
1

LAB MANUAL

DATABASE

MANAGEMENT

SYSTEM LAB

2

LIST OF EXPERIMENTS

Course Title: Database Management System Laboratory

S.No Name of the Experiment Page No

1.

Implementation of DDL commands of SQL with suitable examples

 Create table

 Alter table

 Drop Table

2.

Implementation of DML commands of SQL with suitable examples

 Insert

 Update

 Delete

3.

Implementation of different types of function with suitable examples

 Number function

 Aggregate Function

 Character Function

 Conversion Function

 Date Function

4.

Implementation of different types of operators in SQL

 Arithmetic Operators

 Logical Operators

 Comparison Operator

 Special Operator

 Set Operation

5.

Implementation of different types of Joins

 Inner Join

 Outer Join

 Natural Join etc..

6.

Study and Implementation of

 Group By & having clause

 Order by clause

 Indexing

3

7.

Study & Implementation of

 Sub queries

 Views

8 Study & Implementation of different types of constraints.

9

Study & Implementation of Database Backup & Recovery commands.

Study & Implementation of Rollback, Commit, Savepoint.

10

 Creating Database /Table Space

 Managing Users: Create User, Delete User

 Managing roles:-Grant, Revoke.

11 Study & Implementation of PL/SQL.

12 Study & Implementation of SQL Triggers.

DOs and DON’Ts in Laboratory:

1. Make entry in the Log Book as soon as you enter the Laboratory.

2. All the students should sit according to their roll numbers starting from their

left to right.

3. All the students are supposed to enter the terminal number in the log book.

4. Do not change the terminal on which you are working.

5. All the students are expected to get at least the algorithm of the

program/concept to be implemented.

6. Strictly observe the instructions given by the teacher/Lab Instructor.

7. Do not disturb machine Hardware / Software Setup.

4

Instruction for Laboratory Teachers:

1. Submission related to whatever lab work has been completed

should be done during the next lab session along with signing the

index.

2. The promptness of submission should be encouraged by way of

marking and evaluation patterns that will benefit the sincere students.

3. Continuous assessment in the prescribed format must be followed.

5

Experiment No: 1

Title: Implementation of DDL commands of SQL with suitable examples

 Create table

 Alter table

 Drop Table

Objective:

To understand the different issues involved in the design and implementation of a

database system

To understand and use data definition language to write query for a database

Theory:

Oracle has many tools such as SQL * PLUS, Oracle Forms, Oracle Report Writer, Oracle

Graphics etc.

 SQL * PLUS: The SQL * PLUS tool is made up of two distinct parts. These are

 Interactive SQL: Interactive SQL is designed for create, access and

manipulate data structures like tables and indexes.

 PL/SQL: PL/SQL can be used to developed programs for different

applications.

 Oracle Forms: This tool allows you to create a data entry screen along with the

suitable menu objects. Thus it is the oracle forms tool that handles data gathering and

data validation in a commercial application.

 Report Writer: Report writer allows programmers to prepare innovative reports

using data from the oracle structures like tables, views etc. It is the report writer tool

that handles the reporting section of commercial application.

 Oracle Graphics: Some of the data can be better represented in the form of pictures.

The oracle graphics tool allows programmers to prepare graphs using data from oracle

structures like tables, views etc.

6

SQL (Structured Query Language):

Structured Query Language is a database computer language designed for

managing data in relational database management systems (RDBMS), and originally based

upon Relational Algebra. Its scope includes data query and update, schema creation and

modification, and data access control.

SQL was one of the first languages for Edgar F. Codd's relational model and became the

most widely used language for relational databases.

 IBM developed SQL in mid of 1970’s.

 Oracle incorporated in the year 1979.

 SQL used by IBM/DB2 and DS Database Systems.

 SQL adopted as standard language for RDBS by ASNI in 1989.

DATA TYPES:

1. CHAR (Size): This data type is used to store character strings values of fixed length.

The size in brackets determines the number of characters the cell can hold. The

maximum number of character is 255 characters.

2. VARCHAR (Size) / VARCHAR2 (Size): This data type is used to store variable length

alphanumeric data. The maximum character can hold is 2000 character.

3. NUMBER (P, S): The NUMBER data type is used to store number (fixed or floating

point). Number of virtually any magnitude may be stored up to 38 digits of precision.

Number as large as 9.99 * 10 124. The precision (p) determines the number of places to

the right of the decimal. If scale is omitted then the default is zero. If precision is

omitted, values are stored with their original precision up to the maximum of 38 digits.

4. DATE: This data type is used to represent date and time. The standard format is DD-

MM-YY as in 17-SEP-2009. To enter dates other than the standard format, use the

appropriate functions. Date time stores date in the 24-Hours format. By default the time

7

in a date field is 12:00:00 am, if no time portion is specified. The default date for a date

field is the first day the current month.

5. LONG: This data type is used to store variable length character strings containing up to

2GB. Long data can be used to store arrays of binary data in ASCII format. LONG

values cannot be indexed, and the normal character functions such as SUBSTR cannot

be applied.

6. RAW: The RAW data type is used to store binary data, such as digitized picture or

image. Data loaded into columns of these data types are stored without any further

conversion. RAW data type can have a maximum length of 255 bytes. LONG RAW data

type can contain up to 2GB.

SQL language is sub-divided into several language elements, including:

 Clauses, which are in some cases optional, constituent components of statements and

queries.

 Expressions, which can produce either scalar values or tables consisting of columns and

rows of data.

 Predicates which specify conditions that can be evaluated to SQL three-valued logic

(3VL) Boolean truth values and which are used to limit the effects of statements and

queries, or to change program flow.

 Queries which retrieve data based on specific criteria.

 Statements which may have a persistent effect on schemas and data, or which may

control transactions, program flow, connections, sessions, or diagnostics.

 SQL statements also include the semicolon (";") statement terminator. Though not

required on every platform, it is defined as a standard part of the SQL grammar.

8

 Insignificant white space is generally ignored in SQL statements and queries, making it

easier to format SQL code for readability.

