Introduction to Distributed
Systems

Computer systems are undergoing a revolution. From 1945, when the
modern computer era began, until about 1985, computers were large and expen-
sive. Even minicomputers normally cost tens of thousands of dollars each. As a
result, most organizations had only a handful of computers, and for lack of a
way to connect them, these operated independently from one another.

Starting in the mid-1980s, however, two advances in technology began to
change that situation. The first was the development of powerful microproces-
sors. Initially, these were 8-bit machines, but soon 16-, 32-, and even 64-bit
CPUs became common. Many of these had the computing power of a decent-
sized mainframe (i.e., large) computer, but for a fraction of the price.

The amount of improvement that has occurred in computer technology in the
past half century is truly staggering and totally unprecedented in other indus-
tries. From a machine that cost 10 million dollars and executed 1 instruction per
second, we have come to machines that cost 1000 dollars and execute 10 million
instructions per second, a price/performance gain of 10'!. If cars had improved
at this rate in the same time period, a Rolls Royce would now cost 10 dollars
and get a billion miles per gallon. (Unfortunately, it would probably also have a
200-page manual telling how to open the door.)

The second development was the invention of high-speed computer net-
works. The local area networks or LANs allow dozens, or even hundreds, of
machines within a building to be connected in such a way that small amounts of

1

2 INTRODUCTION TO DISTRIBUTED SYSTEMS CHAP. 1

information can be transferred between machines in a millisecond or so. Larger
amounts of data can be moved between machines at rates of 10 to 100 million
bits/sec and sometimes more. The wide area networks or WANs allow mil-
lions of machines all over the earth to be connected at speeds varying from 64
Kbps (kilobits per second) to gigabits per second for some advanced experimen-
tal networks.

The result of these technologies is that it is now not only feasible, but easy,
to put together computing systems composed of large numbers of CPUs con-
nected by a high-speed network. They are usually called distributed systems,
in contrast to the previous centralized systems (or single-processor systems)
consisting of a single CPU, its memory, peripherals, and some terminals.

There is only one fly in the ointment: software. Distributed systems need
radically different software than centralized systems do. In particular, the
necessary operating systems are only beginning to emerge. The first few steps
have been taken, but there is still a long way to go. Nevertheless, enough is
already known about these distributed operating systems that we can present the
basic ideas. The rest of this book is devoted to studying concepts, implementa-
tion, and examples of distributed operating systems.

1.1. WHAT IS A DISTRIBUTED SYSTEM?

Various definitions of distributed systems have been given in the literature,
none of them satisfactory and none of them in agreement with any of the others.
For our purposes it is sufficient to give a loose characterization:

A distributed system is a collection of independent computers
that appear to the users of the system as a single computer.

This definition has two aspects. The first one deals with hardware: the machines
are autonomous. The second one deals with software: the users think of the sys-
tem as a single computer. Both are essential. We will come back to these points
later in this chapter, after going over some background material on both the
hardware and the software.

Rather than going further with definitions, it is probably more helpful to
give several examples of distributed systems. As a first example, consider a net-
work of workstations in a university or company department. In addition to each
user’s personal workstation, there might be a pool of processors in the machine
room that are not assigned to specific users but are allocated dynamically as
needed. Such a system might have a single file system, with all files accessible
from all machines in the same way and using the same path name. Furthermore,
when a user typed a command, the system could look for the best place to exe-
cute that command, possibly on the user’s own workstation, possibly on an idle

SEC. 1.1 WHAT IS A DISTRIBUTED SYSTEM? 3

workstation belonging to someone else, and possibly on one of the unassigned
processors in the machine room. If the system as a whole looked and acted like
a classical single-processor timesharing system, it would qualify as a distributed
system.

As a second example, consider a factory full of robots, each containing a
powerful computer for handling vision, planning, communication, and other
tasks. When a robot on the assembly line notices that a part it is supposed to
install is defective, it asks another robot in the parts department to bring it a
replacement. If all the robots act like peripheral devices attached to the same
central computer and the system can be programmed that way, it too counts as a
distributed system.

As a final example, think about a large bank with hundreds of branch offices
all over the world. Each office has a master computer to store local accounts
and handle local transactions. In addition, each computer has the ability to talk
to all other branch computers and with a central computer at headquarters. If
transactions can be done without regard to where a customer or account is, and
the users do not notice any difference between this system and the old central-
ized mainframe that it replaced, it too would be considered a distributed system.

1.2. GOALS

Just because it is possible to build distributed systems does not necessarily
mean that it is a good idea. After all, with current technology it is possible to
put four floppy disk drives on a personal computer. It is just that doing so would
be pointless. In this section we will discuss the motivation and goals of typical
distributed systems and look at their advantages and disadvantages compared to
traditional centralized systems.

1.2.1. Advantages of Distributed Systems over Centralized Systems

The real driving force behind the trend toward decentralization is econom-
ics. A quarter of a century ago, computer pundit and gadfly Herb Grosch stated
what later came to be known as Grosch’s law: The computing power of a CPU
is proportional to the square of its price. By paying twice as much, you could
get four times the performance. This observation fit the mainframe technology
of its time quite well, and led most organizations to buy the largest single
machine they could afford.

With microprocessor technology, Grosch’s law no longer holds. For a few
hundred dollars you can get a CPU chip that can execute more instructions per
second than one of the largest 1980s mainframes. If you are willing to pay twice
as much, you get the same CPU, but running at a somewhat higher clock speed.

4 INTRODUCTION TO DISTRIBUTED SYSTEMS CHAP. 1

As a result, the most cost-effective solution is frequently to harness a large
number of cheap CPUs together in a system. Thus the leading reason for the
trend toward distributed systems is that these systems potentially have a much
better price/performance ratio than a single large centralized system would have.
In effect, a distributed system gives more bang for the buck.

A slight variation on this theme is the observation that a collection of
microprocessors cannot only give a better price/performance ratio than a single
mainframe, but may yield an absolute performance that no mainframe can
achieve at any price. For example, with current technology it is possible to build
a system from 10,000 modermn CPU chips, each of which runs at 50 MIPS (Mil-
lions of Instructions Per Second), for a total performance of 500,000 MIPS. For
a single processor (i.e., CPU) to achieve this, it would have to execute an
instruction in 0.002 nsec (2 picosec). No existing machine even comes close to
this, and both theoretical and engineering considerations make it unlikely that
any machine ever will. Theoretically, Einstein’s theory of relativity dictates that
nothing can travel faster than light, which can cover only 0.6 mm in 2 picosec.
Practically, a computer of that speed fully contained in a 0.6-mm cube would
generate so much heat that it would melt instantly. Thus whether the goal is
normal performance at low cost or extremely high performance at greater cost,
distributed systems have much to offer.

As an aside, some authors make a distinction between distributed systems,
which are designed to allow many users to work together, and parallel systems,
whose only goal is to achieve maximum speedup on a single problem, as our
500,000-MIPS machine might. We believe that this distinction is difficult to
maintain because the design spectrum is really a continuum. We prefer to use
the term “distributed system” in the broadest sense to denote any system in
which multiple interconnected CPUs work together.

A next reason for building a distributed system is that some applications are
inherently distributed. A supermarket chain might have many stores, each of
which gets goods delivered locally (possibly from local farms), makes local
sales, and makes local decisions about which vegetables are so old or rotten that
they must be thrown out. It therefore makes sense to keep track of inventory at
each store on a local computer rather than centrally at corporate headquarters.
After all, most queries and updates will be done locally. Nevertheless, from
time to time, top management may want to find out how many rutabagas it
currently owns. One way to accomplish this goal is to make the complete sys-
tem look like a single computer to the application programs, but implement
decentrally, with one computer per store as we have described. This would then
be a commercial distributed system.

Another inherently distributed system is what is often called computer-
supported cooperative work, in which a group of people, located far from each
other, are working together, for example, to produce a joint report. Given the

SEC. 1.2 GOALS 5

long term trends in the computer industry, one can easily imagine a whole new
area, computer-supported cooperative games, in which players at different
locations play against each other in real time. One can imagine electronic hide-
and-seek in a big multidimensional maze, and even electronic dogfights with
each player using a local flight simulator to try to shoot down the other players,
with each player’s screen showing the view out of the player’s plane, including
other planes that fly within visual range.

Another potential advantage of a distributed system over a centralized sys-
tem is higher reliability. By distributing the workload over many machines, a
single chip failure will bring down at most one machine, leaving the rest intact.
Ideally, if 5 percent of the machines are down at any moment, the system should
be able to continue to work with a 5 percent loss in performance. For critical
applications, such as control of nuclear reactors or aircraft, using a distributed
system to achieve high reliability may be the dominant consideration.

Finally, incremental growth is also potentially a big plus. Often, a company
will buy a mainframe with the intention of doing all its work on it. If the com-
pany prospers and the workload grows, at a certain point the mainframe will no
longer be adequate. The only solutions are either to replace the mainframe with
a larger one (if it exists) or to add a second mainframe. Both of these can wreak
major havoc on the company’s operations. In contrast, with a distributed sys-
tem, it may be possible simply to add more processors to the system, thus allow-
ing it to expand gradually as the need arises. These advantages are summarized
in Fig. 1-1.

Item Description

Microprocessors offer a better price/performance

Economics .
than mainframes

A distributed system may have more total computing power

Speed A
P than a mainframe

Inherent distribution | Some applications involve spatially separated machines

If one machine crashes, the system as a whole can

Reliability still survive

Incremental growth Computing power can be added in small increments

Fig. 1-1. Advantages of distributed systems over centralized systems.

In the long term, the main driving force will be the existence of large
numbers of personal computers and the need for people to work together and
share information in a convenient way without being bothered by geography or
the physical distribution of people, data, and machines.

6 INTRODUCTION TO DISTRIBUTED SYSTEMS CHAP. 1
1.2.2. Advantages of Distributed Systems over Independent PCs

Given that microprocessors are a cost-effective way to do business, why not
just give everyone hist own PC and let people work independently? For one
thing, many users need to share data. For example, airline reservation clerks
need access to the master data base of flights and existing reservations. Giving
each clerk his own private copy of the entire data base would not work, since
nobody would know which seats the other clerks had already sold. Shared data
are absolutely essential to this and many other applications, so the machines
must be interconnected. Interconnecting the machines leads to a distributed sys-
tem.

Sharing often involves more than just data. Expensive peripherals, such as
color laser printers, phototypesetters, and massive archival storage devices (e.g.,
optical jukeboxes), are also candidates.

A third reason to connect a group of isolated computers into a distributed
system is to achieve enhanced person-to-person communication. For many peo-
ple, electronic mail has numerous attractions over paper mail, telephone, and
FAX. It is much faster than paper mail, does not require both parties to be avail-
able at the same time as does the telephone, and unlike FAX, produces docu-
ments that can be edited, rearranged, stored in the computer, and manipulated
with text processing programs.

Finally, a distributed system is potentially more flexible than giving each
user an isolated personal computer. Although one model is to give each person
a personal computer and connect them all with a LAN, this is not the only possi-
bility. Another one is to have a mixture of personal and shared computers,
perhaps of different sizes, and let jobs run on the most appropriate one, rather
than always on the owner’s machine. In this way, the workload can be spread
over the computers more effectively, and the loss of a few machines may be
compensated for by letting people run their jobs elsewhere. Figure 1-2 summar-
izes these points.

1.2.3. Disadvantages of Distributed Systems

Although distributed systems have their strengths, they also have their
weaknesses. In this section, we will point out a few of them. We have already
hinted at the worst problem: software. With the current state-of-the-art, we do
not have much experience in designing, implementing, and using distributed
software. What kinds of operating systems, programming languages, and appli-
cations are appropriate for these systems? How much should the users know

T Please read “his” as “his or hers” throughout this book.

SEC. 1.2 GOALS 7

Item Description

Data sharing Allow many users access to a common data base

Allow many users to share expensive peripherals like color

Device sharing .
printers

Make human-to-human communication easier, for example,

ommunication . .
¢ by electronic mail

Spread the workload over the available machines in the most

Flexibility cost effective way

Fig. 1-2. Advantages of distributed systems over isolated (personal) computers.

about the distribution? How much should the system do and how much should
the users do? The experts differ (not that this is unusual with experts, but when
it comes to distributed systems, they are barely on speaking terms). As more
research is done, this problem will diminish, but for the moment it should not be
underestimated.

A second potential problem is due to the communication network. It can
lose messages, which requires special software to be able to recover, and it can
become overloaded. When the network saturates, it must either be replaced or a
second one must be added. In both cases, some portion of one or more buildings
may have to be rewired at great expense, or network interface boards may have
to be replaced (e.g., by fiber optics). Once the system comes to depend on the
network, its loss or saturation can negate most of the advantages the distributed
system was built to achieve.

Finally, the easy sharing of data, which we described above as an advantage,
may turn out to be a two-edged sword. If people can conveniently access data
all over the system, they may equally be able to conveniently access data that
they have no business looking at. In other words, security is often a problem.
For data that must be kept secret at all costs, it is often preferable to have a dedi-
cated, isolated personal computer that has no network connections to any other
machines, and is kept in a locked room with a secure safe in which all the floppy
disks are stored. The disadvantages of distributed systems are summarized in
Fig. 1-3.

Despite these potential problems, many people feel that the advantages
outweigh the disadvantages, and it is expected that distributed systems will
become increasingly important in the coming years. In fact, it is likely that
within a few years, most organizations will connect most of their computers into
large distributed systems to provide better, cheaper, and more convenient service
for the users. An isolated computer in a medium-sized or large business or other
organization will probably not even exist in ten years.

8 INTRODUCTION TO DISTRIBUTED SYSTEMS CHAP. 1

Item Description
Software Little software exists at present for distributed systems
Networking The network can saturate or cause other problems
Security. Easy access also applies to secret data

Fig. 1-3. Disadvantages of distributed systems.

