SKILLS AND INNOVATION LAB

Week]
	Topic Practicle lab
1st	Understand and identify research topics related to Mechanical Engineering through brain storming sessions.
2nd	Propose a novel idea/modified technique/new interpretation after identifying the existing research work.
3rd	Devise specific identified issue/problem in the form of research objectives.
4th	Work in a group and communicate effectively the research topic though presentation and/or brain storming.
5th	Understand the research analysis of issues/problems on topics related to Mechanical Engineering.
6th	Understand the techniques and tools used for research analysis.
7th	Understand literature related to a research topic.
8th	Communicate effectively the research topic though presentation and/or brain storming.
9th	Internal Vivo-Vice

STEAM GENERATION & POWER, SGP LAB

W	P	ρ	k	т	h	e	0		r	V	р	r	9	C	t	i	C	а	1
**	C	C	к	I Lactura Dav	II Topic (I	n cludii	n a As	sign	mont	y (Test)	Drac	I Dav	а	C	ι 0	1 n	;	a	1
TT		•				liciuuii		sign	пепт	1 (() ()		lival Day	1		0		•		U
U	n	1	1	t - 1	1 : 	u e	1	a	n	a	<u> </u>	0 n	n b) u	l S	t	1	0	n
				1	Characterist	ics of sol	lid, liq	uid and	gaseo	us fuels	_								
1	8		ı	2	Laws of	combu	stior	ıand	r e a	ctions		1	I n		o d		+ ; ,	- n	
				3	Gravimet	ric and	volui	netrio	c ana	lysis,		1	1 1	ιιı	0 u	uc	ιı	5 11	
				4	Air-fuel	ratio,	Exhau	ıst ga	as an	alysis									
				5	Orsat appa	ratus. (Calorit	ic val	ues (of fuel.									
2	n		d	6	Bomb c	alorin	1 e t e t	N I	imei	icals.	-								
				7	Formation	n of sta	am at	const	ant n	raccura	-	2	To est	imate the	compositio	n of flue j	gases by O	rsat appar	atus
				7	Venietienin					1088010	_								
				8	Variation in	steam pr	opertie	s durin	g phas	e change	_								
2	r		d	9	Enthalpy	- entro	ору (М	101116	er) d	ıagram									
3	1		u	1 0	Steam	tables	s and	1 th	eir	uses,		3	To fin	d the colo	eifie ralı	a of feal	ncine han	h calarin	afar
				1 1	Carnot and Rankine	vapour cycles,	Rankine cy	cle with re	heat and r	egeneration,.		5	10 111		/11116 /416		10112 001		4141
				1 2	N u n	n e :	r i	с	a 1	s .									
U	n		i	t - I	Ι:	S	t	e a	m	G	е	n	е	r	ล	t	0	r	S
-			-	$\frac{1}{1}$ $\frac{1}{3}$	Classifi	cation		stear	n ho	ilers			Ē			•	•	-	5
5	t		h	1 4	Econtials of a goo	d hoiler Const	truction an	d operation	al dataile	of Cochran	-								
U				1 4	D a h a a goo						_	5	To stu	dy the cor	struction	and workin	ig of low	pressure b	boiler
				1 5	Вавсос	CK W1	ICOX	, LO	c o m	otive	_								
				1 6	Lancashi	re, Ben	son,	Lamor	it, L	bettler									
-			Ŀ	1 7	Velox boile	rs, Boiler	mount	ings an	d acc	essories.	_								
