulse shapes and spectra when a second-order soliton
is launched at the input end of a fiber after choosing δ3 = 0:03, s = 0:05, and
τR = 0:1. These values are appropriate for a 50-fs pulse (T0 � 30 fs) propa-
gating in the 1.55-µm region of a standard silica fiber. Soliton decay occurs
within a soliton period (z0 � 5 cm), and the main peak shifts toward the trail-
ing side at a rapid rate with increasing distance. This temporal shift is due to
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the decrease in the group velocity vg occurring as a result of the red shift of
the soliton spectrum. A shift in the carrier frequency of the soliton changes its
speed because vg = (dβ=dω)

�1 is frequency dependent. If we use T0 = 30 fs
to convert the results of Fig. 5.21 into physical units, the 50-fs pulse has shifted
by almost 40 THz or 20% of the carrier frequency after propagating a distance
of only 15 cm.

When the input peak power is large enough to excite a higher-order soliton
such that N � 1, the pulse spectrum evolves into several bands, each corre-
sponding to splitting of a fundamental soliton from the original pulse. Such an
evolution pattern was seen when 830-fs pulses with peak powers up to 530 W
were propagated in fibers up to 1 km long [232]. The spectral peak at the
extreme red end was associated with a soliton whose width was narrowest
(� 55 fs) after 12 m and then increased with a further increase in the fiber
length. The experimental results were in agreement with the predictions of Eq.
(5.5.1).

The combined effect of TOD, self-steepening, and intrapulse Raman scat-
tering on a higher-order soliton is to split it into its constituents. In fact, the
TOD can itself lead to soliton decay even in the absence of higher-order non-
linear effects when the parameter δ 3 exceeds a threshold value [233]. For a
second-order soliton (N = 2), the threshold value is δ3 = 0:022 but reduces
to � 0:006 for N = 3. For standard silica fibers δ 3 exceeds 0.022 at 1.55 µm
for pulses shorter than 70 fs. However, the threshold can be reached for pulses
wider by a factor of 10 when dispersion-shifted fibers are used.

An interesting question is whether Eq. (5.5.1) permits shape-preserving,
solitary-wave solutions under certain conditions. Several such solutions have
been found using a variety of techniques [235]–[250]. In most cases, the so-
lution exists only for a specific choice of parameter combinations. For exam-
ple, fundamental and higher-order solitons have been found when τR = 0 with
s = �2δ3 or s = �6δ3 [242]. From a practical standpoint, such solutions of
Eq. (5.5.1) are rarely useful because it is hard to find fibers whose parameters
satisfy the required constraints.

As successful as Eq. (5.5.1) is in modeling the propagation of femtosec-
ond pulses in optical fibers, it is still approximate. As discussed in Section 2.3,
a more accurate approach should use Eq. (2.3.33), where R(t) takes into ac-
count the time-dependent response of the fiber nonlinearity. In a simple model,
R(t) is assumed to obey Eq. (2.3.34) so that both the electronic (the Kerr ef-
fect) and molecular (the Raman effect) contributions to the fiber nonlinearity
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are accounted for [219]–[222]. The delayed nature of the molecular response
not only leads to the soliton self-frequency shift but also affects the interac-
tion between neighboring solitons [223]. Equation (2.3.33) has been used to
study numerically how intrapulse stimulated Raman scattering affects evolu-
tion of femtosecond optical pulses in optical fibers [224]–[226]. For pulses
shorter than 20 fs even the use of this equation becomes questionable because
of the slowly varying envelope approximation made in its derivation (see Sec-
tion 2.3). Because such short pulses can be generated by modern mode-locked
lasers, attempts have been made to improve upon this approximation while still
working with the pulse envelope [251]–[253]. For supershort pulses contain-
ing only a few optical cycles, it eventually becomes necessary to abandon the
concept of the pulse envelope and solve the Maxwell equations directly using
an appropriate numerical scheme (see Section 2.4).

Problems

5.1 Solve Eq. (5.1.4) and derive an expression for the modulation-instability
gain. What is the peak value of the gain and at what frequency does this
gain occur?

5.2 A 1.55-µm soliton communication system is operating at 10 Gb/s using
dispersion-shifted fibers with D= 2 ps/(km-nm). The effective core area
of the fiber is 50 µm2. Calculate the peak power and the pulse energy
required for launching fundamental solitons of 30-ps width (FWHM)
into the fiber.

5.3 What is the soliton period for the communication system described in
Problem 5.2?

5.4 Verify by direct substitution that the soliton solution given in Eq. (5.2.16)
satisfies Eq. (5.2.5).

5.5 Develop a computer program capable of solving Eq. (5.2.5) numerically
using the split-step Fourier method of Section 2.4. Test it by comparing
its output with the analytical solution in Eq. (5.2.16) when a fundamental
soliton is launched into the fiber.

5.6 Use the computer program developed in Problem 5.5 to study the case
of an input pulse of the form given in Eq. (5.2.22) for N = 0.2, 0.6, 1.0,
and 1.4. Explain the different behavior occurring in each case.
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5.7 Why should the amplifier spacing be a fraction of the soliton period
when lumped amplifiers are used for compensating fiber losses?

5.8 A soliton communication system is designed with an amplifier spacing
of 50 km. What should the input value of the soliton parameter N be
to ensure that a fundamental soliton is maintained in spite of 0.2-dB/km
fiber losses? What should the amplifier gain be? Is there any limit on
the bit rate of such a system?

5.9 Study the soliton interaction numerically using an input pulse profile
given in Eq. (5.4.38). Choose r = 1, q0 = 3, and vary θ in the range 0 to
π .

5.10 A soliton system is designed to transmit a signal over 5000 km at B =

5 Gb/s. What should the pulse width (FWHM) be to ensure that the
neighboring solitons do not interact during transmission? The dispersion
parameter D = 2 ps/(km-nm) at the operating wavelength.

5.11 What is intrapulse Raman scattering? Why does it lead to a shift in the
carrier frequency of solitons? Derive an expression for the frequency
shift using the Raman term as a perturbation. Calculate the shift for 1-
ps (FWHM) solitons propagating in a 10-km-long fiber with the GVD
D = 2 ps/(km-nm).

5.12 Verify by direct substitution that the solution given in Eq. (5.5.13) is
indeed the solution of Eq. (5.5.1) when δ 3 = 0, s = 0, and N = 3=(4τR).
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Chapter 6

Polarization Effects

As discussed in Section 2.3, a major simplification made in the derivation of
the nonlinear Schrödinger (NLS) equation consists of assuming that the po-
larization state of the incident light is preserved during its propagating inside
an optical fiber. This is not really the case in practice. In this chapter we fo-
cus on the polarization effects and consider the coupling between the two or-
thogonally polarized components of an optical field induced by the nonlinear
phenomenon known as cross-phase modulation (XPM). The XPM is always
accompanied by self-phase modulation (SPM) and can also occur between two
optical fields of different wavelengths. The nondegenerate case involving dif-
ferent wavelengths is discussed in Chapter 7.

The chapter is organized as follows. The origin of nonlinear birefringence
is discussed first in Section 6.1 and is followed by the derivation of a set of
two coupled NLS equations that describes evolution of the two orthogonally
polarized components of an optical field. The XPM-induced nonlinear bire-
fringence has several practical applications discussed in Section 6.2. The next
section considers nonlinear polarization changes with focus on polarization in-
stability. Section 6.4 is devoted to the vector modulation instability occurring
in birefringent fibers. In contrast with the scalar case discussed in Section
5.1, the vector modulation instability can occur even in the normal-dispersion
regime of a birefringent fiber. Section 6.5 considers the effects of birefringence
on solitons. The last section focuses on polarization-mode dispersion (PMD)
occurring in fibers with randomly varying birefringence along their length and
its implications for lightwave systems.
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6.1 Nonlinear Birefringence

As mentioned in Section 2.2, even a single-mode fiber, in fact, supports two
orthogonally polarized modes with the same spatial distribution. The two
modes are degenerate in an ideal fiber (maintaining perfect cylindrical sym-
metry along its entire length) in the sense that their effective refractive indices,
nx and ny, are identical. In practice, all fibers exhibit some modal birefringence
(nx 6= ny) because of unintentional variations in the core shape and anisotropic
stresses along the fiber length. Moreover, the degree of modal birefringence,
Bm = jnx � nyj, and the orientation of x and y axes change randomly over a
length scale �10 m unless special precautions are taken.

In polarization-maintaining fibers, the built-in birefringence is made much
larger than random changes occurring due to stress and core-shape variations.
As a result, such fibers exhibit nearly constant birefringence along their en-
tire length. This kind of birefringence is called linear birefringence. When
the nonlinear effects in optical fibers become important, a sufficiently intense
optical field can induce nonlinear birefringence whose magnitude is intensity
dependent. Such self-induced polarization effects were observed as early as
1964 in bulk nonlinear media [1] and have been studied extensively since then
[2]–[10]. In this section, we discuss the origin of nonlinear birefringence and
develop mathematical tools that are needed for studying the polarization effects
in optical fibers assuming a constant modal birefringence. Fibers in which lin-
ear birefringence changes randomly over their length are considered later in
this chapter.

6.1.1 Origin of Nonlinear Birefringence

A fiber with constant modal birefringence has two principal axes along which
the fiber is capable of maintaining the state of linear polarization of the incident
light. These axes are called slow and fast axes based on the speed at which
light polarized along them travels inside the fiber. Assuming nx > ny, nx and
ny are the mode indices along the slow and fast axes, respectively. When low-
power, continuous-wave (CW) light is launched with its polarization direction
oriented at an angle with respect to the slow (or fast) axis, the polarization
state of the CW light changes along the fiber from linear to elliptic, elliptic
to circular, and then back to linear in a periodic manner (see Fig. 1.9) over a
distance known as the beat length and defined as LB = λ=Bm. The beat length
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can be as small as 1 cm in high-birefringence fibers with Bm � 10�4. In low-
birefringence fibers, typically Bm � 10�6, and the beat length is �1 m.

The electric field associated with an arbitrarily polarized optical wave can
be written as

E(r; t) = 1
2 (x̂Ex + ŷEy)exp(�iω0t)+ c:c:; (6.1.1)

where Ex and Ey are the complex amplitudes of the polarization components
of the field with the carrier frequency ω0. The axial component E z is assumed
to remain small enough that it can be ignored.

The nonlinear part of the induced polarization1 PNL is obtained by substi-
tuting Eq. (6.1.1) in Eq. (2.3.6). In general, the third-order susceptibility is a
fourth-rank tensor with 81 elements. In an isotropic medium, such as silica
glass, only three elements are independent of one another, and the third-order
susceptibility can be written in terms of them as [10]

χ (3)
i jkl

= χ (3)
xxyyδi jδkl + χ (3)

xyxyδikδ jl + χ (3)
xyyxδilδ jk; (6.1.2)

where δi j is the Kronecker delta function defined such that δ i j = 1 when i = j
and zero otherwise. Using this result in Eq. (2.3.6), PNL can be written as

PNL(r; t) =
1
2(x̂Px + ŷPy)exp(�iω0t)+ c:c:; (6.1.3)

with Px and Py given by

Pi =
3ε0

4 ∑
j

�
χ (3)

xxyyEiE jE
�

j + χ (3)
xyxyE jEiE

�

j + χ (3)
xyyxE jE jE

�

i

�
; (6.1.4)

where i; j = x or y. From Eq. (6.1.2), we also obtain the relation

χ (3)
xxxx = χ (3)

xxyy + χ (3)
xyxy + χ (3)

xyyx; (6.1.5)

where χ(3)
xxxx is the element appearing in the scalar theory of Section 2.3 and

used in Eq. (2.3.13) to define the nonlinear parameter n2.
The relative magnitudes of the three components in Eq. (6.1.5) depend on

the physical mechanisms that contribute to χ(3). In the case of silica fibers,
the dominant contribution is of electronic origin [4], and the three components

1Polarization induced inside a dielectric medium by an electromagnetic field should not be
confused with the state of polarization of that field. The terminology is certainly confusing but
is accepted for historical reasons.
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have nearly the same magnitude. If they are assumed to be identical, the po-
larization components Px and Py in Eq. (6.1.4) take the form

Px =
3ε0

4
χ (3)

xxxx

��
jExj2 + 2

3
jEyj2

�
Ex +

1
3
(E�

x Ey)Ey

�
; (6.1.6)

Py =
3ε0

4
χ (3)

xxxx

��
jEyj2 + 2

3
jExj2

�
Ey +

1
3
(E�

y Ex)Ex

�
: (6.1.7)

The last term in Eqs. (6.1.6) and (6.1.7) leads to degenerate four-wave mixing.
Its importance will be discussed later.

The nonlinear contribution ∆nx to the refractive index is governed by the
term proportional to Ex in Eq. (6.1.6). Writing Pj = ε0εNL

j E j and using

ε j = εL
j + εNL

j = (nL
j +∆nj)

2
; (6.1.8)

where nL
j is the linear part of the refractive index ( j = x;y), the nonlinear con-

tributions ∆nx and ∆ny are given by

∆nx = n2

�
jExj2 + 2

3
jEyj2

�
; ∆ny = n2

�
jEyj2 + 2

3
jExj2

�
; (6.1.9)

where n2 is a nonlinear parameter as defined in Eq. (2.3.13). The physical
meaning of the two terms on the right-hand side of these equations is quite
clear. The first term is responsible for SPM. The second term results in XPM
because the nonlinear phase shift acquired by one polarization component de-
pends on the intensity of the other polarization component. The presence of
this term induces a nonlinear coupling between the field components Ex and
Ey. The nonlinear contributions ∆nx and ∆ny are in general unequal and thus
create nonlinear birefringence whose magnitude depends on the intensity and
the polarization state of the incident light. In the case of CW light propagating
inside a fiber, nonlinear birefringence manifests as a rotation of the polariza-
tion ellipse [1].

6.1.2 Coupled-Mode Equations

The propagation equations governing evolution of the two polarization com-
ponents along a fiber can be obtained following the method of Section 2.3.
Assuming that the nonlinear effects do not affect the fiber mode significantly,
the transverse dependence of Ex and Ey can be factored out using

E j(r; t) = F(x;y)Aj(z; t)exp(iβ0 jz); (6.1.10)
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where F(x;y) is the spatial distribution of the single mode supported by the
fiber, A j(z; t) is the slowly varying amplitude, and β 0 j is the corresponding
propagation constant ( j = x;y). The dispersive effects are included by expand-
ing the frequency-dependent propagation constant in a manner similar to Eq.
(2.3.23). The slowly varying amplitudes, Ax and Ay, are found to satisfy the
following set of two coupled-mode equations:

∂Ax

∂ z
+ β1x

∂Ax

∂ t
+

iβ2

2
∂ 2Ax

∂ t2 +
α
2

Ax

= iγ
�
jAxj2 +

2
3
jAyj2

�
Ax +

iγ
3

A�

xA2
y exp(�2i∆β z); (6.1.11)

∂Ay

∂ z
+ β1y

∂Ay

∂ t
+

iβ2

2
∂ 2Ay

∂ t2 +
α
2

Ay

= iγ
�
jAyj2 + 2

3
jAxj2

�
Ay +

iγ
3

A�

yA2
x exp(2i∆β z); (6.1.12)

where

∆β = β0x�β0y = (2π=λ )Bm = 2π=LB (6.1.13)

is related to the modal birefringence of the fiber. Note that modal birefringence
also leads to different group velocities for the two polarization components
because β1x 6= β1y in general. In contrast, the parameters β2 and γ are the same
for both polarization components having the same wavelength λ .

The last term in Eqs. (6.1.11) and (6.1.12) is due to coherent coupling
between the two polarization components and leads to degenerate four-wave
mixing. Its importance to the process of polarization evolution depends on the
extent to which the phase-matching condition is satisfied (see Chapter 10). If
the fiber length L � LB, the last term in Eqs. (6.1.11) and (6.1.12) changes
sign often and its contribution averages out to zero. In highly birefringent
fibers (LB � 1 cm typically), the four-wave-mixing term can often be neglected
for this reason. In contrast, this term should be included in weakly birefringent
fibers, especially for short lengths. In that case, it is often convenient to rewrite
Eqs. (6.1.11) and (6.1.12) using circularly polarized components defined as

A+ = (Āx + iĀy)=
p

2; A
�
= (Āx� iĀy)=

p
2; (6.1.14)

where Āx = Ax exp(i∆β z=2) and Āy = Ay exp(�i∆β z=2). The A+ and A
�

rep-
resent right- and left-handed circularly polarized (σ+ and σ

�
) states, respec-
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tively, and satisfy somewhat simpler equations:

∂A+

∂ z
+ β1

∂A+

∂ t
+

iβ2

2
∂ 2A+

∂ t2 +
α
2

A+

=
i
2
(∆β )A

�
+

2iγ
3

�jA+j2 +2jA
�
j2�A+; (6.1.15)

∂A
�

∂ z
+ β1

∂A
�

∂ t
+

iβ2

2
∂ 2A

�

∂ t2 +
α
2

A
�

=
i
2
(∆β )A++

2iγ
3

�jA
�
j2 +2jA+j2

�
A
�
; (6.1.16)

where we assumed that β1x � β1y = β1 for fibers with relatively low birefrin-
gence. Notice that the four-wave-mixing terms appearing in Eqs. (6.1.11) and
(6.1.12) are replaced by a linear-coupling term containing ∆β . At the same
time, the relative strength of XPM changes from 2

3 to 2 when circularly polar-
ized components are used to describe wave propagation.

6.1.3 Elliptically Birefringent Fibers

The derivation of Eqs. (6.1.11) and (6.1.12) assumes that the fiber is linearly
birefringent, i.e., it has two principal axes along which linearly polarized light
remains linearly polarized in the absence of nonlinear effects. Although this
is ideally the case for polarization-maintaining fibers, elliptically birefringent
fibers can be made by twisting a fiber preform during the draw stage [11].

The coupled-mode equations are modified considerably for elliptically bire-
fringent fibers. This case can be treated by replacing Eq. (6.1.1) with

E(r; t) = 1
2(êxEx + êyEy)exp(�iω0t)+ c:c:; (6.1.17)

where êx and êy are orthonormal polarization eigenvectors related to the unit
vectors x̂ and ŷ used before as [12]

êx =
x̂+ irŷp

1+ r2
; êy =

rx̂� iŷp
1+ r2

: (6.1.18)

The parameter r represents the ellipticity introduced by twisting the preform. It
is common to introduce the ellipticity angle θ as r = tan(θ=2). The cases θ = 0
and π=2 correspond to linearly and circularly birefringent fibers, respectively.

Following a procedure similar to that outlined here for linearly birefrin-
gent fibers, the slowly varying amplitudes Ax and Ay are found to satisfy the
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following set of coupled-mode equations [12]:

∂Ax

∂ z
+ β1x

∂Ax

∂ t
+

iβ2

2
∂ 2Ax

∂ t2 +
α
2

Ax

= iγ [(jAxj2 +BjAyj2)Ax +CA�

xA2
ye�2i∆βz

]

+ iγD[A�

yA2
xei∆βz

+(jAyj2 +2jAxj2)Aye�i∆βz
]; (6.1.19)

∂Ay

∂ z
+ β1y

∂Ay

∂ t
+

iβ2

2
∂ 2Ay

∂ t2 +
α
2

Ay

= iγ [(jAyj2 +BjAxj2)Ay +CA�

yA2
xe2i∆βz

]

+ iγD[A�

xA2
ye�i∆βz

+(jAxj2 +2jAyj2)Axei∆βz
]; (6.1.20)

where the parameters B;C, and D are related to the ellipticity angle θ as

B =
2+2sin2 θ
2+ cos2 θ

; C =
cos2 θ

2+ cos2 θ
; D =

sinθ cosθ
2+ cos2 θ

: (6.1.21)

For a linearly birefringent fiber (θ = 0), B =
2
3 ;C =

1
3 ;D = 0, and Eqs. (6.1.19)

and (6.1.20) reduce to Eqs. (6.1.11) and (6.1.12), respectively.
Equations (6.1.19) and (6.1.20) can be simplified considerably for optical

fibers with large birefringence. For such fibers, the beat length LB is much
smaller than typical propagation distances. As a result, the exponential factors
in the last three terms of Eqs. (6.1.19) and (6.1.20) oscillate rapidly, contribut-
ing little to the pulse evolution process on average. If these terms are neglected,
propagation of optical pulses in an elliptically birefringent fiber is governed by
the following set of coupled-mode equations:

∂Ax

∂ z
+β1x

∂Ax

∂ t
+

iβ2

2
∂ 2Ax

∂ t2 +
α
2

Ax = iγ(jAxj2 +BjAyj2)Ax; (6.1.22)

∂Ay

∂ z
+β1y

∂Ay

∂ t
+

iβ2

2
∂ 2Ay

∂ t2 +
α
2

Ay = iγ(jAyj2 +BjAxj2)Ay: (6.1.23)

These equations represent an extension of the scalar NLS equation, derived
in Section 2.3 without the polarization effects [see Eq. (2.3.27)], to the vector
case and are referred to as the coupled NLS equations. The coupling parameter
B depends on the ellipticity angle θ [see Eq. (6.1.21)] and can vary from 2

3
to 2 for values of θ in the range 0 to π/2. For a linearly birefringent fiber,
θ = 0, and B =

2
3 . In contrast, B = 2 for a circularly birefringent fiber (θ =

π/2). Note also that B = 1 when θ � 35Æ. As discussed later, this case is
of particular interest because Eqs. (6.1.22) and (6.1.23) can be solved by the
inverse scattering method only when B = 1 and α = 0.
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6.2 Nonlinear Phase Shift

As seen in Section 6.1, a nonlinear coupling between the two orthogonally
polarized components of an optical wave changes the refractive index by dif-
ferent amounts for the two components. As a result, the nonlinear effects in
birefringent fibers are polarization dependent. In this section we use the cou-
pled NLS equations obtained in the case of high-birefringence fibers to study
the XPM-induced nonlinear phase shift and its device applications.

6.2.1 Nondispersive XPM

Equations (6.1.22) and (6.1.23) need to be solved numerically when ultra-
short optical pulses propagate inside birefringent fibers. However, they can
be solved analytically in the case of CW radiation. The CW solution is also
applicable for pulses whenever the fiber length L is much shorter than both the
dispersion length LD = T 2

0 =jβ2j and the walk-off length LW = T0=j∆β j, where
T0 is a measure of the pulse width. As this case can be applicable to pulses as
short as 100 ps and sheds considerable physical insight, we discuss it first.

Neglecting the terms with time derivatives in Eqs. (6.1.22) and (6.1.23),
we obtain the following two simpler equations:

dAx

dz
+

α
2

Ax = iγ(jAxj2 +BjAyj2)Ax; (6.2.1)

dAy

dz
+

α
2

Ay = iγ(jAyj2 +BjAxj2)Ay: (6.2.2)

These equations describe nondispersive XPM in birefringent fibers and extend
the scalar theory of SPM in Section 4.1 to the vector case. They can be solved
by using

Ax =
p

Px e�αz=2eiφx ; Ay =
p

Py e�αz=2eiφy ; (6.2.3)

where Px and Py are the powers and φx and φy are the phases associated with
the two polarization components. It is easy to deduce that Px and Py do not
change with z. However, the phases φx and φy do change and evolve as

dφx

dz
= γe�αz

(Px +BPy);
dφy

dz
= γe�αz

(Py +BPx): (6.2.4)

Since Px and Py are constants, the phase equations can be solved easily with
the result

φx = γ(Px +BPy)Leff; φy = γ(Py +BPx)Leff; (6.2.5)



Nonlinear Phase Shift 211

Figure 6.1 Schematic illustration of a Kerr shutter. Pump and probe beams are lin-
early polarized at 45Æ to each other at the input end. Polarizer blocks probe transmis-
sion in the absence of pump.

where the effective fiber length Leff = [1�exp(�αL)]=α is defined in the same
way as in the SPM case [see Eq. (4.1.6)].

It is clear from Eq. (6.2.5) that both polarization components develop a
nonlinear phase shift whose magnitude is the sum of the SPM and XPM con-
tributions. In practice, the quantity of practical interest is the relative phase
difference given by

∆φNL � φx�φy = γLeff(1�B)(Px�Py): (6.2.6)

No relative phase shift occurs when B = 1. However, when B 6= 1, a relative
nonlinear phase shift between the two polarization components occurs if input
light is launched such that Px 6= Py. As an example, consider a linearly bire-
fringent fiber for which B =

2
3 . If CW light with power P0 is launched such

that it is linearly polarized at an angle θ from the slow axis, Px = P0 cos2 θ ,
Py = P0 sin2 θ , and the relative phase shift becomes

∆φNL = (γP0Leff=3)cos(2θ): (6.2.7)

This θ -dependent phase shift has several applications discussed next.

6.2.2 Optical Kerr Effect

In the optical Kerr effect, the nonlinear phase shift induced by an intense, high-
power, pump beam is used to change the transmission of a weak probe through
a nonlinear medium [4]. This effect can be used to make an optical shutter
with picosecond response times [6]. It was first observed in optical fibers in
1973 [13] and has attracted considerable attention since then [14]–[24].

The operating principle of a Kerr shutter can be understood from Fig. 6.1.
The pump and probe beams are linearly polarized at the fiber input with a 45Æ

angle between their directions of polarization. A crossed polarizer at the fiber
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output blocks probe transmission in the absence of the pump beam. When
the pump is turned on, the refractive indices for the parallel and perpendicu-
lar components of the probe (with respect to the direction of pump polariza-
tion) become slightly different because of pump-induced birefringence. The
phase difference between the two components at the fiber output manifests as
a change in the probe polarization, and a portion of the probe intensity is trans-
mitted through the polarizer. The probe transmittivity depends on the pump
intensity and can be controlled simply by changing it. In particular, a pulse at
the pump wavelength opens the Kerr shutter only during its passage through
the fiber. As the probe output at one wavelength can be modulated through
a pump at a different wavelength, this device is also referred to as the Kerr
modulator. It has potential applications in fiber-optical networks requiring all-
optical switching.

Equation (6.2.6) cannot be used to calculate the phase difference between
the x and y components of the probe because the pump and probe beams have
different wavelengths in Kerr shutters. We follow a slightly different approach
and neglect fiber losses for the moment; they can be included later by replacing
L with Leff. The relative phase difference for the probe at the output of a fiber
of length L can always be written as

∆φ = (2π=λ )(ñx� ñy)L; (6.2.8)

where λ is the probe wavelength and

ñx = nx +∆nx; ñy = ny +∆ny: (6.2.9)

As discussed earlier, the linear parts nx and ny of the refractive indices are
different because of modal birefringence. The nonlinear parts ∆nx and ∆ny are
different because of pump-induced birefringence.

Consider the case of a pump polarized linearly along the x axis. The x
component of the probe is polarized parallel to the pump but its wavelength
is different. For this reason, the corresponding index change ∆nx must be ob-
tained by using the theory of Section 7.1. If the SPM contribution is neglected,

∆nx = 2n2jEpj2; (6.2.10)

where jEpj2 is the pump intensity. When the pump and probe are orthogonally
polarized, only the first term in Eq. (6.1.4) contributes to ∆ny because of dif-
ferent wavelengths of the pump and probe beams [9]. Again neglecting the
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SPM term, ∆ny becomes

∆ny = 2n2bjEpj2; b = χ(3)
xxyy=χ (3)

xxxx: (6.2.11)

If the origin of χ(3) is purely electronic, b =
1
3 . Combining Eqs. (6.2.8)–

(6.2.11), the phase difference becomes

∆φ � ∆φL +∆φNL = (2πL=λ )(∆nL +n2BjEpj2); (6.2.12)

where ∆nL = nx�ny accounts for linear birefringence, and the Kerr coefficient
n2B is given by

n2B = 2n2(1�b): (6.2.13)

The probe transmittivity Tp can now be obtained noting that probe light is
blocked by the polarizer when ∆φ = 0 (see Fig. 6.1). When ∆φ 6= 0, fiber acts
as a birefringent phase plate, and some probe light passes through the polarizer.
The probe transmittivity is related to ∆φ by the simple relation

Tp =
1
4 j1� exp(i∆φ)j2 = sin2

(∆φ=2): (6.2.14)

It becomes 100% when ∆φ = π or an odd multiple of π . On the other hand, a
phase shift by an even multiple of π blocks the probe completely.

To observe the optical Kerr effect, a polarization-maintaining fiber is gen-
erally used to ensure that the pump maintains its state of polarization. The con-
stant phase shift ∆φL resulting from linear birefringence can be compensated
by inserting a quarter-wave plate before the polarizer in Fig. 6.1. However, in
practice, ∆φL fluctuates because of temperature and pressure variations, mak-
ing it necessary to adjust the wave plate continuously. An alternative approach
is to use two identical pieces of polarization-maintaining fibers, spliced to-
gether such that their fast (or slow) axes are at right angles to each other [18].
As ∆nL changes sign in the second fiber, the net phase shift resulting from
linear birefringence is canceled.

Under ideal conditions, the response time of a Kerr shutter would be lim-
ited only by the response time of the Kerr nonlinearity (<10 fs for optical
fibers). In practice, however, fiber dispersion limits the response time to values
that can range from 1 ps to 1 ns depending on the operating parameters [14].
A major limiting factor is the group-velocity mismatch between the pump and
the probe. The relative group delay is given by

∆tg = jL=vg1�L=vg2j: (6.2.15)
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It can easily exceed 1 ns for a 100-m-long fiber unless special precautions are
taken to reduce the group-velocity mismatch. One possibility is to choose the
pump and probe wavelengths on opposite sides of the zero-dispersion wave-
length.

Modal birefringence of the fiber sets another limit on the response time.
Because of the index difference ∆nL, the orthogonally polarized components of
the probe travel at different speeds and develop a relative delay ∆tp = L∆nL=c.
For a 100-m-long fiber with ∆nL = 5�10�5, ∆tp � 17 ps. It can be reduced by
using fibers with smaller birefringence. The use of two fibers spliced together
with their fast axes at right angles to each other can nearly eliminate ∆tp. The
fundamental limit on the response time is then set by GVD that broadens the
pump pulse during its propagation inside the fiber. It can be reduced to 1 ps
or less either by reducing the fiber length or by bringing the pump wavelength
closer to the zero-dispersion wavelength.

The minimum pump power required for 100% probe transmission can be
estimated by setting ∆φL = 0 (complete compensation) and ∆φ NL = π in Eq.
(6.2.12). It is given by

Pp = jEpj2Aeff = λAeff=(2n2BL); (6.2.16)

where Aeff is the effective core area. The effect of fiber loss can be included by
replacing L with the effective length Leff introduced earlier. Using n2B = 4:5�
10�16 cm2/W, Aeff = 10 µm2, and λ = 1:06 µm, the pump power Pp � 1 W for
a 100-m-long fiber. The power can be reduced by increasing fiber length, but
only at the expense of a slower response time limited by Eq. (6.2.15). In one
experiment [15], Pp = 0:39 W was measured for L= 580 m and Aeff = 22 µm2.
In another experiment [21], the effective core area was reduced to 2 µm2, and
a semiconductor laser operating at 1:3 µm was used as a pump. A phase shift
of 17Æ was realized at a pump power of only 27 mW. The estimated value of
PpL = 11 W-m for this experiment indicates that pump powers �50 mW may
be sufficient for 100% probe transmission if 200-m-long fibers were used in
each arm of a Mach–Zehnder interferometer.

Equation (6.2.16) can be used to estimate the Kerr coefficient n2B. Most
measurements indicate n2B � 4� 10�16 cm2/W with an experimental uncer-
tainty of � 20% [13]–[21]. This value is in agreement with Eq. (6.2.13) if we
use n2 � 3� 10�16 cm2/W and b =

1
3 . The parameter b has been measured

in an experiment [18] designed to allow an independent measurement of the
susceptibility ratio indicated in Eq. (6.2.11). The measured value b = 0:34
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Figure 6.2 Schematic diagram of an all-optical Kerr shutter used for optical sampling.
(After Ref. [16].)

suggests that the electronic contribution to χ(3) dominates in silica fibers. This
conclusion is in agreement with the measurements made using bulk glasses [5].

On the practical side, an all-fiber Kerr shutter has been used for optical
sampling [16]. Figure 6.2 shows the experimental set up schematically. A
Babinet–Soleil compensator was used to compensate for modal birefringence
of the fiber. A highly birefringent piece of fiber was used as a polarizer with
about 20-dB extinction ratio. It also served as a filter because fiber losses were
quite high at the 1.06-µm pump wavelength. A laser diode at 0:84 µm served
as the probe. The sampled probe output was in the form of a sequence of pulses
whose separation and width were determined by pump pulses. In this exper-
iment, pump pulses were fairly long (� 300 ps). In a different experiment,
30-ps probe pulses at a repetition rate of 1.97 GHz (obtained from a 1.3-µm,
gain-switched, distributed feedback semiconductor laser) were demultiplexed
using 85-ps pump pulses from a mode-locked Nd:YAG laser [18].

In most experiments on Kerr shutters, it is generally necessary to use bulky
high-power lasers to realize optical switching in silica fibers, making practical
use of such devices difficult. As evident from Eq. (6.2.16), the product PpL
can be reduced considerably if optical fibers made with a high-nonlinearity
material are used in place of silica fibers. Chalcogenide glasses offer such
an opportunity because their nonlinear parameter n2 is larger by a factor �100
compared with silica. Several experiments have shown that chalcogenide glass
fibers offer a solution to making practical nonlinear Kerr shutters operating
at high speeds [22]–[24]. In a 1992 experiment, a 1.319-µm mode-locked
Nd:YAG laser in combination with a pulse compressor provided pump pulses
of widths in the range 2.5–40 ps at the 100-MHz repetition rate [22]. The fiber
length was kept < 1 m to avoid large losses associated with the As2S3-based
chalcogenide fiber. In spite of such a small interaction length, the required
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pump power for optical switching was only � 5 W.
In a later experiment, all-optical switching was achieved using a semicon-

ductor laser as a pump source [23]. Gain switching of a distributed feedback
semiconductor laser, in combination with pulse compression, provided 8.2-ps
pump pulses at the 100-MHz repetition rate. The peak power of pump pulses
was increased to 13.9 W using an erbium-doped fiber amplifier. For a 1-m-
long fiber the switched signal pulse had nearly the same width as the pump
pulse, demonstrating ultrafast switching on a picosecond time scale. Signal
pulses could be switched through the Kerr effect even when the signal was in
the form of a 100-GHz pulse train, indicating the potential of a Kerr shutter for
demultiplexing a 100-Gb/s communication channel.

6.2.3 Pulse Shaping

Nonlinear birefringence induced by an intense pulse can be used to modify
the shape of the same pulse, even in the absence of a pump pulse, because its
transmission through a combination of fiber and polarizer is generally intensity
dependent. As a result, such a device can block low-intensity tails of a pulse
while passing the central intense part of the same pulse. This phenomenon can
be used to remove the low-intensity pedestal associated with some compressed
pulses [25]–[27]. It can also be used to make fiber-optic logic gates [28].

The operating principle of an intensity discriminator is similar to that of
the Kerr shutter shown in Fig. 6.1. The main difference is that instead of a
pump, the signal pulse itself produces nonlinear birefringence and modifies its
own state of polarization. To understand the physics behind such a device as
simply as possible, let us neglect the GVD effects and use the nondispersive
XPM theory of Section 6.2.1. Consider the case of an input beam linearly
polarized at an angle θ with respect to one of the principal axes (x axis) of
the fiber. The relative phase shift introduced between the two polarization
components is then given by Eq. (6.2.7). This phase shift allows some power
to be transmitted through the polarizer when θ 6= 0. The transmittivity Tp is
obtained by noting that

Ax =
p

P0 cosθ exp(i∆φNL); Ay =
p

P0 sinθ ; (6.2.17)

where ∆φNL is the nonlinear phase shift. Because the cross polarizer makes
an angle π=2 + θ from the x axis, the total transmitted field becomes At =
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Figure 6.3 Transmittivity Tp as a function of input polarization angle θ for three
different peak powers corresponding to φmax = 10, 20, and 30. (After Ref. [25].)

p
P0 sinθ cosθ [1� exp(i∆φNL)]. As a result, Tp is given by [25]

Tp(θ) = jAt j2=P0 = sin2
[(γP0L=6)cos(2θ)]sin2

(2θ); (6.2.18)

where Eq. (6.2.7) was used. In the case of optical pulses propagating through
the fiber, the product γP0L is related to the maximum phase shift φmax induced
by SPM [see Eq. (4.1.6)] and can also be related to the nonlinear length scale
LNL through the relation

φmax = γP0L = L=LNL: (6.2.19)

Pulse shaping occurs because Tp is power dependent at a given angle θ . If
the angle θ is set to maximize the transmission at the pulse peak, the wings
are removed because of their relatively low power levels. As a result, the
output pulse becomes narrower than the input pulse. This behavior has been
observed experimentally [26]. The optimum value of θ depends on the peak
power P0. Figure 6.3 shows Tp as a function of θ for three values of φmax. The
transmittivity can approach 90% at θ = 36:2Æ for φmax = 30.

Experimental results on pulse shaping indicate that the observed behavior
does not always agree with Eq. (6.2.18). In particular, this equation predicts
that Tp = 0 for θ = 45Æ, i.e., the input light is blocked by the polarizer when the
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Figure 6.4 Transmittivity Tp as a function of input polarization angle θ when the
effect of linear birefringence is included for ∆β L= 2π and φ max = 6:5π . Dashed line
shows the behavior when ∆β = 0. (After Ref. [29].)

two polarization components are excited with equal amplitudes. In practice,
this is not the case. The reason for this discrepancy can be traced back to
the neglect of the last term in Eqs. (6.1.11) and (6.1.12). A more accurate
theory should include this term. In the CW or the quasi-CW case for which
the dispersive effects are negligible, Eqs. (6.1.11) and (6.1.12) can be solved
analytically by neglecting the time derivatives and the loss terms. The analytic
solution is given in the next section. Its use shows that Eq. (6.2.18) is quite
accurate in the case of highly birefringent fibers (∆βL � 1) except near θ =

45Æ. In low-birefringence fibers, the transmittivity can be quite different than
that given by Eq. (6.2.18). Figure 6.4 shows Tp as a function of θ for ∆βL= 2π
and φmax = 6:5π . A comparison with the prediction of Eq. (6.2.18) reveals
the importance of including linear birefringence. Physically, the linear and
nonlinear birefringence contributions to the refractive index compete with each
other, and both should be included.

6.3 Evolution of Polarization State

An accurate description of the nonlinear polarization effects in birefringent
fibers requires simultaneous consideration of both the modal birefringence and
self-induced nonlinear birefringence [29]–[46]. Evolution of the two polariza-
tion components along such fibers is governed by Eqs. (6.1.11) and (6.1.12) or
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their variants. However, before turning to the case of pulse propagation, it is
useful to consider how the state of polarization evolves within the fiber when
a CW (or quasi-CW) beam is launched at the input end.

6.3.1 Analytic Solution

In place of Eqs. (6.1.11) and (6.1.12), it is more convenient to use Eqs. (6.1.15)
and (6.1.16) written in terms of the circularly polarized components. The terms
containing time derivatives can be set to zero in the quasi-CW case. If we also
neglect fiber losses, Eqs. (6.1.15) and (6.1.16) reduce to

dA+

dz
=

i
2
(∆β )A

�
+

2iγ
3

(jA+j2 +2jA
�
j2)A+; (6.3.1)

dA
�

dz
=

i
2
(∆β )A++

2iγ
3

(jA
�
j2 +2jA+j2)A�

: (6.3.2)

Consider first the low-power case and neglect the nonlinear effects (γ = 0).
The resulting linear equations are easily solved. As an example, when the input
beam with power P0 is σ+-polarized, the solution is given by

A+(z) =
p

P0 cos(πz=LB); A
�
(z) = i

p
P0 sin(πz=LB); (6.3.3)

where the beat length LB = 2π=(∆β ). The state of polarization is generally
elliptical and evolves periodically with a period equal to the beat length. The
ellipticity and the azimuth of the polarization ellipse at any point along the
fiber can be obtained using

ep =
jA+j� jA�

j
jA+j+ jA�

j ; θ =
1
2

tan�1
�

A+

A
�

�
: (6.3.4)

Equations (6.3.1) and (6.3.2) can be solved analytically even when nonlin-
ear effects become important. For this purpose, we use

A
�
=

�
3∆β
2γ

�1=2p
p
�

exp(iφ
�
); (6.3.5)

and obtain the following three equations satisfied by the normalized powers
p+ and p

�
and the phase difference ψ � φ+�φ

�
:

d p+
dZ

=

p
2p+p

�
sinψ ; (6.3.6)
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d p
�

dZ
= �p2p+p

�
sinψ ; (6.3.7)

dψ
dZ

=
p
�
� p+p

p+p
�

cosψ +2(p
�
� p+); (6.3.8)

where Z = (∆β )z=2. These equations have the following two quantities that
remain constant along the fiber [43]:

p = p++ p
�
; Γ =

p
p+p

�
cosψ + p+p

�
: (6.3.9)

Note that p is related to the total power P0 launched into the fiber through
p = P0=Pcr, where Pcr is obtained from Eq. (6.3.5) and is given by

Pcr = 3j∆β j=(2γ): (6.3.10)

Because of the two constants of motion, Eqs. (6.3.6)–(6.3.8) can be solved
analytically in terms of the elliptic functions. The solution for p+ is [32]

p+(z) =
1
2 p�

p
mjqjcn(x); (6.3.11)

where cn(x) is a Jacobian elliptic function with the argument

x =

p
jqj(∆β )z+K(m); (6.3.12)

K(m) is the quarter period, and m and q are defined as

m =
1
2 [1�Re(q)=jqj]; q = 1+ pexp(iψ0): (6.3.13)

Here ψ0 is the value of ψ at z = 0. Both p
�
(z) and ψ(z) can be obtained

in terms of p+(z) using Eq. (6.3.9). The ellipticity and the azimuth of the
polarization ellipse at any point along the fiber are then obtained from Eq.
(6.3.4) after noting that θ = ψ=2.

It is useful to display evolution of the polarization state as trajectories in
the ellipticity–azimuth phase plane. Figure 6.5 shows such phase-space trajec-
tories in the cases of (a) low input power (p � 1) and (b) high input power
(p = 3). In the low-power case, all trajectories close, indicating oscillatory
evolution of the polarization state [see Eq. (6.3.3)]. However, at power levels
such that p > 1, a “seperatrix” divides the phase space into two distinct re-
gions. In the region near ep = 0 and θ = 0 (light polarized close to the slow
axis), trajectories form closed orbits, and polarization evolution is qualitatively
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Figure 6.5 Phase-space trajectories representing evolution of the polarization state
along fiber for (a) p� 1 and (b) p= 3. (After Ref. [32].)

similar to the low-power case. However, when light is polarized close to the
fast axis, nonlinear rotation of the polarization ellipse leads to qualitatively dif-
ferent behavior because the fast axis corresponds to an unstable saddle point.

One can use the analytic solution to find the “fixed points” in the phase
space. A fixed point represents a polarization state that does not change as light
propagates inside the fiber. Below the critical power (p < 1), light polarized
linearly (ep = 0) along the slow and fast axes (θ = 0 and π=2 represents two
stable fixed points. At the critical power (p = 1),the fast-axis fixed point ex-
hibits a pitchfork bifurcation. Beyond this power level, the linear-polarization
state along the fast axis becomes unstable, but two new elliptically polarized
states emerge as fixed points. These new polarization eigenstates are discussed
next using the Poincaré-sphere representation.

6.3.2 Poincaré-Sphere Representation

An alternative approach to describe evolution of the polarization state in optical
fibers is based on the rotation of the Stokes vector on the Poincaré sphere [31].
In this case, it is better to write Eqs. (6.3.1) and (6.3.2) in terms of linearly
polarized components using Eq. (6.1.14). The resulting equations are

dĀx

dz
� i

2
(∆β )Āx =

2iγ
3

�
jĀxj2 + 2

3
jĀyj2

�
Āx +

iγ
3

Ā�

xĀ2
y ; (6.3.14)

dĀy

dz
+

i
2
(∆β )Āy =

2iγ
3

�
jĀyj2 + 2

3
jĀxj2

�
Āy +

iγ
3

Ā�

yĀ2
x : (6.3.15)
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These equations can also be obtained from Eqs. (6.1.11) and (6.1.12).
At this point, we introduce the four real variables known as the Stokes

parameters and defined as

S0 = jĀxj2 + jĀyj2; S1 = jĀxj2�jĀyj2;
S2 = 2Re(Ā�

xĀy); S3 = 2Im(Ā�

xĀy);
(6.3.16)

and rewrite Eqs. (6.3.14) and (6.3.15) in terms of them. After considerable
algebra, we obtain

dS0

dz
= 0;

dS1

dz
=

2γ
3

S2S3; (6.3.17)

dS2

dz
= �(∆β )S3�

2γ
3

S1S3;
dS3

dz
= (∆β )S2: (6.3.18)

It can be easily verified from Eq. (6.3.16) that S2
0 = S2

1 + S2
2 + S2

3. As S0
is independent of z from Eq. (6.3.17), the Stokes vector S with components
S1; S2, and S3 moves on the surface of a sphere of radius S0 as the CW light
propagates inside the fiber. This sphere is known as the Poincaré sphere and
provides a visual description of the polarization state. In fact, Eqs. (6.3.17)
and (6.3.18) can be written in the form of a single vector equation as [31]

dS
dz

= W�S; (6.3.19)

where the vector W = WL +WNL such that

WL = (∆β ;0;0); WNL = (0;0;�2γS3=3): (6.3.20)

Equation (6.3.19) includes both linear and nonlinear birefringence. It describes
evolution of the polarization state of a CW optical field within the fiber under
quite general conditions.

Figure 6.6 shows motion of the Stokes vector on the Poincaré sphere in sev-
eral different cases. In the low-power case, nonlinear effects can be neglected
by setting γ = 0. As WNL = 0 in that case, the Stokes vector rotates around the
S1 axis with an angular velocity ∆β (upper left sphere in Fig. 6.6). This rotation
is equivalent to the periodic solution given in Eq. (6.3.3) obtained earlier. If the
Stokes vector is initially oriented along the S1 axis, it remains fixed. This can
also be seen from the steady-state (z-invariant) solution of Eqs. (6.3.17) and
(6.3.18) because (S0;0;0) and (�S0;0;0) represent their fixed points. These
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Figure 6.6 Trajectories showing motion of the Stokes vector on the Poincaré sphere.
(a) Linear birefringence case (upper left); (b) nonlinear case with ∆β = 0 (upper right);
(c) mixed case with ∆β > 0 and P0 > Pcr (lower row). Left and right spheres in the
bottom row show the front and back of the Poincaré sphere. (After Ref. [31].)

two locations of the Stokes vector correspond to the linearly polarized incident
light oriented along the slow and fast axes, respectively.

In the purely nonlinear case of isotropic fibers (∆β = 0), WL = 0. The
Stokes vector now rotates around the the S3 axis with an angular velocity
2γS3=3 (upper right sphere in Fig. 6.6). This is referred to as self-induced
ellipse rotation because it has its origin in the nonlinear birefringence. Two
fixed points in this case correspond to the north and south poles of the Poincaré
sphere and represent right and left circular polarizations, respectively.

In the mixed case, the behavior depends on the power level of the incident
light. As long as P0 < Pcr, nonlinear effects play a minor role, and the situation
is similar to the linear case. At higher powers levels, the motion of the Stokes
vector on the Poincaré sphere becomes quite complicated because WL is ori-
ented along the S1 axis while WNL is oriented along the S3 axis. Moreover,
the nonlinear rotation of the Stokes vector along the S3 axis depends on the
magnitude of S3 itself. The bottom row in Fig. 6.6 shows motion of the Stokes
vector on the front and back of the Poincaré sphere in the case P0 > Pcr. When
input light is polarized close to the slow axis (left sphere), the situation is sim-
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ilar to the linear case. However, the behavior is qualitatively different when
input light is polarized close to the fast axis (right sphere).

To understand this asymmetry, let us find the fixed points of Eqs. (6.3.17)
and (6.3.18) by setting the z derivatives to zero. The location and number of
fixed points depend on the beam power P0 launched inside the fiber. More
specifically, the number of fixed points changes from two to four at a critical
power level Pcr defined as in Eq. (6.3.10). For P0 < Pcr, only two fixed points,
(S0;0;0) and (�S0;0;0), occur; these are identical to the low-power case. In
contrast, when P0 > Pcr, two new fixed points emerge. The components of the
Stokes vector at the location of the new fixed points on the Poincaré sphere are
given by [45]

S1 =�Pcr; S2 = 0; S3 =�
q

P2
0 �P2

cr: (6.3.21)

These two fixed points correspond to elliptically polarized light and occur on
the back of the Poincaré sphere in Fig. 6.6 (lower right). At the same time,
the fixed point (�S0;0;0), corresponding to light polarized linearly along the
fast axis, becomes unstable. This is equivalent to the pitchfork bifurcation dis-
cussed earlier. If the input beam is polarized elliptically with its Stokes vector
oriented as indicated in Eq. (6.3.21), the polarization state will not change in-
side the fiber. When the polarization state is close to the new fixed points, the
Stokes vector forms a close loop around the elliptically polarized fixed point.
This behavior corresponds to the analytic solution discussed earlier. However,
if the polarization state is close to the unstable fixed point (�S0;0;0), small
changes in input polarization can induce large changes at the output. This issue
is discussed next.

6.3.3 Polarization Instability

The polarization instability manifests as large changes in the output state of
polarization when the input power or the polarization state of a CW beam is
changed slightly [31]–[33]. The presence of polarization instability shows that
slow and fast axes of a polarization-preserving fiber are not entirely equivalent.

The origin of polarization instability can be understood from the follow-
ing qualitative argument [32]. When the input beam is polarized close to the
slow axis (x axis if nx > ny), nonlinear birefringence adds to intrinsic linear
birefringence, making the fiber more birefringent. By contrast, when the input
beam is polarized close to the fast axis, nonlinear effects decrease total bire-
fringence by an amount that depends on the input power. As a result, the fiber
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Figure 6.7 Effective beat length as a function of input power for beams polarized
along the fast (solid line) and slow (dashed line) axes. (After Ref. [32].)

becomes less birefringent, and the effective beat length Leff
B increases. At a

critical value of the input power nonlinear birefringence can cancel intrinsic
birefringence completely, and Leff

B becomes infinite. With a further increase in
the input power, the fiber again becomes birefringent but the roles of the slow
and fast axes are reversed. Clearly large changes in the output polarization
state can occur when the input power is close to the critical power necessary to
balance the linear and nonlinear birefringences. Roughly speaking, the polar-
ization instability occurs when the input peak power is large enough to make
the nonlinear length LNL comparable to the intrinsic beat length LB.

The period of the elliptic function in Eq. (6.3.11) determines the effective
beat length as [32]

Leff
B =

2K(m)

π
p
jqjLB; (6.3.22)

where LB is the low-power beat length, K(m) is the quarter-period of the ellip-
tic function, and m and q are given by Eq. (6.3.13) in terms of the normalized
input power defined as p = P0=Pcr. In the absence of nonlinear effects, p = 0,
q = 1, and we recover

Leff
B = LB = 2π=j∆β j: (6.3.23)

Figure 6.7 shows how Leff
B varies with p for θ = 0Æ and θ = 90Æ. The

effective beat length becomes infinite when P0 = Pcr and θ = 90Æ because of
complete cancellation between the linear and nonlinear birefringences [33].
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Figure 6.8 Transmittivity of a birefringent fiber of length L = L B as a function of
input power for different input angles. (After Ref. [32].)

This is the origin of polarization instability. The critical power level Pcr at
which Leff

B becomes infinite is the same at which the number of fixed points on
the Poincaré sphere changes from 2 to 4. Thus, polarization instability can be
interpreted in terms of the emergence of elliptically polarized fixed points on
the Poincaré sphere. The two viewpoints are identical.

As a result of large changes in Leff
B , the output polarization state can change

drastically when P0 is close to Pcr and the input beam is polarized close to the
fast axis. Figure 6.8 shows the transmittivity Tp as a function of the input
power for several values of θ after assuming that a crossed polarizer at the
fiber output blocks the light at low intensities (see Fig. 6.1). When θ = 0Æ or
90Æ, Tp remains zero at all power levels. Small changes in θ near the slow
axis still keep Tp near zero. However, Tp changes dramatically when θ is
changed slightly near the fast axis. Note the extreme sensitivity of Tp to the
input polarization angle as θ is varied from 89Æ to 90Æ. Figure 6.8 is drawn
for the case (∆β )L = 2π or L = LB. However, the qualitative behavior remains
the same for other fiber lengths as well.

Polarization instability was first observed in 1986 by transmitting 80-ps
pulses (at 532 nm) through a 53-cm-long fiber with a measured intrinsic beat
length LB � 50 cm [35]. The input pulses were right-circularly polarized and
passed through a circular analyzer at the fiber output that transmitted only left-
circularly polarized light. The shape of output pulses was found to change
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dramatically when the peak power exceeded a critical value. The measured
critical power and the output pulse shapes were in agreement with the theo-
retical predictions. In a later experiment, polarization instability led to sig-
nificant enhancement of weak intensity modulations when the input signal
was polarized near the fast axis of a low-birefringence fiber [42]. The 200-
ns input pulses were obtained from a Q-switched Nd:YAG laser operating at
1.06 µm. The intensity of these pulses exhibited 76-MHz modulation because
of longitudinal-mode beating inside the laser. These small-amplitude modula-
tions were unaffected when the signal was polarized near the slow axis of the
fiber, but became amplified by as much as a factor of 6 when input pulses were
polarized near the fast axis. The experimental results were in good qualitative
agreement with theory, especially when the theory was generalized to include
twisting of the fiber that resulted in elliptical birefringence [43].

The power-dependent transmittivity seen in Fig. 6.8 can be useful for op-
tical switching. Self switching of linearly polarized beams induced by polar-
ization instability has been demonstrated in silica fibers [44]. It can also be
used to switch the polarization state of an intense beam through a weak pulse.
Polarization switching can also occur for solitons [46]. In all case, the input
power required for switching is quite large unless fibers with low modal bire-
fringence are used. A fiber with a beat length LB = 1 m requires P0 � 1 kW if
we use γ = 10 W�1/km in Eq. (6.3.10). This value becomes larger by a factor
of 100 or more when high-birefringence fibers are used. For this reason, po-
larization instability is not of concern when highly birefringent fibers are used
because P0 remains < 1 kW in most experiments.

6.3.4 Polarization Chaos

Polarization instability can lead to chaos in the output polarization state if lin-
ear birefringence of a fiber is modulated along its length. This can occur if the
fiber is uniformly twisted while being wound onto a drum. Modulated birefrin-
gence can also be introduced during fiber fabrication through periodic rocking
of the preform or by means of a periodic distribution of stress. The effects of
modulated linear birefringence on evolution of the polarization state have been
studied [37]–[40]. This section considers twisted fibers briefly.

Twisting of birefringent fibers produces two effects simultaneously. First,
the principal axes are no longer fixed but rotate in a periodic manner along the
fiber length. Second, shear strain induces circular birefringence in proportion
to the twist rate. When both of these effects are included, Eqs. (6.3.1) and
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(6.3.2) take the following form [43]:

dA+

dz
= ibcA++

i
2
(∆β )e2irt zA

�
+

2iγ
3

(jA+j2 +2jA
�
j2)A+; (6.3.24)

dA
�

dz
= ibcA

�
+

i
2
(∆β )e�2irt zA++

2iγ
3

(jA
�
j2 +2jA+j2)A�

; (6.3.25)

where bc = hrt=2n̄ is related to circular birefringence, rt is the twist rate per
unit length, and n̄ is the average mode index. The parameter h has a value of
� 0:15 for silica fibers. The preceding equations can be used to find the fixed
points, as done in Section 6.3.1 for an untwisted fiber. Above a critical power
level, we again find four fixed points. As a result, polarization instability still
occurs along the fast axis but the critical power becomes larger.

Birefringence modulation can also be included by making the parame-
ter ∆β in Eqs. (6.3.1) and (6.3.2) a periodic function of z such that ∆β =

∆β0[1� iε cos(bmz)], where ε is the amplitude and bm is the spatial frequency
of modulation [40]. The resulting equations can not be solved analytically but
one can use the phase-space or the Poincaré-sphere approach to study evolu-
tion of the polarization state approximately [37]–[40]. This approach shows
that the motion of the Stokes vector on the Poincaré sphere becomes chaotic
in the sense that polarization does not return to its original state after each
successive period of modal birefringence ∆β . Such studies are useful for esti-
mating the range of parameter values that must be maintained to avoid chaotic
switching if the fiber were to be used as an optical switch.