There are five types of SQL statements. They are:

1. DATA DEFINITION LANGUAGE (DDL)

2. DATA MANIPULATION LANGUAGE (DML)

3. DATA RETRIEVAL LANGUAGE (DRL)

4. TRANSATIONAL CONTROL LANGUAGE (TCL)

5. DATA CONTROL LANGUAGE (DCL)

1. DATA DEFINITION LANGUAGE (DDL): The Data Definition Language (DDL) is

used to create and destroy databases and database objects. These commands will primarily be

used by database administrators during the setup and removal phases of a database project.

Let's take a look at the structure and usage of four basic DDL commands:

1. CREATE 2. ALTER 3. DROP 4. RENAME

1. CREATE:

(a)CREATE TABLE: This is used to create a new relation (table)

Syntax: CREATE TABLE <relation_name/table_name >

(field_1 data_type(size),field_2 data_type(size), .. .);

Example:

SQL> CREATE TABLE Student (sno NUMBER (3), sname CHAR (10), class CHAR (5));

2. ALTER:

(a) ALTER TABLE ...ADD...: This is used to add some extra fields into existing

relation.

9

Syntax: ALTER TABLE relation_name ADD (new field_1 data_type(size), new field_2

data_type(size),..);

Example: SQL>ALTER TABLE std ADD (Address CHAR(10));

(b) ALTER TABLE...MODIFY...: This is used to change the width as well as data

type of fields of existing relations.

Syntax: ALTER TABLE relation_name MODIFY (field_1 newdata_type(Size), field_2

newdata_type(Size), ... field_newdata_type(Size));

Example:SQL>ALTER TABLE student MODIFY(sname VARCHAR(10),class

VARCHAR(5));

c) ALTER TABLE..DROP This is used to remove any field of existing relations.

Syntax: ALTER TABLE relation_name DROP COLUMN (field_name);

Example:SQL>ALTER TABLE student DROP column (sname);

d)ALTER TABLE..RENAME...: This is used to change the name of fields in

existing relations.

Syntax: ALTER TABLE relation_name RENAME COLUMN (OLD field_name) to

(NEW field_name);

Example: SQL>ALTER TABLE student RENAME COLUMN sname to stu_name;

3. DROP TABLE: This is used to delete the structure of a relation. It permanently deletes

the records in the table.

Syntax: DROP TABLE relation_name;

Example: SQL>DROP TABLE std;

4. RENAME: It is used to modify the name of the existing database object.

Syntax: RENAME TABLE old_relation_name TO new_relation_name;

Example: SQL>RENAME TABLE std TO std1;

10

LAB PRACTICE ASSIGNMENT:

1. Create a table EMPLOYEE with following schema:

(Emp_no, E_name, E_address, E_ph_no, Dept_no, Dept_name,Job_id , Salary)

2. Add a new column; HIREDATE to the existing relation.

3. Change the datatype of JOB_ID from char to varchar2.

4. Change the name of column/field Emp_no to E_no.

5. Modify the column width of the job field of emp table

11

Experiment No:2

Title : Implementation of DML commands of SQL with suitable examples

 Insert table

 Update table

 Delete Table

Objective :

To understand the different issues involved in the design and implementation of a

database system

To understand and use data manipulation language to query, update, and manage a

database

Theory :

DATA MANIPULATION LANGUAGE (DML): The Data Manipulation Language

(DML) is used to retrieve, insert and modify database information. These commands will be

used by all database users during the routine operation of the database. Let's take a brief look

at the basic DML commands:

1. INSERT 2. UPDATE 3. DELETE

1. INSERT INTO: This is used to add records into a relation. These are three type of

INSERT INTO queries which are as

a) Inserting a single record

Syntax: INSERT INTO < relation/table name> (field_1,field_2……field_n)VALUES

(data_1,data_2, data_n);

Example: SQL>INSERT INTO student(sno,sname,class,address)VALUES

(1,’Ravi’,’M.Tech’,’Palakol’);

b) Inserting a single record

Syntax: INSERT INTO < relation/table name>VALUES (data_1,data_2, data_n);

Example: SQL>INSERT INTO student VALUES (1,’Ravi’,’M.Tech’,’Palakol’);

c) Inserting all records from another relation

12

Syntax: INSERT INTO relation_name_1 SELECT Field_1,field_2,field_n

FROM relation_name_2 WHERE field_x=data;

Example: SQL>INSERT INTO std SELECT sno,sname FROM student

WHERE name = ‘Ramu‘;

d) Inserting multiple records

Syntax: INSERT INTO relation_name field_1,field_2, field_n) VALUES

(&data_1,&data_2, &data_n);

Example: SQL>INSERT INTO student (sno, sname, class,address)

VALUES (&sno,’&sname’,’&class’,’&address’);

Enter value for sno: 101

Enter value for name: Ravi

Enter value for class: M.Tech

Enter value for name: Palakol

2. UPDATE-SET-WHERE: This is used to update the content of a record in a relation.

Syntax: SQL>UPDATE relation name SET Field_name1=data,field_name2=data,

WHERE field_name=data;

Example: SQL>UPDATE student SET sname = ‘kumar’ WHERE sno=1;

3. DELETE-FROM: This is used to delete all the records of a relation but it will retain the

structure of that relation.

a) DELETE-FROM: This is used to delete all the records of relation.

Syntax: SQL>DELETE FROM relation_name;

Example: SQL>DELETE FROM std;

b) DELETE -FROM-WHERE: This is used to delete a selected record from a relation.

Syntax: SQL>DELETE FROM relation_name WHERE condition;

Example: SQL>DELETE FROM student WHERE sno = 2;

5. TRUNCATE: This command will remove the data permanently. But structure will not be

removed.

13

Difference between Truncate & Delete:-

 By using truncate command data will be removed permanently & will not get back

where as by using delete command data will be removed temporally & get back by

using roll back command.

 By using delete command data will be removed based on the condition where as by

using truncate command there is no condition.

