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This book presents techniques that have been applied successfully in solving
power system problems with a digital computer. [t can thus serve as a text for
advanced power system courses to inform prospective power engineers of methods
currently emploved in the electric utility industry. Recause of the increasing
use of the computer as an indispensable tool in power system engineering, this
book will also serve as a basic reference for power system engineers responsible
for the development of computer applications.

The material contained in the text has been developed from notes for
special two-week courses offered since 1964 at Purdue University, The University
of Wisconsin and the University of Santa Clara. These courses were attended
by representatives of universitics, electrie utilities, and equipment manufacturers,

Solution techniques are presented for the three problems encountered moxt
freggiontly in power system analysis, namely, short circuit, load flow, and power
svstem stability.  In addition to an enginecring description of these problenis,
the mathematical techniques that are required for a computer solution are
described.  Thus, relevant material is included from matrix algebra and numeri-
cal analysis.  Itis assumed, however, that the reader has a gencral understanding
of elementary power system analysis.

Chapter 1 presents, as a hrief introduction. the impact of computers on
poser system engineering, the orientation of enginecring problems to ecomputers,
and the advantages of digital computation. Chapter 2 covers the baxic principles
of matrix alzebra and provides sufficient backzround in matrix theory for the
remainder of the book.  For readers familiar with matrix teehniques, this ehapter
serves as a review and establishes the notation used throughout the text.  Inei-
denee and network matrices are introduced in Chapter 3, which presents the
teehiniques for deseribing the geometric structure of a network and outlines the
transformations required to derive network matrices.  The formation of these
matrices is the first step in the analvsix of power system problems.  Chapter 4
presents algorithme which can be used in an alternative method for the forma-
tion of certain network matrices. These algorithms have proved to be effective
for use in computer calculation.  The methods described in Chapters 3 and 4 are
developed for single-phase representation of power systems. Chapter 3 extends



these methods for three-phase representation. The application of network
matrices to short circuit calculations is presented in Chapter 6. Several
methods are included and a typical computer prograni is described to illustrate a
practical application of the techniques.

Chapter 7 contains a briel introduction to the solution of lincar and ron-
linear simultancous algebraic equations,  This materal is presented ina manner
that affords direct application to the solution of the load flow probleni. The
formulation and solution of the load flow problem iz presented in Chapter S,
This chapter also describes the procedures for handling voltage-controlled Luses,
transformers, and tie line control. The different methods are compared from
several points of view and a description is given of an actual program u~cd for
load flow calculations. In a mauner similar to that in Chapter 7, Chapter @
introduces methods for the numerical solution of the differential equations that
are required for transient stability studies.  Chupter 10 covers the formubation
and solution techniques emplaved in transient studies and presents procedures
for the detailed representation of synchronous and induction machines, exciter
and governor systems, and the distance relays. An actual trunsient stability
computer program is described.

The first efforts in the development of this material were made in the carly
1950s at the American Electric Power Service Corporation as a result of the
interest in the application of computers to the planning and operation of electric
power systems. In 1959, the authors had an opportunity to work together as
members of the staff of the American Electric Power Service Corporation and
continued to work together on & part-time basis for several years. Thisx made
possible the further development of basic computer methods established in
previous years‘:

This research work was endorsed enthusiastically by the management of the
American Electric Power Company. The authors wish to express their apprecia-
tion for this support.

It is a pleasure also to acknowledge the contributions of those who have
helped in the preparation of this book. The authors would like particularly to
thank Jorge F. Dopazo, who studied the text in detail and made many sugges-
tions; Marjorie Watson, for her contribution related to the mathematical tech-
niques and for editing the manuscript; and G. Robert Bailey, Dennis W. Johnston,
Kasi Nagappan, Janice F. Hohenstein, and other members of the Engineering
Analysis and Computer Division. The authors would like also to thank Profes-
sors Arun G. Phadke and Danicl K. Reitun of The University of Wiseonsin for
their helpful comments in reviewing the text. Last, but certainly not least,
sincere thanks to Constance Aquila for her excellent work in the typing and
general preparation of the manuscript.

Glenn W. Stagg
Ahmed H. El-Abiad
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1.1 Historical note

The great technical advances in the design and production of commercial
and seientific general-purpose digital computers since the carly 1950s have
placed a powerful tool at the disposal of the engineering profession.  This
advancement has made cconomically feasible the utilization of digital
eomputers for routine caleulations encountered in everyday engincering
work.  In addition. it Tes provided the capability for performing more
advunced engineering and =cientific computations that were previously
impossible because of their complex or time-consuming nature.  All
these trends have inercased immensely the interest in digital computers
and have necessitated u better understanding of the engineering and
mathematicad bases for problem solving,

The planning, design, and operation of power svstems require con-
tinuous and comprehensive analysis to cvaluate current system per-
formance and to ascertain the effectiveness of alternative plans for system
expansion.  These studies play an important role in providing a high
standard of power system reliability and ensuring the maximum utiliza-
tion of capital investment.

The computational task of determining power flows and voltage
Jevels resulting from a single operating condition for even a small network
is all but insurmountable if performed by manual methods. The need
for computational aids in power system engincering led in 1929 to the
design of a special-purpose analog computer called an ac network analyzer.
This device made possible the study of a greater variety of system oper-
ating conditions for both present and future system designs. It provided
the ability to determine power flows and system voltages during normal
and emergency conditions and to study the transient behavior of the
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system resulting from fault conditions and switching operations. By the
middle 1950s 50 network analyzers were in operation in the United Stutes
and Canada and were indispensable tools to planning, relaying, and oper-
ating engineers.

The earliest application of digital computers to power system prob-
lems dates back to the late 1940s.  However, most of the early applica-
tions were limited in scope because of the small capacity of the punched
card calculators gencrally in use at that time.  The availability of large-
scale digital computers in the middle 1950s provided equipment of sufli-
cient capacity and speed to mect the requirements of major power system
problems. In 1957 the Amecrican Electric Power Service Corporation
completed a large-scale load flow program for the IBAI 704 which calcu-
lated the voltages and power flows for a specified power system netwaork.

The initial application of the load flow program to transmission
planning studies proved so successful that all subsequent studies employed
the digital computer instead of the network unadyzer.  The success of
this program led to the development of programs for short circuit and
transient stability calculations. Today the computer is an indispensable
tool in all phases of power system planning, design, and operation.

1.2 Impgact of computers

The development of computer technology has provided the following
advantages to power system engineering:

1. More efficient and economic means of performing routine engineering
calculations required in the planning, design, and operation of a
power system

2. A better utilization of engineering talent by relieving the engincer
from tedious hand ecalculations and permitting him to spend more
time on technical work

3. The ability to perform more effcctive engineering studies by applying
caleulating procedures to obtain a number of alternate solutions for a
particular problem to provide a broad base for engincering decisions

4. The capability of performing studies which heretofore were not possi-
ble because of the volumec of caleulations involved

Two major factors which have contributed to the realization of these
benefits are the declining cost of computing equipment and the develop-
ment of efficient computational techniques. Now that a substantial
reduction in computing cost has been cffected, principal effort must be
directed toward the orientation of engineering problems to computer
solutions.



Chapter 1 Introduction 3
1.3 Orientation of engineering problems to computers

The process of applying a computer to the solution of engineering prob-
lems involves a number of distinct steps. These steps are:

1. Problem definition Imtially, the problem must be defined precisely
and the objectives determined.  This may be the most difficult step in
the entire process.  Consfderation must be given to the pertinent data
available for input, the scope of the problem and its limitations, the desired
results, and their relative importance in making an engineering decision.
This phase requires the judgement of experienced and capable engineers.

2. Mathematical formulation After the problem has been defined, it is
necessary to develop a mathematical model to represent the physical
system. This requires specifying the characteristics of individual system
components as well as the relations which govern the interconnection of
the elements.  Different mathematical models may be used to represent
the same system and, for many problems, complementary (dual) formula-
tions may be obtained. One formulation may result in a different number
of equations than ancther as, for example, in the case of network problems
which can be solved using either loop equations or node equations. The
mathematical formulation of the problem, therefore, includes the design
of a number of models and the selection of the best model to describe the
physical system.

3. Selection of a solution {echnique The formulation of most engineering
problems involves mathematical expressions, such as sets of nonlinear
equations, differential equations, and trigonometric functions, which
cannot be evaluated directly by a digital computer. A computer is
capable of performing only the four basic arithmetic operations of addi-
tion, subtraction, multiplication, and division. A solution for any
problem, therefore, must be obtained by numerical techniques which
employ the four bLusic arithmetic operations. It is important in this
phase to select a method which is practical for machine computation and,
in particular, will produce the desired results in a reasonable amount of
computer time.  Since numerical approaches involve a number of assump-
fions, earcful consideration must be given to the degree of aceuracy
required.

4. Program design  The sequence of logical steps by which a particular
problem is to be solved. the allocation of memory, the access of data, and
the assignment of input and output units are important aspects of com-
puter program design.  The objectives are primarily to develop a pro-
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cedure which eliminates unnecessary repetitive calculations and remains
within the capability of the computer. The program design is usually
prepared in the form of a diagram called a flow chart.

5. Programming A digital computer has a series of instructions con-
sisting of operation codes and addresses which it is able to interpret and
execute. In addition to the arithmetic and input/output instructions,
logical instructions are available which are used to direct the sequence of
calculations. The translation of the precise detailed steps to be per-
formed in the solution of a problem into an organized list of computer
instructions is the process of programming. A program can be developed
by using computer instructions in actual or symbolic form, or it can be
written in a generalized programming language, such as FORTIRAN.

6. Program verification There are many -opportunities to introduce
errors in the development of a complete computer program. Therefore,
a systematic series of checks must be performed to ensure the correctness
of problem formulation, method of solution, and operation of the program.

7. Application Engineering programs, in general, can be classified into
two groups. The first consists of special-purpose programs, which are
developed in a relatively short period for the solution of simple engineering
problems. Such a problem is usually well defined, and often the program
completely serves its purpose after the first series of calculations has been
completed. Some small programs are used on a continuing basis but are
restricted in their use because of their special-purpose nature.

The second group consists of general-purpose programs that are
designed for the analysis of large engincering problems,  These programs
are applied extensively in the regular studies of once or more engineering
departments. Their use may have an effect on the approach to an engi-
neering problem and the organization of a study. Thus, it is important
that consideration be given to the manner in which 2 program is to be
empioyed in an engineering activity. Some aspects which must be con-
sidered are means of collecting and preparing data, processing time, and
presentation of results. Programs of this type are becoming an integral
part of power system engineering.

The relative importance of each of these steps varies from problem to
problem. Moreover, all steps are closely related and play an important
role in the decisions that must be made. Of primary importance is the
interrelation of the mathematical formulation of a problem and the selec-
tion of a solution technique. Frequently, it is difficult to evaluate the
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influence of these two steps on cach other without developing a complete
program and performing actual calculations to compare the alternatives.

The material covered in this book pertains to the first three steps,
with particular emphasis on the interrelutions of teps 2 and 3. Simpli-
fied flow charts are used to illustrate the methods presented.
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2.1 Introduction

In recent years, the use of matrix algebra for the formulation and solution
of complex engincering problems has become increasingly important with
the advent of digital computers to perform the required calculations.
The application of matrix notation provides a concise and simplified
means of expressing many problems. The use of matrix operations pre-
sents a logical and ordered process which is readily adaptable for a com-
puter solution of a large system of simultaneous equations.

2.2 Basic concepts and definitions
Matrix notation

Matrix notation is a shorthand means of writing systems of simultancous
equations in a concise form. A matrix is defined as a rectangular array
of numbers, called elements, arranged in a systematic manner with m rows
and n columns. These elements can be real or complex numbers. A
double-subscript notation a,; is used to designate a matrix element.
The first subseript 7 designates the row in which the clement lies, and the
second subscript 7 designates the column.

In the following system of equations,

anzi + anT: + 21T = Y
anti + @222 + ATy = Y2 (2-2-1)
anTy + anT; + anT; = Y,

I1, 1, and z; are unknown variables; ayy, a1s, a3, . . . , a3 are the coefhi-
cients of these variables; yi, ys, and y: are known parameters. The
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cocficients form an array

apy  dia dig
Q21 Q22 Q33 2.2.2
Q3 Qzz daz

which is the coefficient matriz of the system of equations (2.2.1).
Similarly, the variables and parameters can be written in matrix
form:

I Y1
Zy and Y2 (2.2.3)
I3 Y3

The matrix (2.2.2) is designated by a capital letter 4 and the matrices
2.2.3) by X and Y, respectively. In matrix notation the equations
(2.2.1) are written

AX =Y

A matrix with m rows and n columns is said to be of dimension m
by n, or m X n. A matrix with a single row and more than one column
(m = 1 and n > 1) is called a row matriz or row veclor. A matrix with a
single colimn and more than one row is called a column matriz or column
veclor.

Types of matrices

Some matrices with special characteristics are significant in matrix opera-
tions. These are:

Square matrix. When the number of rows equals the number of columns,
that is, m = n, the matrix is called a square matriz and its order is equal
to the number of rows (or columns). The elements in a square matrix
a;; for which 7 = j are called diagonal elements. Those for which 7 # j
are called off-diagonal elements. For elements a;; to the right of the diago-
nal 7 is less than j, and for those to the left of the diagonal 7 is greater
than j.

Upper triangular mairiz  If the elements a,; of a square matrix are zero
for ¢ > j, then the matrix is an upper triangular matriz. For example:

13 G2 A1y
4 =10 Qg2 Qg3
0 0 A3a3



Chapter 2 Matrix algebra 9

Lower triangular matriz 1f the elements ai; of a square matrix are zero
for 7 < j, then the matrix is a lower triangular matriz. TFor example:

a1 0 0
A = | Q23 QA22 0
a1 QA3 4z

Diagonal matriz  If all off-diagonal elements of a square matrix are zero
(a; = Oforall 7 = j), then the matrix is a diagonal matriz. For example:

a1 0 0
A=(0 aa O
0 0 ¢ FF)

Unit or identily matriz  1f all diagonal elements of a square matrix equal
one and all other elements are zero (a;; = 1fore = jand a;; = 0for¢ » j),
the matrix is the wunit or identity matriz, designated by the letter U
For example:

1 0
U=101
0 0

— O O

Null matriz  If all elements of a matrix are zero, it is a null matrix.

Transpose of a matriz  If the rows and columns of an m X n matrix are
interchanged, the resultant n X m matrix is the {ranspose and is desig-
nated by A*. For the matrix

an ze_l
A= |an an
a1 Aaxn

the transpose is
Al = ay;y  Qa Gax]
a1z Qa22 QA
Symmetric matriz  1If the corresponding off-diagonal elements of a square

matrix are equal (a; = a;;), the matrix is a symmelric matriz. For
example:

A=

DS U =
(20 VRN
= O W
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The transpose of a symmetric matrix is identical to the matrix itself,
that is, A* = A.

Skew-symmetric matriz 1If A = —A¢ for 4 square matrix, A is a skew-
symmetric matriz. The corresponding off-diagonal elements are equal but
of opposite sign (a; = —a;) and the diagonal elements are zero.  Lor
example:
0 -5 3
A= ) 0 0
-3 -6 0

Orthogonal matriz If A'A = U = AA' for u square matrix with real
elements, then A is an orthogonal matrix.

Conjugate of a matriz  If all the elements of a matrix are replaced by their
conjugates (replace the element a + jb by a — 7b), the resultant mutrix is
the conjugate and is designated by A*. TIor a mutnx

- i3 5
A‘[4+]‘2 1+]‘1}

the conjugate is

—J73 5
A* =] 0 4
[4 A Jl}
If all the elements of A are real, then A = A* If all clements are pure
imaginary, then 4 = —A™
Hermitian matriz If A = (A*)* for a squarc complex matrix, A4 1s a
Hermitian matriz in which all diagonal elements are real.  Tor example:

[ 4 2-3
a=lafn 13

Skew-Hermitian matriz  If A = —(A*)! for a square complex matrix, A
1s a skew-Hermitian matriz in which all diagonal elements are either zero
or pure imaginary. For example:

~ 0 23
A‘[—z—ﬁ 0 ]

Unitary mairiz If (A*)'A = U = A(A*)* for a square complex matrix,
A is a unitary mairiz. A unitary matrix with real elements is an orthogo-
nal matrix.
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Table 2.1 summarizes some types of special matrices.

Tuble 2.1  Types of special matrices

Condition Type of malriz
A= -4 Null

{1 = 4t Symmetde

A = — A Skew-syinmetric
A =4 leal

A= —-A" Pure imaginary
A = (A*) Hermitian

{ = — (A" Skew-I{ermitian
A4 = U Orthogonal
(A4 =U Unitary

2.3 Determinants

Definition and properties of determinants
The solution of two simultaneous equations

anti + apr, =k (2 3 1)
anty + an: = ke o
can be obtained by eliminating the variables one at a time. Solving for
roin terms of ry from the second equation and substituting this expression
for oy in the first equation, the following is obtained:

ks 253
anxy + ap | -— — — 1y
(4 (533

Ty + ks — apanzy = dk
(011022 - 012021)1'1 = anky — apks:

ky

1

Qaky — aiks
Ty = ———
a11022 — Q1212

Then, substituting 1y in cither of the equations (2.3.1), z: is obtained:

ank, — ank,
Ty = ———
a1d2e — d12an
The expression (aya2s — apaz) is the value of the determinant of
the coefficient matrix .1, where || denotes the determinant

| .
!’“ - Iall Qa2
o Pan  any
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The solution of the equations (2.3.1) by means of determinants is

Ty =

‘ ky ais ‘
ks (122{ ankl - ankz
I = =
[*3S T 3¢ ] a11822 — Q12821
a1 Q22
an ki
a2 ko _ ank, — ank,
air a2 a11@22 — G20z
a1 Q22

A determinant is defined only for a square matrix and has a single value.
A method for evaluating the determinant of an n X n matrix is given in
Chap. 7.

Determinants have the following properties:

The value of a determinant is zero if

a. All elements of a row or column are zero

b. The corresponding elements of two rows (or columns) are equal

¢. _A row (or column) is a linear combination of one or more rows
(or columns)

If two rows (or columns) of a determinant are interchanged, the value

of the determinant is changed in sign only

The value of a determinant is not changed if

a. All corresponding rows and columns are interchanged, i.e.,

| A = |4

b. k times the elements of any row (or column) are added to the
corresponding elements of another row (or column)

If all elements of a row (or column) are multiplied by a factor k, the

value of the determinant is multiplied by &

The determinant of the product of matrices is equal to the product of

the determinants of the matrices, i.e.,

14 B C| = |A]|B]|C]|

The determinant of the sum (or difference) of matrices is not equal
to the sum (or difference) of the individual determinants, i.e.,

|A + B — C| = |A| + |B| — |C]

The application of these properties can reduce the work in evaluating
determinants.
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Minors and cofactors

The determinant obtained by striking out the ith row and jth column is
called the minor of the element a;;. Thus, for

an a4z Ay
!A| = | Q21 Q22 Q413
az QGz2 Qi

the minor of as; is

a1z QA
a3z Qa3

The order of this minor is one less than that of the original determinant.
By striking out any two rows and columns a minor of order two less than
the original determinant is obtained, ete.

The cofactor of an element is

(—1)"*(minor of a;)
where the order of the minor of a;;is n — 1. The cofactor of as, desig-

nated by A4, is

___‘ az au’

lays a
Ag] = (_1)24,1{ 12 13
i | @2 as

A3z Qss

The following relationships between a determinant and cofactors
exist:

1. The sum of the products of the elements in any row (or column) and
their cofactors is equal to the determinant:

Al = anday + an2dan + adas (2.3.2)

2. The sum of the products of the elements in any row (or column) and
the cofactors of the corresponding elements in another row (or column)
1s equal to zero:

anAan + 2z + a3 =0 (2.3.3)

Adjoint

If cach element of w square matrix is replaced by its cofactor and then the
matrix is transposed, the resulting matrix is an adjoint which is designated
by A+

rAn An A:l
At = Az .‘1:2 A
Ay An A
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2.4 Mairix operations
Equality of matrices

If A and B are matrices with the same dimension and each element a,;
of A is equal to the corresponding element b; of B, the matrices are
equal, i.e.,

A=28

Addition and subtraction of matrices

Matrices of the same dimension are conformable for addition and sub-
traction. The sum or difference of two m X n matrices, A and B, is a
matrix C of the same dimension, i.e.,

A+B=C

where each element of C is

Cij = Gy £ by

For n conformable matrices the sum or difference is
AtBztCxtD+ - -+t N=R

where t};e elements of the resultant matrix R are
rg=ay kb ke kdi £ £y

The commutative and associative laws apply to addition of matrices
as follows:

A4+ B=B+ A commutative law
i.e., the sum of the matrices is independent of the order of the addition.
A+B+C=A4A+(B+C =(A+B) +C associative law

i.e., the sum of the matrices is independent of the order in which the
matrices are associated for addition.

Multiplication of a matrix by a scalar

When a matrix is multiplied by a scalar, the elements of the resultant
matrix are equal to the product of the original elements and the scalar.
For example:

kA =B

where b;; = ka;; for all 7 and ;.
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The multiplication of a matrix by a scalar obeys the commutative
law and the distributive law as follows:

kA = Ak commutative law
KA+ B) =kA + kB = (A 4+ Bk distributive law

Multiplication of matrices
AMultiplication of two matrices
AB =C

1s defined only if the number of columns of the first matrix A equals the
number of rows of B. Thus, for the product of matrix A of dimension
m X ¢ and matrix B of dimension ¢ X n, the matrix C is of dimension
m X n. Any clement ¢,; of C is the sum of the products of the corres-
ponding elements of the 71th row of 4 and the jth column of B, that is,

€ = @by 4+ anby + 0+ agh,

or
q

c.,v=20,kbk,- 1=1,2, ... ,m3=12 ...,n
k=1

For example:

a2 [bn bx'z] anbir + @by anbi + @b
AB =|an amn [b'n baz | = anbu -+ a'.v-zbu aszxz 4 Gasdoy
T3 (a2 anbir 4+ aibar  asbyy + anban
In the product A B, A premultiplics B or B postmultiplies 4. The
product B.A is not defined since the number of columns of B is not equal
to the number of rows of 4. When the products A B and BA arc defined
for a square matrix, it can be shown that, in general,

AB # BA

Therefore, the commutative law does not hold for matrix multiplication.
If the matrices A, B, and C satisfy the dimension requirements for multi-
plication and addition, the following properties hold:

A(B+ C) = AB 4+ AC distributive law

A(BCY = (AB)C = ABC associative law
However,
AB = 0 does not necessarily imply that A = Qor B = 0

CA4

i

CB does not necessarily imply that A = B
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1f ¢ = AB, then the transpose of C is equal to the product of the
transposed matrices in reverse order, 1.e.,

Ct = B'A!