6.4 Vector Modulation Instability

This section extends the scalar analysis of Section 5.1 to the vector case in
which a CW beam, when launched into a birefringent fiber, excites both po-
larization components simultaneously. Similar to the scalar case, modulation
instability is expected to occur in the anomalous-GVD region of the fiber. The
main issue is whether the XPM-induced coupling can destabilize the CW state
even when the wavelength of the CW beam is in the normal-GVD regime of the
fiber. Vector modulation instability in an isotropic nonlinear medium (no bire-
fringence) was studied as early as 1970 using the coupled NLS equations [47].
In the context of birefringent fibers, it has been studied extensively since 1988,
both theoretically and experimentally [48]–[63]. Since the qualitative behav-
ior is different for weakly and strongly birefringent fibers, we consider the two
cases separately.
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6.4.1 Low-Birefringence Fibers

In the case of low-birefringence fibers, one must retain the coherent-coupling
term in Eqs. (6.1.11) and (6.1.12) while considering modulation instability
[48]. As before, it is easier to use Eqs. (6.1.15) and (6.1.16), written in terms
of the circularly polarized components of the optical field. The steady-state or
CW solution of these equations is given in Section 6.3 but is quite complicated
to use for the analysis of modulation instability as it involves elliptic functions.
The problem becomes tractable when the polarization state of the incident CW
beam is oriented along a principal axis of the fiber.

Consider first the case in which the polarization state is oriented along the
fast axis (Ax = 0). This case is especially interesting because the polarization
instability discussed in Section 6.3 can also occur. If fiber losses are neglected
by setting α = 0, the steady-state solution becomes

Ā
�
(z) =�i

p
P0=2exp(iγP0z); (6.4.1)

where P0 is the input power. Following the procedure of Section 5.1, stability
of the steady state is examined by assuming a solution in the form

A
�
(z; t) =�[i

p
P0=2+a

�
(z; t)]exp(iγP0z); (6.4.2)

where a
�
(z; t) is a small perturbation. Using Eq. (6.4.2) in Eqs. (6.1.15) and

(6.1.16) and linearizing in a+ and a
�

, we obtain a set of two coupled linear
equations. These equations can be solved by assuming a solution of the form

a
�
= u

�
exp[i(Kz�Ωt)]+ iv

�
exp[�i(Kz�Ωt)]; (6.4.3)

where K is the wave number and Ω is the frequency of perturbation. We then
obtain a set of four algebraic equations for u

�
and v

�
. This set has a non-

trivial solution only when the perturbation satisfies the following dispersion
relation [48]

[(K�β1Ω)
2�C1][(K�β1Ω)

2�C2] = 0; (6.4.4)

where

C1 =
1
2β2Ω2

(
1
2β2Ω2

+2γP0); (6.4.5)

C2 = (
1
2 β2Ω2

+∆β �2γP0=3)(1
2 β2Ω2

+∆β ): (6.4.6)

As discussed in Section 5.1, the steady-state solution becomes unstable if
the wave number K has an imaginary part for some values of Ω, indicating that
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a perturbation at that frequency would grow exponentially along the fiber with
the power gain g = 2Im(K). The nature of modulation instability depends
strongly on whether the input power P0 is below or above the polarization-
instability threshold Pcr given in Eq. (6.3.10). For P0 < Pcr, modulation in-
stability occurs only in the case of anomalous dispersion, and the results are
similar to those of Section 5.1. The effect of XPM is to reduce the gain from
that of Eq. (5.1.9) but the maximum gain occurs at the same value of Ω (see
Fig. 5.1).

It is easy to deduce from Eq. (6.4.4) that modulation instability can occur
even in the normal-dispersion regime of the fiber (β2 > 0) provided C2 < 0.
This condition is satisfied for frequencies in the range 0 < jΩj< Ωc1, where

Ωc1 = (4γ=3β2)
1=2pP0�Pcr: (6.4.7)

Thus, P0 > Pcr is required for modulation instability to occur in the normal-
dispersion regime of the fiber. When this condition is satisfied, the gain is
given by

g(Ω) = jβ2j
q

(Ω2
c2 +Ω2)(Ω2

c1�Ω2): (6.4.8)

where
Ωc2 = (2∆β=β2)

1=2
: (6.4.9)

Consider now the case in which the CW beam is polarized along the slow
axis (Ay = 0). We can follow essentially the same steps to find the dispersion
relation K(Ω). In fact, Eqs. (6.4.4)–(6.4.6) remain applicable if we change
the sign of ∆β . Modulation instability can still occur in the normal-dispersion
regime of the fiber but the gain exists only for frequencies in the range Ωc2 <

jΩj< Ωc3, where
Ωc3 = (4γ=3β2)

1=2pP0 +Pcr: (6.4.10)

The instability gain is now given by

g(Ω) = jβ2j
q

(Ω2
c2�Ω2)(Ω2

c3�Ω2): (6.4.11)

Figure 6.9 compares the gain spectra for light polarized along the slow and
fast axes using β 2 = 60 ps2/km and γ = 23 W�1/km for a fiber with a beat
length LB = 5:8 m. For these parameter values, p = 1 at an input power of
70 W. At a power level of 112 W, p = 1:6 (left part) while p > 2 at 152 W
(right part). The most noteworthy feature of Fig. 6.9 is that, in contrast with
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Figure 6.9 Gain spectra of modulation instability at power levels of 112 W (left)
and 152 W (right) for a CW beam polarized along the slow or fast axis of a low-
birefringence fiber. (After Ref. [60].)

the gain spectra of Fig. 5.1, the gain does not vanish near Ω = 0 when light
is polarized along the fast axis. When p < 2, the gain is in fact maximum at
Ω = 0, indicating that low-frequency or CW fluctuations would grow rapidly.
This is a manifestation of the polarization instability discussed in Section 6.3,
occurring only when the input beam is polarized along the fast axis. When
p > 2, the gain peak occurs for a finite value of Ω. In that case, the CW beam
would develop spectral sidebands irrespective of whether it is polarized along
the slow or fast axis. This situation is similar to the scalar case of Section 5.1.
The new feature is that such sidebands can develop even in the normal-GVD
regime of a birefringent fiber.

6.4.2 High-Birefringence Fibers

For high-birefringence fibers, the last term representing coherent coupling (or
four-wave mixing) can be neglected in Eqs. (6.1.11) and (6.1.12). These equa-
tions then reduce to Eqs. (6.1.22) and (6.1.23) with B =

2
3 and exhibit a dif-

ferent kind of modulation instability [50]–[53]. This case is mathematically
similar to the two-wavelength case discussed in Chapter 7.

To obtain the steady-state solution, the time derivatives in Eqs. (6.1.22)
and (6.1.23) can be set to zero. If fiber losses are neglected by setting α = 0,
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the steady-state solution is given by (see Section 6.2.1)

Ax(z) =
p

Px exp[iφx(z)]; Ay(z) =
p

Py exp[iφy(z)]; (6.4.12)

where Px and Py are the constant mode powers and

φx(z) = γ(Px +BPy)z; φy(z) = γ(Py +BPx)z: (6.4.13)

The phase shifts depend on the powers of both polarization components. In
contrast with the case of weakly birefringent fibers, this solution is valid for a
CW beam polarized at an arbitrary angle with respect to the slow axis.

Stability of the steady state is examined assuming a time-dependent solu-
tion of the form

A j =

�q
Pj +aj

�
exp(iφ j); (6.4.14)

where aj(z; t) is a weak perturbation with j = x;y. We substitute Eq. (6.4.14)
in Eqs. (6.1.22) and (6.1.23) and linearize them with respect to ax and ay. The
resulting linear equations can again be solved in the form

aj = uj exp[i(Kz�Ωt)+ ivj exp[�i(Kz�Ωt)]; (6.4.15)

where j = x;y, K is the wave number, and Ω is the frequency of perturbation.
To simplify the algebra, let us focus on the case in which the input CW

beam is polarized at 45Æ from the slow axis. As a result, both polarization
modes have equal powers (Px = Py = P). The dispersion relation in this case
can be written as [50]

[(K�b)2�H][(K +b)2�H] =C2
X ; (6.4.16)

where b = (β1x�β1y)Ω=2 takes into account the group-velocity mismatch,

H = β2Ω2
(β2Ω2

=4+ γP); (6.4.17)

and the XPM coupling parameter CX is defined as

CX = Bβ2γPΩ2
: (6.4.18)

As before, modulation instability occurs when K becomes complex for some
values of Ω. Its gain is obtained from g = 2Im(K).

The most important conclusion drawn from Eq. (6.4.16) is that modulation
instability can occur irrespective of the sign of the GVD parameter. In the case
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Figure 6.10 Gain spectra of modulation instability in a high-birefringence fiber when
input beam is linearly polarized at 45Æ from the slow axis. Four curves correspond to
(smallest to largest) for power levels of 60, 125, 250, and 500 W. (After Ref. [50].)

of normal GVD (β2 > 0), the gain exists only if CX > jH� bj2. Figure 6.10
shows the gain spectra at several power levels using parameter values β2 =

65 ps2/km, γ = 25:8 W�1/km, and a group-velocity mismatch of 1.6 ps/m. At
low powers, the gain spectrum is quite narrow and its peak is located near Ωm =

jβ1x�β1yj=β2. As input power increases, gain spectrum widens and its peak
shifts to lower frequencies. In all four cases shown in Fig. 6.10, the CW beam
develops temporal modulations at frequencies >2 THz as it propagates through
the fiber. As Ωm depends on birefringence of the fiber, it can be changed
easily and provides a tuning mechanism for the modulation frequency. An
unexpected feature is that modulation instability ceases to occur when the input
power exceeds a critical value

Pc = 3(β1x�β1y)
2
=(4β2γ): (6.4.19)

Another surprising feature is that modulation instability ceases to occur when
the input light is polarized close to a principal axis of the fiber [51].

Both of these features can be understood qualitatively if we interpret modu-
lation instability in terms of a four-wave-mixing process that is phase matched
by the modal birefringence of the fiber (see Section 10.3.3). In the case of nor-
mal GVD, the SPM- and XPM-induced phase shifts actually add to the GVD-
induced phase mismatch. It is the fiber birefringence that cancels the phase
mismatch. Thus, for a given value of birefringence, the phase-matching con-
dition can only be satisfied if the nonlinear phase shifts remain below certain
level. This is the origin of the critical power level in Eq. (6.4.19). An inter-
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esting feature of the four-wave-mixing process is that spectral sidebands are
generated such that the low-frequency sideband at ω0�Ω appears along the
slow axis whereas the sideband at ω0+Ω is polarized along the fast axis. This
can also be understood from the phase-matching condition of Section 10.3.3.

6.4.3 Isotropic Fibers

As seen in the preceding, modal birefringence of fibers plays an important
role for modulation instability to occur. A natural question is whether modu-
lation instability can occur in isotropic fibers with no birefringence (nx = ny).
Even though such fibers are hard to fabricate, fibers with extremely low bire-
fringence (jnx� nyj < 10�8) can be made by spinning the preform during the
drawing stage. The question is also interesting from a fundamental standpoint
and was discussed as early as 1970 [47].

The theory developed for high-birefringence fibers cannot be used in the
limit ∆β = 0 because the coherent-coupling term has been neglected. In con-
trast, theory developed for low-birefringence fibers remains valid in that limit.
The main difference is that Pcr = 0 as polarization instability does not occur
for isotropic fibers. As a result, Ωc2 = 0 while Ωc1 = Ωc3 � Ωc. The gain
spectrum of modulation instability in Eq. (6.4.8) reduces to

g(Ω) = jβ2Ωj
p

Ω2
c �Ω2; (6.4.20)

irrespective of whether the input beam is polarized along the slow or fast axis.
This is the same result obtained in Section 5.1 for the scalar case. It shows that
the temporal and spectral features of modulation instability should not depend
on the direction in which the input beam is linearly polarized. This is expected
for any isotropic nonlinear medium on physical grounds.

The situation changes when the input beam is circularly or elliptically po-
larized. We can consider this case by setting ∆β = 0 in Eqs. (6.1.15) and
(6.1.16). Using α = 0 for simplicity, these equations reduce to the following
set of two coupled NLS equations [47]:

∂A+

∂ z
+

iβ2

2
∂ 2A+

∂T 2 + iγ 0
�jA+j2 +2jA

�
j2�A+ = 0; (6.4.21)

∂A
�

∂ z
+

iβ2

2
∂ 2A

�

∂T 2 + iγ 0
�jA

�
j2 +2jA+j2

�
A
�
= 0; (6.4.22)
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where T = t�β1z is the reduced time and γ 0 = 2γ=3. The steady-state solution
of these equations is obtained easily and is given by

Ā
�
(z) =

p
P
�

exp(iφ
�
); (6.4.23)

where P
�

is the input power in the two circularly polarized components and
φ
�
(z) = γ 0(P

�
+2P

�
)z is the nonlinear phase shift.

As before, we perturb the steady-state solution using

A
�
(z; t) = [

p
P
�
+a

�
(z; t)]exp(iφ

�
); (6.4.24)

where a
�
(z; t) is a small perturbation. By using Eq. (6.4.24) in Eqs. (6.4.21)

and (6.4.22) and linearizing in a+ and a
�

, we obtain a set of two coupled
linear equations. These equations can be solved assuming a solution in the
form of Eq. (6.4.3). We then obtain a set of four algebraic equations for u

�

and v
�

. This set has a nontrivial solution only when the perturbation satisfies
the following dispersion relation [47]

(K�H+)(K�H
�
) =C2

X ; (6.4.25)

where
H
�
=

1
2β2Ω2

(
1
2 β2Ω2

+ γP
�
); (6.4.26)

and the XPM coupling parameter CX is now defined as

CX = 2β2γΩ2pP+P
�
: (6.4.27)

A necessary condition for modulation instability to occur is C2
X > H+H

�
.

As CX depends on
p

P+P
�

and vanishes for a circularly polarized beam, we
can conclude that no instability occurs in that case. For an elliptically polarized
beam, the instability gain depends on the ellipticity ep defined as in Eq. (6.3.4).

6.4.4 Experimental Results

The vector modulation instability was first observed in the normal-dispersion
region of a high-birefringence fiber [50]–[52]. In one experiment, 30-ps pulses
at the 514-nm wavelength with 250-W peak power were launched into a 10-m
fiber with a 45Æ-polarization angle [51]. At the fiber output, the pulse spectrum
exhibited modulation sidebands with a 2.1-THz spacing, and the autocorrela-
tion trace showed 480-fs intensity modulation. The observed sideband spacing
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was in good agreement with the value calculated theoretically. In another ex-
periment, 600-nm input pulses were of only 9-ps duration [50]. As the 18-m-
long fiber had a group-velocity mismatch of � 1:6 ps/m, the two polarization
components would separate from each other after only 6 m of fiber. The walk-
off problem was solved by delaying the faster-moving polarization component
by 25 ps at the fiber input. The temporal and spectral measurements indi-
cated that both polarization components developed high-frequency (�3 THz)
modulations, as expected from theory. Moreover, the modulation frequency
decreased with an increase in the peak power. This experiment also revealed
that each polarization component of the beam develops only one sideband,
in agreement with theory. In a later experiment [52], modulation instability
developed from temporal oscillations induced by optical wave breaking (see
Section 4.2.3). This behavior can be understood from Fig. 4.12, noting that
optical wave breaking manifests as spectral sidebands. If these sidebands fall
within the bandwidth of the modulation-instability gain curve, their energy can
seed the instability process.

Modulation instability in low-birefringence fibers was observed in 1995
using 60-ps pulses (with peak powers >1 kW) obtained from a krypton-ion
laser operating at 647 nm [56]. Fibers used in the experiment were a few
meters long, and their birefringence was controlled through stress induced
by winding the fiber on a spool with a relatively small diameter. When in-
put pulses were polarized along the slow axis, the two sidebands indicative of
modulation instability had the same polarization and were polarized along the
fast axis. Their spacing could be varied over a range of 20 nm or so by sim-
ply changing the spool size—a smaller spool diameter produced more stress-
induced birefringence, resulting in larger sideband spacing. In a variation of
this idea, fibers with periodically varying birefringence along their length were
produced by wrapping the fiber around two spools [57]. Such a periodic vari-
ation can create new sidebands through quasi-phase matching, similar to the
periodic variation of dispersion and nonlinearity discussed in Section 5.1.

A systematic study of induced modulation instability in low-birefringence
fibers was performed in 1998 using a pump-probe configuration [60]. The
probe beam was used to seed the process. In a series of experiments, the pump
beam was obtained from a dye laser operating near 575 nm and consisted of
4-ns pulses that were wide enough to realize quasi-CW operation. The pump-
probe wavelength separation was tunable; tuning allowed different regimes of
modulation instability to be investigated. The fiber was drawn using a rapidly
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Figure 6.11 Modulation-instability sidebands observed in a low-birefringence fiber.
Pump is polarized along the fast (top row) or slow axis (bottom row). Pump-probe
detuning is 0.3 THz for left and 1.2 THz for right columns. (After Ref. [60].)

rotating preform so that its intrinsic birefringence averaged out to zero. A
controlled amount of weak birefringence was introduced by winding the fiber
onto a 14.5-cm-diameter spool. The measured beat length of 5.8 m for the fiber
corresponded to a modal birefringence of only 10�7. The critical power Pcr re-
quired for the onset of polarization instability [see Eq. (6.3.10)] was estimated
to be 70 W for this fiber.

Figure 6.11 shows the pump spectra measured under several different ex-
perimental conditions. In all cases, the pump power was 112 W (1:6Pcr) while
the probe power was kept low (� 1 W). Consider first the case of a pump po-
larized along the fast axis (top row). For a pump-probe detuning of 0.3 THz,
the probe frequency falls within the gain spectrum of modulation instability
(see Fig. 6.9). As a result, the pump spectrum develops a series of sidebands
spaced apart by 0.3 THz. In contrast, the probe frequency falls outside the
gain spectrum for a detuning of 1.2 THz, and modulation instability does not
occur. When the pump is polarized along the slow axis (bottom row), the sit-
uation is reversed. Now the 0.3-THz detuning falls outside the gain spectrum,
and modulation-instability sidebands form only when the detuning is 1.2 THz.
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These experimental results are in agreement with the theory given earlier. In
the time domain, the pump pulse develops deep modulations that correspond
to a train of dark solitons with repetition rates in the terahertz regime [59].
A dark-soliton is also formed when modulation instability occurs in high-
birefringence fibers [61]. The formation of dark solitons is not surprising if
we recall from Chapter 5 that optical fibers support only dark solitons in their
normal-GVD regime.

In all of these experiments, fiber birefringence plays an important role. As
discussed before, vector modulation instability can occur in isotropic fibers
(nx = ny) such that the gain spectrum depends on the polarization state of the
input CW beam. Unfortunately, it is difficult to make birefringence-free fibers.
As an alternative, modulation instability was observed in a bimodal fiber in
which the input beam excited two fiber modes (LP01 and LP11) with nearly
equal power levels, and the two modes had the same group velocity [58]. In a
1999 experiment [62], a nearly isotropic fiber was realized by winding 50 m
of “spun” fiber with a large radius of curvature of 25 cm. The beat length for
this fiber was �1 km, indicating a birefringence level < 10�8. Over the 50-m
length used in the experiment, the fiber was nearly isotropic. Modulation-
instability sidebands were observed when 230-ps pulses (λ = 1:06 µm) with
a peak power of 120 W were launched into the fiber. The recorded spectra
were almost identical when the polarization angle of linearly polarized light
was changed over a 90 Æ range. Sidebands disappeared for circularly polarized
light. This behavior is expected since isotropic fibers have no preferred di-
rection. When input light was elliptically polarized, the amplitude of spectral
sidebands varied with the ellipticity, again in agreement with theory.

6.5 Birefringence and Solitons

The discussion of optical solitons in Chapter 5 neglected polarization effects
and assumed implicitly that the fiber had no birefringence. The results pre-
sented there also apply for high-birefringence fibers when the input pulse is
linearly polarized along one of the principal axes of a polarization-maintaining
fiber. This section focuses on solitons forming when the input pulse is polar-
ized at a finite angle from the slow axis [64]–[78]. There are two important
issues. First, in a weakly birefringent fiber, the peak power of the soliton
may exceed the critical power [see Eq. (6.3.10)] at which polarization instabil-
ity occurs. This instability is likely to affect the solitons launched with their
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linear-polarization state aligned along the fast axis. Second, in a strongly bire-
fringent fiber, the group-velocity mismatch between the two orthogonally po-
larized components can lead to their physical separation within the fiber. Both
of these issues are discussed in this section.

6.5.1 Low-Birefringence Fibers

Consider first the case of low-birefringence fibers. As the group-velocity mis-
match is relatively small in such fibers, we can set β1x � β1y in Eqs. (6.1.11)
and (6.1.12) and use Eqs. (6.1.15) and (6.1.16) when circularly polarized com-
ponents of the field are used in place of the linear ones. These equations can be
scaled using the soliton units introduced in Section 5.2. The resulting coupled
NLS equations take the form [64]

i
∂u+
∂ξ

+
i
2

∂ 2u+
∂τ2 +bu

�
+(ju+j2 +2ju

�
j2)u+ = 0; (6.5.1)

i
∂u

�

∂ξ
+

i
2

∂ 2u
�

∂τ2 +bu++(ju
�
j2 +2ju+j2)u� = 0; (6.5.2)

where b = (∆β )LD=2 and fiber losses are neglected. The normalized variables
ξ , τ , and u

�
are defined as

ξ = z=LD; τ = (t�β1z)=T0; u
�
= (2γLD=3)1=2A

�
; (6.5.3)

where LD = T 2
0 =jβ2j is the dispersion length and T0 is a measure of the pulse

width. These equations generalize the scalar NLS equation of Section 5.2 to
the vector case for low-birefringence fibers. They can be solved numerically
using the split-step Fourier method of Section 2.4.

The numerical results show that the polarization instability affects soli-
tons in a manner analogous to the CW case discussed in Section 6.2.3. If
the nonlinear length LNL is larger than the beat length LB = 2π=∆β , solitons
remain stable even if they are polarized close to the fast axis. By contrast, if
LNL � LB, solitons polarized along the slow axis remain stable but become un-
stable if polarized along the fast axis. A linearly polarized fundamental soliton
(N = 1), launched with its polarization close to the fast axis with LNL � LB,
follows the following evolution scenario [64]. Because of the onset of polar-
ization instability, most of the pulse energy is transferred from the fast mode
to the slow mode within a few soliton periods while a part of it is dispersed
away. The pulse energy switches back and forth between the two modes a few



240 Polarization Effects

times, a process similar to relaxation oscillations. Most of the input energy,
however, appears eventually in a soliton-like pulse propagating along the slow
axis. Higher-order solitons follow a somewhat different scenario. After go-
ing through an initial narrowing stage, they split into individual components, a
behavior similar to that discussed in Section 5.5. A part of the energy is then
transferred to the slow mode. A fundamental soliton eventually appears along
the slow axis with a width narrower than the input width.

The CW instability condition can be used to obtain a condition on the soli-
ton period. If we use Eq. (6.3.10), the condition P0 > Pcr becomes (∆β )LNL <
2
3 , where LNL = (γP0)

�1 is the nonlinear length. By using ∆β = 2π=LB,
N2

=LD=LNL and z0 =(π=2)LD, this condition can be written as z0 <N2LB=6.
The numerical results agree with it approximately [64]. Typically, LB � 1 m
for weakly birefringent fibers. Thus, polarization instability affects a funda-
mental soliton (N = 1) only if z0 � 1 m. Such values of z0 are realized in
practice only for femtosecond pulses (T0 < 100 fs).

6.5.2 High-Birefringence Fibers

In high-birefringence fibers, the group-velocity mismatch between the fast and
slow components of the input pulse cannot be neglected. Such a mismatch
would normally split a pulse into its two components polarized along the two
principal axes if the input polarization angle θ deviates from 0 or 90Æ. The
interesting question is whether such a splitting also occurs for solitons.

The effects of group-velocity mismatch are studied by solving Eqs. (6.1.22)
and (6.1.23) numerically. If we assume anomalous dispersion (β2 < 0) and use
the soliton units of Section 5.2, these equations become

i

�
∂u
∂ξ

+δ
∂u
∂τ

�
+

1
2

∂ 2u
∂τ2 +(juj2 +Bjvj2)u = 0; (6.5.4)

i

�
∂v
∂ξ

�δ
∂v
∂τ

�
+

1
2

∂ 2v
∂τ2 +(jvj2 +Bjuj2)v = 0; (6.5.5)

where u and v are the normalized amplitudes of the field components polarized
linearly along the x and y axes, respectively, and

δ = (β1x�β1y)T0=2jβ2j (6.5.6)

governs the group-velocity mismatch between the two polarization compo-
nents. The normalized time τ = (t � β̄1z)=T0, where β̄1 =

1
2 (β1x + β1y) is
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Figure 6.12 Pulse amplitudes juj (solid line) and jvj (dashed line) at ξ = 5π (upper
row) and ξ = 10π (lower row) for θ = 30Æ. The parameters N = 0:8 and δ = 0:15 for
the left column and N = 1:1 and δ = 0:5 for the right column. (After Ref. [67].)

inversely related to the average group velocity. Fiber losses are ignored for
simplicity but can be included easily. The XPM coupling parameter B =

2
3 for

linearly birefringent fibers.
When an input pulse is launched with a polarization angle θ (measured

from the slow axis), Eqs. (6.5.4) and (6.5.5) should be solved with the input

u(0;τ) = N cos θ sech(τ); v(0;τ) = N sinθ sech(τ); (6.5.7)

where N is the soliton order. In the absence of XPM-induced coupling, the two
polarization components evolve independently and separate from each other
because of their different group velocities. The central question is how this
behavior is affected by the XPM. This question is answered by solving Eqs.
(6.5.4) and (6.5.5) numerically with B = 2=3 for various values of N;θ , and δ
[65]–[67]. The numerical results can be summarized as follows.

When the two modes are equally excited (θ = 45Æ), the two components
remain bound together if N exceeds a critical value Nth that depends on δ ;
Nth � 0:7 for δ = 0:15, but Nth � 1 for δ = 0:5. For values of δ � 1, the
threshold value exceeds 1.5. In this case, solitons can form even when N <

Nth but the two components travels at their own group velocities and become
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widely separated. When N > Nth, the two components remain close to each
other but the distance between them changes in an oscillatory manner.

When θ 6= 45Æ, the two modes have unequal amplitudes initially. In this
case, if N exceeds Nth, a qualitatively different evolution scenario occurs de-
pending on the value of δ . Figure 6.12 shows the pulse amplitudes of the two
components for θ = 30Æ at ξ = 5π and 10π [67]. The left-hand column corre-
sponds to δ = 0:15 and N = 0:8 while δ = 0:5 and N = 1:1 for the right-hand
column. For the case δ = 0:15, the smaller pulse appears to have been cap-
tured by the larger one and the two move together. However, when δ = 0:5,
only a fraction of the energy in the smaller pulse is captured by the larger one;
the remaining energy is dispersed away with propagation. Even more complex
behavior occurs for larger values of δ and N.

The numerical results shown in Fig. 6.12 clearly indicate that under certain
conditions the two orthogonally polarized solitons move with a common group
velocity in spite of their different modal indices or polarization-mode disper-
sion (PMD). This phenomenon is called soliton trapping and, as discussed
later, can be used for optical switching. It owes its existence solely to XPM. In
the absence of the XPM term, Eqs. (6.5.4) and (6.5.5) become decoupled, indi-
cating that each polarization component would propagate at a different group
velocity dictated by the fiber birefringence. It is the XPM-induced nonlinear
coupling between them that allows the two solitons to propagate at a common
group velocity. Physically, the two solitons shift their carrier frequencies in
the opposite directions to realize such a temporal synchronization. Specifi-
cally, the soliton along the fast axis slows down while the one along the slow
axis speeds up. Indeed, the pulse spectra corresponding to the intensity profiles
shown in Fig. 6.12 are found to be shifted exactly in such a way.

Because soliton trapping requires a balance between XPM and PMD, it can
occur only when the peak power of the input pulse, or equivalently the soliton
order N, exceeds a threshold value Nth. As Nth depends on both the polarization
angle θ and δ , attempts have been made to estimate Nth analytically by solving
Eqs. (6.5.4) and (6.5.5) approximately [69]–[77]. In a simple approach, the
XPM term is treated as a perturbation within the Lagrangian formulation. In
the case of equal amplitudes, realized by choosing θ = 45Æ in Eq. (6.5.7), the
threshold value for soliton trapping is found to be [69]

Nth = [2(1+B)]�1=2
+(3=8B)1=2δ : (6.5.8)

For B =
2
3 , the predictions of Eq. (6.5.8) are in good agreement with the nu-

merical results for small values of δ (up to 0.5). For large values of δ , the
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threshold value is well approximated by [77] Nth = [(1+3δ 2
)=(1+B)]1=2.

Soliton trapping was first observed [79] in 1989 by launching 0.3-ps pulses
(obtained from a mode-locked color-center laser) into a 20-m single-mode
fiber with modal birefringence ∆n� 2:4�10�5, a value leading to polarization
dispersion of 80 ps/km. For this experiment, the soliton period z0 was 3.45 m
while δ = 0:517. The measured pulse spectra for the orthogonally polarized
components were found to be separated by about 1 THz when the polarization
angle was 45Æ. The autocorrelation trace indicated that the two pulses at the
fiber output were synchronized temporally as expected for soliton trapping.

6.5.3 Soliton-Dragging Logic Gates

An important application of XPM interaction in birefringent fibers has led to
the realization of all-optical, cascadable, ultrafast, logic gates, first demon-
strated in 1989 [80]. Since then the performance of such logic gates has been
studied extensively, both theoretically and experimentally [81]–[91].

The basic idea behind the operation of fiber-optic logic gates has its origin
in the nonlinear phenomenon of soliton trapping discussed earlier. It can be
understood as follows. In digital logic, each optical pulse is assigned a time slot
whose duration is determined by the clock speed. If a signal pulse is launched
together with an orthogonally polarized control pulse, and the control pulse is
intense enough to trap the signal pulse during a collision, then both pulses can
be dragged out of their assigned time slot because of the XPM-induced change
in their group velocity. In other words, the absence or presence of a signal pulse
at the fiber input dictates whether the control pulse ends up arriving within the
assigned time slot or not. This temporal shift forms the basic logic element and
can be used to perform more complex logic operations. Because the control
pulse propagating as a soliton is dragged out of its time slot through the XPM
interaction, such devices are referred to as soliton-dragging logic gates. In a
network configuration, output signal pulse can be discarded while control pulse
becomes the signal pulse for the next gate. This strategy makes the switching
operation cascadable. In effect, each control pulse is used for switching only
once irrespective of the number of gates in the network.

The experimental demonstration of various logic gates (such as exclusive
OR, AND and NOR gates), based on the concept of soliton trapping, used
femtosecond optical pulses (pulse width �300 fs) from a mode-locked color-
center laser operating at 1.685 µm [80]–[85]. In these experiments, orthogo-
nally polarized signal and control pulses were launched into a highly birefrin-
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gent fiber. In the implementation of a NOR gate, the experimental conditions
were arranged such that the control pulse arrived in its assigned time slot of
1-ps duration in the absence of signal pulses (logical “1” state). In the presence
of one or both signal pulses, the control pulse shifted by 2–4 ps because of soli-
ton dragging and missed the assigned time slot (logical “0” state). The energy
of each signal pulse was 5.8 pJ. The energy of the control pulse was 54 pJ at
the fiber input but reduced to 35 pJ at the output, resulting in an energy gain by
a factor of six. The experimental results can be explained quite well by solving
Eqs. (6.5.4) and (6.5.5) numerically [90]. Since the first demonstration of such
logic gates in 1989, considerable progress has been made. The use of soliton-
dragging logic gates for soliton ring networks has also been proposed [91].

6.5.4 Vector Solitons

The phenomenon of soliton trapping suggests that the coupled NLS equations
may possess exact solitary-wave solutions with the property that the orthogo-
nally polarized components propagate in a birefringent fiber without change in
shape. Such solitary waves are referred to as vector solitons to emphasize the
fact that an input pulse maintains not only its intensity profile but also its state
of polarization even when it is not launched along one of the principal axes
of the fiber. A more general question one may ask is whether conditions exist
under which two orthogonally polarized pulses of different widths and differ-
ent peak powers propagate undistorted in spite of the XPM-induced nonlinear
coupling between them.

Consider the case of high-birefringence fibers. To obtain soliton solutions
of Eqs. (6.5.4) and (6.5.5), it is useful to simplify them using the transformation

u = ũexp(iδ2ξ=2� iδτ); v = ṽexp(iδ2ξ=2+ iδτ): (6.5.9)

The resulting equations are independent of δ and take the form

i
∂ ũ
∂ξ

+
1
2

∂ 2ũ
∂τ2 +(jũj2 +Bjṽj2)ũ = 0; (6.5.10)

i
∂ ṽ
∂ξ

+
1
2

∂ 2ṽ
∂τ2 +(jṽj2 +Bjũj2)ṽ = 0: (6.5.11)

In the absence of XPM-induced coupling (B = 0), the two NLS equations
become decoupled and have independent soliton solutions of the form dis-
cussed in Section 5.2. When B 6= 0, Eqs. (6.5.10) and (6.5.11) can be solved by
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the inverse scattering method only for a specific value of parameter B, namely
B = 1. Manakov obtained such a solution in 1973 [92]. In its simplest form,
the solution can be written as

ũ(ξ ;τ) = cos θ sech(τ)exp(iξ=2); (6.5.12)

ṽ(ξ ;τ) = sinθ sech(τ)exp(iξ=2); (6.5.13)

where θ is an arbitrary angle. A comparison with Eq. (5.2.15) shows that this
solution corresponds to a vector soliton that is identical with the fundamental
soliton (N = 1) of Section 5.2 in all respects. The angle θ can be identified as
the polarization angle.

The vector-soliton solution predicts that a ‘sech’ pulse with N = 1, linearly
polarized at an arbitrary angle from a principal axis, can maintain both its shape
and polarization provided the fiber is birefringent such that the XPM parameter
B = 1. However, as discussed in Section 6.1, unless the fiber is especially
designed, B 6= 1 in practice. In particular, B =

2
3 for linearly birefringent fibers.

For this reason, solitary-wave solutions of Eqs. (6.5.10) and (6.5.11) for B 6= 1
have been studied in many different contexts [93]–[117]. Such solutions are
not solitons in a strict mathematical sense but, nevertheless, exhibit the shape-
preserving property of solitons.

In the specific case of equal amplitudes (θ = 45Æ), a solitary-wave solution
of Eqs. (6.5.10) and (6.5.11) is given by [99]

ũ = ṽ = η sech[(1+B)1=2ητ ]exp[i(1+B)η2ξ=2]; (6.5.14)

where η represents the soliton amplitude. For B = 0, this solution reduces
to the scalar soliton of Section 5.2. For B 6= 0, it represents a vector soliton
polarized at 45Æ with respect to the principal axes of the fiber. Because of
the XPM interaction, the vector soliton is narrower by a factor of (1+B)1=2

compared with the scalar soliton. For such a soliton, the combination of SPM
and XPM compensates for the GVD. At the same time, the carrier frequencies
of two polarization components must be different for compensating the PMD.
This can be seen by substituting Eq. (6.5.14) in Eq. (6.5.9). The canonical
form of the vector soliton, obtained by setting η = 1 is then given by

u(ξ ;τ) = sech[(1+B)1=2τ ]exp[i(1+B+δ2
)ξ=2� iδτ ]; (6.5.15)

v(ξ ;τ) = sech[(1+B)1=2τ ]exp[i(1+B+δ2
)ξ=2+ iδτ ]: (6.5.16)

The only difference between u(ξ ;τ) and v(ξ ;τ) is the sign of the last phase
term involving the product δτ . This sign change reflects the shift of the carrier
frequency of the soliton components in the opposite directions.
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The solution given by Eq. (6.5.14) represents one of the several solitary-
wave solutions that have been discovered in birefringent fibers by solving Eqs.
(6.1.19) and (6.1.20) under various approximations. In one case, the two com-
ponents not only have an asymmetric shape but they can also have a double-
peak structure [96]. In another interesting class of solutions, two solitary waves
form bound states such that the state of polarization is not constant over the
entire pulse but changes with time [97]. In some cases the state of polariza-
tion can even evolve periodically along the fiber length [111]. Several other
solitary-wave solutions have been discovered during the 1990s [107]–[117].

Similar to the case of modulation instability, one may ask whether vector
solitons exist in isotropic fibers with no birefringence. In this case, we should
use Eqs. (6.5.1) and (6.5.2) with b = 0. These equations then become identical
to Eqs. (6.1.17) and (6.1.18) with the choice B = 2. The only difference is
that they are written in terms of the circularly polarized components as defined
in Eq. (6.5.3). The vector soliton given in Eq. (6.5.14) thus exists even for
isotropic fibers and can be written using B = 2 as

u+ = u
�
= η sech(

p
3ητ)exp(3iη2ξ=2): (6.5.17)

It corresponds to a linearly polarized pulse whose electric field vector may
be oriented at any angle in the plane transverse to the fiber axis. Elliptically
polarized solitons also exist for whom the the polarization ellipse rotates at a
fixed rate [115]. The state of polarization is not uniform across the pulse for
such solitons.

6.6 Random Birefringence

As mentioned in Section 6.1, modal birefringence in optical fibers changes
randomly over a length scale �10 m unless polarization-maintaining fibers are
used. Because lightwave systems commonly use fibers with randomly vary-
ing birefringence, it is important to study how optical pulses are affected by
random birefringence changes. Indeed, this issue has been investigated exten-
sively [118]–[150]. In this section we consider the effects of random birefrin-
gence for both soliton and nonsoliton pulses.

6.6.1 Polarization-Mode Dispersion

It is intuitively clear that the polarization state of CW light propagating in fibers
with randomly varying birefringence will generally be elliptical and would
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change randomly along the fiber during propagation. In the case of optical
pulses, the polarization state can also be different for different parts of the pulse
unless the pulse propagates as a soliton. Such random polarization changes
typically are not of concern for lightwave systems because photodetectors used
inside optical receivers are insensitive to the state of polarization of the incident
light (unless a coherent-detection scheme is employed). What affects such
systems is not the random polarization state but pulse broadening induced by
random changes in the birefringence. This is referred to as PMD-induced pulse
broadening.

The analytical treatment of PMD is quite complex in general because of its
statistical nature. A simple model, first introduced in 1986 [118], divides the
fiber into a large number of segments. Both the degree of birefringence and
the orientation of the principal axes remain constant in each section but change
randomly from section to section. In effect, each fiber section can be treated as
a phase plate and a Jones matrix can be used for it [151]. Propagation of each
frequency component associated with an optical pulse through the entire fiber
length is then governed by a composite Jones matrix obtained by multiplying
individual Jones matrices for each fiber section. The composite Jones matrix
shows that two principal states of polarization exist for any fiber such that,
when a pulse is polarized along them, the polarization state at fiber output
is frequency independent to first order, in spite of random changes in fiber
birefringence. These states are analogs of the slow and fast axes associated
with polarization-maintaining fibers. Indeed, the differential group delay ∆T
(relative time delay in the arrival time of the pulse) is largest for the principal
states of polarization [135].

The principal states of polarization provide a convenient basis for calcu-
lating the moments of ∆T [119]. The PMD-induced pulse broadening is char-
acterized by the root-mean-square (RMS) value of ∆T , obtained after averag-
ing over random birefringence changes. Several approaches have been used
to calculate this average using different models [119]–[123]. The variance
σ 2

T � h(∆T )
2i turns out to be the same in all cases and is given by [132]

σ 2
T (z) = 2∆02l2

c [exp(�z=lc)+ z=lc�1]; (6.6.1)

where the intrinsic modal dispersion ∆0 = d(∆β )=dω is related to the differ-
ence in group velocities along the two principal states of polarization. The
parameter lc is the correlation length, defined as the length over which two
polarization components remain correlated; its typical values are �10 m.
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For short distances such that z� lc, σT = ∆0z from Eq. (6.6.1), as expected
for a polarization-maintaining fiber. For distances z > 1 km, a good estimate
of pulse broadening is obtained using z� lc. For a fiber of length L, σT in this
approximation becomes

σT � ∆0
p

2lcL� Dp

p
L; (6.6.2)

where Dp is the PMD parameter. Measured values of Dp vary from fiber to
fiber, typically in the range Dp = 0:1–2 ps/

p
km [129]. Modern fibers are de-

signed to have low PMD, with values of Dp as low as 0.05 ps/
p

km [133].
Because of the

p
L dependence, PMD-induced pulse broadening is relatively

small compared with the GVD effects. Indeed, σ T � 1 ps for fiber lengths
�100 km and can be ignored for pulse widths >10 ps. However, PMD be-
comes a limiting factor for lightwave systems designed to operate over long
distances at high bit rates near the zero-dispersion wavelength of the fiber [130].

Several schemes can be used for compensating the PMD effects occurring
in lightwave systems [152]–[162]. In one scheme, the PMD-distorted signal
is separated into its components along the two principal states of polarization,
PMD is inferred from the measured relative phase, and the two components are
synchronized after introducing appropriate delays [154]. The success of this
technique depends on the ratio L=LPMD for a fiber of length L, where LPMD =

(T0=Dp)
2 is the PMD length for pulses of width T0; considerable improvement

is expected for fibers as long as 4LPMD [163]. Because LPMD can approach
10,000 km for Dp = 0:1 ps/

p
km and T0 = 10 ps, first-order PMD effects can

be compensated over transoceanic distances.
Several other factors need to be considered in practice. The derivation of

Eq. (6.6.1) assumes that the fiber link has no elements exhibiting polarization-
dependent loss or gain. The presence of polarization-dependent losses can in-
duce additional broadening [134]. Similarly, the effects of second-order PMD
should be considered for fibers with relatively low values of Dp. Such effects
have been studied and lead to additional distortion of optical pulses [139].
Moreover, the effects of second-oder PMD depend on the chirp associated with
an optical pulse and degrade the system performance when chirp is relatively
large [137].

6.6.2 Polarization State of Solitons

As mentioned earlier, the polarization state of a pulse in general becomes
nonuniform across the pulse because of random changes in fiber birefringence.
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At the same time, PMD leads to pulse broadening. An interesting question is
whether similar things happen to a soliton, or solitons are relatively immune to
random birefringence changes because of their particle-like nature. This issue
became important soon after solitons became a viable candidate for long-haul
lightwave systems [164]–[176].

In the case of constant birefringence, it was seen in Section 6.5 that the
orthogonally polarized components of a soliton can travel at the same speed, in
spite of different group velocities associated with them at low powers. Solitons
realize this synchronization by shifting their frequencies appropriately. It is
thus not hard to imagine that solitons may avoid splitting and PMD-induced
pulse broadening through the same mechanism. Indeed, numerical simulations
based on Eqs. (6.1.11) and (6.1.12) indicate this to be the case [164] as long
as the PMD parameter is small enough to satisfy the condition Dp < 0:3

p
D,

where D is related to β 2 as indicated in Section 1.2.
To understand the relative insensitivity of solitons to PMD, let us discuss

how Eqs. (6.1.11) and (6.1.12) can be adapted for fibers exhibiting random
birefringence changes along their length. It is more convenient to write them
in terms of the normalized amplitudes u and v defined as

u = Ax
p

γLD ei∆βz=2
; v = Ay

p
γLD e�i∆βz=2

: (6.6.3)

If we also use soliton units and introduce normalized distance and time as

ξ = z=LD; τ = (t� β̄1z)=T0; (6.6.4)

Eqs. (6.1.11) and (6.1.12) become

i

�
∂u
∂ξ

+δ
∂u
∂τ

�
+bu+

1
2

∂ 2u
∂τ2 +

�
juj2 + 2

3
jvj2

�
u+

1
3

v2u� = 0; (6.6.5)

i

�
∂v
∂ξ

�δ
∂v
∂τ

�
�bv+

1
2

∂ 2v
∂τ2 +

�
jvj2 + 2

3
juj2

�
v+

1
3

u2v� = 0; (6.6.6)

where

δ =
T0

2jβ2j
(β1x�β1y); b =

T 2
0

2jβ2j
(β0x�β0y): (6.6.7)

Both δ and b vary randomly along the fiber because of random birefringence
fluctuations.
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Equations (6.6.5) and (6.6.6) can be written in a compact form by intro-
ducing a column vector U and the Pauli matrices as

U =

�
u
v

�
; σ1 =

�
1 0
0 �1

�
; σ2 =

�
0 1
1 0

�
; σ3 =

�
0 �i
i 0

�
: (6.6.8)

In terms of the column vector U , the coupled NLS equations become [165]

i
∂U
∂ξ

+σ1

�
bU + iδ

∂U
∂τ

�
+

1
2

∂ 2U
∂τ2 + s0U�

1
3

s3σ3U; (6.6.9)

where the Stokes parameters are defined in terms of U as

s0 = U†U = juj2 + jvj2; s1 =U†σ1U = juj2�jvj2; (6.6.10)

s2 = U†σ2U = 2Re(u�v); s3 =U†σ3U = 2Im(u�v): (6.6.11)

These Stokes parameters are analogous to those introduced in Section 6.3.2 for
describing the polarization state of CW light on the Poincaré sphere. The main
difference is that they are time dependent and describe the polarization state of
a pulse. They can be reduced to those of Section 6.3.2 by integrating over time
such that Sj =

R ∞
�∞ s j(t)dt for j = 0 to 3.

As in the CW case, the Stokes vector with components s1; s2, and s3 moves
on the surface of the Poincaré sphere of radius s0. When birefringence of
the fiber varies randomly along the fiber, the tip of the Stokes vector moves
randomly over the Poincaré sphere. The important question is the length scale
over which such motion covers the entire surface of the Poincaré sphere and
how this length compares with the dispersion length. To answer this question,
one should consider random variations in b and δ as well as random changes
in the orientation of the principal axes along fiber.

Random changes in b occur on a length scale �1 m. As they only affect
the phases of u and v, it is clear that such changes leave s1 unchanged. As a
result, the Stokes vector rotates rapidly around the s1 axis. Changes in the ori-
entation of the birefringence axes occur randomly over a length scale �10 m.
Such changes leave s3 unchanged and thus rotate the Stokes vector around that
axis. The combination of these two types of rotations forces the Stokes vec-
tor to fill the entire surface of the Poincaré sphere over a length scale �1 km.
As this distance is typically much shorter than the dispersion length, soliton
parameters are not much affected by random changes in birefringence. The
situation is similar to the case of energy variations occurring when fiber losses
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are compensated periodically using optical amplifiers (see Section 5.4). We
can thus follow a similar approach and average Eq. (6.6.9) over random bire-
fringence changes. When hbi = 0 and hδ i = 0, the two terms containing σ1
average out to zero. The last term in Eq. (6.6.9) requires the average hs3σ3Ui.
This average turns out to be s0U=3 if we make use of the identity [165]

UU†
=

3

∑
j=1

s jσ j: (6.6.12)

After averaging over birefringence fluctuations, Eq. (6.6.9) reduces to

i
∂U
∂ξ

+
1
2

∂ 2U
∂τ2 +

8
9

s0U = 0; (6.6.13)

The factor of 8
9 can be absorbed in the normalization factor used for U and

amounts to reducing the nonlinear parameter γ by this factor. In terms of the
components u and v, Eq. (6.6.13) can be written as

i
∂u
∂ξ

+
1
2

∂ 2u
∂τ2 +(juj2 + jvj2)u = 0; (6.6.14)

i
∂v
∂ξ

+
1
2

∂ 2v
∂τ2 +(jvj2 + juj2)v = 0: (6.6.15)

As discussed in Section 6.5.3, this set of two coupled NLS equations is in-
tegrable by the inverse scattering method [92] and has the solution in the form
of a fundamental vector soliton given in Eqs. (6.5.12) and (6.5.13). This solu-
tion shows that a fundamental soliton maintains the same polarization across
the entire pulse “on average” in spite of random birefringence changes along
the fiber. This is an extraordinary result and is indicative of the particle-like
nature of solitons. In effect, solitons maintain uniform polarization across the
entire pulse and resist small random changes in birefringence [164]. Extensive
numerical simulations based on Eqs. (6.6.5) and (6.6.6) confirm that solitons
can maintain a uniform polarization state approximately over long fiber lengths
even when optical amplifiers are used for compensating fiber losses [165].

It is important to note that the vector soliton associated with Eqs. (6.6.14)
and (6.6.15) represents the average behavior. The five parameters associated
with this soliton (amplitude, frequency, position, phase, and polarization angle)
will generally fluctuate along fiber length in response to random birefringence
changes. Perturbation theory, similar to that used for scalar solitons in Section
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5.4, can be used to study birefringence-induced changes in soliton parame-
ters [166]–[170]. For example, the amplitude of the soliton decreases and its
width increases because of perturbations produced by random birefringence.
The reason behind soliton broadening is related to the generation of disper-
sive waves (continuum radiation) and resulting energy loss. The perturbation
technique can also be used to study interaction between orthogonally polar-
ized solitons [171] and timing jitter induced by amplifier-induced fluctuations
in the polarization state of the soliton [176].

From a practical standpoint, uniformity of soliton polarization can be use-
ful for polarization-division multiplexing. In this scheme, two orthogonally
polarized bit streams are interleaved in the time domain. As a result, alternate
pulses have orthogonal polarization states initially and are able to maintain
their orthogonality if they propagate as solitons. This allows much tighter
packing of solitons (resulting in a higher bit rate) because the interaction be-
tween two neighboring solitons is reduced when they are orthogonally polar-
ized. However, extensive numerical simulations show that the technique of
polarization-division multiplexing is useful in practice only when the PMD
parameter Dp is relatively small [173]. When Dp is large, copolarized solitons
provide an overall better system performance.

Problems

6.1 Derive an expression for the nonlinear part of the refractive index when
an optical beams propagates inside a high-birefringence optical fiber.

6.2 Prove that Eqs. (6.1.15) and (6.1.16) indeed follow from Eqs. (6.1.11)
and (6.1.12).

6.3 Prove that a high-birefringence fiber of length L introduces a relative
phase shift of ∆φNL = (γP0L=3)cos(2θ) between the two linearly polar-
ized components when a CW beam with peak power P0 and polarization
angle θ propagates through it. Neglect fiber losses.

6.4 Explain the operation of a Kerr shutter. What factors limit the response
time of such a shutter when optical fibers are used as the Kerr medium?

6.5 How can fiber birefringence be used to remove the low-intensity pedestal
associated with an optical pulse?

6.6 Solve Eqs. (6.3.1) and (6.3.2) in terms of the elliptic functions. You can
consult Reference [43].
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6.7 Prove that Eqs. (6.3.14) and (6.3.15) can be written in the form of Eq.
(6.3.19) after introducing the Stokes parameters through Eq. (6.3.16).

6.8 What is meant by polarization instability in birefringent optical fibers?
Explain the origin of this instability.

6.9 Derive the dispersion relation K(Ω) for modulation instability to occur
in low-birefringence fibers starting from Eqs. (6.1.15) and (6.1.16). Dis-
cuss the frequency range over which the gain exists when β2 > 0.

6.10 Derive the dispersion relation K(Ω) for modulation instability to oc-
cur in high-birefringence fibers starting from Eqs. (6.1.22) and (6.1.23).
Discuss the frequency range over which the gain exists when β2 > 0.

6.11 Solve Eqs. (6.5.4) and (6.5.5) numerically by using the split-step Fourier
method. Reproduce the results shown in Fig. 6.12. Check the accuracy
of Eq. (6.5.8) for δ = 0:2 and B = 2=3.

6.12 Verify by direct substitution that the solution given by Eq. (6.5.14) sat-
isfies Eqs. (6.5.4) and (6.5.5).

6.13 Explain the operation of soliton-dragging logic gates. How would you
design a NOR gate by using such a technique?

6.14 Explain the origin of PMD in optical fibers. Why does PMD lead to
pulse broadening. Do you expect PMD-induced broadening to occur for
solitons?
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Chapter 7

Cross-Phase Modulation

So far in this book, only a single electromagnetic wave is assumed to propagate
inside optical fibers. When two or more optical fields having different wave-
lengths propagate simultaneously inside a fiber, they interact with each other
through the fiber nonlinearity. In general, such an interaction can generate new
waves under appropriate conditions through a variety of nonlinear phenomena
such as stimulated Raman or Brillouin scattering, harmonic generation, and
four-wave mixing; these topics are covered in Chapters 8–10. The fiber non-
linearity can also couple two fields through cross-phase modulation (XPM)
without inducing any energy transfer between them. Cross-phase modulation
is always accompanied by self-phase modulation (SPM) and occurs because
the effective refractive index seen by an optical beam in a nonlinear medium
depends not only on the intensity of that beam but also on the intensity of other
copropagating beams [1].

The XPM-induced coupling among optical fields gives rise to a number
of interesting nonlinear effects in optical fibers. This coupling between two
fields of different wavelengths is considered in Section 7.1 where a set of two
coupled nonlinear Schrödinger (NLS) equations is obtained. These equations
are used in Section 7.2 to discuss how the XPM affects the phenomenon of
modulation instability. Similar to the analysis in Section 6.4, this instability
can occur even in the normal-dispersion regime of an optical fiber. Section
7.3 focuses on soliton pairs whose members support each other through XPM.
The effects of XPM on the shape and the spectrum of copropagating ultrashort
pulses are described in Section 7.4. Several applications of XPM-induced cou-
pling in optical fibers are discussed in Section 7.5.

260
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7.1 XPM-Induced Nonlinear Coupling

This section extends the theory of Section 2.3 to the case of two optical pulses
at different wavelengths copropagating inside a single-mode fiber. In general,
the two optical fields can differ not only in their wavelengths but also in their
states of polarization. To simplify the presentation, we first focus on the case
in which the two optical fields at different wavelengths are linearly polarized
along one of the principal axes of a birefringent fiber. The case of arbitrarily
polarized beams is discussed later in this section.

7.1.1 Nonlinear Refractive Index

In the quasi-monochromatic approximation, it is useful to separate the rapidly
varying part of the electric field by writing it in the form

E(r; t) = 1
2 x̂ [E1 exp(�iω1t)+E2 exp(�iω2t)]+ c:c:; (7.1.1)

where x̂ is the polarization unit vector, ω1 and ω2 are the carrier frequencies
of the two pulses, and the corresponding amplitudes E1 and E2 are assumed to
be slowly varying functions of time compared with an optical period. This
assumption is equivalent to assuming that the spectral width of each pulse
satisfies the condition ∆ωj � ω j ( j = 1;2), and holds quite well for pulse
widths >0.1 ps. Evolution of the slowly varying amplitudes E1 and E2 is
governed by the wave equation (2.3.1) with the linear and nonlinear parts of
the induced polarization given by Eqs. (2.3.5) and (2.3.6).

To see the origin of XPM, we substitute Eq. (7.1.1) in Eq. (2.3.6) and find
that the nonlinear polarization can be written as

PNL(r; t) =
1
2 x̂[PNL(ω1)exp(�iω1t)+PNL(ω2)exp(�iω2t)

+ PNL(2ω1�ω2)exp[�i(2ω1�ω2)t]

+ PNL(2ω2�ω1)exp[�i(2ω2�ω1)t]+ c:c:; (7.1.2)

where the four terms depend on E1 and E2 as

PNL(ω1) = χeff(jE1j
2 +2jE2j

2)E1; (7.1.3)

PNL(ω2) = χeff(jE2j
2 +2jE1j

2)E2; (7.1.4)

PNL(2ω1�ω2) = χeffE
2
1E�

2 ; (7.1.5)

PNL(2ω2�ω1) = χeffE
2
2E�

1 ; (7.1.6)
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with χeff = (3ε0=4)χ(3)
xxxx acting as an effective nonlinear parameter.

The induced nonlinear polarization in Eq. (7.1.2) has terms oscillating at
the new frequencies 2ω1 �ω2 and 2ω2 �ω1. These terms result from the
phenomenon of four-wave mixing discussed in Chapter 10. It is necessary
to satisfy the phase-matching condition if the new frequency components are
to build up significantly, a condition not generally satisfied in practice unless
special precautions are taken. The four-wave-mixing terms are neglected in
this chapter after assuming that phase matching does not occur. The remaining
two terms provide a nonlinear contribution to the refractive index. This can be
seen writing PNL(ω j) in the form ( j = 1;2)

PNL(ω j) = ε0εNL
j E j; (7.1.7)

and combining it with the linear part so that the total induced polarization is
given by

P(ω j) = ε0ε jE j; (7.1.8)

where
ε j = εL

j + εNL
j = (nL

j +∆nj)
2
; (7.1.9)

nL
j is the linear part of the refractive index and ∆nj is the change induced by the

third-order nonlinear effects. Using the approximation ∆nj � nL
j , the nonlinear

part of the refractive index is given by ( j = 1;2)

∆nj � εNL
j =2nj � n2(jE jj

2 +2jE3� jj
2); (7.1.10)

where nL
1 � nL

2 = n has been assumed. The nonlinear parameter n2 is defined
as in Eq. (2.3.13).