 Truncate is a DDL command & delete is a DML command.

Syntax: TRUNCATE TABLE <Table name>

Example TRUNCATE TABLE student;

 To Retrieve data from one or more tables.

1. SELECT FROM: To display all fields for all records.

Syntax : SELECT * FROM relation_name;

Example : SQL> select * from dept;

DEPTNO DNAME LOC
-------- ----------- ----------

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

2. SELECT FROM: To display a set of fields for all records of relation.

Syntax: SELECT a set of fields FROM relation_name;

Example: SQL> select deptno, dname from dept;

DEPTNO DNAME

10 ACCOUNTING

20 RESEARCH

30 SALES

3. SELECT - FROM -WHERE: This query is used to display a selected set of fields for a

selected set of records of a relation.

14

Syntax: SELECT a set of fields FROM relation_name WHERE condition;

Example: SQL> select * FROM dept WHERE deptno<=20;

DEPTNO DNAME LOC

------ ----------- ------------

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

LAB PRACTICE ASSIGNMENT:

Create a table EMPLOYEE with following schema:

(Emp_no, E_name, E_address, E_ph_no, Dept_no, Dept_name,Job_id , Salary)

Write SQL queries for following question:

1. Insert aleast 5 rows in the table.

2. Display all the information of EMP table.

3. Display the record of each employee who works in department D10.

4. Update the city of Emp_no-12 with current city as Nagpur.

5. Display the details of Employee who works in department MECH.

6. Delete the email_id of employee James.

7. Display the complete record of employees working in SALES Department.

15

Experiment No: 3

Title: Implementation of different types of functions with suitable examples.

 Number Function

 Aggregate Function

 Character Function

 Conversion Function

 Date Function

Objective:

NUMBER FUNCTION:

Abs(n) :Select abs(-15) from dual;

Exp(n): Select exp(4) from dual;

Power(m,n): Select power(4,2) from dual;

Mod(m,n): Select mod(10,3) from dual;

Round(m,n): Select round(100.256,2) from dual;

Trunc(m,n): ;Select trunc(100.256,2) from dual;

Sqrt(m,n);Select sqrt(16) from dual;

Develop aggregate plan strategies to assist with summarization of several data entries.

Aggregative operators: In addition to simply retrieving data, we often want to perform some

computation or summarization. SQL allows the use of arithmetic expressions. We now

consider a powerful class of constructs for computing aggregate values such as MIN and

SUM.

1. Count: COUNT following by a column name returns the count of tuple in that column. If

DISTINCT keyword is used then it will return only the count of unique tuple in the column.

Otherwise, it will return count of all the tuples (including duplicates) count (*) indicates all

the tuples of the column.

Syntax: COUNT (Column name)

Example: SELECT COUNT (Sal) FROM emp;

16

2. SUM: SUM followed by a column name returns the sum of all the values in that column.

Syntax: SUM (Column name)

Example: SELECT SUM (Sal) From emp;

3. AVG: AVG followed by a column name returns the average value of that column values.

Syntax: AVG (n1, n2...)

Example: Select AVG (10, 15, 30) FROM DUAL;

4. MAX: MAX followed by a column name returns the maximum value of that column.

Syntax: MAX (Column name)

Example: SELECT MAX (Sal) FROM emp;

SQL> select deptno, max(sal) from emp group by deptno;

DEPTNO MAX (SAL)

SQL> select deptno, max (sal) from emp group by deptno having max(sal)<3000;

DEPTNO MAX(SAL)

30 2850

5. MIN: MIN followed by column name returns the minimum value of that column.

Syntax: MIN (Column name)

Example: SELECT MIN (Sal) FROM emp;

SQL>select deptno,min(sal) from emp group by deptno having min(sal)>1000;

DEPTNO MIN (SAL)

10 1300

10

5000

20 3000
30 2850

17

CHARACTER FUNCTION:

initcap(char) : select initcap(“hello”) from dual;

lower (char): select lower (‘HELLO’) from dual;

upper (char) :select upper (‘hello’) from dual;

ltrim (char,[set]): select ltrim (‘cseit’, ‘cse’) from dual;

rtrim (char,[set]): select rtrim (‘cseit’, ‘it’) from dual;

replace (char,search): select replace(‘jack and jue’,‘j’,‘bl’) from dual;

CONVERSION FUNCTIONS:

To_char: TO_CHAR (number) converts n to a value of VARCHAR2 data type, using the

optional number format fmt. The value n can be of type NUMBER, BINARY_FLOAT, or

BINARY_DOUBLE.

SQL>select to_char(65,'RN')from dual;

LXV

To_number : TO_NUMBER converts expr to a value of NUMBER data type.

SQL>Select to_number ('1234.64') from Dual;

1234.64

To_date:TO_DATE converts char of CHAR, VARCHAR2, NCHAR, or

NVARCHAR2 data type to a value of DATE data type.

SQL>SELECT TO_DATE('January 15, 1989, 11:00 A.M.')FROM DUAL;

TO_DATE

15-JAN-89

STRING FUNCTIONS:

Concat: CONCAT returns char1 concatenated with char2. Both char1 and char2 can be any

of the datatypes

18

SQL>SELECT CONCAT(‘ORACLE’,’CORPORATION’)FROM DUAL;

ORACLECORPORATION

Lpad: LPAD returns expr1, left-padded to length n characters with the sequence of

characters in expr2.

SQL>SELECT LPAD(‘ORACLE’,15,’*’)FROM DUAL;

*********ORACLE

Rpad: RPAD returns expr1, right-padded to length n characters with expr2, replicated as

many times as necessary.

SQL>SELECT RPAD (‘ORACLE’,15,’*’)FROM DUAL;

ORACLE*********

Ltrim: Returns a character expression after removing leading blanks.

SQL>SELECT LTRIM(‘SSMITHSS’,’S’)FROM DUAL;

MITHSS

Rtrim: Returns a character string after truncating all trailing blanks

SQL>SELECT RTRIM(‘SSMITHSS’,’S’)FROM DUAL;

SSMITH

Lower: Returns a character expression after converting uppercase character data to

lowercase.

