
Module 5 : Pulse propagation through third order nonlinear optical medium

Lecture 34 : Propagation in fibers

    Objectives

   In this lecture we will discuss

1. Dispersion of refractive index and its effects on the pulse propagation.
2. Wave equation to describe pulse propagation in linear regime and
3. Propagation of a pulse in dispersion(higher order) free medium.

 

Propagation in fibers

Propagation of optical radiation through any medium is governed by the refractive index of the medium. 
We have already seen that the refractive index depends on the extent of detuning of the frequency ω of
the optical radiation and the internal resonance, of the medium. This is called chromatic dispersion. Far
away from the internal resonance of the medium, the refractive index is approximated by Sellmeir
equation

 (34.1)

where  is the resonant frequency and  is the strength of the jth resonance.

Dispersion plays an important role in the propagation of optical pulses. It leads to the broadening of
pulses and in combination with the nonlinearity it can lead to the soliton propagation as we will see in
the lectures to follow. All these have important implications for fiber optic communication systems as
the pulses travel long distances in optical fibers.

Effect of dispersion on the propagation of an optical pulse can be accounted by expanding the

propagation constant  of the mode in a Taylor series around the central frequency 

of the pulse.

 

(34.2)

Where

(34.3)

and

 

The first term in the equation (34.2) leads to the addition of the phase shift upon propagation. The
second term simply leads to the temporal  delay of the pulse envelop as a whole  upon propagation. The
pulse envelope moves at the group velocity  defined as

(34.4)

Where

 

(34.5)

 is called the group index.

 

As a result of the chromatic dispersion, pulses of different wavelength  will propagate with different
speeds  due to their group velocity mismatch  when two or more pulses of different wavelengths
propagate in a fibers, it results in-their  temporal separation  as shown in figure 34.1.



Figure 34.1 Two pulses of wavelengths ,and as at the input end of the fiber (time t=0) -left
panel and temporally separated pulses after propagation for time t-right panel

The walk off parameter d is defined as

 

(34.6)

For a given pulse duration the walk-off length  is given by

(34.7)

 

Example: Two pulses of 100 ps each having their central wavelength  λ1 = 1.06 μm and λ2 =1.127
μm  propagating in a fiber with walk-off parameter d = 1.67 ps/m  will completely separate in time 
after traversing its walk of length Lw=60 m.

The parameter β2 appearing in  the third term of equation (34.2)  is called the group velocity dispersion 
parameter

 

(34.8)

It leads to the pulse broadening.

 

(34.9)

Alternatively, one can write

(34.10)

If  -zero dispersion wavelength then . It is called the normally dispersive behavior.

In this case, since  the red wavelengths travel faster  than blue ones.

On the  other hand if  ,  and it is the negatively  or anomalously dispersive regime.  and 
 in this regime. Consequently, blue travels faster than the red wavelengths.

 

In fiber optics, one uses the dispersion parameter D instead  of β2. It is defined as

  (34.11)

 and is commonly expressed in the units of ps/km.nm.

In addition to the wavelength dependence of β arising from the material chromatic dispersion, it also



depends upon the ratio of fiber core diameter and wavelength as well as on refractive index difference
between core and cladding.

This dependence of mode propagation properties on fiber design parameters is termed as wave guide
dispersion and must be added to the material chromatic dispersion to get the total chromatic dispersion.
Its effect is small except near the zero dispersion wavelength and can be used to shift the dispersion
wavelength of the fiber by appropriate choice of fiber design parameters. Wavelength dispersion of
refractive index and group index is shown in figure 34.3a. Figure 34.3b shows the group velocity
dispersion of the silica fiber.

 

Pulse propagation in optical fibers in linear regime:

Propagation in the fiber is governed by the wave equation

(34.12)

Figure 34.3a

For the monochromatic waves, it admits solutions of the form

(34.13)

Figure 34.3b

Where F(x,y), gives mode dependence on transverse dimensions.  The mode distribution F(x,y) is  a
solution of



(34.14)

Where is transverse Laplacian  

A pulse is effectively a superposition of monochromatic waves of different frequencies Mathematically it
can be described as

(34.15)

 

We will assume that the optical pulse has narrow spectral width compared to its central frequency, ω0
i.e.

 

so that we can ignore the weak frequency dependence of F(x,y,ω).

Thereby

(34.16)

Alternatively, we can write the expression for the pulse as

 

Where  and

(34.17)

describes the pulse envelop.

Pulse envelop varies slowly in time as compared to the rapidly varying carrier wave as shown in figure
34.2. The former moves with group velocity vg and the later with the phase velocity vp.

Figure 34.2

Propagation constant β is frequency dependent. Its frequency dependence leads to

chromatic dispersion



Wave guide dispersion

 

Frequency dependence of β near central frequency ω0 can be expressed using Taylor series as

 

(34.18)

Where

 

and   

Hence

(34.19)

Note: higher order dispersion terms have been neglected.

Recall that  

and  is group velocity dispersion coefficient. By substitution  it can be shown that the pulse envelop is
solution of

(34.20)

This is the wave equation for the optical pulse envelop in a dispersion free medium. In the absence of
dispersion.

  and  

 

The solution of the wave equation comprises of the general form

(34.21)

Thus in the absence of dispersion, pulses of arbitrary shape travel without distortion through the fiber.

Proof:

Let us consider the optical pulse at the input end of medium

(34.22)

f(t) is related to its counterpart, F(w) in the frequency domain as

(34.23)

 After traveling a distance z

(34.24)

Where

(34.25)

Put   and  --for a linear  system

 



Or  

 

 

(34.26)

Therefore

(34.27)

 (Hence proves)

 

Recap:

In this lecture we have discussed the following

1. Dispersion of refractive index and its effects on the pulse propagation.
2. Wave equation to describe pulse propagation in linear regime and
3. Propagation of a pulse in dispersion(higher order) free medium.
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