Equation (7.1.10) shows that the refractive index seen by an optical field
inside an optical fiber depends not only on the intensity of that field but also on
the intensity of other copropagating fields [2]–[4]. As the optical field propa-
gates inside the fiber, it acquires an intensity-dependent nonlinear phase shift

φNL
j (z) = (ω j=c)∆njz = n2(ω j=c)(jE jj

2 +2jE3� jj
2)z; (7.1.11)

where j = 1 or 2. The first term is responsible for SPM discussed in Chapter 4.
The second term results from phase modulation of one wave by the copropa-
gating wave and is responsible for XPM. The factor of 2 on the right-hand side
of Eq. (7.1.11) shows that XPM is twice as effective as SPM for the same in-
tensity [1]. Its origin can be traced back to the number of terms that contribute
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to the triple sum implied in Eq. (2.3.6). Qualitatively speaking, the number of
terms doubles when the two optical frequencies are distinct compared with that
when the frequencies are degenerate. The XPM-induced phase shift in optical
fibers was measured as early as 1984 by injecting two continuous-wave (CW)
beams into a 15-km-long fiber [3]. Soon after, picosecond pulses were used to
observe the XPM-induced spectral changes [4]–[6].

7.1.2 Coupled NLS Equations

The pulse-propagation equations for the two optical fields can be obtained by
following the procedure of Section 2.3. Assuming that the nonlinear effects
do not affect significantly the fiber modes, the transverse dependence can be
factored out writing Ej(r; t) in the form

E j(r; t) = Fj(x;y)Aj(z; t)exp(iβ0 jz); (7.1.12)

where Fj(x;y) is the transverse distribution of the fiber mode for the jth field
( j = 1;2), Aj(z; t) is the slowly varying amplitude, and β0 j is the corresponding
propagation constant at the carrier frequency ωj. The dispersive effects are
included by expanding the frequency-dependent propagation constant βj(ω)
for each wave in a way similar to Eq. (2.3.23) and retaining only up to the
quadratic term. The resulting propagation equation for Aj(z; t) becomes

∂A j

∂ z
+β1 j

∂A j

∂ t
+

iβ2 j

2

∂ 2A j

∂ t2 +
α j

2
A j

= in2(ω j=c)( f j jjA jj
2 +2 f jkjAkj

2); (7.1.13)

where k 6= j, β1 j = 1=vg j, vg j is the group velocity, β2 j is the GVD coefficient,
and α j is the loss coefficient. The overlap integral fjk is defined as

f jk =

RR ∞
�∞ jFj(x;y)j

2jFk(x;y)j
2dxdy�RR ∞

�∞ jFj(x;y)j2dxdy
��RR ∞

�∞ jFk(x;y)j2dxdy
� : (7.1.14)

The differences among the overlap integrals can be significant in multi-
mode fibers if the two waves propagate in different fiber modes. Even in
single-mode fibers, f11; f22, and f12 differ from each other because of the fre-
quency dependence of the modal distribution Fj(x;y). The difference is small,
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however, and can be neglected in practice. In that case, Eq. (7.1.13) can be
written as the following set of two coupled NLS equations [7]–[10]

∂A1

∂ z
+

1
vg1

∂A1

∂ t
+

iβ21

2
∂ 2A1

∂ t2 +
α1

2
A1

= iγ1(jA1j
2 +2jA2j

2)A1; (7.1.15)

∂A2

∂ z
+

1
vg2

∂A2

∂ t
+

iβ22

2
∂ 2A2

∂ t2 +
α2

2
A2

= iγ2(jA2j
2 +2jA1j

2)A2; (7.1.16)

where the nonlinear parameter γj is defined as in Eq. (2.3.28),

γ j = n2ω j=(cAeff); ( j = 1;2); (7.1.17)

and Aeff is the effective core area (Aeff = 1= f11), assumed to be the same for
both optical waves. Typically Aeff = 50 µm2 in the 1.55-µm wavelength re-
gion. The corresponding values of γ1 and γ2 are �1 W�1/km depending on the
frequencies ω1 and ω2. Generally, the two pulses not only have different GVD
coefficients but also propagate at different speeds because of the difference in
their group velocities. The group-velocity mismatch plays an important role
as it limits the XPM interaction as pulses walk off from each other. One can
define the walk-off length LW using Eq. (1.2.14); it is a measure of the fiber
length during which two overlapping pulses separate from each other as a re-
sult of the group-velocity mismatch.

7.1.3 Propagation in Birefringent Fibers

In a birefringent fiber, the state of polarization of both waves changes with
propagation. The orthogonally polarized components of each wave are then
mutually coupled through XPM. The total optical field can be written as

E(r; t) = 1
2

h
(x̂E1x + ŷE1y)e

�iω1t +(x̂E2x + ŷE2y)e
�iω2t

i
+ c:c: (7.1.18)

The slowly varying amplitudes A1x; A1y; A2x, and A2y can be introduced simi-
larly to Eq. (7.1.12) and the coupled amplitude equations for them are obtained
by following the same method. These equations are quite complicated in the
general case that includes the coherent-couplings terms similar to those present
in Eqs. (6.1.12) and (6.1.13). However, they are considerably simplified in the
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case of high-birefringence fibers because such terms can then be neglected.
The resulting set of four coupled NLS equations becomes [11]

∂A1p

∂ z
+

1
vg1p

∂A1p

∂ t
+

iβ21

2

∂ 2A1p

∂ t2 +
α1

2
A1p

= iγ1(jA1pj
2 +2jA2pj

2 +BjA1qj
2 +BjA2qj

2)A1p; (7.1.19)

∂A2p

∂ z
+

1
vg2p

∂A2p

∂ t
+

iβ22

2

∂ 2A2p

∂ t2 +
α2

2
A2p

= iγ2(jA2pj
2 +2jA1pj

2 +BjA1qj
2 +BjA2qj

2)A2p; (7.1.20)

where p = x;y and q = x;y such that p 6= q. The parameter B is given in Eq.
(6.1.21) and equals 2/3 for linearly birefringent fibers. These equations reduce
to Eqs. (7.1.15) and (7.1.16) when both waves are polarized along a principal
axis (A1y = A2y = 0).

7.2 XPM-Induced Modulation Instability

This section extends the analysis of Section 5.1 to the case in which two CW
beams of different wavelengths propagate inside a fiber simultaneously. Sim-
ilar to the single-beam case, modulation instability is expected to occur in the
anomalous-GVD region of the fiber. The main issue is whether XPM-induced
coupling can destabilize the CW state even when one or both beams experience
normal GVD [12]–[19].

7.2.1 Linear Stability Analysis

The following analysis is similar to that of Section 6.4.2. The main difference
is that XPM-induced coupling is stronger and the parameters β2 and γ are dif-
ferent for the two beams because of their different wavelengths. As usual, the
steady-state solution is obtained by setting the time derivatives in Eqs. (7.1.15)
and (7.1.16) to zero. If fiber losses are neglected, the solution is of the form

Ā j =
q

Pj exp(iφ j); (7.2.1)

where j = 1 or 2, Pj is the incident optical power, and φj is the nonlinear phase
shift acquired by the jth field and given by

φ j(z) = γ j(Pj +2P3� j)z: (7.2.2)
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Following the procedure of Section 5.1, stability of the steady state is ex-
amined assuming a time-dependent solution of the form

A j =
�q

Pj +aj

�
exp(iφ j); (7.2.3)

where aj(z; t) is a small perturbation. By using Eq. (7.2.3) in Eqs. (7.1.15) and
(7.1.16) and linearizing in a1 and a2, the perturbations a1 and a2 satisfy the
following set of two coupled linear equations:

∂a1

∂ z
+

1
vg1

∂a1

∂ t
+

iβ21

2
∂ 2a1

∂ t2

= iγ1P1(a1 +a�1)+2iγ1(P1P2)
1=2(a2 +a�2); (7.2.4)

∂a2

∂ z
+

1
vg2

∂a2

∂ t
+

iβ22

2
∂ 2a2

∂ t2

= iγ2P2(a2 +a�2)+2iγ2(P1P2)
1=2(a1 +a�1); (7.2.5)

where the last term is due to XPM.
The above set of linear equations has the following general solution:

aj = uj exp[i(Kz�Ωt)]+ ivj exp[�i(Kz�Ωt)]; (7.2.6)

where j = 1;2, K is the wave number and Ω is the frequency of perturba-
tion. Equations (7.2.4)–(7.2.6) provide a set of four homogeneous equations
for u1;u2;v1, and v2. This set has a nontrivial solution only when the perturba-
tion satisfies the following dispersion relation:

[(K�Ω=vg1)
2� f1][(K�Ω=vg2)

2� f2) =CXPM; (7.2.7)

where
f j =

1
2β2 jΩ

2( 1
2β2 jΩ

2 +2γ jPj) (7.2.8)

for j = 1;2. The coupling parameter CXPM is defined as

CXPM = 4β21β22γ1γ2P1P2Ω4
: (7.2.9)

The steady-state solution becomes unstable if for some values of Ω the wave
number K has an imaginary part. The perturbations a1 and a2 then experience
an exponential growth along the fiber length. In the absence of XPM coupling
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(CXPM = 0), Eq. (7.2.7) shows that the analysis of Section 5.1 applies to each
wave independently.

In the presence of XPM coupling, Eq. (7.2.7) provides a fourth-degree
polynomial in K whose roots determine the conditions under which K becomes
complex. In general, these roots are obtained numerically. If the wavelengths
of the two optical beams are so close to each other that the group-velocity
mismatch is negligible or are located on opposite sides of the zero-dispersion
wavelength such that (vg1 � vg2), the four roots are given by [12]

K = Ω=vg1�f
1
2( f1 + f2)� [( f1� f2)

2
=4+CXPM]1=2g1=2

: (7.2.10)

It is easy to verify that K can become complex only if CXPM > f1 f2. Using
Eqs. (7.2.8) and (7.2.9), the condition for modulation instability to occur can
be written as

[Ω2
=Ω2

c1 + sgn(β21)][Ω
2
=Ω2

c2 + sgn(β22)]< 4; (7.2.11)

where Ωc1 and Ωc2 are defined as

Ωc j = (4γ jPj=jβ2 jj)
1=2

; (7.2.12)

with j = 1 or 2. When the condition (7.2.11) is satisfied, the gain spectrum of
modulation instability is obtained from g(Ω) = 2Im(K).

The modulation-instability condition (7.2.11) shows that there is a range
of Ω over which the gain g(Ω) exists. The steady-state solution (7.2.3) is
unstable to perturbations at those frequencies. The most important conclusion
drawn from Eq. (7.2.11) is that modulation instability can occur irrespective
of the signs of the GVD coefficients. Thus, whereas modulation instability
requires anomalous GVD in the case of a single beam (see Section 5.1), it
can occur in the two-beam case even if both beams experience normal GVD.
The frequency range over which g(Ω) > 0 depends on whether β21 and β 22
are both positive, both negative, or one positive and the other negative. The
smallest frequency range corresponds to the case in which both beams are in
the normal-dispersion regime of the fiber. Because modulation instability in
that case is due solely to XPM, only this case is discussed further.

Figure 7.1 shows the gain spectra of XPM-induced modulation instability
for silica fibers in the visible region near 0.53 µm choosing β2 j = 60 ps2/km

and γ j = 15 W�1/km in Eq. (7.2.8). The group-velocity mismatch is neglected
in the left graph where different curves correspond to values of the power ratio
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Figure 7.1 Gain spectra of XPM-induced modulation instability in the normal-
dispersion regime of a fiber for (i) different power ratios with δ = 0 and (ii) different
values of δ with equal beam powers. (After Ref. [12].)

P2=P1 in the range 0–2. The right graph shows the effect of group-velocity mis-
match for equal beam powers by varying the parameter δ = jv�1

g1 � v�1
g2 j in the

range 0–3 ps/m. These results show that XPM-induced modulation instability
can occur in the normal-GVD regime for relatively small values of δ . The
peak gain of about 5 m�1 at the 100-W power level implies that the instability
can develop in fibers a few meters long.

The set of four coupled equations obtained in Section 7.1.3 should be used
to investigate XPM-induced modulation instability when two elliptically po-
larized CW beams propagate in a high-birefringence fiber. The new feature is
that the dispersion relation, Eq. (7.2.7), becomes an eighth-degree polynomial
in K. If one of the beams is polarized along a principal axis of the fiber, the
dispersion relation reduces to a sixth-degree polynomial in K. The gain spec-
trum of XPM-induced modulation instability then depends on the polarization
angle of the other beam [11]. In general, the gain bandwidth is reduced when
the two beams are not polarized along the same axis.

7.2.2 Experimental Results

The experimental attempts to observe the XPM-induced modulation instability
for normal GVD have focused mostly on the case of two polarization compo-
nents of a single beam (see Section 6.4). It appears that this instability is
difficult to observe in the case of two beams with different wavelengths. The
reason is related to the fact that Eqs. (7.1.15) and (7.1.16) neglect four-wave
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mixing. The neglect of the four-wave-mixing terms can be justified when the
wavelength difference is so large that phase matching cannot occur [17]–[19].
However, to observe modulation instability, the wavelength difference needs
to be reduced to �1 nm or less. Four-wave mixing then becomes nearly phase
matched and cannot be ignored. Indeed, a careful analysis that includes GVD
to all orders shows that XPM-induced modulation instability is not likely to
occur in the normal-dispersion region of conventional silica fibers [19]. It can
occur in especially designed dispersion-flattened fibers in which two normal-
GVD regions are separated by an intermediate wavelength region of anoma-
lous GVD. In such fibers, it is possible to match the group velocities even
when the wavelengths of two beams differ by 100 nm or more.

The XPM-induced modulation instability has been observed when one of
the beams propagates in the normal-GVD region while the other beam expe-
riences anomalous dispersion. In one experiment [20], a pump-probe configu-
ration was used such that the 1.06-µm pump pulses experienced normal GVD
while 1.32-µm probe pulses propagated in the anomalous-GVD regime of the
fiber. When the pump and probe pulses were launched simultaneously, the
probe developed modulation sidebands, with a spacing of 260 GHz at the 0.4-
W peak-power level of pump pulses, as a result of XPM-induced modulation
instability. This configuration can be used to advantage if the pump beam is in
the form of intense pulses whereas the other beam forms a weak CW signal.
The weak CW beam can be converted into a train of ultrashort pulses because
it is amplified through XPM-induced modulation instability only when the two
waves are present simultaneously [8].

In an experimental realization of the preceding idea [21], 100-ps pump
pulses were obtained from a 1.06-µm, mode-locked, Nd:YAG laser while
an external-cavity semiconductor laser provided the weak CW signal (power
<0.5 mW) whose wavelength was tunable over 1.43-1.56 µm. The zero-
dispersion wavelength of the 1.2-km-long optical fiber was near 1.273 µm such
that the group velocities were nearly equal at 1.06 and 1.51 µm. When 60-µW
signal power was coupled into the fiber together with the pump pulses (peak
power >500 W), the signal spectrum developed sidebands indicative of the
XPM-induced modulation instability. The experimental results were in quali-
tative agreement with the numerical solutions of Eqs. (7.1.15) and (7.1.16) and
indicated that the CW signal was converted into a train of picosecond pulses.

This technique has been used to generate a 10-GHz pulse train by launch-
ing the CW signal from a 1543-nm semiconductor laser into a fiber together
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with 13.7-ps pump pulses (10-GHz repetition rate) obtained from a 1558-nm,
mode-locked semiconductor laser [22]. The 11-km-long dispersion-shifted
fiber had its zero-dispersion wavelength at 1550 nm, resulting in nearly equal
group velocities at the pump and signal wavelengths. The streak-camera mea-
surements indicated that XPM-induced modulation instability converted the
CW signal into a train of 7.4-ps pulses. If pump pulses were coded to carry
digital information, signal pulses will reproduce the information faithfully be-
cause the XPM interaction requires the presence of a pump pulse. Such a de-
vice is useful for wavelength conversion of signals in optical communication
systems.

7.3 XPM-Paired Solitons

Similar to the case of vector solitons discussed in Section 6.5.3, the XPM-
induced modulation instability indicates that the coupled NLS equations may
have solitary-wave solutions in the form of two paired solitons that preserve
their shape through the XPM interaction. In fact, solitonic and periodic solu-
tions of the coupled NLS equations have been studied since 1977 [23]–[43].
Because such solutions specify intensity profiles of both pulses and always
occur in pairs, they are referred to as XPM-paired solitons (also called symbi-
otic solitons). Some of such paired solutions have been discussed in Section
6.5.3 in the context of vector solitons. However, in that case the two polariza-
tion components of a single beam experience the same GVD (either normal or
anomalous). In the general case discussed here, the carrier frequencies of two
solitons can be different enough that the two members of the soliton pair can
have different signs for the GVD parameter.

7.3.1 Bright–Dark Soliton Pair

Solitons paired by XPM represent the specific solutions of Eqs. (7.1.15) and
(7.1.16) for which the pulse shape does not change with z although the phase
may vary along the fiber. Such solutions are not solitons in a strict math-
ematical sense and should be referred to more accurately as solitary waves.
The group-velocity mismatch represents the biggest hurdle for the existence of
XPM-paired solitons. It is possible to realize equal group velocities (vg1 = vg2)
if the wavelengths of two optical waves are chosen appropriately on opposite
sides of the zero-dispersion wavelength such that one wave experiences nor-
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mal GVD while the other wave lies in the anomalous-GVD region. Indeed,
several examples of XPM-paired solitons were discovered exactly under such
operating conditions [25]–[27].

An interesting example is provided by the bright–dark soliton pair formed
when β21 < 0 and β22 > 0. If fiber losses are ignored (α1 = α2 = 0) and group
velocities are assumed to be equal by setting vg1 = vg2 = vg in Eqs. (7.1.15)
and (7.1.16), a bright–dark soliton pair is given by [25]

A1(z; t) = B1tanh[W (t� z=V )]exp[i(K1z�Ω1t)]; (7.3.1)

A2(z; t) = B2sech[W (t� z=V )]exp[i(K2z�Ω2t)]; (7.3.2)

where the soliton amplitudes are determined from

B2
1 = (2γ1β22 + γ2jβ21j)W

2
=(3γ1γ2); (7.3.3)

B2
2 = (2γ2jβ21j+ γ1β22)W

2
=(3γ1γ2); (7.3.4)

the wave numbers K1 and K2 are given by

K1 = γ1B2
1�jβ21jΩ

2
1=2; K2 = β22(Ω

2
2�W 2)=2; (7.3.5)

and the effective group velocity of the soliton pair is obtained from

V�1 = v�1
g �jβ21jΩ1 = v�1

g +β22Ω2: (7.3.6)

As seen from Eq. (7.3.6), the frequency shifts Ω1 and Ω2 must have op-
posite signs and cannot be chosen independently. The parameter W governs
the pulse width and determines the soliton amplitudes through Eqs. (7.3.3) and
(7.3.4). Thus, two members of the soliton pair have the same width, the same
group velocity, but different shapes and amplitudes such that they support each
other through the XPM coupling. In fact, their shapes correspond to bright and
dark solitons discussed in Chapter 5. The most striking feature of this soliton
pair is that the dark soliton propagates in the anomalous-GVD regime whereas
the bright soliton propagates in the normal-GVD regime, exactly opposite of
the behavior expected in the absence of XPM. The physical mechanism be-
hind such an unusual pairing can be understood as follows. Because XPM is
twice as strong as SPM, it can counteract the temporal spreading of an opti-
cal pulse induced by the combination of SPM and normal GVD, provided the
XPM-induced chirp is of the opposite kind than that produced by SPM. A dark
soliton can generate this kind of chirp. At the same time, the XPM-induced
chirp on the dark soliton is such that the pair of bright and dark solitons can
support each other in a symbiotic manner.
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7.3.2 Bright–Gray Soliton Pair

A more general form of an XPM-coupled soliton pair can be obtained by solv-
ing Eqs. (7.1.15) and (7.1.16) with the postulate

A j(z; t) = Qj(t� z=V )exp[i(Kjz�Ω jt +φ j)]; (7.3.7)

where V is the common velocity of the soliton pair, Qj governs the soliton
shape, Kj and Ω j represent changes in the propagation constant and the fre-
quency of two solitons, and φj is the phase ( j = 1;2). The resulting solution
has the form [32]

Q1(τ) = B1[1�b2sech2(W τ)]; Q2(τ) = B2sech(Wτ); (7.3.8)

where τ = t� z=V . The parameters W and b depend on the soliton amplitudes,
B1 and B2, and on fiber parameters through the relations

W =

�
3γ1γ2

2γ1β22�4γ2β21

�1=2

B2; b =

�
2γ1β22� γ2β21

γ1β22�2γ2β21

�1=2 B2

B1
: (7.3.9)

The constants K1 and K2 are also fixed by various fiber parameters and soliton
amplitudes. The phase of the bright soliton is constant but the dark-soliton
phase φ1 is time-dependent. The frequency shifts Ω1 and Ω2 are related to the
soliton-pair speed as in Eq. (7.3.6).

The new feature of the XPM-coupled soliton pair in Eq. (7.3.8) is that
the dark soliton is of “gray” type. The parameter b controls the depth of the
intensity dip associated with a gray soliton. Both solitons have the same width
W but different amplitudes. A new feature is that the two GVD parameters
can be positive or negative. However, the soliton pair exists only under certain
conditions. The solution is always possible if β21 < 0 and β22 > 0 and does
not exist when β21 > 0 and β22 < 0. As discussed before, this behavior is
opposite to what would normally be expected and is due solely to XPM. If
both solitons experience normal GVD, the bright–gray soliton pair can exist
if γ1β22 > 2γ2β21. Similarly, if both solitons experience anomalous GVD, the
soliton pair can exist if 2γ1jβ22j< γ2jβ21j.

7.3.3 Other Soliton Pairs

The soliton-pair solutions given in the preceding are not the only possible so-
lutions of Eqs. (7.1.15) and (7.1.16). These equations also support pairs with
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two bright or two dark solitons depending on various parameter values [27].
Moreover, the XPM-supported soliton pairs can exist even when group ve-
locities are not equal because, similar to soliton trapping in birefringent fibers
(see Section 6.5), two pulses can shift their carrier frequencies to equalize their
group velocities. A simple way to find the conditions under which XPM-paired
solitons can exist is to postulate an appropriate solution, substitute it in Eqs.
(7.1.15) and (7.1.16), and then investigate whether soliton parameters (ampli-
tude, width, group velocity, frequency shift, and wave number) can be deter-
mined with physically possible values [32]–[34]. As an example, consider the
case when Eqs. (7.3.1) and (7.3.2) describe the postulated solution. Assume
also that K1 = K2 and Ω1 = Ω2 so that the frequency shifts are equal. It turns
out that the postulated solution is always possible if β21 < 0 and β22 > 0, but
exists only under certain conditions if β21 and β22 have the same sign [34]. Fur-
ther, the assumption Ω1 = Ω2 can be relaxed to obtain another set of solitary-
wave solutions. Stability of the XPM-paired solitons is not always guaranteed
and should be checked through numerical simulations.

The set of four coupled equations obtained in Section 7.1.3 should be used
to study whether the XPM-paired vector solitons exist in birefringent fibers.
By following the method discussed in the preceding, one finds that such soliton
solutions indeed exist [11]. Depending on the parameter values, birefringent
fibers can support a pair of bright vector solitons or a pair composed of one
dark and one bright vector soliton. The XPM interaction of two elliptically
polarized beams appears to have a rich variety of interesting features.

The coupled NLS equations (7.1.15) and (7.1.16) also have periodic so-
lutions that represent two pulse trains that propagate undistorted through an
optical fiber because of the XPM-induced coupling between them. One such
periodic solution in terms of the elliptic functions was found in 1989 in the
specific case in which both pulse trains have the same group velocity and ex-
perienced anomalous GVD inside the fiber [29]. By 1998, nine periodic so-
lutions, written as different combinations of the elliptic functions, have been
found [43]. All of these solutions assume equal group velocities and anoma-
lous GVD for the two pulse trains. A further generalization considers XPM-
induced coupling among more than two optical fields. In this case, one needs
to solve a set of multiple coupled NLS equations of the form

∂A j

∂ z
+

1
vg j

∂A j

∂ t
+

iβ2 j

2

∂ 2A j

∂ t2 = i

 
M

∑
k=1

γ jkjAkj
2

!
A j; (7.3.10)
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where j = 1–M. These equations have periodic as well as soliton-pair solutions
for certain combinations of parameter values [44].

7.4 Spectral and Temporal Effects

This section considers the spectral and temporal changes occurring as a result
of XPM interaction between two copropagating pulses with nonoverlapping
spectra [45]–[51]. For simplicity, the polarization effects are ignored assuming
that the input beams preserve their polarization during propagation. Equations
(7.1.15) and (7.1.16) then govern evolution of two pulses along the fiber length
and include the effects of group-velocity mismatch, GVD, SPM, and XPM. If
fiber losses are neglected for simplicity, these equations become

∂A1

∂ z
+

iβ21

2
∂ 2A1

∂T 2 = iγ1(jA1j
2 +2jA2j

2)A1; (7.4.1)

∂A2

∂ z
+d

∂A2

∂T
+

iβ22

2
∂ 2A2

∂T 2 = iγ2(jA2j
2 +2jA1j

2)A2; (7.4.2)

where

T = t�
z

vg1
; d =

vg1� vg2

vg1vg2
: (7.4.3)

Time T is measured in a reference frame moving with one pulse traveling at
speed vg1. The parameter d is a measure of group-velocity mismatch between
the two pulses.

In general, two pulses can have different widths. Using the width T0 of
the first pulse at the wavelength λ 1 as a reference, we introduce the walk-off
length LW and the dispersion length LD as

LW = T0=jdj; LD = T 2
0 =jβ21j: (7.4.4)

Depending on the relative magnitudes of LW , LD, and the fiber length L, the
two pulses can evolve very differently. If L is small compared to both LW and
LD, the dispersive effects do not play a significant role and can be neglected.
This can occur for T0 > 1 ns and L < 10 m if the center wavelengths of the
two pulses are within 10 nm of each other (jdj � 10 ps/m). In this quasi-CW
situation, the steady-state solution of Section 7.3 is applicable. If LW < L but
LD � L, the second derivatives in Eqs. (7.4.1) and (7.4.2) can be neglected
but the first derivatives must be retained. Even though the pulse shape does
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not change, the combination of group-velocity mismatch and the nonlinearity-
induced frequency chirp can affect the spectrum drastically. This is generally
the case for T0 � 100 ps, L � 10 m, and d < 10 ps/m. Finally, for ultrashort
pulses (T0 < 10 ps), the GVD terms should also be included; XPM then affects
both the pulse shape and the spectrum. Both of these cases are discussed in
what follows.

7.4.1 Asymmetric Spectral Broadening

Consider first the simple case L � LD for which the second-derivative terms
in Eqs. (7.4.1) and (7.4.2) can be neglected. The group-velocity mismatch
is included through the parameter d assuming LW < L. As the pulse shapes
do not change in the absence of GVD, Eqs. (7.4.1) and (7.4.2) can be solved
analytically. The general solution at z = L is given by [47]

A1(L;T ) = A1(0;T )eiφ1
; A2(L;T ) = A2(0;T �dL)eiφ2

; (7.4.5)

where the time-dependent nonlinear phase shifts are obtained from

φ1(T ) = γ1

�
LjA1(0;T )j2 +2

Z L

0
jA2(0;T � zd)j2 dz

�
; (7.4.6)

φ2(T ) = γ2

�
LjA2(0;T )j2 +2

Z L

0
jA1(0;T + zd)j2 dz

�
: (7.4.7)

The physical interpretation of Eqs. (7.4.5)–(7.4.7) is clear. As the pulse prop-
agates through the fiber, its phase is modulated because of the intensity de-
pendence of the refractive index. The modulated phase has two contributions.
The first term in Eqs. (7.4.6) and (7.4.7) is due to SPM (see Section 4.1). The
second term has its origin in XPM. Its contribution changes along the fiber
length because of the group-velocity mismatch. The total XPM contribution to
the phase is obtained by integrating over the fiber length.

The integration in Eqs. (7.4.6) and (7.4.7) can be carried out for specific
pulse shapes. As an illustration, consider the case of two unchirped Gaussian
pulses of the same width T0 with the initial amplitudes

A1(0;T ) =
p

P1 exp

�
�

T 2

2T 2
0

�
; A2(0;T ) =

p
P2 exp

�
�
(T �Td)

2

2T 2
0

�
;

(7.4.8)
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Figure 7.2 Optical spectra of two copropagating pulses exhibiting XPM-induced
asymmetric spectral broadening. The parameters are γ 1P1L = 40, P2=P1 = 0:5,
γ2=γ1 = 1:2, τd = 0, and L=LW = 5.

where P1 and P2 are the peak powers and Td is the initial time delay between
the two pulses. Substituting Eq. (7.4.8) in Eq. (7.4.6), φ 1 is given by

φ1(τ) = γ1L

�
P1e�τ2

+P2

p
π

δ
[erf(τ� τd)� erf(τ� τd�δ )]

�
; (7.4.9)

where erf(x) stands for the error function and

τ =
T
T0
; τd =

Td

T0
; δ =

dL
T0

: (7.4.10)

A similar expression can be obtained for φ2(T ) using Eq. (7.4.7).
As discussed in Section 4.1, the time dependence of the phase manifests

as spectral broadening. Similar to the case of pure SPM, the spectrum of each
pulse is expected to broaden and develop a multipeak structure. However, the
spectral shape is now governed by the combined contributions of SPM and
XPM to the pulse phase. Figure 7.2 shows the spectra of two pulses using
γ1P1L = 40, P2=P1 = 0:5, γ2=γ1 = 1:2, τd = 0, and δ = 5. These parameters
correspond to an experimental situation in which a pulse at 630 nm, with 100-
W peak power, was launched inside a fiber together with another pulse at 530
nm with 50-W peak power such that Td = 0, T0 = 10 ps, and L= 5 m. The most
noteworthy feature of Fig. 7.2 is spectral asymmetry that is due solely to XPM.
In the absence of XPM interaction the two spectra would be symmetric and
would exhibit less broadening. The spectrum of pulse 2 is more asymmetric
because the XPM contribution is larger for this pulse (P1 = 2P2).
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A qualitative understanding of the spectral features seen in Fig. 7.2 can be
developed from the XPM-induced frequency chirp using

∆ν1(τ) =
�1
2π

∂φ1

∂T
=

γ1L
πT0

�
P1τe�τ2

�
P2

δ

�
e�(τ�τd)

2
� e�(τ�τd�δ )2

��
;

(7.4.11)
where Eq. (7.4.9) was used. For τd = 0 and jδ j � 1 (L � LW ), the chirp is
given by the simple relation

∆ν1(τ)�
γ1L
πT0

e�τ2
[P1τ +P2(2τ�δ )]: (7.4.12)

The chirp for pulse 2 is obtained following the same procedure and is given by

∆ν2(τ)�
γ2L
πT0

e�τ2
[P2τ +P1(2τ +δ )]: (7.4.13)

For positive values of δ , the chirp is larger near the leading edge for pulse 1
while the opposite occurs for pulse 2. Because the leading and trailing edges
carry red- and blue-shifted components, respectively, the spectrum of pulse
1 is shifted toward red while that of pulse 2 is shifted toward blue. This is
precisely what occurs in Fig. 7.2. The spectrum of pulse 2 shifts more because
the XPM contribution is larger for it when P1 > P2. When P1 = P2 and γ1 � γ2,
the spectra of two pulses would be the mirror images of each other.

The qualitative features of spectral broadening can be quite different if the
two pulses do not overlap initially but have a relative time delay [47]. To iso-
late the effects of XPM, it is useful to consider the pump-probe configuration
assuming P1 � P2. The pump-induced chirp imposed on the probe pulse is
obtained from Eq. (7.4.11) by neglecting the SPM contribution and is of the
form

∆ν1(τ) = sgn(δ )∆νmax exp[�(τ� τd)
2]� exp[�(τ� τd�δ )2]; (7.4.14)

where ∆νmax is the maximum XPM-induced chirp given by

∆νmax =
γ1P2L
πT0jδ j

=
γ1P2LW

πT0
: (7.4.15)

Note that ∆νmax is determined by the walk-off length LW rather than the actual
fiber length L. This is expected because the XPM interaction occurs as long as
the two pulses overlap.
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Figure 7.3 Optical spectra (left column) and XPM-induced phase and chirp (right col-
umn) for a probe pulse copropagating with a faster-moving pump pulse. Probe shape
is shown by a dashed line. Three rows correspond to τ d = 0, 2, and 4, respectively.
(After Ref. [47].)

Equation (7.4.14) shows that the XPM-induced chirp can vary significantly
along the probe pulse if τd and δ are of opposite signs. As a result, the probe
spectrum can have qualitatively different features depending on the relative
values of τd and δ . Consider, for example, the case in which the pump pulse
travels faster than the probe pulse (δ < 0) and is delayed initially (τd � 0).
Figure 7.3 shows the probe spectrum together with the phase φ1 and the chirp
∆ν1 for δ = �4 and τd = 0, 2, and 4. The fiber length L and the pump peak
power P2 are chosen such that γ1P2L = 40 and L=LW = 4. For reference, a
10-ps pump pulse with a group-velocity mismatch d = 10 ps/m has LW = 1 m.
The probe spectrum in Fig. 7.3 is shifted toward red with strong asymmetry



Spectral and Temporal Effects 279

for τd = 0. For τd = 2, it becomes symmetric while for τd = 4 it is again
asymmetric with a shift toward blue. In fact, the spectra for τd = 0 and τd = 4
are mirror images of each other about the central frequency ν1 = ω1=2π .

The probe spectra can be understood physically by considering the XPM-
induced chirp shown in the right column of Fig. 7.3. For τd = 0, the chirp
is positive across the entire probe pulse, and the maximum chirp occurs at
the pulse center. This is in contrast to the SPM case (shown in Fig. 4.1)
where the chirp is negative near the leading edge, zero at the pulse center, and
positive near the trailing edge. The differences in the SPM and XPM cases
are due to group-velocity mismatch. When τd = 0, the slow-moving probe
pulse interacts mainly with the trailing edge of the pump pulse. As a result, the
XPM-induced chirp is positive and the probe spectrum has only blue-shifted
components. When τd = 4, the pump pulse just catches up with the probe
pulse at the fiber output. Its leading edge interacts with the probe; the chirp is
therefore negative and the spectrum is shifted toward red. When τd = 2, the
pump pulse has time not only to the catch up but pass through the probe pulse
in a symmetric manner. The chirp is zero at the pulse center similar to the case
of SPM. However, its magnitude is considerably small across the entire pulse.
As a result, the probe spectrum is symmetrically broadened but its tails carry a
relatively small amount of pulse energy. The probe spectrum in this symmetric
case depends quite strongly on the ratio L=LW . If L=LW = 2 with τd = 1, the
spectrum is broader with considerably more structure. By contrast, if L� LW ,
the probe spectrum remains virtually unchanged.

The XPM-induced spectral broadening has been observed experimentally
in the pump-probe configuration. In one experiment [5], the 10-ps pump pulses
were obtained from a color-center laser operating at 1.51 µm while the probe
pulses at 1.61 µm were generated using a fiber-Raman laser (see Section 8.2).
The walk-off length was about 80 m while the dispersion length exceeded
10 km. Both the symmetric and asymmetric probe spectra were observed as the
fiber length was increased from 50 to 400 m and the effective delay between
the pulses was varied using time-dispersion tuning.

In a different experiment, a Nd:YAG laser was used to provide 33-ps pump
pulses at 1.06 µm and 25-ps probe pulses at 0.53 µm [46]. The delay between
two pulses was adjusted using a Mach–Zehnder interferometer. Because of
a relatively large group-velocity mismatch (d � 80 ps/m), the walk-off length
was only about 25 cm. For a 1-m-long fiber used in the experiment, L=LW = 4.
The probe spectra were recorded by varying the delay Td and the peak power
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Figure 7.4 XPM-induced wavelength shift of a 0.53-µm probe pulse as a function of
the initial time delay of the 1.06-µm pump pulse. Open circles show the experimental
data while the solid line shows the theoretical prediction. (After Ref. [46].)

of the pump pulse. The spectra exhibited a shift toward the red or the blue
side with some broadening as the multiple peaks could not be resolved. Such
a XPM-induced shift is referred to as the induced frequency shift [46]. Figure
7.4 shows the induced shift as a function of the time delay Td . The solid line is
the theoretical prediction of Eq. (7.4.14). The frequency shift for a given time
delay is obtained by maximizing ∆ν1(τ). The maximum occurs near τ = 0,
and the frequency shift is given by

∆ν1 = ∆νmaxfexp(�τ2
d )� exp[�(τd +δ )2]g; (7.4.16)

where δ � �4 for the experimental values of the parameters and τd = Td=T0
with T0� 20 ps. Equation (7.4.16) shows that the maximum shift ∆νmax occurs
for τd = 0 and τd = 4, while the shift vanishes for τd = 2. These features are
in agreement with the experiment. According to Eq. (7.4.15) the maximum
shift should increase linearly with the peak power of the pump pulse. This
behavior is indeed observed experimentally as seen in Fig. 7.5. The XPM-
induced shift of the probe wavelength is about 0.1 nm/kW. It is limited by
the walk-off length and can be increased by an order of magnitude or more
if the wavelength difference between the pump and probe is reduced to a few
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Figure 7.5 XPM-induced wavelength shift of a 0.53-µm probe pulse as a function of
the peak power of copropagating a 1.06-µm pump pulse in the case of no initial time
delay (Td = 0) between the two pulses. (After Ref. [46].)

nanometers. The XPM-induced frequency shifts may be useful for optical
communication applications.

7.4.2 Asymmetric Temporal Changes

In the preceding discussion the dispersion length LD was assumed to be much
larger than the fiber length L. As a result, both pulses maintained their shape
during propagation through the fiber. If LD becomes comparable to L or the
walk-off length LW , the combined effects of XPM, SPM, and GVD can lead to
qualitatively new temporal changes that accompany the spectral changes dis-
cussed earlier. These temporal changes can be studied by solving Eqs. (7.1.15)
and (7.1.16) numerically. It is useful to introduce the normalization scheme of
Section 4.2 by defining

ξ =
z

LD
; τ =

t� z=vg1

T0
; Uj =

A jp
P1

; (7.4.17)
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and write the coupled amplitude equations in the form [47]

∂U1

∂ξ
+ sgn(β21)

i
2

∂ 2U1

∂τ2 = iN2(jU1j
2 +2jU2j

2)U1; (7.4.18)

∂U2

∂ξ
�

LD

LW

∂U2

∂τ
+

i
2

β22

β21

∂ 2U2

∂τ2 = iN2 ω2

ω1
(jU2j

2 +2jU1j
2)U2; (7.4.19)

where the parameter N is introduced as

N2 =
LD

LNL
=

γ1P1T 2
0

jβ21j
: (7.4.20)

Fiber losses have been neglected assuming that αjL� 1 for j = 1;2. The sec-
ond term in Eq. (7.4.19) accounts for the group-velocity mismatch between the
two pulses. The choice of plus or minus depends on the sign of the parameter
d defined in Eq. (7.4.3).

To isolate the XPM effects, it is useful to consider a pump-probe config-
uration. Assuming jU2j

2 � jU1j
2, one can neglect the term containing jU2j

2

in Eqs. (7.4.18) and (7.4.19). Evolution of the pump pulse, governed by Eq.
(7.4.18), is then unaffected by the probe pulse. Evolution of the probe pulse is,
however, affected considerably by the presence of the pump pulse because of
XPM. Equation (7.4.19) governs the combined effects of XPM and GVD on
the shape and the spectrum of the probe pulse. These equations can be solved
numerically using the split-step Fourier method discussed in Section 2.4.

Figure 7.6 shows the shapes and the spectra of the pump and probe pulses
at ξ = 0:4 for the case N = 10, LD=LW = 10, ω2=ω1 = 1:2, and β22 � β21 >

0. Both pulses at the fiber input are taken to be Gaussian of the same width
with no initial time delay between them. The pump pulse is assumed to travel
faster than the probe pulse (d > 0). The shape and the spectrum of the pump
pulse have features resulting from the combined effects of SPM and GVD (see
Section 4.2). In contrast, the shape and the spectrum of the probe pulse are
governed by the combined effects of XPM and GVD. For comparison, Fig. 7.7
shows the probe and pump spectra in the absence of GVD; asymmetric spectral
broadening of the probe spectrum toward the blue side in the absence of GVD
is discussed in Section 7.4.1. The effect of GVD is to reduce the extent of
asymmetry; a part of the pulse energy is now carried by the red-shifted spectral
components (see Fig. 7.6).

The most notable effect of GVD is seen in the shape of the probe pulse in
Fig. 7.6. In the absence of GVD, the pulse shape remains unchanged as XPM
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Figure 7.6 Shapes (upper row) and spectra (lower row) of probe and pump pulses at
ξ = 0:4. Dashed line shows location of input pulses. Both pulses are Gaussian with
the same width and overlap entirely at ξ = 0. (After Ref. [47].)

only affects the optical phase. However, when GVD is present, different parts
of the probe pulse propagate at different speeds because of the XPM-induced
chirp imposed on the probe pulse. This results in an asymmetric shape with
considerable structure [47]. The probe pulse develops rapid oscillations near
the trailing edge while the leading edge is largely unaffected. These oscilla-
tions are due to the phenomenon of optical wave breaking discussed in Section
4.2. There, the combination of SPM and GVD led to oscillations in the pulse
wings (see Fig. 4.10). Here, it is the combination of XPM and GVD that
results in oscillations over the entire trailing half of the probe pulse.

The features seen in Fig. 7.6 can be understood qualitatively noting that the
XPM-induced chirp is maximum at the pulse center (as seen in the top row of
Fig. 7.3). The combined effect of frequency chirp and positive GVD is to slow
down the peak of the probe pulse with respect to its tails. The XPM-induced
optical wave breaking occurs because the peak lags behind and interferes with
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Figure 7.7 Spectra of probe and pump pulses under conditions identical to those of
Fig. 7.6 except that the GVD effects are ignored. Pulse shapes are not shown as they
remain unchanged.

the trailing edge. This can also be understood by noting that the faster moving
pump pulse interacts mainly with the trailing edge of the probe pulse. In fact,
if the probe and pump wavelengths were reversed so that the slower moving
pump pulse interacts mainly with the leading edge, oscillations would develop
near the leading edge because the XPM-induced chirp would speed up the peak
of the probe pulse with respect to its tails. The effect of initial delay between
the pump and probe pulses can lead to qualitative features quite different for
the dispersive XPM compared with those shown in Fig. 7.3. For example, even
if the pump pulse walks through the probe pulse in an asymmetric manner, the
probe spectrum is no longer symmetric when the GVD effects are included.

The experimental observation of the XPM-induced asymmetric temporal
effects requires the use of femtosecond pulses. This is so because LD > 1 km
for T0 > 5 ps while LW � 1 m for typical values of jdj � 10 ps/m. Because
XPM occurs only during a few walk-off lengths, the interplay between the
XPM and GVD effects can occur only if LD and LW become comparable. For
example, if T0 = 100 fs, LD and LW both become �10 cm, and the temporal
effects discussed in the preceding can occur in a fiber less than one meter long.
For such short pulses, however, it becomes necessary to include the higher-
order nonlinear effects.

7.4.3 Higher-Order Nonlinear Effects

As discussed in Section 2.3, several higher-order nonlinear effects should be
considered for femtosecond optical pulses. The most important among them
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in practice is the Raman effect involving molecular vibrations. In the case of
a single pulse propagating in the anomalous-GVD region, its inclusion leads
to intrapulse Raman scattering that manifests through the Raman-induced fre-
quency shift (see Section 5.5). The issue is how intrapulse Raman scattering
affects the XPM interaction between two ultrashort optical pulses [52]–[54].

When the Raman contribution to the nonlinear polarization PNL is in-
cluded, one must use Eq. (2.3.31) in place of Eq. (2.3.6). The coupled NLS
equations can still be obtained by following the procedure of Section 7.1 but
mathematical details become quite cumbersome. By using Eq. (2.3.34) for the
functional form of the Raman response function, the resulting equations can
be written as [53]

∂A j

∂ z
+

1
vg j

∂A j

∂ t
+

iβ2 j

2

∂ 2A j

∂ t2 +
α j

2
A j = iγ j(1� fR)(jA jj

2 +2jAmj2)A j

+ iγ j fR

Z ∞

0
dshR(s)f[jA j(z; t� s)j2 + jAm(z; t� s)j2]A j(z; t)

+ A j(z; t� s)A�

m(z; t� s)exp[i(ω j�ωm)s]Am(z; t)g; (7.4.21)

where j = 1 or 2 and m = 3� j. The parameter fR represents Raman con-
tribution (about 18%) to the nonlinear polarization, and hR(t) is the Raman
response function whose imaginary part is related to the Raman-gain spectrum
through Eq. (2.3.35).

In spite of the complexity of Eq. (7.4.21), the physical meaning of vari-
ous nonlinear terms is quite clear. On the right-hand side of Eq. (7.4.21), the
first two terms represent the SPM and XPM contributions from the electronic
response, the next two terms provide the SPM and XPM contributions from
molecular vibrations, and the last term governs the energy transfer between
the two pulses due to Raman amplification (see Chapter 8). When the Ra-
man contribution is neglected by setting fR = 0, Eq. (7.4.21) reduces to Eqs.
(7.1.15) and (7.1.16). Similarly, if the two pulses are assumed to be much
wider than the Raman response time (�70 fs) and hR(t) is replaced by a delta
function, Eqs. (7.1.15) and (7.1.16) are again recovered provided the Raman
amplification term is neglected.

Equation (7.4.21) shows that the XPM-induced coupling affects ultrashort
optical pulses in several different ways when the Raman contribution is in-
cluded. Energy transfer represented by the last term is discussed in Chapter 8
in the context of stimulated Raman scattering. The novel aspect of Eq. (7.4.21)
is the SPM and XPM contributions from molecular vibrations. Similar to the



286 Cross-Phase Modulation

single-pulse case, these contributions lead to shift of the carrier frequency. The
most interesting feature is that such a shift results from both intrapulse and in-
terpulse Raman scattering. In the context of solitons, the self-frequency shift
is accompanied by a cross-frequency shift [53], occurring because of the si-
multaneous presence of a copropagating pulse. The self- and cross-frequency
shifts may have the same or the opposite signs depending on whether the dif-
ference ω1�ω2 in the carrier frequencies is smaller or larger than the fre-
quency at which the Raman gain is maximum (see Chapter 8). As a result,
the XPM interaction between two solitons of different carrier frequencies can
either enhance or suppress the self-frequency shift expected when each soliton
propagates alone [7].

7.5 Applications of XPM

The nonlinear phenomenon of XPM can be both beneficial and harmful. Per-
haps its most direct impact is on the design of WDM lightwave systems where
XPM often limits the system performance. This aspect of XPM is discussed in
Chapter B.7. This section is devoted to other applications of XPM.

7.5.1 XPM-Induced Pulse Compression

SPM-induced chirp can be used to compress optical pulses (see Chapter B.6).
Because XPM also imposes a frequency chirp on an optical pulse, it can be
used for pulse compression as well [55]–[60]. An obvious advantage of XPM-
induced pulse compression is that, in contrast to the SPM technique requiring
the input pulse to be intense and energetic, XPM can compress weak input
pulses because the frequency chirp is produced by a copropagating intense
pump pulse. However, the XPM-induced chirp is affected by pulse walk-off
and depends critically on the initial relative pump-signal delay. As a result,
the practical use of XPM-induced pulse compression requires a careful control
of the pump-pulse parameters such as its width, peak power, wavelength, and
initial delay relative to the signal pulse.

Two cases must be distinguished depending on the relative magnitudes of
the walk-off length LW and the dispersion length LD. If LD � LW throughout
the fiber, the GVD effects are negligible. In that case, an optical fiber generates
the chirp through XPM, and a grating pair is needed to compress the chirped
pulse. Equation (7.4.11) can be used to analyze the magnitude and the form of
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Figure 7.8 XPM-induced pulse compression in the normal-dispersion region of an
optical fiber realized using a pump pulse of peak power such that N = 10. Shape of
input pulses is also shown for comparison. (After Ref. [47].)

the chirp. A nearly linear chirp can be imposed across the signal pulse when
the pump pulse is much wider compared with it [57]. The compression factor
depends on the pump-pulse energy and can easily exceed 10.

Another pulse-compression mechanism can be used when LD and LW are
comparable. In this case, the same piece of fiber that is used to impose the
XPM-induced chirp also compresses the pulse through the GVD. Interestingly,
in contrast to the SPM case where such compression can occur only in the
anomalous-GVD region, the XPM offers the possibility of pulse compression
even in the visible region (normal GVD) without the need of a grating pair.
The performance of such a compressor can be studied by solving Eqs. (7.4.18)
and (7.4.19) numerically for a given set of pump and signal pulses [47]. It is
generally necessary to introduce a relative time delay τd between the pump and
signal pulses such that the faster moving pulse overtakes the slower pulse and
passes through it. The maximum compression occurs at a distance � jτd jLW
although the pulse quality is not necessarily the best at the point of maximum
compression.

In general, a trade-off exists between the magnitude and the quality of
compression. As an example, Fig. 7.8 compares the compressed pulse with the



288 Cross-Phase Modulation

input signal pulse for the case in which at the fiber input both pulses are Gaus-
sian pulses of the same width at visible wavelengths with the wavelength ratio
λ1=λ2 = 1:2. The other parameters are N = 1, LD=LW = 10, and τd = �2:5.
The pulse is compressed by about a factor of 4 and, except for some ringing
on the leading edge, is pedestal-free. Even this ringing can be suppressed if
the pump pulse is initially wider than the signal pulse, although only at the ex-
pense of reduction in the amount of compression achievable at a given pump
power. Of course, larger compression factors can be realized by increasing the
pump power.

XPM-induced pulse compression in the normal-GVD region of a fiber can
also occur when the XPM coupling is due to interaction between two orthog-
onally polarized components of a single beam [59]. An experiment in 1990
demonstrated pulse compression using just such a technique [58]. A polariz-
ing Michelson interferometer was used to launch 2-ps pulses in a 1.4-m fiber
(with a 2.1-mm beat length) such that the peak power and the relative delay
of the two polarization components were adjustable. For a relative delay of
1.2 ps, the weak component was compressed by a factor of about 6.7 when the
peak power of the other polarization component was 1.5 kW.

When both the pump and signal pulses propagate in the normal-GVD re-
gion of the fiber, the compressed pulse is necessarily asymmetric because of
the group-velocity mismatch and the associated walk-off effects. The group
velocities can be made nearly equal when wavelengths of the two pulses lie
on opposite sides of the zero-dispersion wavelength (about 1.3 µm in conven-
tional silica fibers). One possibility consists of compressing 1.55-µm pulses
by using 1.06-µm pump pulses. The signal pulse by itself is too weak to form
an optical soliton. However, the XPM-induced chirp imposed on it by a co-
propagating pump pulse can be made strong enough that the signal pulse goes
through an initial compression phase associated with higher-order solitons [8].

Figure 7.9 shows evolution of a signal pulse when the pump pulse has
the same width as the signal pulse but is intense enough that N = 30 in Eq.
(7.4.18). Because of the XPM-induced chirp, the signal pulse compresses by
about a factor of 10 before its quality degrades. Both the compression factor
and the pulse quality depend on the width and the energy of the pump pulse and
can be controlled by optimizing pump-pulse parameters. This method of pulse
compression is similar to that provided by higher-order solitons even though,
strictly speaking, the signal pulse never forms a soliton. With the use of
dispersion-shifted fibers, the technique can be used even when both pump and
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Figure 7.9 XPM-induced compression for a pulse experiencing anomalous GVD
and copropagating with a pump pulse of peak power such that N = 30. Pump pulse
propagates in the normal-GVD regime with the same group velocity. (After Ref. [47].)

signal wavelengths are in the 1.55-µm region as long as the zero-dispersion
wavelength of the fiber lies in the middle. In a 1993 experiment, 10.6-ps sig-
nal pulses were compressed to 4.6 ps by using 12-ps pump pulses [60]. Pump
and signal pulses were obtained from mode-locked semiconductor lasers op-
erating at 1.56 and 1.54 µm, respectively, with a 5-GHz repetition rate. Pump
pulses were amplified to an average power of 17 mW with the help of a fiber
amplifier. This experiment demonstrates that XPM-induced pulse compression
can occur at power levels achievable with semiconductor lasers.

7.5.2 XPM-Induced Optical Switching

The XPM-induced phase shift can also be used for optical switching. Several
interferometric schemes have been used to take advantage of the XPM-induced
phase shift for ultrafast optical switching [61]–[73]. The physics behind XPM-
induced switching can be understood by considering a generic interferometer
designed such that a weak signal pulse, divided equally between its two arms,
experiences identical phase shifts in each arm and is transmitted through con-
structive interference. If a pump pulse at a different wavelength is injected into
one of the arms of the interferometer, it would change the signal phase through
XPM in that arm. If the XPM-induced phase shift is large enough (close to π),
the signal pulse will not be transmitted because of the destructive interference
occurring at the output. Thus, an intense pump pulse can switch the signal
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pulse through the XPM-induced phase shift.
XPM-induced optical switching was demonstrated in 1990 using a fiber-

loop mirror acting as a Sagnac interferometer [63]. A dichroic fiber coupler,
with 50:50 splitting ratio at 1.53 µm and 100:0 splitting ratio at 1.3 µm, was
used to allow for dual-wavelength operation. A 1.53-µm color-center laser
provided a low-power (� 5 mW) CW signal. As expected, the counterprop-
agating signal beams experienced identical phase shifts, and the 500-m-long
fiber loop acted as a perfect mirror, in the absence of a pump beam. When
130-ps pump pulses, obtained from a 1.3-µm Nd:YAG laser, were injected
into the clockwise direction, the XPM interaction between the pump and the
signal introduced a phase difference between the counterpropagating signal
beams. Most of the signal power was transmitted when the peak power of the
pump pulse was large enough to introduce a π phase shift.

The XPM-induced phase shift depends not only on the width and the shape
of the pump pulse but also on the group-velocity mismatch. In the case in
which both the pump and signal beams are pulsed, the phase shift also de-
pends on the initial relative time delay between the pump and signal pulses.
In fact, the magnitude and the duration of the XPM-induced phase shift can
be controlled through the initial delay (see Fig. 7.3). The main point to note
is that phase shift can be quite uniform over most of the signal pulse when
the two pulses are allowed to completely pass through each other, resulting in
complete switching of the signal pulse. The pump power required to produce
π phase shift is generally quite large because of the group-velocity mismatch.

The group-velocity mismatch can be reduced significantly if the pump
and signal pulses are orthogonally polarized but have the same wavelength.
Moreover, even if the XPM-induced phase shift is less than π because of the
birefringence-related pulse walk-off, the technique of cross-splicing can be
used to accumulate it over long lengths [66]. In this technique, the fiber loop
consists of multiple sections of polarization-maintaining fibers spliced together
in such a way that the fast and slow axes are rotated by 90Æ in successive sec-
tions. As a result, the pump and signal pulses are forced to pass through each
other in each section of the fiber loop, and the XPM-induced phase shift is
enhanced by a factor equal to the number of sections.

7.5.3 XPM-Induced Nonreciprocity

XPM also occurs when two beams having the same (or different) wavelengths
are propagated in opposite directions inside a fiber such that the counterprop-
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Figure 7.10 Schematic of a fiber gyroscope. Light from a laser is coupled through
a 50% coupler to launch counterpropagating waves in a multiturn fiber loop. The
rotation-induced phase difference is measured through a phase-sensitive detector.

agating waves interact with each other through XPM. Such an interaction
can lead to new qualitative features, manifested through optical bistability and
other instabilities when the fiber is used to construct a nonlinear ring resonator
[74]–[85]. Of particular interest is the XPM-induced nonreciprocity that can
affect the performance of fiber gyroscopes [86]–[91].

The origin of nonreciprocity between two counterpropagating waves can
be understood by following the analysis of Section 7.1. If A1 and A2 are the
amplitudes of the forward and backward propagating waves, they satisfy the
coupled amplitude equations similar to Eqs. (7.1.15) and (7.1.16),

�
∂A j

∂ z
+

1
vg

∂A j

∂ t
+

iβ2

2

∂ 2A j

∂ t2 +
α
2

A j = iγ(jA jj
2 +2jA3� jj

2)A j; (7.5.1)

where the plus or minus sign corresponds to j = 1 or 2, respectively. In the
case of CW beams, this set of two equations is readily solved. If fiber losses
are neglected for simplicity, the solution is given as

A j(z) =
q

Pj exp(�iφ j); (7.5.2)

where Pj is the peak power and the nonlinear phase shift is given by

φ j = γz(Pj +2P3� j); (7.5.3)

with j = 1;2. If P1 6= P2, the phase shifts φ1 and φ2 are not the same for the
two counterpropagating waves. This nonreciprocity is due to the presence of
the factor of two in the XPM term in Eq. (7.5.3).