SQL>SELECT LOWER(‘DBMS’)FROM DUAL;
dbms

Upper: Returns a character expression with lowercase character data converted to uppercase

SQL>SELECT UPPER(‘dbms’)FROM DUAL;

DBMS

Length: Returns the number of characters, rather than the number of bytes, of the given

string expression, excluding trailing blanks.

SQL>SELECT LENGTH(‘DATABASE’)FROM DUAL;

8

Substr: Returns part of a character, binary, text, or image expression.

SQL>SELECT SUBSTR(‘ABCDEFGHIJ’3,4)FROM DUAL;

CDEF

19

Instr: The INSTR functions search string for substring. The function returns an integer

indicating the position of the character in string that is the first character of this occurrence.

SQL>SELECT INSTR('CORPORATE FLOOR','OR',3,2)FROM DUAL;

14

DATE FUNCTIONS:

Sysdate:

SQL>SELECT SYSDATE FROM DUAL;

29-DEC-08

next_day:

SQL>SELECT NEXT_DAY(SYSDATE,’WED’)FROM DUAL;

05-JAN-09

add_months:

SQL>SELECT ADD_MONTHS(SYSDATE,2)FROM DUAL;

28-FEB-09

last_day:

SQL>SELECT LAST_DAY(SYSDATE)FROM DUAL;

31-DEC-08

months_between:

SQL>SELECT MONTHS_BETWEEN(SYSDATE,HIREDATE)FROM EMP;

4

Least:

SQL>SELECT LEAST('10-JAN-07','12-OCT-07')FROM DUAL;

10-JAN-07

Greatest:

SQL>SELECT GREATEST('10-JAN-07','12-OCT-07')FROM DUAL;

10-JAN-07

Trunc:

SQL>SELECT TRUNC(SYSDATE,'DAY')FROM DUAL;

28-DEC-08

Round:

20

SQL>SELECT ROUND(SYSDATE,'DAY')FROM DUAL;

28-DEC-08

to_char:

SQL> select to_char(sysdate, "dd\mm\yy") from dual;

24-mar-05.

to_date:

SQL> select to date (sysdate, "dd\mm\yy") from dual;

24-mar-o5.

LAB PRACTICE ASSIGNMENT:

Create a table EMPLOYEE with following schema:

(Emp_no, E_name, E_address, E_ph_no, Dept_no, Dept_name,Job_id, Designation , Salary)

Write SQL statements for the following query.

1. List the E_no, E_name, Salary of all employees working for MANAGER.

2. Display all the details of the employee whose salary is more than the Sal of any IT PROFF..

3. List the employees in the ascending order of Designations of those joined after 1981.

4. List the employees along with their Experience and Daily Salary.

5. List the employees who are either ‘CLERK’ or ‘ANALYST’ .

6. List the employees who joined on 1-MAY-81, 3-DEC-81, 17-DEC-81,19-JAN-80 .

7. List the employees who are working for the Deptno 10 or20.

8. List the Enames those are starting with ‘S’ .

9. Dislay the name as well as the first five characters of name(s) starting with ‘H’

10. List all the emps except ‘PRESIDENT’ & ‘MGR” in asc order of Salaries.

21

Experiment No: 4

Title : Implementation of different types of operators in SQL.

 Arithmetic Operator

 Logical Operator

 Comparision Operator

 Special Operator

 Set Operator

Objective:

To learn different types of operator.

Theory:

ARIHMETIC OPERATORS:

(+) : Addition - Adds values on either side of the operator .

(-):Subtraction - Subtracts right hand operand from left hand operand .

(*):Multiplication - Multiplies values on either side of the operator .

(/):Division - Divides left hand operand by right hand operand .

(^):Power- raise to power of .

(%):Modulus - Divides left hand operand by right hand operand and returns remainder.

LOGICAL OPERATORS:

AND : The AND operator allows the existence of multiple conditions in an SQL statement's

WHERE clause.

OR: The OR operator is used to combine multiple conditions in an SQL statement's WHERE

clause.

22

NOT: The NOT operator reverses the meaning of the logical operator with which it is used.

Eg: NOT EXISTS, NOT BETWEEN, NOT IN, etc. This is a negate operator.

COMPARISION OPERATORS:

(=):Checks if the values of two operands are equal or not, if yes then condition becomes true.

(!=):Checks if the values of two operands are equal or not, if values are not equal then

condition becomes true.

(< >):Checks if the values of two operands are equal or not, if values are not equal then

condition becomes true.

(>):Checks if the value of left operand is greater than the value of right operand, if yes then

condition becomes true

(<):Checks if the value of left operand is less than the value of right operand, if yes then

condition becomes true.

(>=):Checks if the value of left operand is greater than or equal to the value of right operand,

if yes then condition becomes true.

(<=):Checks if the value of left operand is less than or equal to the value of right operand, if

yes then condition becomes true.

SPECIAL OPERATOR:

BETWEEN: The BETWEEN operator is used to search for values that are within a set of

values, given the minimum value and the maximum value.

IS NULL: The NULL operator is used to compare a value with a NULL attribute value.

ALL: The ALL operator is used to compare a value to all values in another value set

ANY: The ANY operator is used to compare a value to any applicable value in the list

according to the condition.

LIKE: The LIKE operator is used to compare a value to similar values using wildcard

operators.It allows to use percent sign(%) and underscore (_) to match a given string pattern.

23

IN: The IN operator is used to compare a value to a list of literal values that have been

specified.

EXIST: The EXISTS operator is used to search for the presence of a row in a specified table

that meets certain criteria.

SET OPERATORS:

The Set operator combines the result of 2 queries into a single result. The following

are the operators:

 Union

 Union all

 Intersect

 Minus

Union: Returns all distinct rows selected by both the queries

Union all: Returns all rows selected by either query including the duplicates.

Intersect: Returns rows selected that are common to both queries.

