## Title

## KINEMATICS OF MACHINES

## Sub-title

## Velocity \& Acceleration Analysis

© Dr. Vikas Gupta, Asstt. Prof., MED, CDLSIET, Sirsa

## BASICS OF RINEMATICS

- Kinematics
- Deal with the way things move
- Kinematic analysis
- Determine
- Position, displacement, rotation, speed, velocity, acceleration
- Provide
- Geometry dimensions of the mechanism
- Operation range
- Dynamic analysis
- Power capacity, stability, member load
- Planar mechanism - motion in 2D space


## SIMPLE LINKS AND JOINTS



## SIMPLE LINKS AND JOINTS

Slider Joint<br>Translation Joint

Cam Joint

Gear Joint



Vikas Gupta, Asstt. Prof., MED, CDLSIET, Sirsa

## SIMPLE MECHANISMS



## Velocity

## Rate of change of displacement is called velocity

Absolute Velocity: Velocity of an object w.r.t a fixed point i.e. velocity of train wrt to a stationary object

Relative velocity: Velocity of an object w.r.t a moving object i.e. velocity of train wrt to other train moving on parallel railway line

## Relative Velocity of Two Bodies Moving in Straight Lines


(a)
(b)
$v_{A B}=$ Velocity of A wrt to B=ba
$\mathrm{V}_{\mathrm{BA}}=$ Velocity of $B$ wrt to $A=a b$
$b a=-a b$
Vikas Gupta, Asstt. Prof., MED, CDLSIET, Sirsa

## Relative Velocity of Two Bodies Moving in Inclined Lines


(a)

(b)

Fig. 7.2. Relative velocity of two bodies moving along inclined lines.
$v_{\mathrm{BA}}=$ Vector difference of $v_{\mathrm{B}}$ and $v_{\mathrm{A}}=\overline{v_{\mathrm{B}}}-\overline{v_{\mathrm{A}}}$
$v_{\mathrm{BA}}=$ Velocity of B wrt to $\mathrm{A}=\mathrm{ab}$

## Motion of a Link

velocity of any point on a link with respect to another point on the same link is always perpendicular to the line joining these points on the
configuration/line
diagram

(a)

$$
\frac{v_{\mathrm{CA}}}{v_{\mathrm{BA}}}=\frac{\overline{a c}}{\overline{a b}}=\frac{\omega \cdot A C}{\omega \cdot A B}=\frac{A C}{A B}
$$

## Velocity of a Point on a Link by Relative Velocity Method


(a) Motion of points on a link.

(b) Velocity diagram.

$$
\omega_{\mathrm{AB}}=\frac{v_{\mathrm{BA}}}{A B}=\frac{a b}{A B}
$$

## Velocity of a Intermediate Point on a Link



## Velocity of an Offset Point on a Link



## Velocities in Slider Crank Mechanism


(a) Slider crank mechanism.
(b) Velocity diagram.

## Rubbing Velocity at a Pin Joint

Rubbing velocity: algebraic sum between angular velocities of two links which are connected by pin joints, multiplied by radius of the pin.

Rubbing velocity at the pin joint $O$

$$
\begin{aligned}
& =\left(\omega_{1}-\omega_{2}\right) r, \text { if the links move in the same direction } \\
& =\left(\omega_{1}+\omega_{2}\right) r, \text { if the links move in the opposite direction }
\end{aligned}
$$

## Example 1

In a four bar chain $A B C D, A D$ is fixed and is 150 mm long. The crank $A B$ is 40 mm long and rotates at 120 rpm cw , while link $C D=80 \mathrm{~mm}$ oscillates about $D . B C$ and $A D$ are of equal length. Find the angular velocity of link CD when angle $B A D=60^{\circ}$.

(a) Space diagram (All dimensions in mm ).


## Example 2

The crank and connecting rod of a theoretical steam engine are 0.5 m and 2 m long respectively. The crank makes 180 rpm in the cw direction. When it has turned $45^{\circ}$ from the inner dead center position, determine :

1. Velocity of piston
2. Angular velocity of connecting rod
3. Velocity of point $E$ on the connecting rod 1.5 m from the gudgeon pin 4. Velocities of rubbing at the pins of the crank shaft, crank and crosshead when the diameters of their pins are $50 \mathrm{~mm}, 60 \mathrm{~mm}$ and 30 mm respectively 5.Position and linear velocity of any point $G$ on the connecting rod which has the least velocity relative to crank shaft.



## Example 3

In the Figure, the angular velocity of crank $O A$ is 600 rpm . Determine the linear velocity of slider $D$ and angular velocity of link $B D$, when the crank is inclined at an angle of $75^{\circ}$ to the vertical. The dimensions of various links are: $O A=28 \mathrm{~mm} ; A B=44 \mathrm{~mm} ; B C 49 \mathrm{~mm}$; and $B D=46 \mathrm{~mm}$. The center distance between the centers of rotation $O$ and $C$ is 65 mm . The path of travel of the slider is 11 mm below the fixed point $C$. The slider moves along a horizontal path and OC is vertical.


Vikas Gupta, Asstt. Prof., MED, CDLSIET, Sirsa


Vikas Gupta, Asstt. Prof., MED, CDLSIET, Sirsa