XPM-induced nonreciprocity can be detrimental for high-precision fiber
gyroscopes used to measure rotation rates as small as 0.01Æ per hour [92]. Fig-
ure 7.10 shows the design of a fiber gyroscope schematically. Its operation is
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based on the Sagnac effect, known to introduce a rotation-dependent phase dif-
ference between the counterpropagating waves [93]. The net phase difference
is thus given by

∆φ = φ1�φ2 = γL(P2�P1)+SΩ; (7.5.4)

where L is the total fiber length, Ω is the rotation rate, and S is a scale fac-
tor that depends on the fiber length L as well as on the radius of the fiber
loop [92]. If the powers P1 and P2 were constant, the XPM term in Eq. (7.5.4)
would be of little concern. However, the power levels can fluctuate in practice.
Even a power difference of 1 µW between the counterpropagating waves can
change ∆φ by � 1�10�6 rad if we use γ � 10 W�1/km and L� 100 m. This
value typically corresponds to an equivalent rotation rate of 0:1Æ per hour. For
this reason, XPM severely limits the sensitivity of fiber gyroscopes unless the
power levels are controlled to within 10 nW.

Several schemes can be used to mitigate the XPM problem and improve the
gyroscope performance. In one scheme, the laser power is modulated before
the counterpropagating waves are launched inside a fiber loop [87]. Because
of the time dependence of optical fields, this case is analyzed by solving Eq.
(7.5.1) with the appropriate boundary conditions [91]. The results show that
the effect of nonreciprocity is reduced drastically if modulation frequency is
chosen suitably. This can be understood physically by noting that XPM occurs
only if the two pulses overlap temporally. On a more fundamental level, XPM-
induced nonreciprocity results from interference between the counterpropagat-
ing waves. Modulation reduces the coherence between the counterpropagating
waves, thereby reducing the effectiveness of such an interference. Indeed, the
same result can also be obtained by using broadband sources with a limited
coherence time [88]–[90]. Thermal sources or light-emitting diodes have been
used for this purpose [92].

Let us consider briefly the effect of XPM on optical bistability. Any non-
linear medium placed inside a cavity can exhibit bistability [94], and optical
fibers are no exception. If a fiber-ring cavity is used for this purpose, optical
bistability can occur irrespective of whether the beam propagates in the clock-
wise or counterclockwise direction. An interesting situation occurs when the
optical beams are launched in both directions. Because of the XPM-induced
coupling between the counterpropagating beams, the device acts as two cou-
pled bistable systems and can exhibit many new qualitative features [75]–[77].
Although optical bistability has been observed in the case of unidirectional
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propagation in a fiber-ring cavity [78], the bidirectional case has not attracted
much attention.

The XPM interaction between two counterpropagating optical pulses is
generally quite weak and can be neglected in the case of ultrashort pulses.
The reason can be understood by noting that the XPM-induced phase shift
decreases even for copropagating pulses as the relative group-velocity differ-
ence increases [see Eq. (7.4.9)]. For counterpropagating pulses the group-
velocity mismatch is so large that the two pulses have little time to interact
with each other. Nonetheless, measurable effects can occur for very intense
pulses. For example, the spectral shift of a probe pulse observed in an exper-
iment in which 0.7-ps pump pulses with peak intensities �10 TW/cm2 were
propagated through a 1-mm-thick glass plate could be accounted for only when
the XPM interaction between the counterpropagating pump and probe pulses
was included [95]. In the case of optical fibers, XPM interaction between coun-
terpropagating waves becomes important for fiber Bragg gratings (see Chapter
B.1).

Problems

7.1 Explain what is meant by cross-phase modulation and why it occurs in
optical fibers.

7.2 Derive an expression for the nonlinear part of the refractive index when
two optical beams of different wavelengths but identical polarizations
are propagating inside an optical fiber.

7.3 Derive the dispersion relation (7.2.7) for XPM-induced modulation in-
stability starting from Eqs. (7.1.15) and (7.1.16). Under what conditions
can modulation instability occur in the normal-GVD regime of a fiber?

7.4 Derive the dispersion relation for XPM-induced modulation instability
starting from Eqs. (7.1.19) and (7.1.20). Assume that one of the CW
beams is polarized along the slow axis while the other beam’s polariza-
tion axis makes an angle θ from that axis.

7.5 Use the dispersion relation obtained in the previous problem to plot the
gain spectra of modulation instability for several values of the polariza-
tion angle (θ = 0;20;45;70, and 90Æ). Discuss your results physically.

7.6 Verify that the pair of bright and dark solitons given by Eqs. (7.3.1) and
(7.3.2) indeed satisfies the coupled NLS equations.
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7.7 Derive an expression for the XPM-induced phase shift imposed on a
probe pulse by a copropagating pump pulse using Eq. (7.4.6). Assume
that the two pulses have “sech” shape, the same width, and are launched
simultaneously.

7.8 Use the result obtained in the previous problem to calculate the fre-
quency chirp imposed on the probe pulse. Plot the chirp profile using
suitable parameter values.

7.9 Make a figure similar to Fig. 7.3 using the same parameter values but
assume that both pulses have “sech” shapes.

7.10 Explain why XPM produces a shift in the wavelength of a 0.53-µm
probe pulse when a 1.06-µm pump pulse is launched with it simulta-
neously (no initial time delay). Can you predict the sign of wavelength
shift for standard optical fibers?

7.11 Write a computer program using the split-step Fourier method (see Sec-
tion 2.4) and solve Eqs. (7.4.18) and (7.4.19) numerically. Reproduce
the results shown in Fig. 7.6.
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[32] M. Lisak, A. Höök, and D. Anderson, J. Opt. Soc. Am. B 7, 810 (1990).
[33] J. T. Manassah, Opt. Lett. 15, 670 (1990).
[34] P. C. Subramaniam, Opt. Lett. 16, 1560 (1991).
[35] Y. S. Kivshar, D. Anderson, M. Lisak, and V. V. Afanasjev, Physica Scripta 44,

195 (1991).
[36] V. Y. Khasilev, JETP Lett. 56, 194 (1992).
[37] M. Wadati, T. Iizuka, and M. Hisakado, J. Phys. Soc. Jpn. 61, 2241 (1992).
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Chapter 8

Stimulated Raman Scattering

Stimulated Raman scattering (SRS) is an important nonlinear process that can
turn optical fibers into broadband Raman amplifiers and tunable Raman lasers.
It can also severely limit the performance of multichannel lightwave systems
by transferring energy from one channel to the neighboring channels. This
chapter describes both the useful and the harmful effects of SRS in optical
fibers. Section 8.1 presents the basic theory behind SRS with emphasis on the
pump power required to reach the Raman threshold; SRS under continuous-
wave (CW) and quasi-CW conditions is considered in Section 8.2 where we
also discuss the performance of fiber-based Raman lasers and amplifiers. Ul-
trafast SRS occurring for pulses of 100-ps width or less is considered in Sec-
tions 8.3 and 8.4 for normal and anomalous group-velocity dispersion (GVD),
respectively. In both cases, attention is paid to the walk-off effects together
with those resulting from self-phase modulation (SPM) and cross-phase mod-
ulation (XPM).

8.1 Basic Concepts

In any molecular medium, spontaneous Raman scattering can transfer a small
fraction (typically � 10�6) of power from one optical field to another field,
whose frequency is downshifted by an amount determined by the vibrational
modes of the medium. This process is called the Raman effect [1]. It is de-
scribed quantum-mechanically as scattering of a photon by one of the molecules
to a lower-frequency photon, while the molecule makes transition to a higher-
energy vibrational state. Incident light acts as a pump for generating the
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frequency-shifted radiation called the Stokes wave. It was observed in 1962
that, for intense pump fields, the nonlinear phenomenon of SRS can occur in
which the Stokes wave grows rapidly inside the medium such that most of the
pump energy is transferred to it [2]. Since then, SRS has been studied ex-
tensively in a variety of molecular media [3]–[8]. This section introduces the
basic concepts, such as the Raman gain and the Raman threshold, and provides
a theoretical framework for describing SRS in optical fibers.

8.1.1 Raman-Gain Spectrum

In a simple approach valid under the CW and quasi-CW conditions, the initial
growth of the Stokes wave is described by [8]

dIs=dz = gRIpIs; (8.1.1)

where Is is the Stokes intensity, Ip is the pump intensity, and the Raman-gain
coefficient gR is related to the cross section of spontaneous Raman scattering
[7]. On a more fundamental level, gR is related to the imaginary part of the
third-order nonlinear susceptibility.

The Raman-gain spectrum gR(Ω), where Ω represents the frequency dif-
ference between the pump and Stokes waves, is the most important quantity
for describing SRS. It was measured for silica fibers in the early experiments
on SRS, with refinements continuing in later years [9]–[14]. In general, gR
depends on composition of the fiber core and can vary significantly with the
use of different dopants. Figure 8.1 shows gR for fused silica as a function
of the frequency shift at a pump wavelength λ p = 1 µm. For other pump
wavelengths gR can be obtained by using the inverse dependence of gR on λp.
The most significant feature of the Raman gain in silica fibers is that gR(Ω)

extends over a large frequency range (up to 40 THz) with a broad peak located
near 13 THz. This behavior is due to the noncrystalline nature of silica glass.
In amorphous materials such as fused silica, molecular vibrational frequencies
spread out into bands that overlap and create a continuum [15]. As a result, in
contrast to most molecular media for which the Raman gain occurs at specific
well-defined frequencies, it extends continuously over a broad range in silica
fibers. As will be seen later, optical fibers can act as broadband amplifiers
because of this feature.

To see how the process of SRS develops, consider a CW pump beam prop-
agating inside a fiber at the optical frequency ωp. If a probe beam at the
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Figure 8.1 Raman-gain spectrum for fused silica at a pump wavelength λ p = 1 µm.
The Raman gain scales inversely with λ p. (After Ref. [10].)

frequency ωs is coincident with the pump at the fiber input, it will be amplified
because of the Raman gain, as long as the frequency difference Ω = ωp�ωs

lies within the bandwidth of the Raman-gain spectrum of Fig. 8.1. If only the
pump beam is incident at the fiber input, spontaneous Raman scattering acts
as a probe and is amplified with propagation. Because spontaneous Raman
scattering generates photons within the entire bandwidth of the Raman-gain
spectrum, all frequency components are amplified. However, the frequency
component for which gR is maximum builds up most rapidly. In the case of
pure silica, gR is maximum for the frequency component that is downshifted
from the pump frequency by about 13.2 THz (440 cm�1). It turns out that
when the pump power exceeds a threshold value, this component builds up
almost exponentially [16]. As a result, SRS leads to generation of the Stokes
wave whose frequency is determined by the peak of the Raman gain. The
corresponding frequency shift is called the Raman shift (or the Stokes shift).

8.1.2 Raman Threshold

To find the Raman threshold, we should consider nonlinear interaction between
the pump and Stokes waves. In the CW case, this interaction is governed by
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the following set of two coupled equations:

dIs

dz
= gRIpIs�αsIs; (8.1.2)

dIp

dz
= �

ωp

ωs
gRIpIs�αpIp; (8.1.3)

where αs and αp account for fiber losses at the Stokes and pump frequen-
cies, respectively. These equations can be derived rigorously using Maxwell’s
equations of Section 2.1. They can also be written phenomenologically by
considering the processes through which photons appear in or disappear from
each beam. One can readily verify that in the absence of losses,

d
dz

�
Is

ωs
+

Ip

ωp

�
= 0: (8.1.4)

This equation merely states that the total number of photons in the pump and
Stokes beams remains constant during SRS.

Although pump depletion must be included for a complete description
of SRS, it can be neglected for the purpose of estimating the Raman thresh-
old [16]. Equation (8.1.3) is readily solved if we neglect the first term on its
right-hand side that is responsible for pump depletion. If we substitute the
solution in Eq. (8.1.2), we obtain

dIs=dz = gRI0 exp(�αpz)Is�αsIs; (8.1.5)

where I0 is the incident pump intensity at z = 0. Equation (8.1.5) can be easily
solved, and the result is

Is(L) = Is(0)exp(gRI0Leff�αsL); (8.1.6)

where L is the fiber length and

Leff = [1� exp(�αpL)]=αp: (8.1.7)

The solution (8.1.6) shows that, because of pump absorption, the effective in-
teraction length is reduced from L to Leff.

The use of Eq. (8.1.6) requires an input intensity Is(0) at z = 0. In prac-
tice, SRS builds up from spontaneous Raman scattering occurring throughout
the fiber length. It has been shown that this process is equivalent to injecting
one fictitious photon per mode at the input end of the fiber [16]. Thus, we
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can calculate the Stokes power by considering amplification of each frequency
component of energy h̄ω according to Eq. (8.1.6) and then integrating over the
whole range of the Raman-gain spectrum, that is,

Ps(L) =
Z ∞

�∞
h̄ω exp[gR(ωp�ω)I0Leff�αsL]dω ; (8.1.8)

where the fiber is assumed to support a single mode. The frequency depen-
dence of gR is shown in Fig. 8.1. Even though the functional form of gR(Ω)

is not known, the integral in Eq. (8.1.8) can be evaluated approximately using
the method of steepest descent because the main contribution to the integral
comes from a narrow region around the gain peak. Using ω = ωs, we obtain

Ps(L) = P eff
s0 exp[gR(ΩR)I0Leff�αsL]; (8.1.9)

where the effective input power at z = 0 is given by

P eff
s0 =h̄ωsBeff; Beff =

�
2π

I0Leff

�1=2 ����∂
2gR

∂ω2

����
�1=2

ω=ωs

: (8.1.10)

Physically, Beff is the effective bandwidth of the Stokes radiation centered near
the gain peak at ΩR = ωp�ωs. Although Beff depends on the pump inten-
sity and the fiber length, the spectral width of the dominant peak in Fig. 8.1
provides an order-of-magnitude estimate for it.

The Raman threshold is defined as the input pump power at which the
Stokes power becomes equal to the pump power at the fiber output [16] or

Ps(L) = Pp(L)� P0 exp(�αpL); (8.1.11)

where P0 = I0Aeff is the input pump power and Aeff is the effective core area
defined as in Section 2.3. In the case of multimode fibers Aeff is the inverse
of the overlap integral in Eq. (7.1.14). Using Eq. (8.1.9) in Eq. (8.1.11) and
assuming αs � αp, the threshold condition becomes

P eff
s0 exp(gRP0Leff=Aeff) = P0; (8.1.12)

where P eff
s0 also depends on P0 through Eqs. (8.1.10). The solution of Eq.

(8.1.12) provides the critical pump power required to reach the Raman thresh-
old. Assuming a Lorentzian shape for the Raman-gain spectrum, the critical
pump power, to a good approximation, is given by [16]

gRP cr
0 Leff

Aeff
� 16: (8.1.13)
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A similar analysis can be carried out for the backward SRS. The threshold
condition in that case is still given by Eq. (8.1.13) but the numerical factor 16 is
replaced with 20. As the threshold for forward SRS is reached first at a given
pump power, backward SRS is generally not observed in optical fibers. Of
course, the Raman gain can be used to amplify a backward propagating signal.
Note also that the derivation of Eq. (8.1.13) assumes that the polarization of
the pump and Stokes waves is maintained along the fiber. If polarization is
not preserved, the Raman threshold is increased by a factor whose value lies
between 1 and 2. In particular, if the polarization is completely scrambled, it
increases by a factor of two.

In spite of various approximations made in the derivation of Eq. (8.1.13),
it is able to predict the Raman threshold quite accurately. For long fibers such
that αpL � 1, Leff � 1=αp. At λp = 1:55 µm, a wavelength near which the
fiber loss is minimum (about 0.2 dB/km), Leff � 20 km. If we use a typical
value Aeff = 50 µm2, the predicted Raman threshold is Pcr

0 � 600 mW. Be-
cause power levels inside a fiber are typically below 10 mW, SRS is not likely
to occur in single-channel optical communication systems. With the advent of
optical amplifiers, the input power can approach 100 mW for some applica-
tions, but still remains well below the critical value.

In practice, SRS is observed using high-power lasers. In the visible region,
Aeff is typically 10 µm2 in single-mode fibers. Equation (8.1.13) then yields
Pcr

0 � 10 W for a 10-m-long fiber. As such power levels are readily available
(from Nd:YAG lasers, for example), SRS can be observed with fibers only a
few meters long.

The simple theory of this section cannot explain the growth of the Stokes
wave beyond the Raman threshold as it neglects pump depletion. Equations
(8.1.2) and (8.1.3) should be solved to include the effect of pump depletion.
These equations can be solved analytically in the specific case αs = αp [17].
The results show that the threshold condition (8.1.13) remains fairly accurate.
Once the Raman threshold is reached, the power is transferred from the pump
to the Stokes rapidly. The theory predicts a complete transfer of pump power
to the Stokes (except for fiber losses). In practice, however, the Stokes wave
serves as a pump to generate a second-order Stokes wave if its power becomes
large enough to satisfy Eq. (8.1.13). This process of cascade SRS can generate
multiple Stokes waves whose number depends on the input pump power.
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8.1.3 Coupled Amplitude Equations

The CW theory of SRS needs modification when optical pulses are used for
pumping. This is almost always the case for optical fibers. In fact, in the case
of CW pumping, stimulated Brillouin scattering (SBS) dominates and inhibits
SRS because of its lower threshold (see Chapter 9). However, SBS can be
nearly suppressed by using pump pulses of widths <1 ns. Each pump pulse
then generates a Stokes (or Raman) pulse if the SRS threshold is reached.
Similar to the CW case, the carrier frequency ωs of the Raman pulse is down-
shifted from that of the pump by the Stokes shift of about 13 THz.

The dynamical description of SRS in optical fibers is considerably simpli-
fied if the medium is assumed to respond instantaneously. This assumption is
often justified because the broad gain spectrum of Fig. 8.1 implies a response
time of well below 100 fs. Except for ultrashort pump pulses (width �10 fs),
the response time is generally much smaller than typical pulse widths. The
mutual interaction between the Raman and pump pulses is then governed by a
set of two coupled amplitude equations obtained such that they include the ef-
fects of Raman gain, pump depletion, SPM, XPM, and GVD. These equations
can be derived following the analysis of Section 2.3.

A unified description should include nonlinear response function R(t) given
in Eq. (2.3.34) so that both the Kerr and Raman effects are included simulta-
neously [18]–[22]. The analysis is somewhat complicated because the optical
field E in Eq. (2.3.31) is of the form

E(r; t) = 1
2 x̂
n

Ap exp[i(β0p�ωpt)]+As exp[i(β0s�ωst)]
o
+ c:c:; (8.1.14)

where ωp and ωs are the carrier frequencies, β0p and β0s are the propagation
constants, and Ap and As are the slowly varying envelopes associated with
the pump and Raman pulses. After considerable algebra, one can obtain the
following set of two equations [22]:

∂Ap

∂ z
+

1
vgp

∂Ap

∂ t
+

iβ2p

2
∂ 2

∂ t2 +
αp

2
Ap

= iγp(1� fR)(jApj2 +2jAsj2)Ap +Rp(z; t); (8.1.15)

∂As

∂ z
+

1
vgs

∂As

∂ t
+

iβ2s

2
∂ 2As

∂ t2 +
αs

2
As

= iγs(1� fR)(jAsj2 +2jApj2)As +Rs(z; t) (8.1.16)
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where vg j is the group velocity, β 2 j is the GVD coefficient, and γj is the non-
linear parameter [defined in Eq. (7.1.19)] with j = p or s. The Raman contri-
butions Rp and Rs are obtained from

R j(z; t) = iγ j fRA j

Z t

�∞
hR(t� t 0)[jA j(z; t

0

)j2 + jAk(z; t
0

)j2]dt0+ iγ j fRAk

�
Z t

�∞
hR(t� t 0)A j(z; t

0

)A�

k(z; t
0

)exp[�iΩR(t� t 0)]dt0: (8.1.17)

where j;k = p or s such that j 6= k, ΩR = ωp�ωs is the Stokes shift, and fR
represents the fractional Raman contribution (see Section 2.3). The Raman
response function hR(t) leads to SRS. The effects of third-order dispersion can
be included adding a third-derivative term proportional to β3. Spontaneous
Raman scattering can also be included adding a noise term in this set of two
equations [21].

In the picosecond regime in which pulse widths exceed 1 ps, Eqs. (8.1.15)
and (8.1.16) can be simplified considerably [22]. The reason is that up and us

vary little over the time scale over which the Raman response function hR(t)
changes. Treating up and us as constants, the integral in Eq. (8.1.17) can be
performed analytically to obtain

R j = iγ j fR[(jA jj
2
+2jAkj

2
)A j + h̃R(�ΩR)A jA

�

k]; (8.1.18)

where h̃R is the Fourier transform of the hR(t) and the negative sign is chosen
for j = s. At the gain peak located at ΩR, the real part of h̃R vanishes while the
imaginary part is related to the Raman gain. Introducing the gain coefficients

gp = 2γp fRjh̃R(ΩR)j; gs = 2γs fRjh̃R(ΩR)j; (8.1.19)

the coupled amplitude equations become

∂Ap

∂ z
+

1
vgp

∂Ap

∂ t
+

i
2

β2p
∂ 2

∂ t2 +
αp

2
Ap

= iγp[jApj2 +(2� fR)jAsj2]Ap�
gp

2
jAsj2Ap; (8.1.20)

∂As

∂ z
+

1
vgs

∂As

∂ t
+

i
2

β2s
∂ 2As

∂ t2 +
αs

2
As

= iγs[jAsj2 +(2� fR)jApj2]As +
gs

2
jApj2As: (8.1.21)
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Note that the XPM factor is 2� fR, rather than being 2, when the Raman con-
tribution is included [19]. The parameter fR has a value of about 0.18 [12].
Under certain conditions, it is necessary to include the transient Raman dy-
namics by adding a third equation governing vibrations of molecules [23].

Equations (8.1.20) and (8.1.21) are solved in Section 8.3 where we con-
sider SRS with picosecond pump pulses. The most important new feature is
the group-velocity mismatch that limits the SRS process to a duration during
which the pump and Raman pulses overlap. The walk-off length can be intro-
duced as in Section 7.4 using

LW = T0=jv
�1
gp � v�1

gs j; (8.1.22)

where T0 represents duration of the pump pulse. Typically LW � 1 m in the
visible region for T0 � 5 ps. For pump pulses of width T0 > 1 ns, LW exceeds
200 m and is larger than fiber lengths commonly used to observe SRS. The
GVD effects are negligible for such pulses and the CW theory is approximately
valid in this quasi-CW regime. In fact, Eqs. (8.1.2) and (8.1.3) can be obtained
from Eqs. (8.1.20) and (8.1.21) if the time derivatives are neglected and Ij =

jA jj2=Aeff is used ( j = p or s). Note that Eqs. (8.1.20) and (8.1.21) are not valid
for femtosecond pump pulses whose spectral width exceeds the Raman shift.
This case is considered later in this chapter.

8.2 Quasi-Continuous SRS

Since the initial observation of SRS in optical fibers [10], SRS has been studied
extensively using pump pulses of widths in the range 1–100 ns, a situation that
corresponds to the quasi-CW regime [24]–[41]. In the single-pass geometry,
each pump pulse launched at one end of the fiber generates a Stokes pulse at
the other end. In the multipass geometry, the fiber is placed inside a cavity,
resulting in a tunable Raman laser. Another application consists of using SRS
for signal amplification. This section discusses all three aspects of SRS in
optical fibers.

8.2.1 Single-Pass Raman Generation

The 1972 demonstration of SRS in silica fibers was carried out in the visi-
ble region using 532-nm pulses from a frequency-doubled Nd:YAG laser [9].
About 75 W of pump power was required to generate the Stokes radiation at
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Figure 8.2 Five Stokes lines S1 to S5 generated simultaneously using 1.06-µm pump
pulses. Vertical line corresponds to residual pump. Powers were measured through a
monochromator with 1.5-nm resolution. (After Ref. [27] c1978 IEEE.)

545 nm in a single-mode fiber of 9-m length and 4-µm core diameter. In later
experiments, 150-ns infrared pump pulses, from a Nd:YAG laser operating at
1:06 µm, were used to initiate SRS [25]. In one experiment, the first-order
Stokes line at 1.12 µm was observed at a pump power of 70 W [27]. Higher-
order Stokes lines appeared at higher pump powers when the Stokes power
became large enough to pump the next-order Stokes line. Figure 8.2 shows the
optical spectrum at a pump power of about 1 kW with five Stokes lines clearly
seen. Each successive Stokes line is broader than the preceding one. This
broadening is due to several competing nonlinear processes and limits the total
number of Stokes lines. Stokes line of up to 15th order have been generated in
the visible region [31].

In these experiments no attempt was made to resolve spectral details of
each Stokes line. In a subsequent experiment [36], the resolution was fine
enough to resolve the line shape of the first-order Stokes line, generated by
launching in a 100-m-long fiber pump pulses of about 1-ns duration, obtained
from a mode-locked argon laser (λp = 514:5 nm). Figure 8.3 shows the ob-
served spectra at three pump powers. The spectra exhibit a broad peak at
440 cm�1 (13.2 THz) and a narrow peak at 490 cm�1 (14.7 THz). As pump
power is increased, the peak power of the broad peak saturates while that of
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Figure 8.3 (a) Stokes spectra at three pump powers and (b) variations of peak powers
with pump power. (After Ref. [36].)

the narrow peak keeps increasing.
The appearance of the double-peak Stokes spectrum can be understood

by noting from Fig. 8.1 that the dominant peak in the Raman-gain spectrum
actually consists of two peaks whose locations exactly coincide with the two
peaks in the Stokes spectra of Fig. 8.3. A detailed numerical model, in which
the shape of the Raman-gain spectrum is included and each spectral component
of the Stokes line is propagated along the fiber including both the Raman gain
and spontaneous Raman scattering, predicts line shapes in agreement with the
experimentally observed spectra [36].

The features seen in Fig. 8.3 can be understood qualitatively as follows.
Spontaneous Raman scattering generates Stokes light across the entire fre-
quency range of the Raman-gain spectrum. After a short length of fiber, these
weak signals are amplified with the appropriate gain coefficients while more
spontaneous light is added. At low pump powers, the observed Stokes spec-
trum looks like exp[gR(Ω)] because of the exponential amplification process.
As pump power is increased, the high-frequency peak at 440 cm�1 can pump
the low-frequency peak at 490 cm�1 through the Raman-amplification pro-
cess. This is precisely what is seen in Fig. 8.3. Eventually, the Stokes power
becomes high enough to generate a second-order Stokes line. Even though this
model is based on the CW theory of SRS, it is able to explain the qualitative
features of Fig. 8.3 because the GVD effects are of minor importance for pulse
widths �1 ns. When the pump pulses become shorter than 1 ns, it becomes
increasingly more important to include the GVD effects, especially the group-
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Figure 8.4 Schematic illustration of a tunable Raman laser. Mirrors M1 and M2 form
a Fabry–Perot cavity. (After Ref. [46].)

velocity mismatch that leads to pulse walk-off. These effects are considered in
Section 8.3.

The Stokes radiation generated through SRS is generally noisy because
it builds up from spontaneous Raman scattering. As a result, both the width
and the energy of Stokes pulses exhibit shot-to-shot fluctuations even when
pump pulses have constant width and energy. The statistics associated with
such fluctuations has been quantified by using Q-switched pulses emitted from
a Nd:YAG laser at a repetition rate of 1 kHz [40]. The relative noise level of
pulse energy decreases rapidly as the peak power of pump pulses is increased
beyond the Raman threshold. Close to the threshold, the distribution of pulse
energies is nearly exponential, as expected from quantum-noise theory [42].
However, just before the onset of the second-order Stokes line, the energy
distribution of the first-order Stokes pulse becomes considerably narrower with
a nearly Gaussian shape. The experimental results can be simulated solving
Eqs. (8.1.2) and (8.1.3) with a random Stokes seed [41].

8.2.2 Raman Fiber Lasers

An important application of the SRS phenomenon in optical fibers has resulted
in the development of fiber-based Raman lasers [43]–[65]. Such lasers can be
tuned over a wide frequency range (�10 THz). Figure 8.4 shows a schematic
of a Raman laser. A piece of single-mode fiber is placed inside a Fabry–Perot
cavity formed by two partially reflecting mirrors M1 and M2. The cavity pro-
vides wavelength-selective feedback for the Stokes light generated inside the
fiber through SRS. An intracavity prism allows tuning of the laser wavelength
by dispersing various Stokes wavelengths spatially, each of which can be se-
lected by turning the mirror M2. The laser threshold corresponds to the pump
power at which Raman amplification during a round trip is large enough to
balance cavity losses consisting mainly of the transmission loss at the mirrors
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and coupling losses at the two ends of the fiber. If we assume a typical value
of 10 dB for the round-trip loss, the threshold condition is

G = exp(2gRP0Leff=Aeff) = 10; (8.2.1)

where Leff is given by Eq. (8.1.7) for a fiber of length L. If optical fiber does not
preserve polarization, gR in Eq. (8.2.1) is reduced by a factor of two because
of scrambling of the relative polarization between the pump and the Stokes
waves [29]. A comparison of Eqs. (8.1.13) and (8.2.1) shows that the threshold
pump power for a Raman laser is lower by at least one order of magnitude than
that of single-pass SRS.

In the 1972 demonstration of a Raman laser [9], the threshold power was
relatively large (about 500 W) because of a short fiber length (L = 1:9 m)
used in the experiment. In subsequent experiments [43]–[45], the threshold
was reduced to a level �1 W by using longer fibers (L � 10 m). This feature
permitted CW operation of a Raman laser at wavelengths in the range 0.50–
0.53 µm using an argon-ion laser as the pump. Stimulated Brillouin scattering
was suppressed by ensuring that the spectral width of the multimode pump was
much larger than the Brillouin-gain bandwidth (see Section 9.1). The use of an
intracavity prism allowed tuning of the laser wavelength over a range of about
10 nm.

At high pump powers, higher-order Stokes wavelengths are generated in-
side the fiber. These wavelengths are dispersed spatially by the intracavity
prism. By adding separate mirrors for each Stokes beam, such a Raman laser
can be operated at several wavelengths simultaneously, each of which can be
independently tuned by turning a cavity mirror [44]. In one experiment, a
ring-cavity configuration was used to generate five orders of tunable Stokes
bands [50]. Raman lasers have been operated in the infrared region extending
from 1.1–1.6 µm, a region useful for optical fiber communications, using a
Nd:YAG laser as a pump [51].

When a Raman laser is pumped by a train of pump pulses, each Raman
pulse after one round trip should be properly synchronized with one of the
succeeding pump pulses. It is relatively easy to achieve synchronization in
Raman lasers. The reason is that the laser can select a particular wavelength
that fulfills the synchronous-pumping requirement among the wide range of
possible wavelengths near the peak of the Raman-gain spectrum (see Fig. 8.1).
Moreover, the laser wavelength can be tuned by simply changing the cavity
length. This technique is referred to as time-dispersion tuning [46] to distin-
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guish it from prism tuning (see Fig. 8.4) that works because of spatial disper-
sion provided by the prism. The technique is very effective in tuning pulsed
Raman lasers over a wide wavelength range. The tuning rate can be obtained
as follows. If the cavity length is changed by ∆L, the time delay ∆t should be
exactly compensated by a wavelength change ∆λ such that

∆t � ∆L=c = jD(λ )jL∆λ ; (8.2.2)

where L is the fiber length and D is the dispersion parameter introduced in
Section 1.2.3. The tuning rate is therefore given by

∆λ
∆L

=
1

cLjD(λ )j
=

λ 2

2πc2Ljβ2j
; (8.2.3)

where Eq. (1.2.11) was used to relate D to the GVD coefficient β 2. The tuning
rate depends on the fiber length L and the wavelength λ , and is typically �
1 nm/cm. In one experiment, a tuning rate of 1.8 nm/cm with a tuning range
of 24 nm was obtained for L = 600 m and λ = 1:12 µm [47].

Synchronously pumped Raman lasers have attracted attention for generat-
ing ultrashort optical pulses [59]. In general, it becomes necessary to take into
account the effects of GVD, group-velocity mismatch, SPM, and XPM when
such lasers are pulsed using pump pulses of widths below 100 ps. These effects
are discussed in Section 8.3. If the Raman pulse falls in the anomalous GVD
regime of the fiber, the soliton effects can create pulses of widths �100 fs or
less. Such lasers are called Raman soliton lasers and are covered in Section
8.4.

The development of Raman lasers advanced considerably during the 1990s.
A new feature was the integration of cavity mirrors within the fiber to make a
compact device. In an early approach, a ring-cavity configuration was used to
make a low-threshold, all-fiber Raman laser using a fiber loop and a fiber cou-
pler [60]. With the advent of fiber-Bragg gratings, it has become possible to
replace cavity mirrors with such gratings [61]. Fused fiber couplers can also be
used for this purpose. In an interesting approach, three pairs of fiber gratings
or couplers are arranged such that they form three cavities for the three Raman
lasers operating at wavelengths 1.117, 1.175, and 1.24 µm, corresponding to
first, second, and third-order Stokes line of a 1.06-µm pump [63]. The result-
ing 1.24-µm Raman laser is useful for amplifying 1.31-µm signals [64]. The
same approach can be used for making a 1.48-µm Raman laser if a phospho-
silicate fiber is used [65]. Such a fiber provides a Stokes shift of nearly 40 THz
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and can convert 1.06-µm pump to 1.48-µm radiation through the second-order
Stokes line. Output powers of more than 1 W were generated by this technique
using 4.5 W of pump power from a 976-nm diode-laser array that pumped a
double-clad Yb-doped fiber to obtain 3.3 W of 1.06 µm radiation.

Raman lasers, operating in the visible and ultraviolet regions and tunable
over a wide range, have also been made using a double-pass scheme with mul-
timode fibers [62]. Tuning over a wide wavelength range (540–970 nm) with
high peak-power levels (>12 kW) was realized when a 50-m-long multimode
fiber (core diameter 200 µm) was pumped at 532 nm using second-harmonic
pulses from a Q-switched Nd:YAG laser having peak powers of more than
400 kW. The same technique provided tuning over the wavelength range 360–
527 nm when Q-switched pulses at at 335 nm were used using third-harmonic
generation. As the broadband light generated by SRS passes through the fiber
only twice, such cavityless lasers are not real lasers in the usual sense. They
are nonetheless useful as a tunable source.

8.2.3 Raman Fiber Amplifiers

Optical fibers can be used to amplify a weak signal if that signal is launched
together with a strong pump wave such that their frequency difference lies
within the bandwidth of the Raman-gain spectrum. Because SRS is the phys-
ical mechanism behind amplification, such amplifiers are called Raman fiber
amplifiers. They were made as early as 1976 and developed further during the
1980s for their potential applications in fiber-optic communication systems
[66]–[91]. The experimental setup is similar to that of Fig. 8.4 except that
mirrors are not needed. In the forward-pumping configuration, the pump prop-
agates with the signal in the same direction whereas the two counterpropagate
in the backward-pumping configuration.

The gain provided by Raman amplifiers under CW or quasi-CW operation
can be obtained from Eqs. (8.1.2) and (8.1.3). If the signal intensity Is(z)
remains much smaller than the pump intensity, pump depletion can be ignored.
The signal intensity at the amplifier output at z = L is then given by Eq. (8.1.6).
Because Is(L) = Is(0)exp(�αsL) in the absence of pump, the amplification
factor is given by

GA = exp(gRP0Leff=Aeff); (8.2.4)

where P0 = I0Aeff is the pump power at the amplifier input and Leff is given by
Eq. (8.1.7). If we use typical parameter values, gR = 1� 10�13 m/W, Leff =
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Figure 8.5 Variation of amplifier gain GA with pump power P0. Different symbols
show the experimental data for three values of input signal power. Solid curves show
the theoretical prediction using gR = 9:2�10�14 m/W. (After Ref. [67].)

100 m, and Aeff = 10 µm2, the signal is amplified considerably for P0 > 1 W.
Figure 8.5 shows the observed variation of GA with P0 when a 1.3-km-long
fiber was used to amplify a 1.064-µm signal by using a 1.017-µm pump [67].
The amplification factor GA increases exponentially with P0 initially but starts
to deviate for P0 > 1 W. This is due to gain saturation occurring because of
pump depletion. The solid lines in Fig. 8.5 are obtained by solving Eqs. (8.1.2)
and (8.1.3) numerically to include pump depletion. The numerical results are
in excellent agreement with the data.

An approximate expression for the saturated gain Gs in Raman amplifiers
can be obtained by solving Eqs. (8.1.2) and (8.1.3) analytically [17] with the
assumption αs = αp�α . Making the transformation Ij =ω jFj exp(�αz) with
j = s or p, we obtain two simple equations:

dFs

dz
= ωpgRFpFs;

dFp

dz
=�ωpgRFpFs: (8.2.5)

Noting that Fp(z)+Fs(z) =C, where C is a constant, the differential equation
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Figure 8.6 Gain-saturation characteristics of Raman amplifiers for several values of
the unsaturated amplifier gain GA.

for Fs can be integrated over the amplifier length, and the result is

Gs =
Fs(L)
Fs(0)

=

�
C�Fs(L)
C�Fs(0)

�
exp(ωpgRCLeff): (8.2.6)

Using C = Fp(0)+Fs(0) in this equation the saturated gain of the amplifier is
given by

Gs =
1+ r0

r0 +G�(1+r0)

A

; (8.2.7)

where r0 is related to the signal-to-pump power ratio at the fiber input as

r0 =
Fs(0)
Fp(0)

=
ωp

ωs

Ps(0)
P0

; (8.2.8)

and GA = exp(gRP0Leff=Aeff) is the small-signal (unsaturated) gain.
Figure 8.6 shows the saturation characteristics by plotting Gs=GA as a

function of GAr0 for several values of GA. The saturated gain is reduced by
a factor of two when GAr0 � 1. This condition is satisfied when the power in
the amplified signal starts to approach the input pump power P0. In fact, P0
is a good measure of the saturation power of Raman amplifiers. As typically
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P0 �1 W, the saturation power of Raman amplifiers is much larger compared
with that of other optical amplifiers [87].

As seen in Fig. 8.5, Raman amplifiers can easily amplify an input signal
by a factor of 1000 (30-dB gain) at a pump power of about 1 W [67]. In a
1983 experiment, a 1.24-µm signal from a semiconductor laser was amplified
by 45 dB using a 2.4-km-long fiber [70]. This experiment used the forward-
pumping configuration. In a different experiment [69], a 1.4-µm signal was
amplified using both the forward- and backward-pumping configurations. The
CW light from a Nd:YAG laser operating at 1.32 µm acted as the pump. Gain
levels of up to 21 dB were obtained at a pump power of 1 W. The amplifier
gain was nearly the same in both pumping configurations.

For optimum performance of Raman amplifiers, the frequency difference
between the pump and signal beams should correspond to the peak of the Ra-
man gain in Fig. 8.1. In the near-infrared region, the most practical pump
source is the Nd:YAG laser operating at 1.06 or 1.32 µm. For this laser, the
maximum gain occurs for signal wavelengths near 1.12 and 1.40 µm, respec-
tively. However, the signal wavelengths of most interest from the standpoint
of optical fiber communications are near 1.3 and 1.5 µm. A Nd:YAG laser can
still be used if a higher-order Stokes line is used as a pump. For example, the
third-order Stokes line at 1.24 µm from a 1.06-µm laser can act as a pump to
amplify the signals at 1.3 µm. Similarly, the first-order Stokes line at 1.4 µm
from a 1.32-µm laser can act as a pump to amplify the signals near 1.5 µm.
As early as 1984, amplification factors of more than 20 dB were realized by
using such schemes [72]–[74]. These experiments also indicated the impor-
tance of matching the polarization directions of the pump and probe waves as
SRS nearly ceases to occur in the case of orthogonal polarizations. The use of
a polarization-preserving fiber with a high-germania core has resulted in 20-
dB gain at 1.52 µm by using only 3.7 W of input power from a Q-switched
1.34-µm laser [56].

A possible application of Raman amplifiers is as a preamplifier before the
signal is detected at the receiver of an optical communication system [88].
Experimental measurements show that the signal-to-noise ratio (SNR) at the
receiver is determined by spontaneous Raman scattering that invariably ac-
companies the amplification process [79]. The output consists not only of the
desired signal but also of amplified spontaneous noise extending over a wide
frequency range (�10 THz). It is possible to obtain an analytic expression for
the noise power in the undepleted-pump approximation [76].
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From a practical standpoint, the quantity of interest is the so-called on–off
ratio, defined as the ratio of the signal power with the pump on to that with
the pump off. This ratio can be measured experimentally. The experimental
results for a 1.34-µm pump show that the on–off ratio is about 24 dB for the
first-order Stokes line at 1.42 µm but degrades to 8 dB when the first-order
Stokes line is used to amplify a 1.52-µm signal. The on–off ratio is also found
to be smaller in the backward-pumping configuration [84]. It can be improved
if the output is passed through an optical filter that passes the amplified signal
but reduces the bandwidth of the spontaneous noise.

An attractive feature of Raman amplifiers is related to their broad band-
width (�5 THz). It can be used to amplify several channels simultaneously
in a wavelength-division-multiplexed (WDM) lightwave system. This fea-
ture was demonstrated in a 1987 experiment [90] in which signals from three
distributed-feedback semiconductor lasers operating in the range 1.57–1.58 µm
were amplified simultaneously using a 1.47-µm pump. The gain of 5 dB was
obtained at a pump power of only 60 mW. A theoretical analysis shows that
a trade-off exists between the on–off ratio and channel gains [91]. During the
1980s considerable attention focused on improving the performance of optical
communication systems using Raman amplification [92]–[97]. This scheme is
called distributed amplification as fiber losses are compensated over the entire
fiber length in a distributed manner. It was used in 1988 to demonstrate soliton
transmission over 4000 km using 55-ps pulses [97].

The main drawback of Raman amplifiers from the standpoint of lightwave
system applications is that a high-power laser is required for pumping. The
experiments performed near 1.55 µm often use tunable color-center lasers as a
pump; such lasers are too bulky for communication applications. Indeed, with
the advent of erbium-doped fiber amplifiers in 1989, Raman amplifiers were
rarely used in the 1.55-µm wavelength region. The situation changed with the
availability of compact high-power semiconductor and fiber lasers. Indeed, the
development of Raman amplifiers has undergone a virtual renaissance during
the 1990s [98]–[110]. As early as 1992, a Raman amplifier was pumped using
a 1.55-µm semiconductor laser whose output was amplified though an erbium-
doped fiber amplifier [99]. The 140-ns pump pulses had a 1.4-W peak-power
level at the 1-kHz repetition rate and were capable of amplifying 1.66-µm
signal pulses by more than 23 dB in a 20-km-long dispersion-shifted fiber. The
resulting 200-mW peak power of 1.66-µm pulses was large enough for their
use for optical time-domain reflection measurements, a technique commonly
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used for supervising and maintaining fiber-optic networks [100].

The use of Raman amplifiers in the 1.3-µm region has attracted consid-
erable attention since 1995 [102]–[110]. In one approach, three pairs of fiber
gratings are inserted within the fiber used for Raman amplification [102]. The
Bragg wavelengths of these gratings are chosen such that they form three
cavities for three Raman lasers operating at wavelengths 1.117, 1.175, and
1.24 µm that correspond to first-, second-, and third-order Stokes line of a
1.06-µm pump. All three lasers are pumped using a diode-pumped Nd-fiber
laser through cascaded SRS. The 1.24-µm laser then pumps the Raman am-
plifier to provide signal amplification in the 1.3-µm region. The same idea of
cascaded SRS was used to obtain 39-dB gain at 1.3 µm by using WDM cou-
plers in place of fiber gratings [103]. In a different approach, the core of silica
fiber is doped heavily with germania. Such a fiber can be pumped to provide
30-dB gain at a pump power of only 350 mW [104]. Such pump powers can
be obtained by using two or more semiconductor lasers. A dual-stage configu-
ration has also been used in which a 2-km-long germania-doped fiber is placed
in series with a 6-km-long dispersion-shifted fiber in a ring geometry [110].
Such a Raman amplifier, when pumped by a 1.24-µm Raman laser, provided
22-dB gain in the 1.3-µm wavelength region with a noise figure of about 4 dB.

A second application of Raman amplifiers is to extend the bandwidth of
WDM lightwave systems operating in the 1.55-µm region [111]–[114]. Er-
bium-doped fiber amplifiers, used commonly in this wavelength regime, have a
bandwidth of under 35 nm. Moreover, a gain-flattening technique is needed to
use the entire 35-nm bandwidth. Massive WDM systems (80 or more channels)
typically require optical amplifiers capable of providing uniform gain over a
70–80-nm wavelength range. Hybrid amplifiers made by combining erbium
doping with Raman gain have been developed for this purpose. In one imple-
mentation of this idea [114], a nearly 80-nm bandwidth was realized by com-
bining an erbium-doped fiber amplifier with two Raman amplifiers, pumped
simultaneously at three different wavelengths (1471, 1495, and 1503 nm) us-
ing four pump modules, each module launching more than 150 mW of power
into the fiber. The pump laser for erbium dopants launched 62-mW of power
at 1465 nm. The combined gain of about 30 dB was nearly uniform over the
wavelength range 1.53–1.61 µm.

A third application of the Raman gain is being pursued for distributed am-
plification of signals [115]–[119]. In this case, relatively long spans (�50 km)
of the transmission fiber are pumped bidirectionally for compensating fiber
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Figure 8.7 Pump-depletion characteristics showing variation of D p with GA for three
values of r0.

losses in a distributed manner. This technique is especially useful for soli-
tons [117]. In a 2000 demonstration of this technique, 100 WDM channels
with 25-GHz channel spacing, each operating at a bit rate of 10 Gb/s, were
transmitted over 320 km [119]. All channels were amplified simultaneously
by pumping each 80-km fiber span in the backward direction using four semi-
conductor lasers. Such a distributed Raman amplifier provided 15-dB gain at
a pump power of 450 mW.

8.2.4 Raman-Induced Crosstalk

The same Raman gain that is beneficial for making fiber amplifiers and lasers
is also detrimental for WDM systems. The reason is that a short-wavelength
channel can act as a pump for longer-wavelength channels and thus transfer
part of the pulse energy to neighboring channels. This leads to Raman-induced
crosstalk among channels that can affect the system performance considerably
[120]–[134].

Consider first a two-channel system with the short-wavelength channel act-
ing as a pump. The power transfer between the two channels is governed by
Eqs. (8.1.2) and (8.1.3). These equations can be solved analytically if the fiber
loss is assumed to be the same for both channels (αs = αp), an assumption
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easily justified for typical channel spacings near 1.55 µm. The amplification
factor Gs for the longer-wavelength channel is given by Eq. (8.2.7). The as-
sociated reduction in the short-wavelength channel power is obtained from the
pump-depletion factor

Dp =
Ip(L)

Ip(0)exp(�αpL)
=

1+ r0

1+ r0 G1+r0
A

; (8.2.9)

where GA and r0 are defined by Eqs. (8.2.4) and (8.2.8), respectively. Figure
8.7 shows the pump-depletion characteristics by plotting Dp as a function of
GA for several values of r0. These curves can be used to obtain the Raman-
induced power penalty defined as the relative increase in the pump power nec-
essary to maintain the same level of output power as that in the absence of
Raman crosstalk. The power penalty can be written as (in decibels)

∆ = 10 log(1=Dp): (8.2.10)

A 1-dB penalty corresponds to Dp � 0:8. If we assume equal channel pow-
ers at the fiber input (r0 � 1), Dp = 0:8 corresponds to GA � 1:22. The
input channel powers corresponding to 1-dB penalty can be obtained from
Eq. (8.2.4). If we use the typical values for 1.55-µm optical communica-
tion systems, gR = 7�10�14 m/W, Aeff = 50 µm2, and Leff = 1=αp � 20 km,
GA = 1:22 corresponds to P0 = 7 mW. If the Raman gain is reduced by a
factor of 2 to account for polarization scrambling [29], this value increases
to P0 = 14 mW. The experimental measurements of the power penalty are in
agreement with the predictions of Eqs. (8.2.9) and (8.2.10).

The situation is more complicated for multichannel WDM systems. The
intermediate channels not only transfer energy to the longer-wavelength chan-
nels but, at the same time, also receive energy from the shorter-wavelength
channels. For an M-channel system one can obtain the output powers for each
channel by solving a set of M coupled equations similar to Eqs. (8.1.2) and
(8.1.3). The shortest-wavelength channel is most affected by Raman-induced
crosstalk because it transfers a part of its energy to all channels lying within the
Raman-gain bandwidth. The transferred amount, however, is different for each
channel as it is determined by the amount of the Raman gain corresponding to
the relative wavelength spacing. In one approach, the Raman-gain spectrum of
Fig. 8.1 is approximated by a triangular profile [122]. The results show that for
a 10-channel system with 10-nm separation, the input power of each channel
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should not exceed 3 mW to keep the power penalty below 0.5 dB. In a 10-
channel experiment with 3-nm channel spacing, no power penalty related to
Raman crosstalk was observed when the input channel power was kept below
1 mW [124]. See Section B.7.2 for further details.

8.3 SRS with Short Pump Pulses

The quasi-CW regime of SRS considered in Section 8.2 applies for pump
pulses of widths >1 ns because the walk-off length LW , defined by Eq. (8.1.22),
generally exceeds the fiber length L for such pulses. However, for ultrashort
pulses of widths below 100 ps, typically LW < L. SRS is then limited by the
group-velocity mismatch and occurs only over distances z � LW even if the
actual fiber length L is considerable larger than LW . At the same time, the
nonlinear effects such as SPM and XPM become important because of rela-
tively large peak powers and affect considerably evolution of both pump and
Raman pulses [135]–[161]. This section discusses the experimental and the-
oretical aspects of SRS in the normal-GVD regime of optical fibers. Section
8.4 is devoted to the case of anomalous GVD where the role of soliton effects
becomes important. In both cases, pulse widths are assumed to be larger than
the Raman response time (�50 fs) so that transient effects are negligible.

8.3.1 Pulse-Propagation Equations

In the general case in which GVD, SPM, XPM, pulse walk-off, and pump
depletion all play an important role, Eqs. (8.1.20) and (8.1.21) should be solved
numerically. If fiber loss is neglected because of relatively small fiber lengths
used in most experiments, and if time is measured in a frame of reference
moving with the pump pulse, these equations take the form

∂Ap

∂ z
+

iβ2p

2
∂ 2Ap

∂T 2

= iγp[jApj2 +(2� fR)jAsj2]Ap�
gp

2
jAsj2Ap; (8.3.1)

∂As

∂ z
� d

∂As

∂T
+

iβ2s

2
∂ 2As

∂T 2

= iγs[jAsj2 +(2� fR)jApj2]Ap +
gs

2
jApj2As; (8.3.2)
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where
T = t� z=vgp; d = v�1

gp � v�1
gs : (8.3.3)

The walk-off parameter d accounts for the group-velocity mismatch between
the pump and Raman pulses and is typically 2–6 ps/m. The GVD parameter
β2 j, the nonlinearity parameter γj, and the Raman-gain coefficient gj ( j =
p or s) are slightly different for the pump and Raman pulses because of the
Raman shift of about 13 THz between their carrier frequencies. In terms of
the wavelength ratio λp=λs, these parameters for pump and Raman pulses are
related as

β2s =
λp

λs
β2p; γs =

λp

λs
γp; gs =

λp

λs
gp: (8.3.4)

Four length scales can be introduced to determine the relative importance
of various terms in Eqs. (8.3.1) and (8.3.2). For pump pulses of duration T0
and peak power P0, these are defined as

LD =
T 2

0

jβ2pj
; LW =

T0

jdj
; LNL =

1
γpP0

; LG =
1

gpP0
: (8.3.5)

The dispersion length LD, the walk-off length LW , the nonlinear length LNL,
and the Raman-gain length LG provide, respectively, the length scales over
which the effects of GVD, pulse walk-off, nonlinearity (both SPM and XPM),
and Raman gain become important. The shortest length among them plays the
dominant role. Typically, LW � 1 m (for T0 < 10 ps) while LNL and LG be-
come smaller or comparable to it for P0 > 100 W. In contrast, LD � 1 km for
T0 = 10 ps. Thus, the GVD effects are generally negligible for pulses as short
as 10 ps. The situation changes for pulse widths �1 ps or less because LD de-
creases faster than LW with a decrease in the pulse width. The GVD effects can
then affect SRS evolution significantly, especially in the anomalous-dispersion
regime.

8.3.2 Nondispersive Case

When the second-derivative term in Eqs. (8.3.1) and (8.3.2) is neglected, these
equations can be solved analytically [158]–[161]. The analytic solution takes
a simple form if pump depletion during SRS is neglected. As this assumption
is justified for the initial stages of SRS and permits us to gain physical in-
sight, let us consider it in some detail. The resulting analytic solution includes
the effects of both XPM and pulse walk-off. The walk-off effects without
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XPM [123] and the XPM effects without walk-off [136] were considered rela-
tively early. Both of them can be included by solving Eqs. (8.3.1) and (8.3.2)
with β2p = β2s = 0 and gp = 0. Equation (8.3.1) for the pump pulse then yields
the solution

Ap(z;T ) = Ap(0;T )exp[iγpjAp(0;T )j2z]; (8.3.6)

where the XPM term has been neglected assuming jAsj2 � jApj2. For the
same reason, the SPM term in Eq. (8.3.2) can be neglected. The solution of
Eq. (8.3.2) is then given by [147]

As(z;T ) = As(0;T + zd)expf[gs=2+ iγs(2� fR)]ψ(z;T )g; (8.3.7)

where

ψ(z;T ) =

Z z

0
jAp(0;T + zd� z0d)j2dz0: (8.3.8)

Equation (8.3.6) shows that the pump pulse of initial amplitude Ap(0;T )

propagates without change in its shape. The SPM-induced phase shift imposes
a frequency chirp on the pump pulse that broadens its spectrum (see Section
4.1). The Raman pulse, by contrast, changes both its shape and spectrum as
it propagates through the fiber—temporal changes occur owing to Raman gain
while spectral changes have their origin in XPM. Because of pulse walk-off,
both kinds of changes are governed by an overlap factor ψ(z;T ) that takes into
account the relative separation between the two pulses along the fiber. This
factor depends on the pulse shape. For a Gaussian pump pulse with the input
amplitude

Ap(0;T ) =

p
P0 exp(�T 2=2T 2

0 ); (8.3.9)

the integral in Eq. (8.3.8) can be performed in terms of error functions with the
result

ψ(z;τ) = [erf(τ +δ )� erf(τ)](
p

πP0z=δ ); (8.3.10)

where τ = T=T0 and δ is the propagation distance in units of the walk-off
length, that is,

δ = zd=T0 = z=LW : (8.3.11)

An analytic expression for ψ(z;τ) can also be obtained for pump pulses hav-
ing ‘sech’ shape [158]. In both cases, the Raman pulse compresses initially,
reaches a minimum width, and then begins to rebroaden as it is amplified
through SRS. It also acquires a frequency chirp through XPM. This quali-
tative behavior persists even when pump depletion is included [158]–[160].
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Equation (8.3.7) describes Raman amplification when a weak signal pulse
is injected together with the pump pulse. The case in which the Raman pulse
builds from noise is much more involved from a theoretical viewpoint. A gen-
eral approach should use a quantum-mechanical treatment similar to that em-
ployed for describing SRS in molecular gases [42]. It can be considerably
simplified for optical fibers if transient effects are ignored by assuming that
pump pulses are much wider than the Raman response time. In that case, Eqs.
(8.3.1) and (8.3.2) can be used provided a noise term (often called the Langevin
force) is added to the right-hand side of these equations. The noise term leads
to pulse-to-pulse fluctuations in the amplitude, the width, and the energy of
the Raman pulse similar to those observed for SRS in molecular gases [21]. Its
inclusion is essential if the objective is to quantify such fluctuations.

The average features of noise-seeded Raman pulses can be described by
using the theory of Section 8.1.2 where the effective Stokes power at the fiber
input is obtained by using one photon per mode at all frequencies within the
Raman-gain spectrum. Equation (8.1.10) then provides the input peak power
of the Raman pulse, while its shape remains undetermined. Numerical solu-
tions of Eqs. (8.3.1) and (8.3.2) show that the average pulse shapes and spec-
tra at the fiber output are not dramatically affected by different choices of the
shape of the seed pulse. A simple approximation consists of assuming

As(0;T ) = (Peff
s0 )

1=2; (8.3.12)

where P eff
s0 is given by Eq. (8.1.10). Alternatively, one may take the seed pulse

to be Gaussian with a peak power Peff
s0 .

As a simple application of the analytic solution (8.3.7), consider the Raman
threshold for SRS induced by short pump pulses of width T0 and peak power
P0 [141]. The peak power of the Raman pulse at the fiber output (z = L) is
given by

Ps(L) = jAs(L;0)j2 = P eff
s0 exp(

p
πgsP0LW ); (8.3.13)

where Eq. (8.3.10) was used with τ = 0 and L=LW � 1. If we define the Raman
threshold in the same way as for the CW case, the threshold is achieved when
Ps(L) = P0. The comparison of Eqs. (8.1.12) and (8.3.13) shows that one can
use the CW criterion provided the effective length is taken to be

Leff =
p

π LW � TFWHM=jdj: (8.3.14)

In particular, Eq. (8.1.13) can be used to obtain the critical peak power of
the pump pulse if Leff is obtained from Eq. (8.3.14). This change is expected
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because the effective interaction length between the pump and Raman pulses
is determined by the length LW —SRS ceases to occur when the two pulses
move apart enough that they stop overlapping significantly. Equations (8.1.13)
and (8.3.14) show that the Raman threshold depends on the width of the pump
pulse and increases inversely with T FWHM. For pulse widths �10 ps (LW �
1 m), the threshold pump powers are �100 W.

