Lesson Plan/ Course Break – up

PCC-CVE 307-T- DESIGN OF CONCRETE STRUCTERES-I

Name of the Faculty : Mr. Manik Goyal

Discipline: B.Tech in Civil Engineering

Semester: V (3rd Year)

Subject : Design of Concrete Structeres-I

Lesson Plan Duration: 15 Weeks (from August to December 2022)

Work Load (Lecture / Practical) per week (in hrs.) : Lectures – 03

Week		Theory
	Lecture	Topic (Including assignment / Test)
	Day	
1 st	1	Introduction: Reinforced concrete- definition- properties of materials
1	2	Grades of concrete and reinforcing steel
	3	Stress-strain curves
2 nd	4	Permissible stresses- shrinkage
2	5	Creep- design philosophies working stress design
	6	Ultimate strength and limit state design method
	7	
3 rd	,	Limit State Design Method: Introduction
	8	Limit States- Characteristic values
	9	Characteristic strength- characteristicloads
	10	Design values for materials and loads- factored loads
4 th	11	Limit State of Collapse (Flexure): Types of failures
	12	Assumptions for analysis and design of singly reinforced
5 th	13	Doubly reinforced sections
3	14	Flanged sections
	15	Design of Lintels- Design of one-way slabs
	16	Design of Lintels- Design of one-way slabs
6 th	17	Two-way rectangular slabs
	18	Circular slabs: Slabs with different edge conditions
7 th		1 st Minor Test
8 th	19	
	1)	Limit State of Collapse (Shear- bond and torsion): Introduction
	20	Design for shear- structural components subjected to torsion
	21	Design of rectangular beam section for torsion
	22	Development length- continuation of reinforcement (beyond cut off points)
9 th	23	Development length- continuation of reinforcement (beyond cut off points)
	24	Limit State of Collapse (Compression): Columns and their classification

	25	Reinforcement in columns- assumptions-	
10 th	26	Short and long (both tied and helical) columns subjected to axial load-	
	27	Short and long (both tied and helical) columns subjected to axial load-	
11 th	28	Short columns subject to axial- uniaxial and biaxial bending- Interaction Diagrams	
	29	Short columns subject to axial- uniaxial and biaxial bending- Interaction Diagrams	
	30	Limit State of Serviceability: Deflection	
12 th -	31	Effective span to effective depth ratio-	
	32	Modification factors for singly reinforced	
	33	Doubly reinforcement and flanged beams-	
13 th	34	Crack formation and its control.	
	35	Limit State Design of miscellaneous structures	
-	36	Design of isolated footings- Design of staircases	
14 th		2 nd Minor test	
15 th	37	Introduction to Working Stress Design Method	
	38	Application of SP 16 and Detailing of Reinforcement	
	39	Use of SP: 34- Codal Provision for RC Elements: (I) General (II) for ductility	