This is the reversal rule.

Inverse of a matrix

Division does not exist in matrix algebra except in the case of the division
of a matrix by a scalar. This operation is performed by dividing each
element of a matrix by the scalar. However, for a given set of equations,

anZy + a12Z2 + QT3 = Y1

anzi + anT: + a1y = Y2 (2.4.1)
ATy + @iy + a5z = Y

or, in matrix form,

AX =7 (2.4.2)

it is desirable to express z,, 72, and z; as functions of y1, y», and ys, that is,
X = BY

If there is a unique solution for the equations (2.4.1), then matrix B
exists and 1s the tnverse of A.

If the determinant of A is not zero, the equations can be solved for
the z,’s as follows:

All A21 /i31
Ty =1+ Y2t T Y
|A] |A] |A]
Al2 AZZ A32
Ty = — — —
2 |A|y1+|A|y2+|A\y3
A13 A23 ASJ
Iz = |Aiy1+“A'yz+|Alyz
where A1y, Az, . . ., Assare the cofactors of ayy, @y, . . ., assand |4

is the determinant of A. Thus

All A21 ASI
4] Al 14]

B _ AIZ A22 A32 _ A+
|4l 1Al 1Al] 14
Ali A23 A33

14l 14l 14
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where A+ is the adjoint of A, It should be noted that the elements of the
adjoint A+ are the cofactors of the elements of 4, but are placed in trans-
posed position.  The matrix B s the inverse of A and is written 41

Multiplying 4 by its inverse,
An An A

_ — 1 0 0
G S Al 4]

Alz A72 AJ?

noan || =0 S0 SR l=lo 1 0|=U

A | NV VR VUV

All A23 AIXS

— - 0 0 1
R AT VTR VY

results in the unit matrix. This follows from the relationships (2.3.2)
and (2.3.3). A diagonal term of U, such as uiy, equals 1 since

An Arg A LAl
ay = =

At Ay T A T

and an off-diagonal term, such as wu;,, equals zero since

Am Agg Azg 0

ML kLS 2B _ 2 _9
an A 2 |A] aus 14| JA]
Thus

AAT = ATA = U

Ta solve for X from the matrix equation (2.4.2) hoth sides of the equation
arc premultiplicd by A=%L

AX =Y
ATAX = A'Y
UX = A'Y
X =AY

The order of the matrices in the product must be maintained.

If the determinant of a matrix is zero, the inverse does not exist.
Such a matrix is ealled a stngular matrir.  1f the determinant of 4 matrix
is not zero, the matrix is a nonsingular matriz and has a uniquc inverse.

The inverse of the product of matrices ean be obtained by the reversal
rule, i.e.,

(AR)~t = B-14-t

The transpose and inverse operations on a matrix can be inter-
changed, i.e.,

(A1 = (4-1)¢
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Partitioning of matrices

A large matrix can be subdivided into several submatrices of smaller
dimensions:

1

A\ A /12

Ay Ay

If the diagonal submatrices A, and A, are squure, the subdivision is
called principal partitioning.

Partitioning can be used to show the specific structure of (4 and to
simplify matrix computation. Each submatrix is considered s an cle-
ment in the partitioned matrix.  Addition or subtraction iz performed
as follows:

i

A4, A, B, B Ay By b = B

I+

Az_ A4 Ba B4 ’ 113 : L{J -'14 _I". 84
[
L

where the dimensions of corresponding submutrices must B¢ conformable.
Multiplication is performed as follows:

! [

A, A, B, BQ‘E e,

i
A, | A, B.| B. |~ Ca{ C,

where

Cl = A\B;, + A,B;
Cz = A.\Bz + AzBA
Cy = A3B, + AB;
04 = Asz + A434

The rule for partitioning two matrices whose product is to be found is:
the n columns of the premultiplier are grouped into &k and n — k columns
from left to right, and the n rows of the postmultiplier are grouped into
k and n — k rows from top to bottom in order that the submatrices are
conformable for multiplication.
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The transpose of a partitioned matrix is shown below.

Ay A,
A =
A, A,
Ay A4
At =
Azt A‘l
The inverse of a partitioned matrix is obtained as follows:
A] f11
A=
Ay Ay
Bx 81
ATt =]
B3 B4
where

By = (4, — 4,477
By = —Byd. A4

B, — AL B,

B, A — AUGB,

(2.4.3.)

|l

and .1, and A4 must be square matrices.

2.5 Linear dependence and rank of a matrix

Linear dependence

The columns of an m X n matrix A can be written as n eolumn vectors.
falic] - - el

Also, the rows of matrix A4 can be written as m row vectors.

frablre} s il
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The column vectors are linearly independent if the equation

pifei} + pefea) + -+ palea} =0 (2.5.1)
is satisfied only for all px =0 (k =1, 2, . . ., n). Similarly, the row
vectors are linearly independent if only zero values for the sculars
g- (r=1,2,...,m) satisfy the equation

(11{7‘1] + (12{7'2} + o+ lermj =0 (2.5.2)

It is not possible to express one or more linearly independent column
vectors (or row vectors) as a linear combination of others.

If some px # 0 satisfies (2.5.1), the column vectors are linearly
dependent. If some ¢ # 0 satisfies (2.5.2), the row vectors are linearly
dependent. That is, it is possible to express one or more column vectors
(or row vectors) as a linear combination of others. If the column vectors
(or row vectors) of a matrix 4 are linearly dependent, then the determi-
nant of A is zero. '

Rank of a matrix

The rank of an m X n matrix A is equal to the maximum number of
linearly independent columns of A or the maximum number of linearly
independent rows of A. The former is called the column rank and the
lutter the row rank. The column rank is cqual to the row runk. The
rank of a matrix is equal to the order of the largest nonvanishiug deter-
minant in A. For example, consider the matrix

1 2 4
A=12 4 8
3 8 10

The rows are linearly dependent since the equation
{124} + ¢2{248} + ¢3{3810} =0

1s satisfied for

Q=2
g2 = —1
g3 =0

Similarly, the columns are linearly dependent since the equation

1 2 4
D142, + P24y + 01y 8 =0
3 8 10
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is satisfied for

P =6
pr = —1
py = —1

However, no two calumns are lincarly dependent and, therefore, the rank
of the matrix is 2.

2.6 Linear equations

A linear svstem of m equations in n unknowns is written

ATy + QX2 0 A+ @aZa = Y
ATy + QT2 + 0+ QaT. = Y2 (2.6.1)
AmiZTy F AmaZz + ° 0 GpnTa = Ym

where a,; = known coefficients or parameters of the system
r; = unknown variables of the system
y. = known constants of the system

The system of equations (2.6.1) in matrix form is

AX =Y

It

The augmented matriz of A, designated by A4, is formed by adjoining
the column vector Y as the (n + 1)st column to A.

ayy Q412 Qi Y
7 Az Qo2 Qi Y2
[1 S
L@mi Gmz © " Gmn YUm
If y1, y2, . . ., yn are all zero in (2.6.1), the linear equations are
homogeneous and
AX =0

If one or more y, are nonzero, the lincar equations are nonhomogeneous.

The necessary and sufficient condition for a system of linear equations
to have a solution is that the rank of the coefficient matrix 4 be equal to
the rank of the augmented matrix A. A unique solution exists when A
is a square matrix and the rank of 4 is equal to the number of columns
(variables). The unique solution is nontrivial for nonhomogeneous
equations and trivial (i.e., zero) for homogeneous equations. If the rank
of A is less than the number of equations, some of the equations are
redundant and do not place any further constraint on the variables.
If the rank of A is less than the number of variables of the system, there
are an infinite number of nontrivial solutions.
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Problems
2.1  Given:
1 1 35 2 1 5
A= 3 2 4 and B=|-3 4 4
-7 2 3 7 -2 2
Determine:
a C=A+2B
b. What type of matrix C is
c. D=A—-B
d. What type of matrix D is
2.2 Given:
1 2
A=[:g s ‘;] and B =3 4
5 6
Determine:
a. C=AB
b. D = BA
c. E=AB
d. What the relationship of matrix £ to matrix D is
2.3  Given:
11 8 5 -2 1 1
A=) 8 1 5 and B = 1 —1 0
5 5 2 3 -1 -1
Determine:

a. C = B‘AB

b. What type of matrix A4 is
¢. What type of matrix C is
d. D=C"

e. E=CC!

f. What type of matrix E is
G

2.4 iven:
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Determine:
a. B =A4"!
b. XfromAX =Y
Given:
0 d 7 1
1= -3 0 -1 7
‘ -7 1 0 -5
-1 -7 b 0
Determine:
a. B =014 4050
b, What type of matrix A s
c. That I8 is orthogonal
Given:
1 1 1
] V3 ] 3
LIS B I T
V3 : V1 A3
—ytiy iy

Determine:

a. B = {A*)4

b, What type of matrix .4 is
Given:

2 -2 1 443
A = J2 1 2 -7
1 -3 24 3

Determine:

a. B = (4A*)

b. What type of matrix A is
Given:

{1 1 |72 ] [t
“‘[0 —3] JB‘L‘»* 0] and Y‘[a’]

Determine:

a. X from (A +jiBX* =Y
b. What type of matrix A is
¢. What type of matrix B 1s

23
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2.9  Given the partitioned matrix:

1
A= -2 _1—
—6 4| 2

Determine B = A-! using the formulas (2.4.3) for the inverse of
a partitioned matrix.

2.10 Given:

—
1 2] 0 3 1
4 6 0 0 1 1
“lo ol14 5 1|1
A, 3 0] 5 10 2|1
4 1| 1 2 12]]1

|

Determine A.,.
2.11 Given the partitioned matrices:

1 2|00 010
1 1/0 0 00
A_001320
10 0|2 3 410
0 01 53 20
0 0|0 O 015

1 3 5 611
711 3 2|4

3 4|12 6 5|1
3"463125
2 6|7 3 8|1
7 213 1 415

Determine C = AB.



2.12 Given:

Chapter 2

2
.

“i

and N is a null matrix.
Show that

the inverse of C is

Matrix algebra

2 1 -1
A=|5 6 3
L3 5 4
Show that 4 is a singular matrix and determine its rank.
2,11 Given:
i
l ! 6 0 3|1
A (A l24 22
4 = =} 17 53
A43 :&4 ; 6 4 2 2
f
Determine B = A, — A4,
2.15  Given:
[ 3 -2 1 _
A=|-2 5 -8 B-= [_f :
1 -8 12
1 0 -1
c=ls -1 7]

Determine D = A — C'BC.

25
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3.1 Introduction

The formulation of a suitable mathematies! model is the first step in the
analysis of an electrical network.  The model musr deseribe the charac-
teristics of individual netwerk components as well ax the relations that
govern the interconnection of these elements. A network matrix equa-
tion provides a convenient mathematical model fur & digital computer
solution.

The elements of a network matrix depend »n the selection of the
independent variables. which can be either eurrents or voltages.  Cor-
respondingly, the elements of the network muarrix will he impedances ur
admittances.

The electrical characteristics of the individusl network components
can be presented conveniently in the form of a primitive network muirix.
This matrix, while adequately describing the characteristies of each com-
ponent, does not provide any informaticn pertaming to the network con-
nections. It is neressary, therefore. te transform the primitive network
matrix into a network matrix that describes the performance of the mter-
connected network.

The form of the network matrix used in the performance equation
depends on the frame of reference. namely, bus or loop. In the bus
frame of reference the variables are the nodal voltuges and nodal currents.
In the loop frame of reference the variables are loop veltages wnd loop
currents.

The formation of the appropriate network matrix is an integral part
of a digital computer program for the solution of power system problems.



28 Computer methods in power system analysis
3.2 Graphs

Ir. nrder 1o describe the geometrical structure of a netwark 1t 1s sufficient
i, r=piace the network components by single line segraenis irrespective
of the characteristics of the components. These line segments are called
elements and their terminals are called nodes. A rode and an element are
inricent f the node is a terminal of the element.  Nodex can be incident
to one or more elements.

A graph shows the geometrical interconnection
network. A subgraph is any subset of elements of the graph: A pathisa
subgraph of connected elements with no more than twe clements con-
nected to any one node. A graph is connected if and snly if there 1s a
path between every pair of nodes. If each element of the connected
graph is assigned a direction it is then oriented. A representation of a
power system and the corresponding oriented graph are shown in Fig. 3.1.

the slements of a

Fig. 3.1 Power sys-
tem representations.
{a) Single line dia-
gram; (b) positive se-
quence network dia-
gram;(c)oriented con-
nected graph.
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(
o¥

Branch v
———— Link o =

Fig. 3.2 Tree and cotree of the oriented connected graph.

A connected subgraph containing all nodes of 2 graph but no closed
path is called a tree. The elements f a tree are called branches and forn:
a subset of the elements of the connected graph.  The number of branches
b required to form a tree is

b=n—-1 (3.2.1)

where n is the number of nodes in the graph.

Those elements of the connected graph that are not included in the
tree are called links and form a subgraph, not necessarily connected.
called the cotree. The cotree is the complement of the tree.  The number
of links [ of a connected graph with ¢ elements is

l=e—1b
From equation (3.2.1) it follows that
l=e—n+1 3.2.2

A tree and the corresponding cotree of the graph given in Fig. 3.1c are
shown in Fig. 3.2.

If a link is added to the tree, the resulting graph contains one closed
path, called a loop. The addition of each subsequent link forms one or
more additional loops. Loops which contain only one link are inde-
pendent and are called basic loops. Consequently, the number of basic
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©

Fig. 3.3 Basic loops of the oriented connected graph.

loops is equal to the number of links given by equation (3.2.2). Orienta-
tion of a basic loop i1s chosen to be the same as that of its link. The basic
loops of the graph given in Fig. 3.2 are shown in Fig. 3.3.

A cut-set is a set of elements that, if removed, divides a connected
graph into two connected subgraphs. A unique independent group of

Fig. 3.4 Basic cut-sets of the oriented connected graph.
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cut-sets may be chosen if each cut-set contains only one branch. Inde-
pendent cut-sets are called basic cut-sets. The number of basic cut-sets
is equal to the number of branches. Orientation of a basic cut-set is
chosen to be the same as that of its branch.  The basic cut-sets of the
graph given in Fig. 3.2 are shown in Fig. 3.4

3.3 Incidence matrices
Element-node incidence matrix A

The incidence of elements to nodes in a connected graph is shown by the
element-node incidence matrix. The elements »of the matrix are as
follows:

a, = 1 if the 7th element is incident to and oriented away from the jth
node

ay; = —1 if the ith element is incident to and onented toward the jth
node

i

a;; = 0 if the /th element is not incident to the -th nude

The dimension of the matrix is ¢ X n. where ¢ is the number of elements
and 7 is the number of nodes in the graph. The element-node incidence
matrix for the graph shown in Fig. 3.2 1s

n
Ne @ & 0 ©

1 1 —1
2 1 -1
3 1 -1

Py
1l
IS
|

[
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Since

4
Va; =0 1=1,2,... e
et

o

the columns of A are linearly dependent. Hence. the rank of 4 < n.

Bus incidence matrix A

Anv node of a connected graph can be selected as the reference node.
Then. the variables of the other nodes, referred to as buses, can be
measured with respect to the assigned reference. The matrix obtained
from 4 by deleting the column corresponding to the reference node is the
element-bus incidence matrix 4, which will be called the bus incidence
mitrix.  The dimension of this matrix is ¢ X (n — 1) and the rank is
n — 1 = b, where b is the number of branches in the graph. Selecting
node 0 as reference for the graph shown in Fig. 3.2,

\_ bus

6 1] -1

-1
—
|
—

This matrix is rectangular and therefore singular.

If the rows of 4 are arranged according to a particular tree, the matrix
can be partitioned into submatrices A, of dimension b X (n — 1) and 4,
of dimension { X (n — 1), where the rows of 4, correspond to branches
and the rows of A, tolinks. The partitioned matrix for the graph shown
in g 3.2 s
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bus . bus
o @ 6® O ~ Buses
e \ e ‘\_\
1| -1
2 -1 E
= Ay
3 —1 Z
4= 4 -1 1| =
5 1| —1
L
6 | 1 -1 £ A
7 1 ~1

As is a nonsingular square matrix with rank {n — {}.

Branch-path incidence matrix K

The incidence of branches to paths in a tree 1s shown by the branch-path
incidence matrix, where a path is oriented from s bus to the reference
node. The elements of this matrix are:

k; = 1if the ith branch is in the path from rhe jth bus to reference and is
oriented in the same direction
ki; = —1if the ¢th branch is in the path from the jth bus to reference but

1s oriented in the opposite direction
k;; = 0 if the sth branch is not in the path from the jth bus to reference

With node O as reference the branch-path 1ncidence matrix associated with
the tree shown in Fig. 3.2 is

path

O ® 6 ©

b
1| -1
%
2 —1
K =

3 -1 -1
4 -1

This 1s a nonsingular square matrix with rank (n — ;.
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The branch-path incidence matrix and the submatrix A, relate the
branches to paths and branches to buses, respectively. Since there :s
a one-tc-one correspondence between paths and buses,

A K = U (3.3.1}
Therefore,
Kt = A4, (3.3.2>

Basic cut-set incidence muatrix B

The incidence of elements to basic cut-sets of a connected graph is shown
by the basic cut-set incidence matrix B. The elements of this matrix are:

b,; = 11if the ith element is incident to and oriented in the same direction
as the jth basic cut-sey

b, = —1 if the 7th element is incident to and oriented in the opposite
direction as the jth basic cut-set

b, = 0 if the 7th element is not ineident to the jth basic cut-set

The basic cut-set incidence matrix, of dimension ¢ X b, for the graph
shown in Fig. 3.4 is

b Basic cut-sets

eN] 4 B C D
1 1
2 1
3 1

B = 4 1

5 -1 1 1
6 —1 1
7 —1 1

The matrix B can be partitioned into submatrices Uy and B, where the
rows of U correspond to branches and the rows of B; to links. The
partitioned matrix is
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b Basic cut-sets b Basic cut-sers
e \l A B c D e\ . ’
S ! : ' ! L o
Ler ! |
| | i | S ! \
E ! | Log | :
2 C L i Z T
i L | - -t z 17 |
: !
3 1 I
— S |
B = 4 t ‘ : o= ! !
| ! . '
‘ ! : f |
5 | -1 1
i i — - ) E
6 | —11 1 PoE B
— =
7 -1 1 ‘

The identity matrix U, shows the one-to-one correspondence of the
branches and basic cut-sets.

The submatrix B; can be abrained from the bus incidence matrix A.
The incidence of links to huses is shown by the submatrix A4, and the
incidence of branches to buses is shown by the submatrix 4,. Since
there is a one-to-one correspendence of the branches and basic cut-sets.
BiA, shows the incidence of Links to buses. that is,

B4, = A,

Therefore,

Bz = A[Ab_l

In addition, as shown in equation (3.3.2),
Ayl = Kt

Therefore,

B, = A\K! (3.3.3;

Augmented cut-set incidence matriz B

Fictitious cut-sets, called tie cut-sets, can be introduced in order that the
number of cut-sets equals the number uf elements. Each tie cut-set
contains only one link of the connected graph. The tie cut-sets for the
graph given in Fig. 3.4 are shown in Fig. 3.5. An augmented cut-set
incidence matrix is formed by adjoining to the basic cut-set incidence
matrix additional columns corresponding to these tie cut-sets. A tie
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Basic cut-set

. } f\
Tie cut-set O

Fig. 3.5 Basic and tie cut-sets of the oriented connected graph.

cut-set is oriented in the same direction as the associated link. The
augmented cut-set incidence matrix for the graph shown in Fig. 3.5 is

e Basic cut-sets Tie cut-sets
2 A B ¢ D E F @
o [
1 \ 1 ‘ )
| | i
| ’ ! i
2 1 \ 1 |
| | '
! : j
3 ! S O !
N B |
B= 4 t | 5 !
. ; -
5 ‘ e l 1|1
6 ‘ I | | 1
i
I ; \
7 -1 1 ‘ 1
L

This is a square matrix of dimension e X ¢ and is nonsingular.
The matrix B can be partitioned as follows:
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e Basic cut-sets Tie cut-sets
e A B :’j D E F G
] T i : :
1 1 i i f ’
— it
2 S} * ‘
5 | ‘ |
B= 4 ’ i
| 7 {
5 1 -1 1 1 1 A
6 | —1' 1 T i ﬂ
1
7 I 1
e\\< Basic cut-sets Tie cut-sets
i
|
g I
< |
[>] 1
g Us 0 1
=
= |
|
p |
E B( (.;l :
— |
‘ i

Basic loop incidence matrix (

The incidence of elements to basic loops of a connected graph is shown by
the basic loop incidence matrix C. The elements of this matrix are:

¢i; = 11if the 7th element is incident to and oriented in the same direction
as the jth basic loop
¢; = —1 if the 7th element is incident to and oriented in the opposite

direction as the jth basic loop
ci; = 0 if the ¢th element is not incident to the jth basic loop
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The basic loopincidence matrix, of dimension e X I, for the graph shown
in Fig. 3.3 is

[ 2]

[¥%]

7

Basic loops
E F G
B
l z
: .
i =1 1
: |
L1 -1
i -1 !
| |
: {
1
1
1

The matrix C can be partitioned into submatrices Cs and U, where
the rows of €, correspond to branches and the rows of U; to links. The
partitioned matrix is

N

e\

Basic loops 7| .
Q X. Basic loops

1

7

E F
1
w
1| -1 1 <
o)
-1 -1 &
_1 =
1
._*Ud:’
1 = of
1
] L

The identity matrix U, shows the one-to-one correspondence of links to
basic loops.

Augmented loop incidence matriz C

The number of basic loops in a connected graph is equal to the number of
JJinks.  In order to have a total number of Ioops equal to the number of
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- Basic loop ~
~ Open loop D

Fig. 3.6 Basic and open loops of the oriented connected graph.

elements, let (¢ — [} loops, corresponding tu the b branches, be designated
as open loops. An open loop, then, is defined as a path between adjacent
nodes connected by a branch. The open lnops for the graph given in
Fig. 3.3 are shown in Fig. 3.6. The orientation nf an open loop is the
same as that for the associated branch.