1.3. HARDWARE CONCEPTS

Even though all distributed systems consist of multiple CPUs, there are
several different ways the hardware can be organized, especially in terms of how
they are interconnected and how they communicate. In this section we will take
a brief look at distributed system hardware, in particular, how the machines are
connected together. In the next section we will examine some of the software
issues related to distributed systems.

Various classification schemes for multiple CPU computer systems have
been proposed over the years, but none of them have really caught on and been
widely adopted. Probably the most frequently cited taxonomy is Flynn’s (1972),
although it is fairly rudimentary. Flynn picked two characteristics that he con-
sidered essential: the number of instruction streams and the number of data
streams. A computer with a single instruction stream and a single data stream is
called SISD. All traditional uniprocessor computers (i.e., those having only one
CPU) fall in this category, from personal computers to large mainframes.

The next category is SIMD, single instruction stream, multiple data stream.
This type refers to array processors with one instruction unit that fetches an
instruction, and then commands many data units to carry it out in parallel, each
with its own data. These machines are useful for computations that repeat the
same calculation on many sets of data, for example, adding up all the elements
of 64 independent vectors. Some supercomputers are SIMD.

The next category is MISD, multiple instruction stream, single data stream.
No known computers fit this model. Finally, comes MIMD, which essentially
means a group of independent computers, each with its own program counter,
program, and data. All distributed systems are MIMD, so this classification sys-
tem is not tremendously useful for our purposes.

Although Flynn stopped here, we will go further. In Fig. 1-4, we divide all
MIMD computers into two groups: those that have shared memory, usually
called multiprocessors, and those that do not, sometimes called multicomput-
ers. The essential difference is this: in a multiprocessor, there is a single virtual

SEC. 1.3 HARDWARE CONCEPTS 9

address space that is shared by all CPUs. If any CPU writes, for example, the
value 44 to address 1000, any other CPU subsequently reading from its address
1000 will get the value 44. All the machines share the same memory.

MIMD

Parallel and
distributed
computers

Tightly
coupled

Loosely
coupled

Multiprocessors Multicomputers
(shared memory) (private memory)
Bus Switched Bus Switched
Sequent, Ultracomputer, Workstations Hypercube,
Encore RP3 ona LAN Transputer

Fig. 1-4. A taxonomy of parallel and distributed computer systems.

In contrast, in a multicomputer, every machine has its own private memory.
If one CPU writes the value 44 to address 1000, when another CPU reads
address 1000 it will get whatever value was there before. The write of 44 does
not affect its memory at all. A common example of a multicomputer is a collec-
tion of personal computers connected by a network.

Each of these categories can be further divided based on the architecture of
the interconnection network. In Fig. 1-4 we describe these two categories as
bus and switched. By bus we mean that there is a single network, backplane,
bus, cable, or other medium that connects all the machines. Cable television
uses a scheme like this: the cable company runs a wire down the street, and all
the subscribers have taps running to it from their television sets.

Switched systems do not have a single backbone like cable television.
Instead, there are individual wires from machine to machine, with many dif-
ferent wiring patterns in use. Messages move along the wires, with an explicit
switching decision made at each step to route the message along one of the out-
going wires. The worldwide public telephone system is organized in this way.

Another dimension to our taxonomy is that in some systems the machines
are tightly coupled and in others they are loosely coupled. In a tightly-coupled

10 INTRODUCTION TO DISTRIBUTED SYSTEMS CHAP. 1

system, the delay experienced when a message is sent from one computer to
another is short, and the data rate is high; that is, the number of bits per second
that can be transferred is large. In a loosely-coupled system, the opposite is
true: the intermachine message delay is large and the data rate is low. For
example, two CPU chips on the same printed circuit board and connected by
wires etched onto the board are likely to be tightly coupled, whereas two com-
puters connected by a 2400 bit/sec modem over the telephone system are certain
to be loosely coupled.

Tightly-coupled systems tend to be used more as parallel systems (working
on a single problem) and loosely-coupled ones tend to be used as distributed sys-
tems (working on many unrelated problems), although this is not always true.
One famous counterexample is a project in which hundreds of computers all
over the world worked together trying to factor a huge number (about 100
digits). Each computer was assigned a different range of divisors to try, and
they all worked on the problem in their spare time, reporting the results back by
electronic mail when they finished.

On the whole, multiprocessors tend to be more tightly coupled than multi-
computers, because they can exchange data at memory speeds, but some fiber-
optic based multicomputers can also work at memory speeds. Despite the
vagueness of the terms “tightly coupled™ and “loosely coupled,” they are useful
concepts, just as saying ‘“‘Jack is fat and Jill is thin” conveys information about
girth even though one can get into a fair amount of discussion about the con-
cepts of “fatness’” and “thinness.”’

In the following four sections, we will look at the four categories of Fig. 1-4
in more detail, namely bus multiprocessors, switched multiprocessors, bus
multicomputers, and switched multicomputers. Although these topics are not
directly related to our main concern, distributed operating systems, they will
shed some light on the subject because as we shall see, different categories of
machines use different kinds of operating systems.

1.3.1. Bus-Based Multiprocessors

Bus-based multiprocessors consist of some number of CPUs all connected to
a common bus, along with a memory module. A simple configuration is to have
a high-speed backplane or motherboard into which CPU and memory cards can
be inserted. A typical bus has 32 or 64 address lines, 32 or 64 data lines, and
perhaps 32 or more control lines, all of which operate in parallel. To read a
word of memory, a CPU puts the address of the word it wants on the bus address
lines, then puts a signal on the appropriate control lines to indicate that it wants
to read. The memory responds by putting the value of the word on the data lines
to allow the requesting CPU to read it in. Writes work in a similar way.

Since there is only one memory, if CPU A writes a word to memory and

SEC. 1.3 HARDWARE CONCEPTS 11

then CPU B reads that word back a microsecond later, B will get the value just
written. A memory that has this property is said to be coherent. Coherence
plays an important role in distributed operating systems in a variety of ways that
we will study later.

The problem with this scheme is that with as few as 4 or 5 CPUs, the bus
will usually be overloaded and performance will drop drastically. The solution
is to add a high-speed cache memory between the CPU and the bus, as shown
in Fig. 1-5. The cache holds the most recently accessed words. All memory
requests go through the cache. If the word requested is in the cache, the cache
itself responds to the CPU, and no bus request is made. If the cache is large
enough, the probability of success, called the hit rate, will be high, and the
amount of bus traffic per CPU will drop dramatically, allowing many more
CPUs in the system. Cache sizes of 64K to 1M are common, which often gives
a hit rate of 90 percent or more.

CPU CPU CPU Memory

] Cache I Cachel | Cache

Bus
Fig. 1-5. A bus-based multiprocessor.

However, the introduction of caches also brings a serious problem with it.
Suppose that two CPUs, A and B, each read the same word into their respective
caches. Then A overwrites the word. When B next reads that word, it gets the
old value from its cache, not the value A just wrote. The memory is now
incoherent, and the system is difficult to program.

Many researchers have studied this problem, and various solutions are
known. Below we will sketch one of them. Suppose that the cache memories
are designed so that whenever a word is written to the cache, it is written
through to memory as well. Such a cache is, not surprisingly, called a write-
through cache. In this design, cache hits for reads do not cause bus traffic, but
cache misses for reads, and all writes, hits and misses, cause bus traffic.

In addition, all caches constantly monitor the bus. Whenever a cache sees a
write occurring to a memory address present in its cache, it either removes that
entry from its cache, or updates the cache entry with the new value. Such a
cache is called a snoopy cache (or sometimes, a snooping cache) because it is
always “‘snooping” (eavesdropping) on the bus. A design consisting of snoopy
write-through caches is coherent and is invisible to the programmer. Nearly all
bus-based multiprocessors use either this architecture or one closely related to it.

12 INTRODUCTION TO DISTRIBUTED SYSTEMS CHAP. 1

Using it, it is possible to put about 32 or possibly 64 CPUs on a single bus. For
more about bus-bascd multiprocessors, see Lilja (1993).

1.3.2. Switched Multiprocessors

To build a multiprocessor with more than 64 processors, a different method
is needed to connect the CPUs with the memory. One possibility is to divide the
memory up into modules and connect them to the CPUs with a crossbar switch,
as shown in Fig. 1-6(a). Each CPU and each memory has a connection coming
out of it, as shown. At every intersection is a tiny electronic crosspoint switch
that can be opened and closed in hardware. When a CPU wants to access a par-
ticular memory, the crosspoint switch connecting them is closed momentarily, to
allow the access to take place. The virtue of the crossbar switch is that many
CPUs can be accessing memory at the same time, although if two CPUs try to
access the same memory simultaneously, one of them will have to wait.

Memories

CPUs Memories

CPUs

Crosspoint switch 2 X 2 switch
(a) (b}

Fig. 1-6. (a) A crossbar switch. (b) An omega switching network.

The downside of the crossbar switch is that with » CPUs and » memories,
n? crosspoint switches are needed. For large n, this number can be prohibitive.
As a result, people have looked for, and found, alternative switching networks
that require fewer switches. The omega network of Fig. 1-6(b) is one example.
This network contains four 2 x 2 switches, each having two inputs and two out-
puts. Each switch can route either input to either output. A careful look at the
figure will show that with proper settings of the switches, every CPU can access

every memory. These switches can be set in nanoseconds or less.

SEC. 1.3 HARDWARE CONCEPTS 13

In the general case, with » CPUs and » memories, the omega network
requires log,n switching stages, each containing n/2 switches, for a total of
(n logyn)/2 switches. Although for large n this is much better than n?, it is still
substantial.

Furthermore, there is another problem: delay. For example, for n = 1024,
there are 10 switching stages from the CPU to the memory, and another 10 for
the word requested to come back. Suppose that the CPU is a modem RISC chip
running at 100 MIPS; that is, the instruction execution time is 10 nsec. If a
memory request is to traverse a total of 20 switching stages (10 outbound and 10
back) in 10 nsec, the switching time must be 500 picosec (0.5 nsec). The com-
plete multiprocessor will need 5120 500-picosec switches. This is not going to
be cheap.

People have attempted to reduce the cost by going to hierarchical systems.
Some memory is associated with each CPU. Each CPU can access its own local
memory quickly, but accessing anybody else’s memory is slower. This design
gives rise to what is known as a NUMA (NonUniform Memory Access)
machine. Although NUMA machines have better average access times than
machines based on omega networks, they have the new complication that the
placement of the programs and data becomes critical in order to make most
access go to the local memory.

To summarize, bus-based multiprocessors, even with snoopy caches, are
limited by the amount of bus capacity to about 64 CPUs at most. To go beyond
that requires a switching network, such as a crossbar switch, an omega switching
network, or something similar. Large crossbar switches are very expensive, and
large omega networks are both expensive and slow. NUMA machines require
complex algorithms for good software placement. The conclusion is clear:
building a large, tightly-coupled, shared memory multiprocessor is possible, but
is difficult and expensive.

1.3.3. Bus-Based Multicomputers

On the other hand, building a multicomputer (i.e., no shared memory) is
easy. Each CPU has a direct connection to its own local memory. The only
problem left is how the CPUs communicate with each other. Clearly, some
interconnection scheme is needed here, too, but since it is only for CPU-to-CPU
communication, the volume of traffic will be several orders of magnitude lower
than when the interconnection network is also used for CPU-to-memory traffic.

In Fig. 1-7 we see a bus-based multicomputer. It looks topologically similar
to the bus-based multiprocessor, but since there will be much less traffic over it,
it need not be a high-speed backplane bus. In fact, it can be a much lower speed
LAN (typically, 10-100 Mbps, compared to 300 Mbps and up for a backplane
bus). Thus Fig. 1-7 is more often a collection of workstations on a LAN than a

14 INTRODUCTION TO DISTRIBUTED SYSTEMS CHAP. 1

collection of CPU cards inserted into a fast bus (although the latter configuration
is definitely a possible design).

Workstation Workstation Workstation
Local Local Local
memory memory memory
CPU CPU CPU

Network

Fig. 1-7. A multicomputer consisting of workstations on a LAN.

1.3.4. Switched Multicomputers

Our last category consists of switched multicomputers. Various intercon-
nection networks have been proposcd and built, but all have the property that
each CPU has direct and exclusive access to its own, private memory. Figure
1-8 shows two popular topologies, a grid and a hypercube. Grids are easy to
understand and lay out on printed circuit boards. They are best suited to prob-
lems that have an inherent two-dimensional nature, such as graph theory or
vision (e.g., robot eyes or analyzing photographs).

(a) (b)
Fig. 1-8. (a) Grid. (b) Hypercube.

A hypercube is an n-dimensional cube. The hypercube of Fig. 1-8(b) is
four-dimensional. It can be thought of as two ordinary cubes, each with 8 ver-
tices and 12 edges. Each vertex is a CPU. Each edge is a connection between
two CPUs. The corresponding vertices in each of the two cubes are connected.

To expand the hypercube to five dimensions, we would add another set of
two interconnected cubes to the figure, connect the corresponding edges in the

SEC. 1.3 HARDWARE CONCEPTS 15

two halves, and so on. For an n-dimensional hypercube, each CPU has #n con-
nections to other CPUs. Thus the complexity of the wiring increases only loga-
rithmically with the size. Since only nearest neighbors are connected, many
messages have to make several hops to reach their destination. However, the
longest possible path also grows logarithmically with the size, in contrast to the
grid, where it grows as the square root of the number of CPUs. Hypercubes with
1024 CPUs have been commercially available for several years, and hypercubes
with as many as 16,384 CPUs are starting to become available.

1.4. SOFTWARE CONCEPTS

Although the hardware is important, the software is even more important.
The image that a system presents to its users, and how they think about the sys-
tem, is largely determined by the operating system software, not the hardware.
In this section we will introduce the various types of operating systems for the
multiprocessors and multicomputers we have just studied, and discuss which
kind of software goes with which kind of hardware.