Minus: Returns all distinct rows selected by the first query and are not by the second

LAB PRACTICE ASSIGNMENT:

1. Display all the dept numbers available with the dept and emp tables avoiding duplicates.

2. Display all the dept numbers available with the dept and emp tables.

3. Display all the dept numbers available in emp and not in dept tables and vice versa.

24

Experiment No: 5

Title : Implementation of different types of Joins

 Inner Join

 Outer Join

 Natural Join..etc

Objective :

To implement different types of joins

Theory :

The SQL Joins clause is used to combine records from two or more tables in a

database. A JOIN is a means for combining fields from two tables by using values common

to each.The join is actually performed by the ‘where’ clause which combines specified rows

of tables.

Syntax:

SELECT column 1, column 2, column 3...

FROM table_name1, table_name2

WHERE table_name1.column name = table_name2.columnname;

Types of Joins :

1. Simple Join

2. Self Join

3. Outer Join

Simple Join:

It is the most common type of join. It retrieves the rows from 2 tables having a

common column and is further classified into

Equi-join :

A join, which is based on equalities, is called equi-join.
Example:

Select * from item, cust where item.id=cust.id;

In the above statement, item-id = cust-id performs the join statement. It retrieves rows

from both the tables provided they both have the same id as specified by the where clause.

Since the where clause uses the comparison operator (=) to perform a join, it is said to be

25

equijoin. It combines the matched rows of tables. It can be used as follows:

 To insert records in the target table.

 To create tables and insert records in this table.

 To update records in the target table.

 To create views.

Non Equi-join:

It specifies the relationship between columns belonging to different tables by

making use of relational operators other than’=’.

Example:

Select * from item, cust where item.id<cust.id;

Table Aliases

Table aliases are used to make multiple table queries shorted and more readable. We give

an alias name to the table in the ‘from’ clause and use it instead of the name throughout

the query.

Self join:

Joining of a table to itself is known as self-join. It joins one row in a table to another.

It can compare each row of the table to itself and also with other rows of the same table.

Example:

select * from emp x ,emp y where x.salary >= (select avg(salary) from x.emp

where x. deptno =y.deptno);

Outer Join:

It extends the result of a simple join. An outer join returns all the rows returned by simple

join as well as those rows from one table that do not match any row from the table. The

symbol(+) represents outer join.

– Left outer join

– Right outer join

– Full outer join

26

LAB PRACTICE ASSIGNMENT:

Consider the following schema:

Sailors (sid, sname, rating, age)

Boats (bid, bname, color)

Reserves (sid, bid, day(date))

1. Find all information of sailors who have reserved boat number 101.

2. Find the name of boat reserved by Bob.

3. Find the names of sailors who have reserved a red boat, and list in the order of age.

4. Find the names of sailors who have reserved at least one boat.

5. Find the ids and names of sailors who have reserved two different boats on the same

day.

6. Find the ids of sailors who have reserved a red boat or a green boat.

7. Find the name and the age of the youngest sailor.

8. Count the number of different sailor names.

9. Find the average age of sailors for each rating level.

10. Find the average age of sailors for each rating level that has at least two sailors.

27

Experiment No: 6

Title : Study & Implementation of

 Group by & Having Clause

 Order by Clause

 Indexing

Objective:

To learn the concept of group functions

Theory:

 GROUP BY: This query is used to group to all the records in a relation together for each

and every value of a specific key(s) and then display them for a selected set of fields the

relation.

Syntax: SELECT <set of fields> FROM <relation_name>

GROUP BY <field_name>;

Example: SQL> SELECT EMPNO, SUM (SALARY) FROM EMP GROUP BY

EMPNO;

GROUP BY-HAVING : The HAVING clause was added to SQL because the WHERE

keyword could not be used with aggregate functions. The HAVING clause must follow the

GROUP BY clause in a query and must also precede the ORDER BY clause if used.

Syntax: SELECT column_name, aggregate_function(column_name) FROM table_name

WHERE column_name operator value

GROUP BY column_name

HAVING aggregate_function(column_name) operator value;

28

Example : SELECT Employees.LastName, COUNT(Orders.OrderID) AS NumberOfOrders

FROM (Orders

INNER JOIN Employees

ON Orders.EmployeeID=Employees.EmployeeID) GROUP BY LastName

HAVING COUNT (Orders.OrderID) > 10;

JOIN using GROUP BY: This query is used to display a set of fields from two relations by

matching a common field in them and also group the corresponding records for each and

every value of a specified key(s) while displaying.

Syntax: SELECT <set of fields (from both relations)> FROM relation_1,relation_2

WHERE relation_1.field_x=relation_2.field_y GROUP BY field_z;

Example:

SQL> SELECT empno,SUM(SALARY) FROM emp,dept

WHERE emp.deptno =20 GROUP BY empno;

 ORDER BY: This query is used to display a selected set of fields from a relation in an

ordered manner base on some field.

Syntax: SELECT <set of fields> FROM <relation_name>

ORDER BY <field_name>;

Example: SQL> SELECT empno, ename, job FROM emp ORDER BY job;

JOIN using ORDER BY: This query is used to display a set of fields from two relations by

matching a common field in them in an ordered manner based on some fields.

Syntax: SELECT <set of fields (from both relations)> FROM relation_1, relation_2

WHERE relation_1.field_x = relation_2.field_y ORDER BY field_z;

Example: SQL> SELECT empno,ename,job,dname FROM emp,dept

WHERE emp.deptno = 20 ORDER BY job;

29

 INDEXING: An index is an ordered set of pointers to the data in a table. It is based on

the data values in one or more columns of the table. SQL Base stores indexes separately

from tables.

An index provides two benefits:

 It improves performance because it makes data access faster.

 It ensures uniqueness. A table with a unique index cannot have two rows with

the same values in the column or columns that form the index key.

Syntax:

CREATE INDEX <index_name> on <table_name> (attrib1,attrib 2….attrib n);

Example:

CREATE INDEX id1 on emp(empno,dept_no);

LAB PRACTICE ASSIGNMENT:

Create a relation and implement the following queries.