6	ι		п	1 8	Natura	1 (C h	imn	ey)	dra	ught		6	To eta	da tha can	struction a	ad markin	e of high		ailar
				1 9	Maximum	dischau	rge th	rough	a c	himney		0	10 310	uy lie toi	STIRCTOR S	IC VOLLI	ş ol lişi	lenne i	01101
				2 0	Artif	ici	a 1	dra	a u g	ght,									
7	t		h		1 ^s	t	Ν	1	i	n ()	r		r	Г	е	S	5	t
				2 1	Evaporative	capacit	vande	fficie	ncv of	boilers									
8	t		h	2 2	Energy	bala	nce	in	a b	oiler		_							
				2 3	N II m		r i	C	<u>a 1</u>	6	-	7	To stud	y the workin	g and perform	ance of inpu	lse and reac	tion steam t	ubine.
				$\frac{2}{2}$ 4		i a	<u>n</u> m	C P	$\frac{u}{n}$ t	1	-								
TI	n i	+			Bio	lor	D r	0 11	a h	t 1	n d	I		r f	0 1	m	0.1		•
U	11 1	ι	-	2 5	DIU				<u>g n</u>				e	1 1	0 1	111	aı	IC	e
0	t		h	2 3	Steam		thro	ugn	a n	ozzie	_								
,				2 6	Critical pressure rai	10 (maximum di	ischarge con	dition) and	its physic	al significance	;	8	To st	udv the c	onstructi	on ad wor	rking of	steam en:	gine
				2 7	Flow through ac	tual nozzles	, Supersa	turated e	xpansion	of steam,									0
				2 8	N u n	n e :	r i	c	a 1	s .									
				2 9	Working princ	iple of imp	pulse an	d reacti	on stea	n turbines									
1	0	t	h	3 0	Vector diagrams o	f velocities,	Optimum o	perating c	nditions	of turbines,		0							
				3 1	Compounding of impu	lse turbines. Los	ses in steam	turbines. Go	erning of s	team turbines		9	l n	teri	nal	VIV	0 - V I	ce-	Ι.
				3 2	Performan	ce anal	vsis (of ste	am ti	rhines	-								
TI	n	i	t	• • •	V Sta	\mathbf{n}	<u> </u>	n a	i n	A	n	d	C	0	n d	0	nc		r
U		1	ι -	· · I		on and u	u o r k i n	<u>n g</u>	1 II		<u> </u>	u		0	n u	t	11 8		1
1	1	t	h	3 3			W U I K I II	$\frac{g}{1}$	i c a ili	cingrines	_								
1	1			3 4		c a t o	r o	<u>1 1 a</u>	g r	a m s	- 1	0	To stu	ly the cons	truction and	working of	surface ar	id jet conde	19209
				3 5	Performance of	steam eng	ines, Go	verning	of stear	1 engines,	_								
			Ŀ	3 6	Probl	em a	n d	s o l	ut	ions									
1	2	t	h	3 7	Element	s of a	con	dens	ing	plant									
				3 8	Туре	s of	e co	on d	e n	s e r s	1	1	Тас	tudu t	ha war	kina a	facel	ina ta	
				3 9	Compariso	n of jet	and s	urface	con	densers	1	1	10 8	iuuy i	lle wor	KIII g U	1 6001	ing to	wei
				4 0	Condens	er and	vacı	um (effic	iencv									
				4 1	$C \circ \circ 1$	in	g 1	t 0 1	v e	rs									
1	3	t	h	4 2	Prohl	em a	un d	<u>s o 1</u>	u t i	<u> </u>	١.	-			_				
				4 3	Prohl	em a	n d	501	u t	ions	1	2	In	ter	n a l	Viv	0 - V	i c e	- 2
				4 4	Ass	i g n		e n	t	- T T	-								
1	4	t	h	2 n	d	<u> </u>	i	n n		- 1 - 1	1		,	г	P		s		t
-	•			4 5	N 11 1	n e	r	i c	<u>а</u>	1 5					Ľ		6		ĩ
1	5	t	h	4 6	Pre	s e	n t	a	t i	<u> </u>	1	3							
				4 7	Proble	ems	and	S o	lut	ions	1	5							

