

LAB MANUAL

PYTHON

PROGRAMMING

LAB

1

INDEX OF EXPERIMENTS

Week Theory/ Practical (Group-I/ II) Topic Covered Date and

Remarks

Practical

Day

Topics/ Programs Date HOD Director-

Principal

1st Introduction to python programming

2nd 1 To compute the GCD of two numbers using

python

3rd 2 To find square root of number

4th 3 To find exponential using python programming

5th 4 To find the maximum of list of numbers

6th 5 To find a value using linear search in python

program

7th 6 To find a value using binary search in python

program

8th 7 To sort list of elements using selection sort

9th 8 Write a program to find prime number

10th 9 To multiply matrices using python

11th 10 To sort list of elements using insertion sort

12th 11 To sort list of elements using merge sort

13th 12 To find word and lines in command line

arguments

2

Mandatory instructions for students:

1. Students should report to the concerned labs as per the given timetable.

2. Students should make an entry in the log book whenever they enter the labs during

practical or for their own personal work.

3. When the experiment is completed, students should shut down the computers and make

the counter entry in the logbook.

4. Any damage to the lab computers will be viewed seriously.

5. Students should not leave the lab without concerned faculty’s permission.

3

Assignment: 1

Aim:- Introduction to Python Programming.

Theory:- Python is a general-purpose interpreted, interactive, object-oriented, and high-level

programming language. It was created by Guido van Rossum during 1985- 1990. Like Perl,

Python source code is also available under the GNU General Public License (GPL). This tutorial

gives enough understanding on Python programming language.

Prerequisites

You should have a basic understanding of Computer Programming terminologies. A basic
understanding of any of the programming languages is a plus.

Python is a high-level, interpreted, interactive and object-oriented scripting language. Python is

designed to be highly readable. It uses English keywords frequently where as other languages

use punctuation, and it has fewer syntactical constructions than other languages.

• Python is Interpreted − Python is processed at runtime by the interpreter. You do not

need to compile your program before executing it. This is similar to PERL and PHP.

• Python is Interactive − You can actually sit at a Python prompt and interact with the

interpreter directly to write your programs.

• Python is Object-Oriented − Python supports Object-Oriented style or technique of
programming that encapsulates code within objects.

• Python is a Beginner's Language − Python is a great language for the beginner-level

programmers and supports the development of a wide range of applications from simple

text processing to WWW browsers to games.

History of Python

Python was developed by Guido van Rossum in the late eighties and early nineties at the National

Research Institute for Mathematics and Computer Science in the Netherlands.

Python is derived from many other languages, including ABC, Modula-3, C, C++, Algol-68,
SmallTalk, and Unix shell and other scripting languages.

Python is copyrighted. Like Perl, Python source code is now available under the GNU General

Public License (GPL).

Python is now maintained by a core development team at the institute, although Guido van

Rossum still holds a vital role in directing its progress.

4

Python Features

Python's features include −

• Easy-to-learn − Python has few keywords, simple structure, and a clearly defined syntax.

This allows the student to pick up the language quickly.

• Easy-to-read − Python code is more clearly defined and visible to the eyes.

• Easy-to-maintain − Python's source code is fairly easy-to-maintain.

• A broad standard library − Python's bulk of the library is very portable and cross-platform

compatible on UNIX, Windows, and Macintosh.

• Interactive Mode − Python has support for an interactive mode which allows interactive

testing and debugging of snippets of code.

• Portable − Python can run on a wide variety of hardware platforms and has the same

interface on all platforms.

• Extendable − You can add low-level modules to the Python interpreter. These modules
enable programmers to add to or customize their tools to be more efficient.

• Databases − Python provides interfaces to all major commercial databases.

• GUI Programming − Python supports GUI applications that can be created and ported to

many system calls, libraries and windows systems, such as Windows MFC, Macintosh, and

the X Window system of Unix.

• Scalable − Python provides a better structure and support for large programs than shell

scripting.

Apart from the above-mentioned features, Python has a big list of good features, few are listed

below −

• It supports functional and structured programming methods as well as OOP.

• It can be used as a scripting language or can be compiled to byte-code for building large

applications.

• It provides very high-level dynamic data types and supports dynamic type checking.

• It supports automatic garbage collection.

• It can be easily integrated with C, C++, COM, ActiveX, CORBA, and Java.

5

First Python Program:

1. Open notepad and type following program

Print (“Hello World”)

2. Save above program with name.py

3. Open command prompt and change path to python program location

4. Type “python name.py” (without quotes) to run the program.

Operators are the constructs which can manipulate the value of operands.

Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is called operator.

Python Variables: Declare, Concatenate, Global & Local

What is a Variable in Python?

A Python variable is a reserved memory location to store values. In other words, a variable in a

python program gives data to the computer for processing.

Every value in Python has a datatype. Different data types in Python are Numbers, List, Tuple,
Strings, Dictionary, etc. Variables can be declared by any name or even alphabets like a, aa, abc, etc.

How to Declare and use a Variable

Let see an example. We will declare variable "a" and print it.

a=100
print a

6

Python 1 Example

Python 2 Example

List of some different variable types

x = 123 # integer

x = 123L # long integer

x = 3.14 # double float

x = "hello" # string

x = [0,1,2] # list

x = (0,1,2) # tuple

x = open(‘hello.py’, ‘r’) # file

Constants

A constant is a type of variable whose value cannot be changed. It is helpful to think of constants

as containers that hold information which cannot be changed later.

Non technically, you can think of constant as a bag to store some books and those books cannot

be replaced once place inside the bag.

Declare a variable and initialize it
f = 0
print f

re-declaring the variable works
f = 'guru99'
print f

Declare a variable and initialize it

f = 0

print(f)
re-declaring the variable works
f = 'guru99'
print(f)

7

Assigning value to a constant in Python

In Python, constants are usually declared and assigned on a module. Here, the module means a

new file containing variables, functions etc which is imported to main file. Inside the module,

constants are written in all capital letters and underscores separating the words.

Example 3: Declaring and assigning value to a constant

Create a constant.py

1.

2.

PI = 3.14

GRAVITY = 9.8

Create a main.py

1.

2.

3.

4.

import constant

print(constant.PI)

print(constant.GRAVITY)

When you run the program, the output will be:

Types of Operator

Python language supports the following types of operators.