1. Display total salary spent for each job category.

2. Display lowest paid employee details under each manager.

3. Display number of employees working in each department and their department name.

4. Display the details of employees sorting the salary in increasing order.

5. Show the record of employee earning salary greater than 16000 in each department.

6. Write queries to implement and practice the above clause.

30

Experiment No: 7

Title : Study & Implementation of

 Sub queries

 Views

Objective:
– To perform nested Queries and joining Queries using DML command

– To understand the implementation of views.

Theory:

SUBQUERIES: The query within another is known as a sub query. A statement

containing sub query is called parent statement. The rows returned by sub query are

used by the parent statement or in other words A subquery is a SELECT statement that is

embedded in a clause of another SELECT statement

You can place the subquery in a number of SQL clauses:

 WHERE clause

 HAVING clause

 FROM clause

 OPERATORS(IN.ANY,ALL,<,>,>=,<= etc..)

Types

1. Sub queries that return several values

Sub queries can also return more than one value. Such results should be made use

along with the operators in and any.

2. Multiple queries

Here more than one sub query is used. These multiple sub queries are combined by

means of ‘and’ & ‘or’ keywords.

3. Correlated sub query

A sub query is evaluated once for the entire parent statement whereas a correlated

Sub query is evaluated once per row processed by the parent statement.

31

VIEW: In SQL, a view is a virtual table based on the result-set of an SQL statement.

A view contains rows and columns, just like a real table. The fields in a view are

fields from one or more real tables in the database.

You can add SQL functions, WHERE, and JOIN statements to a view and present the data as

if the data were coming from one single table.

A view is a virtual table, which consists of a set of columns from one or more tables. It is

similar to a table but it does not store in the database. View is a query stored as an object.

Syntax: CREATE VIEW <view_name> AS SELECT <set of fields>

FROM relation_name WHERE (Condition)

Example:

SQL> CREATE VIEW employee AS SELECT empno,ename,job FROM EMP

WHERE job = ‘clerk’;

SQL> View created.

Example:

CREATE VIEW [Current Product List] AS

SELECT ProductID, ProductName

FROM Products

WHERE Discontinued=No;

UPDATING A VIEW : A view can updated by using the following syntax :

Syntax : CREATE OR REPLACE VIEW view_name AS

SELECT column_name(s)

FROM table_name

WHERE condition

DROPPING A VIEW: A view can deleted with the DROP VIEW command.

Syntax: DROP VIEW <view_name> ;

32

LAB PRACTICE ASSIGNMENT:

Consider the following schema:

Sailors (sid, sname, rating, age)

Boats (bid, bname, color)

Reserves (sid, bid, day(date))

Write subquery statement for the following queries.

1. Find all information of sailors who have reserved boat number 101.

2. Find the name of boat reserved by Bob.

3. Find the names of sailors who have reserved a red boat, and list in the order of age.

4. Find the names of sailors who have reserved at least one boat.

5. Find the ids and names of sailors who have reserved two different boats on the same

day.

6. Find the ids of sailors who have reserved a red boat or a green boat.

7. Find the name and the age of the youngest sailor.

8. Count the number of different sailor names.

9. Find the average age of sailors for each rating level.

10. Find the average age of sailors for each rating level that has at least two sailors.

33

Experiment No: 8

Title : • Study & Implementation of different types of constraints

Objective:

To practice and implement constraints

Theory:

CONSTRAINTS:

Constraints are used to specify rules for the data in a table. If there is any violation between

the constraint and the data action, the action is aborted by the constraint. It can be specified

when the table is created (using CREATE TABLE statement) or after the table is created

(using ALTER TABLE statement).

1. NOT NULL: When a column is defined as NOTNULL, then that column becomes a

mandatory column. It implies that a value must be entered into the column if the record is to

be accepted for storage in the table.

Syntax:

CREATE TABLE Table_Name (column_name data_type (size) NOT NULL,);

Example:

CREATE TABLE student (sno NUMBER(3)NOT NULL, name CHAR(10));

2. UNIQUE: The purpose of a unique key is to ensure that information in the column(s) is

unique i.e. a value entered in column(s) defined in the unique constraint must not be repeated

across the column(s). A table may have many unique keys.

Syntax:

CREATE TABLE Table_Name(column_name data_type(size) UNIQUE, ….);

Example:

CREATE TABLE student (sno NUMBER(3) UNIQUE, name CHAR(10));

34

3. CHECK: Specifies a condition that each row in the table must satisfy. To satisfy the

constraint, each row in the table must make the condition either TRUE or unknown (due to a

null).

Syntax:

CREATE TABLE Table_Name(column_name data_type(size) CHECK(logical

expression), ….);

Example:

CREATE TABLE student (sno NUMBER (3), name CHAR(10),class

CHAR(5),CHECK(class IN(‘CSE’,’CAD’,’VLSI’));

4. PRIMARY KEY: A field which is used to identify a record uniquely. A column or

combination of columns can be created as primary key, which can be used as a reference

from other tables. A table contains primary key is known as Master Table.

 It must uniquely identify each record in a table.

 It must contain unique values.

 It cannot be a null field.

 It cannot be multi port field.

 It should contain a minimum no. of fields necessary to be called unique.

Syntax:

CREATE TABLE Table_Name(column_name data_type(size) PRIMARY KEY,

….);

Example:

CREATE TABLE faculty (fcode NUMBER(3) PRIMARY KEY, fname

CHAR(10));

5. FOREIGN KEY: It is a table level constraint. We cannot add this at column level. To

reference any primary key column from other table this constraint can be used. The table in

which the foreign key is defined is called a detail table. The table that defines the primary

key and is referenced by the foreign key is called the master table.