The augmented loop incidence matrix is formed by adjeining to
the basic loop incidence matrix the columns showing the incidence of
elements to open loops. This matrix, for the graph shown in Fig. 3.6 is

¢ Open loops Basic loops
e A B ¢ D E F G
, ! .
1 1 { ‘ 1 !
2 1 1 -1, 1
T
3 1 -1 S -1
C= 4 1| -1
|
5 1 i
6 1 .
| -
7 ; b1
| | '

This is a square matrix, of dimension e X ¢, and is nonsingular.
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The matrix C can be partitioned as follows:

N

€ Open loops Basic lvops
f’_‘\l A B C D E F G
11 ’ b ;
EN I PR
2 1 ; 1o -1 1
3 1 —1 b —1
—_— — ¥
C= 4 IR .
| i
. !
5 ‘; 1 i
|
; — D
7 ! 1
| 1

N Open loops Basic loops

7]
<
S
=1 Db Cb
s
[
jaa)
‘_Elc.‘
= 0 U,
—_

3.4 Primitive network

Network components represented both in impedance form and in admit-
tance form are shown in Fig. 3.7. The performance of the components
can be expressed using either form. The variables and parameters are:

'pe 18 the voltage across the element p—q
epe 1s the source voltage in series with element p—¢
ip¢ 1s the current through element p—q
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Jee 18 the source current in parallel with element p—¢
» 15 the self-impedance of element p-g
Ype s the self-admittance of element p-g

Each element has two variables. 15, and ¢, [ steady -tate these
vanables and the parameters of the elements z,, and y,, are real numbers
for direct current circuits and complex numbers for alternating current
cireuits

The performance equation of an element 1n impedance form is

Upg t €pq = Zpglpg (34.1)
or in admittance form is
oo + Jpc = Ynel'sa 13.4.2)

The parallel source current in admittauce form is related to the series
source voltage in impedance form by

Jpe = T Ype€pq

A set of unconnected elements i~ defined as & primitive network.
The performance equations of a primitive network can be derived from
(3.4.1) or (3.4.2) by expressing the variables as vectors and the parame-

E E
O
=S =N
P P — ‘9
Py
tpg =E,—E,
(a)
g
E - ! E
Pe Ypg q
® i — @
tpgtipg
Upg =Ep—E,
(b)

Fig. 3.7 Representations of a network component. (a’
Impedance form; (b) admittance form.
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ters as matrices. The performance equation i impedance form is
f i = 2]

:r 1 admittance form is

7=yl

A diagonal element of the matrix [2] or [y] of the primitive network s the
seif impedance z,q 5, or self-admittance y,, ;o An off-diagonal element 1s
*5¢ mutual impedance z,,,, or the mutual admittance ypq, between the
“lenients p—¢ and r-s. The primitive admittance matrix [y] can be
obtained by inverting the primitive impedance matrix {z].  The matrices
21 und {y] are diagonal matrices if there is ne mutual coupling between
clements. In this case the self-impedances are equal to the reciprocals
of the corresponding self-admittances.

3.5 Formation of network matrices
by singular transformations

Network performance equations

A network is made up of an interconnected set of elements. In the bus
frame of reference, the performance of an interconnected network is
described by n — 1 independent nodal equations, where n is the number of
nodes. In matrix notation, the performance equation in impedance
form is

Esrs = Zpuyslaus
or in admittance form is
Isrs = YpusEsus

where EBL'S

vector of bus voltages measured with respect to the refer-
ence bus

Iprs = vector of impressed bus currents

Zprs = bus impedance matrix whose elements are open circuit
driving point and transfer impedances
Yprs = bus admittance matrix whose elements are short circuit

driving point and transfer admittances
In the branch frame of reference the performance of the intercon-
nected network is described by b independent branch equations where b
13 the number of branches. In matrix notation, the performance equa-
tion 1n impedance form is

EBR = ZBRIBR
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or in admittance form is
Isx = YerEgr

where Epr = vector of voitages across the hranches

Igr = vector of currents through the branches

Zgr = branch impedance matrix whase elements are open circuit
driving point and transfer impedascex o the hranches of
the network

Ygr = branch admitiance matrix w < are short circult

driving point and transfer admitcaiicas «f the branches of
the network

In the loop frame of reference, the performans= of an interconnected

network is described by { independent loop equations where ( is the num-

ber of links or basic loops. The performance srquation in impedance

form is

ELOOP = ZLooproop

or in admittance form is
Itoor = YioorEroor

where Eroop = vector of basic loop voltages
ILoor = vector of basic loop currents
Zroor = loop impedance matrix
Yi00p = loop admittance matrix

Bus admittance and bus impedance matrices

The bus admittance matrix Ygys can be ohtained by using the bus inci-
dence matrix A to relate the variables and paramerers of the primitive
network to bus quantities of the interconnected network. The perform-
ance equation of the primitive network

1+ = [y
1s premultiplied by A¢, the transpose of the bus incidence matrix, to obtain
A%+ A9 = Aylp (3.5.1)

Since the matrix A shows the incidence of elements to buses, 4% is a
vector in which each element is the algebraic sum of the currents through
the network elements terminating at a bus. In accordance with Kirch-

hoff’s current law, the algebraic sum of the currents at a bus is zero.
Then

A7 =0 (3.5.2)



44 Computer methods in power system analysis

Similarly, A4 gives the algebraic sum of the source currents at each bus
and equals the vector of impressed bus currents. Therefore

Iprs = AY (3.5.3)
Substituting from equations (3.5.2) and {3.5.3) into (3.5.1) yields
Iprs = AYyly (3.5.4)

Pewer into the network is (Ihys)Eprs and the sum of the powers in the
primitive network is (7*)%. The power in the primitive and intercon-
nected networks must be equal, that is, the transformation of variables
must be power-invariant. Hence

(T30s)'Epus = (7%)9 (3.5.5)
Taking the conjugate transpose of equation (3.5.3)

(Tgus) = (7¥)4x

Since 4 is a real matrix

A* =

and

Ty = (774 (3.5.6)
Substituting from equation (3.5.6) into (3.5.5)

(7")'AEsus = (J)%

Since this equation is valid for all values of 7, it follows that

AEgrs =1 (3.5.7)
Substituting from equation (3.5.7) into (3.5.4),

Ines = AfylAEsys (3.5.8)
Since the performance equation of the network is

Invs = YousEpes (3.5.9)
it follows from equations (3.5.8) and (3.5.9) that

Yvs = A'ylA

The bus incidence matrix 4 is singular and therefore A/(y]A is a singular
transformation of [y].

The bus impedance matrix can be obtained from

Zpvs = Yaps = (Ayl4)~!
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Branch admittance and branch impedance matrices

The branch admitiance matrix Y zg can be obtained by using the basic
cut-set incidence matrix B to relate the variabies and parameters of the
primitive network tc¢ branch quantities of the interconnected network.
The performance equation of the primitive network in admittance form is
premultiplied by B* tc obtain

B + By = Ry'¥ (3.5.10)

Since the matrix B shows the incidence «f elements to basic cut-sets,
Bt is a vector in which each element is the algebraic sum of the currents
through the elements incident to a basie cut-set.

The elements of a basic cut-set if removed divide the network into
two connected subnetworks. Therefore, an element of the vector B is
the algebraic sum of the current entering a subnetwork and by Kirchhoff’s
current law is zero. Therefore

Ba =0 (3.5.11)

Similarly, B is a vector in which each element is the algebraic sum of the
source currents of the elements incident to the basic cut-set and is the
total source current in parallel with a branch. Therefore

Isr = By (3.5.12)
Substituting from equations (3.5.11) and (3.5.12) into {3.5.10) yields
Ipr = Bylp (3.5.13)

Power into the network is (I'z)!(E5z) and since power is invariant
(I3r)‘Esr = (J%)%

Obtaining (I%)* from equation (3.5.12), then

(J*)'B*Er = (J*)%

Since B is a real matrix

B* = B and (J*)BEgr = (7%)%

Since this equation is valid for all values of 7, it follows that

i = BEse (3.5.14)
Substituting from equation (3.5.14) into (3.5.13) yields
Isr = B{y)BE s (3.5.15)

The relation between the branch currents and the branch voltages is

Isr = VgrEse (3.5.16%
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It follows from equations (3.5.15) and (3.5.16} that
Ysr = BYy]B

The basic cut-set matrix B is a singular matrix and therefore B{y|B is a
singular transformation of [y].
The branch impedance matrix can be obtaiued from

Zpr = Y = (By]B)!

Loop impedance and loop admittance matrices

The loop impedance matrix Z.gop can be nbtained by using the basic
loop incidence matrix C to relate the variables and parameters of the
primitive network to loop quantities of the interconnected network.
The performance equation of the primitive network

v+ é = [2]1
is premultiplied by C' to obtain
Co + Ce = CY2] (3.5.17)

Since the matrix C shows the incidence of elements to basic loops, C'%
gives the algebraic sum of the voltages around each basic loop. In
accordance with Kirchhoff’s voltage law, the algebraic sum of the voltages
around a loop is zero. Hence

Co =0 (3.5.18)

Similarly C'¢ gives the algebraic sum of the source voltages around each
basic loop. Therefore

Eroor = C'e (3.5.19)
Since power is invariant

(IToor)Eroor = (1*)'e

Substituting for Eroor from equation (3.5.19), then

(I7o0p)C'e = (i*)'e

Since this equation is valid for all values of &, it follows that

(%) = (I700p)'C*

Hence,

1= C*Iro0p
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Since C is a real matrix,

c*=2C
and
1= CI_LOOP (3520)

Substituting from equations (3.3.18: 155 10}, and /3 5.20) into (3.5.17)
vields

Eroor = C12)C1Loop (3.5.21)
The performance equation of the network ir: the icop frame of reference is
Eroor = Z1oorILoor (3.5.22)
and it follows from equations (3.5 21; and (3.5.22) that

Zioop = CYz]C

Since C is a singular matrix, CYz]C is a singular transformation of [2].

Table 3.1 Formation of network matrices by
singular transformations

Network matrices

Primitive Loop Bus Branch
3
8
<
.§L Ciz]C
g :T [2] l—Z roop Zgys Zpr
~ 3
| ! !
}
3 fl
£ [yl Yroor Yaus Ygr
2 AylA
§ 1 ~
< By]|B
f
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Table 3.2 Current and voltage relations between
primitive and interconnected networks

Frame of reference

1
Loop l‘ Bus Branch
|
E 1 = ClLoor ! Torn = AY Isr = BY
S . . .
% Eroop = C% i = AEgus 7 = BEpgg
~

The loop admittance matrix can be obtained from
Yioor = Zgpop = (CY[2]C)7!

The singular transformations for obtaining network matrices are
summarized in Table 3.1.  The current and voltage relations between the
primitive and interconnected networks are summarized in Table 3.2.

3.6 Formation of network matrices
by nonsingular transformations

Branch admittance and branch impedance matrices

The branch admittance matrix Ype can be obtained also by using the
augmented cut-set incidence matrix B to relate the variables and parame-
ters of the primitive network to those of an augmented interconnected
network. The augmented network is obtained by connecting a fictitious
branch in series with each link of the original network. In order to
preserve the performance of the interconnected network the admittance
of each fictitious branch is set to zero and its current source is set equal to
the current through the associated link, as shown in Fig. 3.8a. The volt~
age across a fictitious branch is zero. Then a tie cut-set can be inter-
preted as a cut-set containing a link and a fictitious branch, as shown in
Fig. 3.8b.

The performance equation of the augmented network in the branch
frame of reference is

iBR = ?BREBR
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5 Fictitious

Fictitious
hranch
Tie cut-set G
Fretitious
node
T Fictitious
» branch
- P

@

(b)

N
\2,)

Fig. 3.8 Representation of an augmented network. :a Fictitious
branch in series with a link; (b) interpretation of a tie cut-set.

The matrix Y gz will be obtained directly from the admittance matrix
P sz of the augmented network.
The performance equation for the primitive network

t+7 = [yl
is premultiplied by B to obtain
Ba + By = Byl (3.6.1)
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Equation (3.6.'1} can be written in the partitioned matrix form:

T T T T
va 1 Bz‘ : 7'}, ' Ub I B(‘ ' jb 3
e e o e —— ]|
0 [T 10U
Us: Bt ' ; ‘
P —~~—~‘§ y e {3.6.2)
0 Ui |

where the primitive current vectors 7 and J are partitioned into the current
vectors T, and J», which are associated with branches of the network, and
the current vectors i; and i, which are associated with links. The left
side of equation (3.6.2) 1s

2‘1, + Bz"l'x « jb + Bl‘jl
L+
1 i ; h
where

% + By = B4 and Jo + B = BY
However

B7 =0 and By = Igg

Then the left side of equation (3.6.2) is

! | i
S0 % ! Ipp . } Ipr
! Tt LT

on i Ji i -t

Since each element of 7, is equal to a current source of a fictitious
branch, 7, + Ji is a vector in which each element is equal to the algebraic
sum of the source currents of a fictitious branch and its associated link.
Therefore,

IBR

fBH =

1+ Ji ‘!
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and equation (3.6.1) hecomes
fBR - B‘[y]l (3.6.3)

Since the voltages across the fietitious hranches are zero, the voltage
vector of the augmented network s

Buw=

The voltages across the elements af the onginal network from equation
(3.5.14) are

¢ = BEgg
However

BEBR = BEBR

o= BEgx (3.6.4)
Substituting from equation (3.t.4; nto equation (3.6.3)

Por = B'[H]BEBR (3.6.5)
Since the performance equation of the augmented network is

fsn = YBREBR (3.6.6)

it follows from equations (3.6.5) and (3.6.6; that the admittance matrix of
the augmented network is

Yer = By)B (3.6.7)

Equation (3.6.7) can be written in the partitioned form

: Y, Y. U, B¢ ye g Ust 0
i e (3.6.8)
: Y, Y. 0 U yn ya B, U

where [y»] = primitive admittance matrix of branches
[yed] = [yn]* = primitive admittance matrix whose elements are the
mutual admittances between branches and links
[yu] = primitive admittance matrix of links
It follows from equation (3.6.8) that

Yy = [yw) + Brlys] + [ys)Bi + BiyulB: (3.6.9)
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Sines
Yer = BYy|B
or
P T
Yoo = L% BT) C Yo Ui ‘ U
e ‘__,; 7“,,__.,}
Y Yu . B: ;
T T
Por = lyw) + Bilyal + lyaBr + BilyulBi {3.6.10)
Frone equations (3.6.9) and (3.6.10), therefore,
)'1-:/: = Yl

The branch impedance matrix can be obtained from

Zpk = Y7}

Loop impedance and loop admittance matrices

The loop impedance matrix Zpoop can be obtained also by using the aug-
mented loop ineidence matrix (' to relate the variables and parameters of
the primitive network to those of an augmented interconnected network.
The augmented network is obtained by connecting a fictitious link in
parallel with each branch of the original network. In order to preserve
the performance of the interconnected network the impedance of each
fietitious link 1s set to zero and its voltage source is set equal and opposite
to the voltage across the associated branch, as shown in Fig. 3.9a. The
current through a fictitious link is zero. Then an open loop can be
interpreted as a loop containing a branch and a fictitious link as shown in
Fig. 3.9b.

The performance equation of the augmented network in the loop
frame of reference is

]‘;LU(/I' s ZLOOI’jLOOP

The matrix Zypop will be obtained directly from the impedance matrix

Zioup of the augmented network.
The performance equation for the primitive network

P+ F= [gf
i< premultiplied by C* to obtain

Ct + Ce = O (3.6.11)
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Fictitious
link ~

(b)

®

Fig. 3.9 Representation of an augmented network. ‘a} Fictitious
link in parallel with a branch; b, interpretation of an open loop.

Equation (3.6.11) can be written in the partitioned form

| Ub : 0 € . Ub 0 ! 1
+ ,, o = j i ' z ‘ 1
‘ Cbt I’ l’[ ‘ (4] ‘ ‘ Cb‘ I,~"1 : ‘

(3.6.12)
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where the primitive voltage vectors # and & are partitioned into the voltage
vectors B, and &, which are associated with the brauches of the network.
and the voltage vectors #; and &, which are assceiated with the links.

The left side of equation (3.6.12) is

! [ i
! ( |
| |

('tf"‘.‘a -+ l-’z = C‘f‘ and Cb‘éb + éz = C'?
However

7 =0 and C% = ELoop

The left side of equation (3.6.12) is then

b e ! v+ e

0 Eroop | Eroop

Since each element of # is equal to a voltage source of a fictitious link,
fy -+ & is a vector in which each element is equal to the algebraic sum of

the source voltages in an open loop. Therefore,

I
{ v+ e

ELOOP =1

Eroop

and from equations (3.6.11) and (3.6.13)
ELoop = C“[z]i

(3.6.13)

(3.6.14)

Since the currents in the open loops are zero, the current vector of the

augmented network is

0

fLOOP =
ILOOP

The currents through the elements of the original network from equation

(3.5.20) are

i = Clroop
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However,

Trour = Clroor

then

= oo (3.6.15)
Substititing from equation (3.6.15) into equation (31143,

Fiooe = (2l pop 36 16)
Siee the performance equation of the augmented nerw rs s

Eww . Zz,oupfl.uop 3617
it follows from equations (3.6.16) and (3.6.17) that the impedance ratrix
of the augmented network is

Zivor = C2|C i3.6.18)

Equation £3.6.18) can be written in the partitioned forn:

Z; Zg (/,b 0 (43 2pi Lyb :' Cb

S S R 3651y
Z, Z, Gy Uy 2w 0 U,

where [2,] = primitive impedance matrix of branches
[2s1] = [2w]* = primitive impedance matrix whose elements are the
mutual impedances between branches and links
[24] = primitive impedance matrix of links
It follows from equation (3.6.19) that

Zy = CitlzwiCy + [28]Co + Ciilzn] + [2u] (3.6.20:
Since
Zroop = C2)C
or - - o
Zroop = Gyt 1 Uyl ‘ 2 0 2 LGy l
| | : i i |
i i il |
(7’3 ! 2 E ? U,
then
Zroor = C'lze)Chs + [26]Cs + Collzn] + [24] (3.6.21)

From equations (3.6.20) and (3.6.21), therefore,

ZLOOP = Z4
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The loop admittance matrix can be obtsined from

Yiogp = 2471

Derivation of loop admittance matrix from
augmented network admittance matrix

Che Toop admittance matrix Yooop can be obtaimed from the augmented
admittance matrix Tae Irom equat:ons £3.6.7) and (3.6.18),

7 Yer = Cl2)CBy|B (3.6.22)

In partitioned form.

' o | ! i i
Uy Gy Us i B i Uy B+ Cy
Ch = — - | T e (3.6.23)
0 U, o U 0 f

|

The currents through the elements of the primitive network from equa-
tion 13.3.20) are

i=Clio0p
Premultiplying by B!,
B9 = BClLo0p (3.6.24)

However. from equation (3.5.11) the left side of equation (3.6.24) is zero.
Therefore, equation (3.6.24) can be written

(Cs + B 1roop = 0

It follows that

Cy = —B¢ ' (3.6.25)
Substituting from equation (3.6.25) into equation (3.6.23),

Ch=C (3.6.26)
In a similar manner it can be shown that

CB =1 (3.6.27)
Substituting from equation (3.6.26) into (3.6.22),

Z100pY 82 = CY2)[y)B

Since
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then
Z"g,.;ak fmz = ‘?‘B
Therefore, from equation +3.6.27),
ZronpYug = U (3.6.28)

Fauwition (3.6.28) i partitoned form s

It follows that

Z\Y + Z,Y; = Uy (3.6.29)
Zl)/vz -+ Zz}/4 = 0

Z Y+ ZY, =0 (3.6.30)
Z)Y.+ ZY, =1, (3.6.31)

Solving for Z: from equation :3.6.30),
Zs = —Z ;Y

and substituting into equation {3.6.31),
—Z)Y Y'Y, + Z,)Y, = U

or

Zy(Y, =YY 'Yy = U

Since

ZYo0p = U

it follows that

Yicor = Y4 — Y3V 1Y,

Derivation of branch impedance matrix
from augmented impedance matrix

The branch impedance matrix Zgg can be obtained from the augmented
impedance matrix Zroop. Combining equations (3.6.29) and (3.6.30)
yields

(Zy — Z:ZZ))Y, = U
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Since

ZgrY, = Us

1t follows that

Zex = Ly — L2V Z

Derivation of branch admittance and impedance matrices
from bus admittance and impedance matrices

Using the branch-path incidence matrix X the branch admittance matrix
Y 4« can be obtained from Yrs. From equation (3.3.1),

:15K‘ e va
and from equation (3.3.3),
B[ = {11K‘

Postmultiplying 4 by K¢,

Ab ] : Az,K‘
Gl = R (3.6.32)
‘; A[ i : .’11K‘ ‘
i ! i‘
Substituting from equations (3.3.1) and (3.3.3) into (3.6.32),
Ty
AK‘= —— - B
' By
‘ I
Transposing,
KA = Bt
Postmultiplying by [y]4K! yields
KA fylAK® = BY{y]AK!
or
K(AylA)K* = B{y]B (3.6.33)

From the singular transformations,

Yees = A(yld and Ysr = By]B
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Hence equation (3.6.33) becomes
Ysr = KYpusK! (3.6.34)
The branch impedance matrix is
Zpr = Y3k = (KO 'Y LK™ (3.6.35)
From equation (3.3.2),
Kt = 4,7t (3.6.36)
Substituting from equation (3.6.36) into equation :3.6.33),

ZBR = «AbZBUS*‘iOI

Derivation of bus admittance and impedance matrices
from branch admittance and impedance matrices

Equation (3.6.34) is premultiplied by K-' and postmultiplied by (K*)~!
to obtain

K'Y pr(K)™ = Yars (3.6.37)
Substituting from equation (3.6.36) into equation (3.6.37),

Yers = AtY grds

Since

Zgvs = Yyus

then

Zprs = (A3'Y prdp)™! or Zprs = K'ZprK

The nonsingular transformations for obtaining network matrices are
summarized i Table 3.3.

3.7 Example of formation of
incidence and network matrices

The method of forming the incidence and network matrices will be illus-
trated for the network shown in Fig. 3.10. The incidence matrices for a
given network are not unique and depend on the orientation of the graph
and the selection of branches, basic cut-sets, and basic loops. However,
the network matrices are unique.
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-’-T® T ®
|

",1\, (2 T . Fig. 3.i¢ Sample net-

work.

Problem
2 Form the incidence matrices 4. 4, K, B. B, C. and € for the network
shown in Fig. 3.10.

b. Form the network matrices Ygrs. Ygr, and Zioop by singular
transformations.

- Form the network matrices Z;cor. Zsgr. and Zgn« by nonsingular
sransformations.

Solution

The impedance data for the sample network is given in Table 3.4.