Operating systems cannot be put into nice, neat pigeonholes like hardware.
By nature software is vague and amorphous. Still, it is more-or-less possible to
distinguish two kinds of operating systems for multiple CPU systems: loosely
coupled and tightly coupled. As we shall see, loosely and tightly-coupled
software is roughly analogous to loosely and tightly-coupled hardware.

Loosely-coupled software allows machines and users of a distributed system
to be fundamentally independent of one another, but still to interact to a limited
degree where that is necessary. Consider a group of personal computers, each of
which has its own CPU, its own memory, its own hard disk, and its own operat-
ing system, but which share some resources, such as laser printers and data
bases, over a LAN. This system is loosely coupled, since the individual
machines are clearly distinguishable, each with its own job to do. If the network
should go down for some reason, the individual machines can still continue to
run to a considerable degree, although some functionality may be lost (e.g., the
ability to print files).

To show how difficult it is to make definitions in this area, now consider the
same system as above, but without the network. To print a file, the user writes
the file on a floppy disk, carries it to the machine with the printer, reads it in,
and then prints it. Is this still a distributed system, only now even more loosely
coupled? It’s hard to say. From a fundamental point of view, there is not really
any theoretical difference between communicating over a LAN and communi-
cating by carrying floppy disks around. At most one can say that the delay and
data rate are worse in the second example.

At the other extreme we might find a multiprocessor dedicated to running a

16 INTRODUCTION TO DISTRIBUTED SYSTEMS CHAP. 1

single chess program in parallel. Each CPU is assigned a board to evaluate, and
it spends its time examining that board and all the boards that can be generated
from it. When the evaluation is finished, the CPU reports back the results and is
given a new board to work on. The software for this system, both the applica-
tion program and the operating system required to support it, is clearly much
more tightly coupled than in our previous example.

We have now seen four kinds of distributed hardware and two kinds of dis-
tributed software. In theory, there should be eight combinations of hardware
and software. In fact, only four are worth distinguishing, because to the user,
the interconnection technology is not visible. For most purposes, a multiproces-
sor is a multiprocessor, whether it uses a bus with snoopy caches or uses an
omega network. In the following sections we will look at some of the most
common combinations of hardware and software.

1.4.1. Network Operating Systems

Let us start with loosely-coupled software on loosely-coupled hardware,
since this is probably the most common combination at many organizations. A
typical example is a network of workstations connected by a LAN. In this
model, each user has a workstation for his exclusive use. It may or may not
have a hard disk. It definitely has its own operating system. All commands are
normally run locally, right on the workstation.

However, it is sometimes possible for a user to log into another workstation
remotely by using a command such as

rlogin machine

The effect of this command is to turn the user’s own workstation into a remote
terminal logged into the remote machine. Commands typed on the keyboard are
sent to the remote machine, and output from the remote machine is displayed on
the screen. To switch to a different remote machine, it is necessary first to log
out, then to use the rlogin command to connect to another machine. At any
instant, only one machine can be used, and the selection of the machine is
entirely manual.

Networks of workstations often also have a remote copy command to copy
files from one machine to another. For example, a command like

rcp machinel:filel machine2:file2

might copy the file filel from machinel to machine2 and give it the name file2
there. Again here, the movement of files is explicit and requires the user to be
completely aware of where all files are located and where all commands are
being executed.

While better than nothing, this form of communication is extremely

SEC. 1.4 SOFTWARE CONCEPTS 17

primitive and has led system designers to search for more convenient forms of
communication and information sharing. One approach is to provide a shared,
global file system accessible from all the workstations. The file system is sup-
ported by one or more machines called file servers. The file servers accept
requests from user programs running on the other (nonserver) machines, called
clients, to read and write files. Each incoming request is examined and exe-
cuted, and the reply is sent back, as illustrated in Fig. 1-9.

Clients File server
2
°
°
Disks ° o
) on which
shared ——3 B D
L file system
is stored
Request
LAN L J

Reply

Fig. 1-9. Two clients and a server in a network operating system.

File servers generally maintain hierarchical file systems, each with a root
directory containing subdirectories and files. Workstations can import or mount
these file systems, augmenting their local file systems with those located on the
servers. For example, in Fig. 1-10, two file servers are shown. One has a direc-
tory called games, while the other has a directory called work. These directories
each contain several files. Both of the clients shown have mounted both of the
servers, but they have mounted them in different places in their respective file
systems. Client 1 has mounted them in its root directory, and can access them as
/games and /work, respectively. Client 2, like client 1, has mounted games in its
root directory, but regarding the reading of mail and news as a kind of game, has
created a directory /games/work and mounted work there. Consequently, it can
access news using the path /games/work/news rather than /work/news.

While it does not matter where a client mounts a server in its directory
hierarchy, it is important to notice that different clients can have a different view
of the file system. The name of a file depends on where it is being accessed
from, and how that machine has set up its file system. Because each worksta-
tion operates relatively independently of the others, there is no guarantee that
they all present the same directory hierarchy to their programs.

The operating system that is used in this kind of environment must manage
the individual workstations and file servers and take care of the communication

18 INTRODUCTION TO DISTRIBUTED SYSTEMS CHAP. 1

Client 1 Client 2 Server 1 Server 2
/ / games work
pacman mail
pacwoman news
pacchild other
(a)
Client 1 Client 2
/ /
|— games
work —1 k— games
pacman
pacman mail pacwoman
pacwoman news pacchild
pacchild other work
(b) l
mail
news
other

(c)

Fig. 1-10. Different clients may mount the servers in different places.

between them. It is possible that the machines all run the same operating sys-
tem, but this is not required. If the clients and servers run on different systems,
as a bare minimum they must agree on the format and meaning of all the mes-
sages that they may potentially exchange. In a situation like this, where each
machine has a high degree of autonomy and there are few system-wide require-
ments, people usually speak of a network operating system.

1.4.2. True Distributed Systems

Network operating systems are loosely-coupled software on loosely-coupled
hardware. Other than the shared file system, it is quite apparent to the users that
such a system consists of numerous computers. Each can run its own operating
system and do whatever its owner wants. There is essentially no coordination at
all, except for the rule that client-server traffic must obey the system’s protocols.

The next evolutionary step beyond this is tightly-coupled software on the
same loosely-coupled (i.e., multicomputer) hardware. The goal of such a system
is to create the illusion in the minds of the users that the entire network of

SEC. 1.4 SOFTWARE CONCEPTS 19

computers is a single timesharing system, rather than a collection of distinct
machines. Some authors refer to this property as the single-system image. Oth-
ers put it slightly differently, saying that a distributed system is one that runs on
a collection of networked machines but acts like a virtual uniprocessor. No
matter how it is expressed, the essential idea is that the users should not have to
be aware of the existence of multiple CPUs in the system. No current system
fulfills this requirement entirely, but a number of candidates are on the horizon.
These will be discussed later in the book.

What are some characteristics of a distributed system? To start with, there
must be a single, global interprocess communication mechanism so that any pro-
cess can talk to any other process. It will not do to have different mechanisms
on different machines or different mechanisms for local communication and
remote communication. There@must also be a global protection scheme. Mixing
access control lists, the UNIX ~ protection bits, and capabilities will not give a
single system image.

Process management must also be the same everywhere. How processes are
created, destroyed, started, and stopped must not vary from machine to machine.
In short, the idea behind network operating systems, namely that any machine
can do whatever it wants to as long as it obeys the standard protocols when
engaging in client-server communication, is not enough. Not only must there be
a single set of system calls available on all machines, but these calls must be
designed so that they make sense in a distributed environment.

The file system must look the same everywhere, too. Having file names res-
tricted to 11 characters in some locations and being unrestricted in others is
undesirable. Also, every file should be visible at every location, subject to pro-
tection and security constraints, of course.

As a logical consequence of having the same system call interface every-
where, it is normal that identical kernels run on all the CPUs in the system.
Doing so makes it easier to coordinate activities that must be global. For exam-
ple, when a process has to be started up, all the kernels have to cooperate in
finding the best place to execute it. In addition, a global file system is needed.

Nevertheless, each kernel can have considerable control over its own local
resources. For example, since there is no shared memory, it is logical to allow
each kernel to manage its own memory. For example, if swapping or paging is
used, the kernel on each CPU is the logical place to determine what to swap or
page. There is no reason to centralize this authority. Similarly, if multiple
processes are running on some CPU, it makes sense to do the scheduling right
there, too.

A considerable body of knowledge is now available about designing and
implementing distributed operating systems. Rather than going into these issues
here, we will first finish off our survey of the different combinations of
hardware and software, and come back to them in Sec. 1.5.

20 INTRODUCTION TO DISTRIBUTED SYSTEMS CHAP. 1

1.4.3. Multiprocessor Timesharing Systems

The last combination we wish to discuss is tightly-coupled software on
tightly-coupled hardware. While various special-purpose machines exist in this
category (such as dedicated data base machines), the most common general-
purpose examples are multiprocessors that are operated as a UNIX timesharing
system, but with multiple CPUs instead of one CPU. To the outside world, a
multiprocessor with 32 30-MIPS CPUs acts very much like a single 960-MIPS
CPU (this is the single-system image discussed above). Except that implement-
ing it on a multiprocessor makes life much easier, since the entire design can be
centralized.

The key characteristic of this class of system 1s the existence of a single run
queue: a list of all the processes in the system that are logically unblocked and
ready to run. The run queue is a data structure kept in the shared memory. As
an example, consider the system of Fig. 1-11, which has three CPUs and five
processes that are ready to run. All five processes are located in the shared
memory, and three of them are currcntly executing: process A on CPU 1, pro-
cess B on CPU 2, and process C on CPU 3. The other two processes, D and E,
are also in memory, waiting their turn.

Memory
E (ready)
D (ready)
C {running)
CPU 1 CPU 2 CPU 3 B {running)
Process A Process B Process C A (running) -
running running running RAun queue: D, E Disk
Cache l Cache Cache Operating system .

Bus

Fig. 1-11. A multiprocessor with a single run queue.

Now suppose that process B blocks waiting for I/O or its quantum runs out.
Either way, CPU 2 must suspend it, and find another process to run. CPU 2 will
normally begin executing operating system code (located in the shared memory).
After having saved all of B’s registers, it will enter a critical region to run the
scheduler to look for another process to run. It is essential that the scheduler be
run as a critical region to prevent two CPUs from choosing the same process to
run next. The necessary mutual exclusion can be achieved by using monitors,
semaphores, or any other standard construction used in singleprocessor systems.

SEC. 1.4 SOFTWARE CONCEPTS 21

Once CPU 2 has gained exclusive access to the run queue, it can remove the
first entry, D, exit from the critical region, and begin executing D. Initially, exe-
cution will be slow, since CPU 2’s cache is full of words belonging to that part
of the shared memory containing process B, but after a little while, these will
have been purged and the cache will be full of D’s code and data, so execution
will speed up.

Because none of the CPUs have local memory and all programs are stored in
the global shared memory, it does not matter on which CPU a process runs. If a
long-running process is scheduled many times before it completes, on the aver-
age, it will spend about the same amount of time running on each CPU. The
only factor that has any effect at all on CPU choice is the slight gain in perfor-
mance when a process starts up on a CPU that is currently caching part of its
address space. In other words, if all CPUs are idle, waiting for I/O, and one pro-
cess becomes ready, it is slightly preferable to allocate it to the CPU it was last
using, assuming that no other process has used that CPU since (Vaswani and
Zahorjan, 1991).

As an aside, if a process blocks for [/O on a multiprocessor, the operating
system has the choice of suspending it or just letting it do busy waiting. If most
I/0 is completed in less time than it takes to do a process switch, busy waiting is
preferable. Some systems let the process keep its processor for a few milli-
seconds, in the hope that the I/O will complete soon, but if that does not occur
before the timer runs out, a process switch is made (Karlin et al., 1991). If most
critical regions are short, this approachcan avoid many expensive process
switches.

An area in which this kind of multiprocessor differs appreciably from a net-
work or distributed system is in the organization of the file system. The operat-
ing system normally contains a traditional file system, including a single, unified
block cache. When any process executes a system call, a trap is made to the
operating system, which carries it out, using semaphores, monitors, or something
equivalent, to lock out other CPUs while critical sections are being executed or
central tables are being accessed. In this way, when a WRITE system call is
done, the central block cache is locked, the new data entered into the cache, and
the lock released. Any subsequent READ call will see the new data, just as on a
single-processor system. On the whole, the file system is hardly different from a
single-processor file system. In fact, on some multiprocessors, one of the CPUs
is dedicated to running the operating system; the other ones run user programs.
This situation is undesirable, however, as the operating system machine is often
a bottleneck. This point is discussed in detail by Boykin and Langerman (1990).

It should be clear that the methods used on the multiprocessor to achieve the
appearance of a virtual uniprocessor are not applicable to machines that do not
have shared memory. Centralized run queues and block only caches work when
all CPUs have access to them with very low delay. Although these data

22 INTRODUCTION TO DISTRIBUTED SYSTEMS CHAP. 1

structures could be simulated on a network of machines, the communication
costs make this approach prohibitively expensive.

Figure 1-12 shows some of the differences between the three kinds of sys-
tems we have examined above.

Network Distributed Multiprocessor
operating operating operating
item system system system
Does it look iike a virtual
uniprocessor? No Yes Yes
Do all have to run the
sarme operating system? No Yes Yes
How many copies of the N N]
operating system are there?
How is communication Shared Shared
A . Messages
achieved? files memory
Are agreed upqn network Yes Yes No
protocols required?
Is there a single run queue? No No Yes
Does file sharing have Usually
well-defined semantics? no Yes Yes

Fig. 1-12. Comparison of three different ways of organizing n CPUs.

1.5. DESIGN ISSUES

In the preceding sections we have looked at distributed systems and related
topics from both the hardware and software points of view. In the remainder of
this chapter we will briefly look at some of the key design issues that people
contemplating building a distributed operating system must deal with. We will
come back to them in more detail later in the book.