• Arithmetic Operators

• Comparison (Relational) Operators

• Assignment Operators

• Logical Operators

• Bitwise Operators

• Membership Operators

• Identity Operators

Let us have a look on all operators one by one.

3.14

9.8

8

Python Arithmetic Operators

Assume variable a holds 10 and variable b holds 20, then −

Operator Description Example

+ Addition Adds values on either side of the operator. a + b =

30

- Subtraction Subtracts right hand operand from left hand operand. a – b =

10

*

Multiplication

Multiplies values on either side of the operator a * b =

200

/ Division Divides left hand operand by right hand operand b / a = 2

% Modulus Divides left hand operand by right hand operand and returns

remainder

b % a = 0

** Exponent Performs exponential (power) calculation on operators a**b =10

to the

power

20

//

Floor Division - The division of operands where the result is

the quotient in which the digits after the decimal point are

9//2 = 4

and

9

removed. But if one of the operands is negative, the result is

floored, i.e., rounded away from zero (towards negative

infinity) −

9.0//2.0

= 4.0,

11//3 =

-4, -

11.0//3

= -4.0

Python Comparison Operators

These operators compare the values on either sides of them and decide the relation among them.

They are also called Relational operators.

Assume variable a holds 10 and variable b holds 20, then −

[Show Example]

Operator Description Example

== If the values of two operands are equal, then the condition

becomes true.

(a == b) is

not true.

!= If values of two operands are not equal, then condition becomes

true.

(a != b) is

true.

<> If values of two operands are not equal, then condition becomes

true.

(a <> b) is

true. This

is similar

to

!=

operator.

> If the value of left operand is greater than the value of right

operand, then condition becomes true.

(a > b) is

not true.

https://www.tutorialspoint.com/python/comparison_operators_example.htm

10

< If the value of left operand is less than the value of right operand,

then condition becomes true.

(a < b) is

true.

>= If the value of left operand is greater than or equal to the value of

right operand, then condition becomes true.

(a >= b) is

not true.

<= If the value of left operand is less than or equal to the value of

right operand, then condition becomes true.

(a <= b) is

true.

Python Assignment Operators

Assume variable a holds 10 and variable b holds 20, then −

[Show Example]

Operator Description Example

= Assigns values from right side operands to left side operand c = a + b

assigns

value of a

+ b into c

+= Add AND It adds right operand to the left operand and assign the

result to left operand

c += a is

equivalent

to c = c +

a

-= Subtract

AND

It subtracts right operand from the left operand and assign

the result to left operand

c -= a is

equivalent

to c = c - a

https://www.tutorialspoint.com/python/assignment_operators_example.htm

11

*= Multiply

AND

It multiplies right operand with the left operand and assign

the result to left operand

c *= a is

equivalent

to c = c * a

/= Divide AND It divides left operand with the right operand and assign the

result to left operand

c /= a is

equivalent

to c = c /

ac /= a is

equivalent

to c = c / a

%= Modulus

AND

It takes modulus using two operands and assign the result to

left operand

c %= a is

equivalent

to c = c % a

**= Exponent

AND

Performs exponential (power) calculation on operators and

assign value to the left operand

c **= a is

equivalent

to c = c **

a

//= Floor

Division

It performs floor division on operators and assign value to

the left operand

c //= a is

equivalent

to c = c //

a

Python Bitwise Operators

Bitwise operator works on bits and performs bit by bit operation. Assume if a = 60; and b = 13;

Now in binary format they will be as follows − a = 0011 1100 b = 0000 1101

12

a&b = 0000 1100

a|b = 0011 1101 a^b

= 0011 0001

~a = 1100 0011

There are following Bitwise operators supported by Python language

[Show Example]

Operator Description Example

& Binary AND Operator copies a bit to the result if it exists in both

operands

(a & b)

(means

0000 1100)

| Binary OR It copies a bit if it exists in either operand. (a | b) = 61

(means

0011 1101)

^ Binary XOR It copies the bit if it is set in one operand but not

both.

(a ^ b) = 49

(means

0011 0001)

~ Binary Ones

Complement

It is unary and has the effect of 'flipping' bits. (~a) = -61

(means 1100

0011

in 2's

complement

form due to

a signed

binary

number.

https://www.tutorialspoint.com/python/bitwise_operators_example.htm

13

<< Binary Left Shift The left operands value is moved left by the number

of bits specified by the right operand.

a << 2 = 240

(means

1111 0000)

>> Binary Right Shift The left operands value is moved right by the

number of bits specified by the right operand.

a >> 2 = 15

(means

0000 1111)

Python Logical Operators

There are following logical operators supported by Python language. Assume variable a holds

10 and variable b holds 20 then

[Show Example]

Operator Description Example

and Logical

AND

If both the operands are true then condition becomes true. (a and

b) is

true.

or Logical OR If any of the two operands are non-zero then condition

becomes true.

(a or b)

is true.

not Logical

NOT

Used to reverse the logical state of its operand. Not(a

and b) is

false.

Used to reverse the logical state of its operand.

Python Membership Operators

Python’s membership operators test for membership in a sequence, such as strings, lists, or

tuples. There are two membership operators as explained below −

[Show Example]

https://www.tutorialspoint.com/python/logical_operators_example.htm
https://www.tutorialspoint.com/python/membership_operators_example.htm

14

Operator Description Example

In Evaluates to true if it finds a variable in the specified sequence

and false otherwise.

x in y,

here in

results in

a 1 if x is

a

member

of

sequence

y.

not in Evaluates to true if it does not finds a variable in the specified

sequence and false otherwise.

x not in y,

here not

in results

in

a 1 if x is

not a

member

of

sequence

y.

Python Identity Operators

Identity operators compare the memory locations of two objects. There are two Identity

operators explained below −

[Show Example]

Operator Description Example

https://www.tutorialspoint.com/python/identity_operators_example.htm

Is Evaluates to true if the variables on either side of the operator

point to the same object and false otherwise.

x is y, here is

results in 1 if

id(x) equals

id(y).

is not Evaluates to false if the variables on either side of the

operator point to the same object and true otherwise.

x is not y,

here is not

results in

1 if id(x) is

not equal to

id(y).

Python Operators Precedence

The following table lists all operators from highest precedence to lowest.