The analytic solution (8.3.7) can be used to obtain both the shape and the
spectrum of the Raman pulse during the initial stages of SRS [147]. The spec-
tral evolution is governed by the XPM-induced frequency chirp. The chirp
behavior has been discussed in Section 7.4 in the context of XPM-induced
asymmetric spectral broadening (see Fig. 7.3). The qualitative features of the
XPM-induced chirp are identical to these shown there as long as the pump re-
mains undepleted. Note, however, that the Raman pulse travels faster than the
pump pulse in the normal-GVD regime. As a result, chirp is induced mainly
near the trailing edge. It should be stressed that both pulse shapes and spectra
are considerably modified when pump depletion is included [144]. The grow-
ing Raman pulse affects itself through SPM and the pump pulse through XPM.

8.3.3 Effects of GVD

When the fiber length is comparable to the dispersion length LD, it is important
to include the GVD effects. Such effects cannot be described analytically, and
a numerical solution of Eqs. (8.3.1) and (8.3.2) is necessary to understand the
SRS evolution. A generalization of the split-step Fourier method of Section 2.4
can be used for this purpose. The method requires specification of the Raman
pulse at the fiber input by using Eq. (8.1.10).

For numerical purposes, it is useful to introduce the normalized variables.
A relevant length scale along the fiber length is provided by the walk-off length
LW . By defining

z0 =
z

LW
; τ =

T
T0
; Uj =

A jp
P0

; (8.3.15)

and using Eq. (8.3.4), Eqs. (8.3.1) and (8.3.2) become
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Figure 8.8 Evolution of pump and Raman pulses over three walk-off lengths for the
case LD=LW = 1000, LW=LNL = 24, and LW=LG = 12.

=
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[jUpj2 +(2� fR)jUsj2]Up�
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where the lengths LD, LW , LNL, and LG are given by Eq. (8.3.5). The pa-
rameter r = λp=λs and is about 0.95 at λp = 1:06 µm. Figure 8.8 shows the
evolution of the pump and Raman pulses over three walk-off lengths for the
case LD=LW = 1000, LW=LNL = 24, and LW=LG = 12. The pump pulse is
taken to be a Gaussian while the Raman seed is obtained from Eq. (8.3.12)
with Peff

s0 = 2�10�7 W. The results shown in Fig. 8.8 are applicable to a wide
variety of input pulse widths and pump wavelengths by using the scaling of
Eqs. (8.3.5) and (8.3.15). The choice LW=LG = 12 implies that

p
πgsP0LW � 21; (8.3.18)
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Figure 8.9 Spectra of pump (upper row) and Raman (lower row) pulses at twice (left
column) and thrice (right column) the walk-off length for parameter values of Fig. 8.8.

and corresponds to a peak power 30% above the Raman threshold.
Several features of Fig. 8.8 are noteworthy. The Raman pulse starts to

build up after one walk-off length. Energy transfer to the Raman pulse from
the pump pulse is nearly complete by z = 3LW because the two pulses are then
physically separated because of the group-velocity mismatch. As the Raman
pulse moves faster than the pump pulse in the normal-GVD regime, the energy
for SRS comes from the leading edge of the pump pulse. This is clearly ap-
parent at z = 2LW where energy transfer has led to a two-peak structure in the
pump pulse as a result of pump depletion—the hole near the leading edge cor-
responds exactly to the location of the Raman pulse. The small peak near the
leading edge disappears with further propagation as the Raman pulse walks
through it. The pump pulse at z = 3LW is asymmetric in shape and appears
narrower than the input pulse as it consists of the trailing portion of the input
pulse. The Raman pulse is also narrower than the input pulse and is asymmet-
ric with a sharp leading edge.

The spectra of pump and Raman pulses display many interesting features
resulting from the combination of SPM, XPM, group-velocity mismatch, and
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pump depletion. Figure 8.9 shows the pump and Raman spectra at z=LW = 2
(left column) and z=LW = 3 (right column). The asymmetric nature of these
spectra is due to XPM (see Section 7.4.1). The high-frequency side of the
pump spectra exhibits an oscillatory structure that is characteristic of SPM (see
Section 4.1). In the absence of SRS, the spectrum would be symmetric with
the same structure appearing on the low-frequency side. As the low-frequency
components occur near the leading edge of the pump pulse and because the
pump is depleted on the leading side, the energy is transferred mainly from
the low-frequency components of the pump pulse. This is clearly seen in the
pump spectra of Fig. 8.9. The long tail on the low-frequency side of the Raman
spectra is also partly for the same reason. The Raman spectrum is nearly fea-
tureless at z = 2LW but develops considerable internal structure at z = 3LW .
This is due to the combination of XPM and pump depletion; the frequency
chirp across the Raman pulse induced by these effects can vary rapidly both in
magnitude and sign and leads to a complicated spectral shape [144].

The temporal and spectral features seen in Figs. 8.8 and 8.9 depend on the
peak power of input pulses through the lengths LG and LNL in Eqs. (8.3.16)
and (8.3.17). When peak power is increased, both LG and LNL decrease by the
same factor. Numerical results show that because of a larger Raman gain, the
Raman pulse grows faster and carries more energy than that shown in Fig. 8.8.
More importantly, because of a decrease in LNL, both the SPM and XPM con-
tributions to the frequency chirp are enhanced, and the pulse spectra are wider
than those shown in Fig. 8.9. An interesting feature is that the Raman-pulse
spectrum becomes considerably wider than the pump spectrum. This is due
to the stronger effect of XPM on the Raman pulse compared with that of the
pump pulse. The XPM-enhanced frequency chirp for the Raman pulse was
predicted as early as 1976 [135]. In a theoretical study that included XPM
but neglected group-velocity mismatch and pump depletion, the spectrum of
the Raman pulse was shown to be wider by a factor of two [136]. Numerical
results that include all of these effects show an enhanced broadening by up to
a factor of three, in agreement with experiments discussed later. Direct mea-
surements of the frequency chirp also show an enhanced chirp for the Raman
pulse compared with that of the pump pulse [155].

8.3.4 Experimental Results

The spectral and temporal features of ultrafast SRS have been studied in many
experiments performed in the visible as well as in the near-infrared region. In
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Figure 8.10 Experimental spectra observed when 25-ps pump pulses at 532 nm were
propagated through a 10-m-long fiber. Four spectra correspond to different input pulse
energies normalized to E0. (After Ref. [146].)

one experiment, 60-ps pulses from a mode-locked Nd:YAG laser operating at
1.06 µm were propagated through a 10-m-long fiber [137]. When the pump
power exceeded the Raman threshold (�1 kW), a Raman pulse was generated.
Both the pump and Raman pulses were narrower than the input pulse as ex-
pected from the results shown in Fig. 8.8. The spectrum of the Raman pulse
was much broader (spectral width �2 THz) than that of the pump pulse. The
XPM-enhanced spectral broadening of the Raman pulse was quantified in an
experiment in which 25-ps pulses at 532 nm were propagated through a 10-
m-long fiber [146]. Figure 8.10 shows the observed spectra at four values of
pump-pulse energies. The Raman spectral band located at 544.5 mm has a
width about three times that of the pump. This is expected from theory and is
due to the XPM-induced frequency chirp [136].

In the spectra of Fig. 8.10 the fine structure could not be resolved because
of a limited spectrometer resolution. Details of the pump spectrum were re-
solved in another experiment in which 140-ps input pulses at 1.06 µm were
propagated through a 150-m-long fiber [145]. Figure 8.11 shows the observed
pump spectra at several values of input peak powers. The Raman threshold is
about 100 W in this experiment. For P0 < 100 W, the spectrum exhibits a multi-
peak structure, typical of SPM (see Section 4.1). However, the pump spectrum
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Figure 8.11 Experimental spectra of pump pulses at different input peak powers
after 140-ps pump pulses have propagated through a 150-m-long fiber. The Raman
threshold is reached near 100 W. (After Ref. [145].)

broadens and becomes highly asymmetric for P0 > 100 W. In fact, the two
spectra corresponding to peak powers beyond the Raman threshold show fea-
tures that are qualitatively similar to those of Fig. 8.9 (upper row). The spectral
asymmetry is due to the combined effects of XPM and pump depletion.

Another phenomenon that can lead to new qualitative features in the pump
spectrum is the XPM-induced modulation instability. It has been discussed
in Section 7.2 for the case in which two pulses at different wavelengths are
launched at the fiber input. However, the same phenomenon should occur
even if the second pulse is internally generated through SRS. Similar to the
case of modulation instability occurring in the anomalous-dispersion regime
(see Section 5.1), XPM-induced modulation instability manifests through the
appearance of spectral sidelobes in the pulse spectra.

Figure 8.12 shows the observed spectra of the pump and Raman pulses in
an experiment in which 25-ps pulses at 532 mm were propagated through a
3-m-long fiber [156]. The fiber-core diameter was only 3 µm to rule out the
possibility of multimode four-wave mixing (see Chapter 10). The central peak
in the pump spectrum contains considerable internal structure (Fig. 8.11) that
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Figure 8.12 Spectra of pump and Raman pulses showing spectral sidelobes as a result
of XPM-induced modulation instability. (After Ref. [156].)

remained unresolved in this experiment. The two sidebands provide a clear
evidence of XPM-induced modulation instability. The position of sidebands
changes with fiber length and with peak power of pump pulses. The Stokes
spectrum also shows sidelobes, as expected from the theory of Section 7.2,
although they are barely resolved because of XPM-induced broadening of the
spectrum.

The temporal measurements of ultrafast SRS show features that are similar
to those shown in Fig. 8.8 [139]–[142]. In one experiment, 5-ps pulses from
a dye laser operating at 615 nm were propagated through a 12-m-long fiber
with a core diameter of 3.3 µm [140]. Figure 8.13 shows the cross-correlation
traces of the pump and Raman pulses at the fiber output. The Raman pulse
arrives about 55 ps earlier than the pump pulse; this is consistent with the
group-velocity mismatch at 620 nm. More importantly, the Raman pulse is
asymmetric with a sharp leading edge and a long trailing edge, features quali-
tatively similar to those shown in Fig. 8.8. Similar results have been obtained in
other experiments where the pulse shapes are directly recorded using a streak
camera [145] or a high-speed photodetector [154].

The effects of pulse walk-off on SRS were studied by varying the peak
power of 35-ps pump pulses (at 532 nm) over a range 140–210 W while fiber
length was varied over a range 20 –100 m [141]. Temporal measurements of
the pump and Raman pulses were made with a high-speed CdTe photodetec-
tor and a sampling oscilloscope. The results show that the Raman pulse is
produced within the first three to four walk-off lengths. The peak appears after
about two walk-off lengths into the fiber for 20% energy conversion and moves
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Figure 8.13 Cross-correlation traces of pump and Raman pulses at the output of a
12-m-long fiber. The intensity scale is arbitrary (after Ref. [140].)

closer to the input for higher peak powers. These conclusions are in agreement
with the numerical results shown in Fig. 8.8.

So far, only first-order SRS has been considered. When the input peak
power of pump pulses exceeds the Raman threshold considerably, the Raman
pulse may become intense enough to act as a pump to generate the second-
order Stokes pulse. Such a cascaded SRS was seen in a 615-nm experiment us-
ing 5-ps pump pulses with a peak power of 1.5 kW [140]. In the near-infrared
region multiple orders of Stokes can be generated using 1.06-µm pump pulses.
The efficiency of the SRS process can be improved considerably by using sil-
ica fibers whose core has been doped with P2O5 because of a relatively large
Raman gain associated with P2O5 glasses [162]–[164].

From a practical standpoint ultrafast SRS limits the performance of fiber-
grating compressors [165]; the peak power of input pulses must be kept below
the Raman threshold to ensure optimum performance. Thus SRS not only acts
as a loss mechanism but also limits the quality of pulse compression by distort-
ing the linear nature of the frequency chirp resulting from the XPM interaction
between pump and Raman pulses [166]. A spectral-filtering technique had
been used to improve the quality of compressed pulses even in the presence of
SRS [154]. In this approach a portion of the pulse spectrum is selected by using
an asymmetric spectral window so that the filtered pulse has nearly linear chirp
across its entire width. Good-quality compressed pulses can be obtained in the
strong-SRS regime but only at the expense of substantial energy loss [158].
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Figure 8.14 Temporal and spectral output of a Raman laser in the case of resonant
(dashed curve) and single-pass (full curve) operation. (After Ref. [149].)

8.3.5 Synchronously Pumped Raman Lasers

The preceding section has focused on single-pass SRS. By placing the fiber
inside a cavity (see Fig. 8.4), a single-pass SRS configuration can be turned
into a Raman laser. Such lasers were discussed in Section 8.2.2 in the case of
CW or quasi-CW operation (T0 �1 ns). This section considers Raman lasers
pumped synchronously to emit short optical pulses with widths <100 ps. In
a commonly used scheme, pump pulses are typically 100 ps wide and are ob-
tained from a mode-locked Nd:YAG laser operating at 1.06 µm.

Figure 8.14 compares the temporal and spectral features at the output un-
der single-pass (solid curve) and multipass (dashed curve) operations, the latter
case corresponding to a Raman laser. In this experiment, the fiber was 150-m
long and the pump-pulse width was about 120 ps [149]. In the single-pass
case, the spectrum shows a SRS peak near 1.12 µm. The corresponding Ra-
man pulse appears 300 ps earlier than the pump pulse, as expected from the
walk-off effects. In the case of resonant operation as a Raman laser, the domi-
nant spectral peak occurs at 1.093 µm, the wavelength corresponding to which
the laser is synchronously pumped. Furthermore, this wavelength could be
tuned over 50 nm through the time-dispersion technique by changing the fiber-
cavity length by 10 cm [see Eq. (8.2.3)]. The second spectral peak in Fig. 8.14
corresponds to a nonresonant second-order Stokes line. In the time domain,
the three-peak structure results from a superposition of the pump pulse and the
two Raman pulses corresponding to the two spectral peaks. The first-Stokes
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Raman pulse dominates because of its resonant nature.
Pulse widths generated from Raman lasers are about the same as those of

pump pulses (� 100 ps). However, because of the SPM and XPM effects, out-
put pulses are chirped and, if the chirp is linear over a significant portion of the
pulse, a fiber-grating compressor can be used to compress them (see Chapter
B.6). In an important development, pulses as short as 0.8 ps were obtained
by placing a fiber-grating compressor inside the cavity of a Raman laser [59].
The grating separation was adjusted to provide a slightly negative GVD over
a complete round trip inside the ring cavity, that is, the grating pair not only
compensated the positive GVD of the fiber but also provided a net negative-
GVD environment to the pulses circulating inside the cavity. Pulses as short
as 0.4 ps have been obtained by using this technique [148]. Furthermore, the
Raman laser was tunable over 1.07–1.12 µm with pulse widths in the range
0.4–0.5 ps over the entire tuning interval. Such performance was achieved
with the use of spectral filtering by placing an aperture inside the fiber-grating
compressor.

A tunable Raman laser has been used to demonstrate amplification of fem-
tosecond optical pulses in a Raman amplifier in both forward and backward-
pumping configurations [148]. In the forward-pumping configuration, the 500-
fs pulses are first passed through a 100-m-long fiber, where they broaden to
about 23 ps as a result of SPM and GVD. The broadened pulses then enter
a Raman amplifier, consisting of only a 1-m-long fiber and pumped by 50-
ps pulses at 1.06 µm. The amplified pulses are compressed in a fiber-grating
compressor. The compressed pulse was slightly broader (about 0.7 ps) than
the input pulse but had its energy amplified by up to a factor of 15,000 when
pumped by 150-kW pulses. The experiment demonstrated that the frequency
chirp of the 23-ps input pulses was nearly unaffected by the process of Raman
amplification. Such features indicate that ultrafast SRS in optical fibers not
only is capable of generating femtosecond pulses but can also provide high
peak powers.

8.4 Soliton Effects

When the wavelength of the pump pulse is close to or inside the anomalous-
dispersion region of an optical fiber, the Raman pulse should experience the
soliton effects (see Chapter 5). Such effects have attracted considerable atten-
tion both theoretically and experimentally [167]–[205]. Because the Raman
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pulse propagates as a soliton, it is common to refer to it as a Raman soli-
ton [200]. These solitons must be distinguished from the pair of bright and
dark solitons formed during transient SRS in molecular gases. In that case,
it is necessary to include the dynamics of the vibrational mode participating
in the process of transient SRS [206]–[210]. In contrast, Raman solitons dis-
cussed here occur in the stationary SRS regime.

8.4.1 Raman Solitons

In the anomalous-dispersion region of an optical fiber, under suitable con-
ditions, almost all of the pump-pulse energy can be transferred to a Raman
pulse that propagates undistorted as a fundamental soliton. Numerical results
show that this is possible if the Raman pulse is formed at a distance at which
the pump pulse, propagating as a higher-order soliton, achieves its minimum
width [167]. By contrast, if energy transfer to the Raman pulse is delayed and
occurs at a distance where the pump pulse has split into its components (see
Fig 5.4 for the case N = 3), the Raman pulse does not form a fundamental
soliton, and its energy rapidly disperses.

Equations (8.3.16) and (8.3.17) can be used to study ultrafast SRS in the
anomalous-GVD regime by simply changing the sign of the second-derivative
terms. As in the case of normal GVD shown in Fig. 8.8, energy transfer to the
Raman pulse occurs near z�LW . For the Raman pulse to form a soliton, zopt�
LW , where zopt is the optimum fiber length for the soliton-effect compressor
(see Chapter B.6). This condition implies that LW should not be too small
in comparison with the dispersion length LD. For example, LW = (π=8)LD
for the third-order soliton if we note that zopt = z0=4 for N = 3, where z0 =

(π=2)LD is the soliton period. Typically, LW and LD become comparable for
femtosecond pulses of widths T0 � 100 fs. For such ultrashort pump pulses,
the distinction between pump and Raman pulses gets blurred as their spectra
begin to overlap considerably. This can be seen by noting that the Raman-gain
peak in Fig. 8.1 corresponds to a spectral separation of about 13 THz while the
spectral width of a 100-fs pulse is �10 THz. Equations (8.3.16) and (8.3.17)
do not provide a realistic description of ultrafast SRS with femtosecond pump
pulses, particularly in the case of anomalous GVD where the input pulse may
shorten considerably during early stages of propagation.

An alternative approach is provided by the generalized propagation equa-
tion of Section 2.3. Equation (2.3.39) includes the effect of Raman gain through
the last term proportional to the parameter TR. As discussed there, TR is related
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Figure 8.15 Pulse spectra of 30-ps input pulses at the output of a 250-m-long fiber
for peak powers in the range 50–900 W. Autocorrelation trace of the Stokes tail in the
topmost spectrum is shown on the right-hand side. (After Ref. [168].)

to the slope of the Raman gain near origin in Fig. 8.1. Some of the effects of
this Raman-gain term on evolution of femtosecond pulses have already been
discussed in Section 5.6. Figure 5.20 shows pulse shapes and spectra for a
pump pulse whose peak power corresponds to a second-order soliton (N = 2).
The input pulse splits into two pulses within one soliton period.

The same behavior can also be interpreted in terms of intrapulse Raman
scattering [168], a phenomenon that can occur even before the threshold of
noise-induced SRS is reached. The basic idea is the following. The input
pulse, propagating as a higher-order soliton, narrows its width and broadens
its spectrum during the initial contraction phase. Spectral broadening on the
red side provides a seed for Raman amplification, that is, the blue compo-
nents of the pulse pump the red components through self-induced SRS. This is
clearly seen in Fig. 5.20 where the dominant spectral peak moves continuously
toward the red side. Such a shift is called the soliton self-frequency shift [170].
In the time domain, energy in the red-shifted components appears in the form
of a Raman pulse that lags behind the input pulse because the red-shifted com-
ponents travel slowly in the anomalous-GVD regime. The use of Eq. (2.3.40)
becomes questionable for pulse widths 100 fs or less as it does not take into ac-
count the shape of the Raman-gain spectrum (see Fig. 8.1). Equation (2.3.33)
should be used for such ultrashort pulses.

Intrapulse Raman scattering can occur even for picosecond input pulses
as long as the soliton order N is large enough to broaden the input spectrum
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Figure 8.16 Pulse spectra at the output of a 150-m-long fiber when 0.83-ps input
pulses are launched with the peak power P0 = 530 W. The zero-dispersion wavelength
of the fiber is 1.317 µm. (After Ref. [176] c1987 IEEE.)

(through SPM) to widths �1 THz. Indeed, in the first experimental demon-
stration of this phenomenon 30-ps input pulses at 1.54 µm were propagated
through a 250-m-long fiber [168]. Figure 8.15 shows the observed pulse spec-
tra for four input peak powers P0 in the range 50–900 W. For P0 � 100 W, a
long tail toward the red side appears. This value corresponds to about N = 30
for the experimental values of parameters. Equations (6.4.2) and (6.4.3) pre-
dict compression of the input pulse by a factor of about 120 at a distance of
300 m if we use z0 = 27 km for the soliton period (T0 � 17 ps). The spec-
tral width of such a compressed pulse is close to 2 THz. The autocorrelation
trace of the energy in the Stokes tail of the topmost spectrum (downshifted
1.6 THz from the pump frequency) is also shown in Fig. 8.15. It corresponds
to a pedestal-free Raman pulse of 200-fs width.

Intrapulse Raman scattering has attracted considerable attention as it pro-
vides a convenient way of generating Raman solitons whose carrier wavelength
can be tuned by changing fiber length or input peak power [168]–[179]. In one
experiment [176], the use of a dye laser permitted tuning of the input wave-
length over a range 1.25–1.35 µm so that the input pulse could be launched in
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Figure 8.17 Pulse spectra at the output of a 1-km-long fiber for several peak powers of
0.83-ps input pulses. The input wavelength of 1.341 µm lies in the anomalous-GVD
region of the fiber. (After Ref. [176] c1987 IEEE.)

the normal or the anomalous GVD regime of the optical fiber (zero-dispersion
wavelength � 1:317 µm). Figure 8.16 shows the pulse spectra as the input
wavelength λp is varied from 1.28 to 1.317 µm. The 0.83-ps input pulses with
a peak power of 530 W were propagated over a 150-m-long single-mode fiber.
No Stokes band was generated for λp = 1:28 µm because of the positive GVD
of the fiber, although SPM-induced spectral broadening is clearly seen. Two
Stokes bands formed for λp = 1:3 µm, even though the input wavelength is be-
low the zero-dispersion wavelength, because a substantial part of the pulse en-
ergy appeared in the negative-GVD region after SPM-induced spectral broad-
ening. For λp = 1:317, the Stokes bands are more intense because SRS is more
effective in transferring pulse energy toward low frequencies.

Spectral changes for input pulses launched well into the anomalous-GVD
regime are shown in Fig. 8.17 for λp = 1:341 µm and a fiber length of 1 km.
Pulse spectra change considerably with an increase in the input peak power.
Three Stokes bands appear for P0 = 530 W (topmost curve). An anti-Stokes
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band carrying 5–10% of the input energy also appears. In the time domain,
a separate Raman pulse is associated with each of the Stokes bands. The au-
tocorrelation measurements show that the widths of these Raman pulses are
�300 fs [176]. The width depends considerably on the fiber length; the small-
est width was about 55-fs for 150-ps wide input pulses. The input peak power
of 5 kW was large enough to generate multiple Stokes in a 20-m-long fiber.
The fourth-order Stokes band near 1.3 µm served as a pump to generate a
continuum that extended up to 1.7 µm. Using a two-stage compression con-
figuration, the pulse width could be reduced to 18 fs, a pulse consisting of only
three optical cycles.

Raman solitons have also been generated using 100-ps pump pulses from a
mode-locked Nd:YAG laser operating at 1.32 µm. In one experiment, the use
of a conventional fiber with the zero-dispersion wavelength near 1.3 µm led to
100-fs Raman pulses near 1.4 µm [178]. In another experiment, a dispersion-
shifted fiber, having its zero-dispersion wavelength at 1.46 µm, was used with
the same laser. The first-order Stokes at 1.407 µm served as a pump to generate
the second-order Stokes (at 1.516 µm) in the anomalous-dispersion regime of
the fiber [177]. The Raman pulse associated with the second-order Stokes band
was 130-fs wide. The pulse had a broad pedestal and carried only about 30%
of its energy in the form of a soliton.

Modulation instability plays an important role in the formation of Raman
solitons when pump wavelength lies in the anomalous-GVD regime of an opti-
cal fiber [200]. The role of modulation instability can be understood as follows.
When the pump pulse experiences anomalous GVD, it develops sidebands in-
dicative of modulation instability. The low-frequency sideband (typical spac-
ing�1 THz) falls within the bandwidth of the Raman-gain spectrum and seeds
the formation of the Raman pulse. At high pump powers, the spectrum of the
Raman pulse becomes so broad (�10 THz) that the fiber can support a Raman
soliton of width�100 fs even when injected pump pulses are more than 100-ps
wide. In one experiment, Raman solitons of 60-fs duration were observed by
pumping a 25-m-long, P2O5-doped, silica fiber with 150-ps pump pulses ob-
tained from a 1.319-µm Nd:YAG laser [199]. The zero-dispersion wavelength
of the fiber was chosen to be quite close to the pump wavelength to enhance
the modulation frequency [see Eq. (5.1.8)].

Before closing this section, let us consider whether Eqs. (8.3.1) and (8.3.2)
have solitary-wave solutions that can be interpreted as Raman solitons. As
early as 1988, it was found that soliton-like Raman pulses with a ‘sech’ profile
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Figure 8.18 Schematic illustration of the ring-cavity geometry used for Raman soliton
lasers. BS is a dichroic beamsplitter, M1 and M2 are mirrors of 100% reflectivity, and
L1 and L2 are microscope objective lenses.

can form under certain conditions provided the pump remains largely unde-
pleted [190]. When pump depletion is included, pulselike solutions of Eqs.
(8.3.1) and (8.3.2), similar to the XPM-paired solitons discussed in Section
7.3.3, have not been found. However, as discussed in Section 5.5, these equa-
tions permit shocklike solutions in the form of a sharp front [211].

8.4.2 Raman Soliton Lasers

An interesting application of the soliton effects has led to the development
of a new kind of laser known as the Raman soliton laser [181]–[187]. Such
lasers provide their output in the form of solitons of widths �100 fs, but at a
wavelength corresponding to the first-order Stokes wavelength. Furthermore,
the wavelength can be tuned over a considerable range (�10 nm) by using the
time-dispersion technique discussed in Section 8.2.2. A ring-cavity configu-
ration, shown schematically in Fig. 8.18, is commonly employed. A dichroic
beamsplitter, highly reflective at the pump wavelength and partially reflective
at the Stokes wavelength λ s, is used to couple pump pulses into the ring cavity
and to provide the laser output.

In a 1987 experimental demonstration of the Raman soliton laser [181], 10-
ps pulses from a mode-locked color-center laser operating near 1.48 µm were
used to pump the Raman laser synchronously. The ring cavity had a 500-m-
long, polarization-preserving, dispersion-shifted fiber having its zero-disper-
sion wavelength λD near 1.536 µm. Such a fiber permitted the pump and Ra-
man pulses to overlap over a considerable portion of the fiber as the pump and
Raman wavelengths were on opposite sides of λ D by nearly the same amount
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(λs � 1:58 µm). Output pulses with widths � 300 fs were produced with a
low but broad pedestal. In an attempt to remove the pedestal, the ring cavity of
Fig. 8.18 was modified by replacing the fiber with two fiber pieces with vari-
able coupling between them. A 100-m-long section provided the Raman gain
while another 500-m-long section was used for pulse shaping. The SRS did
not occur in the second section because the coupler reduced pump power lev-
els below the Raman threshold. It was possible to obtain pedestal-free pulses
of 284-fs width when wavelength separation corresponded to 11.4 THz (about
90 nm). However, when the wavelengths were 13.2 THz apart (corresponding
to maximum Raman gain), considerable pulse energy appeared in the form of a
broad pedestal. This complex behavior is attributed to the XPM effects [182].

In later experiments, 100-ps pulses obtained from a mode-locked Nd:YAG
laser operating at 1.32 µm were used to synchronously pump Raman soliton
lasers [183]–[185]. This wavelength regime is of interest because conventional
fibers with λD � 1:3 µm can be used. Furthermore, both the pump and Raman
pulses are close to the zero-dispersion wavelength of the fiber so that they can
overlap long enough to provide the required Raman gain (the walk-off length
� 300 m). Pulse widths as short as 160 fs were obtained in an experiment that
employed a 1.1-km fiber that did not even preserve wave polarization [183].
Output pulses contained a broad pedestal with only 20% of the energy appear-
ing in the form of a Raman soliton. In another experiment, a dispersion-shifted
fiber with λD = 1:46 µm was used [184]. Raman solitons of about 200-fs
width were then observed through the second- and third-order Stokes lines,
generated near 1.5 and 1.6 µm, respectively. This process of cascaded SRS
has also been used to generate Raman solitons near 1.5 µm by pumping the
laser with 1.06-µm pump pulses [187]. The first three Stokes bands then lie in
the normal-GVD regime of a conventional fiber (λ D > 1:3 µm). The fourth
and fifth Stokes bands form a broad spectral band encompassing the range 1.3–
1.5 µm that contains about half of the input energy. Autocorrelation traces of
output pulses in the spectral region near 1.35, 1.4, 1.45, and 1.5 µm showed
that the energy in the pedestal decreased as the wavelength increased. In fact,
output pulses near 1.5 µm were nearly pedestal free.

Even though Raman soliton lasers are capable of generating femtosecond
solitons useful for many applications, they suffer from a noise problem that
limits their usefulness. Measurements of intensity noise for a synchronously
pumped Raman soliton laser indicated that the noise was more than 50 dB
above the shot-noise level [194]. Pulse-to-pulse timing jitter was also found to
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be quite large, exceeding 5 ps at 1.6-W pump power. Such large noise levels
can be understood if one considers the impact of the Raman-induced frequency
shift (see Section 5.5) on the performance of such lasers. For synchronous
pumping to be effective, the round-trip time of the Raman soliton inside the
laser cavity must be an integer multiple of the spacing between pump pulses.
However, the Raman-induced frequency shift changes the group velocity and
slows down the pulse in such an unpredictable manner that synchronization is
quite difficult to achieve in practice. As a result, Raman soliton lasers generate
pulses in a way similar to single-pass Raman amplifiers and suffer from the
noise problems associated with such amplifiers.

The performance of Raman soliton lasers can be significantly improved if
the Raman-induced frequency shift can somehow be suppressed. It turns out
that such frequency shifts can be suppressed with a proper choice of pump
power and laser wavelength. In a 1992 experiment, a Raman soliton laser was
synchronously pumped by using 200-ps pump pulses from a 1.32-µm Nd:YAG
laser and was tunable over the 1.37–1.44 µm wavelength range [198]. The
Raman-induced frequency shift was suppressed in the wavelength range 1.41–
1.44 µm for which the Raman-gain spectrum in Fig. 8.1 had a positive slope.
Measurements of noise indicated significant reduction in both intensity noise
and timing jitter [203]. Physically, Raman-gain dispersion is used to cancel the
effects of the last term in Eq. (5.5.1) that is responsible for the Raman-induced
frequency shift [212].

8.4.3 Soliton-Effect Pulse Compression

In some sense, Raman solitons formed in Raman amplifiers or lasers take ad-
vantage of the soliton-effect pulse-compression technique (see Chapter B.6).
Generally speaking, Raman amplification can be used for simultaneous ampli-
fication and compression of picosecond optical pulses by taking advantage of
the anomalous GVD in optical fibers. In a 1991 experiment 5.8-ps pulses,
obtained from a gain-switched semiconductor laser and amplified using an
erbium-doped fiber amplifier to an energy level appropriate for a fundamental
soliton, were compressed to 3.6-ps through Raman amplification in a 23-km-
long dispersion-shifted fiber [197]. The physical mechanism behind simulta-
neous amplification and compression can be understood from Eq. (5.2.3) for
the soliton order N. If a fundamental soliton is amplified adiabatically, the
condition N = 1 can be maintained during amplification provided the soliton
width changes as P�1=2

0
with an increase in the peak power P0.
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Figure 8.19 Compression factor (left) and amplification factor (right) as a function of
normalized distance for several values of N in the case of Gaussian-shape pump and
signal pulses. (After Ref. [201].)

In many practical situations, the input signal pulse is not intense enough
to sustain a soliton inside the fiber during Raman amplification. It is possible
to realize pulse compression even for such weak pulses through the XPM ef-
fects that invariably occur during SRS [201]. In essence, the pump and signal
pulses are injected simultaneously into the fiber. The signal pulse extracts en-
ergy from the pump pulse through SRS and is amplified. At the same time, it
interacts with the pump pulse through XPM that imposes a nearly linear fre-
quency chirp on it and compresses it in the presence of anomalous GVD. As
discussed in Section 7.5 in the context of XPM-induced pulse compression, the
effectiveness of such a scheme depends critically on the relative group-velocity
mismatch between the pump and signal pulses. A simple way to minimize the
group-velocity mismatch and maximize the XPM-induced frequency chirp is
to choose the zero-dispersion wavelength of the fiber in the middle of the pump
and signal wavelengths.

Numerical simulations based on Eqs. (8.3.1) and (8.3.2) show that com-
pression factors as large as 15 can be realized while the signal-pulse energy
is amplified a millionfold [201]. Figure 8.19 shows (a) the compression fac-
tor and (b) the amplification factor as a function of the propagation distance
(ξ = z=LD) for several values of the parameter N, related to the peak power P0
of pump pulses through N = (γpP0LD)

1=2, where LD is defined in Eq. (8.3.5).
The pump and signal pulses are assumed to be Gaussian, have the same width,
and propagate at the same speed. Pulse compression is maximum for an op-
timum fiber length, a feature similar to that of soliton-effect compressors (see
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Chapter B.6). This behavior is easily understood by noting that GVD reduces
the XPM-induced chirp to nearly zero at the point of maximum compression
(see Section 3.2). The main point to note from Fig. 8.19 is that weak input
pulses can be amplified by 50–60 dB while getting compressed simultane-
ously by a factor of 10 or more. The quality of compressed pulses is also quite
good with no pedestal and little ringing. The qualitative features of pulse com-
pression remain nearly the same when pulse widths or group velocities of the
pump and signal pulses are not the same, making this technique quite attrac-
tive from a practical standpoint. Simultaneous amplification and compression
of picosecond optical pulses were indeed observed in a 1996 experiment [202].

8.5 Effect of Four-Wave Mixing

Four-wave mixing, a nonlinear phenomenon discussed in Chapter 10, is known
to affect the SRS in any medium [7]. Its impact on the SRS process in optical
fibers has been studied extensively [213]–[224]. This section describes the
relevant features qualitatively.

To understand how four-wave mixing can influence SRS, it is useful to re-
consider the physics behind the SRS process. In quantum-mechanical terms,
Raman scattering can be thought of as downconversion of a pump photon into
a lower-frequency photon and a phonon associated with a vibrational mode of
molecules. An up-conversion process in which a phonon combines with the
pump photon to generate a higher-frequency photon is also possible, but oc-
curs rarely because it requires the presence of a phonon of right energy and
momentum. The optical wave associated with higher-frequency photons is
called anti-Stokes and is generated at a frequency ωa = ωp +Ω for a Stokes
wave of frequency ωs = ωp�Ω, where ωp is the pump frequency. Because
2ωp = ωa +ωs, four-wave mixing, a process where two pump photons annihi-
late themselves to produce Stokes and anti-Stokes photons, can occur provided
the total momentum is conserved. The momentum-conservation requirement
leads to the phase-matching condition ∆k = 2kp � ka� ks = 0 that must be
satisfied for four-wave mixing to take place (see Section 10.1).

The phase-matching condition in not easily satisfied in single-mode fibers
for Ω�10 THz. For this reason, the anti-Stokes wave is rarely observed dur-
ing SRS. As discussed in Section 10.3, the phase-matching condition may be
nearly satisfied when GVD is not too large. In that case, Eqs. (8.1.20) and
(8.1.21) should be supplemented with a third equation that describes propa-
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gation of the anti-Stokes wave and its coupling to the Stokes wave through
four-wave mixing. The set of three equations can be solved approximately
when pump depletion is neglected [214]. The results show that the Raman
gain gR depends on the mismatch ∆k, and may increase or decrease from its
value in Fig. 8.1 depending on the value of ∆k. In particular gR becomes small
near ∆k = 0, indicating that four-wave mixing can suppress SRS under ap-
propriate conditions. Partial suppression of SRS was indeed observed in an
experiment [214] in which the Raman gain was reduced by a factor of 2 when
the pump power P0 was large enough to make j∆kj< 3gRP0. A spectral com-
ponent at the anti-Stokes frequency was also observed in the experiment.

The effects of four-wave mixing on SRS were also observed in another
experiment [219] in which the spectrum of Raman pulses was observed to ex-
hibit a double-peak structure corresponding to two peaks at 13.2 and 14.7 THz
in Fig. 8.1. At low pump powers, the 13.2-THz peak dominated as the Ra-
man gain is slightly larger (by about 1%) for this peak. However, as pump
power was increased, the 14.7-THz peak began to dominate the Raman-pulse
spectrum. These results can be understood by noting that the Raman-gain re-
duction induced by four-wave mixing is frequency dependent such that the ef-
fective Raman gain becomes larger for the 14.7-THz peak for pump intensities
in excess of 1 GW/cm2.

The effects of fiber birefringence have been ignored in this chapter. Its
inclusion complicates the SRS analysis considerably [220]. For example, if a
pump pulse is polarized at an angle with respect to a principal axis of the fiber
so that it excites both the slow and fast polarization modes of the fiber, each of
them can generate a Stokes pulse if its intensity exceeds the Raman threshold.
These Stokes waves interact with the two pump-pulse components and with
each other through XPM. To describe such an interaction, Eqs. (8.1.20) and
(8.1.21) must be replaced by a set of four equations that includes all nonlinear
terms appropriately as discussed in Section 7.1. The situation is even more
complicated if the anti-Stokes wave is included: one must then solve a set of
six coupled equations.

For pump pulses propagating in the anomalous-GVD regime of optical
fibers, one should consider how modulation instability and SRS influence each
other. As discussed in Section 5.1, modulation instability can be thought of
as a four-wave mixing process phase-matched by SPM (see Section 10.3). It
generates new waves at frequencies ω p+Ωm and ωp�Ωm, where Ωm depends
on the pump power and is generally different than the Raman shift Ω. Thus, a
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unified analysis should consider five waves at frequencies ωp; ωp�Ωm, and
ωp�Ω. Each of these five waves can have two orthogonally polarized com-
ponents, resulting in a set of ten coupled-amplitude equations. The analysis
becomes simpler for ultrashort pump pulses whose spectrum is so broad that
the frequencies Ωm and Ω fall within its bandwidth. The propagation of such
pump pulses is described by a set of two coupled equations that include the
effects of GVD, SPM, XPM, fiber birefringence, four-wave mixing, and intra-
pulse SRS. A linear stability analysis of such equations can be performed to
obtain the effective gain spectrum when a CW pump beam enters an optical
fiber [222]. Attempts have also been made to include the effects of intrapulse
SRS and of fiber birefringence on propagation of two optical pulses in an op-
tical fiber [20].

Problems

8.1 What is meant by Raman scattering? Explain its origin. What is the
difference between spontaneous and stimulated Raman scattering?

8.2 Explain the meaning of Raman gain. Why does the Raman-gain spec-
trum extend over a wide range of 40 THz?

8.3 Solve Eqs. (8.1.2) and (8.1.3) neglecting pump deletion. Calculate the
Stokes power at the output of a 1-km-long fiber when 1-µW power is
injected together with an intense pump beam. Assume gRIp(0) = 2 km�1

and αp = αs = 0.2 dB/km.

8.4 Perform the integration in Eq. (8.1.9) using the method of steepest de-
scent and derive Eq. (8.1.9).

8.5 Use Eq. (8.1.9) to derive the Raman-threshold condition given in Eq.
(8.1.13).

8.6 Solve Eqs. (8.1.2) and (8.1.3) analytically after assuming αp = αs.

8.7 Calculate the threshold pump power of a 1.55-µm Raman laser whose
cavity includes a 1-km-long fiber with 40-µm2 effective core area. Use
αp = 0.3 dB/km and total cavity losses of 6 dB. Use the Raman gain
from Fig. 8.1.

8.8 Explain the technique of time-dispersion tuning used commonly for syn-
chronously pumped Raman lasers. Estimate the tuning range for the
laser of Problem 8.7.
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8.9 Solve Eqs. (8.3.1) and (8.3.2) analytically after setting β2p = β2s = 0.

8.10 Use the results of Problem 8.9 to plot the output pulse shapes for Ra-
man amplification in a 1-km-long fiber. Assume λp = 1:06 µm, λs =

1:12 µm, γp = 10 W�1/km, gR = 1� 10�3 m/W, d = 5 ps/m, and
Aeff = 40 µm2. Input pump and Stokes pulses are Gaussian with the
same 100-ps width (FWHM) and with 1 kW and 10 mW peak powers,
respectively.

8.11 Solve Eqs. (8.3.16) and (8.3.17) numerically using the split-step Fourier
method and reproduce the results shown in Figs. 8.8 and 8.9.

8.12 Design an experiment for amplifying 50-ps (FWHM) Gaussian pulses
through SRS by at least 30 dB such that they are also compressed by a
factor of 10. Use numerical simulations to verify your design.
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Chapter 9

Stimulated Brillouin Scattering

Stimulated Brillouin scattering (SBS) is a nonlinear process that can occur in
optical fibers at input power levels much lower than those needed for stimu-
lated Raman scattering (SRS). It manifests through the generation of a back-
ward-propagating Stokes wave that carries most of the input energy, once the
Brillouin threshold is reached. Stimulated Brillouin scattering is typically
harmful for optical communication systems. At the same time, it can be useful
for making fiber-based Brillouin lasers and amplifiers. This chapter is devoted
to the SBS phenomenon in optical fibers. Section 9.1 presents the basic con-
cepts behind SBS with emphasis on the Brillouin gain. Section 9.2 discusses
the theoretical aspects such as Brillouin threshold, pump depletion, and gain
saturation. The dynamic aspects of SBS are the focus of Section 9.3 where
we discuss nonlinear phenomena such as SBS-induced modulation instability
and optical chaos. Section 9.4 is devoted to Brillouin lasers. Other practical
aspects of SBS are covered in Section 9.5.

9.1 Basic Concepts

The nonlinear phenomenon of SBS, first observed in 1964, has been studied
extensively [1]–[10]. It is similar to SRS inasmuch as it manifests through
the generation of a Stokes wave whose frequency is downshifted from that of
the incident light by an amount set by the nonlinear medium. However, major
differences exist between SBS and SRS. For example, the Stokes wave propa-
gates backward when SBS occurs in a single-mode optical fiber, in contrast to
SRS that can occur in both directions. The Stokes shift (�10 GHz) is smaller
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by three orders of magnitude for SBS compared with that of SRS. The thresh-
old pump power for SBS depends on the spectral width associated with the
pump wave. It can be as low as �1 mW for a continuous-wave (CW) pump
or when the pumping is in the form of relatively wide pump pulses (width
> 1 µs). In contrast, SBS nearly ceases to occur for short pump pulses (width
<10 ns). All of these differences stem from a single fundamental change—
acoustical phonons participate in SBS whereas optical phonons are involved in
the case of SRS.

9.1.1 Physical Process

The process of SBS can be described classically as a nonlinear interaction be-
tween the pump and Stokes fields through an acoustic wave. The pump field
generates an acoustic wave through the process of electrostriction [10]. The
acoustic wave in turn modulates the refractive index of the medium. This
pump-induced index grating scatters the pump light through Bragg diffraction.
Scattered light is downshifted in frequency because of the Doppler shift asso-
ciated with a grating moving at the acoustic velocity vA. The same scattering
process can be viewed quantum-mechanically as if annihilation of a pump pho-
ton creates a Stokes photon and an acoustic phonon simultaneously. As both
the energy and the momentum must be conserved during each scattering event,
the frequencies and the wave vectors of the three waves are related by

ΩB = ωp�ωs; kA = kp�ks; (9.1.1)

where ωp and ωs are the frequencies, and kp and ks are the wave vectors, of
the pump and Stokes waves, respectively.

The frequency ΩB and the wave vector kA of the acoustic wave satisfy the
standard dispersion relation

ΩB = vAjkAj � 2vAjkpjsin(θ=2); (9.1.2)

where θ is the angle between the pump and Stokes fields, and we used jkpj �
jksj in Eq. (9.1.1). Equation (9.1.2) shows that the frequency shift of the Stokes
wave depends on the scattering angle. In particular, ΩB is maximum in the
backward direction (θ = π) and vanishes in the forward direction (θ = 0). In
a single-mode optical fiber, only relevant directions are the forward and back-
ward directions. For this reason, SBS occurs only in the backward direction
with the Brillouin shift given by

νB = ΩB=2π = 2nvA=λp; (9.1.3)
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where Eq. (9.1.2) was used with jkpj = 2πn=λp and n is the modal index at
the pump wavelength λp. If we use vA = 5:96 km/s and n = 1:45, the values
appropriate for silica fibers, νB � 11:1 GHz at λp = 1:55 µm.

Even though Eq. (9.1.2) predicts correctly that SBS should occur only in
the backward direction in single-mode fibers, spontaneous Brillouin scattering
can occur in the forward direction. This happens because the guided nature of
acoustic waves leads to a relaxation of the wave-vector selection rule. As a re-
sult, a small amount of Stokes light is generated in the forward direction. This
phenomenon is referred to as guided-acoustic-wave Brillouin scattering [11].
In practice, the Stokes spectrum shows multiple lines with frequency shifts
ranging from 10–1000 MHz. Because of its extremely weak character, this
phenomenon is not considered further in this chapter.

9.1.2 Brillouin-Gain Spectrum

Similar to the case of SRS, the growth of the Stokes wave is characterized
by the Brillouin-gain spectrum gB(Ω) peaking at Ω = ΩB. However, in con-
trast with the SRS case, the spectral width of the gain spectrum is very small
(�10 MHz in lieu of �10 THz) because it is related to the damping time of
acoustic waves or the phonon lifetime. In fact, if acoustic waves are assumed
to decay as exp(�ΓBt), the Brillouin gain has a Lorentzian spectrum of the
form [10]

gB(Ω) = gp
(ΓB=2)2

(Ω�ΩB)
2 +(ΓB=2)2 ; (9.1.4)

where the peak value of the Brillouin-gain coefficient occurring at Ω = ΩB is
given by [4]

gp � gB(ΩB) =
2π2n7 p2

12

cλ 2
p ρ0vAΓB

; (9.1.5)

where p12 is the longitudinal elasto-optic coefficient and ρ0 is the material
density. The full width at half maximum (FWHM) of the gain spectrum is
related to the ΓB as ∆νB = ΓB=(2π). The phonon lifetime itself is related to ΓB
as TB = Γ�1

B � 10 ns.
Measurements of the Brillouin gain in bulk silica were performed as early

as 1950 [12]. More recent measurements, performed using an argon-ion laser,
show that νB = 34:7 GHz and ∆νB = 54 MHz at λp = 486 nm [13]. These
experiments also indicate that ∆νB depends on the Brillouin shift and varies
slightly faster than ν2

B; a quadratic dependence is expected from theory. Noting
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Figure 9.1 Brillouin-gain spectra of three fibers at λ p = 1.525 µm: (a) silica-core
fiber, (b) depressed-cladding fiber, and (c) dispersion-shifted fiber. (After Ref. [16].)

from Eq. (9.1.3) that νB varies inversely with λp, ∆νB is expected to obey a
λ�2

p dependence on the pump wavelength. This narrowing of the Brillouin-
gain profile with an increase in λp cancels the decrease in gain apparent from
Eq. (9.1.5). As a result, the peak value gp is nearly independent of the pump
wavelength. If parameter values typical of fused silica are used in Eq. (9.1.5),
gp � 5�10�11 m/W. This value is larger by nearly three orders of magnitude
compared with that of the Raman-gain coefficient (see Section 8.1).

The Brillouin-gain spectrum for silica fibers can differ significantly from
that observed in bulk silica because of the guided nature of optical modes and
the presence of dopants in the fiber core [14]–[20]. Figure 9.1 shows the gain
spectra measured for three different fibers having different structures and dif-
ferent doping levels of germania in their cores. The measurements were made
by using an external-cavity semiconductor laser operating at 1:525 µm and
employed a heterodyne-detection technique with 3-MHz resolution [16]. The
fiber (a) has a core of nearly pure silica (germania concentration of about 0.3%
per mole). The measured Brillouin shift νB � 11:25 GHz is in agreement with
Eq. (9.1.3) for this fiber if we use the acoustic velocity of bulk silica. The
Brillouin shift is reduced for fibers (b) and (c) with nearly inverse dependence
on the germania concentration. The fiber (b) has a double-peak structure that
results from an inhomogeneous distribution of germania within the core [16].
In a different experiment [18], a three-peak gain spectrum was observed and
interpreted to result from different acoustic velocities in the core and cladding
regions of the fiber.

The Brillouin-gain bandwidth in Fig. 9.1 is much larger than that expected
for bulk silica (∆νB� 17 MHz at λp = 1:525 µm). Other experiments have also
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shown similarly large bandwidths for silica-based fibers [17]–[19]. A part of
the increase is due to the guided nature of acoustic modes in optical fibers [14].
Most of the increase, however, can be attributed to inhomogeneities in the
fiber-core cross section along the fiber length. Because such inhomogeneities
are specific to each fiber, ∆νB is generally different for different fibers and can
be as large as 100 MHz in the 1:55-µm spectral region.

Equation (9.1.4) for the Brillouin gain is obtained under steady-state con-
ditions and is valid for a CW or quasi-CW pump (pulse width T0� TB), whose
spectral width ∆νp is much smaller than ∆νB. For pump pulses of width
T0 < TB, the Brillouin gain is substantially reduced [5] compared with that
obtained from Eq. (9.1.5). Indeed, if the pulse width becomes much smaller
than the phonon lifetime (T0 < 1 ns), the Brillouin gain is reduced below the
Raman gain; such a pump pulse generates a forward-propagating Raman pulse
through SRS, as discussed in Section 8.4.

Even for a CW pump, the Brillouin gain is reduced considerably if the
spectral width ∆νp of the pump exceeds ∆νB. This can happen when a multi-
mode laser is used for pumping. It can also happen for a single-mode pump
laser whose phase varies rapidly on a time scale shorter than the phonon life-
time TB. Detailed calculations show that the Brillouin gain, under broad-
band pumping conditions, depends on the relative magnitudes of the pump-
coherence length [21]–[23], defined by Lcoh = c=(n∆νp), and the SBS-inter-
action length L int, defined as the distance over which the Stokes amplitude
varies appreciably. If Lcoh � L int, the SBS process is independent of the mode
structure of the pump laser provided the longitudinal-mode spacing exceeds
∆νB, and the Brillouin gain is nearly the same as for a single-mode laser after
a few interaction lengths [21]. In contrast, the Brillouin gain is reduced sig-
nificantly if Lcoh � L int. The latter situation is generally applicable to optical
fibers where the interaction length is typically comparable to the fiber length
L. In the case of a pump laser with a Lorentzian spectral profile of width ∆νp,
the gain spectrum is still given by Eq. (9.1.4) but the peak value of Brillouin
gain is reduced by a factor 1+∆νp=∆νB [23]. As a result, the SBS threshold
increases by a large factor when ∆νp � ∆νB.

9.2 Quasi-CW SBS

Similar to the SRS case, the development of SBS in optical fibers requires con-
sideration of mutual interaction between the pump and Stokes waves. In this
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section we develop a simple theory valid under CW or quasi-CW conditions
and use it to discuss the concept of Brillouin threshold.

9.2.1 Coupled Intensity Equations

Under steady-state conditions, applicable for a CW or quasi-CW pump, SBS is
governed by the two coupled equations similar to Eqs. (8.1.2) and (8.1.3). The
only difference is that the sign of dIs=dz should be changed to account for the
counterpropagating nature of the Stokes wave with respect to the pump wave.
Two simplifications can be made. First, owing to the relatively small values
of the Brillouin shift, ωp � ωs. Second, for the same reason, fiber losses are
nearly the same for the pump and Stokes waves, that is, αp � αs � α . With
these changes, Eqs. (8.1.2) and (8.1.3) become

dIp

dz
=�gBIpIs�αIp: (9.2.1)

dIs

dz
=�gBIpIs +αIs; (9.2.2)

One can readily verify that in the absence of fiber losses (α = 0),

d
dz

(Ip� Is) = 0; (9.2.3)

and Ip� Is remains constant along the fiber.
Equations (9.2.1) and (9.2.2) assume implicitly that the counterpropagat-

ing pump and Stokes waves are linearly polarized along the same direction
and maintain their polarization along the fiber. This is the case when the two
waves are polarized along a principal axis of a polarization-maintaining fiber.
The relative polarization angle between the pump and Stokes waves varies ran-
domly in conventional optical fibers. The Brillouin gain gB is reduced in that
case by a factor of 1.5 [24].

9.2.2 Brillouin Threshold

For the purpose of estimating the Brillouin threshold, pump depletion can be
neglected. Using Ip(z) = Ip(0)e�αz in Eq. (9.2.1) and integrating it over the
fiber length L, the Stokes intensity is found to grow exponentially in the back-
ward direction as

Is(0) = Is(L)exp(gBP0Leff=Aeff�αL); (9.2.4)
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where P0 = Ip(0)Aeff is the input pump power, Aeff is the effective core area,
and the effective interaction length is given by

Leff = [1� exp(�αL)]=α : (9.2.5)

Equation (9.2.4) shows how a Stokes signal incident at z = L grows in the
backward direction because of Brillouin amplification occurring as a result of
SBS. In practice, no such signal is generally fed (unless the fiber is used as
a Brillouin amplifier), and the Stokes wave grows from noise or spontaneous
Brillouin scattering occurring throughout the fiber. Similar to the SRS case,
this is equivalent to injecting a fictitious photon per mode at a distance where
the gain exactly equals the fiber loss. Following a method similar to that of
Section 8.1, the Brillouin threshold is found to occur at a critical pump power
Pcr obtained from [7]

gBPcrLeff=Aeff � 21; (9.2.6)

where gB is the peak value of the Brillouin gain given by Eq. (9.1.5). This
equation should be compared with Eq. (8.1.15) obtained for the case of SRS.
If we use typical values for fibers used in 1.55-µm optical communication
systems, Aeff = 50 µm2, Leff � 20 km, and gB = 5� 10�11 m/W, Eq. (9.2.6)
predicts Pcr � 1 mW. It is such a low Brillouin threshold that makes SBS a
dominant nonlinear process in optical fibers.

The threshold level predicted by Eq. (9.2.6) is only approximate as the
effective Brillouin gain can be reduced by many factors in practice. For exam-
ple, the SBS threshold increases by 50% when the state of polarization of the
pump field becomes completely scrambled [24]. Fiber inhomogeneities also
affect the effective Brillouin gain in optical fibers. Variations in the doping
level along the radial direction lead to slight changes in the acoustic velocity in
that direction. As a result, the SBS threshold depends, to some extent, on var-
ious dopants used to make the fiber [25]. Similarly, longitudinal variations in
the Brillouin shift ΩB along the fiber length can reduce the effective Brillouin
gain and increase the SBS threshold [26]. This feature can be used to suppress
SBS by intentionally changing the core radius along fiber length because ΩB
depends on the core radius. In a variation of this idea, ΩB was changed along
the fiber length using nonuniform doping levels [27]. The SBS threshold for
such a fiber exceeded 30 mW in the wavelength region near 1.55 µm.
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Figure 9.2 Variations in the pump and Stokes intensities (normalized to the input
pump intensity) along fiber length. The Stokes power at z = L relative to the pump
power is 0.1% for solid curves and 1% for dashed curves.

9.2.3 Gain Saturation

Once Brillouin threshold is reached, a large part of the pump power is trans-
ferred to the Stokes wave. To account for pump depletion, it is necessary to
solve Eqs. (9.2.1) and (9.2.2). Their general solution is somewhat compli-
cated [28]. However, if fiber losses are neglected by setting α = 0, we can
make use of Eq. (9.2.3) and set Ip =C+ Is, where C is a constant. The result-
ing equation can be integrated along the fiber length to yield

Is(z)
Is(0)

=

�
C+ Is(z)
C+ Is(0)

�
exp(gBCz): (9.2.7)

Using C = Ip(0)� Is(0), the Stokes intensity Is(z) is given by [4]

Is(z) =
b0(1�b0)

G(z)�b0
Ip(0); (9.2.8)

where G(z) = exp[(1�b0)g0z] with

b0 = Is(0)=Ip(0); g0 = gBIp(0): (9.2.9)

The parameter b0 is a measure of the SBS efficiency as it shows what fraction
of the input pump power is converted to the Stokes power. The quantity g0 is
the small-signal gain associated with the SBS process.
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Figure 9.3 Gain saturation in Brillouin amplifiers for several values of G A.