1.5.1. Transparency

Probably the single most important issue is how to achieve the single-system
image. In other words, how do the system designers fool everyone into thinking
that the collection of machines is simply an old-fashioned timesharing system?
A system that realizes this goal is often said to be transparent.

Transparency can be achieved at two different levels. Easiest to do is to
hide the distribution from the users. For example, when a UNIX user types make

SEC. 1.5 DESIGN ISSUES 23

to recompile a large number of files in a directory, he need not be told that all
the compilations are proceeding in parallel on different machines and are using a
variety of file servers to do it. To him, the only thing that is unusual is that the
performance of the system is halfway decent for a change. In terms of com-
mands issued from the terminal and results displayed on the terminal, the distri-
buted system can be made to look just like a single-processor system.

At a lower level, it is also possible, but harder, to make the system look tran-
sparent to programs. In other words, the system call interface can be designed
so that the existence of multiple processors is not visible. Pulling the wool over
the programmer’s eyes is harder than pulling the wool over the terminal user’s
eyes, however.

What does transparency really mean? It is one of those slippery concepts
that sounds reasonable but is more subtle than it at first appears. As an example,
imagine a distributed system consisting of workstations each running some stan-
dard operating system. Normally, system services (e.g., reading files) are
obtained by issuing a system call that traps to the kernel. In such a system,
remote files should be accessed the same way. A system in which remote files
are accessed by explicitly setting up a network connection to a remote server
and then sending messages to it is not transparent because remote services are
then being accessed differently than local ones. The programmer can tell that
multiple machines are involved, and this is not allowed.

The concept of transparency can be applied to several aspects of a distri-
buted system, as shown in Fig. 1-13. Location transparency refers to the fact
that in a true distributed system, users cannot tell where hardware and software
resources such as CPUs, printers, files, and data bases are located. The name of
the resource must not secretly encode the location of the resource, so names like
machinel :prog.c or /machinel /prog.c are not acceptable.

Kind Meaning
Location transparency The users cannot tell where resources are located
Migration transparency Resources can move at will without changing their names
Replication transparency The users cannot tell how many copies exist
Concurrency transparency Multiple users can share resources automatically
Parallelism transparency Activities can happen in parallel without users knowing

Fig. 1-13. Different kinds of transparency in a distributed system.

Migration transparency means that resources must be free to move from
one location to another without having their names change. In the example of

24 INTRODUCTION TO DISTRIBUTED SYSTEMS CHAP. 1

Fig. 1-10 we saw how server directories could be mounted in arbitrary places in
the clients’ directory hierarchy. Since a path like /work/news does not reveal the
location of the server, it is location transparent. However, now suppose that the
folks running the servers decide that reading network news really falls in the
category “games”’ rather than in the category “work.” Accordingly, they move
news from server 2 to server 1. The next time client 1 boots and mounts the
servers in his customary way, he will notice that /work/news no longer exists.
Instead, there is a new entry, /games/news. Thus the mere fact that a file or
directory has migrated from one server to another has forced it to acquire a new
name because the system of remote mounts is not migration transparent.

If a distributed system has replication transparency, the operating system
is free to make additional copies of files and other resources on its own without
the users noticing. Clearly, in the previous example, automatic replication is
impossible because the names and locations are so closely tied together. To see
how replication transparency might be achievable, consider a collection of n
servers logically connected to form a ring. Each server maintains the entire
directory tree structure but holds only a subset of the files themselves. To read a
file, a client sends a message containing the full path name to any of the servers.
That server checks to see if it has the file. If so, it returns the data requested. If
not, it forwards the request to the next server in the ring, which then repeats the
algorithm. In this system, the servers can decide by themselves to replicate any
file on any or all servers, without the users having to know about it. Such a
scheme is replication transparent because it allows the system to make copies of
heavily used files without the users even being aware that this is happening.

Distributed systems usually have multiple, independent users. What should
the system do when two or more users try to access the same resource at the
same time? For example, what happens if two users try to update the same file
at the same time? If the system is concurrency transparent, the users will not
notice the existence of other users. One mechanism for achieving this form of
transparency would be for the system to lock a resource automatically once
someone had started to use it, unlocking it only when the access was finished.
In this manner, all resources would only be accessed sequentially, never con-
currently.

Finally, we come to the hardest one, parallelism transparency. In princi-
ple, a distributed system is supposed to appear to the users as a traditional,
uniprocessor timesharing system. What happens if a programmer knows that his
distributed system has 1000 CPUs and he wants to use a substantial fraction of
them for a chess program that evaluates boards in parallel? The theoretical
answer is that together the compiler, runtime system, and operating system
should be able to figure out how to take advantage of this potential parallelism
without the programmer even knowing it. Unfortunately, the current state-of-
the-art is nowhere near allowing this to happen. Programmers who actually

SEC. 1.5 DESIGN ISSUES 25

want to use multiple CPUs for a single problem will have to program this expli-
citly, at least for the foreseeable future. Parallelism transparency can be
regarded as the holy grail for distributed systems designers. When that has been
achieved, the work will have been completed, and it will be time to move on to
new fields.

All this notwithstanding, there are times when users do not want complete
transparency. For example, when a user asks to print a document, he often
prefers to have the output appear on the local printer, not one 1000 km away,
even if the distant printer is fast, inexpensive, can handle color and smell, and is
currently idle.

1.5.2. Flexibility

The second key design issue is flexibility. It is important that the system be
flexible because we are just beginning to learn about how to build distributed
systems. It is likely that this process will incur many false starts and consider-
able backtracking. Design decisions that now seem reasonable may later prove
to be wrong. The best way to avoid problems is thus to keep one’s options open.

Flexibility, along with transparency, is like parenthood and apple pie: who
could possibly be against them? It is hard to imagine anyone arguing in favor of
an inflexible system. However, things are not as simple as they seem. There are
two schools of thought concerning the structure of distributed systems. One
school maintains that each machine should run a traditional kernel that provides
most services itself. The other maintains that the kernel should provide as little
as possible, with the bulk of the operating system services available from user-
level servers. These two models, known as the monolithic kernel and micro-
kernel, respectively, are illustrated in Fig. 1-14.

U User File Directory Process
ser server server server
Monolithic Microkernel Microkernel Microkernel Microkernel
kernel
Network
Includes file,
directory and
process management
(a) (b)

Fig. 1-14. (a) Monolithic kernel. (b) Microkernel.

The monolithic kernel is basically today’s centralized operating system aug-
mented with networking facilities and the integration of remote services. Most

26 INTRODUCTION TO DISTRIBUTED SYSTEMS CHAP. 1

system calls are made by trapping to the kemnel, having the work performed
there, and having the kernel return the desired result to the user process. With
this approach, most machines have disks and manage their own local file sys-
tems. Many distributed systems that are extensions or imitations of UNIX use
this approach because UNIX itself has a large, monolithic kernel.

If the monolithic kernel is the reigning champion, the microkernel is the up-
and-coming challenger. Most distributed systems that have been designed from
scratch use this method. The microkernel is more flexible because it does
almost nothing. It basically provides just four minimal services:

An interprocess communication mechanism.

Some memory management.

wo b=

A small amount of low-level process management and scheduling.
4. Low-level input/output.

In particular, unlike the monolithic kernel, it does not provide the file system,
directory system, full process management, or much system call handling. The
services that the microkernel does provide are included because they are diffi-
cult or expensive to provide anywhere else. The goal is to keep it small.

All the other operating system services are generally implemented as user-
level servers. To look up a name, read a file, or obtain some other service, the
user sends a message to the appropriate server, which then does the work and
returns the result. The advantage of this method is that it is highly modular:
there is a well-defined interface to each service (the set of messages the server
understands), and every service is equally accessible to every client, indepen-
dent of location. In addition, it is easy to implement, install, and debug new ser-
vices, since adding or changing a service does not require stopping the system
and booting a new kernel, as is the case with a monolithic kernel. It is precisely
this ability to add, delete, and modify services that gives the microkernel its
flexibility. Furthermore, users who are not satisfied with any of the official ser-
vices are free to write their own.

As a simple example of this power, it is possible to have a distributed sys-
tem with multiple file servers, one supporting MS-DOS file service and another
supporting UNIX file service. Individual programs can use either or both, if they
choose. In contrast, with a monolithic kernel, the file system is built into the
kernel, and users have no choice but to use it.

The only potential advantage of the monolithic kernel is performance. Trap-
ping to the kernel and doing everything there may well be faster than sending
messages to remote servers. However, a detailed comparison of two distributed
operating systems, one with a monolithic kernel (Sprite), and one with a micro-
kernel (Amoeba), has shown that in practice this advantage is nonexistent

SEC. 1.5 DESIGN ISSUES 27

(Douglis et al., 1991). Other factors tend to dominate, and the small amount of
time required to send a message and get a reply (typically, about 1 msec) is usu-
ally negligible. As a consequence, it is likely that microkernel systems will gra-
dually come to dominate the distributed systems scheme, and monolithic kernels
will eventually vanish or evolve into microkernels. Perhaps future editions of
Silberschatz and Galvin’s book on operating systems (1994) will feature hum-
mingbirds and swifts on the cover instead of stegasauruses and triceratopses.

1.5.3. Reliability

One of the original goals of building distributed systems was to make them
more reliable than single-processor systems. The idea is that if a machine goes
down, some other machine takes over the job. In other words, theoretically the
overall system reliability could be the Boolean OR of the component reliabilities.
For example, with four file servers, each with a 0.95 chance of being up at any
instant, the probability of all four being down simultaneously is
0.05* = 0.000006, so the probability of at least one being available is 0.999994,
far better than that of any individual server.

That is the theory. The practice is that to function at all, current distributed
systems count on a number of specific servers being up. As a result, some of
them have an availability more closely related to the Boolean AND of the com-
ponents than to the Boolean OR. In a widely-quoted remark, Leslie Lamport
once defined a distributed system as ““one on which I cannot get any work done
because some machine I have never heard of has crashed.” While this remark
was (presumably) made somewhat tongue-in-cheek, there is clearly room for
improvement here.

It 1s important to distinguish various aspects of reliability. Availability, as
we have just seen, refers to the fraction of time that the system is usable.
Lamport’s system apparently did not score well in that regard. Availability can
be enhanced by a design that does not require the simultaneous functioning of a
substantial number of critical components. Another tool for improving availa-
bility is redundancy: key pieces of hardware and software should be replicated,
so that if one of them fails the others will be able to take up the slack.

A highly reliable system must be highly available, but that is not enough.
Data entrusted to the system must not be lost or garbled in any way, and if files
are stored redundantly on multiple servers, all the copies must be kept con-
sistent. In general, the more copies that are kept, the better the availability, but
the greater the chance that they will be inconsistent, especially if updates are
frequent. The designers of all distributed systems must keep this dilemma in
mind all the time.

Another aspect of overall reliability is security. Files and other resources
must be protected from unauthorized usage. Although the same issue occurs in

28 INTRODUCTION TO DISTRIBUTED SYSTEMS CHAP. 1

single-processor systems, in distributed systems it is more severe. In a single-
processor system, the user logs in and is authenticated. From then on, the sys-
tem knows who the user is and can check whether each attempted access is
legal. In a distributed system, when a message comes in to a server asking for
something, the server has no simple way of determining who it is from. No
name or identification field in the message can be trusted, since the sender may
be lying. At the very least, considerable care is required here.

Still another issue relating to reliability is fault tolerance. Suppose that a
server crashes and then quickly reboots. What happens? Does the server crash
bring users down with 1t? If the server has tables containing important informa-
tion about ongoing activities, recovery will be difficult at best.

In general, distributed systems can be designed to mask failures, that is, to
hide them from the users. If a file service or other service is actually con-
structed from a group of closely cooperating servers, it should be possible to
construct it in such a way that users do not notice the loss of one or two servers,
other than some performance degradation. Of course, the trick is to arrange this
cooperation so that it does not add substantial overhead to the system in the nor-
mal case, when everything is functioning correctly.

1.5.4. Performance

Always lurking in the background is the issue of performance. Building a
transparent, flexible, reliable distributed system will not win you any prizes if it
is as slow as molasses. In particular, when running a particular application on a
distributed system, it should not be appreciably worse than running the same
application on a single processor. Unfortunately, achieving this is easier said
than done.

Various performance metrics can be used. Response time is one, but so are
throughput (number of jobs per hour), system utilization, and amount of network
capacity consumed. Furthermore, the results of any benchmark are often highly
dependent on the nature of the benchmark. A benchmark that involves a large
number of independent highly CPU-bound computations may give radically dif-
ferent results from a benchmark that consists of scanning a single large file for
some pattern.

The performance problem is compounded by the fact that communication,
which is essential in a distributed system (and absent in a single-processor sys-
tem) is typically quite slow. Sending a message and getting a reply over a LAN
takes about 1 msec. Most of this time is due to unavoidable protocol handling
on both ends, rather than the time the bits spend on the wire. Thus to optimize
performance, one often has to minimize the number of messages. The difficulty
with this strategy is that the best way to gain performance is to have many
activities running in parallel on different processors, but doing so requires

SEC. 1.5 DESIGN ISSUES 29

sending many messages. (Another solution is to do all the work on one
machine, but that is hardly appropriate in a distributed system.)

One possible way out is to pay considerable attention to the grain size of all
computations. Starting up a small computation remotely, such as adding two
integers, 1s rarely worth it, because the communication overhead dwarfs the
extra CPU cycles gained. On the other hand, starting up a long compute-bound
job remotely may be worth the trouble. In general, jobs that involve a large
number of small computations, especially ones that interact highly with one
another, may cause trouble on a distributed system with relatively slow com-
munication. Such jobs are said to exhibit fine-grained parallelism. On the
other hand, jobs that involve large computations, low interaction rates, and little
data, that 1s, coarse-grained parallelism, may be a better fit.