Syntax: CREATE TABLE Table_Name(column_name data_type(size)

FOREIGN KEY(column_name) REFERENCES table_name);

35

Example:

CREATE TABLE subject (scode NUMBER (3) PRIMARY KEY, subname

CHAR(10),fcode NUMBER(3), FOREIGN KEY(fcode) REFERENCE faculty);

Defining integrity constraints in the alter table command:

Syntax: ALTER TABLE Table_Name ADD PRIMARY KEY (column_name);

Example: ALTER TABLE student ADD PRIMARY KEY (sno);

(Or)

Syntax: ALTER TABLE table_name ADD CONSTRAINT constraint_name

PRIMARY KEY(colname)

Example: ALTER TABLE student ADD CONSTRAINT SN PRIMARY KEY(SNO)

Dropping integrity constraints in the alter table command:

Syntax: ALTER TABLE Table_Name DROP constraint_name;

Example: ALTER TABLE student DROP PRIMARY KEY;

(or)

Syntax: ALTER TABLE student DROP CONSTRAINT constraint_name;

Example: ALTER TABLE student DROP CONSTRAINT SN;

6. DEFAULT : The DEFAULT constraint is used to insert a default value into a column. The

default value will be added to all new records, if no other value is specified.

Syntax:

CREATE TABLE Table_Name(col_name1,col_name2,col_name3

DEFAULT ‘<value>’);

Example:

CREATE TABLE student (sno NUMBER(3) UNIQUE, name CHAR(10),address

VARCHAR(20) DEFAULT ‘Aurangabad’);

36

LAB PRACTICE ASSIGNMENT:

1. Create a table called EMP with the following structure.

Name Type

EMPNO NUMBER (6)

ENAME VARCHAR2 (20)

JOB VARCHAR2 (10)

DEPTNO NUMBER (3)

SAL NUMBER (7,2)

Allow NULL for all columns except ename and job.

2. Add constraints to check, while entering the empno value (i.e) empno > 100.

3. Define the field DEPTNO as unique.

4. Create a primary key constraint for the table(EMPNO).

5. Write queries to implement and practice constraints.

37

Experiment No: 9

Title :

 Study and Implementation of Database Backup & Recovery Commands.

 Study and Implementation of Rollback, Commit, Save point.

Objective:

To understand the concept of administrative commands

Theory:

A transaction is a logical unit of work. All changes made to the database can be

referred to as a transaction. Transaction changes can be made permanent to the database only

if they are committed a transaction begins with an executable SQL statement & ends

explicitly with either rollback or commit statement.

1. COMMIT: This command is used to end a transaction only with the help of the commit

command transaction changes can be made permanent to the database.

Syntax: SQL> COMMIT;

Example: SQL> COMMIT;

2. SAVE POINT: Save points are like marks to divide a very lengthy transaction to smaller

once. They are used to identify a point in a transaction to which we can latter role back. Thus,

save point is used in conjunction with role back.

Syntax: SQL> SAVE POINT ID;

Example: SQL> SAVE POINT xyz;

3. ROLLBACK: A role back command is used to undo the current transactions. We can role

back the entire transaction so that all changes made by SQL statements are undo (or) role

38

back a transaction to a save point so that the SQL statements after the save point are role

back.

Syntax: ROLLBACK (current transaction can be role back)

ROLLBACK to save point ID;

Example: SQL> ROLLBACK;

SQL> ROLLBACK TO SAVE POINT xyz;

LAB PRACTICE ASSIGNMENT:

1. Write a query to implement the save point.

2. Write a query to implement the rollback.

3. Write a query to implement the commit.

39

Experiment No: 10

Title: Creating Database/ Table Space

 Managing Users: - Create User, Delete User

 Managing Passwords

 Managing roles: - Grant , Revoke

Objective:

To understand the concept of administrative commands

Theory:

DATABASE is collection of coherent data.

To create database we have :

Syntax: CREATE DATABASE <database_name>

Example : CREATE DATABASE my_db;

TABLESPACE:

The oracle database consists of one or more logical storage units called tablespaces. Each

tablespace in an Oracle database consists of one or more files called datafiles, which are

physical structures that confirm to the operating system in which Oracle is running.

Syntax:

CREATE<tablespace name> DATAFILE'C:\oraclexe\app\oracle\product\10.2.0\

server \<file name.dbf ’SIZE 50M;

Example:

Create tablespace te_cs DATAFILE 'C:\oraclexe\app\oracle\product\10.2.0\

server\usr.dbf ’SIZE 50M;

CREATE USER:

The DBA creates user by executing CREATE USER statement.

The user is someone who connects to the database if enough privilege is granted.

40

Syntax:

SQL> CREATE USER < username> -- (name of user to be created)

IDENTIFIED BY <password> -- (specifies that the user must

login with this password)

SQL> user created

Eg: create user James identified by bob;

(The user does not have privilege at this time, it has to be granted.These privileges determine

what user can do at database level.)

PRIVILEGES:

A privilege is a right to execute an SQL statement or to access another user's object.

In Oracle, there are two types of privileges

 System Privileges

 Object Privileges

 System Privileges : are those through which the user can manage the performance of

database actions. It is normally granted by DBA to users.

Eg: Create Session,Create Table,Create user etc..

 Object Privileges : allow access to objects or privileges on object, i.e. tables, table

columns. tables,views etc..It includes alter,delete,insert,select update etc.

(After creating the user, DBA grant specific system privileges to user)

GRANT:

The DBA uses the GRANT statement to allocate system privileges to other user.

Syntax:

SQL> GRANT privilege [privilege…. …]

TO USER ;

SQL> Grant succeeded

Eg: Grant create session, create table, create view to James;

Object privileges vary from object to object.An owner has all privilege or specific privileges

on object.

SQL> GRANT object_priv [(column)]

ON object

41

TO user;

SQL>GRANT select, insert ON emp TO James;

SQL>GRANT select ,update (e_name,e_address)

ON emp TO James;

CHANGE PASSWORD:

The DBA creates an account and initializes a password for every user.You can change

password by using ALTER USER statement.

Syntax:

Alter USER <some user name>

IDENTIFIED BY<New password>

Eg: ALTER USER James

IDENTIFIED BY sam

REVOKE:

REVOKE statement is used to remove privileges granted to other users.The privileges you

specify are revoked from the users.