[Show Example]

4

 + -

Addition and subtraction

5
>> <<

Right and left bitwise shift

6
&

Bitwise 'AND'

7
^ |

Bitwise exclusive `OR' and regular `OR'

Sr.No. Operator & Description

1
**
 Exponentiation (raise to the power)

2
~ + -

Complement, unary plus and minus (method names for the last two are +@ and -

@)

3
* / % //

Multiply, divide, modulo and floor division

https://www.tutorialspoint.com/python/operators_precedence_example.htm

8
<= < > >=

Comparison operators

9
<> == !=

Equality operators

10
= %= /= //= -= += *= **=

Assignment operators

11
Is, is not

Identity operators

12
In, not in

Membership operators

13
 not, or, and

Logical operators

Exercise:

1. WAP to add two numbers in python
2. WAP to declare variables and display types of respective variables

3. WAP to demonstrate type casting in python
4. WAP to demonstrate Logical operators

Assignment 2

Aim: To study strings in Python

Theory:

String Literals

String literals in python are surrounded by either single quotation marks, or double quotation marks.

is the same as "hello".

You can display a string literal with the print() function:

Example

print("Hello") print('Hello')

Assign String to a Variable

Assigning a string to a variable is done with the variable name followed by an equal sign and the string:

a = "Hello"

print(a)

Multiline Strings

You can assign a multiline string to a variable by using three quotes:

a = """Lorem ipsum dolor sit amet,

consectetur adipiscing elit,

sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua.""" print(a)

Or three single quotes: Example

a = '''Lorem ipsum dolor

sit amet, consectetur adipiscing
elit, sed do eiusmod tempor

incididunt ut labore et dolore

magna aliqua.''' print(a)

Strings are Arrays

Like many other popular programming languages, strings in Python are arrays of bytes representing

unicode characters.

However, Python does not have a character data type, a single character is simply a string with a length

'hello'

Example

Example

You can use three double quotes:

of 1. Square brackets can be used to access elements of the string.

a = "Hello, World!"

print(a[1])

Example

Substring. Get the characters from position 2 to position 5 (not included):

b = "Hello, World!"

print(b[2:5])

In-bulit Functions in Python:

1. Strip():Removes all leading whitespace in string.

2. len(string):Returns the length of the string

3. upper():Converts lowercase letters in string to uppercase.

4. Lower(): Vice versa

5. split(str="", num=string.count(str)):Splits string according to delimiter str (space if not provided)
and returns list of substrings; split into at most num substrings if given.

6. replace(old, new [, max]):Replaces all occurrences of old in string with new or at most max

occurrences if max given.

7. find(str, beg=0 end=len(string)):Determine if str occurs in string or in a substring of string if
starting index beg and ending index end are given returns index if found and -1 otherwise

Exercise:

1. WAP to Calculate length of string

2. WAP to make string from 1st two and last two characters from given string.

3. WAP to concatenate two strings

Example

Get the character at position 1 (remember that the first character has the position 0):

https://www.tutorialspoint.com/python/string_len.htm
https://www.tutorialspoint.com/python/string_len.htm
https://www.tutorialspoint.com/python/string_upper.htm
https://www.tutorialspoint.com/python/string_upper.htm
https://www.tutorialspoint.com/python/string_split.htm
https://www.tutorialspoint.com/python/string_split.htm
https://www.tutorialspoint.com/python/string_replace.htm
https://www.tutorialspoint.com/python/string_replace.htm
https://www.tutorialspoint.com/python/string_find.htm
https://www.tutorialspoint.com/python/string_find.htm

Assignment: 3

Aim: To study conditional statements in python

Theory:

Decision making is anticipation of conditions occurring while execution of the program and

specifying actions taken according to the conditions.

Decision structures evaluate multiple expressions which produce TRUE or FALSE as outcome.

You need to determine which action to take and which statements to execute if outcome is

TRUE or FALSE otherwise.

Following is the general form of a typical decision making structure found in most of the

programming languages −

Python programming language assumes any non-zero and non-null values as TRUE, and if it is

either zero or null, then it is assumed as FALSE value.

Python programming language provides following types of decision making statements. Click the

following links to check their detail.

Sr.No. Statement & Description

1
if statements

An if statement consists of a boolean expression followed by one or more

statements.

2
if...else statements

An if statement can be followed by an optional else statement, which executes

when the boolean expression is FALSE.

3
nested if statements

You can use one if or else if statement inside another if or else ifstatement(s).

Let us go through each decision making briefly −

Single Statement Suites

If the suite of an if clause consists only of a single line, it may go on the same line as the header

statement.

Here is an example of a one-line if clause −

When the above code is executed, it produces the following result −

Exercise:

1. WAP to find out greatest of 3 numbers
2. WAP to find whether given number is odd or even
3. Write a C program to check whether a character is uppercase or lowercase alphabet.
4. WAP to find whether given input is number or character

var = 100 if (var == 100) : print "Value of

expression is 100" print "Good bye!"

Value of expression is 100 Good

bye!

https://www.tutorialspoint.com/python/python_if_statement.htm
https://www.tutorialspoint.com/python/python_if_else.htm
https://www.tutorialspoint.com/python/nested_if_statements_in_python.htm

Assignment: 4

Aim: To study Loops in Python

Theory:

In general, statements are executed sequentially: The first statement in a function is executed

first, followed by the second, and so on. There may be a situation when you need to execute a

block of code several number of times.

Programming languages provide various control structures that allow for more complicated

execution paths.

A loop statement allows us to execute a statement or group of statements multiple times. The

following diagram illustrates a loop statement −

Python programming language provides following types of loops to handle looping requirements.

Sr.No. Loop Type & Description

1 while loop

Repeats a statement or group of statements while a given condition is TRUE. It tests
the condition before executing the loop body.

2
for loop

Executes a sequence of statements multiple times and abbreviates the code that

manages the loop variable.

3
nested loops

You can use one or more loop inside any another while, for or do..while loop.

https://www.tutorialspoint.com/python/python_while_loop.htm
https://www.tutorialspoint.com/python/python_for_loop.htm
https://www.tutorialspoint.com/python/python_nested_loops.htm

Loop Control Statements

Loop control statements change execution from its normal sequence. When execution leaves a
scope, all automatic objects that were created in that scope are destroyed.

Python supports the following control statements. Click the following links to check their detail.

Let us go through the loop control statements briefly

Sr.No. Control Statement & Description

1
break statement

Terminates the loop statement and transfers execution to the statement immediately

following the loop.