Fault tolerance also exacts its price. Good reliability is often best achieved
by having several servers closely cooperating on a single request. For example,
when a request comes in to a server, it could immediately send a copy of the
message to one of its colleagues so that if it crashes before finishing, the col-
league can take over. Naturally, when it is done, it must inform the colleague
that the work has been completed, which takes another message. Thus we have
at least two extra messages, which in the normal case cost time and network
capacity and produce no tangible gain.

1.5.5. Scalability

Most current distributed systems are designed to work with a few hundred
CPUs. It is possible that future systems will be orders of magnitude larger, and
solutions that work well for 200 machines will fail miserably for 200,000,000.
Consider the following. The French PTT (Post, Telephone and Telegraph
administration) is in the process of installing a terminal in every household and
business in France. The terminal, known as a minitel, will allow online access
to a data base containing all the telephone numbers in France, thus eliminating
the need for printing and distributing expensive telephone books. It will also
vastly reduce the need for information operators who do nothing but give out
telephone numbers all day. It has been calculated that the system will pay for
itself within a few years. If the system works in France, other countries will
inevitably adopt similar systems.

Once all the terminals are in place, the possibility of also using them for
electronic mail (especially in conjunction with printers) is clearly present. Since
postal services lose a huge amount of money in every country in the world, and
telephone services are enormously profitable, there are great incentives to hav-
ing electronic mail replace paper mail.

Next comes interactive access to all kinds of data bases and services, from

30 INTRODUCTION TO DISTRIBUTED SYSTEMS CHAP. 1

electronic banking to reserving places in planes, trains, hotels, theaters, and res-
taurants, to name just a few. Before long, we have a distributed system with
tens of millions of users. The question 1s: Will the methods we are currently
developing scale to such large systems?

Although little is known about such huge distributed systems, one guiding
principle is clear: avoid centralized components, tables, and algorithms (see
Fig. 1-15). Having a single mail server for 50 million users would not be a good
idea. Even if it had cnough CPU and storage capacity, the network capacity into
and out of it would surely be a problem. Furthermore, the system would not
tolerate faults wcll. A single power outage could bring the entire system down.
Finally, most mail is local. Having a message sent by a user in Marseille to
another user two blocks away pass through a machine in Paris is not the way to

go.

Concept Example
Centraiized components A single mail server for all users
Centralized tables A single on-line telephone book
Centralized algorithms Doing routing based on complete information

Fig. 1-15. Potential bottlenecks that designers should try to avoid in very large
distributed systems.

Centralized tables are almost as bad as centralized components. How
should one keep track of the telephone numbers and addresses of 50 million peo-
ple? Suppose that each data record could be fit into 50 characters. A single
2.5-gigabyte disk would provide enough storage. But here again, having a sin-
gle data base would undoubtedly saturate all the communication lines into and
out of it. It would also be vulnerable to failures (a single speck of dust could
cause a head crash and bring down the entire directory service). Furthermore,
here too, valuable network capacity would be wasted shipping queries far away
for processing.

Finally, centralized algorithms are also a bad idea. In a large distributed
system, an enormous number of messages have to be routed over many lines.
From a theoretical point of view, the optimal way to do this is collect complete
information about the load on all machines and lines, and then run a graph
theory algorithm to compute all the optimal routes. This information can then
be spread around the system to improve the routing.

The trouble is that collecting and transporting all the input and output infor-
mation would again be a bad idea for the reasons discussed above. In fact, any
algorithm that operates by collecting information from all sites, sends it to a sin-
gle machine for processing, and then distributes the results must be avoided.

SEC. 1.5 DESIGN ISSUES 31

Only decentralized algorithms should be used. These algorithms generally have
the following characteristics, which distinguish them from centralized algo-
rithms:

1. No machine has complete information about the system state.
2. Machines make decisions based only on local information.

3. Failure of one machine does not ruin the algorithm.

4. There is no implicit assumption that a global clock exists.

The first three follow from what we have said so far. The last is perhaps less
obvious, but also important. Any algorithm that starts out with: “At precisely
12:00:00 all machines shall note the size of their output queue” will fail because
it is impossible to get all the clocks exactly synchronized. Algorithms should
take into account the lack of exact clock synchronization. The larger the system,
the larger the uncertainty. On a single LAN, with considerable effort it may be
possible to get all clocks synchronized down to a few milliseconds, but doing
this nationally is tricky. We will discuss distributed clock synchronization in
Chap. 3.

1.6. SUMMARY

Distributed systems consist of autonomous CPUs that work together to make
the complete system look like a single computer. They have a number of poten-
tial selling points, including good price/performance ratios, the ability to match
distributed applications well, potentially high reliability, and incremental growth
as the workload grows. They also have some disadvantages, such as more com-
plex software, potential communication bottlenecks, and weak security.
Nevertheless, there is considerable interest worldwide in building and installing
them.

Modern computer systems often have multiple CPUs. These can be organ-
ized as multiprocessors (with shared memory) or as multicomputers (without
shared memory). Both types can be bus-based or switched. The former tend to
be tightly coupled, while the latter tend to be loosely coupled.

The software for multiple CPU systems can be divided into three rough
classes. Network operating systems allow users at independent workstations to
communicate via a shared file system but otherwise leave each user as the mas-
ter of his own workstation. Distributed operating systems turn the entire collec-
tion of hardware and software into a single integrated system, much like a tradi-
tional timesharing system. Shared-memory multiprocessors also offer a single

32

INTRODUCTION TO DISTRIBUTED SYSTEMS CHAP. 1

system image, but do so by centralizing everything, so there really is only a sin-
gle system. Shared-memory multiprocessors are not distributed systems.

Distributed systems have to be designed carefully, since there are many pit-

falls for the unwary. A key issue is transparency—hiding all the distribution
from the users and even from the application programs. Another issue is flexi-
bility. Since the field is only now in its infancy, the design should be made with
the idea of making future changes easy. In this respect, microkemels are supe-
rior to monolithic kernels. Other important issues are reliability, performance,
and scalability.

PROBLEMS

The price/performance ratio of computers has improved by something like
11 orders of magnitude since the first commercial mainframes came out in
the early 1950s. The text shows what a similar gain would have meant in
the automobile industry. Give another example of what such a large gain
means.

Name two advantages and two disadvantages of distributed systems over
centralized ones.

3. What is the difference between a multiprocessor and a multicomputer?

10.

The terms loosely-coupled system and tightly-coupled system are often used
to described distributed computer systems. What is the different between
them?

What is the different between an MIMD computer and an SIMD computer?

A bus-based multiprocessor uses snoopy caches to achieve a coherent
memory. Will semaphores work on this machine?

Crossbar switches allow a large number of memory requests to be processed
at once, giving excellent performance. Why are they rarely used in prac-
tice?

A multicomputer with 256 CPUs is organized as a 16 x 16 grid. What is the
worst-case delay (in hops) that a message might have to take?

Now consider a 256-CPU hypercube. What is the worst-case delay here,
again in hops?

A multiprocessor has 4096 50-MIPS CPUs connected to memory by an
omega network. How fast do the switches have to be to allow a request to

CHAP. 1 PROBLEMS 33

11.
12.

13.
14.
15.

16.
17.

18.

go to memory and back in one instruction time?
What is meant by a single-system image?

What is the main difference between a distributed operating system and a
network operating system?

What are the primary tasks of a microkernel?
Name two advantages of a microkernel over a monolithic kernel.

Concurrency transparency is a desirable goal for distributed systems. Do
centralized systems have this property automatically?

Explain in your own words the concept of parallelism transparency.

An experimental file server is up 3/4 of the time and down 1/4 of the time,
due to bugs. How many times does this file server have to be replicated to
give an availability of at least 99 percent?

Suppose that you have a large source program consisting of m files to com-
pile. The compilation is to take place on a system with n processors, where
n > m. The best you can hope for is an m-fold speedup over a single pro-
cessor. What factors might cause the speedup to be less than this max-
imum?

Communication in Distributed
Systems

The single most important difference between a distributed system and a
uniprocessor system is the interprocess communication. In a uniprocessor sys-
tem, most interprocess communication implicitly assumes the existence of
shared memory. A typical example is the producer-consumer problem, in which
one process writes into a shared buffer and another process reads from it. Even
that most basic form of synchronization, the semaphore, requires that one word
(the semaphore variable itself) is shared. In a distributed system there is no
shared memory whatsoever, so the entire nature of interprocess communication
must be completely rethought from scratch. In this chapter we will discuss
numerous issues, examples, and problems associated with interprocess commun-
ication in distributed operating systems.

We will start out by discussing the rules that communicating processes must
adhere to, known as protocols. For wide-area distributed systems these proto-
cols often take the form of multiple layers, each with its own goals and rules.
Two sets of layers, OSI and ATM, will be examined. Then we will look at the
client-server model in some detail. After that, it is time to find out how mes-
sages are exchanged and the many options available to system designers.

One particular option, remote procedure call, is important enough to warrant
its own section. Remote procedure call is really a nicer way of packaging mes-
sage passing, to make it more like conventional programming and easier to use.
Nevertheless, it has its own peculiarities and issues, which we will also look at.

34

SEC. 2.1 LAYERED PROTOCOLS 35

We will conclude the chapter by studying how groups of processes can com-
municate, instead of just two processes. A detailed example of group communi-
cation, ISIS, will be discussed.

2.1. LAYERED PROTOCOLS

Due to the absence of shared memory, all communication in distributed sys-
tems is based on message passing. When process A wants to communicate with
process B, it first builds a message in its own address space. Then it executes a
system call that causes the operating system to fetch the message and send it
over the network to B. Although this basic idea sounds simple enough, in order
to prevent chaos, A and B have to agree on the meaning of the bits being sent. If
A sends a brilliant new novel written in French and encoded in IBM’s EBCDIC
character code, and B expects the inventory of a supermarket written in English
and encoded in ASCII, communication will be less than optimal.

Many different agreements are needed. How many volts should be used to
signal a 0-bit, and how many volts for a 1-bit? How does the receiver know
which is the last bit of the message? How can it detect if a message has been
damaged or lost, and what should it do if it finds out? How long are numbers,
strings, and other data items, and how are they represented? In short, agree-
ments are needed at a variety of levels, varying from the low-level details of bit
transmission to the high-level details of how information is to be expressed.

To make it easier to deal with the numerous levels and issues involved in
communication, the International Standards Organization (ISO) has developed a
reference model that clearly identifies the various levels involved, gives them
standard names, and points out which level should do which job. This model is
called the Open Systems Interconnection Reference Model (Day and Zim-
merman, 1983), usually abbreviated as ISO OSI or sometimes just the OSI
model. Although we do not intend to give a full description of this model and
all of its implications here, a short introduction will be helpful. For more
details, see (Tanenbaum, 1988).

To start with, the OSI model is designed to allow open systems to communi-
cate. An open system is one that is prepared to communicate with any other
open system by using standard rules that govern the format, contents, and mean-
ing of the messages sent and received. These rules are formalized in what are
called protocols. Basically, a protocol is an agreement between the communi-
cating parties on how communication is to proceed. When a woman is intro-
duced to a man, she may choose to stick out her hand. He, in turn, may decide
either to shake it or kiss it, depending, for example, whether she is an American
lawyer at a business meeting or a European princess at a formal ball. Violating
the protocol will make communication more difficult, if not impossible.

36 COMMUNICATION IN DISTRIBUTED SYSTEMS CHAP. 2

At a more technological level, many companies make memory boards for
the IBM PC. When the CPU wants to read a word from memory, it puts the
address and certain control signals on the bus. The memory board is expected to
see these signals and respond by putting the word requested on the bus within a
certain time interval. If the memory board observes the required bus protocol, it
will work correctly, otherwise it will not.

Similarly, to allow a group of computers to communicate over a network,
they must all agree on the protocols to be used. The OSI model distinguishes
between two general types of protocols. With connection-oriented protocols,
before exchanging data, the sender and receiver first explicitly establish a con-
nection, and possibly negotiate the protocol they will use. When they are done,
they must release (terminate) the connection. The telephone is a connection-
oriented communication system. With connectionless protocols, no setup in
advance is needed. The sender just transmits the first messagc when it is ready.
Dropping a letter in a mailbox is an example of connectionless communication.
With computers, both connection-oriented and connectionless communication
are common.

In the OSI model, communication is divided up into seven levels or layers,
as shown in Fig. 2-1. Each layer deals with one specific aspect of the communi-
cation. In this way, the problem can be divided up into manageable pieces, each
of which can be solved independent of the others. Each layer provides an inter-
face to the one above it. The interface consists of a set of operations that
together define the service the layer is prepared to offer its users.

In the OSI model, when process A on machine 1 wants to communicate with
process B on machine 2, it builds a message and passes the message to the appli-
cation layer on its machine. This layer might be a library procedure, for exam-
ple, but it could also be implemented in some other way (e.g., inside the operat-
ing system, on an external coprocessor chip, etc.). The application layer
software then adds a header to the front of the message and passes the resulting
message across the layer 6/7 interface to the presentation layer. The presenta-
tion layer in turn adds its own header and passes the result down to the session
layer, and so on. Some layers add not only a header to the front, but also a
trailer to the end. When it hits bottom, the physical layer actually transmits the
message, which by now might look as shown in Fig. 2-2.

When the message arrives at machine 2, it is passed upward, with each layer
stripping off and examining its own header. Finally, the message arrives at the
receiver, process B, which may reply to it using the reverse path. The informa-
tion in the layer n header is used for the layer n protocol.

As an example of why layered protocols are important, consider communi-
cation between two companies, Zippy Airlines and its caterer, Mushy Meals,
Inc. Every month, the head of passenger service at Zippy asks her secretary to
contact the sales manager’s secretary at Mushy to order 100,000 boxes of rubber

SEC. 2.1 LAYERED PROTOCOLS 37

Machine 1 Machine 1

Process Process
A B

Application protocol
7 Application [— =~ ——— —— ———— — — —»1 Application

Interface 1; :;

6 Presentation [—— —— — — — — — — — — Presentation

A 3
Interf
nterface [1?