Table 3.4 Impedances for sample network

Self Mutual

Element Bus code Impedance Bus code Impedance

number g Zpa.pq s Zpqurs
1 1-2(1) 0.6
2 1-3 0.5 1-2(1) 0.1
3 34 0.5
4 1-2(2) 0.4 1-2(H 0.2
5 2-4 0.2

The network contains four nodes and five elements, that is, n = 1
and ¢ = 5. The number of branches is

b=n—1=3
and the number of basic loops is

l=e—n+1=2
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3

» PN
@ - < (i
\
|
3
z A5
i
1
|
N |
1 & él (.2,.:’
|
o ——————— d
7 Fig.3.11 Tree and cotree
——— Branch of the oriented connected
— ——— Link graph of sample network.

a. The branches and links of the oriented connected graph of the network
are shown in Fig. 3.11.  The element-node incidence matrix s

N

o a2 0

F>: RS 2 ® ‘4
11 -1 :
2 1 e t
i= 3 1 i ~1
4.1 -1 ! }
I N
- | i | | i
5 Lo =N
! | 1

Selecting node 1 as the reference, the bus incidence matrix is

bus
® ® ©
[
1
1 -1
2 [—1
i |
A= 3 1 -1
4 | -1
|
5 1 -1
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The branch-path ineidence matnx is

A path’t
\ I A
b .
D] - 1
K= 2 —1 ] —1
3 -1

The basic and tie cut-sets of the oriented connected graph of the
network are shown in Fig. 3.12. The basic cut-set incidence matrix is

N A B ¢
1 77717 |
2 1
B= 3 | 1
4 1 |
5 | —1 1 1

Fig. 3.12 Basic and tie
cut-sets of the oriented
connected graph of sample
network.

‘é;"“'*’“ Basic cut-set
: -%; Tie cut- set
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_— I o
Q (4
3 h ®
; \
\
\
5h
\
E \\
S
] - T @/
' D
e - _J Fig. 3.13 Basic and open
) 4 loops of the oriented con-
Basic loop nected graph of sample
Open loop network.

The sugmented cut-set incidence matrix is

“\e‘ -
CSA B C D E
11 ; .
! i
2 e
: I
B= 3 i ‘1
—|—
4 1| 1
: z
‘ i ‘
5‘—111{1 1
! |
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The basic and open loops of the oriented connected graph are shown
in Fig. 3.13.  The basic loop incidence matrix is

:\\.\i\‘ D E
I —1 1
S
C= 3 - V—Ql_’
s
s

The augmented loop incidence matrix is

e .
e\*A B C D E

11 ? -1 1

2 1 —15 

! i |

6= 3. L 1
| 1 il

4 ‘ L
3
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b. The primitive impedance matrix of the sample network from Table
3.4 s

:\i 1 2 3 4 5
1 106 0.1 09|
2 0.1 0.5
[2] = 3 0.5 {
4 0.2 0.4
5 0.2

By inversion, the primitive admittance matrix is

N e
e N\ 1 2 3 4

(<1}

1 2.083 | —0.417 —1.042
2 | —0.417 | 2.083 - 0.208
y] = 3 2.000
4 | —1.042 | 0.208 3.021
5 5.000
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Problems
3.1 Select for the sample network shown in Fig. 3.10 a different tree

than that used in the example. Retain node 1 as the reference and
form:

a.

The incidence matrices 4. 4. K, 8. B, , and € and verify the
following relations:

. AKt=U
1. B, == 4,K!
ni. = —B¢
iv. OB =1

b. The network matrices Ygrs. Yss, and Zioop by singular
transformations
¢. The network matrices Zipop. Zzr. and Zgys by nonsingular
transformations
B (N) c
5 O
( B
i
A -

Fig. 3.14 Sample power sys-
tem for Prob. 3.2.

The posifive and zero sequence impedance data for the sample
power system shown in Fig. 3.14 is given in Table 3.5. For this
system:

a.

Draw the positive sequence diagram and an oriented connected
graph.

Table 3.5 Positive and zero sequence impedance data of sample power
system for Prob. 3.2

Etement

Positive sequence  Zero sequence Mutual
impedance impedance Element impedance

Generator A 0.0 +50.25 0.0 +;0.1

Generator B 0.0 +50.25 0.0 +30.1

Generator C 0.0 +j0.25 0.0 + ;0.1

Line A-B 0.03 +30.13  0.08 + j0.45

Line B~C(N) 0.05 + j0.22 0.13 +;0.75 Line B-C(S) 0.08 + j0.48
Line B-C(S) 0.05 + j0.22 0.13 4350 75

Line C-D 0.02 + j0.11 0.07 + ;0.37
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b. Selecting ground as reference, form the incidence matrices
A, K, B, B. ¢, and (" and venify the relations:
1. AK =
ii. B = 4K
Hi. Cp = —B¢
iv. CB -~
c. Neglecting resisrauce. form the posiuve sequence network
matrices * nos Zurs, Yar, Zre. Zioew and Yieor by singular
transformat ons
d. Neglecting resistsnce, form the zers se:jiience network matrices
Yeus, Zer s, Yien. Zrre Zooor and ¥Viege by singular trans-
formations.
e. Repeat ¢ and d using nonsinguler transformations.
f. Repeat ¢ including resistance.
TrG Tt 777
| -
!
‘ - ' Fig. 3.15 Sample network
Lic - F  for Prob. 3.3.

Table 3.6 Positive sequence
reactances of sample net-

work for Prob. 3.3

Positive sequence

Element reactance
G-4 0.04
G-B 0.05
A-B 0.04
B-C 0.03
A-D 0.02
C-F 0.07
D-F 0.10

3.3 The positive sequence reactances for the network shown in Fig. 3.15
are given in Table 3.6. Designate elements A-B and D-F as links
and node G as the reference bus. Form:

a.

b.

The incidence matrices 4, 4, K, B. B, ¢, and €
The network matrices Ysus, Ysa. and Zpoor by singular
transformations
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4y The network matrices YBL'S, Zm,fs, ZBR,- ZL,(;()]’. ‘d.lld YLO(:P by
nonsingular transformations
2.4  Prove that when there is no mutual coupling the diagonal and off-
diagonal elements of the bus admittance matrix Y s can be com-
nuted from

Yo= ¥y
¥ e = 1Y

where y;, is the sum of the admittances of all lines connecting
buses 7 and j.
3.5 Using the bus impedance matrix Zg-s computed in Prob. 3.2 and
the internal generator voltages given in Table 3.7:
a. Compute the positive and zero sequence bus voltages of the
network.
b.  Compute the positive and zero sequence currents flowing in the

line B-C(N).

Table 3.7 Internal generator voltages
for Prob. 3.5

Internal per unit vollages

Generator  Positive sequence Zero sequence

A 1.0/0° 0

B 1.1/-10° 0

C 1.0/-10° 0.1/0°

3.6 Using the relations between interconnected and primitive network
variables prove the following:

a. :11,K‘ = (/v
b. B[ == AIK'
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Algorithms for formation of
network meirices

4.1 Introduction

The methods presented in Secs. 3.5 and 3.6 reguire transformation and
inversion of matrices to obtain network matrices. An alternative method
based on an algorithm can be used to form the bus impedance matrix
directly from system parameters and coded bus numbers. The under-
lying principle of the algorithm is the formation of the bus impedance
matrix in steps, simulating the construction of the network by adding one
element at a time (Brown, Person, Kirchmaver, and Stagg, 1960)f. A
matrix is formed for the partial network represented after each element
is connected to the network.

In addition, an algorithm is presented for deriving the loop admit-
tance matrix from a given bus impedance matrix.

4.2 Algorithm for formation of bus impedance matrix
Performance equation of a partial network

Assume that the bus impedance matrix Zpys is known for a partial net-
work of m buses and a reference node 0. The performance equation of
this network, shown in Fig. 4.1, is

Epvus = Zpuslpus

t Names in parentheses refer to the Bibliography at the end of each chapter.



Partial
network

Partial
network

A
S G N
; N B
5 E,
' I
@< n
En
Reference

(a)

Partial
network

(b)

Reference

Fig. 4.1 Representation of a
partial network.

Fig. 4.2 Representations of a par-
tial network with an added ele-
ment. (a) Addition of a branch;
(b) addition of a link.
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where Epys = an m X 1 vector of bus voltages messured with respect
to the reference node
Isus = an m X 1 vector of impressed hus currents

When an element p—y is added to the partial network it may be a
branch or a link as shown in Fig. 4.2.

If p—q is a branch, a new bus ¢ is added ¢ the partial network and
the resultant bus impedance matrix is of dimension (v 4+ 1) X (m + 1).
The new voltage and current vectors are of dimersion. 5 + 1) X 1,
To determine the new bus impedance matrix reguoires oniy the calculation
of the elements in the new row and column.

If p—¢q is a link, no new bus is added to the partin! network. In
this case, the dimensions of the matrices in the performance equation are
unchanged, but all the elements of the bus impedaiice matrix must be
recalculated to include the effect of the added link.

Addition of a branch

The performance equation for the partial network with an added branch
pgis

1 P 7 §

a | : : I R

E, 1:Zu | Zy ; Z1p , L | L Iy |

E, ! Z21 Z22 ! o Zzp ; o Zom qu [ P

i i i \ :

— e

= I
CE, = P: Zoy  Zpy - Zop } . Zom | Zy, I, ' (4.2.1)

! | i ‘ i

Enl m Zm Zn

Y .
3
N .

\
E, q Za  Zg

'§qu-"'

It is assumed that the network consists of bilateral passive elements.
Hence Z,; = Z,, where i = 1,2, . . . , m and refers to the buses of the
partial network, not including the new bus ¢. The added branch p—q
is assumed to be mutually coupled with one or more elements of the par-
tial network.

The elements Z,; can be determined by injecting a current at the ith
bus and calculating the voltage at the gth bus with respect to the reference
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‘\ _‘
Partial ey
-

network

0

11 I@ i
per unit ;
N 7

4 ,;'//"/
@ Fig. 4.3 Injected current and
Reference bus voltages for calculation of Z,;.

node as shown in Fig. 4.3. Since all other bus currents equal zero, it
follows from equation (4.2.1) that

El - ZliI'
E2 b Zb'ls
E, = Zl (4.2.2)
Em - ZmJl
E, = 72,1,

Letting /; = 1 per unit in equations {4.2.2), Z; can be obtained directly
by calculating £,.

The bus voltages associated with the added element and the voltage
across the element are related by

Ey=E, — vy (4.2.3)

The currents in the elements of the network in Fig. 4.3 are expressed in
terms of the primitive admittances and the voltages across the elements by

1 ! | v
| | '
i Yra.pa | Yoape | Upg
| [

L= ; — (4.2.4)

lpo . i yw.Pq ‘ ypv.oﬂ ' llpv :

|
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In equation (4.2.4) pq is a fixed subscript and refers to the added element
and po is & variable suhscript and refers to all other elements. Then,

ipe and vy, are, respectively, current through and voltage across the
added element

1,0 and 7,, are the current and voltage vectors of the elements of the
partial network

Upape 1s the self-admittance of the added element

Tpq.se s the vector of mutual admittances between the added
element. p—¢ and the elements p—¢ of the partial network

oo pe is the transpose of the vectsr §pg .0

[Ypo.pe) 1s the primitive admittance matrix of the partial network

The current in the added branch, shown in Fig. 4.3, is
1pg =0 (4.2.5)

However v,, is not equal to zero since the added branch is mutually
coupled to one or more of the elements of the partial network. Moreover,

b0 = E, — E, (4.2.6)

where E, and E, are the voltages at the buses in the partial network.
From equations (4.2.4) and (4.2.5).

Tpq¢ = Yra,pe¥pq T Tpapolos = 0

and therefore,

_ Ypq.00Vps

Upe
Ypa.pe

Substituting for #,, from equation (4.2.6),

_ ng_.nv(Ep - Ev)

Ype.pe

Upg

Substituting for v, in equation (4.2.3) from (4.2.7),
?]pq,w(E_'p - E,)

Yra.pe

E,=E, +

Finally, substituting for E,, E,, E,, and E, from equation (4.2.2) with
I, =1,

ch,pv(Zp- - Zn) 1= 1, 2, .., m

2y =2y +
! " Yva.pe 1 #q

(4.2.8)
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The element Z,, can be calculated by injecting a current at the gth
bus and calculating the voltage at that bus. Since all other bus cur-
rents equal zero, it follows from equation (4.2.1) that

Ey = Zyl,
Ey = Zal,
Ey, = Zpl, (4.2.9)
En = Znd,
By = Zol,

Letting 7, = 1 per unit in equations (4.2.9), Z, can be obtained directly
by calculating E,.

The voltages at buses p and ¢ are related by equation (4.2.3), and
the current through the added element is

lpg = —Ig = —1 (4.2.10)
The voltages across the elements of the partial network are given by
equation (4.2.6) and the currents through these elements by (4.2.4).
From equations (4.2.4) and (4.2.10),

Tpe = Ypa.palpe T Upapolps = —1

and therefore,

| l + gpq‘pdl-)pﬂ
Upg = —
Yra.pq

Substituting for #,, from equation (4.2.6),

tpg = — T FrerelBy = B2) (4.2.11)
Yra.pq

Substituting for v,, in equation (4.2.3) from (4.2.11),

1+ gpa.pa(Ep - E,)

Yra.pq

F,=FE,+
Finally, substituting for E,, E,, E,, and E, from equation (4.2.9) with
Iq = 1;

1+ gpq.pv(qu — Zﬂq)

Yra.pe

Lo = Zpe + (4.2.12)

If there is no mutual coupling between the added branch and other

elements of the partial network, then the elements of 7., are zero and
1

Zpe.pe =
Ypa.pa
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It follows from equation (4.2.8) that

t=12 ... ,m
Zu=2a q
and frem equation (4.2.12) that
Zo= ZDG + Zpe.pa

Furthermore, if there is no mutual coupling and p is the reference node,

1=1,2,....m
:l} r & :

Zp = ¥ 1% g
and

=1, 2, ,m
Za =0 17 q
Also
Zpg =0

and therefore,

Zie = 2pa.pq

Addition of a link

If the added element p—¢ is a link, the procedure for recalculating the
elements of the bus impedance matrix is to connect in series with the
added element a voltage source e; as shown in Fig. 4.4. This creates a

Partial

network

Tli = 1 per unit

Fig. 4.4 Injected cur-
rent voltage source in
series with added link

@ and bus voltages for cal-
Reference culation of Z;;.
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fictitious node ! which will be eliminated later. The voltage source ¢
is selected such that the current through the added link is zero.

The performance equation for the partial network with the added
element p-/ and the series voltage source ¢; is

1 P m l

| I ', l |
Ex l'Zu Zu “‘§Z1y "'izxm le 11

S S [ I N i
j’ Ez Zn i VAT T '5 Zzp o Ztn Za ‘ I,

| | i
‘ E, |=p|Zn | Zp Zos Zom | Zp I, i
( H
| i
: |
! E,. m Zml an Zmp Z.uu Zml Im ;
l € Iy Zy l Zy |- pr | Zim Zy I i
(4.2.13)

Since
€ = Ez - Eq

the element Z;; can be determined by injecting a current at the 7th bus
and calculating the voltage at the {th node with respect to bus ¢. Since
all other bus currents equal zero, it follows from equation (4.2.13) that

Ek=Zh'[.‘ k=l,2,...,m
e = Zul (4.2.14)

Letting I, = 1 per unit in equations (4.2.14), Z;; can be obtained directly
by calculating e;.
The series voltage source is

€ = Ep — Eq — Upt (4215)
Since the current through the added link is
1o = 0

the element p~! can be treated as a branch. The current in this element
in terms of primitive admittances and the voltages across the elements is

Tp! = Ypipilpt + gpl,pvf-)p,
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where

ip; = i,q =0

Therefore
. grl.wﬁw
e = —
Yplpl
Since
dploe = Ypgupe and Yz T Ype.pg
then
Jpq.pad .
v = — TR (4.2.16)
Yra.pq

Substituting in order from ecuations 14.2.16), (4.2.6;, and (4.2.14) with
I, = 1 into equation {4.2.15; yields
Upasol Lo — 2o r=1.2. ... m
Zyn=2p—Zyu+ Ypaoor Lo = Lot o (4.2.17)
Yre.pe 1=

The element Z; can be calculated by injecting a current at the [th
bus with bus g as refererice and calculating the veitage at the Ith bus with
respect to bus ¢.  Since all other bus currents equal zero, it follows from
equation (4.2.13) that

Ev = Zul, =002 05 . e

4.2.18)
&l = Zulz ( 8)

Letting I; = 1 per unit in equation (4.2.18), Z; can be obtained directly
by calculating e;.
The current in the element p—{ is

This current in terms of primitive admittances und the voltages across
the elements is

Tpt = Ypt,piWpt + Fptpalpe = —1

Again, since

Uptoe = Ypa.pe and Yplpt = Ypa.pq
then

I + Upe.palion
I (4.2.19)

Yra.pq
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Substituting in order from equations (4.2.19), (4.2.6), and (4.2.18) with
I; = 1 into (4.2.15) yields

1+ Gpope(Zor — Za2)
Zu=2Zpy—Zq+ + Froel L d 14.2.20)

Yra,pq

If there is no mutual coupling between the added element and other
elements of the partial network. the elements of §,,.,, are zero and

1

Ypa.pq
It follows from equation (4.2.17) that

Zi = 2y~ 2. ;;ll,?,...,m
and from equation (4.2.20),

Zu="Zp~Zo+ 250

Furthermore. if there is no mutual coupling and p is the reference node,

1=1,2, ..., ,m
Z, =0 ]

Hol

o

Z,,l = 0
and therefore,
Zn= —Zag—+ Zpe.pq

The elements in the /th row and column of the bus impedance matrix
for the augmented partial network are found from equations (4.2.17)
and 14.2.20). It remains to calculate the required bus impedance matrix
to include the effect of the added link. This can be accomplished by
modifying the elements Z,;, where 7, j = 1,2, . . . | m, and eliminating
the /th row and column corresponding to the fictitious node.

The fictitious node [ is eliminated by short circuiting the series voltage
source e, From equation (4.2.13),

Em‘s = Zal'sisc's + Z.‘z[l (4»2-21)
and

€ = Z:,[hm's + Zul, =0 (4.2.22)
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where 7,7 = 1,2, . ., = Solving for [; from equation (4.2.22) and
substituting inte (4.2.21),

- ZaZi .

EBUS = (ZBI?F - ";’“J IIJ"JS

&y
which is the performance cquatien of the partial network including the
link p—¢. It follows tha! the required bus impedance matniy is
5
2.2,
ZBL'S (modified: = ZB("'E ‘befer eriminanien, T T
Zy

where any element of Zgi s woditieas 18

Z:ZZi)

Zvi(modiﬁed) = Zti(befuree!émma:mnl - 7
174

A summary of the equations for the formation of the bus impedance
matrix is given in Table 4.1.

4.3 Modification ef the bus impedance
matrix for changes in the network

The bus impedance matrix Z g5 can be modified to reflect changes in the
network. These changes may be addition of elements, removal of ele-
ments, or changes in the impedances of elements.

The method described in Sec. 4.2 based on the algorithm for forming
a bus impedance matrix can be applied if elements are added to the net-
work. Then Zg¢s is considered the matrix of the partial network at that
stage and the new elements are added one at « time to produce the new
bus impedance matrix Z5;.

The procedure to reniove elements or ta change the impedances of
elements is the same. If an element is removed which is not mutually
coupled to any other element, the modified bus impedance matrix can be
obtained by adding, in parallel with the element, a link whose impedance
1s equal to the negative of the impedance of the element to be removed.
If the impedance of an uncoupled element is changed, the modified bus
impedance matrix can be obtained by adding a link in parallel with the
element such that the equivalent impedance of the two elements is the
desired value.

When mutually coupled elements are removed or their impedances
changed, the modified bus impedance matrix can not be obtained by
adding & link and using the procedure described in Sec. 4.2. However,
an equation can be derived for modifying the elements of Zurs by
introducing appropriate changes in the bus currents of the original net-
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work to simulate the removal of elements or changes in their impedances.
The performance equation In terms of the new bus currents 1is

E'svs = Zpes(Ipr o + Al s 4.3.1)

where Al pi s is a vezter of bus current changes such that gy will reflect
the desired ~hanges in the network.

An elemeni 7., of the moudified bus impedanee matrix can be obtained
ov ealeulating for the moedified network the volrage at bus 2 with a current
mjected at hus ; This s eguivalent to calculating tor the original
metwork the veltage wi bas @ with the same vaiue of current injected at
mus j and appropriate changes in currents at the buses which are terminals
of the elements bemg rhanged.

If the elemeniz u-» coupled to elements p-g are remouved or their
impedances are changed, the corresponding changes in the bus currents
are

Al = Ai,‘, Lo L

A[k = —Al;_, ‘\ = ¥

Al = A7, =y (4.3.2)
Al = ~AlL, E =y

Al =0 for all other &

Letting the injected current at the jth bus equal nne per unit,
I =1

I =0 k=1.2 ... .n (4.3.3)

k=j
From the performance equation (4.3.1),

Ei=) Zalli +AL)  i=12....n
k=1

Substituting for AZ, and I, from equations (4.3.2) and (4.3.3),

E: = Z:j + quA_iyw - Zl}'iA_Z)lv + Z{pA—Z'pv - ZaaEpa
E/ = Z.‘j -+ .(Zw - va)Eur + (Z—cp - ZW)ED"

Using the subscript of for network elements y—» and p—o.
El=Z,+ (Zia — Zig)Bias T=1,2, ... n (4.3.4)
From the performance equation of the primitive network,
Ades = (] = [y (4.3.5)

where [y.] and [y.] are respectively the square submatrices of the original
and modified primitive admittance matrices. The rows and columns of
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the submatrices correspond to the network elements ag—» and o—o. The
subscripts of the elements of ([y,] — {y.]) are a8, ¥8. The voltage vector
in equation (4.3.5) is

i, = E. — E,

Substituting for EY and E; from equation (4.3.4),

P = 20— 28+ (Zval = [Zsa) — 1Zrsl + (Zig)ATas (4.3.6)
Substituting from equation (4.3.6} for #., into (4.3.5).

Stas = (y) = W2 — 2a; + ((Zva] — [Zad] — [Zo] + Zs61)Btas!
(4.3.7)
Solving equation (4.3.7) for Azas,

Aiag = (U ~ (lg] = W23 = [Zsa) — [Zos] + [Zag])}

Designating
[Aw] = [w] — (5]
and

(Ml = U = [84)(1Za] = [Zsa) = 1Z18] + [Zss])}

equation (4.3.8) becomes

Atas = [MI7Ay(Z,5 — Zs)) (4.3.9)
Substituting from equation (4.3.9) for Az.s into (4.3.4),

El=Zs5+ (Zia — Z)IMI0y)(Z,; — 24)

This equation gives, for the original network, the voltage at bus 7 as a
result of injecting one per unit current at bus j and the appropriate cur-
rent changes at buses 4, », p, and ¢ to simulate the effect of changes in the
elements u—v. Thus, from the definition of the bus impedance matrix, the
7jth element of the modified bus impedance matrix is

Z, =72+ (2 = Z)MIAYN( 2y — 2sy)  i=1,2,. .. .1
The process is repeated for each 7 = 1,2, . . . | n to obtain all elements
of Z5us

4.4 Example of formation and
modification of bus impedance matrix

The method based on the algorithm for forming the bus impedance
matrix will be illustrated using the sample network given in Fig. 3.10.
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Examples of the modification of this bus impedance matrix will also be
given.