2
continue statement

Causes the loop to skip the remainder of its body and immediately retest its condition

prior to reiterating.

3 pass statement

The pass statement in Python is used when a statement is required syntactically but you

do not want any command or code to execute.

Exercise:

1. WAP to display even numbers from 1-10

2. WAP to add odd numbers from 1-10

3. Write a Python program to get the Fibonacci series between 0 to 50.

4. Write a Python program to remove the characters which have odd index values of a given string.

https://www.tutorialspoint.com/python/python_break_statement.htm
https://www.tutorialspoint.com/python/python_continue_statement.htm
https://www.tutorialspoint.com/python/python_pass_statement.htm

Example

Modify the value of the first array item:

Assignment 5

Aim: To study python arrays, list, tuples, set, dictionary

Theory:

What is an Array?

An array is a special variable, which can hold more than one value at a time. If you have a list of

items (a list of car names, for example), storing the cars in single variables could look like this:

car1 = "Ford" car2

= "Volvo" car3 =

"BMW"

However, what if you want to loop through the cars and find a specific one? And what if you had

not 3 cars, but 300?

The solution is an array!

An array can hold many values under a single name, and you can access the values by referring to

an index number.

Access the Elements of an Array

You refer to an array element by referring to the index number.

x = cars[0]

cars[0] = "Toyota"

The Length of an Array

Example

Get the value of the first array item:

Note: The length of an array is always one more than the highest array index.

Use the len() method to return the length of an array (the number of elements in an array).

x = len(cars)

Looping Array Elements

You can use the for in loop to loop through all the elements of an array.

for x in cars:
print(x)

Adding Array Elements

You can use the append() method to add an element to an array.

cars.append("Honda")

Removing Array Elements

You can use the pop() method to remove an element from the array.

cars.pop(1)

Example

Return the number of elements in the cars array:

Example

Print each item in the cars array:

Example

Add one more element to the cars array:

Example

Delete the second element of the cars array:

Note: The remove() method only removes the first occurrence of the specified value.

You can also use the remove() method to remove an element from the array.

cars.remove("Volvo")

Array Methods

Python has a set of built-in methods that you can use on lists/arrays.

Method

Description

append()

Adds an element at the end of the list

clear()

Removes all the elements from the list

copy()

Returns a copy of the list

count()

Returns the number of elements with the specified value

extend()

Add the elements of a list (or any iterable), to the end of the current list

index()

Returns the index of the first element with the specified value

Note: Python does not have built-in support for Arrays, but Python Lists can be used instead.

Example

Delete the element that has the value "Volvo":

https://www.w3schools.com/python/ref_list_append.asp
https://www.w3schools.com/python/ref_list_clear.asp
https://www.w3schools.com/python/ref_list_copy.asp
https://www.w3schools.com/python/ref_list_count.asp
https://www.w3schools.com/python/ref_list_extend.asp
https://www.w3schools.com/python/ref_list_index.asp

Python List:

The list is a most versatile datatype available in Python which can be written as a list of

commaseparated values (items) between square brackets. Important thing about a list is that

items in a list need not be of the same type.

Creating a list is as simple as putting different comma-separated values between square brackets.

For example −

Similar to string indices, list indices start at 0, and lists can be sliced, concatenated and so on.

insert()

Adds an element at the specified position

pop()

Removes the element at the specified position

remove()

Removes the first item with the specified value

reverse()

Reverses the order of the list

sort()

Sorts the list

list1 = ['physics', 'chemistry', 1997, 2000];

list2 = [1, 2, 3, 4, 5]; list3 = ["a", "b", "c", "d"]

https://www.w3schools.com/python/ref_list_insert.asp
https://www.w3schools.com/python/ref_list_pop.asp
https://www.w3schools.com/python/ref_list_remove.asp
https://www.w3schools.com/python/ref_list_reverse.asp
https://www.w3schools.com/python/ref_list_sort.asp

Accessing Values in Lists

To access values in lists, use the square brackets for slicing along with the index or indices to

obtain value available at that index. For example −

When the above code is executed, it produces the following result −

Updating Lists

You can update single or multiple elements of lists by giving the slice on the left-hand side of the

assignment operator, and you can add to elements in a list with the append() method. For

example −

Note − append() method is discussed in subsequent section. When

the above code is executed, it produces the following result −

Delete List Elements

To remove a list element, you can use either the del statement if you know exactly which

element(s) you are deleting or the remove() method if you do not know. For example −

list2 = [1, 2, 3, 4, 5, 6, 7];

print "list1[0]: ", list1[0]

print "list2[1:5]: ", list2[1:5]

list1 = ['physics', 'chemistry', 1997, 2000];

list1[0]: physics list2[1:5]:

[2, 3, 4, 5]

list = ['physics', 'chemistry', 1997, 2000];

print "Value available at index 2 : " print

list[2] list[2] = 2001; print "New value

available at index 2 : " print list[2]

Value available at index 2 :

1997

New value available at index 2 :

2001

When the above code is executed, it produces following result −

Note − remove() method is discussed in subsequent section.

Basic List Operations

Lists respond to the + and * operators much like strings; they mean concatenation and repetition

here too, except that the result is a new list, not a string.

In fact, lists respond to all of the general sequence operations we used on strings in the prior

chapter.

Python Expression Results Description

len([1, 2, 3]) 3 Length

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation

['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'] Repetition

3 in [1, 2, 3] True Membership

for x in [1, 2, 3]: print x, 1 2 3 Iteration

Indexing, Slicing, and Matrixes

Because lists are sequences, indexing and slicing work the same way for lists as they do for
strings.

Assuming following input −

del list1[2]; print "After deleting value

at index 2 : " print list1

list1 = ['physics', 'chemistry', 1997, 2000]; print list1

['physics', 'chemistry', 1997, 2000] After deleting value at index 2 :

['physics', 'chemistry', 2000]

L = ['spam', 'Spam', 'SPAM!']

Python Expression Results Description

L[2] SPAM! Offsets start at zero

L[-2] Spam Negative: count from the

right

L[1:] ['Spam', 'SPAM!'] Slicing fetches sections

Built-in List Functions & Methods

Python includes the following list functions −

Sr.No. Function with Description

1
cmp(list1, list2)

Compares elements of both lists.

2

len(list)

Gives the total length of the list.