5 Session l--————-———————— Session

}
\

Transport protocol
4 Transport [— — — — — — — — — — — —» Transport

!

Network protoco!

Network
Fig. 2-1. Layers, interfaces, and protocols in the OSI model.

chicken. Traditionally, the orders have gone via the post office. However, as
the postal service deteriorates, at some point the two secretaries decide to aban-
don it and communicate by FAX. They can do this without bothering their
bosses, since their protocol deals with the physical transmission of the orders,
not their contents.

Similarly, the head of passenger service can decide to drop the rubber
chicken and go for Mushy’s new special, prime rib of goat, without that decision
affecting the secretaries. The thing to notice is that we have two layers here, the
bosses and the secretaries. Each layer has its own protocol (subjects of discus-
sion and technology) that can be changed independently of the other one. It is
precisely this independence that makes layered protocols attractive. Each one
can be changed as technology improves, without the other ones being affected.

38 COMMUNICATION IN DISTRIBUTED SYSTEMS CHAP. 2

Data link layer header

Network layer header
Transport layer header
Session layer header
Presentation layer header
[[Application layer header

Message -

Data link
layer trailer

Yo
Bits that actually
appear on the network

Fig. 2-2. A typical message as it appears on the network.

In the OSI model, there are not two layers, but seven, as we saw in Fig. 2-1.
The collection of protocols used in a particular system is called a protocol suite
or protocol stack. In the following sections, we will briefly examine each of
the layers in turn, starting at the bottom. Where appropriate, we will also point
out some of the protocols used in each layer.

2.1.1. The Physical Layer

The physical layer is concerned with transmitting the Os and 1s. How many
volts to use for 0 and 1, how many bits per second can be sent, and whether
transmission can take place in both directions simultaneously are key issues in
the physical layer. In addition, the size and shape of the network connector
(plug), as well as the number of pins and meaning of each are of concern here.

The physical layer protocol deals with standardizing the electrical, mechani-
cal, and signaling interfaces so that when one machine sends a O bit it is actually
received as a O bit and not a 1 bit. Many physical layer standards have been
developed (for different media), for example, the RS-232-C standard for serial
communication lines.

2.1.2. The Data Link Layer

The physical layer just sends bits. As long as no errors occur, all is well.
However, real communication networks are subject to errors, so some mechan-
ism is needed to detect and correct them. This mechanism is the main task of
the data link layer. What it does is to group the bits into units, sometimes called
frames, and see that each frame is correctly received.

The data link layer does its work by putting a special bit pattern on the start
and end of each frame, to mark them, as well as computing a checksum by

SEC. 2.1 LAYERED PROTOCOLS 39

adding up all the bytes in the frame in a certain way. The data link layer
appends the checksum to the frame. When the frame arrives, the receiver
recomputes the checksum from the data and compares the result to the checksum
following the frame. If they agree, the frame is considered correct and is
accepted. It they disagree, the receiver asks the sender to retransmit it, Frames
are assigned sequence numbers (in the header), so everyone can tell which is
which.

In Fig. 2-3 we see a (slightly pathological) example of A trying to send two
messages, 0 and 1, to B. At time 0, data message O is sent, but when it arrives,
at time 1, noise on the transmission line has caused it to be damaged, so the
checksum is wrong. B notices this, and at time 2 asks for a retransmission using
a control message. Unfortunately, at the same time, A is sending data message
1. When A gets the request for retransmission, it resends 0. However, when B
gets message 1, instead of the requested message O, it sends control message 1 to
A complaining that it wants O, not 1. When A sees this, it shrugs its shoulders
and sends message O for the third time.

Time B Event

0 Data O A sends data message O

!>

Data Q B gets 0, sees bad checksum

A sends data message 1
B comptains about the checksum

:
ol

Data 1 Control 0

:

Contro! 0 Data 1 Both messages arrive correctly

A retransmits data message 0

4 Data 0 B says: "l want 0, not 1"

Control 1

5 Control 1 Data 0 Both messages arrive correctly

Data 0 A retransmits data message O again

Bl

Data 0 B finally gets message O

i

Fig. 2-3. Discussion between a receiver and a sender in the data link layer.

The point here is not so much whether the protocol of Fig, 2-3 is a great one
(it is not), but rather to illustrate that in each layer there is a need for discussion
between the sender and the receiver. Typical messages are “‘Please retransmit
message n,” “I already retransmitted it,” “No you did not,” “Yes I did,” “All
right, have it your way, but send it again,” and so forth. This discussion takes

40 COMMUNICATION IN DISTRIBUTED SYSTEMS CHAP. 2

place in the header field, where various requests and responses are defined, and
parameters (such as frame numbers) can be supplied.

2.1.3. The Network Layer

On a LAN, there is usually no need for the sender to locate the receiver. It
just puts the message out on the network and the receiver takes it off. A wide-
area network, however, consists of a large number of machines, each with some
number of lines to other machines, rather like a large-scale map showing major
cities and roads connecting them. For a message to get from the sender to the
receiver it may have to make a number of hops, at each one choosing an outgo-
ing line to use. The question of how to choose the best path is called routing,
and is the primary task of the network layer.

The problem is complicated by the fact that the shortest route is not always
the best route. What really matters is the amount of delay on a given route,
which, in turn, is related to the amount of traffic and the number of messages
queued up for transmission over the various lines. The delay can thus change
over the course of time. Some routing algorithms try to adapt to changing loads,
whereas others are content to make decisions based on long-term averages.

Two network-layer protocols are in widespread use, one connection-oriented
and one connectionless. The connection-oriented one is called X.25, and is
favored by the operators of public networks, such as telephone companies and
the European PTTs. The X.25 user first sends a Call Request to the destination,
which can either accept or reject the proposed connection. If the connection is
accepted, the caller is given a connection identifier to use in subsequent
requests. In many cases, the network chooses a route from the sender to the
receiver during this setup, and uses it for subsequent traffic.

The connectionless one is called IP (Internet Protocol) and is part of the
DoD (U.S. Department of Defense) protocol suite. An IP packet (the technical
term for a message in the network layer) can be sent without any setup. Each IP
packet is routed to its destination independent of all others. No internal path is
selected and remembered as is often the case with X.25.

2.1.4. The Transport Layer

Packets can be lost on the way from the sender to the receiver. Although
some applications can handle their own error recovery, others prefer a reliable
connection. The job of the transport layer is to provide this service. The idea is
that the session layer should be able to deliver a message to the transport layer
with the expectation that it will be delivered without loss.

Upon receiving a message from the session layer, the transport layer breaks
it into pieces small enough for each to fit in a single packet, assigns each one a

SEC. 2.1 LAYERED PROTOCOLS 41

sequence number, and then sends them all. The discussion in the transport layer
header concerns which packets have been sent, which have been received, how
many more the receiver has room to accept, and similar topics.

Reliable transport connections (which by definition are connection-oriented)
can be built on top of either X.25 or IP. In the former case all the packets will
arrive in the correct sequence (if they arrive at all), but in the latter case it is
possible for one packet to take a different route and arrive earlier than the packet
sent before it. It is up to the transport layer software to put everything back in
order to maintain the illusion that a transport connection is like a big tube—you
put messages into it and they come out undamaged and in the same order in
which they went in.

The official ISO transport protocol has five variants, known as TP through
TP4. The differences relate to error handling and the ability to send several
transport connections over a single X.25 connection. The choice of which one
to use depends on the properties of the underlying network layer.

The DoD transport protocol is called TCP (Transmission Control Proto-
col) and 1s described in detail in (Comer, 1991). It is similar to TP4. The com-
bination TCP/IP is widely used at universities and on most UNIX systems. The
DoD protocol suite also supports a connectionless transport protocol called UDP
(Universal Datagram Protocol), which is essentially just IP with some minor
additions. User programs that do not need a connection-oriented protocol nor-
mally use UDP.

2.1.5. The Session Layer

The session layer is essentially an enhanced version of the transport layer. It
provides dialog control, to keep track of which party is currently talking, and it
provides synchronization facilities. The latter are useful to allow users to insert
checkpoints into long transfers, so that in the event of a crash it is only necessary
to go back to the last checkpoint, rather than all the way back to the beginning.
In practice, few applications are interested in the session layer and it is rarely
supported. It is not even present in the DoD protocol suite.

2.1.6. The Presentation Layer

Unlike the lower layers, which are concerned with getting the bits from the
sender to the receiver reliably and efficiently, the presentation layer is concerned
with the meaning of the bits. Most messages do not consist of random bit
strings, but more structured information such as people’s names, addresses,
amounts of money, and so on. In the presentation layer it is possible to define

42 COMMUNICATION IN DISTRIBUTED SYSTEMS CHAP. 2

records containing fields like these and then have the sender notify the receiver
that a message contains a particular record in a certain format. This makes it
easier for machines with different internal representations to communicate.

2.1.7. The Application Layer

The application layer is really just a collection of miscellaneous protocols
for common activities such as electronic mail, file transfer, and connecting
remote terminals to computers over a network. The best known of these are the
X.400 electronic mail protocol and the X.500 directory server. Neither this
layer nor the two layers directly under it will be of interest to us in this book.

2.2. ASYNCHRONOUS TRANSFER MODE NETWORKS

The OSI world sketched in the previous section was developed in the 1970s
and implemented (to some extent) in the 1980s. New developments in the 1990s
are overtaking OSI, certainly in the technology-driven lower layers. In this sec-
tion we will touch just briefly on some of these advances in networking, since
future distributed systems will very likely be built on them, and it is important
for operating system designers to be aware of them. For a more complete treat-
ment of the state-of-the-art in network technology, see (Kleinrock, 1992; and
Partridge, 1993, 1994).

In the past quarter century, computers have improved in performance by
many orders of magnitude. Networks have not. When the ARPANET, the
predecessor to the Internet, was inaugurated in 1969, it used 56 Kbps communi-
cation lines between the nodes. This was state-of-the-art communication then.
In the late 1970s and early 1980s, many of these lines were replaced by T1 lines
running at 1.5 Mbps. Eventually, the main backbone evolved into a T3 network
at 45 Mbps, but most lines on the Intemet are still T1 or slower.

New developments are suddenly about to make 155 Mbps the low-end stan-
dard, with major trunks running at 1 gigabit/sec and up (Catlett, 1992; Cheung,
1992; and Lyles and Swinehart, 1992). This rapid change will have an enor-
mous impact on distributed systems, making possible all kinds of applications
that were previously unthinkable, but it also brings new challenges. It is this
new technology that we will describe below.

2.2.1. What Is Asynchronous Transfer Mode?
In the late 1980s, the world’s telephone companies finally began to realize

that there was more to telecommunications than transmitting voice in 4 KHz
analog channels. It is true that data networks, such as X.25, existed for years,

SEC. 2.2 ASYNCHRONOUS TRANSFER MODE NETWORKS 43

but they were clearly stepchildren and frequently ran at 56 or 64 Kbps. Systems
like the Internet were regarded as academic curiosities, akin to a two-headed
cow in a circus sideshow. Analog voice was where the action (and money) was.

When the telephone companies decided to build networks for the 21st Cen-
tury, they faced a dilemma: voice traffic is smooth, needing a low, but constant
bandwidth, whereas data traffic is bursty, usually needing no bandwidth (when
there is no traffic), but sometimes needing a great deal for very short periods of
time. Neither traditional circuit switching (used in the Public Switched Tele-
phone Network) nor packet switching (used in the Internet) was suitable for both
kinds of traffic.

After much study, a hybrid form using fixed-size blocks over virtual circuits
was chosen as a compromise that gave reasonably good performance for both
types of traffic. This scheme, called ATM (Asynchronous Transfer Mode)
has become an international standard and is likely to play a major role in future
distributed systems, both local-area ones and wide-area ones. For tutorials on
ATM, see (Le Boudec, 1992; Minzer, 1989; and Newman, 1994),

The ATM model is that a sender first establishes a connection (i.e., a virtual
circuit) to the receiver or receivers. During connection establishment, a route is
determined from the sender to the receiver(s) and routing information is stored
in the switches along the way, Using this connection, packets can be sent, but
they are chopped up by the hardware into small, fixed-sized units called celis.
The cells for a given virtual circuit all follow the path stored in the switches.
When the connection is no longer needed, it is released and the routing informa-
tion purged from the switches.

This scheme has a number of advantages over traditional packet and circuit
switching. The most important one is that a single network can now be used to
transport an arbitrary mix of voice, data, broadcast television, videotapes, radio,
and other information efficiently, replacing what were previously separate net-
works (telephone, X.25, cable TV, etc.). New services, such as video conferenc-
ing for businesses, will also use it. In all cases, what the network sees is cells; it
does not care what is in them. This integration represents an enormous cost sav-
ing and simplification that will make it possible for each home and business to
have a single wire (or fiber) coming in for all its communication and information
needs. It will also make possible new applications, such as video-on-demand,
teleconferencing, and access to thousands of remote data bases.

Cell switching lends itself well to multicasting (one cell going to many des-
tinations), a technique needed for transmitting broadcast television to thousands
of houses at the same time. Conventional circuit switching, as used in the tele-
phone system, cannot handle this. Broadcast media, such as cable TV can, but
they cannot handle point-to-point traffic without wasting bandwidth (effectively
broadcasting every message). The advantage of cell switching is that it can han-
dle both point-to-point and multicasting efficiently.

44 COMMUNICATION IN DISTRIBUTED SYSTEMS CHAP. 2

Fixed-size cells allow rapid switching, something much harder to achieve
with current store-and-forward packet switches. They also eliminate the danger
of a small packet being delayed because a big one is hogging a needed line.
With cell switching, after each cell is transmitted , a new one can be sent, even a
new one belonging to a different packet.