Problem
a. Form the bus impedance matrix Z g s of the network shown i Fig. 4.5.

— ® ) T @
T :

on

i
P ]
L_L@ (2) 4 : @ Fig. 4.5 Sample net-

work.

b.  Modify the bus impedance matrix obtained in part & to nclude the
addition of an element from bus 2 to bus 4 with an impedance uf 0.3
and coupled to element 5 with a mutual impedance of 0.1.

c¢. Modify the bus impedanee matrix obtained in part & ts remove the
new element from bus 2 to bus 4.

Solutien

The data for the network is given in Table 4.2. The bus impedance
matrix will be formed by adding elements of the network in the order
indicated in the first column of this table. Node 1 is selected as reference.

Table 4.2 Impedances foer sample network

Self Mutual

Element Bus code Impedance Bus code Impedance

rumber P—q Zpe.pe r—s Zpqurs
1 1-2(1) 0.6
4 1-2(2) 0.4 1-2(1) 0.2
2 1-3 0.5 1-2(1) 0.1
3 3-4 0.5
5 2-4 0.2

a. Stepl. Start with element 1 which is a branch fromp = 1tog = 2.
The elements of the bus impedance matrix for the partial network con-
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rainng the single branch are

| |

(DI 0
VAT 1—‘———!
@; 0 0.6

Siree node 118 the reference, the elements of the tirst row and colimn are
2o and need not be written.  Thus
)

Z/er 8 =

i
——

Step 2. Add element 4, which is a link, from p = 1 (reference) to
¢ = 2, mutually coupled with element 1. The augmented impedance
matrix with the fictitious node { will be

©) l
e

2

/\Z{g\Z{[»

| \ i
i I

where

T = Zis = — oy + Vi (Zia — Za)

Yz aum
1 + ylz(:'\,,m(l)(,le - Zu)

Yiz,12(2)

ZII = -Z2I +

and Zyp = Zy = 0. Invert the primitive impedance matrix of the
partial network to obtain the primitive admittance matrix.

1~2(1) 1-2(2)

i
1-2¢(1): 0.6 0.2
(200.00) = ! ‘
"(")i 0.4 ‘
1-2(1) 1-2(2)
1-2(1) ‘ 2 —1
[2p0pa] 1 = (Yps, pe] =
1-2(2) —1 3
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Then,
(—=1)(=06
Ty = Zp = —0.6 + &—)T» ) —0.4
1-1(0.4
Zi= 04 + ~—~,§—) =06
and the augmented matrix s
2 ]
5 0.6 —0.4 !
LD =04 0.6
S
Eliminating the lth row and column,
; Zg[ZIz (—0,4)(-0.4;’ )
Loy =Zyp — —— =06 — ——" - o= 0.3333
m e ’ 06 ’
and

@
Zg.g. ¢ = ’\"\2) i 0.3333
Step 3. Add element 2. which i1s a branch. from p = 1 (reference;

to g = 3, mutually coupled with element 1. This adds & new bus and the
bus impedance matrix is

@ ®
® 03333 Zn _j

Zpus = |
®| Zw | Zu |
|
where
| | ,
Yizazcn 0 Yizaze | i VAT ATE
1 ] |
Zy'— Za |
Zyy = Loy = =
Yi13,13
| |
Y13.12(1) Y13,12(2) | Zyy — 2y
1+ a :
| H
| VAT ATE
—
Zaa =

Y1313
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and Zy; = Z13 = 0. Invert the primitive impedanse matrix to obtain
the primitive admittance matrix.

1-2(1) -z 1-3
1-2(1)| 0.6 g4 0.1
(Zpenel = 1-2(2) 1 02 S
1-3 0.1 05
1-2(1) 1-2(2) u 71—3

1-2(1) 2.0833 | —1.0417 | —0.4167

[200.00) ! = [Ypouou] = 1-2(2) | —1.0417 3 0208 0.2083

1-3 —0.4167 02085 2.0833

Then, o
! T
- —0.4167 =~ 0.2083 ' —0 3333
{ : L
. —0.3333
Zoo = Loy = = = 0.0333
woe 2.0833
| ‘
| —0.4167 K 0.2083 t . ~0.0333
1+ ' Ve
{ —0.0333
Zay = = (.4833
2.0833
and
| &
@ 0.3333 | 0.0333
Zprs = [
@\ 0.0333 } 0.4833 |

Step 4. Add element 3, which is a branch, from p = 3 to g = 4, not
mutually coupled. This adds a new bus.

Z‘H - Z42 = Zzz = 00333
Z34 = Z43 = 33 = 0.4833
Zu = Za4 + 234,34 = 0.4833 + 0.5 = 0.9833
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Thus,
@ & ©
'y 0 3333 1 0.0333 00333 i
SR R OO
Zors =3 ©0.0333 1 0 4833 | 0 4833 . ]
o 07);3‘3 —0_4833 O~ ‘;83;
Step 5. Add eIemerrlirﬁ[);w"ni_ch—Vi;z link, tfron p = 216 ¢ = 4, not

mutually eoupled. The elements of the Ith rew and enlumn of the
augmented matrix are

Zu=1Z2u =22y — Zy =0.3333 — 0.0333 = 0.3000

Zy =23 =2y — Zy = 00333 — 0.4833 = —0.4500

Zau =2y =Zs — Z¢ = 00333 — 0.9833 = —0.9500
Zi= 2y — Zy+ 2o402¢e = 0.3000 + 0.9500 + 0.2 = 1.4500

The augmented matrix is

3 0.3333 0.0333 00333  0.3005
50033 04838 04833 —0.45.6@‘}
T 0.0333 ¢ 0.4833 | 0.9833 _7;0,9563(;
| R
[ 0.3000 —0.9500 i 1.4300

. —0.4500

Eliminating the lth row and column,

) ZuZ
Zyy = Zoy — 2228 03333 —
éll
’ I3 Z Z.‘s
Zoy =2y = Zgy — 228 00333 —
Zy
, , ZuZ
Zyo= 24y = Zye — 228 _ 00333 —
le
, Tl ‘
Zy = Zy — 228 20,4833 —
le
, , ZuZ
Zy=Zy=Zy — 2" = 0.4833 —
le
) ZuZ
Zii = Zo — “Zi 0 o33

ZI!

(0:3000) 0.5000)

{ = 0.2712
1.4500
g =045
(0.3000) =0.4500) _ 16
1.4500
(0.3000)(~0.9500) _ . oq
1.4500
(—0.4500)( —0.4500) = 0.3436
1.4500
(~0.4300): ~0.9500) _ (oo
1.4500
500) —
(=09500) ~0.9500) _

1.4500
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and

® & %

@ 0.2712 1 0.1263 © 0.229% |

| |

Zys =G 0.1263 10,3436 0 185 |

©0.2208

C0U1885 . 0.3600

b, Adding anew element, which i 2 k. from p = 2 to ¢ = 4, mutually
coupled with element 5 result= in the augmented matrix

o ® ® z

. i | X
2 0.2712 0 0.1263 | 0.2298 1 Z,

i N P ———
}/‘[ 0.1263 0.3436 | 0.1885 Zy:

’ |

where
gm.;ﬂ(Zpl ': Zﬂ

Ypa.pq

T = Zp = Lo + [ =234

and
1 + gm.pv(Zpl - Zvl;’

Yrq.pq

Zu = Zy — Zg +

The primitive impedance matrix is

1-2(1) 1-2(2) 1-3 3-4 0 24(1) 2-4(2)

1-2()] 06 0.2 ‘ 0.1

| I

122)| 02 | 0.4

|
i i
|

)
\ |

—_ | e

! ]
|
i i
|
i

1-3 0.1 0.5
[2] = |
31 0.5
2-4(1) 0.2 0.1
| .
2-4(2) | | 0.1 0.3
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Since the new element is coupled to only one nther element, 1t is sufficient
ro nvert the submatrix for the coupied elements. which is

2-411) 242

[ ST N N
Thus
2 41 242
2-4(1) 6 =2
LUPUVPOI = .7 7‘.>77~77j77 T
2.4(2) —2 1
and

SAD2TI2 = 02208

Zu = Zi = 02712 — 0.2298 + ST = 00207

Zy = Ziy = 0.1263 — 0.1885 + —;29«(»12230— OIS g onnt

Zu = Zu = 0.2298 — 0.3600 + *3‘0‘("22380_ 03609 _ 0636
Zu = 0.0207 + 0.0636 — - :3_‘”'040300‘- = D0636) g 9931

and the augmented matrix is

® ® “ {

‘ I
@) 02712 | 0.1263 | 0.225  0.0207
® | 0.1263 i 0.3436 | 0 1885  —0.0311 |
| : |
®| 0.2298 | 01885 0 3608 —0.0636

| |

1l 00207 | —0.0311 —0 0656 0 2031 |
|
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Eliminating the {th row and celumn,

(0.0207) (0.0207)

70 = 02712 — S o697
2 ! 0.2931
» , 002010 —0.0311) )
Zip = Zhy = 01263 — Sl S = 01285
, , (0.0207) [ —0.0656;
20— 7 = oovus — 0200 0000) by
02031
, (—0.0311){ —0.0311)
7= 03436 — o TR 0,3403
” 0.2931
, , (—0.0311)(—0.0636) ‘
2 = 7 = 0.1885 — CaeL ~ 0.1816
, (—0.0656( —0.0656) ‘
7', = 0.3609 — A — 0.3462
“ 3609 0.2931

Finally,

® @
|

|
0.2697 | 0.1285 © 0.2344 |

e

|
Zyrs = @10.1285 | 0.3403 ¢ 0.1816 “
i I

®] 0.2344 i 0.1816 = 0.3462

¢.  The modified clements of this bus impedance matrix for the removal
of the network element 2-4(2) mutually coupled to network element
2-4(1) are obtained from

Ly = Zu4 (Za — ZoWM Y2 — Zs) 1,5 =2.3,4
where g—» is 2-4 and p—o is also 2-14 and the indices a. v = 2, 2 and B,
5 =4 4

The original primitive admittance submatrix is

2-4(1) 2-4(2)

2-4(1) 6 | -2 |
ly] = —
2-4(2) | -2 ’ 4 }
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znd the modified primitive admittance submatrix is

24l 2-4(2)

2-4iiy 3
(ll,; =

202
Thus
: ] 14 o i/ H _
lye) = [y = law =

Also

”” = ;[‘ - IAQ:]([‘Z‘/a] - [Zba} - [Z'rﬁ] + [Zé,‘l] b

2-4(1)

2-4(2)

1
i

2-4(1)

L

where
@ @
@ 102007 | 0 2607
Zod) = e ——
| 0.2697 | 0.2697
@ @
@' 0.2341 | 0.2344
[Zba] =
&1 0.2314 | 0.2344
\
® ®
@ 0.2344 | 0.2344
[Z+4] =
®  0.2344 | 0.2344
® ®
®| 0.3462 | 0.3462
[Z3] =
@®] 0.3462 | 0.3462

2-4(2)

Algorithms for formation of network matrices
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4
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Substituting in the above equation,

]
1

11471 © 01471 |

[M] = (SR
—0.2042 © 0 7058
e e e
| 082753 1 —0 17247 .
M = e
0.34494 ©  1.34494 |
and
! |
1.17247 | —2.34494 |
(M Ay = | |
—2.34494 = 1.08988 |
I i

Fori=2andj =2,

Loy = Loy + ( Zaa “ Zyg ' —  Zoy Zoy )[JI]“‘[Ay,] 1222 %Z‘._,

| .
‘222 2ZA‘.’
Z;z = {.2697 +\ 0.0353 ‘ 0.0353 I 1.17247‘ —2.34494‘ [(0,0353 ‘
|
J

?-2.34494‘ 4.68988 | | 0.0353 |

Zy = 0.2697 + 0.0015 = 0.2712
Tori =2andj = 3,

Ziy = Zn + (‘ Za

| : i
Zzz | — “ Zu i Zu ) [x‘[]wl[Ay,] Z-_v;; Z43 w

Z a3 Zs :
i

Zyy = 0.1285 + [0,0353 é 0.0353 117247’ ~2.34494 | | —0.0531 |
i

—2‘34494} 468988 | | —0.0531 ]

Zy = 0.1285 — 0.0022 = 0.1263



Chapter 4 Algorithms for formation of network matrices 103

Fori=2andj =4,

= N
Z;A = Zy + ( Loy Zys. — Lyt 2y, ‘) [M]~VAy,] ! Zsye
e e I.__

t 2y

[

Zu

N
'
2

li

0.2344 + é0.0SSZ’. 0035 117247 —2 34444

¢

0 1118

Doe2 34494 1 AROSR

N
I

0.2344 — 0.0046 = 0.229%

For7 =3andj = 3,

1

-0.1118

Zy=Zyu+ (i Z s Zy — 1 7 Z:; §> [M]~Y Ay, _/4_: - f4 |
Zj = 0.3403 + —0 0531, —0 05313?NM1.17247E—2V344§;€? ~0.0531
| 1—2.344945 4<68988i§i;0,0531
| ! g
Zg; = 0.3403 + 0.0033 = 0.3436
Foriv=3andj = 4,

‘ - | T T
ZL=:ZM—+< anznlyzﬂizmi>LMrﬂa%] ‘Zuih_%zué
Zy, = 0.1816 +-wf0.0531?-0.053ﬁ % 1.17247?—2<34494 —0.1118

‘;__2434494; 4.68988! | —0.1118

Z;, = 0.1816 + 0.0069 = 0.1885
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Fori=4andj=4,

’

| ; ; R
AT VAT f(! Zg Zu“ ——%Z“:Z“ ‘> MYy agd ey A

———————- [ S

Zogo= 03462 + —0.1118 =0 1118 117247 -2 34494 -0 (s

—‘_’.3-}494 4!\6‘988 01118

Zy = 0.3462 + 0.0147 = 0.3609

1
Zwrs = 3" 0.126: ’ 0 3436 0.1885;
! 1 :
0 209%;

0.1885 i0.3609

{
’ |
. !

which is equal to the matrix obtained in part a.

4.5 Derivation of loep admittance
maitrix from bus impedance matrix

Derivation of node-pair impedance matrix
from bus impedance matrix

An element of the node-pair impedance matrix Zyp is designated by Zy pq.
If there is a current source between p and ¢ only, an element of this matrix
i¢ defined as

E,—F; ,7=1,2 ...,n

Beime = 15 i

(4.5.1)

Letting the current /,, = 1 per unit as shown in Fig. 4.6,

Zi)qu = FEi— EJ'
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calculation of Z;,,,.
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Fig. 4.6 Injected current for

equation of the nerwork written in terms of Zges 13

1 p 4 n
| ; B o
o 1 Zy 2y VAR VAP B B
T | : b
i ! : | I
SR | 4
j o —
E, p| Zn ! Zp» Zy | Zpn
j i : | ‘
_ ' 4.5.2)
| | : i
E, q| Za ' Zy L FZgn s 1o
S , ' o 1
N R S
— 1
En n an 'Zﬂp‘ [ an Lo " va ‘ In \
Since I,, = 1, then I, =1 and I, = —1. From equation (4.5.2) it
follows that
E, =27,-2, and E, =2,,—-127Z,
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From equation (4.5.1),
1,7=12 ... .n -
Z:,.pg = Z.‘p - Z,',, - Z,'q -+ Zj . . (403)

Using all node-patr combinations for p~q, all elements »f Zxp can be calcu-
lated from equation (4.5.3). The matrix Zx  has dimension

nin — 1y nn — 1)
B

Derivation of element-pair admittance matrix
from node-pair impedance matrix

The element-pair admittance matrix is designated by 1 zp and the element
of the matrix by Y, ,. If there is a voltage source only in series with
p—¢, an element of this matrix is defined as

(27

R
Yina
€pq

Network

“ae s
—-—
o

@ Fig. 4.7 Series voltage source for
Reference calculation of Yi;, e
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where 1;, = rurrent through the element i—j
€po = Voltage source in series with the element p-g

Let e, = 1 per unit. as shown it Fig. 4.7, then

YVipe =1 {4.5.4)

[t remuains therefore to caleulate the eurrent 7,
The serfornunce equation i admittance form for rhe primitive
network s

The current through the element 1 1=
Ui = —Jo F Gijselos (1.5.5)

where po refers to all elements of the network. The voltage shurce in
series with p-g¢ induces currents in the elements mutually coupled with
p—q. This voltage source can be replaced by equivalent current sources
in parallel with each element, as shown in Fig. 4.8 The equivalent

Element p-q

g
P4y
%]]::”jﬁq'_ypq,p

Network .

— e Fig. 4.8 Equivalent source
@ currents for calculation of
Reference Yiiing-




108 Computer methods in power system analysis

current source for the element 1 is

Jii = — Ui {456)
The voltages 7,, can be obtained from the performance equation of

the network using the node-pair impedance masfrix

E,\‘p = ZprNp ‘457)

From equation (4.5.7), the voltages across the ciements p—o of the network
are

E, — E, = (Z0)l,, i4.5.8)
where
i = £, — B, (4.5.9)

and the indices ps and v refer to the node-pairs corresponding to the
terminals of the network elements. The elements of Z,,,, are obtained
directly from Zyp, and Z,,,, has dimension ¢ X e where ¢ equals the
number of elements. The elements of the vector I,, are equal to the
shunt source currents which replace the series source voltage. Therefore,

I = ~Tuvpg (4.5.10)
Substituting from equations (4.5.9) and (4.5.10) into (4.5.8),

oo = ~[Z o Purpe (4.5.11)
Substituting from equations (4.5.6) and (4.5.11) into (4.5.5) yields

f = Yiiwe — Giipel ZoauslPur.ma

Hence from equation (4.5.4),

Yiiee = Yisra = GisooolZ oauslGuv,0a (4.5.12)

and using all combinations of element pairs the matrix Ygp can be
obtained. The matrix Y gp has dimension e X e.

If there is no mutual coupling in the network, equation (4.5.12)
reduces to

Yiioe = ~YiiiiiieYpa.pe 1y # pg



Chapter 4 Algorithms for foermation of network matrices 109

and
b
Yo = Yijii = Yisiilis islisis

Equation (4.5.12) can be written in terms of the eiements of the bus
impedance matrix since

Zptuv} = [ZP#] - {Zﬁ‘] - [ZN! + EZMJ
Then
Y'LW = Y — glj.av([Zp»} - lZwJ - [Z,,] + izfy,l;‘gnt »9

If it is desired to derive Zyp from a given Y ge, the elements of Zyp
can be obtained in a manner similar to that deseribed i this section.  An
element of Zyp, in terms of the element-pair admitiance matrix, can be
expressed by
(4.5.13)

Zipe = Zijpg — Zi5.00LY popr) Zuv.ng

If there is no mutual coupling, equation (4.5.123} reduces 1o
Ziype = =2 Y ijpefpa,pe Yy # pg

and

Zijai = #ijii = 2i5Y i

Derivation of loop admittance matrix from
element-pair admittance matrix

Given the element-pair admittance matrix Ygp, the elements of the loop
admittance matrix Y o0p can be obtained directly. VYgy is partitioned
as follows:

Branches  Links

-
(5}
v-: .
g Y‘l Yz
e

Yep =R
2
£ Y Y,
-
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where the submatrix Y, is associated with the basic loops of the inter-
connected network since each link corresponds to a basic loop. Therefore

YLOOP = Y4

It is possible to derive Yy from a given Y 10op since the elements of
the submatrices Y, Y, and Y, can be determined from the elements of
Y,. Let ¢— be a branch common to loops A. B, and (" and let p—q be a
branch common to loops G and H. If a voltage source e, = 1 per unit

is applied in series with the branch p—¢q, then by definition of an element
Of YEP7

Viipe = 1y

Moreover, the voltages in the loops G and H are equal to one per unit.
Hence, the currents in the loops A, B, and C are

I, = Yac+ Yau
Is = Ype + Ypu
Ic = Yee + Yen

where the admittances are obtained from the loop admittance matrix.
Since the current in branch ¢-j is the algebraic sum of the currents in
loops A, B, and C,

1y =Ixa+Is+ Ic

Therefore,
Yipeg= Yac+ Yan+ Yoe + Yeu + Yoo + Yen

The signs of the loop admittance terms are determined by the orientation
of the branches with respect to the loops.

4.6 Example of derivation of loop admittance
matrix from bus impedance matrix

The method of deriving the loob admittance matrix from the bus imped-
ance matrix will be illustrated for the sample network shown in Fig. 3.10.

Problem

Derive the loop admittance matrix Y .00p from the bus impedance matrix
Zsrs of the network shown in Fig. 3.10.
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Solution
The primitive admittance matrix is
1-2(1) 1-2(2} -3 24 3-4

§ ' T ) ; @
1-2(1) 2083 | —1042 | —€ 417 , | f

22 —1.042 0 3021 0208 .

W =13 ~ —0417 0208 2082
. ! | ——. i .
24 | 50
; i i :
34 ! ; 2.0
) i ! J ‘

h

The bus impedance matrix of the network obtained by nonsingular trans-
formation is

@ ® 9
® 0.271 | 0.126 1 0230

Zws=®' 0126 0.344 | 0.189 |
| I ; .

! 3
@, 0.230 ; 0.189 | 0.362

First, form the node-pair impedance matrix Zyp. The elements of
the first row from the equation

Zi:'-w = Zip - Z)‘P - Z!’q + qu
are

Z12.12 =Zn — Zn — Zy + Zy
=0-0-0+40271 = 0.271

le.ls = Zu - Zn - Z13 + Zzs
=0—-0-—0+0.126 = 0.126

le,ﬂ = Zl') - Z22 - Zu + Zu
=0 —0.271 — 0 + 0.230

le.34 = Zxa - Zn - Zu + Zu
=0-—0.126 — 0 + 0.230 = 0.104

le,u = Zn - Zzl - Zu + Z'H
=0-0-0+0.230 = 0.230

Zu.za = sz - Zn - sz + Zzs
=0-0271 —0+0.126 = —0.145

—0.041
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The elements of the remaining rows are obtained in a similar manner.
The node-pair impedance matrix is

1-2 1-3 2-4 3-4 14 2-3
1—2? 0.271 0,126 —0.041§ 0.104 0.2301 —0 145
R | ‘ .
1—35 0 126% 04344‘; 0063/ —0.155| 0.180 0 218,
2~4i1 —0.041 0063% 0173/ 0.069| 0.132 0 104
Zyr= | | | | ';
34, 0104 —0.155 0069 0328 0.173 —0.259
H\ 0.230 0.189! 0‘132% 0.173 0.3623——0.041’;
| i |
2-3 ~0.145| 0.218) 0.1045i —0.259] —0.041" 0.363,
Then
1-2(1)  1-2(2) 1-3 2-4 34
L2) 0271 0271 0.126| —0.041 0104
1—2(2)‘! 0.271| 0.271 1 0.126 | —0.041 T o0 |
Zowr =13  0.126| 0.126  0.344 | 0.063 ‘ -0.155 '
2-4 j —0.041 | —0.041| 0.063, 0.173  0.069 |
3-4 \ 0.10¢ 0104 | 0155 | 0.069 0.3

Second, form the submatrix Y, of the element-pair admittance

matrix Yep.
equation

e - -
)iJ,pq = Yijpg — yli'w[zw.w]yw,m

The elements of the submatrix are obtained from the
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The elements Y122 and Y, 4 are ealculated in a similar manner.
The submatrix Y, is the loop admittance matrix

D E
D 1841  0.340
Yioor = e e
F 0.340 0.875
Problems

4.1 Using the data for the sample power system given 1 Preb. 3.2 and
neglecting resistance. form the following positive sequence matrices:
a. ‘The bus impedance matrix using the algorithm
b. The node-pair impedance matrix Zyp
¢.  The element-pair admittance matrix Ygp
d. The loop admittance matrix Y oop from Yiee

4.2 Repeat Prob. 4.1 using the zerc sequence network data and neglect-
Ing resistance.

4.3 Modify the positive and zero sequence bus impedance matrices
obtained in Probs. 4.1 and 4.2 to reflect the vpening of the north
circuit V between buses B and (.