3

max(list)

Returns item from the list with max value.

4

min(list)

Returns item from the list with min value.

5

list(seq)

Converts a tuple into list.

https://www.tutorialspoint.com/python/list_cmp.htm
https://www.tutorialspoint.com/python/list_len.htm
https://www.tutorialspoint.com/python/list_max.htm
https://www.tutorialspoint.com/python/list_min.htm
https://www.tutorialspoint.com/python/list_list.htm

Python includes following list methods

Sr.No. Methods with Description

1 list.append(obj)

Appends object obj to list

2
list.count(obj)

Returns count of how many times obj occurs in list

3
list.extend(seq)

Appends the contents of seq to list

4
list.index(obj)

Returns the lowest index in list that obj appears

5
list.insert(index, obj)

Inserts object obj into list at offset index

6

list.pop(obj=list[-1])

Removes and returns last object or obj from list

7
list.remove(obj)

Removes object obj from list

8
list.reverse()

Reverses objects of list in place

9
list.sort([func])

Sorts objects of list, use compare func if given

https://www.tutorialspoint.com/python/list_append.htm
https://www.tutorialspoint.com/python/list_count.htm
https://www.tutorialspoint.com/python/list_extend.htm
https://www.tutorialspoint.com/python/list_index.htm
https://www.tutorialspoint.com/python/list_insert.htm
https://www.tutorialspoint.com/python/list_pop.htm
https://www.tutorialspoint.com/python/list_pop.htm
https://www.tutorialspoint.com/python/list_pop.htm
https://www.tutorialspoint.com/python/list_remove.htm
https://www.tutorialspoint.com/python/list_reverse.htm
https://www.tutorialspoint.com/python/list_sort.htm

Python Tuple:

A tuple is a sequence of immutable Python objects. Tuples are sequences, just like lists. The

differences between tuples and lists are, the tuples cannot be changed unlike lists and tuples

use parentheses, whereas lists use square brackets.

Creating a tuple is as simple as putting different comma-separated values. Optionally you can put
these comma-separated values between parentheses also. For example −

The empty tuple is written as two parentheses containing nothing −

To write a tuple containing a single value you have to include a comma, even though there is only

one value −

Like string indices, tuple indices start at 0, and they can be sliced, concatenated, and so on.

Accessing Values in Tuples

To access values in tuple, use the square brackets for slicing along with the index or indices to

obtain value available at that index. For example −

When the above code is executed, it produces the following result −

Updating Tuples

Tuples are immutable which means you cannot update or change the values of tuple elements.

You are able to take portions of existing tuples to create new tuples as the following example

demonstrates −

tup1 = ();

tup1 = ('physics', 'chemistry', 1997, 2000);

tup2 = (1, 2, 3, 4, 5); tup3 = "a", "b", "c", "d";

tup1 = (50,);

tup1 = ('physics', 'chemistry', 1997, 2000); tup2 = (1, 2, 3, 4, 5, 6, 7); print

"tup1[0]: ", tup1[0]; print "tup2[1:5]: ", tup2[1:5];

tup1[0]: physics tup2[1:5]:

[2, 3, 4, 5]

When the above code is executed, it produces the following result −

Delete Tuple Elements

Removing individual tuple elements is not possible. There is, of course, nothing wrong with

putting together another tuple with the undesired elements discarded.

To explicitly remove an entire tuple, just use the del statement. For example −

This produces the following result. Note an exception raised, this is because after del tup tuple
does not exist any more −

tup3 = tup1 + tup2; print

tup3;

So let's create a new tuple as follows

Following action is not valid for tuples

tup1[0] = 100;

tup1 = (12, 34.56); tup2

= ('abc', 'xyz');

(12, 34.56, 'abc', 'xyz')

tup = ('physics', 'chemistry', 1997, 2000); print tup; del tup; print "After

deleting tup : "; print tup;

('physics', 'chemistry', 1997, 2000) After

deleting tup :

Traceback (most recent call last): File

"test.py", line 9, in <module> print

tup;

NameError: name 'tup' is not defined

Basic Tuples Operations

Tuples respond to the + and * operators much like strings; they mean concatenation and

repetition here too, except that the result is a new tuple, not a string.

In fact, tuples respond to all of the general sequence operations we used on strings in the prior

chapter −

Python Expression Results Description

len((1, 2, 3)) 3 Length

(1, 2, 3) + (4, 5, 6) (1, 2, 3, 4, 5, 6) Concatenation

('Hi!',) * 4 ('Hi!', 'Hi!', 'Hi!', 'Hi!') Repetition

3 in (1, 2, 3) True Membership

for x in (1, 2, 3): print x, 1 2 3 Iteration

Indexing, Slicing, and Matrixes

Because tuples are sequences, indexing and slicing work the same way for tuples as they do for

strings. Assuming following input −

Python Expression Results Description

L[2] 'SPAM!' Offsets start at zero

L = ('spam', 'Spam', 'SPAM!')

L[-2] 'Spam' Negative: count from the

right

L[1:] ['Spam', 'SPAM!'] Slicing fetches sections

No Enclosing Delimiters

Any set of multiple objects, comma-separated, written without identifying symbols, i.e.,

brackets for lists, parentheses for tuples, etc., default to tuples, as indicated in these short

examples −

When the above code is executed, it produces the following result −

Built-in Tuple Functions

Python includes the following tuple functions −

Sr.No. Function with Description

1
cmp(tuple1, tuple2)

Compares elements of both tuples.

2

len(tuple)

Gives the total length of the tuple.

print 'abc', -4.24e93, 18+6.6j, 'xyz';

x, y = 1, 2; print "Value of x , y : ",

x,y;

abc -4.24e+93 (18+6.6j) xyz Value

of x , y : 1 2

https://www.tutorialspoint.com/python/tuple_cmp.htm
https://www.tutorialspoint.com/python/tuple_len.htm

Note: Sets are unordered, so the items will appear in a random order.

3

max(tuple)

Returns item from the tuple with max value.

4

min(tuple)

Returns item from the tuple with min value.

5

tuple(seq)

Converts a list into tuple.

Python Sets:

A set is a collection which is unordered and unindexed. In Python sets are written with curly

brackets.

thisset = {"apple", "banana", "cherry"}

print(thisset)

Access Items

You cannot access items in a set by referring to an index, since sets are unordered the items has

no index.