Equation (9.2.8) shows how the Stokes intensity varies along fiber length
in a Brillouin amplifier when the input signal is launched at z= L and the pump
is incident at z = 0. Figure 9.2 shows this variation for two input signals such
that bin = Is(L)=Ip(0) = 0:001 and 0.01. The value of g0L = 10 corresponds
to unsaturated amplifier gain of e10 or 43 dB. Because of pump depletion, the
net gain is considerably smaller. Nonetheless, about 50 and 70% of the pump
power is transferred to the Stokes for bin = 0:001 and 0.01, respectively. Note
also that most of the power transfer occurs within the first 20% of the fiber
length.

The saturation characteristics of Brillouin amplifiers can be obtained from
Eq. (9.2.8) if we define the saturated gain using

Gs = Is(0)=Is(L) = b0=bin; (9.2.10)

and introduce the unsaturated gain as GA = exp(g0L). Figure 9.3 shows gain
saturation by plotting Gs=GA as a function of GAbin for several values of GA.
It should be compared with Fig. 8.6 where the saturation characteristics of
Raman amplifiers are shown. The saturated gain is reduced by a factor of two
(by 3 dB) when GAbin � 0:5 for GA in the range 20–30 dB. This condition
is satisfied when the amplified signal power becomes about 50% of the input
pump power. As typical pump powers are �1 mW, the saturation power of
Brillouin amplifiers is also �1 mW.
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Figure 9.4 Oscilloscope traces of (a) input and transmitted pump pulses and (b)
Stokes pulse for SBS occurring in a 5.8-m fiber. The horizontal scale is 200 ns per
division while the vertical scale is arbitrary. (After Ref. [6].)

9.2.4 Experimental Results

In the 1972 demonstration of SBS in optical fibers, a xenon laser operating
at 535.5 nm was used as a source of relatively wide (width �1 µs) pump
pulses [6]. Because of large fiber losses (about 1300 dB/km), only small
sections of fibers (L = 5–20 m) were used in the experiment. The measured
Brillouin threshold was 2.3 W for a 5.8-m-long fiber and reduced to below
1 W for L = 20 m, in good agreement with Eq. (9.2.6) if we use the esti-
mated value Aeff = 13:5 µm2 for the effective core area. The Brillouin shift of
νB = 32:2 GHz also agreed with Eq. (9.1.3).

Figure 9.4 shows the oscilloscope traces of incident and transmitted pump
pulses, as well as the corresponding Stokes pulse, for SBS occurring in a 5.8-
m-long fiber. The oscillatory structure is due to relaxation oscillations whose
origin is discussed in the next section. The oscillation period of 60 ns cor-
responds to the round-trip time within the fiber. The Stokes pulse is narrower
than the pump pulse because SBS transfers energy only from the central part of
the pump pulse where power is large enough to exceed the Brillouin threshold.
As a result, peak power of the Stokes pulse can exceed the input peak power
of the pump pulse. Indeed, SBS can damage the fiber permanently because of
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Figure 9.5 Schematic of the experimental setup used to observe SBS in optical fibers.
(After Ref. [30].)

such an increase in the Stokes intensity [6].
In most of the early experiments, the SBS threshold was relatively high

(>100 mW) because of extremely large fiber losses. As mentioned earlier, it
can become as low as 1 mW if long lengths of low-loss fiber are employed. A
threshold of 30 mW was measured when a ring dye laser, operating in a single-
longitudinal mode at 0.71 µm, was used to couple CW light into a 4-km-long
fiber having a loss of about 4 dB/km [29]. In a later experiment, the threshold
power was reduced to only 5 mW [30] by using a Nd:YAG laser operating
at 1:32 µm. Figure 9.5 shows a schematic of the experimental arrangement.
The 1.6-MHz spectral width of the CW pump was considerably smaller than
the Brillouin-gain bandwidth. The experiment employed a 13.6-km-long fiber
with losses of only 0.41 dB/km, resulting in an effective length of 7.66 km. The
isolator serves to block the Stokes light from entering the laser. The transmitted
power and the reflected power are measured as a function of the input power
launched into the fiber. Figure 9.6 shows the experimental data. At low input
powers, the reflected signal is due to 4% reflection at the air–fiber interface.
Brillouin threshold is reached at an input power of about 5 mW as manifested
through a substantial increase in the reflected power through SBS. At the same
time, the transmitted power decreases because of pump depletion, and reaches
a saturation level of about 2 mW for input powers in excess of 10 mW. The
SBS conversion efficiency is nearly 65% at that level.

In a 1987 experiment, SBS was observed by using a 1.3-µm semiconduc-
tor laser, which utilized the distributed-feedback mechanism to emit light in a
single longitudinal mode with a spectral width �10 MHz [31]. The CW pump
light was coupled into a 30-km-long fiber having a loss of 0.46 dB/km. The
effective length was about 9 km from Eq. (9.2.5). The Brillouin threshold was
reached at a pump power of 9 mW. To check if the bandwidth of the pump
laser affected the SBS threshold, the measurements were also performed using
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Figure 9.6 Transmitted (forward) and reflected (backward) powers as a function of
the input power launched into a 13.6-km-long single-mode fiber. (After Ref. [30].)

a Nd:YAG laser having a bandwidth of only 20 kHz. The results were virtu-
ally identical with those obtained using the semiconductor laser, indicating that
the Brillouin-gain bandwidth ∆νB was considerably larger than 15 MHz. As
mentioned in Section 9.1, ∆νB is considerably enhanced from its value in bulk
silica (� 22 MHz at 1:3 µm) because of fiber inhomogeneities. The thresh-
old power is considerably smaller (�1 mW) near 1:55 µm where the effective
length is�20 km because of relatively low losses of optical fibers (0.2 dB/km)
at that wavelength.

In most experiments on SBS, it is essential to use an optical isolator be-
tween the laser and the fiber to prevent the Stokes signal from reentering into
the fiber after reflection at the laser-cavity mirror. In the absence of an isolator,
a significant portion of the Stokes power can be fed back into the fiber. In one
experiment, about 30% of the Stokes power was reflected back and appeared
in the forward direction [32]. It was observed that several orders of Stokes and
anti-Stokes lines were generated in the spectrum as a result of the feedback.
Figure 9.7 shows the output spectra in the forward and backward directions
for SBS occurring in a 53-m-long fiber. The 34-GHz spacing between ad-
jacent spectral lines corresponds exactly to the Brillouin shift at λp = 514:5
nm. The anti-Stokes components are generated as a result of four-wave mix-
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Figure 9.7 Output spectra in the forward (upper trace) and backward (lower trace)
directions showing multiple orders of Stokes and anti-Stokes waves generated without
isolation between laser and fiber. (After Ref. [32].)

ing between the copropagating pump and Stokes waves (see Section 10.1).
The higher-order Stokes lines are generated when the power in the lower-order
Stokes wave becomes large enough to satisfy the threshold condition given in
Eq. (9.2.6). Even when optical isolators are used to prevent external feedback,
Rayleigh backscattering, occurring within the fiber, can provide feedback to
the SBS process. In a 1998 experiment, this internal feedback process in a
high-loss fiber (length 300 m) was strong enough to produce lasing when the
fiber was pumped using 1.06-µm CW radiation [33].

9.3 Dynamic Aspects

The dynamic aspects of SBS are more important than SRS as the medium re-
sponse in the SBS case is governed by the phonon lifetime TB � 10 ns. The
quasi-CW regime is thus valid only for pump pulses of widths 100 ns or more.
This section focuses on the time-dependent effects relevant to the SBS phe-
nomenon in optical fibers.

9.3.1 Coupled Amplitude Equations

The time-dependent effects are described by using the coupled-amplitude equa-
tions similar to Eqs. (8.1.21) and (8.1.22). However, these equations should be
modified to include the transient nature of SBS by adding a third equation for



368 Stimulated Brillouin Scattering

the material density [34]–[43]. The resulting set of equations can be written as

∂Ap
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+

1
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∂Ap

∂ t
+

iβ2

2
∂ 2Ap

∂ t2 +
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2
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TB
∂Q
∂ t

+ (1+ iδ )Q = ApA�

s ; (9.3.3)

where the effects of GVD, SPM, and XPM have been included. The wave-
length difference between the pump and Stokes waves is so small that numer-
ical values of β2; γ , and α are nearly the same for both waves. The material
response to acoustic waves is governed by Eq. (9.3.3), where Q is related to
the amplitude of density oscillations [10]. The detuning parameter δ is defined
as δ = (ωp�ωs�ΩB)TB, where ΩB is the Brillouin shift.

For pump pulses of widths T0 � 10 ns, the preceding equations can be
simplified considerably if we note that the GVD effects are negligible for such
pulses. The SPM and XPM effects can also be neglected if the peak powers
associated with the pump and Stokes pulses are relatively low. We can also set
∂Q=∂ t = 0 for such wide pulses. Defining Ij = jA jj2, where j = p or s, and
choosing δ = 0, the temporal evolution of SBS is governed by the following
two simple equations:

∂ Ip

∂ z
+

1
vg

∂ Ip

∂ t
= �gBIpIs�αIp; (9.3.4)

�
∂ Is

∂ z
+

1
vg

∂ Is

∂ t
= gBIpIs�αIs: (9.3.5)

These equations reduce to Eqs. (9.2.1) and (9.2.2) under steady-state condi-
tions in which Ip and Is are time independent.

9.3.2 Relaxation Oscillations

The dynamic response of SBS has many interesting features even for pump
pulses that are wider than TB. In particular, the Stokes intensity does not ap-
proach its steady-state value monotonically but exhibits relaxation oscillations
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Figure 9.8 Stable and unstable regions of SBS in the presence of feedback. Solid line
shows the critical value of the relative Stokes intensity [b0 = Is(0)=Ip(0)] below which
the steady state is unstable. (After Ref. [45].)

with a period 2Tr, where Tr = L=vg is the transit time for a fiber of length
L [44]. In the presence of external feedback, relaxation oscillations can turn
into stable oscillations [45], that is, both the pump and Stokes waves can de-
velop self-induced intensity modulation.

Even though the group velocity vg is the same for the pump and the Stokes
waves, their relative speed is 2vg because of their counterpropagating nature.
Relaxation oscillations occur as a result of this effective group-velocity mis-
match. A simple way to obtain the frequency and the decay time of relaxation
oscillations is to perform a linear stability analysis of the steady-state solu-
tion (9.2.8) by following a procedure similar to that of Section 5.1 used in
the context of modulation instability. The effect of external feedback can be
included by assuming that optical fiber is enclosed within a cavity and by ap-
plying the appropriate boundary conditions at fiber ends [45]. Such a linear
stability analysis also provides the conditions under which the steady state be-
comes unstable.

Assuming that small perturbations from the steady state decay as exp(�ht),
the complex parameter h can be determined by linearizing Eqs. (9.3.4) and
(9.3.5). If the real part of h is positive, perturbations decay exponentially
with time through relaxation oscillations whose frequency is given by νr =

Im(h)=2π . By contrast, if the real part of h becomes negative, perturbations
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Figure 9.9 Temporal evolution of the Stokes (left column) and pump (right column)
intensities without (top row) and with (bottom row) feedback. Fiber losses are such
that αL = 0.15. (After Ref. [45].)

grow with time, and the steady state is unstable. In that case, SBS leads to
temporal modulation of the pump and Stokes intensities even for a CW pump.
Figure 9.8 shows the stable and unstable regions in the case of feedback as a
function of the gain factor g0L that is related to the pump intensity through Eq.
(9.2.9). The parameter b0 is also defined there. It represents the fraction of the
pump power converted to the Stokes power.

Figure 9.9 shows temporal evolution of the Stokes and pump intensities
obtained by solving Eqs. (9.3.4) and (9.3.5) numerically. The top row for
g0L = 30 shows relaxation oscillations occurring in the absence of feedback.
The oscillation period is 2Tr, where Tr is the transit time. Physically, the ori-
gin of relaxation oscillations can be understood as follows [44]. Rapid growth
of the Stokes power near the input end of the fiber depletes the pump. This
reduces the gain until the depleted portion of the pump passes out of the fiber.
The gain then builds up and the process repeats.

The bottom row in Fig. 9.9 corresponds to the case of weak feedback such
that R1R2 = 5� 10�5, where R1 and R2 are the reflectivities at the fiber ends.
The gain factor of g0L = 13 is below the Brillouin threshold. The Stokes wave
is nonetheless generated because of the reduction in Brillouin threshold as a
result of the feedback. However, because of the instability indicated in Fig.
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Figure 9.10 Threshold of SBS-induced modulation instability for counterpropagating
pump waves of input intensities I f and Ib. Normalized forward intensity is plotted as
a function of Ib=I f for ∆νB=νB = 0.06 for several fiber lengths. (After Ref. [50].)

9.8, a steady state is not reached. Instead, the intensities of the pump output
(at z = L) and the Stokes output (at z = 0) both exhibit steady oscillations.
Interestingly enough, a steady state is reached if the feedback is increased such
that R1R2 � 2� 10�2. This happens because b0 for this amount of feedback
lies in the stable regime of Fig. 9.8. All of these dynamic features have been
observed experimentally [45].

9.3.3 Modulation Instability and Chaos

Another instability can occur when two counterpropagating pump waves are
present simultaneously, even though none of them is intense enough to reach
the Brillouin threshold [46]–[52]. The origin of this instability lies in the SBS-
induced coupling between the counterpropagating pump waves through an
acoustic wave at the frequency νB. The instability manifests as the spontaneous
growth of side modes in the pump spectrum at νp�νB, where νp is the pump
frequency [47]. In the time domain, both pump waves develop modulations at
the frequency νB. The SBS-induced modulation instability is analogous to the
XPM-induced modulation instability discussed in Section 7.3 except that it oc-
curs for waves propagating in the opposite directions. The instability threshold
depends on the forward and backward input pump intensities If and Ib, fiber
length L, and parameters gB, νB, and ∆νB.
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Figure 9.10 shows the forward pump intensity If (in the normalized form)
needed to reach the instability threshold as a function of the intensity ratio
Ib=I f for ∆νB=νB = 0:06 and several values of the normalized fiber length
4πnνBL=c. The instability threshold is significantly smaller than the Brillouin
threshold (gBIf L = 21) and can be as small as gBIf L = 3 for specific values of
the parameters. Numerical results show that temporal evolution of pump inten-
sities at the fiber output can become chaotic [50], following a period-doubling
route, if the Brillouin-gain bandwidth ∆νB is comparable to the Brillouin shift
νB. Subharmonics of νB appear in the spectrum of the scattered light with suc-
cessive period-doubling bifurcations. The chaotic evolution is also predicted
when the backward pump is not incident externally but is produced by the
feedback of the forward pump at a reflector [48].

During the 1990s, considerable effort was devoted to observe and charac-
terize SBS-induced chaos in optical fibers [53]–[64]. Irregular fluctuations in
the Stokes intensity, occurring at a time scale �0.1 µs, were observed in sev-
eral experiments [53]–[55]. Figure 9.11 shows an example of fluctuations in
the Stokes power observed for SBS occurring inside a 166-m-long fiber when
the CW pump power was 50% above the SBS threshold (P0 = 1:5Pcr). Whether
such fluctuations are stochastic or chaotic in nature is an issue that is not easy
to resolve. Interpretation of the experimental results requires a careful con-
sideration of both spontaneous Brillouin scattering and the effects of optical
feedback. It was established by 1993 that fluctuations in the Stokes power, ob-
served when care was taken to suppress optical feedback, were due to stochas-
tic noise arising from spontaneous Brillouin scattering [62]. The mathematical
description requires inclusion of spontaneous Brillouin scattering (through a
Langevin noise source) in the coupled amplitude equations given earlier [59].

The SBS dynamics change drastically in the presence of optical feedback
introduced either by using an external mirror or occurring naturally at the fiber
ends because of a refractive-index discontinuity at the glass-air interface. As
discussed earlier in this section, feedback destabilizes relaxation oscillations
and leads to periodic output at a repetition rate (2Tr)

�1, where Tr is the tran-
sit time. Under certain conditions, the envelope of the pulse train exhibits
irregular fluctuations occurring at a time scale much longer than Tr. In one
experiment, such fluctuations were found to be stochastic in nature and were
attributed to fluctuations of the relative phase between the pump light and the
fiber resonator [62]. In another experiment, a quasi-periodic route to chaos
was observed in a limited range of pump powers [63]. Fiber nonlinearity may
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Figure 9.11 Fluctuations observed in Stokes power at a pump power P0 = 1:5Pcr when
SBS occurred inside a 166-m-long fiber. (After Ref. [62].)

have played a role in this experiment because chaos was observed at pump
powers �0.8 W. Numerical simulations based on the coupled amplitude equa-
tions (9.3.1)–(9.3.3) predict that inclusion of SPM and XPM can lead to opti-
cal chaos, even in the absence of feedback, if the nonlinearity is large enough
[56]–[58].

9.3.4 Transient Regime

Equations (9.3.1)–(9.3.3) can be used to study SBS in the transient regime
applicable for pump pulses shorter than 10 ns. From a practical standpoint,
two cases are of interest depending on the repetition rate of pump pulses. Both
cases are discussed here.

In the case relevant for optical communication systems, the repetition rate
of pump pulses is�1 GHz, while the width of each pulse is�100 ps. The pulse
train is not uniform for lightwave signals as “1” and “0” bits form a pseudo-
random sequence. Nevertheless, the effect of such a pulse train is similar to
the quasi-CW case discussed earlier because of its high repetition rate. The
time interval between pump pulses is short enough that successive pulses can
pump the same acoustic wave in a coherent manner (except in rare instances of
a long sequence of “0” bits). The main effect of a pseudorandom pulse train is
that the Brillouin threshold is increased by a factor of two or so compared with
the CW case; the exact factor depends on the bit rate as well as modulation for-
mat. The SBS threshold can be increased even more by modulating the phase
of the CW beam at the optical transmitter (before information is encoded on it)
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Figure 9.12 Stokes (dotted) and transmitted pump (solid) pulses observed for several
peak powers when 14-ns (left column) and 50-ns (right column) input pump pulses
(dot-dashed curve) were transmitted through a 0.5-m-long fiber. (After Ref. [43].)

at frequencies in excess of 100 MHz [36]. Such phase modulations reduce the
effective Brillouin gain by increasing spectral bandwidth of the optical source.
Phase modulations can also be used to convert the CW beam into a train of
optical pulses whose width (�0.5 ns) is a small fraction of the phonon lifetime
[38]–[41].

The case in which the repetition rate of pump pulses is relatively low
(<10 MHz) is quite interesting. In this case, the acoustic wave created by each
pump pulse decays almost completely before the next pump pulse arrives. This
case has been studied by solving Eqs. (9.3.1)–(9.3.3) numerically [43]. The re-
sults show that the characteristics of the Stokes pulse depend not only on the
width and peak power of the pump pulse but also on the fiber length. If the
pump-pulse width Tp becomes much shorter than the phonon lifetime TB, SBS
ceases to occur. When the two are comparable, the Stokes pulse can become
shorter than the pump pulse. Figure 9.12 shows the Stokes pulse (dotted curve)
and the transmitted pump pulse (solid curve) for several peak powers when
14- and 50-ns pump pulses at the 10-Hz repetition rate (obtained from a Q-
switched Nd:YAG laser) were transmitted through a 0.5-m-long optical fiber.
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These experimental results agree quite well with the numerical predictions.
An interesting question is whether Eqs. (9.3.1)–(9.3.3) permit solitary-

wave solutions such that each pump pulse generates the Stokes field As in the
form of a backward-propagating soliton. It turns out that, under certain condi-
tions, the pump and Stokes waves can support each other as a coupled bright–
dark soliton pair [65]–[67], similar to the XPM-paired solitons discussed in
Section 7.3. Such solitons exist even in the absence of GVD (β2 = 0) and
XPM (γ = 0) because they rely on the presence of a solitary acoustic wave.
Such Brillouin solitons exist in spite of fiber losses and can move at a speed
larger than the group velocity expected in the low-power limit.

9.4 Brillouin Fiber Lasers

Similar to the SRS case considered in Section 8.2, the Brillouin gain in optical
fibers can be used to make lasers by placing the fiber inside a cavity. Such
lasers were made as early as 1976 and have remained an active topic of study
since then [68]–[86]. Both the ring-cavity and the Fabry–Perot geometries
have been used for making Brillouin lasers, each having its own advantages.
No mirrors are needed in the ring-cavity case as such a cavity can be made by
using a directional fiber coupler.

9.4.1 CW Operation

The threshold pump power required for laser oscillations is considerably re-
duced from that given in Eq. (9.2.6) because of the feedback provided by the
cavity. Consider a ring cavity. Using the boundary condition Is(L) = RI s(0),
the threshold condition can be written as

Rexp(gBPthLeff=Aeff�αL) = 1; (9.4.1)

where L is the ring-cavity length, R is the fraction of Stokes intensity fed back
after each round trip and Pth is the threshold value of the pump power. Fiber
losses can be neglected in most cases of practical interest because L is typically
100 m or less. A comparison with Eq. (9.2.6) shows that, for the same fiber
length, the factor of 21 is typically replaced by a number in the range 0.1–1
depending on the value of R.

In a 1976 demonstration of a CW Brillouin laser, a ring cavity consisting
of a 9.5-m-long fiber was pumped using an argon-ion laser [68]. The length
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Figure 9.13 Schematic illustration of a Brillouin ring laser. (After Ref. [73].)

of fiber was chosen to be relatively small in view of its large losses (about
100 dB/km) at the pump wavelength of 514.5 nm. The round-trip losses (about
70%) were still so large that the threshold was more than 100 mW for this
laser. By 1982, the threshold pump power was reduced to a mere 0.56 mW [73]
by using an all-fiber ring resonator shown schematically in Fig. 9.13. The
round-trip cavity losses were only 3.5% for this ring cavity. Such a low loss
resulted in an enhancement of the input pump power by a factor of 30 inside
the ring cavity. A He–Ne laser operating at 633 nm could be used as a pump
source because of the low laser threshold. Semiconductor lasers were used
for pumping of Brillouin lasers soon after, resulting in a compact device [74].
Such lasers are routinely used in high-performance laser gyroscopes for inertial
rotation sensing.

Brillouin fiber lasers consisting of a Fabry–Perot cavity exhibit features
that are qualitatively different from those making use of a ring-cavity config-
uration. The difference arises from the simultaneous presence of the forward
and backward propagating components associated with the pump and Stokes
waves. Higher-order Stokes waves are generated through cascaded SBS, a pro-
cess in which each successive Stokes component pumps the next-order Stokes
component after its power becomes large enough to reach the Brillouin thresh-
old. At the same time, anti-Stokes components are generated through four-
wave mixing between copropagating pump and Stokes waves. The frequency
spectrum of the laser output appears similar to that shown in Fig. 9.7. The
number of Stokes and anti-Stokes lines depends on the pump power. In one
experiment [68], up to 14 spectral lines were observed, with 10 lines appearing
on the Stokes side, when a 20-m-long fiber was used inside a Fabry–Perot cav-
ity, which was pumped by using a CW argon-ion laser operating at 514.5 nm.
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The 34-GHz frequency spacing between adjacent lines corresponded to the ex-
pected Brillouin shift. The use of a Sagnac interferometer in 1998 resulted in
generation of up to 34 spectral lines through cascaded SBS in an erbium-doped
fiber laser [84].

Most Brillouin fiber lasers use a ring cavity to avoid generation of multiple
Stokes lines through cascaded SBS. The performance of a Brillouin ring laser
depends on the fiber length L used to make the cavity (see Fig. 9.13) as it
determines the longitudinal-mode spacing through ∆νL = c=(n̄L), where n̄ is
the effective mode index. For short fibers such that ∆νL > ∆νB, where ∆νB
is the Brillouin-gain bandwidth (typically 20 MHz), the ring laser operates
stably in a single longitudinal mode. Such lasers can be designed to have low
threshold [73] and to emit CW light with a narrow spectrum [76]. In contrast, a
Brillouin ring laser operates in multiple longitudinal modes when ∆νL � ∆νB,
and the number of modes increases with fiber length. As early as 1981, it
was noted that such lasers required active intracavity stabilization to operate
continuously [72]. In fact, their output can become periodic, and even chaotic,
under some conditions. This issue is discussed later in this section.

An important application of CW Brillouin lasers consists of using them
as a sensitive laser gyroscope [77]–[79]. Passive fiber gyroscopes have been
discussed in Section 7.5.3. Laser gyroscopes differ from them both concep-
tually and operationally. Whereas passive fiber gyroscopes use a fiber ring as
an interferometer, active laser gyroscopes use the fiber ring as a laser cavity.
The rotation rate is determined by measuring the frequency difference between
the counterpropagating laser beams. Similarly to the case of passive fiber gy-
roscopes, fiber nonlinearity affects the performance of a Brillouin-laser fiber
gyroscope through XPM-induced nonreciprocity and constitutes a major error
source [78].

9.4.2 Pulsed Operation

Brillouin fiber lasers with long cavity lengths can be forced to emit a pulse
train using several different methods. The technique of active mode locking
was used in a 1978 experiment by placing an amplitude modulator inside the
laser cavity [70]. Laser output consisted of a train of pulses (width about 8 ns)
at a repetition rate of 8 MHz, determined by the cavity length. These pulses
result from locking of multiple longitudinal modes of the cavity.

Another type of mode locking can occur in Fabry–Perot cavities in which
multiple Stokes lines are generated through cascaded SBS. Relaxation oscil-
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lations can seed the mode-locking process because their period is equal to the
round-trip time in the cavity. Indeed, partial mode-locking of such a Brillouin
laser by itself was observed [70], but the process was not very stable. The
reason can be understood from Eq. (9.1.3) showing that the Brillouin shift de-
pends on pump wavelength. In cascaded SBS, different Stokes waves act as
pumps for the successive Stokes. As a result, multiple Stokes lines are not
spaced equally but differ in frequencies by a small amount �1 MHz. In a 1989
experiment, mode locking was achieved by using a multimode fiber [75]. As
different modes have a slightly different effective index (modal dispersion),
equally spaced Stokes lines can be generated by using different fiber modes.

An interesting technique for generating short Stokes pulses from a Bril-
louin laser makes use of synchronous pumping using a mode-locked train of
pump pulses [80]. The idea is quite simple. The length of a ring cavity is ad-
justed such that the round-trip time exactly equals the spacing between pump
pulses. Each pump wave is so short that it is unable to excite the acoustic wave
significantly. However, if the next pump pulse arrives before the acoustic wave
has decayed, the cumulative effect of multiple pump pulses can build up the
acoustic wave to a large amplitude. After the build-up process is complete, a
short Stokes pulse will be generated through transient SBS with the passage
of each pump pulse. This technique has produced Stokes pulses of 200-ps du-
ration when 300-ps pulses from a mode-locked Nd:YAG laser were used for
pumping a Brillouin ring laser.

Brillouin ring lasers with long cavity lengths can produce pulse trains, even
when pumped continuously, through a nonlinear self-pulsing mechanism. Typ-
ically, pulses have widths in the range 20 to 30 ns and are emitted with a rep-
etition rate nearly equal to the longitudinal-mode spacing ∆νL � 1=tr, where
tr is the round-trip time. Physics behind such lasers attracted considerable at-
tention during the 1990s [86]. Equations (9.3.1)–(9.3.3) describe the nonlinear
dynamics in Brillouin ring lasers when supplemented with the boundary con-
ditions appropriate for a ring cavity:

As(L; t) =
p

RAs(0; t); Ap(0; t) =
p

P0 +
p

RpAp(L; t); (9.4.2)

where R and Rp are the feedback levels for the Stokes and pump fields after one
round-trip inside the ring cavity. In modern Brillouin lasers, feedback of the
pump on each round trip is avoided using either an optical isolator or an optical
circulator in place of the directional coupler (see Fig. 9.11) so that Rp = 0.

Neither dispersive (GVD) nor nonlinear (SPM and XPM) effects play an
important role in determining the self-pulsing threshold in Brillouin lasers. A
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linear stability analysis of Eqs. (9.3.1)–(9.3.3) [similar to that used for mod-
ulation instability] predicts that the stability of the CW state depends on the
pumping parameter g0 � gBP0=Aeff, defined as the small-signal gain at the
pump power P0. The linear stability analysis is quite complicated when the
nonlinear effects and the finite medium response time TB are taken into ac-
count. However, a simplified approach shows that the CW state is unstable
whenever the pump power P0 satisfies the inequality [86]

ln

�
1
R

�
< g0L < 3 ln

�
1+2R

3R

�
: (9.4.3)

The laser threshold is reached when g0L = ln(1=R). However, the laser does
not emit CW light until g0L is large enough to be outside the instability do-
main predicted by Eq. (9.4.3). Noting that the instability domain shrinks as
R approaches 1, it is easy to conclude that stable CW operation with a low
threshold can be realized in low-loss ring cavities [73]. On the other hand,
the pump-power level at which CW operation is possible becomes quite high
when R� 1 (high-loss cavity). As an example, the laser threshold is reached
at g0L = 4:6 when R = 0:01 but CW operation is possible only for g0L > 10:6.

Numerical solutions of Eqs. (9.3.1)–(9.3.3), performed with β2 = 0 as
GVD effects are negligible, show that the laser emits a pulse train in the unsta-
ble region except close to the instability boundary where the laser output ex-
hibits periodic oscillations whose frequency depends on the number of longi-
tudinal modes supported by the laser [86]. Moreover, in this transition region,
the laser exhibits bistable behavior in the sense that the transition between the
CW and periodic states occurs at different pump levels depending on whether
P0 is increasing or decreasing. The width of the hysteresis loop depends on the
nonlinear parameter γ responsible for SPM and XPM, and bistability ceases to
occur when γ = 0.

In the self-pulsing regime, the laser emits a train of optical pulses. As
an example, Fig. 9.14 shows evolution of the Stokes and pump amplitudes
over multiple round trips. The laser output (Stokes) exhibits transients (left
traces) that last over hundreds of round trips. A regular pulse train is eventu-
ally formed (right traces) such that a pulse is emitted nearly once per round-
trip time. The emitted pulse can be characterized as a Brillouin soliton. All of
these features have been seen experimentally using two Brillouin lasers, one
pumped at 514.5 nm by an argon-ion laser and another at 1319 nm by Nd:YAG
laser [86]. The observed behavior was in agreement with the numerical solu-
tions of Eqs. (9.3.1)–(9.3.3). Specifically, both lasers emitted a pulse train



380 Stimulated Brillouin Scattering

S
to

ke
s

P
um

p

Figure 9.14 Evolution of Stokes (lower trace) and pump (upper trace) amplitudes
over multiple round trips in the self-pulsing regime: (left) initial build-up from noise;
(right) fully formed pulse train after 4800 round trips. (After Ref. [86].)

when the pumping level satisfied the inequality in Eq. (9.4.3). A Brillouin ring
laser can thus be designed to emit a soliton train, with a pulse width �10 ns
and a repetition rate (�1 MHz) determined by the round-trip time of the ring
cavity.

9.5 SBS Applications

Stimulated Brillouin scattering has been used for several different kinds of
applications. Its use for making lasers has already been discussed; it can also
be used for making an optical amplifier. The SBS has also been exploited for
making fiber sensors capable of sensing temperature and strain changes over
relatively long distances. In this section we discuss some of these applications.

9.5.1 Brillouin Fiber Amplifiers

The SBS-produced gain in an optical fiber can be used to amplify a weak signal
whose frequency is shifted from the pump frequency by an amount equal to the
Brillouin shift. Such amplifiers were studied during the 1980s [87]–[99].

A semiconductor laser can be used to pump Brillouin amplifiers provided
it operates in a single-longitudinal mode whose spectral width is consider-
ably less than the Brillouin-gain bandwidth. Distributed-feedback or external-
cavity semiconductor lasers [100] are most appropriate for pumping Brillouin
amplifiers. In a 1986 experiment, two external-cavity semiconductor lasers,
with line widths below 0.1 MHz, were used as pump and probe lasers [87].
Both lasers operated continuously and were tunable in the spectral region near
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Figure 9.15 Schematic illustration of a Brillouin amplifier. ECL, ISO, and PD stand
for external-cavity laser, isolator, and photodetectors, respectively. Solid and dashed
arrows show the path of pump and probe lasers. (After Ref. [87].)

1:5 µm. Figure 9.15 shows the experimental setup schematically. Radiation
from the pump laser was coupled into a 37.5-km-long fiber through a 3-dB
coupler. The probe laser provided a weak input signal (� 10 µW) at the other
end of the fiber. Its wavelength was tuned in the vicinity of the Brillouin shift
(νB = 11:3 GHz) to maximize the Brillouin gain. The measured amplification
factor increased exponentially with the pump power. This is expected from Eq.
(9.2.10). If gain saturation is neglected, the amplification factor can be written
as

GA = Is(0)=Is(L) = exp(gBP0Leff=Aeff�αL): (9.5.1)

The amplifier gain was 16 dB (GA = 40) at a pump power of only 3.7 mW
because of a long fiber length used in the experiment.

An exponential increase in the signal power with increasing pump powers
occur only if the amplified signal remains below the saturation level. The
saturation characteristics of Brillouin amplifiers are shown in Fig. 9.3. The
saturated gain Gs is reduced by 3 dB when

GA(Pin=P0)� 0:5; (9.5.2)

for GA in the range 20�30 dB, where Pin is the incident power of the signal
being amplified. As P0 is typically �1 mW, the saturation power of Brillouin
amplifiers is also �1 mW.

Brillouin amplifiers are capable of providing 30 dB gain at a pump power
under 10 mW. However, because ∆νB < 100 MHz, the bandwidth of such am-
plifiers is also below 100 MHz, in sharp contrast with Raman amplifiers whose
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bandwidth exceeds 5 THz. In fact, the difference between the signal and pump
frequencies should be matched to the Brillouin shift ΩB (about 11 GHz in
the 1.55-µm region) with an accuracy to better than 10 MHz. For this rea-
son, Brillouin amplifiers are not suitable for amplifying signals in fiber-optic
communication systems, which commonly use erbium-doped fiber amplifiers.

Brillouin amplifiers can be useful for applications requiring selective am-
plification [89]–[91]. One such application is based on a scheme in which
receiver sensitivity is improved by selective amplification of the carrier while
leaving modulation sidebands unamplified [101]. The underlying principle is
similar to that of homodyne detection except that the amplified carrier acts as a
reference signal. This feature eliminates the need of a local oscillator that must
be phase locked to the transmitter, a difficult task in general. In a demonstration
of this scheme, the carrier was amplified by 30 dB more than the modulation
sidebands even at a modulation frequency as low as 80 MHz [89]. With a
proper design, sensitivity improvements of up to 15 dB or more seem feasible
at bit rates in excess of 100 Mb/s. The limiting factor is the nonlinear phase
shift induced by the pump (a kind of cross-phase modulation) if the differ-
ence between the pump and carrier frequencies does not match the Brillouin
shift exactly. The calculations show [90] that deviations from the Brillouin
shift should be within 100 kHz for a phase stability of 0.1 rad. Nonlinear
phase shifts can also lead to undesirable amplitude modulation of a frequency-
modulated signal [93].

Another application of narrowband Brillouin amplifiers consists of using
them as a tunable narrowband optical filter for channel selection in a densely
packed multichannel communication system [91]. If channel spacing exceeds
but the bit rate is smaller than the bandwidth ∆νB, the pump laser can be tuned
to amplify a particular channel selectively. The concept was demonstrated us-
ing a tunable color-center laser as a pump [91]. Two 45-Mb/s channels were
transmitted through a 10-km-long fiber. Each channel could be amplified by
20 to 25 dB by using 14 mW of pump power when pump frequency was tuned
in the vicinity of the Brillouin shift associated with each channel. More im-
portantly, each channel could be detected with a low bit-error rate (< 10�8)
when channel spacing exceeded 140 MHz. Because ∆νB < 100 MHz typically,
channels can be packed as close as 1:5 ∆νB without introducing crosstalk from
neighboring channels. Brillouin gain has been used as a narrowband amplifier
to simultaneously amplify and demodulate FSK signals at bit rates of up to 250
Mb/s by using commercially available semiconductor lasers [94].
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9.5.2 Fiber Sensors

SBS can be used for making distributed fiber sensors capable of sensing tem-
perature and strain changes over relatively long distances [102]–[110]. The
basic idea behind the use of SBS for fiber sensors is quite simple and can be
easily understood from Eq. (9.1.3). As the Brillouin shift depends on the ef-
fective refractive index of the fiber mode, it changes whenever the refractive
index of silica changes in response to local environmental variations. Both
temperature and strain can change the refractive index of silica. By monitor-
ing changes in the Brillouin shift along fiber length, it is possible to map out
the distribution of temperature or strain over long distances over which the
SBS signal can be detected with a good signal-to-noise ratio.

The basic idea has been implemented in several experiments to demon-
strate distributed sensing over distances as long as 32 km. A tunable CW
probe laser and a pulsed pump laser inject light at the opposite ends of a fiber.
The CW signal is amplified through SBS only when the pump-probe frequency
difference coincides exactly with the Brillouin shift. The time delay between
the launch of the pump pulse and increase in the received probe signal indi-
cates the exact location where Brillouin amplification occurs. By tuning the
probe frequency and measuring time delays, one can map the distribution of
temperature or strain over the entire fiber length. In one experiment [104],
two diode-pumped, 1.319-µm, Nd:YAG lasers were used for pump and probe
signals. Frequency difference between the two lasers was adjusted by temper-
ature tuning the probe-laser cavity. A Bragg cell was used as an optical switch
to generate pump pulses of widths in the range 0.1–1 µs. A temperature reso-
lution of 1ÆC and a spatial resolution of 10 m were realized for a 22-km-long
fiber. In a later experiment [105], spatial resolution was improved to 5 m,
and fiber length was increased to 32 km. Similar performance is achieved for
sensing of distributed strain. A resolution of 20 microstrain with a spatial res-
olution of 5 m has been demonstrated by using Brillouin loss [105]. It is even
possible to combine the temperature and strain measurements in a single fiber
sensor [110].

Problems

9.1 What is meant by Brillouin scattering? Explain its origin. What is the
difference between spontaneous and stimulated Brillouin scattering?
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9.2 Why does SBS occur only in the backward direction in single-mode
fibers?

9.3 What are the main differences between SBS and SRS? What is the origin
of these differences and how do they manifest in practice?

9.4 Estimate SBS threshold at 1.55 µm for a 40-km-long fiber with 8-µm
core diameter. How much does it change at 1.3 µm? Use gB = 5�
10�11 m/W and loss values of 0.5 and 0.2 dB/km at 1.3 and 1.55 µm,
respectively.

9.5 Solve Eqs. (9.2.1) and (9.2.2) neglecting pump deletion. Use the solu-
tion to derive the threshold condition for SBS.

9.6 Solve Eqs. (9.2.1) and (9.2.2) including pump deletion. Neglect fiber
losses by setting α = 0.

9.7 Solve Eqs. (9.2.1) and (9.2.2) numerically for a 20-km-long fiber using
gBIp(0) = 1 km�1 and α = 0:2 dB/km. Plot Ip and Is along the fiber
length assuming Ip(0) = 2 MW/cm2 and Is(L) = 1 kW/cm2.

9.8 Solve Eqs. (9.3.4) and (9.3.5) numerically assuming that both pump and
Stokes pulses are Gaussian in shape initially with a FWHM of 1 µs. Plot
output pulse shapes when SBS occurs in a 10-m-long fiber assuming
gBIp(0) = 1 m�1.

9.9 Follow the analysis of Reference [86] and derive the inequality given in
Eq. (9.4.3).

9.10 How can SBS be used for temperature sensing? Design a SBS-based
fiber sensor for this purpose. Sketch the experimental setup and identify
all components.
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Chapter 10

Parametric Processes

In the stimulated scattering processes covered in Chapters 8 and 9, optical
fibers play an active role in the sense that the process depends on molecu-
lar vibrations or density variations of silica. In a separate class of nonlinear
phenomena, optical fibers play a passive role except for mediating interaction
among several optical waves. Such nonlinear processes are referred to as para-
metric processes because they involve modulation of a medium parameter such
as the refractive index. Among others, parametric processes include four-wave
mixing (FWM) and harmonic generation, both of which are described in this
chapter. In Section 10.1 we consider the origin of FWM and discuss its theory
in Section 10.2, with emphasis on the parametric gain. The techniques used for
phase-matching are covered in Section 10.3. In Section 10.4 we focus on para-
metric amplification; other applications of FWM are covered in Section 10.5.
The last section is devoted to second-harmonic generation in optical fibers.

10.1 Origin of Four-Wave Mixing

The origin of parametric processes lies in the nonlinear response of bound
electrons of a material to an applied optical field. More specifically, the po-
larization induced in the medium is not linear in the applied field but contains
nonlinear terms whose magnitude is governed by the nonlinear susceptibili-
ties [1]–[5]. The parametric processes can be classified as second- or third-
order processes depending on whether the second-order susceptibility χ(2) or
the third-order susceptibility χ (3) is responsible for them. The second-order
susceptibility χ(2) vanishes for an isotropic medium in the dipole approxima-
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tion. For this reason, the second-order parametric processes, such as second-
harmonic generation and sum-frequency generation, should not occur in sil-
ica fibers. In practice, these processes do occur because of quadrupole and
magnetic-dipole effects, but with a relatively low conversion efficiency. Unex-
pectedly high conversion efficiencies (�1%) for second-harmonic generation
have been observed in optical fibers under specific conditions. This topic is
discussed in Section 10.6.

The third-order parametric processes involve, in general, nonlinear inter-
action among four optical waves and include the phenomena such as third-
harmonic generation, FWM, and parametric amplification [1]–[5]. FWM in
optical fibers has been studied extensively because it can be quite efficient for
generating new waves [6]–[57]. Its main features can be understood by con-
sidering the third-order polarization term in Eq. (1.3.1) given as

PNL = ε0χ (3)...EEE; (10.1.1)

where E is the electric field, PNL is the induced nonlinear polarization, and ε0
is the vacuum permittivity.

Consider four optical waves oscillating at frequencies ω1, ω2, ω3, and ω4
and linearly polarized along the same axis x. The total electric field can be
written as

E =
1
2

x̂
4

∑
j=1

E j exp[i(kjz�ω jt)]+ c:c:; (10.1.2)

where the propagation constant kj = njω j=c, nj is the refractive index, and
all four waves are assumed to be propagating in the same direction. If we
substitute Eq. (10.1.2) in Eq. (10.1.1) and express PNL in the same form as E
using

PNL =
1
2

x̂
4

∑
j=1

Pj exp[i(kjz�ω jt)]+ c:c:; (10.1.3)

we find that Pj ( j =1 to 4) consists of a large number of terms involving the
products of three electric fields. For example, P4 can be expressed as

P4 =
3ε0

4
χ (3)

xxxx[jE4j
2E4 +2(jE1j

2
+ jE2j

2
+ jE3j

2
)E4

+2E1E2E3 exp(iθ+)+2E1E2E�

3 exp(iθ�)+ � � �]; (10.1.4)
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where θ+ and θ� are defined as

θ+ = (k1 + k2 + k3� k4)z� (ω1 +ω2 +ω3�ω4)t; (10.1.5)

θ� = (k1 + k2� k3� k4)z� (ω1 +ω2�ω3�ω4)t: (10.1.6)

The first four terms containing E4 in Eq. (10.1.4) are responsible for the SPM
and XPM effects. The remaining terms result from FWM. How many of
these are effective in producing a parametric coupling depends on the phase
mismatch between E4 and P4 governed by θ+, θ�, or a similar quantity.

Significant FWM occurs only if the phase mismatch nearly vanishes. This
requires matching of the frequencies as well as of the wave vectors. The latter
requirement is often referred to as phase matching. In quantum-mechanical
terms, FWM occurs when photons from one or more waves are annihilated
and new photons are created at different frequencies such that the net energy
and momentum are conserved during the parametric interaction. The main
difference between the parametric processes and the stimulated scattering pro-
cesses discussed in Chapters 8 and 9 is that the phase-matching condition is
automatically satisfied in the case of stimulated Raman or Brillouin scattering
as a result of the active participation of the nonlinear medium. By contrast, the
phase-matching condition requires a specific choice of the frequencies and the
refractive indices for parametric processes to occur.

There are two types of FWM terms in Eq. (10.1.4). The term containing
θ+ corresponds to the case in which three photons transfer their energy to a
single photon at the frequency ω4 = ω1 +ω2 +ω3. This term is responsible
for the phenomena such as third-harmonic generation (ω1 = ω2 = ω3), or fre-
quency conversion when ω 1 = ω2 6= ω3. In general, it is difficult to satisfy
the phase-matching condition for such processes to occur in optical fibers with
high efficiencies. The term containing θ� in Eq. (10.1.4) corresponds to the
case in which two photons at frequencies ω1 and ω 2 are annihilated with si-
multaneous creation of two photons at frequencies ω3 and ω4 such that

ω3 +ω4 = ω1 +ω2: (10.1.7)

The phase-matching requirement for this process to occur is

∆k = k3 + k4� k1� k2

= (n3ω3 +n4ω4�n1ω1�n2ω2)=c = 0: (10.1.8)

It is relatively easy to satisfy ∆k = 0 in the specific case ω1 = ω2. This
partially degenerate case is most relevant for optical fibers. Physically, it mani-
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fests in a way similar to SRS. A strong pump wave at ω1 creates two sidebands
located symmetrically at frequencies ω3 and ω4 with a frequency shift

Ωs = ω1�ω3 = ω4�ω1; (10.1.9)

where we assumed for definiteness ω3 < ω4. The low-frequency sideband at
ω3 and the high-frequency sideband at ω4 are referred to as the Stokes and
anti-Stokes bands in direct analogy with SRS. The partially degenerate FWM
was originally called three-wave mixing as only three distinct frequencies are
involved in the nonlinear process [6]. In this chapter, the term three-wave
mixing is reserved for the processes mediated by χ(2). The name four-photon
mixing is also used for FWM synonymously [7]. Note also that the Stokes
and anti-Stokes bands are often called the signal and idler bands, borrowing
the terminology from the field of microwaves, when an input signal at ω3 is
amplified through the process of FWM.

10.2 Theory of Four-Wave Mixing

Four-wave mixing transfers energy from a strong pump wave to two waves,
upshifted and downshifted in frequency from the pump frequency ω1 by an
amount Ωs given in Eq. (10.1.9). If only the pump wave is incident at the
fiber, and the phase-matching condition is satisfied, the Stokes and anti-Stokes
waves at the frequencies ω3 and ω4 can be generated from noise, similarly to
the stimulated scattering processes discussed in Chapters 8 and 9. On the other
hand, if a weak signal at ω 3 is also launched into the fiber together with the
pump, the signal is amplified while a new wave at ω4 is generated simulta-
neously. The gain responsible for such amplification is called the parametric
gain. In this section, we consider the FWM mixing process in detail and drive
an expression for the parametric gain. The nondegenerate case (ω1 6= ω2) is
considered for generality.

10.2.1 Coupled Amplitude Equations

The starting point is, as usual, the wave equation (2.3.1) for the total electric
field E(r; t) with PNL given in Eq. (10.1.1). We substitute Eqs. (10.1.2) and
(10.1.3) in the wave equation, together with a similar expression for the linear
part of the polarization, and neglect the time dependence of the field compo-
nents Ej ( j = 1 to 4) assuming quasi-CW conditions. Their spatial dependence
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is, however, included using

E j(r) = Fj(x;y)Aj(z); (10.2.1)

where Fj(x;y) is the spatial distribution of the fiber mode in which the jth
field propagates inside the fiber [12]. Evolution of the amplitude Aj(z) inside
a multimode fiber is governed by a set of four coupled equations which, in the
paraxial approximation, can be written as

dA1

dz
=

in02ω1

c
[( f11jA1j

2
+2 ∑

k 6=1

f1kjAkj
2
)A1 +2 f1234A�

2A3A4ei∆kz
]; (10.2.2)

dA2

dz
=

in02ω2

c
[( f22jA2j

2
+2 ∑

k 6=2

f2kjAkj
2
)A2 +2 f2134A�

1A3A4ei∆kz
]; (10.2.3)

dA3

dz
=

in02ω3

c
[( f33jA3j

2
+2 ∑

k 6=3

f3kjAkj
2
)A3 +2 f3412A1A2A�

4e�i∆kz
]; (10.2.4)

dA4

dz
=

in02ω4

c
[( f44jA4j

2
+2 ∑

k 6=4

f4kjAkj
2
)A4 +2 f4312A1A2A�

3e�i∆kz
]; (10.2.5)

where the wave-vector mismatch ∆k is given by [see Eq. (10.1.8)]

∆k = (ñ3ω3 + ñ4ω4� ñ1ω1� ñ2ω2)=c: (10.2.6)

The refractive indices ñ1 to ñ4 stand for the effective indices of the fiber modes.
Note that ñ1 and ñ2 can differ from each other when the pump waves A1 and A2
propagate in different fiber modes even if they are degenerate in frequencies.
The overlap integral fjk is defined in Eq. (7.1.14) of Section 7.1. The new
overlap integral fi jkl is given by [12]

fi jkl =
hF�

i F�

j FkFli

[hjFij
2ihjFjj

2ihjFkj
2ihjFl j

2i]1=2
; (10.2.7)

where angle brackets denote integration over the transverse coordinates x and
y. In deriving Eqs. (10.2.2)–(10.2.5), we kept only nearly phase-matched terms
[see Eq. (10.1.4)] and neglected frequency dependence of χ(3). The parameter
n02 is the nonlinear parameter defined by Eq. (2.3.13) [the prime distinguishes
it from n2 appearing in Eq. (10.1.8)].
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10.2.2 Approximate Solution

Equations (10.2.2)–(10.2.5) are quite general in the sense that they include the
effects of SPM, XPM, and pump depletion on the FWM process; a numerical
approach is necessary to solve them exactly. Considerable physical insight is
gained if the pump waves are assumed to be much intense compared with the
Stokes and anti-Stokes waves and to remain undepleted during the parametric
interaction. As a further simplification, we assume that all overlap integrals
are nearly the same, that is,

fi jkl � fi j � 1=Aeff (i; j = 1;2;3;4); (10.2.8)

where Aeff is the effective core area introduced in Section 2.3. This assumption
is valid for single-mode fibers. The analysis can easily be extended to include
differences in the overlap integrals [12].

We can now introduce the nonlinear parameter γj using the definition

γ j = n02ω j=(cAeff)� γ ; (10.2.9)

where γ is an average value if we ignore relatively small differences in optical
frequencies of four waves. Equations (10.2.2) and (10.2.3) for the pump fields
are easily solved to obtain

A1(z) =
p

P1 exp[iγ(P1 +2P2)z]; (10.2.10)

A2(z) =
p

P2 exp[iγ(P2 +2P1)z]; (10.2.11)

where Pj = jA j(0)j
2, and P1 and P2 are the incident pump powers at z = 0. This

solution shows that, in the undepleted-pump approximation, the pump waves
only acquire a phase shift occurring as a result of SPM and XPM.

Substituting Eqs. (10.2.10) and (10.2.11) in Eqs. (10.2.4) and (10.2.5), we
obtain two linear coupled equations for the signal and idler fields:

dA3

dz
= 2iγ [(P1 +P2)A3 +

p
P1P2e�iθ A�

4]; (10.2.12)

dA�

4

dz
= �2iγ [(P1 +P2)A

�

4 +
p

P1P2e(iθ A3]; (10.2.13)

where
θ = [∆k�3γ(P1 +P2)]z: (10.2.14)
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To solve these equations, we introduce

B j = A j exp[�2iγ(P1 +P2)z]; ( j = 3;4): (10.2.15)

Using Eqs. (10.2.12)–(10.2.15), we then obtain

dB3

dz
= 2iγ

p
P1P2 exp(�iκz)B�

4; (10.2.16)

dB�

4

dz
= �2iγ

p
P1P2 exp(iκz)B3; (10.2.17)

where the net phase mismatch is given by

κ = ∆k+ γ(P1 +P2): (10.2.18)

Equations (10.2.16) and (10.2.17) govern growth of the signal and idler
waves occurring as a result of FWM. Their general solution is of the form [12]

B3(z) = (a3egz
+b3e�gz

)exp(�iκz=2); (10.2.19)

B�

4(z) = (a4egz
+b4e�gz

)exp(iκz=2); (10.2.20)

where a3, b3, a4, and b4 are determined from the boundary conditions. The
parametric gain g depends on the pump power and is defined as

g =

q
(γP0r)2� (κ=2)2

; (10.2.21)

where we have introduced the parameters r and P0 as

r = 2(P1P2)
1=2

=P0; P0 = P1 +P2: (10.2.22)

The solution given by Eqs. (10.2.19) and (10.2.20) is valid only when the
conversion efficiency of the FWM process is relatively small so that the pump
waves remain largely undepleted. Pump depletion can be included by solving
the complete set of four equations, Eqs. (10.2.2)–(10.2.5). Such a solution can
be obtained in terms of elliptic functions [29] but is not discussed here because
of its complexity.
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Figure 10.1 Variation of parametric gain with wave-vector mismatch ∆k for several
pump powers P0. The shift of the gain peak from ∆k = 0 is due to a combination of
the SPM and XPM effects.

10.2.3 Effect of Phase Matching

The derivation of the parametric gain has assumed that the two pump waves
are distinct. If the pump fields were indistinguishable on the basis of their
frequency, polarization, or spatial mode, the preceding procedure should be
carried out with only three terms in Eq. (10.1.2). The parametric gain is still
given by Eq. (10.2.21) if we choose P1 = P2 = P0 and replace κ with

κ = ∆k+2γP0: (10.2.23)

Figure 10.1 shows variations of g with ∆k in this specific case for several values
of γP0. The maximum gain (gmax = γP0) occurs at κ = 0, or at ∆k = �2γP0.
The range over which the gain exists is given by 0 > ∆k >�4γP0. All of these
features can be understood from Eqs. (10.2.21) and (10.2.23). The shift of the
gain peak from ∆k = 0 is due to the contribution of SPM and XPM to the phase
mismatch as apparent from Eq. (10.2.23).

It is interesting to compare the peak value of the parametric gain with that
of the Raman gain [7]. From Eq. (10.2.21) the maximum gain is given by
(assuming r = 1)

gmax = γP0 = gP(P0=Aeff); (10.2.24)
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where γ is used from Eq. (10.2.9) and gP is defined as gP = 2πn02=λ1 at the
pump wavelength λ1. Using λ1 = 1 µm and n02 � 3�10�20 m2/W, we obtain
gP � 2� 10�13 m/W. This value should be compared with the peak value of
the Raman gain gR in Fig. 8.1. The parametric gain is larger by about a factor
of 2 compared with gR. As a result, the threshold pump power for the FWM
process is expected to be lower than the Raman threshold if phase matching
is achieved. In practice, however, SRS dominates for long fibers. This is so
because it is difficult to maintain phase matching over long fiber lengths as a
result of variations in the core diameter.

One can define a length scale, known as the coherence length, by using

Lcoh = 2π=jκ j; (10.2.25)

where ∆κ is the maximum value of the wave-vector mismatch that can be tol-
erated. Significant FWM occurs if L < Lcoh. Even when this condition is sat-
isfied, SRS can influence the FWM process significantly when the frequency
shift Ωs lies within the Raman-gain bandwidth (see Chapter 8). The interplay
between SRS and FWM has been studied extensively [36]–[41]. The main
effect in practice is that the Stokes component gets amplified through SRS, re-
sulting in an asymmetric sideband spectrum. This feature is discussed further
in the next section where experimental results are presented.

10.2.4 Ultrafast FWM

The simplified analysis of this section is based on Eqs. (10.2.12) and (10.2.13)
which assume, among other things, CW or quasi-CW conditions so that group-
velocity dispersion (GVD) can be neglected. The effects of both GVD and
fiber losses can be included following the analysis of Section 2.3 and allowing
A j(z) in Eq. (10.2.1) for j = 1 to 4 to be a slowly varying function of time.
If polarization effects are neglected assuming that all four waves are polarized
along a principle axis of a birefringent fiber, the inclusion of GVD effects in
Eqs. (10.2.3)–(10.2.6) amounts to replacing the derivative dAj=dz with

dA j

dz
!

∂A j

∂ z
+β1 j

∂A j

∂ t
+

i
2

β2 j

∂ 2A j

∂ t2 +
1
2

α jA j (10.2.26)

for all four waves ( j = 1–4) in analogy with Eq. (2.3.27). The resulting four
coupled nonlinear Schrödinger (NLS) equations describe FWM of picosecond
optical pulses and include the effects of GVD, SPM, and XPM. It is difficult
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to solve the four coupled NLS equations analytically under general conditions,
and a numerical approach is used in practice. The group velocity of four pulses
participating in the FWM process can be quite different. As a result, efficient
FWM requires not only phase matching but also matching of the group veloc-
ities.