1.4 Derive the equation

Z!I'.N = Zijpg T zl’i.pa[ypv.w]zuvvpu

for obtaining the elements of the node-pair impedance matrix Zyp
using the element-pair admittance matrix Ygp.

4.5 Form the node-pair impedarnice matrix Zyp using the loop admit-
tance matrix Y io0p obtained from Prob. 4.1, part d.

4.6 Show that the branch impedance matrix Zzg can be derived from
the node-pair impedance mutrix Zyp.
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igapter 5
Three-phase neticorks

5.1 Introduction

Power systems are operated usually with balanced three-phase generation
and loads. A balanced network is ubtained by the transposing of trans-
mission lines.  This makes possible the treatment of many three-phase
power system problems on a single-phase busis  {f there is unbalanced
exeitation on a balanced network the solution -f network problems can be
nbtained by one of two methods.  The first method analyzes the network
in terms of actual phase quantities. The second method nvolves the
transformation of unbalanced phase quantities into balanced sequence
quantities. Two important types of sequence quantities are symmetrical
components and Clarke’s components. For svmmetrical components,
the balanced sequence impedances are uncoupled for both stationary and
rotating elements. For Clarke’s components the balanced sequence
impedances are uncoupled only for stationarv elements. Transforma-
tions for unbalanced networks, in general. do not vield uncoupled sequence
impedances.

3.2 Three-phase network elements

A three-phase network component represented in impedance form is
shown in Fig. 5.1. This component represented in admittance form is
shown in Fig. 5.2. The variables and parameters are:

i g are the voltages across the element p— for phases a. b, and
¢, respectively
Bt i are the source voltages in series with phases a, b. and ¢,

respectively, of the element p—q
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Fig. 5.1 Representation of three-phase network com-
ponent in impedance form.
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Fig. 5.2 Representation of three-phase network component in admit-
tance form.
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The performance equation of
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are the currents through the element p— for phases a, b,
and ¢, respectively

are the source currents in parallel wiih phases 4. &, and ¢,
respectively, of the element p—q

is the three-phase impedance matrix for vie element p-q

is the three-phase admittunce matnx for ihe element p-g

1 three-phase eleracer in impedance

Jorm 18
— ’__l T
| ¢ .
Pl e ! aa ab e
P pq ‘ ‘ Zpe  %pq ‘rq
) L] R -
: ! , :
b bob — | pa | bb ) )
e | € } = B g 2 (3.2.1)
' ! | e
T | | ) !
e i e ca | Lob by
“re | | €pq ‘ Zpq | %pq : | tog
: L ' i ]

- aa
where 25

Sab
Pq
ac

|

self-impedance of phase @ of the three-phase element con-
necting nodes p and g
mutual impedance between phases a and b

z;o = mutual impedance between phases a and ¢
and so forth.
Lquation (5.2.1) can be written more concisely s

.a.b.c ab.c _ _a.b.crab,c
rg + epq qu qu

e

The performance equation in admittance form is

—l [ ] i |
I F W
a | ca aa ‘ ab O B T R
Upq { ’ Jpq Ypg | Ype ‘ Ype | i Upq i
{ | U
| - s .
b b | ba | b | : I
H — i ! . ¥ i
lpq‘+']pq ym‘ypq;«l/;‘qs!lml
H \ ! i l
c ! to ca b | e B e i
pq | Joq Ype | ¥Upa 5 Ypq | i Upq i
! | - HEt | i
which can be written
ra.b,c cabe __ ., a.bic,a,bc
Trq +]Pq = Yo Upq
where
abec __ a,b.c\—1
Ypg = (ZPG )

The parallel three-phase source eurrent in admittance form and the three-
phase series source voltage in impedance form have the relationship. as
is the case in single-phase representation,

ja.bie

Jrq

PR 1, %Y. .
y}’? eP'I
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The impedance matrix 232 and the admittance matrix y%r< of «
stationary bilateral element are symmetric. If, in addition, the three-
phase element is balanced. then the diagonai elements of 250, desiguated
by z;,, are equal znd the off-diagonal elements. designated by 27, are
equal, that is,

aa bb ec '
= = = 7
Zpq qu qu “pg
and
ab _ ,ac __ ba _ be __ e W om
Zpq Zpq Zpqa = “pa T %pq¢ T Tpe T %pg

The corresponding relations are true in the admittance matny 4,7

The impedance and admittance matrices of balanced three-phase
rotating elements are not svmmetric. However, the mutual coupling
from phase a to phase b, b to ¢, and ¢ to a for the phase sequence a. b. ¢ are
identical, that is,

ab __ ,bc _ _ca _ _ml
Zpg T %pqg T %pg T Zpg
Similarly,

ac _ ba __ _cb _ m2
Zpe T %pg T Zpg T %pg

The performance equation of the three-phase primitive network in
impedance form is

i.a,b,c + éa,b,c — [za,b_c]ic.b,:
or in the admittance form 1s
7‘a,b.c + 7‘a,b‘c — [ya,b.c]f.a,b,c

The vectors representing the variables are composed of 3 X 1 submatrices
corresponding to the variables of a particular three-phase network
element. The parameter matrices are composed of 3 X 3 submatrices.
These submatrices correspond to the self and mutual three-phase imped-
ance or admittance matrices of the network elements.

3.3 Three-phase balanced network elements

Balanced excitation

The exeitation of any three-phase element is balanced when the source
voltages or source currents of all phases are equal in magnitude and dis-



placed from each other by 120°.

| :
s i !
! ePV ! ' 1
abe _ ' b ’ — 7 ; 4
“ra _[epqi_fa ,;e::q
i N
5 b i
i < ! :
I €pq l ;@
A B S
where
n o=@y = —1, 4 jig \/:{

[t followsthata’® = 1,a* + a + 1
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For balanced excitation,

o
[Joo | 1
M,,w,.l [——
cet.e B a
/pq _1~7pq!_§a2 Jre
i
1o | 1@ |
[ T
0.anda* = a®. The phase voltages

and phase currents are balanced if the excitation of a balanced three-
phase element is balanced. Then, the performance equation. in imped-
ance form, for a stationary element is

— e T
R : i
1{ I 2p¢ * Zpg ' Zpg ‘ilf
— E__.,i; R
2 |8 = ,m mo 2, @ 5
" | €pe = i %oa | Zpq  %pq fia ézpa (5.3.1)
—_— ‘_i ifm.___i e - ! :_, _AAi
a | e i a ?
) , “pe . “pe Pe !
| L ! S i
and for a rotating element is
‘E ‘ -‘ | s ' mi | m2
1 i i1 ;
1 1 ‘zpqizpqlzpq 1 1
'7— — | A;__‘A“‘i‘_ |~_;
: 2 a 2 a __ | ,m2 e - o.ml ! 9 | a .
| @7 | Vpe t|a €pe | Zpq Ezpq . Zpg 0 07 1p (5.3.2)
| — |——= S ‘7_:
i ml mi | s i i
a | a ‘zm‘zm Zpe @
Both sides of equation (5.3.1) can be premultiplied by the conjugate
transpose of
¥
1
—
- a?
| a
[
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that is,
( | P
1 . a . a*
i H M
to obtain
Q,a G (8 __ .m\-a 55,3
35, + 35, = 3z}, qu)l,,q (54.3)

Dividing by 3, equation (5.3.3) becomes

a | L2 m Ay a
a4 = ¢ —
! pe PPG ‘2}70 ZPQ)]PQ

where (25, — 25 ) is the positive sequence impedance, which is designated
by z,,- Thus, a balanced three-phase element with balanced excitation
can be treated as a single-phase element in network problems. The
power in the element is equal to three times the power per phase.

In a similar manner, equation (5.3.2) can be reduced to

.a a . (.3 2,ml m2\ ‘a
"pq + €pg = (‘pq ta Zpq + aznq)zpq

where 23+ a7 + az]} is the positive sequence impedance.
The performance equation, in admittance form, for a stationary
element is

e T The = o — Ype)5e
and for a rotating element is

e FJpe = Whe + @Pypg + ayi)es,

Unbalanced excitation

When the excitation is unbalanced, the performance equation of a three-
phase element can be reduced to three independent equations by diago-
nalizing the impedance matrix 252, Using a complex transformation
mutrix T’ then the phase variables are expressed in terms of a new set of

variables as follows:

abe _ S0k
! = Tv;’

re
abc _ v5.k L
(qu = Tquk (5.3.4)
a.bc __ SN

e = TYW

The complex power in the element is

Npe = Ppg + jQpe = {(7";?&)*}[(’0")‘(

rq

Substituting from equations (3.3.4),

Spo = LS (T Tl (5.3.5)
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The complex power in terms of the ¢, j, k sequence variables is

Spe = LR ¥ eyt (5.3.6)

rq

If the complex powers S, and S, are equal, that is, the selected trans-
formation T is power-invariant. then from equations (5.3.5) and (5.3.6),

TN = U = T(T*y
Thus T is a unitary matrix.

Substituting from equations (5.3.4) the performance equation (5.2.2)
becomes

T(oi* 4 ity = godeTy (5.3.7)
Both sides of equation (5.3.7) can be premultiplied by (T*)¢ to obtain
- g

It follows that

t)k _ (T*)‘Z“MT (5.3.8)

A similar transformation can be obtained far the performance equation in
1ts admittance form.

5.4 Transformation matrices

Symmetrical components

Two particular transformations for three-phase balanced elements are of
interest. One of these transforms the three-phase quantities into zero,
positive, and negative sequence quantities. xuown as symmetrical com-
ponents. The matrix for this transformation 1s

which is a unitary matrix, thatis, (TF)!T, = U; and furthermore, because
T, is symmetric, T} = T,7'. Using this transformation the impedance
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matrix for a stationary element 2j>* from equation (5.3.8) becomes

] T i [ { | |
I i : i | H
i | Lm " | : | {
1 1 1if2’“ 25 z"i i’lillll
1 bio [ U A
312 2 | m s mo L Vg2 !
‘g T 3 1 a ay;zw Zpq znql 3}l,a | @ i
: VAL
1 : : ! '
] Vb oom i m s H i i [ 2 1
1 a a i zp !lzp, zpq; ‘1:a‘a‘
P B t
That is,
¢ I
& D m i !
zm-{-ZZW ! ;
|
|
01,2 __ g __ . m | i
%y = Zpq zNi
|
l ] . am
| Zpq Zpq
I

where the zero sequence impedance is
o __ e m

Zpe T Zpq + 221:«

the positive sequence impedance is

(¢ S __ am
Zpg = Zpq Zpq

the negative sequence impedance is

(2 _ 0 __ . m
%pq = %pg Zpq

and 22)* refers to the transformed impedance matrix, which is diagonal

for a balanced three-phase element.

The transformation matrix 7, also diagonalizes the impedance matrix
for a rotating element, even though 232 is not symmetric. This diago-
nalized matrix is

3 ml m2
ZPV _F qu -F qu

| )
01,2 __ | 2,ml m2Z
2y, = | Zpq + a2y, + azj;
Z' 4_ azml 4‘ a22m2
re Pre Pe
. 0) __ ml m2
where zfﬁ = 23, + 23, :{- 25, ,
— 4 2.m m
Zpe = Zpg +a Zpq + az,,

z
(2) __ & ml 9 m2
2 = 23, + azp, + a2},
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Clarke’s components

Annther transformation matrix transforms the three-phase guantities
into zero, alpha, and beta sequence quantities, known as Clarke’s enmpo-
nents  The matrix tor this transformation is

L2 0 E

R | _ i

HE — .

T.= . PV Vi
V3
S V|V

which is an orthogonal matrix, that is, T¢T. = U. Therefore Tt = T;"
Using this transformation the impedance matrix for a stationary element

s __ .m
ZPQ qu

2,7* from equation (5.3.8) becomes
[ i ¥
gy 22| |

: )
!
0.a,8 ! [ -
Zpg T | Zpq Zpq
i
\

where the diagonal elements are the zero, alpha, and beta impedance
components, respectively, and zf,':"’ refers to the transformed impedance
matrix which is diagonal for a balanced three-phase element.

The transformation matrix 7. does not diagonalize the nonsymmetric
impedance matrix 22 for a rotating element. The following is obtained
by this transformation.

; |
i '3 ml m2
. %pq + 2pq + Zpq i

13

2 1 1 2
o (z’;q - 2:« 2 — }é(z;‘q + Z:q

5.5 Three-phase unbalanced network elements

When a three-phase element is unbalanced, the transformation T,, or

T., on 252 does not yield uncoupled sequence impedances. Even though

it is possible to diagonalize z“‘,';“, no single transformation exists for
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diagenalizing the impedance matrices for all elements nf 2 network
because the unbalance of the different elements, in general. is not related.
Therefore, it may be desirable to maintain the original three-phase quanti-
ties for the solution of network problems. When the transformation 7,
is used the sequence networks cannot be treated independently,

5.6 Incidence and network matrices
for three-phase netweorks

Incidence and network matrices for a three-phase balanced or unbalanced
network can be formed by the same procedures as those described in
Chap. 3 for single-phase networks. The entries 1, —1, and 0 it the inci-
dence matrices for a single-phase network, however, will be replaced by
the 3 X 3 matrices, U, — U, and null, respectively. Also, the impedance
or admittance of a network element will be a 3 X 3 matrix. The rows
and columns of this matrix refer to the phases a, b, and ¢ or to the appro-
priate sequence components. The network matrices will be composed of
3 X 3 submatrices whose elements also refer to the phase or sequence
components.

3.7 Algorithm for formation of
three-phase bus impedance matrix

Performance equation of a partial three-phase network

The performance equation for a three-phase network representation in
the bus frame of reference and impedance form is
By = Zshalas
where E4%¢ = vector of the three-phase bus voltages measured with
respect to the reference bus
Is%s = vector of impressed three-phase bus currents
Z3bs = three-phase bus impedance matrix
When the three-phase elements of the network are balanced, their
impedance or admittance matrices can be diagonalized by the transforma-
tion matrix 7, or T.. In this case, the three sequence networks can be
treated independently. The procedures based on the algorithm described
in Chap. 4 can be applied to form the independent sequence network
matrices.
When the three-phase elements of the network are unbalanced, the
3 X 3 submatrices Z&>° and Z%*° of the bus impedance matrix are not
equal. The equations for the formation of the three-phase bus impedance
matrix by the algorithm can be derived in 2 manner similar to that for
single-phase networks.
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Addition of a branch

The performance equation of the partial network with an added branch
p—q, in terms of three-phase quantities. is

1 2 P m q
PR e R R -
. ‘ a1 ; ! ; ‘ .
ht;.b.c 1 7?} Zu b, . Z‘;':"’ i C Zt;;i,c Zz;,b.: 3 ja [N
|
———— | S ,l — ‘;~_~?>. — ek B i ‘] ra, - ‘
E;.b.c ) / Za b oL _Za.h B : Z;ﬁ‘t /a IR j

|
| .
i
C Labe v 7abc ! zabe . . a.b.~ b,
ESNC = pi Z 1 257! 25y L “pm e |l
e [E—— _!7;“,___ AU S O S
L % o = e
: ( I i | H
i B '
- i S \ “—"_'m‘ T B o , - ":
A £ el !
E:br ij ‘c|Zabc1, L. Zcbr? . Zabc Zﬂc i lll’z’;f.y\
? | i t { :
a.b.c: a.b,c j a.b.e! | ) abec, 5 a.b.c a.b.n | ab.
Eq i Z Z i !Zqﬂ ! ngm qu ! in ‘

The elements Z2” can be determined by injecting a three-phase current
at the 7th bus, as shown in Fig. 5.3. and measuring the voltage at the gth
bus with respect to the reference node. Similarly, the elements VARS
can be determined by injecting a three-phase current at the qth bus, as

—e

I e

———o
. Three-phase
. element p-q
. /

Partial
network

R

Fig. 5.3 Injected three-phase
current for calculation of Z3;>°.
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®

—a

F——0

——o

: Three-phase
element p-q __

j @

Partial

: Fig. 5.4 Injected three-
@ phase current for calcula-
e tion of Z3;>* and Z:;b“.

shown in Fig. 5.4, and measuring the voltage at the ¢th bus with respect
to the reference node.

To calculate Z%> let the current at the ith bus be /¢*° and all
other bus currents equal zero. The voltage across the added element
p-qis
;qb .c Ea e E:.b.c (57_2)
The vector of voltages across the elements p—o of the partial network is
—abc - Eabc E“:.b.c (573)

The current in the element p—g, in terms of the primitive admittances and
the voltages across the elements, 1s

e = Upopalye” + Toasalis (5.7.4)
Since 27 = 0, from equation (5.7.4),

50 =~ (Upgnd et (5.7.5)
Substituting from equations (5.7.2) and (5.7.3) into (5.7.3),

Esbe — E:.b.c = — (g )it Fabe — Fobe (5.7.6)

From equation (5.7.1),

Ea.b.c = Za.P.ch.b.c 5
E:.b.c — Z"p"»b"’l;'b'” ({)77)
q qr [
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and at any bus k,
E:.b.z — Z:;b.c[?,b.c

Using the relationships from equation (5.7.7) in 15.7.6) and solving for
Zu,b,c[q.b,c
q 1 !

Wb, b, Wb, b 1,80, —1:758.8, a.b,c Jhoe ra.b.r =
ZEIre = ZI 4 (Yesd)  Vaen Zabe = Zar Vi ie (5.7.8)
Since equation (5.7 8) is valid for all values «f 79> it foliows that

Wb boe Ja@be o1 -ab, boe by S
Zyre = 230 & Waewd) T Wawsal Zahe — Zabe (5.7.9)

To calculate Z&*, let the current at the gth bus be 19> and all other
bus currents equal zero. If the added element p-7 were not mutually
coupled to the elements of the partial network the voltage at the ith
bus would be the same whether the current 74> s injected at bus p or g,
that is, I3** = I%*° and therefore

Yabie __ b, b _ 7a.beyab.c

Eyhe = ZiheIehe = 2918

However, the element p—q is assumed to be mutually coupled to one or
more elements of the partial network; therefore,

rabc _ 7ab.cjabie _ bieyab.e a.b.c = -

Ky = Zirelyhe = 292190 + AES (5.7.10)

where AE*** is the change in voltage at bus 7 due to the effect of mutual
coupling. The vector of voltages induced in the elements p—o is

za.b,c _ za.bc yab.c = -
s = w-mlv (5.7.11)

The series source voltages &%>° and parallel source currents & are
related by

oo = =[] renhe (5.7.12)

Substituting from equation (5.7.11) into (5.7.12),

Tt = B (5.7.13)

However, in terms of bus currents,

Tobe = Jobe = —Jobe (5.7.14)
and the change in voltage at the ith bus due to mutual coupling is
AEY™e = Zghelpte + Zehelebe (5.7.15)

Sabstituting for I%*¢ and I¢*¢ from equations (5.7.13) and (5.7.14),
equation (5.7.15) becomes

AE?,b.c — _(Z?‘;b.c _ Z?..b.c [ a.b e "2“"“ Iu.b.c (5.7.16)

ZP"-I”] P pe" ¢
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Substituting from equation (5.7.1A) into (5.7.10), it follows that

ab.c _ ‘7abe a.b, boeyiabiel 1za.be 1
Z3re = 23 — (Zgh — ZaPd st ate (5.7.17)
From the matrix equation,
| S
a.b.c a.b.c a.b.e ab.e i T
pq.pq Zpq.pa Ypave | rsee U
[
! , Cod
a.b.c ; a.b.e ab.c 1 F.b,0 ! T
Zpapg Zpa.pe Yoo, pq . Yoo, pa . : l
| i
! ! !
1 D
then
sa.be ,abe _ __ [,abec]sabe
2p0.peYpa.pe = [ZM,P’]yﬂ.;q (5.7.18)

Premultiplying by [25%¢]~' and postmultiplying by (y%es,) ", equation
(5.7.18) becomes

(el 25 = —TnpeWpana) ™ (5.7.19)
Substituting from equation (5.7.19) into (5.7.17),
Zyhe = Z + (25 — 23 )y Woasa) ! (5.7.20)

The element Z2¥¢ can be determined by injecting a three-phase
current at the gth bus and measuring the voltage at that bus with respect
to the reference node. Let the current at the gth bus be I&*¢ and all

other bus currents equal zero. Since 742 = —J%*°, substituting in
equation (5.7.4) for z";':"’ and solving for v,

8¢ = (RS 3 + g G721
Substituting from equations (5.7.2) and (5.7.3) into (5.7.21),

E;.b.c _ E:'b'° - —-(y;'qb:;q)_l{lz.b‘c + g;,:l,;(E:.b.c _ E_:'b")} (5-7‘22)

From equation (5.7.1),

E:.b,c — Z;.:,c[:.b.c

E:.b,c — Z:&b,clz,b.c (5'7'23)
and at any bus k,

E:.b.c — Z:’:":I:‘b'c

Substituting from equation (5.7.23) into (5.7.22) and solving for Z32<I%*,

it follows, since the resulting equation is valid for all values of 14>, that

Z:;’b.c — Z;.:,c _+_ (y;.:..;q)~1{ U + gu,b.c (Za.b,c — Z:;b,c)} (5.7_24)

.7 rQ
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1f there i8 no mutual coupling between the added branch and the elements
of the partial network, the elements of 7375, are zeroand (y52e,) ' = 2bc,

Then, equations (5.7.9), (56.7.20), and (5.7.24) reduce to

a.be . 7ab.c
z5be = I

Za.b,c = Zq,b.c

iq ip
7a.b.c - Za.b;a: + 2a.b.t:
‘qq¢ Pe »e.P¢

If. in addition, p is the reference node, the elements of Z%%° and Z%}
are zero. Also

Z::»c — Za.b.e

ra:PQ

If the network elements are balanced, then Z3* = Z2>° and either
equation (5.7.9) or (5.7.20) can be used.