But you can loop through the set items using a for loop, or ask if a specified value is present in a

set, by using thein keyword.

Example

Loop through the set, and print the values:

thisset = {"apple", "banana", "cherry"}

for x in thisset:

print(x)

Example

Create a Set:

https://www.tutorialspoint.com/python/tuple_max.htm
https://www.tutorialspoint.com/python/tuple_min.htm
https://www.tutorialspoint.com/python/tuple_tuple.htm

Example

Add multiple items to a set, using the update() method:

thisset = {"apple", "banana", "cherry"}

print("banana" in thisset)

Change Items

Once a set is created, you cannot change its items, but you can add new items.

Add Items

To add one item to a set use the add() method.

To add more than one item to a set use the update() method.

thisset = {"apple", "banana", "cherry"}

thisset.add("orange")

print(thisset)

thisset = {"apple", "banana", "cherry"}

thisset.update(["orange", "mango", "grapes"])

print(thisset)

Example

Check if "banana" is present in the set:

Example

Add an item to a set, using the add() method:

Example

Remove "banana" by using the discard() method:

Note: If the item to remove does not exist, remove() will raise an error.

Note: If the item to remove does not exist, discard() will NOT raise an error.

Get the Length of a Set

To determine how many items a set has, use the len() method.

thisset = {"apple", "banana", "cherry"}

print(len(thisset)

Remove Item

To remove an item in a set, use the remove(), or the discard() method.

thisset = {"apple", "banana", "cherry"}

thisset.remove("banana")

print(thisset)

thisset = {"apple", "banana", "cherry"}

thisset.discard("banana")

print(thisset)

You can also use thepop(), method to remove an item, but this method will remove item.

the last

removed.

ts are unordered, so you will not know what item that gets

Example

Get the number of items in a set:

Example

Remove "banana" by using the remove() method:

Example

The del keyword will delete the set completely:

The return value of the pop() method is the removed item.

thisset = {"apple", "banana", "cherry"}

x = thisset.pop()

print(x) print(thisset)

Note: Sets are unordered, so when using the

gets removed.

pop() method, you will not know which item that

Example

The clear() method empties the set:

thisset = {"apple", "banana", "cherry"}

thisset.clear()

print(thisset)

thisset = {"apple", "banana", "cherry"}

del thisset

print(thisset)

Dictionary

A dictionary is a collection which is unordered, changeable and indexed. In Python dictionaries

are written with curly brackets, and they have keys and values.

Example

Remove the last item by using the pop() method:

thisdict = {

"brand": "Ford",
"model": "Mustang",

"year": 1964

}

print(thisdict)

Accessing Items

You can access the items of a dictionary by referring to its key name, inside square brackets:

x = thisdict["model"]

There is also a method called get() that will give you the same result:

x = thisdict.get("model")

Exercise:
1. Write a Python script to sort (ascending and descending) a dictionary by value
2. Write a Python script to check if a given key already exists in a dictionary.
3. Write a Python script to merge two Python dictionaries
4. Write a Python program to add an item in a tuple.
5. Write a Python program to create a tuple with different data types
6. Write a Python program to sum all the items in a list
7. Write a Python program to get the largest number from a list.
8. Write a Python program to add member(s) in a set.
9. Write a Python program to reverse the order of the items in the array
10. Write a Python program to create an array of 5 integers and display the array items. Access individual

element through indexes.

Example

Create and print a dictionary:

Example

Get the value of the "model" key:

Example

Get the value of the "model" key:

Assignment:6

Aim: To study functions in python

Theory:

A function is a block of code which only runs when it is called. You can pass data, known as
parameters, into a function. A function can return data as a result.

Creating a Function

In Python a function is defined using the def keyword:

 Example

my_function(): print("Hello from a function")

Calling a Function

To call a function, use the function name followed by parenthesis:

 Example

def my_function(): print("Hello from a function") my_function()

Parameters

Information can be passed to functions as parameter. Parameters are specified after the function

name, inside the parentheses. You can add as many parameters as you want, just separate them

with a comma.The following example has a function with one parameter (fname). When the

function is called, we pass along a first name, which is used inside the function to print the full

name:

 Example

def my_function(fname): print(fname + " Refsnes")

my_function("Emil") my_function("Tobias")

my_function("Linus") Default Parameter

Value

The following example shows how to use a default parameter value. If we call the function

without parameter, it uses the default value:

def my_function(country = "Norway"):

print("I am from " + country)

my_function("Sweden")

my_function("India") my_function()

my_function("Brazil")

Passing a List as a Parameter

You can send any data types of parameter to a function (string, number, list, dictionary etc.), and

it will be treated as the same data type inside the function. E.g. if you send a List as a parameter,

it will still be a List when it reaches the function:

def my_function(food): for x in food:

print(x)

fruits = ["apple", "banana", "cherry"]

my_function(fruits)

Return Values

To let a function return a value, use the return statement:

 Example

def my_function(x):

return 5 * x

print(my_function(3)) print(my_function(5))

print(my_function(9)) Recursion

Example

Example

Python also accepts function recursion, which means a defined function can call itself. Recursion

is a common mathematical and programming concept. It means that a function calls itself. This

has the benefit of meaning that you can loop through data to reach a result.

The developer should be very careful with recursion as it can be quite easy to slip into writing a

function which never terminates, or one that uses excess amounts of memory or processor

power. However, when written correctly recursion can be a very efficient and

mathematicallyelegant approach to programming.

In this example, tri_recursion() is a function that we have defined to call itself ("recurse"). We use

the k variable as the data, which decrements-1) every time we recurse. The recursion ends when

the condition is not greater than 0 (i.e. when it is 0).

To a new developer it can take some time to work out how exactly this works, best way to find

out is by testing and modifying it.

def tri_recursion(k):
if(k>0):

result = k+tri_recursion(k-1)

print(result)

else: result
= 0

return result

print("\n\nRecursion Example Results") tri_recursion(6)

Exercise:

1. Write a Python function to find the Max of three numbers.

2. Write a Python program to reverse a string.

Sample String : "1234abcd"

Expected Output : "dcba4321"

3. Write a Python function to calculate the factorial of a number (a non-negative integer).

The function accepts the number as an argument.