A natural question is whether the four coupled NLS equations have solu-
tions in the form of optical solitons that support each other in the same way
as the nonlinear phenomenon of XPM allows pairing of two solitons. Such
solitons do exist for specific combination of parameters and are sometimes
called parametric or FWM solitons. They have been investigated for both
three- and four-wave interactions [58]–[61]. As an example, if we assume that
the four waves satisfy both the phase-matching and group-velocity-matching
conditions and, at the same time jβ2j is the same for all waves, a solitary-wave
solution in the form of two bright and two dark solitons has been found for a
specific choice of the signs of GVD parameters [60].

In the case of intense CW pumping and a relatively small conversion effi-
ciency so that the pump remains nearly undepleted, the pump equations can be
solved analytically. Assuming that a single pump beam of power P0 is incident
at z = 0, the signal and idler fields are found to satisfy the following set of two
coupled NLS equations:

∂A3

∂ z
+ β13

∂A3

∂ t
+

i
2

β23
∂ 2A3

∂ t2 +
1
2

α3A3

= iγ(jA3j
2
+2jA4j

2
+2P0)A3 + iγP0A�

4e�iθ
; (10.2.27)

∂A4

∂ z
+ β14

∂A4

∂ t
+

i
2

β24
∂ 2A4

∂ t2 +
1
2

α4A4

= iγ(jA4j
2
+2jA3j

2
+2P0)A4 + iγP0A�

3eiθ
; (10.2.28)

where the net phase mismatch θ = ∆k + 2γP0z takes into account the SPM-
induced phase shift of the pump. Numerical results show that these equa-
tions can support “symbiotic” soliton pairs [62], similar to those discussed in
Section 7.3, if the pump wavelength nearly coincides with the zero-dispersion
wavelength of the fiber and the signal and idler wavelengths are equally spaced
from it such that β13 = β14 and β23 =�β24 (opposite GVD but same group ve-
locities). Such solitons require a balance between the parametric gain and fiber
losses, similar to the case of Brillouin solitons, and are referred to as dissipa-
tive solitons. Both members of the soliton pair are bright solitons even though
one pulse travels in the normal-GVD region of the fiber.
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The use of multiple NLS equations is necessary when carrier frequencies
of four pulses are widely separated (>10 THz). In the case of smaller fre-
quency spacings (<1 THz), it is more practical to use a single NLS equation
of the form given in Eq. (2.3.33) or (2.3.39) and solve it with an initial ampli-
tude of the form

A(0; t) = A1(0; t)+A3(0; t)exp(�iΩst)+A4(0; t)exp(iΩst); (10.2.29)

where two pump waves are assumed to be degenerate in frequency (a common
case in practice) and Ωs is the frequency shift given by Eq. (10.1.9). Such
an approach includes SPM, XPM and FWM effects automatically and is rou-
tinely used for modeling of WDM lightwave systems. The only requirement is
that the time step used in numerical simulations should be much shorter than
2π=Ωs. This approach also permits inclusion of the Raman and birefringence
effects and provides a unified treatment of various nonlinear phenomena for
pulses propagating inside optical fibers [63].

10.3 Phase-Matching Techniques

The parametric gain responsible for FWM peaks when the phase mismatch κ =

0, where κ is given by Eq. (10.2.18). This section discusses several different
methods used for realizing phase matching in practice.

10.3.1 Physical Mechanisms

The phase-matching condition κ = 0 can be written in the form

κ = ∆kM +∆kW +∆kNL = 0; (10.3.1)

where ∆kM, ∆kW , and ∆kNL represent the mismatch occurring as a result of
material dispersion, waveguide dispersion, and the nonlinear effects, respec-
tively. The contributions ∆kM and ∆kW can be obtained from Eq. (10.2.6) if
the effective indices are written as

ñ j = nj +∆nj; (10.3.2)

where ∆nj is the change in the material index nj due to waveguiding. In the
partially degenerate case (ω1 = ω2), the three contributions in Eq. (10.3.1) are

∆kM = [n3ω3 +n4ω4�2n1ω1]=c; (10.3.3)
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∆kW = [∆n3ω3 +∆n4ω4� (∆n1 +∆n2)ω1]=c; (10.3.4)

∆kNL = γ(P1 +P2): (10.3.5)

To realize phase matching, at least one of them should be negative.
The material contribution ∆kM can be expressed in terms of the frequency

shift Ωs [see Eq. (10.1.9)] if we use the expansion (2.3.23) and note that βj =

njω j=c ( j = 1–4). Retaining up to terms quadratic in Ωs in this expansion,

∆kM � β2Ω2
s ; (10.3.6)

where β2 is the GVD coefficient at the pump frequency ω1. Equation (10.3.6)
is valid if the pump wavelength (λ 1 = 2πc=ω1) is not too close to the zero-
dispersion wavelength λD of the fiber. As β2 > 0 for λ1 < λD, ∆kM is positive
in the visible or near-infrared region. Phase matching for λ1 < 1:3 µm can
be realized making ∆kW negative by propagating different waves in different
modes of a multimode fiber. Most of the early experiments used this method
of phase matching [6]–[11].

In the case of a single-mode fiber, ∆kW = 0 because ∆n is nearly the same
for all waves. Three techniques can be used to achieve phase matching in
single-mode fibers. If the pump wavelength exceeds λD, ∆kM becomes neg-
ative. This allows us to achieve phase matching for λ1 in the vicinity of
λD. For λ1 > λD, phase matching can also be obtained by adjusting ∆kNL
through the pump power. For λ 1 < λD, modal birefringence in polarization-
preserving fibers makes it possible to achieve phase matching by polarizing
different waves differently with respect to a principal axis of the fiber. All of
these techniques are discussed in this section.

10.3.2 Phase Matching in Multimode Fibers

Multimode fibers allow phase matching when the waveguide contribution ∆kW
is negative and exactly compensates the positive contribution ∆kM +∆kNL in
Eq. (10.3.1). The magnitude of ∆kW depends on the choice of fiber modes in
which four waves participating in the FWM process propagate. The eigenvalue
equation (2.2.9) of Section 2.2 can be used to calculate ∆nj ( j = 1–4) for each
mode. Equation (10.3.4) is then used to calculate ∆kW .

Figure 10.2 shows the calculated value of ∆kW as a function of the fre-
quency shift (νs =Ωs=2π) for a fiber with 5-µm-core radius and a core-cladding
index difference of 0.006. The dashed line shows the quadratic variation of
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Figure 10.2 Phase-matching diagrams for (a) mixed-mode and (b) single-mode pump
propagation. Solid and dashed lines show variations of j∆kW j and ∆kM with frequency
shift. Dotted lines illustrate the effect of increasing core radius by 10%. Fiber modes
are indicated using the LPmn terminology. (After Ref. [7] c1975 IEEE.)

∆kM from Eq. (10.3.6). The frequency shift νs is determined by the intersection
of the solid and dashed curves (assuming that ∆kNL is negligible). Two cases
are shown in Fig. 10.2 corresponding to whether the pump wave propagates
with its power divided in two different fiber modes or whether it propagates
in a single fiber mode. In the former case, frequency shifts are in the range
1–10 THz while in the latter case νs �100 THz. The exact value of frequency
shifts is sensitive to several fiber parameters. The dotted lines in Fig. 10.2
show how νs changes with a 10% increase in the core radius. In general, the
phase-matching condition can be satisfied for several combinations of the fiber
modes.

In the 1974 demonstration of phase-matched FWM in silica fibers, pump
pulses at 532 nm with peak powers �100 W were launched in a 9-cm-long
fiber, together with a CW signal (power �10 mW) obtained from a dye laser
tunable in the range of 565 to 640 nm [6]. FWM generated a new wave in the
blue region (ω4 = 2ω1�ω3), called the idler wave in the parametric-amplifier
configuration used for the experiment. Figure 10.3 shows the observed idler
spectrum obtained by varying the signal frequency ω3. The five different peaks
correspond to different combinations of fiber modes for which phase match-
ing is achieved. Different far-field patterns for the two dominant peaks clearly
indicate that the idler wave is generated in different fiber modes. In this experi-
ment, the pump propagated in a single fiber mode. As expected from Fig. 10.2,
phase-matching occurred for relatively large frequency shifts in the range of 50
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Figure 10.3 Idler power as a function of wavelength obtained by tuning the signal
wavelength (upper scale). Far-field patterns corresponding to the two dominant peaks
are also shown as an inset. (After Ref. [6].)

to 60 THz. In another experiment, the frequency shift was as large as 130 THz,
a value that corresponds to 23% change in the pump frequency [11].

FWM with much smaller frequency shifts (νs = 1–10 THz) can occur if the
pump power is divided between two different fiber modes (see Fig. 10.2). This
configuration is also relatively insensitive to variations in the core diameter [7]
and results in coherence lengths �10 m. For νs � 10 THz, the Raman process
can interfere with the FWM process as the generated Stokes line falls near the
Raman-gain peak and can be amplified by SRS. In an experiment in which

532-nm pump pulses with peak powers �100 W were transmitted through a
multimode fiber, the Stokes line was always more intense than the anti-Stokes
line as a result of Raman amplification [7].

When picosecond pump pulses are propagated through a multimode fiber,
the FWM process is affected not only by SRS but also by SPM, XPM, and
GVD. In a 1987 experiment [28], 25-ps pump pulses were transmitted through
a 15-m-long fiber, supporting four modes at the pump wavelength of 532 nm.
Figure 10.4 shows the observed spectra at the fiber output as the pump peak
intensity is increased above the FWM threshold occurring near 500 MW/cm2.
Only the pump line is observed below threshold (trace a). Three pairs of Stokes
and anti-Stokes lines with frequency shifts in the range 1–8 THz are observed
just above threshold (trace b). All of these lines have nearly the same ampli-
tude, indicating that SRS does not play a significant role at this pump power.
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Figure 10.4 Spectra of 25-ps pump pulses at fiber output. The peak intensity is
increased progressively beyond the FWM threshold (�500 MW/cm 2) in going from
(a) to (d). (After Ref. [28] c1987 IEEE.)

As pump power is slightly increased, the Stokes lines become much more
intense than the anti-Stokes lines as a result of Raman amplification (trace c).
With a further increase in pump power, the Stokes line closest to the Raman-
gain peak becomes as intense as the pump line itself whereas the anti-Stokes
lines are nearly depleted (trace d). At the same time, the pump and the dom-
inant Stokes line exhibit spectral broadening and splitting that are character-
istic of SPM and XPM (see Section 7.4). As the pump power is increased
further, higher-order Stokes lines are generated through cascaded SRS. At a
pump intensity of 1.5 GW/cm2, the broadened multiple Stokes lines merge,
and a supercontinuum extending from 530 to 580 nm is generated as a result
of the combined effects of SPM, XPM, SRS, and FWM. Figure 10.5 shows
the spectra observed at the fiber output under such conditions. Under certain
conditions, supercontinuum can extend over a wide range (�200 nm) [64].
Supercontinuum generation in single-mode fibers is discussed in Section 10.5.
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Figure 10.5 Supercontinuum observed when pump intensity is increased to
1.5 GW/cm2. (After Ref. [28] c1987 IEEE.)

10.3.3 Phase Matching in Single-Mode Fibers

In single-mode fibers the waveguide contribution ∆kW in Eq. (10.3.1) is very
small compared with the material contribution ∆kM for identically polarized
waves except near the zero-dispersion wavelength λD where the two become
comparable. The three possibilities for approximate phase matching consist
of: (i) reducing ∆kM and ∆kNL by using small frequency shifts and low pump
powers; (ii) operating near the zero-dispersion wavelength so that ∆kW nearly
cancels ∆kM +∆kNL; and (iii) working in the anomalous GVD regime so that
∆kM is negative and can be cancelled by ∆kNL +∆kW .

Nearly Phase-Matched Four-Wave Mixing

The gain spectrum shown in Fig. 10.1 indicates that significant FWM can occur
even if phase matching is not perfect to make κ = 0 in Eq. (10.3.1). The
amount of tolerable wave-vector mismatch depends on how long the fiber is
compared with the coherence length Lcoh. Assuming that the contribution ∆kM
dominates in Eq. (10.3.1), the coherence length can be related to the frequency
shift Ωs by using Eqs. (10.2.25) and (10.3.6) and is given by

Lcoh =
2π
j∆kM j

=
2π

jβ2jΩ2
s
: (10.3.7)

In the visible region, β 2 � 50 ps2/km, resulting in Lcoh � 1 km for frequency
shifts νs = Ωs=2π � 100 GHz. Such large coherence lengths indicate that
significant FWM can occur if the fiber length L� Lcoh.

In an early experiment, three CW waves with a frequency separation in
the range 1–10 GHz were propagated through a 150-m-long fiber whose 4-µm
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Figure 10.6 Variation of FWM-generated power at the output of a 3.5-km-long fiber
with (a) input power P3 and (b) frequency separation. (After Ref. [27] c1987 IEEE.)

core diameter ensured single-mode operation near the argon-ion laser wave-
length of 514.5 nm [8]. The FWM generated nine new frequencies such that
ω 4 = ωi +ω j�ωk, where i; j;k = 1, 2, or 3 with j 6= k. The experiment also
showed that FWM can lead to spectral broadening whose magnitude increases
with an increase in the incident power. The 3.9-GHz linewidth of the CW in-
put from a multimode argon laser increased to 15.8 GHz at an input power of
1.63 W after passing through the fiber. The spectral components within the
incident light generate new frequency components through FWM as the light
propagates through the fiber. In fact, SPM-induced spectral broadening dis-
cussed in Section 4.1 can be interpreted in terms of such a FWM process [65].

From a practical standpoint FWM can lead to crosstalk in multichannel
(WDM) communication systems where the channel spacing is typically in the
range of 10 to 100 GHz. This issue attracted considerable attention during
the 1990s because of the advent of WDM systems [42]–[47]. In an early ex-
periment [27], three CW waves with a frequency separation �10 GHz were
propagated through a 3.5-km-long fiber and the amount of power generated in
the nine frequency components was measured by varying the frequency sepa-
ration and the input power levels. Figure 10.6 shows measured variations for
two frequency components f332 and f231 using the notation

fi jk = fi + f j� fk; f j = ω j=2π: (10.3.8)

In the left-hand part, f3� f1 = 11 GHz, f2� f1 = 17:2 GHz, P1 = 0:43 mW,
and P2 = 0:14 mW while P3 was varied from 0.15 to 0.60 mW. In the right-
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Figure 10.7 Phase-matching diagrams near the zero-dispersion wavelength for three
values of the pump wavelength λ1. Dotted, dashed, and solid lines show respectively
∆kM, ∆kW , and their sum. (After Ref. [15].)

hand part, f3� f2 was varied from 10 to 25 GHz with P3 = 0:55 mW while all
other parameters were the same.

The generated power P4 varies with P3 linearly for the frequency compo-
nent f231 but quadratically for the frequency component f332. This is expected
from the theory of Section 10.2 by noting that f231 results from nondegenerate
pump waves but the pump waves are degenerate in frequency for f332. More
power is generated in the frequency component f231 because f231 and f321 are
degenerate, and the measured power is the sum of powers generated through
two FWM processes. Finally, P4 decreases with increasing frequency separa-
tion because of a larger phase mismatch. A noteworthy feature of Fig. 10.6 is
that up to 0.5 nW of power is generated for input powers < 1 mW. This can
be a source of significant performance degradation in coherent communication
systems [45]. Even in the case of direct detection, input channel powers should
typically be kept below 1 mW to avoid degradation induced by FWM [35].

Phase Matching near the Zero-Dispersion Wavelength

The material contribution ∆kM to the wave-vector mismatch becomes quite
small near the zero-dispersion wavelength of the fiber as it changes from pos-
itive to negative values around 1.28 µm. The waveguide contribution ∆kW
depends on the fiber design, but is generally positive near 1.3 µm. In a limited
range of pump wavelengths ∆kM can cancel ∆kW +∆kNL for specific values of
frequency shifts νs. Figure 10.7 shows such cancelation, assuming ∆kNL to be
negligible, for a fiber of 7-µm core diameter and a core-cladding index differ-
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Figure 10.8 Output spectra showing Stokes and anti-Stokes bands generated by
FWM. The Raman band is also shown. (After Ref. [15].)

ence of 0.006. The frequency shift depends on the pump wavelength λ1 and
can vary over a wide range 1–100 THz. It is also sensitive to the values of core
diameter and index difference. These two parameters can be used to tailor the
frequency shift at a given pump wavelength [16].

In a 1980 experiment on FWM near 1.3 µm, a 30-m-long fiber was used
as a parametric amplifier, pumped by 1.319-µm pulses from a Q-switched
Nd:YAG laser [14]. A signal at 1.338 µm (νs = 3:3 THz) was amplified by
up to 46 dB while, at the same time, three pairs of Stokes and anti-Stokes lines
were observed at the fiber output. These equally spaced lines (spacing 3.3
THz) originate from a cascade of FWM processes in which successive lines
interact with each other to generate new frequencies. In a later experiment,
FWM occurred spontaneously without an input signal [15]. Mode-locked input
pulses at 1.319 µm, with peak powers �1 kW, were propagated through a
50-m-long fiber. Their peak power was large enough to exceed the Raman
threshold. Figure 10.8 shows the spectrum observed at the fiber output. The
Stokes and anti-Stokes lines at 1.67 and 1.09 µm, respectively, originate from
FWM. The huge frequency shift (νs � 48 THz) is comparable to that achieved
in multimode fibers. Similar experiments show that νs can be varied in the
range 3–50 THz by changing the core diameter from 7.2–8.2 µm [16]. This
scheme is useful for realizing new optical sources pumped by a 1.319-µm
Nd:YAG laser.

Phase Matching due to Self-Phase Modulation

When the pump wavelength lies in the anomalous-GVD regime and deviates
considerably from λD, ∆kM exceeds significantly from ∆kW and it becomes



408 Parametric Processes

difficult to achieve phase matching (see Fig. 10.7). However, because ∆kM +

∆kW is negative, it is possible to compensate it by the nonlinear contribution
∆kNL in Eq. (10.3.1). The frequency shift Ωs in that case depends on the input
pump power. In fact, if we use Eq. (10.2.23) with ∆k � ∆kM = β2Ω2

s from Eq.
(10.3.6), phase-matching occurs (κ = 0) when

Ωs = (2γP0=jβ2j)
1=2

; (10.3.9)

where P0 is the input pump power. Thus, a pump wave propagating in the
anomalous-GVD regime would develop sidebands located at ω1 �Ωs as a
result of FWM that is phase-matched by the nonlinear process of self-phase
modulation. This case has been discussed in Section 5.1 in the context of
modulation instability. As was indicated there, modulation instability can be
interpreted in terms of FWM in the frequency domain, whereas in the time do-
main it results from an unstable growth of weak perturbations from the steady
state. In fact, the modulation frequency given by Eq. (5.1.10) is identical to Ωs

of Eq. (10.3.9). The output spectrum shown in Fig. 5.2 provides an experimen-
tal evidence of phase matching occurring as a result of self-phase modulation.
The frequency shifts are in the range 1–10 THz for pump powers P0 ranging
from 1–100 W. This phenomenon has been used to convert the wavelength of
femtosecond pulses from 1.5- to 1.3-µm spectral region [48].

10.3.4 Phase Matching in Birefringent Fibers

An important phase-matching technique in single-mode fibers takes advantage
of the modal birefringence, resulting from different effective indices for the
waves propagating with orthogonal polarizations. The index difference

δn = ∆nx�∆ny; (10.3.10)

where ∆nx and ∆ny represent changes in the refractive indices (from the mate-
rial value) for the optical fields polarized along the slow and fast axes of the
fiber, respectively. A complete description of the parametric gain in birefrin-
gent fibers should generalize the formalism of Section 10.2 by following an
approach similar to that used in Section 6.1. Assuming that each of the four
waves is polarized along the slow or the fast axis, one still obtains the para-
metric gain in the form of Eq. (10.2.21) with minor changes in the definitions
of the parameters γ and κ . In particular, γ is reduced by a factor of 3 com-
pared with the value obtained from Eq. (10.2.9) if the electronic contribution
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to χ (3) dominates in Eq. (6.1.5). The wave-vector mismatch κ still has three
contributions as in Eq. (10.3.1). However, the waveguide contribution ∆kW is
now dominated by δn. The nonlinear contribution ∆kNL is also different than
that given by Eq. (10.3.5). In the following discussion ∆kNL is assumed to be
negligible compared with ∆kM and ∆kW .

As before, phase matching occurs when ∆kM and ∆kW cancel each other.
Both of them can be positive or negative. For λ 1 < λD, a range that covers the
visible region, ∆kM is positive because β2 is positive in Eq. (10.3.6). The wave-
guide contribution ∆kW can be made negative if the pump wave is polarized
along the slow axis, while the Stokes and anti-Stokes waves are polarized along
the fast axis. This can be seen from Eq. (10.3.4). As ∆n3 = ∆n4 = ∆ny and
∆n1 = ∆n2 = ∆nx, the waveguide contribution becomes

∆kW = [∆ny(ω3 +ω4)�2∆nxω1]=c =�2ω1(δn)=c; (10.3.11)

where Eq. (10.3.10) was used together with ω3+ω4 = 2ω1. From Eqs. (10.3.6)
and (10.3.11), ∆kM and ∆kW compensate each other for a frequency shift Ωs

given by [17]

Ωs =

�
4πδn
β2λ1

�1=2

; (10.3.12)

where λ1 = 2πc=ω1. At a pump wavelength λ1 = 0:532 µm, β2 � 60 ps2/km,
and a typical value δn = 1� 10�5 for the fiber birefringence, the frequency
shift νs is �10 THz. In a 1981 experiment on FWM in birefringent fibers,
the frequency shift was in the range of 10 to 30 THz [17]. Furthermore, the
measured values of νs agreed well with those estimated from Eq. (10.3.12).

Equation (10.3.12) for the frequency shift is derived for a specific choice
of field polarizations, namely, that the pump fields A1 and A2 are polarized
along the slow axis while A3 and A4 are polarized along the fast axis. Several
other combinations can be used for phase matching depending on whether β2
is positive or negative. The corresponding frequency shifts Ωs are obtained
by evaluating ∆kW from Eq. (10.3.4) with ∆nj ( j =1 to 4) replaced by ∆nx or
∆ny depending on the wave polarization and by using Eq. (10.3.6). Table 10.1
lists the four phase-matching processes that can occur in birefringent fibers
together with the corresponding frequency shifts [39]. The frequency shifts
of the first two processes are smaller by more than one order of magnitude
compared with the other two processes. All frequency shifts in Table 10.1 are
approximate because frequency dependence of δn has been ignored; its inclu-
sion can reduce them by about 10%. Several other phase-matched processes
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Table 10.1 Phase-Matched FWM processes in Birefringent Fibersa

Process A1 A2 A3 A4 Frequency shift Ωs Condition
I s f s f δn=(jβ2jc) β2 > 0
II s f f s δn=(jβ2jc) β2 < 0
III s s f f (4πδn=jβ2jλ1)

1=2 β2 > 0
IV f f s s (4πδn=jβ2jλ1)

1=2 β2 < 0

aThe symbols s and f denote the direction of polarization along the slow and
fast axes, respectively.

have been identified [20] but are not generally observed in a silica fiber because
of its predominantly isotropic nature.

From a practical standpoint, the four processes shown in Table 10.1 can be
divided into two categories. The first two correspond to the case in which pump
power is divided between the slow and fast modes. In contrast, the pump field
is polarized along a principal axis for the remaining two processes. In the first
category, the parametric gain is maximum when the pump power is divided
equally by choosing θ = 45Æ, where θ is the polarization angle measured from
the slow axis. Even then, different processes compete with each other because
the parametric gain is nearly the same for all of them. In one experiment,
FWM occurring as a result of Process I was observed by using 15-ps pump
pulses from a mode-locked dye laser operating at 585.3 nm [21]. Because of
a relatively small group-velocity mismatch among the four waves in this case,
Process I became dominant compared with the others.

Figure 10.9 shows the spectrum observed at the output of a 20-m-long fiber
for an input peak power �1 kW and a pump-polarization angle θ = 44Æ. The
Stokes and anti-Stokes bands located near �4 THz are due to FWM phase-
matched by Process I. As expected, the Stokes band is polarized along the slow
axis, while the anti-Stokes band is polarized along the fast axis. Asymmetric
broadening of the pump and Stokes bands results from the combined effects
of SPM and XPM (see Section 7.4). Selective enhancement of the Stokes
band is due to the Raman gain. The peak near 13 THz is also due to SRS.
It is polarized along the slow axis because the pump component along that
axis is slightly more intense for θ = 44Æ. An increase in θ by 2 Æ flips the
polarization of the Raman peak along the fast axis. The small peak near 10
THz results from a nondegenerate FWM process in which both the pump and
the Stokes bands act as pump waves (ω1 6= ω2) and the Raman band provides
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Figure 10.9 Output spectra showing Stokes and anti-Stokes bands generated in a
20-m-long birefringent fiber when 15-ps pump pulses with a peak power �1 kW are
incident at the fiber. Pump is polarized at 44Æ from the slow axis. (After Ref. [21].)

a weak signal for the parametric process to occur. Phase matching can occur
only if the Raman band is polarized along the slow axis. Indeed, the peak near
10 THz disappeared when θ was increased beyond 45Æ to flip the polarization
of the Raman band.

The use of birefringence for phase matching in single-mode fibers has an
added advantage in that the frequency shift νs can be tuned over a consider-
able range (�4 THz). Such a tuning is possible because birefringence can be
changed through external factors such as stress and temperature. In one ex-
periment, the fiber was pressed with a flat plate to apply the stress [18]. The
frequency shift νs could be tuned over 4 THz for a stress of 0.3 kg/cm. In a
similar experiment, stress was applied by wrapping the fiber around a cylindri-
cal rod [19]. The frequency shift νs was tuned over 3 THz by changing the rod
diameter. Tuning is also possible by varying temperature as the built-in stress
in birefringent fibers is temperature dependent. A tuning range of 2.4 THz was
demonstrated by heating the fiber up to 700ÆC [22]. In general, FWM pro-
vides a convenient way of measuring the net birefringence of a fiber because
the frequency shift depends on δn [23].
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The frequency shift associated with the FWM process depends on the
pump power through the nonlinear contribution ∆kNL in Eq. (10.3.1). This
contribution has been neglected in obtaining Eq. (10.3.12) and other expres-
sions of Ωs in Table 10.1, but can be included in a straightforward manner. In
general Ωs decreases with increasing pump power. In one experiment, Ωs de-
creased with pump power at a rate of 1.4% W�1 [24]. The nonlinear contribu-
tion ∆k NL can also be used to satisfy the phase-matching condition. This fea-
ture is related to modulation instability in birefringent fibers (see Section 6.4).

10.4 Parametric Amplification

Similar to the cases of Raman and Brillouin gains, the parametric gain in op-
tical fibers can be used for making parametric amplifiers and lasers. Such
devices have attracted considerable attention [66]–[75]. This section describes
their characteristics and applications.

10.4.1 Gain and Bandwidth

A complete description of parametric amplification often requires a numerical
solution of Eqs. (10.2.2)–(10.2.5). However, considerable physical insight is
gained by first considering the approximate analytic solution, given by Eqs.
(10.2.19) and (10.2.20), that neglects pump depletion. The constants a3, b3,
a4, and b4 in these equations are determined from the boundary conditions. If
we assume that only the signal and pump waves are incident at the fiber input,
the signal and idler powers at the fiber output (z = L) are given by [12]

P3(L) = P3(0)[1+(1+κ2
=4g2

)sinh2
(gL)]; (10.4.1)

P4(L) = P3(0)(1+κ2
=4g2

)sinh2
(gL); (10.4.2)

where the parametric gain g is given by Eq. (10.2.21). As one would expect,
the signal is amplified and, at the same time, the idler wave is generated. Thus,
the same FWM process can be used to amplify a weak signal and to generate
simultaneously a new wave at the idler frequency. Here we focus on signal
amplification. The amplification factor is obtained from Eq. (10.4.1) and can
be written using Eq. (10.2.21) as

Gp = P3(L)=P3(0) = 1+(γP0r=g)2 sinh2
(gL): (10.4.3)
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The parameter r is given in Eq. (10.2.22); r = 1 when a single pump beam is
used for parametric amplification.

The gain expression (10.4.3) should be compared with Eq. (8.2.5) obtained
for a Raman amplifier. The main difference is that the parametric gain depends
on the phase mismatch κ and can become quite small if phase matching is not
achieved. In the limit κ � γP0r, Eqs. (10.2.21) and (10.4.3) yield

Gp � 1+(γP0rL)2 sin2
(κL=2)

(κL=2)2 : (10.4.4)

The parametric gain is relatively small and increases with pump power as P2
0

if phase mismatch is relatively large. On the other hand, if phase matching is
perfect (κ = 0) and gL� 1, the amplifier gain increases exponentially with P0
as

Gp �
1
4 exp(2γP0rL): (10.4.5)

The amplifier bandwidth ∆ΩA can be determined from Eq. (10.4.3) and
depends on both the fiber length L and the pump power P0. Consider first the
limit κ � γP0 in which Gp is given by Eq. (10.4.4). The gain decreases by a
factor of π2

=4 for κL = �π . A convenient definition of ∆ΩA corresponds to
a wave-vector mismatch ∆κ = 2π=L; it provides a bandwidth slightly larger
than the full width at half maximum [12]. Noting that κ is dominated by the
material-dispersion contribution given by Eq. (10.3.6), ∆κ � 2jβ2jΩs∆ΩA, and
the bandwidth becomes

∆ΩA =
∆κ

2jβ2jΩs
=

π
jβ2jΩsL

; (10.4.6)

where Ωs is the frequency shift between the pump and signal waves corre-
sponding to the phase-matching condition κ = 0.

Pump-induced broadening of the parametric gain (see Fig. 10.1) increases
the bandwidth over that given in Eq. (10.4.6). If Eq. (10.4.3) is used to deter-
mine ∆ΩA, the amplifier bandwidth becomes [12]

∆ΩA =
1

jβ2jΩs

��π
L

�2
+(γP0r)2

�1=2

: (10.4.7)

At high pump powers, the bandwidth can be approximated by

∆ΩA � γP0=jβ2Ωsj � (jβ2jΩsLNL)
�1
; (10.4.8)



414 Parametric Processes

where the nonlinear length LNL = (γP0)
�1 and r = 1 has been assumed. Equa-

tion (10.4.8) is valid for LNL � L. As a rough estimate, the bandwidth is
�1 THz for jβ2j �10 ps2/km, Ωs=2π �10 THz, and LNL � 1 m. As a result,
the bandwidth of a parametric amplifier is typically smaller than that of Raman
amplifiers (�5 THz) but much larger than that of Brillouin amplifiers (�10
MHz). It can be increased considerably by matching the pump wavelength
to the zero-dispersion wavelength of the fiber so that jβ2j is reduced. In the
limit β2 approaches zero, and the bandwidth is determined by the fourth-order
dispersion parameter β4 and can exceed 5 THz or 50 nm [72].

The amplifier gain is quite different when both the signal and idler waves
are incident at the fiber input together with the pump. In particular, the signal
and the idler waves may be amplified or attenuated depending on the relative
input phase between them. This dependence on the relative phase has been
seen in an experiment in which the signal and idler waves, shifted from the
pump frequency by 130 MHz, were propagated through a 350-m-long fiber
and their relative phase ∆φ was varied using a delay line [68]. The signal
power was minimum and maximum for ∆φ = π=2 and 3π=2, respectively,
while it remained nearly unchanged for ∆φ = 0 and π . The amplifier gain
varies linearly with pump power and fiber length under such conditions.

10.4.2 Pump Depletion

Inclusion of pump depletion modifies the characteristics of parametric am-
plifiers considerably compared with those expected from Eqs. (10.4.1) and
(10.4.2). It is generally necessary to solve Eqs. (10.2.2)–(10.2.5) numerically
although an analytic solution in terms of the elliptic functions can be obtained
under specific conditions [29]. Whether the signal and idler waves are ampli-
fied or attenuated depends on the relative phase θ defined by

θ = φ1 +φ2�φ3�φ4; (10.4.9)

where φ j is the phase of the amplitude Aj for j = 1 to 4. Maximum amplifi-
cation occurs for θ = �π=2. The relative phase θ , however, changes during
parametric interaction. As a result, even if θ =�π=2 at the fiber input, eventu-
ally θ lies in the range 0 to π/2, and both the signal and idler waves experience
deamplification. This behavior is shown in Fig. 10.10 where evolution of the
relative phase θ , the idler power P4, and the pump power P1 is shown along the
fiber for an input pump power of 70 W after assuming perfect phase matching,
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Figure 10.10 Evolution of relative phase θ , idler power P4, and pump power P1 along
fiber length when κ = 0. Input parameters correspond to P1=P2= 70 W, P4= 0:1 µW,
and θ = π=2. Input signal power P3 = 0:1 µW for solid curves and 6 mW for dashed
curves. (After Ref. [70] c1987 IEEE.)

P1 = P2, and θ = �π=2 at the fiber input; P3(0) = P4(0) = 0:1 µW for solid
lines while P3(0) = 6 mW with P4(0) = 0:1 µW for dashed lines. The latter
case corresponds to a parametric amplifier; both waves grow from noise in the
former case. In both cases, the signal and idler waves amplify and deamplify
periodically. This behavior can be understood by noting that pump depletion
changes the relative phase θ from its initial value of �π=2. The main point is
that a parametric amplifier requires a careful control of the fiber length even in
the case of perfect phase matching.

The preceding discussion is based on the CW theory of FWM. In the case
of a fiber pumped by short pump pulses, two effects can reduce parametric
interaction among the four waves participating in FWM. First, the pump spec-
trum is broadened by SPM as the pump wave propagates through the fiber.
If the spectral width of the pump exceeds the amplifier bandwidth ∆ΩA, the
parametric gain would decrease, similar to the case of Brillouin gain discussed
in Section 9.1. Second, the group-velocity mismatch among the pump, signal,
and idler pulses manifests through a separation of pulses from each other. Both
of these effects reduce the effective length over which FWM can occur. For
ultrashort pulses, one must also include the GVD effects using Eq. (10.2.26).
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Figure 10.11 Measured gain G p of a parametric amplifier as a function of pump
power for three values of the input signal power. (After Ref. [14].)

10.4.3 Parametric Amplifiers

All of the phase-matching techniques discussed in Section 10.3 have been used
for making parametric amplifiers. The main difference between the FWM
experiments and parametric amplifiers is whether or not a signal at the phase-
matched frequency is copropagated with the pump. In the absence of a signal,
the signal and idler waves are generated from amplification of noise.

In the 1974 experiment on parametric amplification in optical fibers, phase-
matching was achieved using a multimode fiber [6]. The peak power of 532-
nm pump pulses was �100 W whereas the CW signal with a power �10 mW
was tunable near 600 nm. The amplifier gain was quite small because of a
short fiber length (9 cm) used in the experiment. In a later experiment [14],
phase matching was achieved using a pump at 1.319 µm, a wavelength close
to the zero-dispersion wavelength (see Fig. 10.7). The peak power of the pump
pulses was varied in the range of 30 to 70 W and the amplified signal power
was measured propagating a CW 1.338-µm signal through a 30-m-long fiber.

Figure 10.11 shows the amplifier gain Gp as a function of pump power P0
for three values of the input signal power P3. Departure from the exponential
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increase in Gp with P0 is due to gain saturation occurring as a result of pump
depletion. Note also that Gp is considerably reduced as P3 is increased from
0.26 to 6.2 mW. For the 0.26-mW input signal, the single-pass amplifier gain
was as large as 46 dB for P0 = 70 W. Such large values clearly indicate the
potential use of optical fibers as parametric amplifiers provided phase match-
ing can be achieved. This requirement puts stringent limits on the control of
frequency shift Ωs between the pump and signal waves.

The use of fiber birefringence for phase matching is attractive as birefrin-
gence can be adjusted to match Ωs by applying external stress or by bending
the fiber. Parametric amplifiers with such schemes have been demonstrated. In
one experiment, the 1.292-µm signal from a semiconductor laser was ampli-
fied by 38 dB when Ωs was tuned by applying external stress to the fiber [66].
In another, the 1.57-µm signal from a distributed feedback semiconductor laser
was amplified by 37 dB using a 1.319-µm pump [67].

A common technique for realizing broadband parametric amplifiers con-
sists of choosing a pump laser whose wavelength λ p is close to the zero-
dispersion wavelength λ 0 of the optical fiber. In one implementation of this
idea [72], a DFB semiconductor laser operating near λ p � 1:54 µm was used
for pumping while a tunable external-cavity semiconductor laser provided the
signal. The length of the dispersion-shifted fiber (λ0 = 1:5393) used for para-
metric amplification was 200 m. The amplifier bandwidth changed consider-
ably as pump wavelength was varied in the vicinity of λ0 and was larger when
pump wavelength was detuned such that λ p�λ0 = 0:8 nm. These results are
readily understood when the effects of fourth-order dispersion are included.
The use of dispersion management and high-nonlinearity fibers can provide
higher gain and larger bandwidths for parametric amplifiers [74].

10.4.4 Parametric Oscillators

The parametric gain can be used to make a laser by placing the fiber inside
a Fabry–Perot or a ring cavity. Such lasers are called parametric oscillators;
the term four-photon fiber laser is also used. In a 1987 experiment [69], a
parametric oscillator was pumped by using 100-ps pulses obtained from a 1.06-
µm, mode-locked, Q-switched, Nd:YAG laser. It emitted 1.15-µm pulses of
about 65-ps duration. Synchronous pumping was realized by adjusting the
cavity length such that each laser pulse, after a round trip, overlapped with
a successive pump pulse. The bandwidth of the parametric laser was about
100 GHz, in agreement with Eq. (10.4.7).
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In the anomalous-GVD region of optical fibers, a new kind of parametric
oscillator, called the modulation-instability laser, has been made. As discussed
in Section 10.3.2, modulation instability can be interpreted in terms of a FWM
process phase-matched by the nonlinear index change responsible for SPM.
The modulation-instability laser was first made in 1988 by pumping a fiber-
ring cavity (length �100 m) synchronously with a mode-locked color-center
laser (pulse width �10 ps) operating in the 1.5-µm wavelength region [71].
For a 250-m ring, the laser reached threshold at an average pump power of
17.5 mW (peak power of 13.5 W). The laser generated signal and idler bands
with a frequency shift of about 2 THz, and this value agreed with the theory
of Section 5.1. No attempt was made to separate the pump, signal, and idler
waves, resulting in a triply resonant parametric oscillator. In some sense, a
modulation-instability laser is different from a conventional parametric oscil-
lator as the objective is to convert a CW pump into a train of short optical
pulses rather than generating a tunable CW signal. This objective was realized
in 1999 by pumping a 115-m-long ring cavity with a CW laser (a DFB fiber
laser). The SBS process was suppressed by modulating the phase of pump light
at a frequency (>80 MHz) larger than the Brillouin-gain bandwidth. The laser
reached threshold at a pump power of about 80 mW and emitted a pulse train at
the 58-GHz repetition rate when pumped harder [75]. The spectrum exhibited
multiple peaks, separated by 58 GHz and generated through a cascaded FWM
process.

A parametric oscillator, tunable over a 40-nm range and centered at the
pump wavelength of 1539 nm, has been made [73]. This laser used a nonlinear
Sagnac interferometer (loop length 105 m) for a parametric amplifier that was
pumped by using 7.7-ps mode-locked pulses from a color-center laser operat-
ing at 1539 nm. Such an interferometer separates pump light from the signal
and idler waves while amplifying both of them. In effect, it acts as a mirror of
a Fabry–Perot cavity with internal gain. A grating at the other end of the cavity
separates the idler and signal waves so that the Fabry–Perot cavity is resonant
for the signal only. The grating is also used for tuning laser wavelength. The
laser emitted 1.7-ps pulses at the 100-MHz repetition rate of the pump laser.

10.5 FWM Applications

FWM in optical fibers can be both harmful and useful depending on the appli-
cation. It can induce crosstalk in WDM communication systems and limit the
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performance of such systems. However, FWM can be avoided using unequal
channel spacings or using fibers with large enough GVD that the the FWM
process is not phase matched over long fiber lengths. This issue is covered in
Chapter B.7. Here we focus on applications in which FWM plays a useful role.

10.5.1 Wavelength Conversion

Similar to the case of Raman amplifiers, parametric amplifiers are useful for
signal amplification. However, as such amplifiers also generate a idler wave
at a frequency 2ωp�ωs, where ωp and ωp are pump and signal frequencies,
they can be used for wavelength conversion. Equation (10.4.2) provides the
following measure of the conversion efficiency:

ηc = P4(L)=P3(0) = (γP0r=g)2 sinh2
(gL): (10.5.1)

The FWM process becomes quite efficient if the phase-matching condition is
satisfied in the sense that ηc can exceed 1. From a practical standpoint, more
power appears at the new wavelength compared with the signal power incident
at the input end. This is not surprising if we note that the pump beam supplies
energy to both the signal and idler waves simultaneously.

The use of FWM for wavelength conversion attracted considerable atten-
tion during the 1990s because of its potential application in WDM lightwave
systems [76]–[80]. If a CW pump beam is injected together with a signal
pulse train consisting of a pseudorandom sequence of “1” and “0” bits inside
a parametric amplifier, the idler wave is generated through FWM only when
the pump and signal are present simultaneously. As a result, the idler wave
appears in the form of a pulse train consisting of same sequence of “1” and
“0” bits as the signal. In effect, FWM transfers the signal data to the idler at a
new wavelength with perfect fidelity. It can even improve the signal quality by
reducing intensity noise [80].

A related application uses FWM for demultiplexing a time-division-multi-
plexed (TDM) signal [81]. In a TDM signal, bits from different channels are
packed together such that the bits belonging to a specific channel are separated
by TB = 1=Bch, where Bch is the bit rate of each channel, whereas individual
bits are spaced apart only TB=Nch if Nch channels are multiplexed together in
the time domain. A specific channel can be demultiplexed if an optical pulse
train at the repetition rate Bch is used for pumping (referred to as an optical
clock). During FWM inside an optical fiber, the idler wave is generated only
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when the pump and signal pulses overlap in the time domain. As a result, the
idler will consist of a replica of the bit pattern associated with a single channel.
FWM for demultiplexing a TDM signal was used as early as 1991 [82]. By
1997, 10-Gb/s channels were demultiplexed with 22-dB conversion efficiency
associated with the FWM process [83]. The same idea can be used for all-
optical picosecond sampling as the intensity of the idler pulse is proportional
to the signal pulse. In a demonstration of this concept 20-ps resolution was
achieved by using actively mode-locked semiconductor lasers [84].

10.5.2 Phase Conjugation

An interesting feature of the idler wave that has considerable practical impor-
tance is apparent from Eqs. (10.2.12) and (10.2.13). These equations show that
A3 is coupled to A�

4 rather than A4. Because the idler field is “complex conju-
gate” of the signal field, such a FWM process is called phase conjugation. An
important application of phase conjugation, first proposed in 1979 [85], con-
sists of using it for dispersion compensation in optical communication systems
[86]–[90].

To understand how phase conjugation leads to dispersion compensation,
consider what would happen if a phase conjugator is placed in the middle of a
fiber link. Then, during the first half of the fiber link, the signal A(z; t) would
satisfy Eq. (3.1.1) or

∂A
∂ z

+
iβ2

2
∂ 2A

∂dT 2 �
β3

6
∂ 3A

∂dT 3 = iγ jAj2A�
1
2

αA; (10.5.2)

where effects of third-order dispersion have also been included. After phase
conjugation, A becomes A�. As a result, in the second half of the fiber link,
signal propagation is governed by an equation obtained by taking the complex
conjugate of Eq. (10.5.2):

∂A�

∂ z
�

iβ2

2
∂ 2A�

∂dT 2 �
β3

6
∂ 3A�

∂dT 3 =�iγ jAj2A�
�

1
2

αA�
: (10.5.3)

To simplify the following discussion, consider first the linear case and as-
sume that the nonlinear effects can be neglected. Because the sign of the β2
term is reversed for the idler wave, the net GVD becomes zero when the phase
conjugator is placed exactly in the middle of the fiber link. However, as the
sign of the β3 term remains unchanged, phase conjugation has no effect on
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third-order dispersion. As a result, such a system is equivalent to operating at
the zero-dispersion wavelength even though β2 may be quite large.

Noting that the sign of the nonlinear term is also reversed in Eq. (10.5.3),
one may be tempted to conclude that the nonlinear effects can also be com-
pensated by this technique. This conclusion is correct if α = 0 but becomes
invalid in the presence of fiber losses because the SPM effects—governed by
the γ term—become weaker with propagation when α 6= 0. This can be seen
more clearly by using the transformation A = Bexp(�αz=2) in Eq. (10.5.2),
which then becomes

i
∂B
∂ z
�

β2

2
∂ 2B
∂T 2 + γzjBj

2B = 0; (10.5.4)

where γz = γ exp(�αz) and the β3 term has been neglected for simplicity. The
effect of fiber loss is mathematically equivalent to the loss-free case but with
a z-dependent nonlinear parameter. By taking the complex conjugate of Eq.
(10.5.4) and changing z to �z, it is easy to see that perfect SPM compensation
can occur only if γ(z) = γ(L� z). This condition cannot be satisfied for α 6= 0.

Perfect compensation of both GVD and SPM can be realized by using
dispersion-decreasing fibers . To see how such a scheme can be implemented,
assume that β2 in Eq. (10.5.4) is a function of z. Making the transformation,

ξ =

Z z

0
γz(z)dz; (10.5.5)

Eq. (10.5.4 can be written as [90]

i
∂B
∂ξ

�
d(ξ )

2
∂ 2B
∂T 2 + jBj2B = 0; (10.5.6)

where d(ξ ) = β2(ξ )=γz(ξ ). Both GVD and SPM are compensated if d(ξ ) =
d(ξL� ξ ), where ξL is the value of ξ at z = L. A simple solution is provided
by the case in which the dispersion is tailored in exactly the same way as γz.
Because fiber losses cause γ z to vary exponentially, both GVD and SPM can
be compensated exactly in a dispersion-decreasing fiber whose GVD decreases
exponentially. Even in the absence of such fibers, GVD and SPM can be com-
pensated by controlling β 2 and γ along the fiber link. This approach is quite
general and applies even when optical amplifiers are used [90].

FWM in fibers has been used to generate phase-conjugated signals in the
middle of a fiber link and compensate the GVD effects. In a 1993 experi-
ment [86], a 1546-nm signal was phase-conjugated using FWM in a 23-km
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fiber while pumping it with a CW semiconductor laser operating at 1549 nm.
The 6-Gb/s signal could be transmitted over 152 km of standard fiber because
of GVD compensation. In another experiment, a 10-Gb/s signal was trans-
mitted over 360 km [87]. FWM was performed in a 21-km-long fiber using a
pump laser whose wavelength was tuned exactly to the zero-dispersion wave-
length of the fiber. The pump and signal wavelengths differed by 3.8 nm.

Several factors need to be considered while implementing the midspan
phase-conjugation technique in practice. First, as the signal wavelength changes
from ω 3 to ω4 � 2ω1�ω3 at the phase conjugator, the GVD parameter β2 be-
comes different in the the second-half section. As a result, perfect compensa-
tion occurs only if the phase conjugator is slightly offset from the midpoint of
the fiber link. The exact location Lp can be determined by using the condition
β 2(ω3)Lp = β2(ω4)(L� Lp), where L is the total link length. For a typical
wavelength shift of 6 nm, the phase-conjugator location changes by about 1%.
The effect of residual dispersion and SPM in the phase-conjugation fiber itself
can also affect the placement of phase conjugator [89].

Phase conjugation has several other potential applications [91]–[98]. It can
be used to determine the phase of optical signals without performing homo-
dyne or heterodyne detection [91]. Its judicious use can cancel the frequency
shifts of solitons induced by intrapulse Raman scattering [92] and reduce the
timing jitter induced by amplifiers and soliton collisions [93]–[96]. Phase con-
jugation has been used for all-optical storage of picosecond-pulse packets [97].
It can also be used for reducing the noise below the shot-noise level. This topic
is discussed next.

10.5.3 Squeezing

An interesting application of FWM has led to the reduction of quantum noise
through a phenomenon called squeezing [99]–[101]. Squeezing refers to the
process of generating the special states of an electromagnetic field for which
noise fluctuations in some frequency range are reduced below the quantum-
noise level. FWM can be used for squeezing as noise components at the signal
and idler frequencies are coupled through the fiber nonlinearity. An accurate
description of squeezing in optical fibers requires a quantum-mechanical ap-
proach in which the signal and idler amplitudes B3 and B4 are replaced by
annihilation operators [102]. Furthermore, quantum noise should be included
by adding a fluctuating source term (known as the Langevin force) on the right-
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hand side of Eqs. (10.2.16) and (10.2.17). It is also necessary to account for
fiber losses.

From a physical standpoint, squeezing can be understood as deamplifica-
tion of signal and idler waves for certain values of the relative phase between
the two waves [68]. Spontaneous emission at the signal and idler frequencies
generates photons with random phases. FWM increases or decreases the num-
ber of specific signal-idler photon pairs depending on their relative phases. A
phase-sensitive (homodyne or heterodyne) detection scheme would show noise
reduced below the quantum-noise level when the phase of the local oscillator
is adjusted to match the relative phase corresponding to the photon pair whose
number was reduced as a result of FWM.

The observation of squeezing in optical fibers is hindered by the compet-
ing processes such as spontaneous and stimulated Brillouin scattering (SBS).
A particularly important noise process turned out to be Brillouin scattering
caused by guided acoustic waves [102]. If noise generated by this phenomenon
exceeds the reduction expected from FWM, squeezing is washed out. Several
techniques have been developed to reduce the impact of this noise source [101].
A simple method consists of immersing the fiber in a liquid-helium bath. In-
deed, a 12.5% reduction in the quantum-noise level was observed in a 1986
experiment in which a 647-nm CW pump beam was propagated through a
114-m-long fiber [103]. SBS was suppressed by modulating the pump beam at
748 MHz, a frequency much larger than the Brillouin-gain bandwidth. Ther-
mal Brillouin scattering from guided acoustic waves was the most limiting fac-
tor in the experiment. Figure 10.12 shows the observed noise spectrum when
the local oscillator phase is set to obtain the minimum noise. The large peaks
are due to guided-acoustic-wave Brillouin scattering. Squeezing occurs in the
spectral bands located around 45 and 55 MHz.

Squeezing in optical fibers has continued to attract attention since its first
observation in 1986 [104]–[115]. In a 1987 experiment, two CW pump beams
at wavelengths 647 and 676 nm were propagated through the same fiber [104].
A 20% reduction in the quantum-noise level was measured by using a dual-
frequency homodyne detection scheme. This scheme is referred to as four-
mode squeezing as the two signal-idler pairs associated with the two pump
beams are responsible for squeezing. Both SPM and XPM effects play an
important role in this kind of squeezing. By 1991, quadrature squeezing was
observed using intense ultrashort pulses propagating as a soliton inside a bal-
anced Sagnac interferometer. In one experiment, 200-fs pulses were propa-
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Figure 10.12 Noise spectrum under minimum-noise conditions. Horizontal line
shows the quantum-noise level. Reduced noise around 45 and 55 MHz is a manifesta-
tion of squeezing in optical fibers occurring as a result of FWM. (After Ref. [103].)

gated through 5 m of fiber at a repetition rate of 168 MHz [108]. A 32%
reduction in the shot noise was observed in the frequency range 3–30 MHz.
In a similar experiment, 100-ps optical pulses centered at the zero-dispersion
wavelength of the fiber were used, and noise reduction by as much as 5 dB was
observed [109].

Starting in 1996, attention focused on amplitude or photon-number squeez-
ing that can be observed directly without requiring a local oscillator for homo-
dyne (or heterodyne) detection [111]–[115]. Initial experiments used spectral
filtering of optical solitons. More recent experiments have used interferomet-
ric techniques. Amplitude squeezing by more than 6 dB was observed when
182-fs pulses at a repetition rate of 82 MHz were propagated as solitons in
a 3.5-m asymmetric fiber loop acting as a Sagnac interferometer [113]. This
value dropped to 2.5 dB when pulses were propagated in the normal-GVD
regime of the fiber loop [114]. The reader is referred to a 1999 review for
further details [101].

10.5.4 Supercontinuum Generation

When ultrashort optical pulses propagate through an optical fiber, the FWM
process is accompanied by a multitude of other nonlinear effects, such as SPM,
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XPM, and SRS, together with the effects of dispersion. All of these nonlinear
processes are capable of generating new frequencies within the pulse spectrum.
It turns out that, for sufficiently intense pulses, the pulse spectrum can become
so broad that it extends over a frequency range exceeding 10 THz. This broad-
ening is referred to as supercontinuum generation and was initially studied in
solid and gaseous nonlinear media [64]. In the case of optical fibers, supercon-
tinuum was first observed using multimode fibers (see Section 10.3.1). As seen
in Fig. 10.5, the spectrum of a 532-nm picosecond pulse extended over 50 nm
after it propagated through a 15-m-long four-mode fiber because of the com-
bined effects of SPM, XPM, SRS, and FWM. Similar features are expected
when single-mode fibers are used [116].

Starting in 1993, supercontinuum generation in single-mode fibers was
used as a practical tool for obtaining picosecond pulses at multiple wave-
lengths simultaneously, acting as an ideal source for WDM communication
systems [117]–[126]. In a 1994 experiment [118], 6-ps pulses with a peak
power of 3.8 W at a 6.3-GHz repetition rate (obtained by amplifying the output
of a gain-switched semiconductor laser operating at 1553 nm) were propagated
in the anomalous-GVD region of a 4.9-km-long fiber (jβ 2j< 0:1 ps2/km). The
supercontinuum generated at the fiber output was wide enough (>40 nm) that
it could be used to produce 40 WDM channels by using a periodic optical filter.
The 6.3-GHz pulse train in different channels consisted of nearly transform-
limited pulses whose width varied in the range 5–12 ps. By 1995, this tech-
nique produced a 200-nm-wide supercontinuum, resulting in a 200-channel
WDM source [119]. The 6.3-GHz pulse train had a low jitter (<0.3 ps) and
high frequency stability. The same technique can also produce femtosecond
pulses by enlarging the bandwidth of the optical filter. In fact, pulse widths in
the range 0.37 to 11.3 ps were generated by using an array-waveguide grating
filter having variable bandwidth in the range 0.3–10.5 nm [120]. A supercon-
tinuum source was used in 1997 to demonstrate data transmission at a bit rate
of 1.4 Tb/s using seven WDM channels with 600-GHz spacing while time-
division multiplexing was used to operate each channel at 200 Gb/s [121].

GVD plays an important role in the formation of a supercontinuum in op-
tical fibers. Indeed, because of the large spectral bandwidth associated with a
supercontinuum, β 2 cannot be treated as constant and its wavelength depen-
dence should be considered. Numerical simulations show that uniformity or
flatness of the supercontinuum can be improved considerably if β2 increases
along the fiber length such that the optical pulse experiences anomalous GVD
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Figure 10.13 Supercontinuum (SC) pulse spectra measured at average power levels
of (a) 45 mW, (b) 140 mW, and (c) 210 mW. Dashed curve shows the spectrum of
input pulses. (After Ref. [124] c1998 IEEE.)

initially and normal GVD after some fiber length [122]. However, the role of
anomalous GVD is to simply compress the pulse that propagates as a higher-
order soliton.