Syntax:

REVOKE [privilege.. …]

ON object

FROM user

Eg:

● REVOKE create session,create table from James;

● REVOKE select ,insert

ON emp

FROM James

ROLE:

A role is a named group of related privileges that can be granted to user.In other words, role

is a predefined collection of previleges that are grouped together,thus privileges are easier to

assign user.

SQL> Create role custom;

SQL> Grant create table, create view TO custom;

SQL> Grant select, insert ON emp TO custom;

42

Eg: Grant custom to James, Steve;

LAB PRACTICE ASSIGNMENT:

1. Create user and implement the following commands on relation (Emp and Dept).

2. Develop a query to grant all privileges of employees table into departments table.

3. Develop a query to grant some privileges of employees table into departments table.

4. Develop a query to revoke all privileges of employees table from departments table.

5. Develop a query to revoke some privileges of employees table from departments table.

43

VIVA-VOCE

1. Define DCL?

The DCL language is used for controlling the access to the table and hence securing
the database. DCL is used to provide certain privileges to a particular user. Privileges are

rights to be allocated.

2. List the DCL commands used in data bases

The privilege commands are namely, Grant and Revoke

3. Write the syntax for grant command

Grant < database_priv [database_priv…..] > to <user_name> identified by <password>

[,<pass word…..];

Grant <object_priv> | All on <object> to <user | public> [With Grant Option];

4. What are TCL commands?

*Commit *Rollback *save point

5. What are single row functions?

A single row function or scalar function returns only one value for every row
queries in table. Single row function can appear in a select command and can also be

included in a where clause. The single row function can be broadly classified as,

* Date Function * Conversion Function

* Numeric Function * Miscellaneous Function

*Character Function

6. List some character functions

initcap(char);

lower (char);

upper (char);

ltrim (char,[set]); rtrim (char,[set]);
7. What is a view?

A view is a logical table based on a table or another view. A view contains no data of

its own but is like a window through which data from tables can be viewed or changed.

8. List any two advantages of view?

1. Hides data complexity.

2. Simplifies the usage by combining multiple tables into a single table

9. List the set operations of SQL?

1) Union 2) Intersect operation 3) The except operation (minus)

10. What is the use of sub Queries?

A sub Queries is a select-from-where expression that is nested with in another
Queries. A common use of sub Queries is to perform tests for set membership, make set

comparisons and determine set cardinality

	LAB MANUAL
	DATABASE MANAGEMENT SYSTEM LAB
	LIST OF EXPERIMENTS
	DOs and DON’Ts in Laboratory:
	1. Make entry in the Log Book as soon as you enter the Laboratory.
	3. All the students are supposed to enter the terminal number in the log book.
	5. All the students are expected to get at least the algorithm of the program/concept to be implemented.
	7. Do not disturb machine Hardware / Software Setup.
	3. Continuous assessment in the prescribed format must be followed.
	Experiment No: 1
	Objective:
	Theory:
	DATA TYPES:
	SQL language is sub-divided into several language elements, including:
	1. CREATE:
	Example:

	2. ALTER:
	LAB PRACTICE ASSIGNMENT:

	Experiment No:2
	Objective :
	Theory :
	a) Inserting a single record
	b) Inserting a single record
	c) Inserting all records from another relation
	d) Inserting multiple records
	Difference between Truncate & Delete:-
	 To Retrieve data from one or more tables.
	LAB PRACTICE ASSIGNMENT:
	Write SQL queries for following question:
	Experiment No: 3
	Objective:

	30 2850
	SQL>select deptno,min(sal) from emp group by deptno having min(sal)>1000; DEPTNO MIN (SAL)
	CHARACTER FUNCTION:
	CONVERSION FUNCTIONS:

	To_number : TO_NUMBER converts expr to a value of NUMBER data type.
	STRING FUNCTIONS:

	next_day:
	add_months:
	last_day:
	months_between:
	Least:
	Greatest:
	Trunc:
	Round:
	to_char:
	to_date:
	LAB PRACTICE ASSIGNMENT:
	Write SQL statements for the following query.
	Objective:

	ARIHMETIC OPERATORS:
	LOGICAL OPERATORS:
	COMPARISION OPERATORS:
	SPECIAL OPERATOR:
	SET OPERATORS:
	LAB PRACTICE ASSIGNMENT: (1)
	Experiment No: 5
	Objective :
	Theory :

	Types of Joins :
	Simple Join:
	Equi-join :
	Non Equi-join:
	Self join:
	Outer Join:
	LAB PRACTICE ASSIGNMENT: (2)
	Experiment No: 6
	Objective:
	Theory:
	Example:

	LAB PRACTICE ASSIGNMENT: (3)
	Experiment No: 7
	Objective:
	Theory:

	Types
	2. Multiple queries
	3. Correlated sub query
	Example:
	Example: (1)

	LAB PRACTICE ASSIGNMENT: (4)
	Write subquery statement for the following queries.
	Experiment No: 8
	Objective:

	CONSTRAINTS:
	Syntax:
	Example:
	Syntax: (1)
	Example: (1)
	Syntax: (2)
	Example: (2)
	Syntax: (3)
	Example: (3)
	Example: (4)

	Defining integrity constraints in the alter table command:
	Dropping integrity constraints in the alter table command:
	Syntax:
	LAB PRACTICE ASSIGNMENT: (5)
	Experiment No: 9
	Title :
	Objective:
	Theory:

	LAB PRACTICE ASSIGNMENT: (6)
	Experiment No: 10
	Objective:
	Theory:

	TABLESPACE:
	CREATE USER:
	Syntax: (1)
	PRIVILEGES:
	GRANT:
	Syntax: (2)
	CHANGE PASSWORD:
	Syntax: (3)
	REVOKE:
	Syntax: (4)
	Eg:
	ROLE:
	LAB PRACTICE ASSIGNMENT: (7)
	VIVA-VOCE