Example

Recursion Example

Assignment: 7

Aim: To study mysql commands

Theory: Mysql has two types of languages

a. Data definition language:

i. Create: Used to create database and tables

Syn: create database database_name;

Ex: create database jnec;

Syn: create table table_name(column_name1 type,column_name2 type);

Ex: create table syit(id int, name char(10));

ii. Drop: Used to delete database and table

Syn: drop database/table database_name/table_name;

Ex: drop database/table jnec/syit;

iii. Alter: Used to add, delete or change data type of column of table. Syn: alter

table table_name add column column_name type; alter table

table_name drop column column name; alter table table_name alter

column column name type; ex: alter table syit add column address

varchar(10); alter table syit drop address;

alter table syit alter column name varchar(10);

iv. Truncate: Used to delete contents of table but it will preserve structure of

table

Syn: truncate table table_name ;

Ex: truncate table syit;

b. Data manipulation language:

i. Select: used to fetch rows from table

Syn: select * from table_name;(fetches data from all columns) Select

column_name from syit;(fetches data from respective column)

Ex: select * from syit;

Select name from syit;

ii. Insert: used to insert data into table

Syn: insert into table_name values(‘value1’, value2); (if value is text then include

in single quote, if it is number then don’t use single quote)

Ex: insert into syit values(1,’amol’);

iii. Update: used to update value from particular column based on some contion

Syn: update table_name set column= value where column=value;

Ex: update syit set id=4 where name=’amol’; iv. Delete: used

to delete row from table

Syn: delete from table_name where col=value;

Ex: delete from syit where name=’amol’;

Exercise:

1. Create database called mgm.

2. Create table institutes in mgm with columns id, college_name, principal, contact.

3. Insert 5 entries in table.

4. Add column address in institute

5. Drop column contact

6. Modify type of college_name from char to varchar

7. Update contact of Dr H H shinde to 9028885925

8. Delete college of engineering from institutes

9. Truncate institutes

10. Drop institutes and mgm

Assignment: 8

Aim: To connect python with mysql with pymysql

Theory:

What is PyMySQL ?

PyMySQL is an interface for connecting to a MySQL database server from Python. It implements
the Python Database API v2.0 and contains a pure-Python MySQL client library. The goal of

PyMySQL is to be a drop-in replacement for MySQLdb.

How do I Install PyMySQL?

Before proceeding further, you make sure you have PyMySQL installed on your machine. Just

type the following in your Python script and execute it −

If it produces the following result, then it means MySQLdb module is not installed −

import pymysql

Traceback (most recent call last):

File "test.py", line 3, in <module>

Import pymysql

ImportError: No module named pymysql

The last stable release is available on PyPI and can be installed with pip −

Alternatively (e.g. if pip is not available), a tarball can be downloaded from GitHub and installed

with Setuptools as follows −

Note − Make sure you have root privilege to install the above module.

pip install pymysql

$ # X.X is the desired pymysql version (e.g. 0.5 or 0.6).

$ curl -L https://github.com/PyMySQL/PyMySQL/tarball/pymysql-X.X | tar xz

$ cd PyMySQL*

$ python setup.py install

$ # The folder PyMySQL* can be safely removed now.

https://github.com/PyMySQL/PyMySQL

Database Connection

Before connecting to a MySQL database, make sure of the following points −

• You have created a database TESTDB.

• You have created a table EMPLOYEE in TESTDB.

• This table has fields FIRST_NAME, LAST_NAME, AGE, SEX and INCOME.

• User ID "testuser" and password "test123" are set to access TESTDB.

• Python module PyMySQL is installed properly on your machine.

• You have gone through MySQL tutorial to understand MySQL Basics.

Example

Following is an example of connecting with MySQL database "TESTDB" −

import pymysql

Open database connection db =

pymysql.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method cursor

= db.cursor()

execute SQL query using execute() method.

cursor.execute("SELECT VERSION()")

Fetch a single row using fetchone() method.

data = cursor.fetchone() print ("Database

version : %s " % data)

disconnect from server db.close()

https://www.tutorialspoint.com/mysql/index.htm

While running this script, it produces the following result.

If a connection is established with the datasource, then a Connection Object is returned and

saved into db for further use, otherwise db is set to None. Next, db object is used to create a

cursor object, which in turn is used to execute SQL queries. Finally, before coming out, it ensures

that the database connection is closed and resources are released.

Creating Database Table

Once a database connection is established, we are ready to create tables or records into the

database tables using execute method of the created cursor.

Example

Let us create a Database table EMPLOYEE −

Database version : 5.5.20-log

FIRST_NAME CHAR(20) NOT NULL,

LAST_NAME CHAR(20),

AGE INT,

Create table as per requirement sql

= """CREATE TABLE EMPLOYEE (

Drop table if it already exist using execute() method. cursor.execute("DROP

TABLE IF EXISTS EMPLOYEE")

prepare a cursor object using cursor() method cursor

= db.cursor()

Open database connection db =

pymysql.connect("localhost","testuser","test123","TESTDB")

import pymysql

INSERT Operation

The INSERT Operation is required when you want to create your records into a database table.

Example

The following example, executes SQL INSERT statement to create a record in the EMPLOYEE table
−

SEX CHAR(1),

INCOME FLOAT)"""

cursor.execute(sql)

disconnect from server db.close()

import pymysql

Open database connection db =

pymysql.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method cursor

= db.cursor()

Prepare SQL query to INSERT a record into the database.

Example

The following code segment is another form of execution where you can pass parameters directly

−

READ Operation

READ Operation on any database means to fetch some useful information from the database.

Once the database connection is established, you are ready to make a query into this database.

You can use either fetchone() method to fetch a single record or fetchall() method to fetch

multiple values from a database table.

sql = """INSERT INTO EMPLOYEE(FIRST_NAME, LAST_NAME, AGE, SEX, INCOME)

VALUES ('Mac', 'Mohan', 20, 'M', 2000)"""

try:

Execute the SQL command cursor.execute(sql)

Commit your changes in the database db.commit() except:

Rollback in case there is any error db.rollback()

disconnect from server db.close()

..................................

user_id = "test123"

password = "password"

con.execute('insert into Login values("%s", "%s")' % \

..................................
(user_id, password))

• fetchone() − It fetches the next row of a query result set. A result set is an object that is

returned when a cursor object is used to query a table.

• fetchall() − It fetches all the rows in a result set. If some rows have already been extracted

from the result set, then it retrieves the remaining rows from the result set.

