Lesson Plan

Name of Faculty	:	Mr. Sonu, Assistant Professor of Chemistry			
Discipline	:	Computer Science and Engineering			
Semester	:	1 st (Odd)			
Subject	:	Chemistry (BSC102)			
Lesson Plan Duration	:	12 weeks (from Jan-April-2021)			

Work Lo	ad (Lecture/l	Practical) per week (in hours): Lectures-03 hour	rs					
Week		Theory			Topic Covered Date and Remarks			
	Lecture- Day	Topic (Including Assignment/Test)	Date	HOD	Director- Principal			
	1	Effective nuclear charge, penetration and energy of orbitals.	1					
1 st	2	Periodic properties	1					
	3	Polarizability and oxidation states						
	4	Coordination number and geometries						
	5	Hard and soft bases						
2 nd	6	Molecular geometries						
	7	Ionic, dipolar and Van Der Waals Interactions						
	8	Equation of state of real gases						
3 rd	9	Potential energy surfaces						
	10	Trajectories						
	11	Introduction of organic reactions						
	12	Types of organic reactions						
4 th	13	Cyclization and ring opening reactions						
	14	Oxidation and reduction						
	15	Synthesis of drug molecules						
	16	Substitution reactions						
5 th		1 st Minor Test						
6 th	25	Representation of 3D structures						
	26	Types of isomers						
	27	Chirality and optical activity						
	28	Structural and stereoisomers						
7 th	29	Configurational and conformational isomers						
	30	Isomerism in transition metal complexes						
	31	Principle of spectroscopy and selection rule						
	32	Electronic spectroscopy, fluorescence and its application.						
8 th	33	Vibrational and rotation spectroscopy						
	34	NMR and MRI						
	35	Surface characterization techniques						
	36	Diffraction and scattering						
9 th	37	Thermodynamic functions						
	38	Free energy and EMF						
	39	Cell potential and Nernst equation						
	40	Acid base, reduction-oxidation equilibria						
10 th	41	Water chemistry, corrosion.						
	42	Metallurgy through Ellingham Diagram						
	43	Schrodinger wave equation						
	44	PIB solutions and wave function for hydrogen atom						
11 th		2 nd Minor Test						
12 th	49	Molecular orbital for diatomic molecules and plots						
	50	Energy level diagrams and aromaticity						
	51	CFT, magnetic properties and band structure						
	52	Query and Solution						