MECHANICS OF SOLID - II

Week	Theory			Practical				
	Lecture	Topic (Including Assignment/Test)	Practical	Topic				
	Day		Day	-				
		Unit-I : Thin Pressure Vessels , Thick	Cylinder	s & Spheres				
	1	Introduction to subject and basic terms like						
1 st		Cylinders and Spheres, Stress, Strain, Force						
		and Pressure etc. What is Longitudinal Stress						
		& Strain and Hoop stress & strain						
	2	Concept of Internal Pressure in Thin						
		Cylindrical and Spherical vessels		NA				
	3	Problems and solutions						
	4	Hoop and Longitudinal Stresses and strains in						
		Thin Cylindrical Vessels under internal						
		pressure						
	5	Problems and solutions						
	6	Hoop and Longitudinal Stresses and strains in						
2^{nd}		Thin Spherical Vessels under internal						
		pressure						
	7	Problem and solutions		NA.				
	8	Wire Wound thin Cylinders						
	9	Problem and solutions						
	10	Derivtion of Lame's Equations						
Ord	11	Radial and hoop stresses and strains in thick						
314		and compound cylinders under internal						
	12	Droblems and solutions						
	12	Problems and solutions		NA				
	14	Padial and hoop strasses and strains in thick		INA.				
	14	spherical shells subjected to internal fluid						
		pressure						
	15	Problems and solutions						
	16	Problems and solutions						
4 th	17	Wire wound Thick Cylinders						
	18	Problems and solutions		NA				
	19	Hub Shrunk on Solid Shaft						
	20	Problem and solutions						
	ł	Unit-II : Rotating Rims & Discs .	Beam Co	olumns				
	21	Stresses in uniform rotating rings and discs						
5 th	22	Concept of Rotating Discs of uniform stength						
	23	Problem and solutions						
	24	Stresses in rotating rims neglecting the effect		NA				
		of spokes						
	25	Problems and solutions						
	26	Stresses in rotating cylinders, Hollow						
6 th		cylinders & solids cylinders						
	27	Problems and solutions						
	28	Beam columns subjected to Single						
		concentrated load , Number of concentrated		NA				
		loads						
	29	Problems and solutions						
	30	Beam columns subjected to Continuous						
		lateral load						

7 th		1 st	Minor Test	
	31	Problems and solutions		
8 th	32	Concept of End couple		
	33	Couple at both ends triangular loads		NA
	34	Problem and solutions		
	35	Assignment 1		
		Unit-III : Strain Energy & Impact	Loading,	Springs
	36	Definition and expression for strain energy	g,	
9 th		stored in a body when load is applied		
		Gradually, Suddenly and with impact		
	37	Problems and solutions		N7.4
	38	Strain energy of beams in bending, Beam		NA
		Deflections		
	39	Strain energy of shafts in twisting		
	40	Problems and solutions		
	41	Energy methods in determining spring		
10^{th}		deflection, Castigliano's & Maxwell		
		Theorems		
	42	Problems and solutions		
	43	Stresses in open coiled helical spring		NA
		subjected to axial loads and twisting couples		
	44	Leaf springs, Flat springs, Concentric		
		Springs		
	45	Problems and solutions		
		Unit- :IV Slope & Deflection, Theori	ies of Elast	tic Failure
	46	Conceopt of Slope and Deflection		
11 th	47	Relationship between bending moment, slope		
		and deflection		
	48	Calculation for Slope and Deflection using		
		integration method.	_	NA
	49	Problems and solutions	-	
	50	Macaulay's and area moment methods of		
		Cantilevers and simply supported beams with		
1.2th	51	Problems and solutions		
12	52	Macaulay's and area moment methods of	-	
	52	fixed beams under concentrated loads and		
		uniformly distributed loads		
	53	Problems and solutions	-	
	54	Macaulay's and area moment methods of	-	NA
	0.	fixed beams under combination of		
		Concentrated loads & Uniformly distributed		
		loads		
	55	Problems and Solutions		
	56	Varying Loads and application of moments,		
13 th		propped beams, sinking of prop		
	57	Problems and solutions		
	58	Continuous Beams		NA
	59	Problems and solutions		
	60	Derivation and Graphical Representations of		
1.4th		Elastic Failure		
14 ^{ui}	C1		rest	
1 5th	61	Application to problems of 2-dimensional		
15		stresss system with Combined Direct loading		
	67	Problems and solutions	-	
	62	Application to problems of 2 dimensional	-	ΝΑ
	05	stresss system with Combined torisonal and		
		Direct loading.		
	64	Problems and solutions		
	65	Assignment-II	1	

