Graph Coloring problem Using Backtracking

- Presented by:Bharti Sethi Assistant Prof. in Deptt. Of CSE CDLSIET Panniwala mota (Sirsa)

What is Coloring?

- Graph Coloring is an assignment of colors (or any distinct marks) to the vertices of a graph. Strictly speaking, a coloring is a proper coloring if no two adjacent vertices have the same color.

Coloring Planar graphs

Definition: A graph is planar if it can be drawn in a plane without edge-crossings.

The four color theorem: For every planar graph, the chromatic number is ≤ 4.

The Four-Color Theorem

- The four color theorem states that any planar map can be colored with at most four colors.
- In graph terminology, this means that using at most four colors, any planar graph can have its nodes colored such that no two adjacent nodes have the same color.
- Four-color conjecture - Francis Guthrie, 1852 (F.G.)
- Many incomplete proofs (Kempe).
-5-color theorem proved in 1890 (Heawood)
- 4-color theorem finally proved in 1977 (Appel, Haken)
- First major computer-based proof

Vertex Coloring

- A vertex coloring is an assignment of labels or colors to each vertex of a graph such that no edge connects two identically colored vertices

Edge Coloring

- Similar to vertex coloring, except edges are color.
- Adjacent edges have different colors.

Edge Coloring

- Every edge-coloring problem can be transformed into a vertex-coloring problem
- Coloring the edges of graph G is the same as coloring the vertices in $L(G)$
- Not every vertex-coloring problem can be transformed to an edge-coloring problem
- Every graph has a line graph, but not every graph is a line graph of some other graph

Properties

- K-Coloring
- A k-coloring of a graph G is a mapping of $\mathrm{V}(\mathrm{G})$ onto the integers $1 . . \mathrm{k}$ such that adjacent vertices map into different integers.
- A k-coloring partitions $\mathrm{V}(\mathrm{G})$ into k disjoint subsets such that vertices from different subsets have different colors.

Terminology

- K-colorable
- A graph G is k-colorable if it has a k-coloring.
- Chromatic Number
- The smallest integer k for which G is k-colorable is called the chromatic number of G , is denoted by the $\chi(\mathrm{G})$.

Backtracking Algorithm

\Rightarrow The idea is to assign colors one by one to different vertices, starting from the vertex 0 . Before assigning a color, we check for safety by considering already assigned colors to the adjacent vertices.
>If we find a color assignment which is safe, we mark the color assignment as part of solution.
>lf we do not a find color due to clashes then we backtrack and return false.

NP hard problem

$\underline{\boldsymbol{N P}}$: the class of decision problems that are solvable in polynomial time on a nondeterministic machine (or with a nondeterministic algorithm)

- (A deterministic computer is what we know)
- A nondeterministic computer is one that can "guess" the right answer or solution think of a nondeterministic computer as a parallel machine that can freely spawn an infinite number of processes
- Thus $N P$ can also be thought of as the class of problems whose solutions can be verified in polynomial time
- Note that $N P$ stands for "Nondeterministic Polynomial-time"

Examples Of NP hard problem

- Fractional Knapsack
- Sorting
- Others?
- Graph Coloring
- Satisfiability (SAT)
- the problem of deciding whether a given Boolean formula is satisfiable.

Applications of Graph Coloring

- Many problems can be formulated as a graph coloring problem including Time Tabling, Scheduling, Register Allocation, Channel Assignment.
- A lot of research has been done in this area so much is already known about the problem space.

Thank You