Addition of a link

As in the case of single-phase networks, when the new element is a link 1t
is connected in series with a voltage source as shown in Fig. 5.5. The
three-phase voltage source 2> is selected such that the current through
the added link is zero. Then the element p—I, where [ is a fictitious node,

. @ Three phase
hd element p-q

Partial
network

Fig. 5.5 Three-phase voltage
I source in series with added

@ link for calculation of Z3*,
Reference Z5™<, and Z3h°.
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can be treated as a branch. The performance equation of the partial
uetwork -with the added branch p-i, in terms of three-phase quantities, is

1 2 BN i
/:ala< 1 l Z:i,lb.c Z?Zbc Lo cl’:: ;/,{,t I’;‘L( :
whle - o a b 3 h
£y R AR A J?zp ‘ AN L
i
. — [ I . e PR e ~
| a.b.c Gb( ab.c t7ah 7ab atboc S Ee
Al - .. gebe : : )7
L= p ACOERAC S ASSS VARSE DAN I (5.7.25)
i .
! e e e e e ‘ s oo R
/ 1
—_— e - - ——
| :
b abc ab.c! | ) ab,c a.b.c bora.
Ee m | VA VA A Ié
| | |
i ! . ; ; -
‘ ‘~ ) ‘ i ) = b
C;;.bvc l ?Zabc Zabc‘ . . ]Zti;jb.c: Lot Z(I]’:r Z?,'b' I‘; ¢
i

The elements Z%%¢ can be determined by injecting a three-phase current
at the ;th bus and measuring the voltage at the fictitious node [ with
respect to bus ¢ Let the current at the ith bus be /4% and all other bus
currents equal zero.  Then, from equation (5.7.25).

C? boe Za b, c[q,b,c (:)726)
Alzo. as shown in Fig. 5.5,

be _ ,ebc __ ,a.bec il
et =2 vl (5.7.27)

The current %2 in terms of the primitive admittances and the voltages
across the e]ements 18

Z'z;,:m V/‘;I)pcll,abc + yayb c-ubc (3728)
Since

~a.b.c ~a.b,c

Jplbw - Z/qupv

ab.c __ ab.c

Ypipt = Ypa.pq

and the elements of 2 are zero, then the voltage 13, from equation
(5.7.28), is

U0 = = Wpand) Traselar (5.7.29)
Substituting from equation (5.7.29) into (5.7.27),

e(zlbf — abr + (y:.qb:;q)—ly;:;d abe (5730)
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Substituting for z"b * and 7 from equations (5.7.2}, (5.7.3}, and (5.7.7)
into (5.7.30),

ab ¢ - {Za bhe Zz;,"b.c)lg.b.c + \y;:;q: Za;b.r . Z:;vo' [?.Ir.c (5731)

i
PQP"(

Substituting for ¢2*¢ from equation {3.7.26) into (5.7.311, it follows, since
the resulting equation is valid for all values of 7¢* ¢ that

VARSIV ACIE A SR E I e Al A (5.7.32)

Yps,oot
The elements Z%>" can he determined by injecting 2 three-phase
current between g and { and measuring the voitage «t bus .. Let the
current between g and ! be 7§ and all other bus eurrents equal zero.  If
the added element were not mutually coupled to the elements of the
partial network, then

E,:,b,: — (Zf;:b'c _ Z?éb,c)l;x,b.t
However, because of the effect of mutual coupling,
) piang
E“z.b,c — Z?ib,c]?.b,c — (Z?;,b'c . Z?;b,c)l?.b.c 4+ AE?'b‘C (:)733)

Following the same procedure as in the case where the added element is a
branch, then

AEH = —(Zhe — Zepo)(atel b I (5.7.3%)

and from equation (5.7.19),

ab.c1—-158.b.¢ __mebe (,abc y—1
(LI s S yw-pa(yrq~ﬂq)

Substituting from equation (3.7.34) into equation (3.7.33) it follows, since
the resultant equation is valid for all values of I#**, that

Z?ib.c = Zq.b.c . Zn_z.b,c _+_ (Zabc Z?’b c)ya.bpq 'yabu \—1 (5735)

»q.pq’
The element Z4>¢ can be determined by injecting a three-phase cur-
rent between ¢ and [ and measuring the voltage at node { with respect
to bus ¢.  Let the current between ¢ and I be 77" and all cther bus cur-

rents equal zero. Since ©30° = —I7*°, substituting in equation (5.7.28)
for 242 and solving for v"b * then

130 = = (yams) THUIE + g i) (5.7.36)
Substituting from equation (5.7.36) into (5.7.27),

ezl:.b.c — vabc + (y;:;q) 1(1?.64 + g;,::;az-):;b.c) (5737)

Substituting for v and #%>° from equations (5.7.2), (5.7.3), and (5.7.7)
into (5.7.37),
a be _ (Za be Zab c)]u b.e + <y4;:;q)71(1a be + —;;;:,(Zz,lb,c _ Z":,{b,c)[;n.b,c;
(5.7.38)
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From equation (5.7.25),
be Z?ib'cl?'b'c (5739)

Substituting from equation (5.7.39; into (5.7.38). it follows, since the
resultant equation is valid for all values of 145 that

(—(Zabc‘*7abc)+(ljabc‘ 11( + ab' 7aoc o Zubc): (5740)

pg-pe/

If there is no mutual coupling between thp ‘xdd»}d ok and the elements of
he partial network, equations (5.7.32), (5735, and (5.7.40) reduce to

Z?{,b,r — Zabc — Zabc
yabc n.b,c n,b.c
2 = Zip - Zia

abec _ 7abec __ 77abec a.b.c
AT A 2"+ 250

If, in addition, p is the reference node,

7abe _ __ 7abe
Zli - Zqi
Z?l.b.c — _Z?&b.c
a.be _ __ 77abe a.b,c
Z5 = qu + 2p¢.pq

Furthermore, if the elements are balanced,
R

The fictitious node ! is eliminated by short cireuiting the link voltage

source ¢**¢. From equation (5.7.23),

Eobe = Zahelshs + ZebeIete (5.7.41)
and

(b Zabc]n;gl;}.g 4 Zaberede = 0 (5.7.42)
where 7,7 = 1,2, ... ,m. Solving for /¢*¢from equation (5.7.42) and

substituting into (5.7.41),
Ests = 1255 — Zive(2)- 2y T
Therefore,

/a bye . Za.b.c
ij(modified) T “4“ij (beforeelimination)

— Tz T
A summary of equations for the formation of the three-phase bus
impedance matrix is given in Table 5.1.  These equations can be written

in terms of symmetrical or Clarke’s components.

5.8 Modification of the three-phase bus
impedance matrix for changes in the network

The formulas given in Table 5.1 can be used to modify a three-phase bus
impedance matrix when an element is added to the network. The<e
formulas can be used also when an element not mutually coupled to other
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elements of the network is removed or its impedance is changed. The
procedures sre similar to those used for single-phase networks. When
an element is removed, the modified three-phase bus impedance matrix
can be ubtained by adding a parallel element whose three-phase impedance
's equal te the negative of the impedance of the element to be removed.
When the rmpedance of ar. element is to be changed, the modified three-
phuse bus ‘mpedance matrx cxn be obtained by adding » parallel element
-urh that the equivalent three-phase impedance of the two elements 1s
the-desired value.

The same procedures as those used for single-phase netwaorks can be
employed to derive an equation for modifying the submatrices of the
three-phase bus impedance matrix when mutually coupled elements are
removed or their impedances are changed. This equation is

Zatt = 2yt + (2 — Do M Ayt NS = 2y
where

Ay = et =

[ebe] = (0 = (a2 1252 - (250 — (238 + 12581

t

5.9 Example of formation and modification
of three-phase network matrices

The methods of forming three-phase network matrices by transformation
and by algorithm will be illustrated using the sample system shown in
Iig. 5.6a.

Fig. 5.6 Sample three-
phase system. (a) Single
line diagram; (b) tree and
cotree of oriented con-
nected graph.

Branch
——— Link
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Problem

Form the bus incidence matrix 4 with grourd as reference.

Form the bus admittance matrix Y g5 by transformation.

Form the bus impedance matrix Zgy s using the algorithm.

Modify the three-phase bus impedance matrix obtained in part ¢ to
remove element 3 between bus 2 and bus 3.

N

Table 5.2 Three-phase impedances for sample system

Self Mutual
Bus Bus
Element code Impedance code Impedance
number p—gq 285 r—s Fhad

PUPY

0.080 | —0.025 | —0.020

1 1-2 —0.020 0.080 | —0.025

| —0.025 | —0.020 0.080

0.080 | —0.025 | —0.020

2 1-3 —0.020 0.080 | —0.025

—0.025 | —0.020 0.080

1.50 0.50 0.50

3 2-3 0.50 1.50 0.50
0.50 0.50 1.50
0.60 0.20 0.20 0.20 | 0.20 | 0.20
4 2-4 0.20 0.60 0.20 2-3 0.20{ 0.20 | 0.20
0.20 0.20 0.60 0.20 | 0.20 | 0.20
0.90 0.30 0.30 0.30 | 0.30 | 0.30
5 4-3 0.30 0.90 0.30 2-3 0.30 { 0.30 | 0.30
0.30 0.30 0.90 0.30 | 0.30 | 0.30
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Solution

The data for the sample three-phase system is given in Table 5.2. The
impedances for this system are represented by real numbers equal to the
generator and line reactances. The branches and links of the oriented

conimected graph for the single-line representation of the system are shown
o Fig. 5.6b.

. The bus incidence matrix is

N

 busi
O
¢
1 —U:
2 -U
1= 4 U -v
3 Ul =U
5 -U!l U

where U is a 3 X 3 unit matrix.
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¢. 'The bus impedance matrix will be formed by first adding all branches

and then adding the links.

Step 1. Start with element 1, the branch from p =1 to ¢ = 2.
The elements of the bus impedance matrix of the partial network are

@

a b c

al 0.080 | —0.025 —0020

e

i ‘
|

Z%% = @b| —0.020 | 0.080 | —0.025

¢! =0.025 | —0.020 0.080

L

i
;
i
|
|
i

Step 2. Add element 2, the branch from p =1 to ¢ = 3. This
adds a new bus and the bus impedance matrix is
® ®
a b c a b c
a| 0.080! —0.025| —0.020 l|
@b| —0.020 0.080l —0.025
c| —0.025| —0.020| 0.080
735 =
a 0.080| —0.025| —0.020
®b —0.020| 0.080| —0.025
¢ —0.025| —0.020| 0.080

Step 3. Add element 4, the branch from p = 2 to ¢ = 4. This
element is not connected to the reference node and its addition creates a

new bus. Using the formulas in Table 5.1
Z‘q‘;-:'c = Z;;:‘ i = 23
VA VA t1=2,3
and

2Bl a.b,c ab.c
qu - Zr'z o Zpq.9q
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Step4d. Add element 5, the link from p = 4 to ¢ = 3. This element
is not connected to the reference node and is not mutually coupled {5 an
existing element of the partial network. The elements of the rows and
columns eorresponding to the fictitious node [ are obtained from

a,bec _ 7abe a,b,e — .
Z!'b - ZPtb - Zqib r= 2y 37 4
Zabe _ 7abe _ 7ab.e S
le - le Ziq t = 2’ 3.4
and
7a,bc _ abe __ a, b,c a.b,c
Z” - Zpl qu + Zpa.pe
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Step 5. Add element 3, the link from p = 2 to ¢ = 3 mutually
coupled to elements 4 and 5. This element is not counnected to the
reference node.  The elements of the rows and columns correspouding to
the fictitious node ! are obtained from

7abec __ Jabe __ 7abe a.b,e \—1-a0.¢ (Pabe a,b,¢e) A
= Am' 237+ Warse) yvqw(zm Z,,- / PE

7ab.c . 8.0 7a.b, - bt ek, b y— Y
Z?ZOC - Z::Por . Z‘ao ¢ 4 (Z;zpbc _ Zz’br abz(\ljubc) i i

1Y o0, 2¢\Y 1. pq
and

Z;zl.b.c - Z:.!b.c - Zzib,c + ( a,b,c )._1{ Lr S+ ga.b,c /Z:I,b.c . Z:;E.e)}

1
Ypa.pe 045,09\

il
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s
B
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156 Computer methods in power system analysis

Also

(M) = (U — [8y2*(232] - (282 — (2581 + (28D
o,y =2,4,2
g,6=4,33

ab,c ab,c | 7a,b,c
2% 230° Iy

I

» [ 7ab,c | ab,e ab.c ! a.b,e
where |22 Z% VAT 7%

ab,e
ZTZ

abec | ab,c
| Z22 Z!l

Zc.zb.c Zn.b.c Zu,zb.e
4 44 . 4
\
|
ab,e] b, be | 7ab,
(Z32) = | 23 | Z30° 1 Zw°
ab,c ab,c ; ab,e
Z% Z3 | Z3
a,n,e a,0,¢ i a.0,¢c
VA b VA Boor ' 7 b
24 23 23
abe] _ ab,c ab,e ab,c
[276 ] - Zu Zu Z(S
a,b,c a.b.c a,b,¢
le Z23 Z23
Ze ) e | 2y
abe] ab.c ab,c ab,c
(2% = | 230 | 235 | 2%
ab,c a.b.c ab.e
Z:N ZI:! ZIS

and Z$P%, Z$P, and so forth, are obtained from the original bus impedance
matrix.
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158 Computer methods in power system analysis

For fhe calculation of Z33*, 1 =2, j =3 « v =2, 4 2. and
3,8 =4,3,3. Then

]

(Pabie _ Pebey — b, b, b, b b, S !
(Zabe — 250 = | Zspe — 2500 | 230 — Z3ye | 29y — Z39° )

§ B i

0239 —40057!—0047 0359, — .0085 — .0071  0598|— 0142 - 011§
N | \ — E

= .~ 0047, 0239 —.0057|— 0071 0359 — . 0085|- 0118/ 0598~ 0142]

- ‘0057i— .0047§ .0239|— 0085 — .0071] .0359|— 0142/ — .0118] 0598

a.bec _ 7ab,c
Z!I Z( 3

i !
(\Z:;b.c . Zzb.c) — l Z:,‘b,c . Z:,ab.c

and

|
B,¢ ab,c
| Z:: -2z 33

‘.~<0239 L0057 .0047

.0047 | —.0239 .0057

.0057 .0047 | —.0239

—.0359 .0085 .0071

= .0071 | —.0359 .0085

.0085 .0071 | —.0359

4 —.0598 .0142 .0118

.0118 | —.0598 .0142

0142 | 0118 | —.0598
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Problems

5.1 In Prob. 3.2, the positive and zero sequence dats for the sample

system shown in Fig. 3.14 is given in Table 3.5 =or this system:

a.

N1
[N]

With ground as reference, form the three-phase incidence
matrices 4, K, B, B, €7, and € for the oriented connected graph
selected for Prob. 3.2 and verify the relations:

i, ALK =U
. By = AK!
di. €y = — B¢
w. CB=U

Neglecting resistance and assuming all negative sequence
reactances are equal to the corresponding pusitive sequence
reactances, form the three-phase network matrices Y%%% and
Zab¢ 5 by singular transformations.

Neglecting resistance and assuming the positive and negative
sequence impedances are equal, form the three-phase network
matrix Z%%5 using the algorithm and ground as reference.
Transform Z%%5 calculated in part ¢ to Z%}s. The submatrices
for positive and zero sequences can be verified with those obtained
in Prob. 3.2.

The sequence impedance data for the sample system shown in Fig.

5.7 is given in Table 5.3. Selecting ground as reference (node 0),
compute Z %% using the algorithm.

O_

WO

Fig. 5.7 Sample system for

@ @ Prob. 5.2.
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O

i i

Fig. 5.2 Sample system for Prob. 5.3.

5.3 The reactance data for the three-phase system shown in Fig. 5.8 is
Generators A and C:

) = @ = (.1
r® = 0.04
z, = 0.02

Transformer A-B:

P = 2 = 2O = (]

r, = 0.05

Transmission line B-C:

T

: |
' i

, l ! !
10.310.2 ,og

: R
xevb-c=j0,2,oA41 0.1 ]
i | ‘ [

! | \ ;

0 0.1 02,

a. With ground as reference form Y %32

b. TForm Z%}2 using the algorithm.
c. Determine Z%55 from Z%j2 obtained in part b.

5.4 Assume that the transmission line B-C of Prob. 5.3 is balanced and
its reactance is

0.3,0.1 }0.1!

b =101]0301
| |

1 |

01101 i0.3‘
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)

Compute Z$) ¢, 292 ¢, and Z2

BU S BUS-
b. Determine Z%%5 from Z%y3 obtained in part a and compare the

the results to those obtained for the unbalanced line in Prob. 5.3,

part c.
The sequence impedance data for the sample system shown in Fig.
5.9 is given in Table 5.4. The mutual impedances 23,y and 2937

are not equal because of the eircuit arrangement. For this system
compute Z §5E using the ground (node Q) as reference.

O
T

® ®

Fig. 5.9 Sample system
1 Jor Prob. 5.5.




@mmm £+ .:mo

6900 £ + 8210°

Yy00 - n — 8100°

9200 ¢ + ¥210° %mm,.fr Emc‘ 9000 f + L¥00 —| €T o
@occ ﬁ + - P00 — | ¥300° £ — 8100 |9e6b £+ 9LL1”
e [ e T
2900 ¢ — 6200 - _o%o 7, 38, L110 T wos _ 23 [ ¥p90° mms.,Tr ¥eg0- @oo..ﬁ| 7900
8200 £ - 0500 4300 £—9z00" [1¥10°f - 9600 _ -1 oic [+ L¥20 = | 016% 4 ¥%90° Soo £+ 6210° £-1 ¥
R— B e —— \:!.7 — OSSN S U —
2020 { + 8100 —(gg10 £ + ¥L00° CHeT L+ Lier | LZ00° ﬁ+ 6210 19966 ﬁ+ $09¢"
m«co £~ owoo womoo s €510 £ + ¥LOO | Emv H+ ﬂéc @ms {4 BS mms [ :oo
wmoo m 0800 .E:c cmc: mowo4.ﬁ+ 8100° 1 &1 mﬁ: £ Yre0 — | 016¥ m+ P90 2200 F — 9900 —| 2-1 g
SS (- omoc h:cg =~ 9910 ~|g¥s1 [ + Lier m zzou ! £~ ecco mﬁc w — 1300 6966 \+ yoge
0001 £+ 0
0001 £+ 0 -0 F4
r
L 00%0 L+ 0
-
0001 £+ 0
0001+ 0 1-0 1
00¥0° £+ 0
- e 54 ez b-d  saqunpy
sounpadiuy apoo aouvpadue] 3p02  JuIwWa g
sngy sng
35;2 ) o ey -

¢c

TQod g dof waps ks somod ajdwns fo vyvp aduvpedun aouanbag ¢ 31qoy



166 Computer methods in power system analysis
Bibliography

Clarke, Edith: *“Circuit Analysis of A-C Power Systems, Symmetrical
and Related Components,”’ vol. 1, John Wiley & Sons, Inc., New Yerk,
1943.

Kron, Gabriel: “Tensor Analysis of Networks,” John Wiley & Scns. Inc.,
New York, 1939.

Rothe, Frederick S.: “An Introduction toc Power System Arnalysis,”
John Wiley & Sons, Inc., New York, 1953.

Stevenson, William D., Jr.: “Elements of Power System Analysis.”
MecGraw-Hill Book Company, New York, 1962.

Wagner, C. F., and R. D. Evans: “Symmetrical Components,”” McGraw-
Hill Book Company, New York, 1933.



chapier 6
Short circuﬂé\&ifuﬁmi,

i
o

6.1 Introduction

Short circuit ealeulations provide currents and voltages on a power system
during fault conditions.  This information is required to design an ade-
quate protective relaying system and to determine interrupting require-
ments for circuit breakers at each switching location. Relaying systems
must recognize the existence of a fault and initiate circuit breaker opera-
tion to disconncct faulted facilities. This action is required to assure
minimum disruption of electrical service and to limit damage in the faulted
equipment. The currents and voltages resulting from various types of
fauits occurring at many locations throughout the power system must be
calculated to provide sutficient data to deveiop an eflective relaying and
switching svstem.  To obtain the required information a special purpose
analog computer, called a network analyzcr, was used extensively for
short circuit studies before digital techniques were available.

The bus frame of reference in admittance form was employed in the
first application of digital computers to short circuit studies. This
method, whieh was patterned after similar techniques employe:! for load
flow caleulations, used an iterative technique (Coombe and Lewis, 1936).
This required a complete iterative solution for each fault type and loca-
tion.  The procedure was time-consuming, particularly if, as was usually
the ease, the currents and vaoltages were required for a large number of
fault oeations. Consequently, this method was not adopted generally.

The development of techniques for applying a digital computer to
form the bus impedance matriv made it feasible to use Thevenin's the-
orem for short cireuit caleulations.  This approach provided an efficient
means of determining short cirenit currents and voltages because these
values can be obtained with few arithmetic operations involving only
related portions of the bus impedance matrix.
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Fig. 6.1 Three-phase representation of a power system.

6.2 Short circuit calculations using Z,.

System representction

The three-phase representation of a power system under steady ctate
condition is shown in Fig. 6.1. In general, sufficient accuracy in short
circuit studies can be obtained with a simplified representation. The
simplified three-phase representation is shown in Fig. 6.2 and is obtained
by:

1. Representing each machire by a constant voltage behind the machine
reactance, transient or subtransient

2. Neglecting shunt connections, e.g., loads, line charging, ete.

3. Betting all transformers at nominal taps

In many short circuit studies, particularly for high voltage systems, it is
suflicient to represent transmission line and transformer impedances s
real numbers equal to the corresponding reactances.

Fault currents and voltages

The use of the bus impedance matrix provides a convenient means of
caleulating short circuit currents and voltages when the ground is selected
as reference. One of the distinct advantages is that, once the bus
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Machines
. P
. Transmission system .
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e, i ab ¢
o | E®
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labe
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|
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Fig. 6.2 Three-phase representation of a power system for short circuit
studies.

impedance matrix is formed, the elements of this matrix can be used
directly to calculate the currents and voltages associated with various
types of faults and fault locations.

The representation of the system with a fault at bus p is shown in
Fig. 6.3, In this representation, derived by means of Thevenin's the-
orem, the internal impedance is represented by the bus impedance matrix
including machine reactances, and the open-circuited voltage is repre-
sented by the bus voltages prior to the fault.