Material Science and Material Science lab

Week	Theory		Practical			
WEEK	Lecture	Topic (Including Assignment/Test)	Practical	Topic		
	Dav	Topre (menuenig Tissignment, Test)	Dav	- opto		
		Unit-I: Crystallography & Imperfect	tion in metal crystals			
	1	Crystallography: Review of crystal				
1 st	1	structure, space lattice				
-	2	Crystal planes and crystal directions, co-		To study crystal structures of a given		
		ordination number	1	specimen.		
	3	Number of atoms per unit cell, atomic	1			
		packing factor				
	4	Numerical related to crystallography				
		Imperfection in metal crystals				
and	5	Crystal imperfections and their				
2""	6	Point defects line defects	-			
	7	Fdge & screw dislocations surface	2	To study crystal imperfections in a		
	,	defects	2	given specimen		
	8	Volume defects & effects of imperfections				
		on metal properties				
		Unit-II: Solid solutions and phase diagra	am & Hea	at Treatment		
	9	Solid solutions and phase diagram:				
3 th		Introduction to single and multiphase				
		solid solutions and types of solid				
	10	solutions	-	To study missionstructures of motols/		
	10	Importance and objectives of phase	3	To study microstructures of metals/		
	11	Systems phase and structural		alloys.		
	11	constituents				
	12	Cooling curves, unary & binary phase				
		diagrams				
	13	Gibbs's phase rule, Lever rule				
4 th	14	Eutectic and eutectoid systems, peritectic				
		and peritectoid systems	4	To prepare solidification curve for a		
	15	Iron carbon equilibrium diagram and		given specimen		
	16	111 diagram.	-			
	10	Classification of heat treatment processes				
5 th	18	Annealing normalizing stress relieving	-	To study heat treatment processes		
c	19	Hardening, tempering, carburizing	5	(hardening and tempering) of steel		
	20	Nitriding, cvaniding, flame and induction	-	specimen		
		hardening		specification .		
	21	Allotropic transformation of iron and				
6 th		steel.	-			
	22	Properties of austenite, ferrite, pearlite,	6	To study microstructure of heat-		
	22	martensite		treated steel		
	23	Assignment I	-			
7 th	24	Assignment-i 1 st Minor Te	st			
/		Unit- ·III Deformation of Metal &	Eailures o	fmetals		
	25	Deformation of Metal: Elastic and plastic	Failures U			
8 th	25	deformation				
0	26	Mechanism of plastic deformation	1_	To study the properties of various		
	27	Twinning, conventional and true stress	7	types of plastics		
		strain curves for polycrystalline materials		.,,,		
	28	Yield point phenomena, strain ageing				
9 th	29	Work hardening, Bauschinger effect				
	30	Season cracking. Recovery, re-				
		crystallization and grain growth	8	Internal Vivo-Vice-1		
	31	Failures of metals: Failure analysis	4			
	32	Tracture, process of fracture				
10 th	22	a spes of fracture, fatigue, characteristics		To study the mechanism of		
10	34	Fatigue limit, mechanism of fatigue	9	chemical corrosion and its		
	35	Factors affecting fatigue		protection		

	36	Problems and Solutions		
		Unit- :IV Creep & Corrosion & Plastic	, Composit	e and Ceramics
		Creep & Corrosion: Definition and concept		
		Creep curve, mechanism of creep		To study the creep behavior of a
11 th		Impact of time and temperature on creep, creep fracture	10	given specimen
		Creep testing and prevention against creep		
		Corrosion: Mechanism and effect of corrosion		
12 th		Prevention of corrosion		To study thermo-setting of plastics.
		Plastic, Composite and Ceramics: Polymers	11	
		Formation of polymers, polymer structure and crystallinity		
13 th		Polymers to plastics types, reinforced particles-strengthened and dispersion strengthened composites	12	Internal Vivo-Vice-2
		Ceramic materials: Types of ceramics, properties of ceramic, ceramic forming techniques		
		Mechanical behavior of ceramic		
		Assignment-II	-	
14 th		2 nd Minor	Test	•