A fiber with normal GVD (β2 > 0) along its entire length can also be used if
the input pulse in unchirped and a dispersion-flattened fiber is used [124]. Such
a fiber has β3 nearly zero so that β 2 is almost constant over the entire band-
width of the supercontinuum. In fact, a 280-nm-wide (10-dB bandwidth) flat
supercontinuum was generated when 0.5-ps chirp-free pulses, obtained from a
mode-locked fiber laser, were propagated in a dispersion-flattened fiber with a
small positive value of β 2. Even when 2.2-ps pulses from a mode-locked semi-
conductor laser were used, supercontinuum as broad as 140 nm could be gener-
ated provided pulses were initially compressed to make them nearly chirp-free.
Figure 10.13 shows the pulse spectra obtained at several power levels when a
1.7-km-long dispersion-flattened fiber with β 2 = 0:1 ps2/km at 1569 nm was
used for supercontinuum generation. Input spectrum is also shown as a dashed
curve for comparison. The nearly symmetric nature of the spectra indicates
that SRS played a minor role. The combination of SPM, XPM, and FWM is
responsible for most of spectral broadening seen in Fig. 10.13. Small fluc-
tuations near the pump wavelength originate from residual chirp. Such a su-
percontinuum spectrum has been used to produce 10-GHz pulse trains at 20
different wavelengths, with nearly the same pulse width in each channel [125].
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10.6 Second-Harmonic Generation

FWM, by far the dominant parametric process in optical fibers, generates spec-
tral sidebands separated from the pump frequency by up to �100 THz. In
several experiments, the spectrum at the output of an optical fiber, pumped
by intense 1.06-µm pump pulses, was found to extend into the visible and
ultraviolet regions [127]–[134]. Spectral components in these regions can be
generated through mixing of two or more waves such that the generated fre-
quency is a sum of the frequencies of the participating waves. Thus, two waves
with frequencies ω1 and ω2 can generate second-harmonic frequencies 2ω1
and 2ω 2, third-harmonic frequencies 3ω1 and 3ω 2, and sum frequencies of
the form ω1 +ω 2, 2ω1 +ω 2, and 2ω 2 +ω1. Frequencies such as 3ω 1, 3ω 2,
2ω1 +ω 2, and 2ω 2 +ω1 are expected to be generated in optical fibers be-
cause they are due to third-order parametric processes controlled by χ(3). In
general, efficiency is quite low as phase matching is difficult to achieve for
such parametric processes. In a 1983 experiment [131], the third harmonic
and sum frequencies 2ω1 +ω 2 and 2ω 2 +ω1 were generated as a result of
mixing between the input pump wave and the Raman-generated Stokes waves
near 1.06-µm and 1.12-µm wavelengths. Third-harmonic generation, phase
matched through Čerenkov radiation, has also been observed in both standard
and erbium-doped fibers [134]. This section focuses on second-harmonic gen-
eration in silica fibers.

10.6.1 Experimental Results

Several early experiments showed that the second harmonic as well as the
sum frequencies of the form ω 1 +ω 2 are generated when intense 1.06-µm
pump pulses from a mode-locked, Q-switched, Nd:YAG laser are propagated
through optical fibers [128]–[130]. Conversion efficiencies as high as �0.1%
were achieved both for the sum-frequency and the second-harmonic processes.
Such high efficiencies for second-order parametric processes are unexpected as
the second-order susceptibility χ(2), resulting from the nonlinear response of
electric dipoles, vanishes for centerosymmetric materials such as silica. There
are several higher-order nonlinearities that can provide an effective χ(2) for
such processes to occur; the most important ones among them are surface
nonlinearities at the core-cladding interface and nonlinearities resulting from
quadrupole and magnetic-dipole moments. However, detailed calculations
show that these nonlinearities should give rise to a maximum conversion ef-
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Figure 10.14 Average second-harmonic power generated in a silica fiber as a func-
tion of time. Average power of mode-locked, Q-switched, 1.06-µm pump pulses was
125 mW. The inset shows exponential growth on a linear scale. (After Ref. [136].)

ficiency �10�5 under phase-matching conditions [135]. It appears that some
other mechanism leads to an enhancement of the second-order parametric pro-
cesses in optical fibers.

A clue to the origin of such a mechanism came when it was discovered in
1986 that the second-harmonic power grows considerably if the fiber is illu-
minated with pump radiation for several hours [136]. Figure 10.14 shows the
average second-harmonic power as a function of time when 1.06-µm pump
pulses of duration 100 to 130 ps and average power 125 mW, obtained from a
mode-locked and Q-switched Nd:YAG laser, were propagated through a 1-m-
long fiber. The second-harmonic power grew almost exponentially with time
and began to saturate after 10 hours. The maximum conversion efficiency was
about 3%. The 0.53-µm pulses at the fiber output had a width of about 55 ps
and were intense enough to pump a dye laser. This experiment stimulated
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further work and led to extensive research on second-harmonic generation in
optical fibers [137]–[194]. It turned out that optical fibers exhibit photosen-
sitivity and can change their optical properties permanently when exposed to
intense radiation of certain wavelengths.

Efficient generation of the second harmonic in optical fibers requires an
incubation period during which the fiber is prepared by a seeding process. In
the 1986 work [136], fibers were prepared by sending intense 1.06-µm pump
pulses of duration�100 ps. The preparation time depended on the pump power
and was several hours at peak powers�10 kW. The fiber core had both germa-
nium and phosphorus as dopants. The presence of phosphorus appeared to be
necessary for the preparation process. In a later experiment, in which a mode-
locked Kr-ion laser operating at 647.1 nm was used to provide 100-ps pump
pulses, a fiber with Ge-doped core could be prepared in about 20 minutes with
a peak power of only 720 W [141]. In an important development [138], it was
found that a fiber could be prepared in only a few minutes, even by 1.06-µm
pulses, provided a weak second-harmonic signal, acting as a seed, is propa-
gated together with pump pulses. The same fiber could not be prepared even
after 12 hours without the seeding beam.

10.6.2 Physical Mechanism

Several physical mechanisms were proposed as early as 1987 to explain the
second-harmonic generation in optical fibers [137]–[140]. They all relied on
a periodic ordering of some entity, such as color centers or defects, along the
fiber in such a way that the phase-matching condition was automatically sat-
isfied. In one model, ordering occurs through a third-order parametric pro-
cess in which the pump and the second-harmonic light (internally generated
or externally applied) mix together to create a static or dc polarization (at zero
frequency) given by [138]

Pdc = (3ε0=4)Re[χ(3)E�

pE�

pESH exp(i∆kpz)]; (10.6.1)

where Ep is the pump field at the frequency ω p, ESH is the second-harmonic
seed field at 2ω p, and the wave-vector mismatch ∆kp is given by

∆kp = [n(2ωp)�2n(ωp)]ωp=c: (10.6.2)

The polarization Pdc induces a dc electric field Edc whose polarity changes
periodically along the fiber with the phase-matching period 2π=∆kp (�30 µm
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for a 1.06-µm pump). This electric field redistributes electric charges and
creates a periodic array of dipoles. The physical entity participating in the
dipole formation could be defects, traps, or color centers. The main point is
that such a redistribution of charges breaks the inversion symmetry and is also
periodic with the right periodicity required for phase matching. In effect, the
fiber has organized itself to produce second-harmonic light. Mathematically,
the dipoles can respond to an applied optical field with an effective value of
χ (2). In the simplest case, χ(2) is assumed to be proportional to Pdc, that is,

χ (2)
� αSHPdc = (3αSH=4)ε0χ (3)

jEpj
2
jESHjcos(∆kpz+φp); (10.6.3)

where αSH is a constant whose magnitude depends on the microscopic process
responsible for χ(2) and φp is a phase shift that depends on the initial phases
of the pump and the second-harmonic seed. Because of the periodic nature of
χ (2), the preparation process is said to create a χ(2) grating.

This simple model in which a dc electric field Edc is generated through a
χ (3) process suffers from a major drawback [149]. Under typical experimental
conditions, Eq. (10.6.1) leads to Edc � 1 V/cm for pump powers �1 kW and
second-harmonic seed powers �10 W if we use χ(3)

� 10�22 (m/V)2. This
value is too small to orient defects and generate a χ(2) grating.

Several alternative mechanisms have been proposed to solve this discrep-
ancy. In one model [166] a charge-delocalization process enhances χ(3) by
several orders of magnitudes, resulting in a corresponding enhancement in Edc.
In another model [167], free electrons are generated through photoionization
of defects, and a strong electric field (Edc � 105 V/cm) is created through a
coherent photovoltaic effect. In a third model [170], ionization occurs through
three multiphoton processes (four pump photons, two second-harmonic pho-
tons, or two pump photons and one second-harmonic photon). In this model,
the χ(2) grating is created through quantum-interference effects that cause
the electron-injection process to depend on the relative phase between the
pump and second-harmonic fields. This charge-transport model is in qualita-
tive agreement with most of the observed features. In the next subsection, Eq.
(10.6.3) is used to study second-harmonic generation in optical fibers because
the results are qualitatively valid irrespective of the exact physical mechanism
involved in the creation of the χ(2) grating.

Conversion efficiencies achieved in the second-harmonic experiments are
typically �1%, with a maximum value of about 5% [136]. A natural question
is what limits the conversion efficiency? As seen in Fig. 10.14, the second-
harmonic power grows exponentially during initial stages of the preparation
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process but then saturates. One possibility is that the generated second-harmonic
interferes with formation of the χ(2) grating. It has been pointed out that the
χ (2) grating formed by the generated harmonic would be out of phase with the
original grating [138]. If this is the case, it should be possible to erase the
grating by sending just the second-harmonic light through the fiber without
the pump. Indeed, such an erasure has been observed [146]. The erasing rate
depends on the second-harmonic power launched into the fiber. In one exper-
iment [148], conversion efficiency decreased from its initial value by a factor
of 10 in about five minutes for average second-harmonic powers � 2 mW.
The decay was not exponential but followed a time dependence of the form
(1+Ct)�1, where C is a constant. Furthermore, erasure was reversible, that
is, the fiber could be reprepared to recover its original conversion efficiency.
These observations are consistent with the model in which the χ(2) grating is
formed by ordering of charged entities such as color centers, defects, or traps.

10.6.3 Simple Theory

One can follow a standard procedure [1]–[5] to study second-harmonic gen-
eration from χ(2) given by Eq. (10.6.3). Assume that a pump wave at the
frequency ω1 is incident on such a prepared fiber. The frequency ω1 can be
different from ωp in general. The pump field E1 and the second-harmonic field
E2 then satisfy the coupled amplitude equations of the form [137]

dA1

dz
= iγ1(jA1j

2
+2jA2j

2
)A1 +

i
2

γ�SHA2A�

1 exp(�iκz); (10.6.4)

dA2

dz
= iγ2(jA2j

2
+2jA1j

2
)A2 + iγSHA2

1 exp(iκz); (10.6.5)

where γ1 and γ2 are defined similarly to Eq. (2.3.28),

γSH = (3ω1=4n1c)ε2
0 αSH f112χ (3)

jEpj
2
jESHj; (10.6.6)

f112 is an overlap integral (see Section 10.2), κ = ∆kp�∆k, and ∆k given by
Eq. (10.6.2) after replacing ωp with ω1. The parameter κ is the residual wave-
vector mismatch occurring when ω1 6= ωp. The terms proportional to γ1 and
γ2 are due to SPM and XPM and must be included in general.

Equations (10.6.4) and (10.6.5) can be solved using the procedure of Sec-
tion 10.2. If we assume that the pump field remains undepleted (jA2j

2
�

jA1j
2
), Eq. (10.6.4) has the solution

A1(z) =
p

P1 exp(iγ1P1z); (10.6.7)
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where P1 is the incident pump power. Introducing A2 = B2 exp(2iγ1P1z) in Eq.
(10.6.5), we obtain

dB2

dz
= iγSHP1 exp(iκz)+2i(γ2� γ1)P1B2: (10.6.8)

Equation (10.6.8) is readily solved to obtain the second-harmonic power as

P2(L) = jB2(L)j
2
= jγSHP1Lj2

sin2
(κ 0L=2)

(κ 0L=2)2 ; (10.6.9)

where κ 0
= κ�2(γ2�γ1)P1. The difference between κ0 and κ depends on γ2�

γ1 and could be significant if the effective mode areas are about the same for the
pump and second-harmonic beams because γ2 = 2γ1 in that case. Physically,
SPM and XPM modify κ as they contribute to the phase-matching condition.

In the simple theory presented here Eqs. (10.6.4) and (10.6.5) are solved
approximately assuming that the pump remains undepleted. This approxima-
tion begins to break down for conversion efficiencies > 1%. It turns out that
these equations can be solved analytically even when the pump is allowed to
deplete because the sum of pump and second-harmonic powers remains con-
stant during the generation process. The solution is in the form of elliptic
functions similar to that obtained as early as 1962 [1]. The periodic nature of
the elliptic functions implies that the conversion process is periodic along the
fiber length, and energy is transferred back to the pump after the second har-
monic attains its maximum value. The analysis also predicts the existence of a
parametric mixing instability induced by SPM and XPM [184]. The instability
occurs when γ1

p
P1 becomes comparable to γSH and manifests as doubling of

the spatial period associated with the frequency-conversion process. As pump
depletion is generally negligible in most experimental situations, these effects
are not yet observed, and the following discussion is based on Eq. (10.6.9).

The derivation of Eq. (10.6.9) assumes that the χ(2) grating is created co-
herently throughout the fiber. This would be the case if the pump used during
the preparation process were a CW beam of narrow spectral width. In prac-
tice, mode-locked pulses of duration �100 ps are used. The use of such short
pulses affects grating formation in two ways. First, the group-velocity mis-
match between the pump and second-harmonic pulses leads to their separation
within a few walk-off lengths LW . If we use T0 � 80 ps and jd12j � 80 ps/m
in Eq. (1.2.14), the values appropriate for 1.06-µm experiments, LW � 1 m.
Thus, the χ(2) grating stops to form within a distance �1 m for pump pulses
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of duration �100 ps. Second, SPM-induced spectral broadening reduces the
coherence length Lcoh over which the χ(2) grating can generate the second
harmonic coherently. It turns out that Lcoh sets the ultimate limit because
Lcoh < LW under typical experimental conditions. This can be seen by not-
ing that each pump frequency creates its own grating with a slightly differ-
ent period 2π=∆kp, where ∆kp is given by Eq. (10.6.2). Mathematically, Eq.
(10.6.1) for Pdc should be integrated over the pump-spectral range to include
the contribution of each grating. Assuming Gaussian spectra for both pump
and second-harmonic waves, the effective dc polarization becomes [147]

Peff
dc = Pdc exp[�(z=Lcoh)

2
]; Lcoh = 2=jd12δωpj; (10.6.10)

where d12 is defined in Eq. (1.2.13) and δωp is the spectral half-width (at
1/e point). For jd12j = 80 ps/m and 10-GHz spectral width (FWHM), Lcoh �

60 cm.
In most experiments performed with 1.06-µm pump pulses the spectral

width at the fiber input is �10 GHz. However, SPM broadens the pump spec-
trum as the pump pulse travels down the fiber [see Eqs. (4.1.6) and (4.1.11)].
This broadening reduces the coherence length considerably, and Lcoh � 10 cm
is expected. Equation (10.6.9) should be modified if Lcoh < L. In a simple
approximation [137], L is replaced by Lcoh in Eq. (10.6.9). This amounts to
assuming that Peff

dc = Pdc for z � L coh and zero for z > Lcoh. One can improve
over this approximation using Eq. (10.6.10). Its use requires that γSH in Eq.
(10.6.8) be multiplied by the exponential factor exp[�(z=Lcoh)

2
]. If Lcoh � L,

Eq. (10.6.8) can be integrated with the result [147]

P2(κ) = (π=4)jγSHP1Lcohj
2 exp(�1

2κ2L2
coh): (10.6.11)

This expression is also approximate as it is based on Eqs. (10.6.4) and (10.6.5)
that are valid only under quasi-CW conditions. These equations can be gener-
alized to include time-dependent features by adding the first and second deriva-
tives with respect to time [156].

Frequency dependence of the second-harmonic power has been measured
in several experiments. Figure 10.15 shows the data for an experiment in which
the pump wavelength was tuned over 4 nm to vary κ [137]. The solid curve
is a theoretical fit based on Eq. (10.6.9) with L = Lcoh. The best fit occurs for
Lcoh = 12 cm. In this experiment the peak power of pump pulses during the
preparation process was about 10 kW. A short coherence length is expected
because of SPM-induced spectral broadening of such intense pump pulses. In
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Figure 10.15 Second-harmonic conversion efficiency as a function of pump-
wavelength deviation from 1.064 µm. Solid curve is the theoretical fit. (After
Ref. [137].)

a 1988 experiment [147], the coherence length could be increased to 35 cm
using less intense pump pulses (230-W peak power).

For ultrashort pump pulses, it is important to include the effects of fiber
dispersion. The GVD effects can be included in Eqs. (10.6.4) and (10.6.5) by
replacing the spatial derivatives by a sum of partial derivatives as indicated in
Eq. (10.2.26). The resulting equations, under certain conditions, are found to
have solitary-wave solutions [189]–[194], similar to the XPM-paired solitons
discussed in Section 7.3.

10.6.4 Quasi-Phase-Matching Technique

Because of a limited conversion efficiency (<10%) associated with photosensi-
tive fibers, the technique of quasi-phase matching has been used to make fibers
suitable for harmonic generation. This technique was proposed in 1962 [1] but
has been developed only during the 1990s, mostly for ferroelectric materials
such as LiNbO3. It was used for optical fibers as early as 1989 and was referred
to as electric-field-induced second-harmonic generation [195]. The basic idea
is quite simple. Rather than inducing an internal dc electric field optically [see
Eq. (10.6.1)], the dc field is applied externally, resulting in an effective χ(2).
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However, a constant value of χ(2) along the fiber length is not very useful in
practice because of the large phase mismatch governed by ∆kp in Eq. (10.6.2).

The technique of quasi-phase matching enhances the second-harmonic ef-
ficiency by reversing the sign of χ (2) along the sample periodically [196].
When this technique is applied to optical fibers, one needs to reverse the po-
larity of electric field periodically along the fiber length. The period should
be chosen such that the sign of χ (2) is reversed before the second-harmonic
power reverts back to the pump; its numerical value is just 2π=∆kp. Quasi-
phase matching is commonly used in combination with thermal poling, a tech-
nique that can produce relatively large values of χ(2) of permanent nature in
silica glasses and fibers [197]–[200]. Although thermal poling has been used
since 1991, the exact physical mechanism responsible for producing χ(2) was
being debated even in 1999 [201]–[205].

Thermal poling requires that a large dc electric field be applied across the
fiber core, at an elevated temperature in the range of 250 to 300Æ, for a duration
ranging anywhere from 10 minutes to several hours. If one wants to establish a
constant value of χ(2) across the entire fiber length, electrodes can be inserted
through two holes within the cladding of a fiber. The positive electrode should
pass quite close to the fiber core because formation of a negatively charged
layer close to this electrode plays an important role in the charge migration
and ionization process thought to be responsible for inducing χ(2) [200].

The technique of quasi-phase matching requires reversal of the polarity of
the electric field periodically along fiber length during the thermal-poling pro-
cess [206]. To make such periodically poled silica fibers, the cladding on one
side of the fiber is etched away to produce a D-shaped fiber. The flat surface of
the fiber should be quite close to the core, 5 µm being a typical distance [207].
A patterned aluminum contact is fabricated on the flat surface using a standard
lithographic technique. The required period is close to 56.5 µm for a pump
wavelength of 1.54 µm. Thermal poling of the fiber then produces a χ(2)
grating with the same period.

Such a quasi-phase-matched fiber (length 7.5 cm) was pumped by using 2-
ns pulses with peak powers of up to 30 kW at a wavelength of 1.532 µm [207].
Second-harmonic light at 766 nm was generated with an average efficiency of
21%. Further improvement is possible using longer fibers and optimizing the
thermal-poling process to provide higher χ(2) values. The experiment shows
that quasi-phase-matched fibers represent a viable and potentially useful non-
linear medium for the second-order parametric processes. The main drawback
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of quasi-phase matching is that the the period of χ(2) grating depends on the
pump wavelength and should be matched precisely. A mismatch of even 1 nm
in the pump wavelength can reduce the efficiency by 50%.

Problems

10.1 Find an expression similar to that given in Eq. (10.1.4) for P3 by using
Eqs. (10.1.1)–(10.1.3).

10.2 Consider the FWM geometry in which a single CW pump beam pro-
duces signal and idler waves. Starting from Eq. (10.1.1), derive the three
nonlinear equations, similar to those appearing in Eqs. (10.2.2)–(10.2.5),
governing the FWM process.

10.3 Solve the set of three equations obtained in Problem 10.2 assuming that
the pump beam remains undepleted. Find the parametric gain for the
signal and idler waves as a function of the pump power and the phase
mismatch ∆k.

10.4 Explain how self-phase modulation can satisfy the phase-matching con-
dition for FWM to occur in a single-mode fiber. What should be the
pump power when pump and signal wavelengths are 1.50 and 1.51 µm,
respectively? Assume γ = 5 W�1/km and β2 =�20 ps2/km.

10.5 FWM is observed to occur in a birefringent fiber when a 1.5-µm pump
beam is launched such that it is polarized at 40Æ from the slow axis.
What are the wavelengths and the directions of polarization for the spec-
tral sidebands generated through FWM?

10.6 Derive Eqs. (10.4.1) and (10.4.2) by solving Eqs. (10.2.16) and (10.2.17).

10.7 Use Eq. (10.4.1) to find the gain and bandwidth of a parametric amplifier
assuming that the FWM process is nearly phase matched.

10.8 How can you use FWM for wavelength conversion in WDM systems?
Derive an expression for the conversion efficiency.

10.9 Explain how the second harmonic is generated in an optical fiber. De-
scribe the physical processes involved in detail.

10.10 Derive an expression for the second-harmonic power by solving Eqs.
(10.6.4) and (10.6.5). Assume that the conversion efficiency is low
enough that the pump remains mostly undepleted.
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[9] A. Säisy, J. Botineau, A. A. Azéma and F. Gires, Appl. Opt. 19, 1639 (1980).

[10] K. O. Hill, D. C. Johnson, and B. S. Kawasaki, Appl. Opt. 20, 1075 (1981).
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Appendix A

Decibel Units

In both linear and nonlinear fiber optics it is common to make use of decibel
units, abbreviated as dB and used by engineers in many different fields. Any
ratio R can be converted into decibels using the general definition

R (in dB) = 10 log10 R: (A.1)

The logarithmic nature of the decibel scale allows a large ratio to be expressed
as a much smaller number. For example, 109 and 10�9 correspond to 90 dB
and �90 dB, respectively. As R = 1 corresponds to 0 dB, ratios smaller than
1 are negative on the decibel scale. Furthermore, negative ratios cannot be
expressed using decibel units.

The most common use of the decibel scale occurs for power ratios. For
instance, the fiber-loss parameter α appearing in Eq. (1.2.3) can be expressed
in decibel units by noting that fiber losses decrease the optical power launched
into an optical fiber from its value at the input end, and thus can be written as a
power ratio. Equation (1.2.4) shows how fiber losses can be expressed in units
of dB/km. If a 1-mW signal reduces to 1 µW after transmission over 100 km
of fiber, the power reduction by a factor of 1000 translates into a 30-dB loss
from Eq. (A.1). Spreading this loss over the 100-km fiber length produces a
loss of 0.3 dB/km. The same technique can be used to define the insertion loss
of any component. For instance, a 1-dB loss of a fiber connector implies that
the optical power is reduced by 1 dB (� 20%) when the signal passes through
the connector. Examples of other quantities that are often quoted using the
decibel scale include the signal-to-noise ratio and the amplification factor of
an optical amplifier.
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If optical losses of all components in a fiber-optic communication sys-
tem are expressed in decibel units, it is useful to express the transmitted and
received powers also by using a decibel scale. This is achieved by using a
derived unit, denoted as dBm and defined as

power (in dBm) = 10 log10

�power
1 mW

�
; (A.2)

where the reference level of 1 mW is chosen for convenience; the letter m in
dBm is a reminder of the 1-mW reference level. In this decibel scale for the
absolute power, 1 mW corresponds to 0 dBm, whereas powers < 1 mW are
expressed as negative numbers. For example, a power of 10 µW corresponds
to �20 dBm. By contrast, large peak powers of intense pulses commonly used
in experiments on nonlinear fiber optics are represented by positive numbers.
Thus, a peak power of 10 W corresponds to 40 dBm. It is possible to introduce
other decibel scales for representing optical powers by changing the reference
level. For example, if the reference power in Eq. (A.2) is 1 µW, we obtain
powers in dBµ units. When 1 W is used as a reference level, the power unit is
known as dBW.
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Nonlinear Refractive Index

Since the nonlinear part of the refractive index δnNL = n2jEj
2 in Eq. (1.3.2)

governs a large number of the nonlinear effects in optical fibers, an accurate
measurement of the nonlinear-index coefficient n2 is necessary. However, be-
fore discussing the measurements of n2, it is important to clarify the units used
to express its numerical values [1].

In the standard metric system of units (called SI, short for the French ex-
pression Système international d’unités), the electric field has units of V/m.
As δnNL is dimensionless, the units of n2 are m2/V2. In practice, it is more
convenient to write the nonlinear index in the form δnNL = nI

2I, where I is the
intensity of the optical field and is related to E as

I = 1
2ε0cnjEj2: (B.1)

Here ε0 is the vacuum permittivity (ε0 = 8:8542�10�12 F/m), c is the velocity
of light in vacuum (c = 2:998�108 m/s), and n is the linear part of the refrac-
tive index (n� 1:45 for silica fibers). The parameter nI

2 has units of m2/W and
is related to n2 as

nI
2 = 2n2=(ε0cn): (B.2)

It is common to quote n2 in units of m2/W. Equation (B.2) shows the conver-
sion factor explicitly. In earlier measurements of n2, electrostatic units (esu)
have sometimes been used. One can convert from esu to SI units by using the
relation [1]

nI
2 = (80π=cn)n2(esu)� 5:78�10�7n2(esu); (B.3)

if we use n = 1:45 for silica fibers.
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The measurements of n2 for bulk silica glasses yield a value n2 = 2:7�
10�20 m2/W at the 1.06-µm wavelength [2]. This value should decrease by
3–4% for wavelengths near 1.5 µm. The earliest measurements of n2 in
silica fibers were carried out in 1978 [3] using spectral broadening of 90-
ps optical pulses (obtained from an argon-ion laser operating near 515 nm)
that was produced by self-phase modulation (SPM). The estimated value of
3:2� 10�20 m2/W from this experiment was used almost exclusively in most
studies of the nonlinear effects in optical fibers in spite of the fact that n2 nor-
mally varies from fiber to fiber.

The growing importance of the nonlinear effects in optical communication
systems revived interest in the measurements of n2 during the 1990s, espe-
cially because fiber manufacturers are often required to specify its numerical
value for their fibers [4]. Several different techniques have been used to mea-
sure n2 for various kinds of fibers [5]–[24]: Measured values are found to vary
in the range 2.2–3.9�10�20 m2/W [19]. To understand the origin of such a
large range of variations in n2 values for silica fibers, note that the core of
silica fibers is doped with other materials such as GeO2 and Al2O3. These
dopants affect the measured value of n2. As a result, n2 is expected to be
different for various dispersion-shifted fibers made using different amounts of
dopants inside the fiber core. Moreover, optical fibers do not maintain the state
of polarization during propagation of light. As the polarization state changes
randomly along fiber length, one measures an average value of n2 that is re-
duced by a factor of 8

9 compared with the value expected for bulk samples that
maintain the linear polarization of the incident light [14].

The measured value of n2 is also affected by the experimental technique
used to measure it. The reason is that two other mechanisms, related to molec-
ular motion (the Raman effect) and excitation of acoustic waves through elec-
trostriction (Brillouin scattering), also contribute to n2. However, their relative
contributions depend on whether the pulse width is longer or shorter than the
response time associated with the corresponding process. The electrostrictive
contribution vanishes for pulses shorter than 100 ps but attains its maximum
value (� 16% of total n2) for pulse widths > 10 ns [13]. In contrast, the Raman
contribution does not vanish until pulse widths become < 50 fs and is � 18%
for pulse widths > 10 ps. One should be careful when comparing measure-
ments made using different pulse widths. The largest value of n2 is expected
for measurements performed under quasi-CW conditions using pulse widths
> 10 ns (or CW beams).
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Table B.1 Nonlinear-Index Coefficient for Different Fibers

Method λ Fiber Measured n2 Comments
used (µm) type (10�20m2/W)
SPM 1.319 silica core 2.36 110-ps pulses [7]

1.319 DSF 2.62 110-ps pulses [7]
1.548 DSF 2.31 34-ps pulses [8]
1.550 DSF 2.50 5-ps pulses [12]
1.550 standard 2.20 �50-GHz modulation [15]
1.550 DSF 2.32 �50-GHz modulation [15]
1.550 DCF 2.57 �50-GHz modulation [15]

XPM 1.550 silica core 2.48 7.4-MHz modulation [9]
1.550 standard 2.63 7.4-MHz modulation [9]
1.550 DSF 2.98 7.4-MHz modulation [9]
1.550 DCF 3.95 7.4-MHz modulation [9]
1.548 standard 2.73 10-MHz modulation [18]
1.548 standard 2.23 2.3-GHz modulation [18]

FWM 1.555 DSF 2.25 CW lasers [6]
1.553 DSF 2.64 modulation instability [11]

Several different nonlinear effects have been used to measure n2 for sil-
ica fibers; the list includes SPM, cross-phase modulation (XPM), four-wave
mixing (FWM), and modulation instability. The SPM technique makes use
of broadening of the pulse spectrum (see Section 4.1) and was first used in
1978 [3]. The uncertainty in n2 values measured depends on how accurately
one can estimate the effective core area Aeff from the mode-field diameter and
how well one can characterize input pulses. The SPM technique is used ex-
tensively. In one set of measurements, mode-locked pulses of 110-ps duration,
obtained from a Nd:YAG laser operating at 1.319 µm, were used [7]. For
a silica-core fiber (no dopants inside the core), the measured value of n2 was
2:36�10�20 m2/W. The measured n2 values were larger for dispersion-shifted
fibers (DSFs) (average value 2:62� 10�20 m2/W) because of the contribution
of dopants. The measured values of n2 in the 1.55-µm wavelength region
are somewhat smaller. Table B.1 summarizes the results obtained in several
experiments. The uncertainty is estimated to be� 5% for these measurements.

Perhaps the simplest SPM-based technique is the one used in Reference [15].
It makes use of two CW DFB semiconductor lasers whose wavelength differ-
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ence (0.3–0.5 nm) is stabilized by controlling the laser temperature. The op-
tical signal entering the fiber oscillates sinusoidally at the beat frequency (�
50 GHz). The optical spectrum at the fiber output exhibits peaks at multiples of
this beat frequency because of the SPM-induced phase modulation (FM side-
bands). The ratio of the peak heights depends only on the nonlinear phase shift
φ NL given in Eq. (4.1.6) and can be used to deduce n2. For standard telecom-
munication fibers, the measured value was 2:2� 10�20 m2/W. The technique
was used to measure n2 for many DSFs and dispersion-compensating fibers
(DCFs) having different amounts of dopants (see Table B.1). A self-aligned
interferometric technique, allowing a direct measurement of the SPM-induced
phase shift, has also been used [24].

The XPM-induced phase shift was used as early as 1987 to measure n2 [5].
A 1995 experiment used a pump-probe configuration in which both pump and
probe signals were obtained from CW sources [9]. When the pump light was
modulated at a low frequency (< 10 MHz), the probe signal developed FM
sidebands because of the XPM-induced phase modulation (see Section 7.1).
To ensure that the relative polarization between pump and probe varied ran-
domly, pump light was depolarized before entering the fiber. The average val-
ues of n2 for several kinds of fibers are listed in Table B.1. The measured n2
values in this experiment were consistently larger than those obtained using
the SPM-based techniques. The most likely explanation for this discrepancy
is related to the electrostrictive contribution to n2 that occurs for pulse widths
> 1 ns (or modulation frequencies < 1 GHz). The 7.4-MHz modulation fre-
quency used for the pump beam is small enough that the measured values of
n2 include the full electrostrictive contribution. The XPM technique has also
been used to study the frequency dependence of the electrostrictive contribu-
tion by changing the pump-modulation frequency from 10 MHz to > 1 GHz
[17]–[19].

The nonlinear phenomenon of FWM can also be used to estimate n2. As
discussed in Chapter 10, FWM produces sidebands whose amplitude and fre-
quency depend on n2. In one experiment, the CW output of two DFB lasers,
operating near 1.55 µm with a wavelength separation of 0.8 nm, was ampli-
fied by using a fiber amplifier and then injected into 12.5 km of a DSF [6]. The
powers in the FWM sidebands were fitted numerically and used to estimate
a value of n2 = 2:25� 10�20 m2/W for the test fiber. This value agrees with
other measurements if we assume that electrostriction did not contribute to n2.
This is a reasonable assumption if we note that the spectral bandwidth of the
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laser was broadened to > 600 MHz through current modulation to avoid the
onset of stimulated Brillouin scattering inside the test fiber.

The modulation instability can be thought of as a special case of FWM
(see Section 10.3.2). The main difference is that only a single pump beam is
needed at the fiber input. As discussed in Section 5.1, two spectral sidebands
centered at the frequencies ω0�Ω appear at the fiber output, where ω0 is the
pump frequency. The frequency shift Ω as well as the sideband amplitudes
depend among other things on n2 and can be used to deduce it. In a 1995 ex-
periment [11], a DFB laser operating at 1.553 µm was modulated externally
to produce 25 ns pulses at a repetition rate of 4 MHz. Such pulses were am-
plified using two cascaded fiber amplifiers and then launched into a 10.1 km
of DSF. The amplitude of modulation instability sidebands was used to deduce
a value n2 = 2:64� 10�20 m2/W for the test fiber. This value includes the
electrostrictive contribution because of the relatively wide pump pulses used
in the experiment. Indeed, if the 16% electrostrictive contribution is removed
from the measured value, we recover n2 = 2:22� 10�20 m2/W, a value close
to other measurements in which the electrostrictive contribution was absent.

What nominal value of n2 should be used for estimating the nonlinear pa-
rameter γ � 2πn2=(λAeff) used in this book? An appropriate recommendation
is n2 = 2:6�10�20 m2/W for pulse wider than 1 ns and n2 = 2:2�10�20 m2/W
for pulses as short as 1 ps. For femtosecond pulses, the Raman contribution
should be modified as discussed in Section 2.3. The n2 value should be multi-
plied by the factor of 9

8 in experiments that use polarization-maintaining fibers.
Also, the effective core area should be estimated properly for the fiber used in a
specific experiment. This parameter can vary from a value as small as 20 µm2

for some DCFs to values > 100 µm2 for a fiber known as the large-effective-
area fiber (LEAF).

Because of a relatively low value of n2 for silica fibers, several other kinds
of glasses with larger nonlinearities have been used to make optical fibers [25]–
[30]. For a lead-silicate fiber n2 was measured to be� 2�10�19 m2/W [25]. In
chalcogenide As2S3-based fibers, the measured value n2 = 4:2�10�18 m2/W
can be larger by more than two orders of magnitude compared with the value
for silica fibers [26]. Such fibers are attracting increasing attention for appli-
cations related to nonlinear fiber optics in spite of their relatively high losses.
Their use for making fiber gratings and nonlinear switches has reduced power
requirements considerably [27].
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Appendix C

Acronyms

Each scientific field has its own jargon, and the field of nonlinear fiber optics
is not an exception. Although an attempt was made to avoid extensive use of
acronyms, many still appear throughout the book. Each acronym is defined the
first time it appears in a chapter so that the reader does not have to search the
entire text to find its meaning. As a further help, all acronyms are listed here
in alphabetical order.

AM amplitude modulation
ASE amplified spontaneous emission
ASK amplitude-shift keying
BER bit-error rate
CVD chemical vapor deposition
CW continuous wave
DCF dispersion-compensating fiber
DFB distributed feedback
DSF dispersion-shifted fiber
EDFA erbium-doped fiber amplifier
EDFL erbium-doped fiber laser
FDM frequency-division multiplexing
FDTD finite-difference time domain
FFT fast Fourier transform
FM frequency modulation
FROG frequency-resolved optical gating
FWHM full width at half maximum
FWM four-wave mixing
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GVD group-velocity dispersion
LCM liquid-crystal modulator
LEAF large-effective-area fiber
MCVD modified chemical vapor deposition
MI modulation instability
MQW multiquantum well
MZ Mach–Zehnder
NLS nonlinear Schrödinger
NOLM nonlinear optical-loop mirror
NRZ nonreturn to zero
OOK on-off keying
OPC optical phase conjugation
OTDM optical time-division multiplexing
OVD outside-vapor deposition
PCM pulse-code modulation
PDM polarization-division multiplexing
PM phase modulation
PMD polarization-mode dispersion
PSK phase-shift keying
RDF reverse-dispersion fiber
RIN relative intensity noise
RMS root mean square
RZ return to zero
SBS stimulated Brillouin scattering
SCM subcarrier multiplexing
SDH synchronous digital hierarchy
SI Système international d’unités
SLA semiconductor laser amplifier
SNR signal-to-noise ratio
SPM self-phase modulation
SRS stimulated Raman scattering
TDM time-division multiplexing
TOD third-order dispersion
TROG time-resolved optical gating
VAD vapor-axial deposition
VCSEL vertical-cavity surface-emitting laser
VPE vapor-phase epitaxy
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WDM wavelength-division multiplexing
XPM cross-phase modulation
YAG yttrium aluminum garnet
ZDWL zero-dispersion wavelength



Index

absorption coefficient, 33
two-photon, 41

acoustic velocity, 356, 361
acoustic wave, 356, 368, 374, 423, 448

damping time of, 357
guided, 357

adiabatic perturbation theory, 169
Airy function, 77
all-optical sampling, 420
amplified spontaneous emission, 315
amplifier

Brillouin, 363, 380
erbium-doped fiber, 317, 382
parametric, 407, 413, 414, 416
praseodymium-doped, 317
Raman, 312–317, 413
semiconductor laser, 315

amplifier spacing, 172, 174
anisotropic stress, 204
anisotropy

stress-induced, 13
annihilation operator, 422
anti-Stokes band, 344, 366, 392, 402,

407, 410
array waveguide, 425
attenuation constant, 6
autocorrelation, 85
autocorrelation trace, 155, 336

Babinet–Soleil compensator, 215
backward-pumping configuration, 316
Baker–Hausdorff formula, 52
bandwidth

amplifier, 317, 413, 415

Brillouin-gain, 310, 418, 423
pulse, 82, 90
Raman-gain, 300, 312, 319
source, 81
spontaneous noise, 316
Stokes, 302

beat length, 13, 205, 219, 225, 239
effective, 225

Bessel function, 35
modified, 35

birefringence, 13
circular, 228
linear, 204, 213, 224, 417
modal, 204, 212, 218, 408
modulated, 227
nonlinear, 204, 224
pump-induced, 212
random, 246
stress-induced, 411
temperature-induced, 411

boundary condition, 375, 378, 395
Bragg cell, 383
Bragg condition, 144
Bragg diffraction, 145, 356
Bragg grating, 293, 311
Bragg wavelength, 317
Brillouin amplifier, 363, 380
Brillouin gain, 20, 357–359
Brillouin laser, 375–380

Fabry–Perot, 376
pulsed, 377
ring, 375, 378
threshold of, 376
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Brillouin scattering, 19, 391, 451
guided-acoustic-wave, 357, 423
spontaneous, 357, 361, 372
stimulated, 355–383
thermal, 423

Brillouin shift, 356, 357, 361, 372, 380,
383

Brillouin threshold, 360, 364, 365, 370,
372, 376

Čerenkov radiation, 427
chalcogenide glass, 165
chaos, 372

feeback-induced, 373
period-doubling route to, 372
polarization, 227
quasi-periodic route to, 372
SBS-induced, 372

charge-delocalization model, 430
charge-transport model, 430
chemical vapor deposition, 5
chirp, 248

definition of, 68
dispersion-induced, 68, 71
linear, 69
negative, 106
positive, 106
SPM-induced, 99, 106, 157
XPM-induced, 271, 277, 283, 324,

327, 328
chirp parameter, 106, 157
chirped Gaussian pulse, 69
circulator, optical, 378
clock, optical, 419
coherence degradation, 108

SPM-induced, 108
coherence function, 107
coherence length, 397, 402, 404, 433
coherence time, 107
collision length, 178
color center, 429, 431
continuum radiation, 156, 172, 252

conversion efficiency, 365, 390, 419,
428, 430, 432

core diameter, 4, 402, 407
core-cladding index difference, 4, 400
correlation length, 14, 247
coupled-mode equations, 206
couplers, 311
cross-correlation, 85, 129, 330
cross-frequency shift, 286
cross-phase modulation, 18, 203, 260–

293, 402, 410, 449
birefringence induced by, 204
coupling due to, 261
modulation instability by, 228, 265
nondispersive, 210
nonreciprocal nature of, 290
optical switching by, 289
phase shift induced by, 210
pulse compression due to, 286
solitons formed by, 244, 270
spectral changes due to, 275
temporal changes due to, 281
wavelength shift by, 279

crosstalk, 318
Brillouin-induced, 382
FWM-induced, 405
Raman-induced, 318, 319

cut-off wavelength, 36, 37

deamplification, 414, 423
degree of coherence, 106
delta function, 40, 46
demultiplexing, 419
density oscillations, 368
detection

heterodyne, 423
homodyne, 423
phase-sensitive, 423

dielectric constant, 33
nonlinear, 41

directional coupler, 375, 378
dispersion

anomalous, 12, 69, 334
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chromatic, 7
comb-like, 163
fiber, 7
fourth-order, 92, 129, 183, 414,

417
group-velocity, 12, 45, 109, 397,

406
material, 11, 399, 413
modal, 378
normal, 12, 69
polarization-mode, 13, 242, 246
third-order, 10, 49, 76–86, 90, 91,

120, 139, 181, 420
waveguide, 11, 90, 399, 400, 404,

409
dispersion compensation, 88, 420

broadband, 91
third-order, 90

dispersion length, 64, 171, 174, 210,
334

dispersion management, 86–93, 145,
164, 182, 417

dispersion map, 164
dispersion parameter, 11, 305
dispersion relation, 137, 229, 230, 232,

266, 268, 356
dispersion slope, 12, 91
dispersion-compensating fiber, see fiber
dispersion-decreasing fiber, see fiber
distributed amplification, 316, 318
distributed feedback, 365, 417
distributed-amplification scheme, 172
Doppler shift, 356

effective core area, 44, 364, 394, 451
eigenvalue equation, 34, 36, 400
elasto-optic coefficient, 357
electrostriction, 356, 448, 451
ellipse rotation, 223
elliptic function, 432
ellipticity, 219
energy conservation, 391
erbium dopant, 317

erbium-doped fiber amplifiers, 316
error function, 276
Euler–Lagrange equation, 168

Fabry–Perot cavity, 309, 376, 377, 418
far-field pattern, 401
fast axis, 13, 205, 213, 224, 239, 408,

411
feedback, 372

external, 366, 369, 372
fiber-end, 372
optical, 370, 372
reflection, 370

FFT algorithm, 51
fiber

bimodal, 238
birefringent, 264, 397, 408, 417
chalcogenide, 22, 50, 215, 451
characteristics of, 3–17
circularly birefringent, 209
D-shaped, 435
depressed-cladding, 90
dispersion-compensating, 11, 90,

92, 450
dispersion-decreasing, 12, 143, 163,

170, 421
dispersion-flattened, 12, 183, 269,

426
dispersion-shifted, 11, 87, 163, 288,

341, 417, 450
double-clad, 311
elliptical-core, 90
elliptically birefringent, 208
erbium-doped, 317
graded-index, 3
high-birefringence, 205, 231, 240
high-nonlinearity, 417
isotropic, 234, 238
large-effective-area, 451
lead-silicate, 22, 451
linearly birefringent, 208
low-birefringence, 205, 229, 239
low-PMD, 248
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modes of, 34
multimode, 4, 312, 400
multiple-clad, 12
phosphosilicate, 311
photosensitivity in, 429
polarization effects in, 204
polarization-maintaining, 15, 119,

204, 213, 290, 315, 339, 360,
451

preform for, 4, 208
random birefringence in, 246
reduced-slope, 11
reverse-dispersion, 93
spun, 238
step-index, 3
twisted, 208, 227
two-mode, 90

fiber grating, 163
fiber-grating compressor, 331, 333
fiber-loop mirror, 163, 290
finite-difference method, 51, 55
finite-Fourier transform, 51
fixed points, 221, 223, 226, 228
flip-flop circuit, 163
FM sideband, 450
forward-pumping configuration, 316
four-photon laser, 417
four-photon mixing, 392
four-wave mixing, 88, 139, 207, 234,

262, 269, 343, 367, 376, 389–
412, 449

applications of, 418–426
effect of SRS on, 397
multimode fibers for, 400
nearly phase-matched, 404
nondegenerate, 392
origin of, 389
partially degenerate, 391
phase conjugation with, 420
theory of, 392–399
ultrafast, 397
wavelength conversion with, 419

frequency chirp, 99, 154, 157, 248, 322,
327

nonlinear, 277
frequency-resolved optical gating, 85
FROG technique, 85

gain saturation, 313, 362
Gaussian distribution, 38
Gaussian Pulse, see pulse shape
Gordon–Haus effect, 175
grating, 91, 418

array-waveguide, 425
fiber, 311, 317
index, 356
nonlinear, 432

group index, 9
group velocity, 9, 398

intensity-dependent, 124
matching of, 398

group-velocity dispersion, see disper-
sion

group-velocity mismatch, 213, 232, 240,
264, 267, 271, 274, 279, 290,
306, 330, 369, 415

GVD
anomalous, 265, 267, 269, 271,

408, 426
normal, 265, 267, 269, 271, 398,

426
GVD parameter, 12, 45, 89, 263, 422
gyroscope

fiber, 291, 377
laser, 376, 377

Helmholtz equation, 41
heterodyne detection, 358, 422, 424
homodyne detection, 382, 422, 424

dual-frequency, 423

idler wave, 392, 394, 395, 398, 401,
412, 415, 419, 422

incubation period, 429
inelastic scattering, 19
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intensity discriminator, 216
interaction length, 361
Internet, 147
intrapulse Raman scattering, 48, 128
inverse scattering method, 51, 147–149,

159, 185, 245
isolator, 366, 378

Kerr coefficient, 214
Kerr effect, 211
Kerr nonlinearity, 165
Kerr shutter, 211, 215
Kronecker delta function, 205

Lagrangian formalism, 168
Lanczos orthogonalization, 56
Langevin force, 372, 422
lasers

actively mode-locked, 420
argon-ion, 357, 375, 376, 405
color-center, 316, 339, 382, 418
DFB, 365, 380, 417
distributed feedback, 316
dye, 330, 336, 365, 401
external-cavity, 358, 380
four-photon, 417
gain-switched, 341, 425
He–Ne, 376
high-power, 317
Kr-ion, 429
mode-locked, 332, 339, 378, 418
modulation-instability, 418
Nd:YAG, 312, 315, 328, 332, 338,

340, 341, 365, 366, 374, 383,
407, 417, 427

Q-switched, 312, 315, 417, 427
Raman, 309–312, 332
Raman soliton, 339
semiconductor, 315, 316, 341, 358,

365, 380, 382, 417
soliton, 339
synchronously pumped, 341
xenon, 364

LiNbO3 modulator, 163
linear stability analysis, 136, 265, 369,

379
lithographic technique, 435
local oscillator, 382, 423, 424
logic gates, 243
longitudinal modes, 377, 380
Lorentzian spectrum, 357
loss

Brillouin, 383
cavity, 376
fiber, 5, 169, 301, 398
microbending, 37
polarization-dependent, 248
round-trip, 376

lumped-amplification scheme, 172, 173

Mach–Zehnder interferometer, 163, 214,
279

Mach–Zehnder modulator, 163
magnetic dipole, 390, 427
Maxwell’s equations, 31

FDTD method for, 56
mode

fundamental, 37
guided, 34
HE11, 37
hybrid, 36
linearly polarized, 37
LP01, 37
radiation, 34
TE, 36
TM, 36

mode locking
active, 377

modulation instability, 136–146, 228–
238, 338, 408, 412, 418, 449

critical power for, 233
effects of SRS, 329
experiments on, 140, 235, 268
gain spectrum of, 138, 230, 233,

234, 267
induced, 139, 141, 143
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SBS-induced, 371
sidebands of, 451
SPM-induced, 141
spontaneous, 139
vector, 228
XPM-induced, 265–270, 329

modulator
amplitude, 377
LiNbO3, 163
liquid-crystal, 91, 92
Mach–Zehnder, 163
phase, 92, 163

momentum conservation, 391
multiphoton ionization, 430
multiplexing

polarization-division, 252
time-division, 93
wavelength-division, 12, 182, 318

Neumann function, 35
NLS equation, 44, 50, 136

coupled, 263, 397
cubic, 50
generalized, 50
quintic, 50
scattering problem for, 148
standard form of, 148

noise
intensity, 419
quantum, 422
shot, 424

noise figure, 317
nonlinear birefringence, 204, 218

origin of, 204
nonlinear length, 64, 98, 217, 239, 414
nonlinear operator, 51
nonlinear parameter, 44, 305, 394
nonlinear phase shift, 98–100, 210, 232
nonlinear refraction, 17
nonlinear response, 40
nonlinear Schrödinger equation, see NLS

equation
nonlinear-index coefficient, 18, 21, 393

measurement of, 447
nonreciprocity

XPM-induced, 291
NRZ format, 163

on–off ratio, 316
optical bistability, 291, 293
optical switching, 215, 289
optical wave breaking, 283
outside vapor deposition, 5
overlap integral, 263, 393, 394, 431

Padé approximation, 56
parametric amplification, 390, 412–418
parametric amplifier, see amplifier
parametric gain, 395, 396, 398, 412,

415
parametric oscillator, 417

triply resonant, 418
tunable, 418

parametric process
second-order, 389, 427
third-order, 389, 427

paraxial approximation, 393
partially coherent light, 106–108
pedestal, 216
period-doubling bifurcation, 372
permittivity, 390, 447
perturbation methods, 167
phase conjugation, 420

midspan, 422
phase matching

birefringence-induced, 408
condition for, 391, 399, 413, 419,

432
effect of, 396
multimode fibers for, 400
near zero-dispersion wavelength,

406
quasi, 434
requirement for, 391
single-mode fibers for, 404
SPM-induced, 407
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techniques for, 399–412
phase mismatch, 391, 395, 413
phase modulation, 373
phase shift

rotation-induced, 292
XPM-induced, 290, 450

phase-matching condition, 145, 207, 234,
262, 269, 343, 391, 413

phase-space trajectories, 220
phonon lifetime, 357, 359, 367, 374
photodetector, 85
photosensitivity, 429
photovoltaic effect, 430
pitchfork bifurcation, 221
planar lightwave circuit, 91
PMD, 13, 246

compensation of, 248
effect on solitons, 248
first-order, 247
pulse broadening induced by, 247
second-order, 248

PMD parameter, 15, 248, 252
Poincaré sphere, 221, 222, 224, 226,

250
polarization

nonlinear, 390
polarization chaos, 227
polarization ellipse, 206, 219, 223
polarization evolution, 221
polarization instability, 224–228, 239

effect on solitons, 239
observation of, 226
origin of, 225

polarization-division multiplexing, 252
polarization-mode dispersion, see dis-

persion
preform, 4, 208

rocking of, 227
spinning of, 234

principal states of polarization, 247
propagation constant, 9, 35
pseudorandom bit pattern, 373, 419

pseudospectral method, 51
pulse broadening, 66, 82

PMD-induced, 247
pulse compression, 286

soliton effect, 341
XPM-induced, 342

pulse shape
arbitrary, 82
chirped, 104
Gaussian, 67, 104, 123, 157, 282
hyperbolic secant, 71, 151, 157
super-Gaussian, 72, 104, 157

pump depletion, 301, 303, 313, 326,
362, 365, 395, 414, 432

pump-probe configuration, 277, 279,
450

Q-switching, 417
quadrupole moment, 390, 427
quantum-interference effect, 430
quarter-wave plate, 213
quasi-CW condition, 392, 397, 433
quasi-CW regime, 306
quasi-monochromaticapproximation, 40,

261
quasi-periodic route, 372
quasi-phase matching, 434

Raman amplification, 173, 402
Raman amplifier, 312–318
Raman effect, 40, 186, 298
Raman gain, 20, 48, 299, 396, 402,

410
coefficient of, 299
spectrum of, 299, 341

Raman laser, 309–312, 339
synchronously pumped, 332

Raman response, 48, 186
delayed, 49

Raman scattering, 19, 172, 391
intrapulse, 45, 49, 139, 164, 180,

186–190, 285, 335, 422
spontaneous, 298–300, 315
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stimulated, 108, 186, 298–309, 403
Raman soliton, see solitons
Raman threshold, 301, 303, 397, 407
random process

Gaussian, 107
stationary, 107

Rayleigh scattering, 6, 7, 367
receiver sensitivity, 382
refractive index, 33

nonlinear, 261, 447
relaxation oscillations, 240, 364, 368,

370, 378
response function

nonlinear, 46
ring resonator, 376
rise time, 73

saddle point, 221
Sagnac effect, 292
Sagnac interferometer, 290, 418, 423
sampling oscilloscope, 331
saturation parameter, 50
SBS, 355–383

applications of, 380
cascaded, 376, 377
dynamics of, 367–375
experiments on, 364
gain spectrum of, 357–359
quasi-CW, 359–367
suppression of, 361
threshold of, 360, 365, 373
transient regime of, 373

scattering data, 147, 149
Schrödinger equation, 82

nonlinear, see NLS equation
sech pulse, see pulse shape
second-harmonic generation, 85, 390,

427–436
seeding process, 429
selection rule, 357
self-frequency shift, 45, 49, 186, 285,

286, 341

self-phase modulation, 18, 97–129, 182,
402, 407, 410, 449

self-pulsing, 379
self-steepening, 47, 49, 123–128, 139,

183–185
Sellmeier equation, 8
sensor

fiber, 383
strain, 383
temperature, 383

seperatrix, 221
shock formation, 47, 49
shock, optical, 124

effect of dispersion on, 126
signal-to-noise ratio, 175, 315
slow axis, 14, 205, 213, 224, 239, 408,

411
slowly varying envelope approximation,

40
solitary waves, 146
soliton dragging, 243
soliton period, 153, 334, 336
soliton trapping, 242, 244, 273
solitons

amplification of, 171–175
bistable, 165–166
black, 160, 161
bright, 159, 398
Brillouin, 375, 379
collision of, 177, 178, 422
dark, 159–164, 271
decay of, 187
dispersion-managed, 164
dissipative, 398
effect of birefringence, 242
effect of chirp, 157
effect of PMD, 248
effect of polarization instability,

239
effect of third-order dispersion, 181
experimental observation of, 154
frequency shift of, 341
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fundamental, 149–152, 155, 239,
341

FWM, 398
gray, 160, 161
guiding-center, 174
higher-order, 152–154, 156, 170,

240, 334, 426
history of, 146
impact of losses, 169
interaction of, 176–180
pairing of, 398
parametric, 398
peak power for, 151
period of, 153
perturbation methods for, 167
perturbation of, 166
Raman, 334, 337, 338
second-order, 153, 185, 335
self-frequency shift of, 186
stability of, 156
symbiotic, 270, 398
third-order, 153, 185, 334
vector, 244
XPM-paired, 270

spectral asymmetry, 276
spectral broadening, 97–106

asymmetric, 125, 276, 282
SPM-induced, 125, 182, 433
XPM-induced, 276, 279

spectral filtering, 163, 331
split-step Fourier method, 51

symmetrized, 53
spontaneous emission, 81, 175, 423
squeezing, 422

four-mode, 423
photon-number, 424
quadrature, 423

SRS, 298–345
cascade, 307
cascaded, 317
effect of four-wave mixing, 343
equations for, 304

fluctuations in, 309, 323
intrapulse, 335
quasi-CW, 306
single-pass, 306
soliton effects on, 333
threshold for, 300
threshold of, 329
ultrafast, 320–331

steepest descent method, 302
stimulated Brillouin scattering, see Bril-

louin scattering
stimulated Raman scattering, see Ra-

man scattering
Stokes band, 299, 356, 366, 392, 397,

402, 407, 410
Stokes parameters, 222, 250
Stokes shift, 20, 300
Stokes vector, 222, 224, 250
Stokes wave

higher-order, 376
streak camera, 85, 270
stress-induced anisotropy, 13
super-Gaussian pulse, 72
supercontinuum, 101, 129, 403, 424
susceptibility

linear, 17
nonlinear, 389
second-order, 17, 389, 427
third-order, 17, 205, 262, 299, 389

synchronous pumping, 310, 332, 378

temporal coherence, 106
thermal poling, 435
thermal source, 107
third-harmonic generation, 85, 390, 391,

427
third-order dispersion, see dispersion
three-wave mixing, 392
threshold condition, 375
time-dispersion technique, 310, 333, 339
time-division multiplexing, 93, 419
time-resolved optical gating, 86
timing jitter, 164, 175, 252, 340, 422



466 Index

TOD parameter, 120
total internal reflection, 1
trapezoidal rule, 53
TROG technique, 86
two-photon absorption, 41, 85

undepleted-pump approximation, 394

V parameter, 4, 36, 90
vapor-phase axial deposition, 5
variational method, 168

walk-off length, 13, 210, 264, 277, 306,
321, 324, 326

walk-off parameter, 12
wave equation, 34

wave of translation, 146
wave-vector mismatch, 396, 397, 404,

409, 413, 431
wavelength conversion, 419
wavelength-division multiplexing, see

multiplexing
wavelength-selective feedback, 309
WDM, 12
WDM systems, 88, 89, 317, 318

crosstalk in, 405
Wiener–Khintchine theorem, 107

zero-dispersion wavelength, 10–12, 76,
87, 88, 181, 182, 214, 288,
337, 339, 398, 400, 404, 406,
414, 416, 421, 422
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