ATM has its own protocol hierarchy, as shown in Fig. 2-4. The physical
layer has the same functionality as layer 1 in the OSI model. The ATM laycr
deals with cells and cell transport, including routing, so it covers OSI layer 2 and
part of layer 3. However, unlike OSI layer 2, the ATM layer does not recover
lost or damaged cells. The adaptation layer handles breaking packets into cells
and reassembling them at the other end, which does not appear explicitly in the
OSI model until layer 4. The service offered by the adaptation layer is not a per-
fectly reliable end-to-end service, so transport connections must be implemented
in the upper layers, for example, by using ATM cells to carry TCP/IP traffic.

;f Upper layers ?

Adaptation layer

ATM layer

Physical layer

Fig. 2-4. The ATM reference model.

In the following sections, we will examine the lowest three layers of Fig. 2-4
in turn, starting at the bottom and working our way up.

2.2.2. The ATM Physical Layer

An ATM adaptor board plugged into a computer can put out a stream of
cells onto a wire or fiber. The transmission stream must be continuous. When
there are no data to be sent, empty cells are transmitted, which means that in the
physical layer, ATM is really synchronous, not asynchronous. Within a virtual
circuit, however, it is asynchronous.

Alternatively, the adaptor board can use SONET (Synchronous Optical
NETwork) in the physical layer, putting its cells into the payload portion of
SONET frames. The virtue of this approach is compatibility with the internal
transmission system of AT&T and other carriers that use SONET. In Europe, a
system called SDH (Synchronous Digital Hierarchy) that is closely patterned
after SONET is available in some countries.

SEC. 2.2 ASYNCHRONOUS TRANSFER MODE NETWORKS 45

In SONET, the basic unit (analogous to a 193-bit T1 frame) is a 9 x 90 array
of bytes called a frame. Of these 810 bytes, 36 bytes are overhead, leaving 774
bytes of payload. One frame is transmitted every 125 usec, to match the tele-
phone system’s standard sampling rate of 8000 samples/sec, so the gross data
rate (including overhead) is 51.840 Mbps and the net data rate (excluding over-
head) is 49.536 Mbps.

These parameters were chosen after five years of tortuous negotiation
between U.S., European, Japanese, and other telephone companies in order to
handle the U.S. T3 data stream (44.736 Mbps) and the standards used by other
countries. The computer industry did not play a significant role here (a 9 x 90
array with 36 bytes of overhead is not something a computer scientist is likely to
propose).

The basic 51.840-Mbps channel is called QOC-1. It is possible to send a
group of n OC-1 frames as a group, which is designated OC-n when it is used
for n independent OC-1 channels and OC-nc (for concatenated) when used for a
single high-speed channel. Standards have been established for OC-3, OC-12,
OC-48, and OC-192. The most important of these for ATM are OC-3c, at
155.520 Mbps and OC-12c, at 622.080 Mbps, because computers can probably
produce data at these rates in the near future. For long-haul transmission within
the telephone system, OC-12 and OC-48 are the most widely used at present.

OC-3c SONET adaptors for computers are now available to allow a com-
puter to output SONET frames directly. OC-12c is expected shortly. Since
even OC-1 is overkill for a telephone, it is unlikely that many audio telephones
will ever speak ATM or SONET directly (ISDN will be used instead), but for
videophones ATM and SONET are ideal.

2.2.3. The ATM Layer

When ATM was being developed, two factions developed within the stan-
dards committee. The Europeans wanted 32-byte cells because these had a
small enough delay that echo suppressors would not be needed in most European
countries. The Americans, who already had echo suppressors, wanted 64-byte
cells due to their greater efficiency for data traffic.

The end result was a 48-byte cell, which no one really liked. It is too big for
voice and too small for data. To make it even worse, a S-byte header was added,
giving a 53-byte cell containing a 48-byte data field. Note that a 53-byte cell is
not a good match for a 774-byte SONET payload, so ATM cells will span
SONET frames. Two separate levels of synchronization are thus needed: one to
detect the start of a SONET frame, and one to detect the start of the first full
ATM cell within the SONET payload. However, a standard for packing ATM
cells into SONET frames exists, and the entire layer can be done in hardware.

46 COMMUNICATION IN DISTRIBUTED SYSTEMS CHAP. 2

The layout of a cell header from a computer to the first ATM switch is
shown in Fig. 2-5. Unfortunately, the layout of a cell header between two ATM
switches is different, with the GFC field being replaced by four more bits for the
VPI field. In the view of many, this is unfortunate, since it introduces an
unnecessary distinction between computer-to-switch and switch-to-switch cells
and hence adaptor hardware. Both kinds of cells have 48-byte payloads directly
following the header.

Bits 4 8 16 3

GFC{ VPI VClI CRC

vrOl—

Payload type

GFC = Generic flow control

VPI = Virtual path idenifier

VCI = Virtual channel identifier

CLP = Cell loss priority

CRC = Cyclic redundancy checksum

Fig. 2-5. User-to-network cell header layout.

The GFC may some day be used for flow control, if an agreement on how to
do it can be achieved. The VPI and VCI fields together identify which path and
virtual circuit a cell belongs to. Routing tables along the way use this informa-
tion for routing. These fields are modified at each hop along the path. The pur-
pose of the VPI field is to group together a collection of virtual circuits for the
same destination and make it possible for a carrier to reroute all of them without
having to examine the V(I field.

The Payload type field distinguishes data cells from control cells, and
further identifies several kinds of control cells. The CLP field can be used to
mark some cells as less important than others, so if congestion occurs, the least
important ones will be the ones dropped. Finally, there is a 1-byte checksum
over the header (but not the data).

2.2.4. The ATM Adaptation Layer

At 155 Mbps, a cell can arrive every 3 usec. Few, if any, current CPUs can
handle in excess of 300,000 interrupts/sec. Thus a mechanism is needed to
allow a computer to send a packet and to have the ATM hardware break it into
cells, transmit the cells, and then have them reassembled at the other end, gen-
erating one interrupt per packet, not per cell. This disassembly/reassembly is
the job of the adaptation layer. It is expected that most host adaptor boards will

SEC. 2.2 ASYNCHRONOUS TRANSFER MODE NETWORKS 47

run the adaptation layer on the board and give one interrupt per incoming
packet, not one per incoming cell.

Unfortunately, here too, the standards writers did not get it quite right. Ori-
ginally adaptation layers were defined for four classes of traffic:

1. Constant bit rate traffic (for audio and video).
2. Variable bit rate traffic but with bounded delay.
3. Connection-oriented data traffic.

4. Connectionless data traffic.

Quickly it was discovered that classes 3 and 4 were essentially the same, so they
were merged into-a new class, 3/4. At that point the computer industry woke up
from a short nap and noticed that none of the adaptation layers were suitable for
data traffic, so they drafted AAL 5, for computer-to-computer traffic (Suzuki,
1994). Its nickname, SEAL (Simple and Efficient Adaptation Layer), hints at
what its designers thought of the other three AAL layers. (In all fairness, it
should be pointed out that getting people from two industries with very different
traditions, telephony and computers, to agree to a standard at all was a nontrivial
achievement.)

Let us focus on SEAL, due to its simplicity. It uses only one bit in the ATM
header, one of the bits in the Payload type field. This bit is normally O, but is set
to 1 in the last cell of a packet. The last cell contains a trailer in the final 8
bytes. In most cases there will be some padding (with zeros) between the end of
the packet and the start of the trailer. With SEAL, the destination just assembles
incoming cells for each virtual circuit until it finds one with the end-of-packet
bit set. Then it extracts and processes the trailer.

The trailer has four fields. The first two are each 1 byte long and are not
used. Then comes a 2-byte field giving the packet length, and a 4-byte check-
sum over the packet, padding, and trailer.

2.2.5. ATM Switching

ATM networks are built up of copper or optical cables and switches. Figure
2-6(a) illustrates a network with four switches. Cells originating at any of the
eight computers attached to the system can be switched to any of the other com-
puters by traversing one or more switches. Each of these switches has four
ports, each used for both input and output.

The inside of a generic switch is illustrated in Fig. 2-6(b). It has input lines
and output lines and a parallel switching fabric that connects them. Because a
cell has to be switched in 3 psec (at OC-3), and as many cells as there are input
lines can arrive at once, parallel switching is essential.

48 COMMUNICATION IN DISTRIBUTED SYSTEMS CHAP. 2

- Outputs
" ATM switch T T T T

| Ouput
. queue
Switching fabric

iy -y
S U e e

Inputs
(a) (b)

Fig. 2-6. (a) An ATM switching network. (b) Inside one switch,

When a cell arrives, its VPI and VCI fields are examined. Based on these
and information stored in the switch when the virtual circuit was established, the
cell is routed to the correct output port. Although the standard allows cells to be
dropped, it requires that those delivered must be delivered in order.

A problem arises when two cells arrive at the same time on different input
lines and need to go to the same output port. Just throwing one of them away is
allowed by the standard, but if your switch drops more than 1 cell in 10'?, you
are unlikely to sell many switches. An alternative scheme is to pick one of them
at random and forward it, holding the other cell until later. In the next round,
this algorithm is applied again. If two ports each have streams of cells for the
same destination, substantial input queues will build up, blocking other cells
behind them that want to go to output ports that are free. This problem is known
as head-of-line blocking.

A different switch design copies the cell into a queue associated with the
output buffer and lets it wait there, instead of keeping it in the input buffer. This
approach eliminates head-of-line blocking and gives better performance. It is
also possible for a switch to have a pool of buffers that can be used for both
input and output buffering. Still another possibility is to buffer on the input side,
but allow the second or third cell in line to be switched, even if the first one can-
not be.

Many other switch designs have been proposed and tried. These include
time division switches using shared memory, buses or rings, as well as space
division switches with one or more paths between each input and each output.

SEC. 2.2 ASYNCHRONOUS TRANSFER MODE NETWORKS 49

Some of these switches are discussed in (Ahmadi and Denzel, 1989; Anderson
et al., 1993; Gopal et al., 1992; Pattavina, 1993; Rooholamini et al., 1994; and
Zegura, 1993).

2.2.6. Some Implications of ATM for Distributed Systems

The availability of ATM networks at 155 Mbps, 622 Mbps, and potentially
at 2.5 Gbps has some major implications for the design of distributed systems.
For the most part, the effects are due primarily to the enormously high
bandwidth suddenly available, rather than due to specific properties of ATM
networks. The effects are most pronounced on wide-area distributed systems.

To start with, consider sending a 1-Mbit file across the United States and
waiting for an. acknowledgement that it has arrived correctly. The speed of light
in copper wire or fiber optics is about 2/3 the speed of light in vacuum, so it
takes a bit about 15 msec to go across the US one way. At 64 Kbps, it takes
about 15.6 sec to pump the bits out, so the additional 30 msec round-trip delay
does not add much. At 622 Mbps, it takes 1/622 of a second, or about 1.6 msec,
to push the whole file out the door. In the best case, the reply can come back
after 31.6 msec, during which time the line was idle for 30 msec, or 95 percent
of the total. As speeds go up, the time-to-reply asymptotically approaches 30
msec, and the fraction of the available virtual circuit bandwidth that can be used
approaches 0. For messages shorter than 1 Mbps, which are common in distri-
buted systems, it is even worse. The conclusion is: For high-speed wide-area
distributed systems, new protocols and system architectures will be needed to
deal with the latency in many applications, especially interactive ones.

Another problem is flow control. Suppose that we have a truly large file,
say a videotape consisting of 10 GB. The sender begins transmitting at 622
Mbps, and the data begin to roll in at the receiver. The receiver may not happen
to have a 10 GB buffer handy, so it sends back a cell saying: STOP. By the time
the STOP cell has gotten back to the sender, 30 msec later, almost 20 Mbits of
data are under way. If most of these are lost due to inadequate buffer space,
they will have to be transmitted again. Using a traditional sliding window proto-
col gets us back to the situation we just had, namely, if the sender is allowed to
send only 1 Mbit and then has to wait for an acknowledgement, the virtual cir-
cuit is 95 percent idle. Alternatively, a large amount of buffering capacity can
be put in the switches and adaptor boards, but at increased cost. Still another
possibility is rate control, in which the sender and receiver agree in advance how
many bits/sec the sender may transmit. Flow control and congestion control in
ATM networks are discussed in (Eckberg, 1992; Hong and Suda, 1991; and
Trajkovic and Golestani, 1992). A bibliography with over 250 references to per-
formance in ATM networks is given in (Nikolaidis and Onvural, 1992).

A different approach to dealing with the now-huge 30 msec latency is to

50 COMMUNICATION IN DISTRIBUTED SYSTEMS CHAP. 2

send some bits, then stop the sending process and run something else while wait-
ing for the reply. The trouble with this strategy is that computers are becoming
so inexpensive, that for many applications, each process has its own computer,
so there is nothing else to run. Wasting the CPU time is not important, since it
is cheap, but it is clear that going from 64 Kbps to 622 Mbps has not bought a
10,000-fold gain in performance, even in communication-limited applications.

The effect of the transcontinental delay can show up in various ways. For
example, if some application program in New York has to make 20 sequential
requests from a server in California to get an answer, the 600-msec delay will be
noticeable to the user, as people find delays above 200 msec annoying.

Alternatively, we could move the computation itself to the machine in Cali-
fornia and let each user keystroke be sent as a separate cell across the country
and come back to be displayed. Doing this will add 60 msec to each keystroke,
which no one will notice. However, this reasoning quickly leads us to abandon-
ing the idea of a distributed system and putting all the computing in one place,
with remote users. In effect, we have built a big centralized timesharing system
with just the users distributed.

One observation that does relate to specific properties of ATM is the fact
that switches are permitted to drop cells if they get congested. Dropping even
one cell probably means waiting for a timeout and having the whole packet be
retransmitted. For services that need a uniform rate, such as playing music, this
could be a problem. (Oddly enough, the ear is far more sensitive than the eye to
irregular delivery.)

As a consequence of these and other problems, while high-speed networks
in general and ATM in particular introduce new opportunities, taking advantage
of them will not be simple. Considerable research will be needed before we
know how to deal with them effectively.