FLUID MECHANICS AND FLUID MECHANICS LAB

Week		Theory	Practical							
	Lecture	Topic (Including Assignment/Test)	Practical	Торіс						
	Day		Day	L						
	Unit-I : Fluid Properties, Fluid Statics & Kinematics									
	1	Basics about subject like force, pressure etc.								
1 st		and their units and What is Fluid Mechanics								
		Introduction and relation with other subjects								
	2	Concept of fluid and flow, Viscosity, ideal								
		and real fluids, continuum concept	1	To verify the Bernoulli's Theorem.						
	3	Properties of fluid, Newtonian and non-								
	4	Pascal's Law & Monometers								
	5	Problem and solutions	_							
	6	Hydrostatic equation bydrostatic forces on								
2^{nd}	0	plane & curved surfaces								
	7	Buoyancy and flotation		To determine the meta centric height of a						
	8	Stability of floating and submerged bodies	2	floating body.						
	9	Problem and solutions								
	10	Problem and solutions								
	11	Eulerian and lagrangian description of fluid								
3 rd		flow								
	12	Types of flows, Flow rate and continuity								
	12	equation	- 3	To determine the minor losses due to pipe						
	13	Differential equation in cylindrical		fitting in pipes.						
	14	Differential equation in polar coordinates	_							
	15	Problem and solutions	-							
	16	Rotation and vorticity								
4^{th}	17	circulation. Stream function								
	18	potential function	4	To determine the major losses due to						
	19	flow net and Problem and solutions	-	friction in pipe flow.						
	20	Problem and solutions								
	-	Unit-II : Fluid Dynamics, Po	tential Fl	OW						
	21	Concept of system and control volume								
5 th	22	Euler's equation								
	23	Bernoulli's equation, venturimeter,	-	To determine the coefficient of discharge						
		Orifices,	5	of venturimeter.						
	24	Orifice meter, Mouthpieces								
	25	Problem and solutions								
cth	26	Kinetic and Momentum Correction Factors								
0	27	Impulse Momentum relationship and its								
	28	Uniform and Vortex flow	6	10 determine the coefficient of discharge						
	28	Flow past a Rankin half body		of noten (v and Rectangular types).						
	30	Problem and solutions	_							
7 th	50	1 st	Minor Test							
-	31	Source, sink, source-sink pair and doublet								
8 th	32	Flow past a cylinder with and without	1							
	-	circulation	-	To determine the coefficient of discharge						
	33	Problem and solutions	/	of an orifice meter.						
	34	Problem and solutions]							
	35	Assignment 1								

		Unit-III : Viscous Flow, Flow	Chrough	Pipes	
d	36	Flow regimes and Reynold's number			
9 th	37	Relationship between shear stress and			
		pressure gradient	8	To Find critical Reynolds number for a	
	38	Uni-directional flow between Stationary and		nine flow	
		moving parallel plates,	_	P-Po 10	
	39	Hagen Poiseuilli law	_		
	40	Problem and solutions			
r oth	41	Major and Minor Losses in pipes			
10 ^m	42	Hydraulic Gradient and Total Energy Lines,			
		Series connection of pipes,			
	43	Equivalent Pipe, Parallel connection of Pipes	9	Internal Vivo-Vice-1	
	44	Branched pipes, Power transmission through			
		pipes			
	45	Problem and solutions			
		Unit- :IV Boundary Layer Theory	& Turbu	lent Flow	
, , th	46	Boundary layer concept			
11	47	Displacement, momentum and energy			
		thickness	10	To determine the coefficient of discharge,	
	48	Von-Karman momentum integral equation,	10	contraction & velocity of an orifice	
	49	Problem and solutions			
	50	Problem and solutions			
12 ^m	51	Laminar and turbulent boundary layer flows			
	52	Drag on a flat plate		To determine the density and viscosity of	
	53	Boundary layer separation and control	11	any three fluids	
	54	Presentation		any unce maras.	
	55	Problem and solutions			
di	56	Shear stress in turbulent flow		To determine the minor losses due to	
13 th	57	Prandtl mixing length hypothesis		sudden enlargement sudden contraction	
	58	Hydraulically smooth and rough pipes	12	and bends	
	59	Velocity distribution in pipes pipes		und bonds.	
	60	Problem and solutions			
14 th		2 nd Minor	r Test		
a ath	61	Friction coefficients for smooth and rough			
15 th		pipes			
	62	Problems and Solutions	13	Internal Vivo-Vice-?	
	63	Problem and solutions	15	Internal vivo-vice-2	
	64	Presentation			
	65	Assignment-II			