Lesson Plan/ Course Break – up PCC-CVE-301-T- ADVANCED FLUID MECHANICS

Name of the Faculty	:	Mr. Kamaldeep Singh
Discipline	:	B.Tech in Civil Engineering
Semester	:	V (3rdYear)
Subject	:	Advanced Fluid Mechanics
Lesson Plan Duration	:	15 Weeks

Work Load (Lecture / Practical) per week (in hrs.) : Lectures -03

Week		Theory
	Lecture	Topic (Including assignment / Test)
	Day	
1 st	1	Laminar Flow:Navier Stokes's equation, Laminar flow between parallel plates
	2	Couette flow, laminar flow through pipes-Hagen Poiseuille law
	3	Laminar flow around a sphere-Stokes 'law
	4	Flow through pipes: Types of flows-Reynolds's experiment, shear stress on turbulent flow,
2"	5	Boundary layer in pipes- Establishment of flow, velocity distribution for turbulent flow in smooth and rough pipes,
	6	Resistance to flow of fluid in smooth and rough pipes, Stanton and Moody's
		diagram
	7	Darcy's weisbach equation, other energy losses in pipes, loss due to sudden expansion
3 rd	8	Hydraulic gradient and total energy lines, pipes in series and in parallel,
	9	Hydraulic gradient and total energy lines, pipes in series and in parallel,
4 th	10	Equivalent pipe, branched pipe, pipe networks
	11	Hardy Cross method, water hammer.
	12	Drag and Lift: Types of drag, drag on a sphere, flat plate, cylinder and airfoil,
5 th	13	Development of lift on immersed bodies like circular cylinder and airfoil.
	14	Open Channel Flow: Type of flow in open channels
	15	Geometric parameters of channel section
	16	Uniform flow, most economical section (rectangular and trapezoidal),
6 th	17	Specific energy and critical depth
	18	Momentum in open channel
− th		
/ oth	10	I WINOT LESU
0	19	specific force, critical now in rectangular channel
	20	Applications of specific energy

	21	Discharge diagrams to channel transition		
41.	22	Metering flumes, hydraulic jump in rectangular channel,		
9 th	23	Surges in open channels, positive and negative surges		
	24	Gradually varied flow equation and its integration, surface profiles.		
	25	Compressible flow: Basic relationship of thermodynamics continuity,		
10^{th}	26	Momentum and energy equations		
	27	Propagation of elastic waves due to compression of fluid,		
	28	Mach number and its significance, subsonic and supersonic flows		
11 th	29	Propagation of elastic wave due to disturbance in fluid mach cone,		
		stagnation pressure.		
	30	Propagation of elastic wave due to disturbance in fluid mach cone,		
		stagnation pressure.		
	21	Dumna and Turbings Designa sources their types		
1.0 th	22	Work done by single and double acting pumps, then types		
12	32	Contributed number components and parts and working types		
		Centinugai pumps, components and parts and working, types,		
	34	Heads of a pump-statics and manometric heads		
13 th	35	Force executed by fluid jet on stationary and moving flat vanes		
	36	Turbines-classifications of turbines based on head and specific speed,		
14 th		2 nd Minor test		
15 th	37	Turbines-classifications of turbines based on head and specific speed,		
	38	Component and working of Pelton wheel and Francis turbines,		
	39	Cavitation and setting of turbines.		