2.3. THE CLIENT-SERVER MODEL

While ATM networks are going to be important in the future, for the
moment they are too expensive for most applications, so let us go back to more
conventional networking. At first glance, layered protocols along the OSI lines
look like a fine way to organize a distributed system. In effect, a sender sets up
a connection (a bit pipe) with the receiver, and then pumps the bits in, which
arrive without error, in order, at the receiver. What could be wrong with this?

Plenty. To start with, look at Fig. 2-2. The existence of all those headers
generates a considerable amount of overhead. Every time a message is sent it
must be processed by about half a dozen layers, each one generating and adding
a header on the way down or removing and examining a header on the way up.
All of this work takes time. On wide-area networks, where the number of

SEC. 2.3 THE CLIENT-SERVER MODEL 51

bits/sec that can be sent is typically fairly low (often as little as 64K bits/sec),
this overhead is not serious. The limiting factor is the capacity of the lines, and
even with all the header manipulation, the CPUs are fast enough to keep the
lines running at full speed. Thus a wide-area distributed system can probably
use the OSI or TCP/IP protocols without any loss in (the already meager) perfor-
mance. Aith ATM, even here serious problems may arise.

However, for a LAN-based distributed system, the protocol overhead is
often substantial. So much CPU time is wasted running protocols that the effec-
tive throughput over the LAN is often only a fraction of what the LAN can do.
As a consequence, most LAN-based distributed systems do not use layered pro-
tocols at all, or if they do, they use only a subset of the entire protocol stack.

In addition, the OSI model addresses only a small aspect of the problem—
getting the bits-from the sender to the receiver (and in the upper layers, what
they mean). It does not say anything about how the distributed system should be
structured. Something more is needed.

2.3.1. Clients and Servers

This something is often the client-server model that we introduced in the
preceding chapter. The idea behind this model is to structure the operating sys-
tem as a group of cooperating processes, called servers, that offer services to
the users, called clients. The client and server machines normally all run the
same microkernel, with both the clients and servers running as user processes, as
we saw earlier. A machine may run a single process, or it may run multiple
clients, multiple servers, or a mixture of the two.

Layer

7
6
5 Request/Reply

Request

Reply 3
Kernel Kernel

2 Data link
1 Physical

Network

(a) (b)

Fig. 2-7. The client-server model. Although all message passing is actually
done by the kernels, this simplified form of drawing will be used when there is
no ambiguity.

52 COMMUNICATION IN DISTRIBUTED SYSTEMS CHAP. 2

To avoid the considerable overhead of the connection-oriented protocols
such as OSI or TCP/IP, the client server model is usually based on a simple,
connectionless request/reply protocol. The client sends a request message to
the server asking for some service (e.g., read a block of a file). The server does
the work and returns the data requested or an error code indicating why the work
could not be performed, as depicted in Fig. 2-7(a).

The primary advantage of Fig. 2-7(a) is the simplicity. The client sends a
request and gets an answer. No connection has to be established before use or
torn down afterward. The reply message serves as the acknowledgement to the
request.

From the simplicity comes another advantage: efficiency. The protocol
stack is shorter and thus more efficient. Assuming that all the machines are
identical, only three levels of protocol are needed, as shown in Fig. 2-7(b). The
physical and data link protocols take care of getting the packets from client to
server and back. These are always handled by the hardware, for example, an
Ethernet or token ring chip. No routing is needed and no connections are esta-
blished, so layers 3 and 4 are not needed. Layer S is the request/reply protocol.
It defines the set of legal requests and the set of legal replies to these requests.
There is no session management because there are no sessions. The upper
layers are not needed either.

Due to this simple structure, the communication services provided by the
(micro)kernel can, for example, be reduced to two system calls, one for sending
messages and one for receiving them. These system calls can be invoked
through library procedures, say, send(dest, &mptr) and receive(addr, &mptr).
The former sends the message pointed to by mptr to a process identified by dest
and causes the caller to be blocked until the message has been sent. The latter
causes the caller to be blocked until a message arrives. When one does, the
message is copied to the buffer pointed to by mptr and the caller is unblocked.
The addr parameter specifies the address to which the receiver is listening.
Many variants of these two procedures and their parameters are possible. We
will discuss some of these later in this chapter.

2.3.2. An Example Client and Server

To provide more insight into how clients and servers work, in this section
we will present an outline of a client and a file server in C. Both the client and
the server need to share some definitions, so we will collect these into a file
called header.h, which is shown in Fig. 2-8. Both the client and server include
these using the

#include <header.h>

statement. This statement has the effect of causing a preprocessor to literally

SEC. 2.3 THE CLIENT-SERVER MODEL 53

insert the entire contents of header.h into the source program just before the
compiler starts compiling the program.
/* Definitions needed by clients and servers. */

#define MAX_PATH 255 /* maximum length of a file name */
#define BUF_SIZE 1024 /* how much data to transfer at once */
#define FILE_SERVER 243 /* file server’'s network address */

/* Definitions of the allowed operations. */

#define CREATE 1 /* create a new file */

#define READ 2 /* read a piece of a file and return it */
#define WRITE 3 /* write a piece of a file */

#define DELETE 4 /* delete an existing file */

/* Error codes. */

#define OK 0 /* operation performed correctly */
#define E_BAD_OPCODE -1 /* unknown operation requested */

#define E_BAD_PARAM -2 /* error in a parameter */

#define E_IO -3 /* disk error or other I/0 error */

/* Definition of the message format. */
struct message {

long source; /* sender’s identity */
long dest; /* receiver’s identity */
long opcode; /* which operation: CREATE, READ, etc. */
long count; /* how many bytes to transfer */
long offset; /* where in file to start reading or writing
long extral; /* extra field */
long extra2; /* extra field */
long result; /* result of the operation reported here */
char name[MAX_PATH]; /* name of the file being operated on */
char data[BUF_SIZE]; /* data to be read or written */

b

Fig. 2-8. The header.h file used by the client and server.

Let us first take a look at header.h. It starts out by defining two constants,
MAX_PATH and BUF_SIZE, that determine the size of two arrays needed in the
message. The former tells how many characters a file name (i.e., a path name
like /usr/ast/books/opsys/chapterl .t) may contain. The latter fixes the amount of
data that may be read or written in one operation by setting the buffer size. The
next constant, FILE_SERVER, provides the network address of the file server so
that clients can send messages to it.

The second group of constants defines the operation numbers. These are
needed to ensure that the client and server agree on which code will represent a
READ, which code will represent a WRITE, and so on. We have only shown four
here, but in a real system there would normally be more.

Every reply contains a result code. If the operation succeeds, the result code
often contains useful information (such as the number of bytes actually read). If
there is no value to be returned (such as when a file is created), the value OK is

54 COMMUNICATION IN DISTRIBUTED SYSTEMS CHAP. 2

used. If the operation is unsuccessful for some reason, the result code tells why,
using codes such as E_BAD_OPCODE, E_BAD_PARAM, and so on.

Finally, we come to the most important part of header.h, the definition of
the message itself. In our example it is a structure with 10 fields. All requests
from the client to the server use this format, as do all replies. In a real system,
one would probably not have a fixed format message (because not all the fields
are needed in all cases), but it makes the explanation simpler here. The source
and dest fields identify the sender and receiver, respectively. The opcode field
is one of the operations defined above, that is, CREATE, READ, WRITE, or
DELETE. The count and offset fields are used for parameters, and two other
fields, extral and extra2, are defined to provide space for additional parameters
in case the server is expanded in the future. The result field is not used for
client-to-server requests but holds the result value for server-to-client replies.
Finally, we have two arrays. The first, name, holds the name of the file being
accessed. The second, data, holds the data sent back on a reply to READ or the
data sent to the server on a WRITE.

Let us now look at the code, as outlined in Fig. 2-9. In (a) we have the
server; in (b) we have the client. The server is straightforward. The main loop
starts out by calling receive to get a request message. The first parameter identi-
fies the caller by giving its address, and the second parameter points to a mes-
sage buffer where the incoming message can be stored. The library procedure
receive traps to the kernel to suspend the server until a message arrives. When
one comes in, the server continues and dispatches on the opcode type. For each
opcode, a different procedure is called. The incoming message and a buffer for
the outgoing message are given as parameters. The procedure examines the
incoming message, m/, and builds the reply in m2. It also returns a function
value that is sent back in the result field. After the send has completed, the
server goes back to the top of the loop to execute receive and wait for the next
incoming message.

In Fig. 2-9(b) we have a procedure that copies a file using the server. Its
body consists of a loop that reads one block from the source file and writes it to
the destination file. The loop is repeated until the source file has been copied
completely, as indicated by a zero or negative return code from the read.

The first part of the loop is concerned with building a message for the READ
operation and sending it to the server. After the reply has been received, the
second part of the loop is entered, which takes the data just received and sends it
back to the server in the form of a WRITE to the destination file. The programs
of Fig. 2-9 are just sketches of the code. Many details have been omitted. For
example, the do_xxx procedures (the ones that actually do the work) are not
shown, and no error checking is done. Still, the general idea of how a client and
a server interact should be clear. In the following sections we will look at some
of the issues that relate to clients and servers in more detail.

SEC. 2.3 THE CLIENT-SERVER MODEL 55

nclude <header.h>
id main(void)

struct message m1, m2; /* incoming and outgoing messages */
int r; /* result code */
while (1) { /* server runs forever */
receive(FILE_SERVER,&m1); /* block waiting for a message */
switch(m1.opcode) { /* dispatch on type of request */
case CREATE: r = do_create(&m1, &m2); break;
case READ: r = do_read(&m1, &m2); break;
case WRITE: r = do_write(&mi, &m2); break;
case DELETE: r = do_delete(&m1, &m2); break,
default: r = E_BAD_OPCODE;
}
m2.result = r; /* return result to client */
send(m1.source, &m2); /* send reply */
}
(a)
nclude <header.h>
t copy(char *src, char *dst) /* procedure to copy file using the server
struct message mil; /* message buffer */
long position; /* current file position */
long client = 110; /* client’'s address */
initialize(); /* prepare for execution */
position = 0O;
do {
/* Get a block of data from the source file. */
m1.opcode = READ; /* operation is a read */
m1.offset = position; /* current position in the file */
m1. count = BUF_SIZE; /* how many bytes to read */
strcpy(&m1.name, src), /* copy name of file to be read to message
send (FILE_SERVER, &m1); /* send the message to the file server */
receive(client, &mi1); /* block waiting for the reply */

/* Write the data just received to the destination file. */

m1.opcode = WRITE; /* operation is a write */
m1.offset = position; /* current position in the file */
mi. count = mi.result; /* how many bytes to write */
strcpy(&m1.name, dst); /* copy name of file to be written to buf
send (FILE_SERVER, &m1); /* send the message to the file server */
receive(client, &m1); /* block waiting for the reply */
position += mi.result; /* mi.result is number of bytes written */
} while (m1.result > 0); /* iterate until done */
return{mi.result >= 0 ? OK : mi.result); /* return OK or error code *

{b)

Fig. 2-9. (a) A sample server. (b) A client procedure using that server to copy
a file.

56 COMMUNICATION IN DISTRIBUTED SYSTEMS CHAP. 2
2.3.3. Addressing

In order for a client to send a message to a server, it must know the server’s
address. In the example of the preceding section, the server’s address was sim-
ply hardwired into header.h as a constant. While this strategy might work in an
especially simple system, usually a more sophisticated form of addressing is
needed. In this section we will describe some issues concerning addressing.

In our example, the file server has been assigned a numerical address (243),
but we have not really specified what this means. In particular, does it refer to a
specific machine, or to a specific process? If it refers to a specific machine, the
sending kernel can extract it from the message structure and use it as the
hardware address for sending the packet to the server. All the sending kernel
has to do then is build a frame using the 243 as the data link address and put the
frame out on the LAN. The server’s interface board will see the frame, recog-
nize 243 as its own address, and accept it.

If there is only one process running on the destination machine, the kernel
will know what to do with the incoming message—give it to the one and only
process running there. However, what happens if there arc several processes
running on the destination machine? Which one gets the message? The kernel
has no way of knowing. Consequently, a schcme that uses network addresses to
identify processes means that only one process can run on each machine. While
this limitation is not fatal, it is sometimes a serious restriction.

An alternative addressing system sends messages to processes rather than to
machines. Although this method eliminates all ambiguity about who the real
recipient is, it does introduce the problem of how processes are identified. One
common scheme is to use two part names, specifying both a machine and a pro-
cess number. Thus 243.4 or 4@?243 or something similar designates process 4
on machine 243. The machine number is used by the kernel to get the message
correctly delivered to the proper machine, and the process number is used by the
kernel on that machine to determine which process the message is intended for.
A nice feature of this approach is that every machine can number its processes
starting at 0. No global coordination is needed because there is never any ambi-
guity between process 0 on machine 243 and process 0 on machine 199. The
former is 243.0 and the latter is 199.0. This scheme is illustrated in Fig. 2-10(a).

A slight variation on this addressing scheme uses machine.local-id instead
of machine.process. The local-id field is normally a randomly chosen 16-bit or
32-bit integer (or the next one in sequence). One process, typically a server,
starts up by making a system call to tell the kernel that it wants to listen to
local-id. Later, when a message comes in addressed to machine.local __id, the
kernel knows which process to give the message to. Most communication in
Berkeley UNIX, for example, uses this method, with 32-bit Internet addresses
used for specifying machines and 16-bit numbers for the /ocal-id fields.

SEC. 2.3 THE CLIENT-SERVER MODEL 57

Client Server

R
OFAD] [OFA®] [EFACKH®
7

Y

2 . 4) 4 2
1 2
Kernel e
Network
1: Request to 243.0 1: Broadcast 1: Lookup
2: Reply to 199.0 2: Here | am 2: NS reply
3: Request 3. Request
4: Reply 4: Reply
(a) (b) (c)

Fig. 2-10.(a) Machine.process addressing. (b) Process addressing with
broadcasting. (c) Address lookup via a name server.

Nevertheless, machine.process a