Lesson Plan

Name of Faculty	:	Pawan Kumar, Associate Professor
Discipline	:	Mechanical Engg.
Semester	:	4th
Subject	:	Fluid Mechanics and Fluid Mechanics lab
Lesson Plan Duration	on:	15 weeks

Week		Theory		Practical
	Lecture	Topic (Including Assignment/Test)	Practical	Topic
	Day		Day	
		Unit-I : Fluid Properties, Fluid Sta	tics & Ki	nematics
1^{st}	1	Basics about subject like force, pressure etc. and their units and What is Fluid Mechanics Introduction and relation with other subjects		
	2	Concept of fluid and flow, Viscosity, ideal and real fluids, continuum concept	1	To verify the Bernoulli's Theorem.
	3	Properties of fluid, Newtonian and non- Newtonian fluids, Pascal's Law & Monometers		
2 nd	4	Hydrostatic equation, hydrostatic forces on plane & curved surfaces		To determine the meta centric height of a floating body.
	5	Buoyancy and flotation, Archimedes Principle, Stability of floating and submerged bodies	2	
	6	Meta centre and Metacentric height		
3 rd	7	Eulerian and lagrangian description of fluid flow		To determine the minor losses due to pipe fitting in pipes.
	8	Types of flows, Flow rate and continuity equation, continuity equation in	3	
	9	continuity equation in cylindrical coordinates & polar coordinates.		
4 th	10	Rotation and vorticity circulation, Stream function	- 4	To determine the major losses due to friction in pipe flow.
	11	potential function, flow net		
	12	Problem and solutions		
		Unit-II : Fluid Dynamics, Orific	es, Mouth	pieces
5 th	13	Energy and forces acting on a flowing fluid, Equations of motion		To determine the coefficient of discharge of Venturimeter.
	14	Euler's equation Bernoulli's equation, Venturimeter ,	5	
	15	Orifices, Orifice meter		
	16	Classification of orifices and		
6^{th}	10	mouthpieces,		To determine the coefficient of discharge of notch (V and Rectangular types).
	17	Hydraulic coefficients,	_	
		Discharge through a large rectangular	6	
		orifice,		
	18	Time of emptying a tank through an		
		orifice, Classifications of notches		
		and weirs		
7 th		1 st	Minor Test	l;
8 th	19	Empirical formulae for discharge over		To determine the coefficient of discharge of an orifice meter.
0		rectangular weirs		
	20	Discharge over rectangular & triangular notch	7	
	21	Assignment 1		
	-	Unit-III : Viscous Flow, Tur	bulent flo	
9 th	22	Flow regimes and Reynold's Relationship between shear stress and	8	To Find critical Reynolds number for pipe flow.
,		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	

		pressure gradient number				
	23	Laminar flow between two parallel plates				
		when both plates are at rest				
	24	Hagen Poiseuilli law, (Couette flow)				
		turbulence, Darcy-Weisbach equation				
	25	Boussinesq's theory, Reynolds theory,		Internal Vivo-Vice-1		
10^{th}		Prandtl's mixing length theory	9			
	26	Von-Karman similarity concept,				
		Universal velocity distribution equation				
		friction coefficients for smooth and				
		rough pipes,,				
	27	Hydro dynamically smooth and rough				
		boundaries, Velocity distribution for				
		smooth and rough pipes, Moody diagram				
		lent Flow				
11 th	28	Major and minor head losses in pipes,				
	29	hydraulic gradient and total energy lines,	10	To determine the coefficient of discharge, contraction & velocity of an orifice		
		Pipes in series and parallel, equivalent				
		pipe, branched pipes,				
	30	power transmission through pipes,				
		numerical				
12 th	31	Description of boundary layer,		To determine the density and viscosity of any three fluids.		
		displacement, momentum and energy				
		thickness,				
	32	Drag force on a flat plate (Von Karman	11			
		momentum integral equation),				
	33	Bou Blasius solution for laminar				
		boundary layer				
	34	Velocity profiles for laminar boundary		To determine the minor losses due to sudden enlargement, sudden contraction and bends.		
13 th		layer,	12			
	35	boundary layer separation and control	12			
	36	Problems and Solutions				
14 th		2 nd Minor Test				
15 th	37	Problems and Solutions	4	Internal Vivo-Vice-2		
	38	Assignment-II	13			
	39	Presentation				

Pawan Kumar Associate Prof. Mech. Engg. Department