The performance equation of the system during a fault is

AN —. [rabe _ 7abe Fab,e
BUS(F) ™ bsusm) ZBUSIBUS(F) (6«21)
The vnknown voltage vector is
!
c.bc |
EI(F> ‘
[ a.b,c b
bBUS(F) I‘pil')
ab,c
“n(F)
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where the eclements of E%%S.,, arc the three-phuse voltage vectors

ab,c L f
A0S 1=1,2,...,n

The known voltage vector prior to the fault is

a,b,c
El(o)

¢ — rab.c
8(0) “ p(0)

ISk

i

I,"o.b.t
‘n(0)

The unknown bus current vector during a fault at bus p is

0

Ja,b.c — a.b.e
IBUS(F) - Ip(r)

The three-phase bus impedance matrix is

a,b,c e . 7ahc L 7ab.c
Z% Z3, Z3,
7abe __ 7a.b,c ... 7ab.c L. 77a.b,c
2305 = 2y A Z5
| - .

7a.b.¢ ... 7abc .. 7a.b.c
Z VAR VA
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E.(n)
—C—
g — O
S O
Bus invnp¢-4dnnc( matrix . \{,', 1
E— (transmission system and o Ey0)
: machine reactances) ° C
— O e
® i)
L < > -

abc

[1%a) Fault Eym

Fig. 6.3 Three-phase representation of a power system with a fault at bus p.

where the elements of Z%5¢% are matrices of dimension 3 X 3. Equation
(6.2.1) can be written as follows:

~a.be ~abe ab.crad.e
bnr EI(OJ Z pr()")

ab,e ra.be abc ab.c
L"(FJ I’zm: / p 1;;(#'1
Fu.b,e = [abc _ gadefabe (6.2.2)
“p(Fy plo) “pp ‘L p(F)
cabe a.b.c a.b.c b.e
Ln(l-') - bn(D) 7 [;(m

The threc-phase voltage vector at the faulted bus p is, from Fig. 6.3,

pabie o godere e (6.2.3)

. C
n(F) Pl F)

where Z3%¢ is the three-phase impedance matrix for the fault. The
clements of this 3 X 3 mairix depend on the type of fault and fault
impedance.  Substituting from equation (6.2.3) for ££2%5, the pth equa-
tion of (6.2.2) becomes

Zaheiote = Eoke — LeheIoh (6.2.4)

Solving cquation (6.2.4) for 13% yields
Iobs = (Z5% + Zoy ) By (6.2.5)



172 Computer methods in power system analysis

Substituting for I3%s in equation (6.2.3), the three-phase voltage at the
faulted bus p is

Byl = Zshe(Z50 + Loty Egls (6.2.6)
Similarly, the three-phase voltages at buse§ other than p can be obtained
by substituting for 7% from equation (6.2.5). Then

Uiy = LGS — ZREZE A Ly )T (2 (6.2.7)

When it is desirable to express the parameters of the fault circuit
in the admittance form, the three-phase fault current at bus p is

Ly = Y Bl 6.2.8)
where Y$%¢ is the three-phase admittance matrix for the fault.  Substi-
tuting I;'(”,'-j from equation (6.2.8), the pth equation of (6.2.2) becomes

Eobs = By — Zom Y Lohs (6.2.9)

rabc — (U+Zabcyabc) ;(Zznc ((3.2'10)

“p(F)

Solving equation (6.2.9) for £2%S vields

Substituting for £2%¢ in equation {6.2.8), the three-phase current at the
faulted bus p is

abc= Yabc(U+£ubcyabc) 1[1;1’(!(:)): (('211)

p(h

Similarly, the three-phase voltages at huses otler than pocan be abtained
by substituting for l‘,‘_,;,f from cquation (6.2.11).  Then

By = Eig — Z80 Vit (U + ZipcYho)minle i#p (6.2.12)

WF)

[Fault currents flowing through the elements of the network can be

salculated with the bus voltages obtained from equations (65.2.6) and

((» 2.7) or from equations (6.2.10) and (6.2.12), These currents in terms
of the voltuges across the clements of the netwaork wre

i?,,b)" ,__‘ [ a.b, r]Ua b

where the elements of the current vector are




Chapter 6 Short circuit studies 173

the elements of the voltage vector are

a
Vsicpy
e,be b
Uhon = | Y
vl
e

and the elements of the primitive admittance matrix are

aa ab ac
Yijxt Yijkt Yixt

a.be ba bb be
Yijut = | Y | Yijur | Yijm

ca b ee
Yij Yoyur | Yijw

)

where 7 is the mutual admittance between phase b of network element
i~ and phase ¢ of network element k=l The three-phase current in the
network element 7-7 can be calculated from

rabe _ ~a.besad.e
LitEFy = Vi pabloo(F (6.2.13)

where po refers to the element 7-7 as well as to elements mutually coupled
to 1i—7.  Since

mt = Eglys — il
then equation (6.2.13) becomes
s = gk (B — Ea) (6.2.14)

Le formulas for fault currents and voltages derived in this section
can be used for balanced and unbalanced three-phase short circuit studies.

3.3 Short circuit calculations for
balanced three-phase network using Z,

Transformation to symmetrical components

The formulas developed in the preceding section for calculation of fault
currents and voltages can be simplified for a balanced three-phase net-
work by using symmetrical components. The primitive impedance
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matrix for a stationary balanced three-phase element is

: m m
zl’q ZVW qu
za,b.c = zm Zl zm
re rq pe re
m m '
qu zPQ zpq

This matrix can be diagonalized by the transformation (T7)%%°T, into

(0)
zP'I

01,2 _ (L)
rq re

2)

zﬂq

where 20,200, and z{%) are the zero, positive, and negative sequence
impedances, respectively. The positive and negative sequence imped-
ances for a stationary balanced three-phase element are equal. In
addition, it is generally accepted that positive and negative sequence
impedances for rotating elements can be assumed equal for short circuit
calculations.

In a similar manrer, each y&%f in the primitive admittance matrix
and each Z&*¢ in the bus impedance matrix;can be diagonalized by the

transformation matrix 7, to obtain, respectively,

(0 0)
Yijkt YA

0,1,2 _ (¢}] 01,2 __ (1)
Yijur = Yijxt and Z;" = Z;

It is customary to assume that all bus voltages prior to the fault are equal
in magnitude and phase angle. Assuming the magnitude of the line-to-
ground voltage Fiq cqual to one per unit, then the ith bus voltage before
the fault is

‘abe 2
By = a




Chapter 6 Short circuit studies 175
Transforming into symmetrical components, that is
E?{(}fz = (T}) By

then

0
Eig® =| V3
0

The fault impedance matrix Z%>¢ can be transformed by 7, into the matrix
Z%"?. The resulting matrix is diagonal if the fault is balanced. The
fault impedance and admittance matrices in terms of three-phase and
symmetrical components for various types of faults are given in Table 6.1.

Similarly, the equations for calculating fault currents and voltages
can be written in terms of symmetrical components.  The current at the
faulted bus p is

b = (ZE1 + 25T E (6.3.1)
or »
Iy = YSUU(U + 25,V B! (6.3.2)
The voltage at the faulted bus p is
EGyy = ZEMNZEY + 25, ) B (6.3.3)
or
EYY = (U + 25 Yt ) Ly (6.3.4)
The voltages at buses other than p arc

Efyt = Eyyt — Z5NHZE + 200 RS (6.3.5)
or

Efit = Elg® = Z51YSNNU + 25 YR )T ED? (6.3.6)

The fault current in the three-phase element -7 is

0,1,2 _ -0,1,2,7012 L 0.1,2
Lty = Yijpo (Lpf.F) bd(Fﬁ (637)

Three-phase-to-ground fault

Fault currents and voltages for a three-phase-to-ground fault can be
obtained by substituting the corresponding fault impedance matrix; in
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Table 6.1 Fault impedance and admittance matrices

Three-phase components

Type of faull

Z;'b" Y;.b.c
zr +:, Z z, yo + 2w_ Yo — yr %yo; yirﬁ
z, zr t+ 2 2 % Yo — y¥ yo+2yriyo~yr
Zg z 2r + 2 Yo = Yr | Yo — Yr {yo + 2yr
: :
Three-phase-to— where yo = ;,—+§;,
ground
2] -1 ] —1
Not defined "_3’ -1 2 -1
—-11] =1 2
sr 0 0 yr 0 0
) w | 0 0 [y 0
0 0 o 0 0 0

a b c
. T‘" 4] 0 0
© 0 0
0 zr + 2, —Z
2 0 |zr+z2 z, zh + 22pz, | 2p + 22p2,
. ? 0 2y zr + 24 0 -2y zr + 24
Line-to-line-to- 2+ 22r2, | 2b + 2212,
ground
a b c
* T 0 0| o©
Zp ZF
Not defined ng 0 1| —1
. . 0 -1 1
Line-to-line
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Symmetrical components

Z%l,’ y:_,l.:
z2r+ 3z, | O 0 Yo 0 0
0 2y 0 0 yr 0
0 4} zy 0 0 yr
1
where yo = ——
zr + 3z,
o« 0 0 0 0 0
0 |z | 0 vel 0 1 | 0
0 0 zp 0 0 1
1 1 1
- vr I
Not defined 3 1 ‘ 1 1
1 ‘ 1 1
2zp —zp —2F
) : e N
Not defined m i~z ! 2zp + 3z, f(zr +32,)
—z5 :——(zr+32,) 2zp + 3z,

Not defined

177
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terms of symmetrical components, into equations (6.3.1), (6.3.3), and

(6.3.5).

Both sides of the resulting cquations can be premultiplied by

7, to obtain the corresponding formulas in terms of phase components.
The fault impedance matrix for a three-phase-to-ground fault is,

from Table 6.1,
i
zp + 3z, g

i
|

(6.3.8)

The three-phase fault current and the bus voltages are obtained by sub-
stituting, from equation (6.3.8), for Z%'* in equations (6.3.1), (6.3.3),

and (6.3.3).

The current at the faulted bus p is

f

7~

which reduces to

(®)

Ip(l") 0

o, | = V3

p(F) (1
zr + Zmr

2)

I, 0

(6.3.9)

The phase components of the fault current at bus p can be obtained by
These currents are

premultiplying both sides of equation (6.3.9) by T..

a
p(F)

b —_
I)z(f') -

¢
p(F)

1
! 2
a

| |
2r 435, + 2 | 0 ‘
| i
i | _
ez V3
1 ! ZF+Z(1;:;: O!
! [E—
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The voltage at the faulted bus p is

E(’,o()p, ZF + 32, 0
];vu) . 2 \/3
“pFy | T F Y
o+ 2
MY
Lp(P) ZF 0
which reduces to
(0
[_:p( Fy 0
1;(1) - _\{3 Zr—
il Ty
(2}
Lp(F) 0
The phase components of the fauit voltage are
Y
POF) 1
2F
Eb - az
p(F) zp + Z(;; !
E;(F) a
The voltages at buses other than p are
0 [+ ‘
[~ (0) 4
Ei(F) O Zt'p ‘ 0
LS LA 31 — (1) V3
E:’(P) - \/3— Zip W
zp + »p
B || o 22 o

Short circuit studies
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which reduces to

(0)
Elk 0
Z(l)
¢V —_ B P
Eip | = V31 - I3y
zp + pr

2)
Lk 0

In phase components,

G
El(F) 1
— (n
It =(1— _ZL__ at
“iF) z + Z(x)
—_— F /| —
<
H¥S) a

Table 6.2 Current and voltage formulas for three-phase-to-ground
fault at bus p

Three-phase components Synumelrical components
1 0
a.b.c Ep N 01,2 V3 Eym
156 = 2 + 20 a L = e + 2D 1
F PP | F PP |—
a 0
1 0
gobe o o 5 gora V3 z2rE 0 ;
- = P L Fy T 70
P(F) zr +£;13 Hd 2F +‘4w’ [
[ 0
1 0

1 1
ZQE, ZE o

b s Fa . v
Eips = (E.(o) o Z’;:) a? Eipy = V3 (E‘(o) =T Z‘;;) 1
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The formulas derived in this scetion are summarized in Table 6.2, The
line-to-ground voltage was assumed to be one per unit in the derivations.
The formulas in Table 6.2 include the term for the line-to-ground voltage
which can be set at any desired per unit value.

The currents in the network elements during the fault can be calcu-
lated from cquation (6.3.7).  Since the zero and negative sequence bus
voltages are zero for a three-phase fault and there is no mutual coupling
in the positive sequence network, that is, ¥t = 0 except when po = 4j,
then equation (6.3.7) reduces to

(03 ‘

Liich 0

(1) o [SSIE AI0 S I A0 8}
LR | = U:j,;;‘(ﬁe(n L;‘(F))
()

(AP ‘ 0

In phase components,

\——'__" —
‘a i
Yk | 1
] 1 1 1
— (RS0E AIS LI ALE B ?
i iR J\ = \/3 ’Jn’..‘,‘(l’.uv ]';(r)) a
‘ .
LiicF) a
-

Line-to-ground fault

The fault admittance matrix for a line-te-ground fault in phase a is,
from Table 6.1,

l,
1hl
_}___l
b
o _Irly (6.3.10)
3 \
S R
‘ !
11,1
|

The fault current and the bus voltages are obtained by substituting from
equation (6.3.10) for ¥'%"?* in equations (6.3.2), (5.3.4), and (6.3.6). The
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current at the faulted bus p is

Computer methods in power system analysis

I, | [lr+zg¥) znt oz 0
Yr Yr yr H Yr
I(pl()p, = ? 1/1 Z(;; ‘g 1+ Z;l; ? Z;; —é‘ ’\/?;
Yr Yr n Yr
Lie 11 Zy | Zny |1t Z‘»Z—B“ 0
I
which reduces to
I3k
V3

I¥e | = . (6.3.11)

P Z<p°; + 24;’,’ + 3z

(2)

p(F)

The phase coraponents of the fault current at bns p can be cbtained by
premultiplying both sides of equation (6 2.11) by T,.

5 3

Ly Z0 + 22 + 3er
! ;U') i, 0

P 0

/.

The voltage at the faulted bus p is

These currents are

-1
i YF Yyr s YP
ES L ER s (B s 0
oy Y¥ o Y¥ o Y
: E;‘()F) = [(pl; -g 1 + é(;; '3— J(pl; '?3— \/§
Yr Yr Yr
Elr, ey wy | 1+HZn7 0
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which reduces to

(0) 1)
Ep(F> va

E | = 13
PP ZO 4220 + 3er
PP PP

@ _ 7
EP(F) pr

Z;O,z -+ Z;l,: -+ 3zr

The phase components of the fault voltage are

3Zr
Ea
p(F) 0 [¢8
pr + QZ’W + 32;‘
(0 __ 7
E® = | a2 — va an
pRy | = 0 5%
pr + 2pr "+‘ 32}?
0y _ 7
Ee a — pr pr
»(F) (0 &3]
pr + Zpr + 3Zp

The voltages at buses other than p are

I
B0 | K
| -
| o _ | | g | V'3 1
s A R R R oy e
Bih| | 0 RS ']
|

which reduces to

Ef | 0 7
- VE]
Ed | = | V3| = oo | 48
| Fain | =V Tz en e | T
Eankl 7y
In phase components,
Ep, 1 Zy + 22

1
T 2% 4+ 220 + 3z

~e 0y __ 7
Eir, a 2y Zy

b — 2 0y __ (1
E;(h =] a Zi, Z'.’
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Table 6.3 Current and voltage formulas for line-to-ground fault (phase a) at bus P

Three-phase components Symmetrical componenis
1 1
. 3Epia o o o \/E_Eﬂoj
PV Y 970 3 gy i R LR P e P
1] 1
—|

3zp
Z0 + 229 + 325

— 7
l?i‘

oy _ ay
. ZPP ZFP
©) L oz}
i+ 2200 + 3z,

=3 V3 Eyo .
E5ds = By | o =TT ozm £ an | Lee t T + %
224 PP

a1,2
E»(’)

— 7
Z”

oo L =2
1
Z0 + 2280 + 32r

ZO 4 228
Z9 + 220 4 3z,

0 z®
zZe ogzm e V3E

.5, c . P ip LR ol 53 +op(9) 1

et = E, et |- E T Sl = E, 3| - ———2C | 2"

S M ZE 42zl + 3 | T TR L4 22y + e
- Zo _zwm 0 Z‘-‘y’ i
a ip ip H

Z& + 227 + 32y
i#Ep t#p

The formulas derived in this section are summarized in Table 6.3. The
line-to-ground voltage was assumed to be one per unit in the derivations.
The formulas in Table 6.3 include the term for the line-to-ground voltage
which can be set at any desired per unit value.

The currents in the network elements during the fault can be calcu-
lated from equation (6.3.7).

6.4 Example of short circuit calculations using Zy;

The method of calculating short circuit currents and voltages will be
illustrated for the sample system shown in Fig. 6.4a. The oriented con-
nected graph of this system is shown in Fig. 6.4b. This sample system
is identical to the one used in Sec. 5.9.
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Problem

a. Using symmetrical components, calculate the following for a three-
phase fault at bus 4:
i.  Total fault current
ii. Bus voltages during fault
ili,  Short circuit currents in lines connected to the faulted bus
b. Using symmetrical components, calculate the following for a line-to-
ground fault at bus 4:
1. Total fault current
ii.  Bus voltages during fault
iil.  Short circuit currents in lines connected to the faulted bus.
¢. Determine the maximum three-phase short circuit current that cir-
cuit breaker A must interrupt for a fault on the line side of the breaker.

Solution

a. The bus impedance matrix in terms of sequence quantities must be
determined to calculate three-phase and line-to-ground fault currents
using symmetrical components. Table 5.2 shows the three-phase imped-
ances of the network clements.  The zero, positive, and negative sequence
impedances of the network elements can be obtained by means of the
transformation matrix T,, that is,

0,1,2 __ *\¢ a.be
2y = (1) )e T,
Assuming the impedance matrices of the generators are symmetric and

using the average value —0.0225 for the off-diagonal clements, the
sequence impedances are shown in Table 6.4,

@ ®

S

Fig. 6.4 Sample sys-
tem for short circuit
calculations. (a) Sin-
gle line diagram
of three-phase system;
Branch  (b) oriented connected

(b) ® ——— Link graph.
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Table 6.4 Zero, positive, and negative sequence impedances for

sample system

Self Mutual
Bus Bus
Element code Impedance code Impedance
mnber pg i Y
€.035
I 1-2 0.1025
0.1025
0.033
2 1-3 0.1025
0.1025
2.50
38 2-8 | 1.00
! 1.00
| 1.00 0.60
4 2-4 0.40 2-3
0.40
1.50 0.90
5 4-3 | 0.60 2-3
0.60

Since there is no coupling between the sequence impedances, the bus
impedance matrix in terms of sequence quantities can be obtained by
forming the positive, negative, and zero sequence bus impedance matrices
independently. First, the positive sequence bus impedance matrix will
be formed.
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Z80 =@ 0.1025
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Start with clement 1, the branch from p =1 to q¢ = 2.
The positive sequence bus impedance matrix for the partial network is

®

]

1 toq =3 Then,

2 to ¢ = 4. Thus,

Step 2. Add element 2, the branch from p
©) ®
0.1025
Zoys =
® 0.1025
Step 3. Add clement 4, the branch from p
Zou =2y =12n
Z34 = 243 = 0
Zu=2Zu+ 224,24
and
@ ® ®
@ 0.1025 0.1025
Zhus = ® 0.1025
® | 0.1025 0.5025
Step 4. Add clement 5, the link from p = 4 to ¢ = 3.. The ele-
ments of the row and column corresponding to the fictitious node ! are
Zn = Z:l = Zu - Zn
Zla = Z.u = Zn - Zn
Ziy=2Zay= Zu - Z:u
Zu=Za—2u+ zaa
and the augmented matrix is
©) ® O] !
@ | 0.1025 0.1025 0.1025
® 0.1025 —0.1025
®| 0.1025 0.5025 0.5025
l| 0.1025 | —0.1025 0.5025 1.2030
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To eliminate the Ith row and column the elements of the augmented
matrix are modified as follows:
Zyy = Zn — ZuZi'Zy
Z33 = th - ZZIZ” Zl3

impedance matrix is

® ® ®
®| 0.0876 | 0.0149 | 0.0586
Z%s = ®| 0.0149 | 0.0876 | 0.0439
@/ 0.0586 | 0.0439 | 0.2928

Zu =Zu— ZuZu Zi
Zza = Zu = Zy — ZﬂZulZiS
Zoy =24 =2y — YV AIAR
Z;‘ = Z;. = Zu - Z;[Z"_‘lz“
Thus,
® ® ®

@ 0.0938 | 0.0087 0.0598
Z%hs = ® | 0.0087 0.0938 | 0.0427

_@ 0.0598 | 0.0427 | 0.2930

Step 5. Add element 3, the link from p = 2 to ¢ = 3. As in the

previous step,
Zy =2y = Zy — Zsz
'Zﬂ = Zal — Z23 h Z33
Zuy=2Zu= Zy — Zy
Zy=2n—Zu+ zaamn

@ ® ® !
@| 0.0938 0.0087 | 0.0598 0.0851
® 1| 0.0087 0.0938 | 0.0427 —0.0851
®| 0.0598 (.0427 | 0.2930 0.0171
l| 0.0851 —0.0851 0.0171 1.1702
Elinﬁnating the {th row and column, the final

positive sequence bus
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Since positive and negative primitive sequence impedances are equal, the
positive and negative sequence bus impedance matrices are equal.

The procedure for forming the zero sequence bus impedance matrix
is identical for the first four steps. The zero sequence bus impedance
matrix of the partial network, before adding element 3, is

® ® ®
@ | 0.0345

0.0005 | 0.0209

70 =@ ! 0.0005 | 0.03¢5 | 0.0141

\
|

(©| 0.0209 | 0.0141 | 0.6182

Step 5. Add element 3, the link from p = 2 to ¢ = 3, which is
coupled with the elements 4 and 5. The elements of the row and column
corresponding to the fictitious node ! are

yn,u(Zn - Z42) + 2/23,43(242 - Z:n)

Z12 = Z22 - ZM +

V23,23
iy =2y — 733 + Y3222 — Z43) + ya0.45(Zis = Z3a)
V23,23
i = oy — Lo b YanadZow — Z43) + Yos.5Z i — Z3)
Ya3,23
Ty = Bop — By - 1+ vu20(Zu = Z40) + ynis(Za — Zy)
Y2323

The zero sequence primitive impedance matrix is

1-2 1-3 2-3 2-4 4-3

l—2§ 0.035 | 1

-3 0.035 !

2-3 IZ:’;OO 0.600 | 0.900
2-4 | 0.600 | 1.000

4-3 0.900 1.500