• rowcount − This is a read-only attribute and returns the number of rows that were

affected by an execute() method.

Example

The following procedure queries all the records from EMPLOYEE table having salary more than

1000 −

import pymysql

Open database connection db =

pymysql.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method cursor

= db.cursor()

Prepare SQL query to INSERT a record into the database.

sql = "SELECT * FROM EMPLOYEE \

WHERE INCOME > '%d'" % (1000)

try:

Execute the SQL command

cursor.execute(sql)

Fetch all the rows in a list of lists.

results = cursor.fetchall()

Output

This will produce the following result −

Update Operation

Exercise:

1. Create python application which will accept name and age and store it into mysql

2. Create python application which will display all names and ages from mysql table

3. Write python application to delete all entries with ages 28

for row in results:

fname = row[0]

lname = row[1]

age = row[2] sex

= row[3] income

= row[4]

Now print fetched result print ("fname = %s,lname = %s,age =

%d,sex = %s,income = %d" % \

(fname, lname, age, sex, income)) except:

print ("Error: unable to fetch data")

disconnect from server db.close()

fname = Mac, lname = Mohan, age = 20, sex = M, income = 2000

Assignment: 9

Aim: To study file handling in python

Theory:

File Handling

The key function for working with files in Python is the open() function.

The open() function takes two parameters; filename, and mode.

There are four different methods (modes) for opening a file:

Syntax

To open a file for reading it is enough to specify the name of the file:

f = open("demofile.txt") The code above is the same as: f =

open("demofile.txt", "rt")

Because "r" for read, and "t" for text are the default values, you do not need to specify them.

 Note: Make sure the file exists, or else you will get an error.

Open a File on the Server

Assume we have the following file, located in the same folder as Python:

"r" - Read - Default value. Opens a file for reading, error if the file does not exist

- Append - Opens a file for appending, creates the file if it does not exist

" - Write - Opens a file for writing, creates the file if it does not exist

- Create - Creates the specified file, returns an error if the file exists

"a"

"w

"x"

In addition you can specify if the file should be handled as binary or text mode

"t" - Text - Default value. Text mode

- Binary - Binary mode (e.g. images) "b"

Hello! Welcome to demofile.txt This file is for testing purposes. Good Luck!

To open the file, use the built-in open() function.

The open() function returns a file object, which has a read() method for reading the content of

the file:

f = open("demofile.txt", "r") print(f.read())

Read Only Parts of the File

By default the read() method returns the whole text, but you can also specify how many

characters you want to return:

f = open("demofile.txt", "r")

print(f.read(5))

Read Lines

You can return one line by using the readline() method:

f = open("demofile.txt", "r")

print(f.readline())
By calling readline() two times, you can read the two first lines:

demofile.txt

Example

Example

Return the 5 first characters of the file:

Example

Read one line of the file:

f = open("demofile.txt", "r")

print(f.readline())

print(f.readline())

By looping through the lines of the file, you can read the whole file, line by line:

f = open("demofile.txt", "r")

for x in f:

print(x)

Close Files

It is a good practice to always close the file when you are done with it.

f = open("demofile.txt", "r")

print(f.readline())

f.close()

Write to an Existing File

To write to an existing file, you must add a parameter to the open() function:

"a" - Append - will append to the end of the file

Example

Read two lines of the file:

Note: You should always close your files, in some cases, due to buffering, changes made to a

file may not show until you close the file.

Example

Loop through the file line by line:

Example

Close the file when you are finish with it:

"w" - Write - will overwrite any existing content

f = open("demofile2.txt", "a")

f.write("Now the file has more content!")

f.close()

#open and read the file after the appending:

f = open("demofile2.txt", "r") print(f.read())

Example

Open the file "demofile3.txt" and overwrite the content:

f = open("demofile3.txt", "w")

f.write("Woops! I have deleted the content!")

f.close()

#open and read the file after the appending:

f = open("demofile3.txt", "r") print(f.read())

 Note: the "w" method will overwrite the entire file.

Create a New File

To create a new file in Python, use the open() method, with one of the following parameters:

"x" - Create - will create a file, returns an error if the file exist

"a" - Append - will create a file if the specified file does not exist

"w" - Write - will create a file if the specified file does not exist

Example

Open the file "demofile2.txt" and append content to the file:

f = open("myfile.txt", "x")

Result: a new empty file is created!

Exercise:

1. Write a Python program to read an entire text file

2. Write a Python program to append text to a file and display the text.

3. Write a Python program to read last n lines of a file

Example

Create a file called "myfile.txt":

Assignment:10

Aim: To study classes in python

Theory:

Python Classes/Objects

Python is an object oriented programming language.

Almost everything in Python is an object, with its properties and methods.

A Class is like an object constructor, or a "blueprint" for creating objects.

Create a Class

To create a class, use the keyword class:

class MyClass:
x = 5

Create Object

Now we can use the class named myClass to create objects:

p1 = MyClass()
print(p1.x)

The init () Function

The examples above are classes and objects in their simplest form, and are not really useful in

real life applications.

To understand the meaning of classes we have to understand the built-in init () function.

All classes have a function called init (), which is always executed when the class is being

initiated.

Example

Create a class named MyClass, with a property named x:

Example

Create an object named p1, and print the value of x:

Use the init () function to assign values to object properties, or other operations that are

necessary to do when the object is being created:

class Person:
def init (self, name, age):

self.name = name

self.age = age

p1 = Person("John", 36)

print(p1.name) print(p1.age)

Note: The init () function is called automatically every time the class is being used to create

a new object.

Exercise:

1. Write a Python class to reverse a string word by word.

Input string : 'hello .py'

Expected Output : '.py hello'

Example

Create a class named Person, use the init () function to assign values for name and age:

	INDEX OF EXPERIMENTS
	Mandatory instructions for students:
	Aim:- Introduction to Python Programming.
	History of Python
	Python Features
	First Python Program:
	Print (“Hello World”)
	3. Open command prompt and change path to python program location
	Python Variables: Declare, Concatenate, Global & Local
	Python 1 Example
	List of some different variable types
	Types of Operator
	Python Arithmetic Operators
	Python Comparison Operators
	Python Assignment Operators
	Python Bitwise Operators
	Python Logical Operators
	Python Membership Operators
	Python Identity Operators
	Python Operators Precedence
	Assignment: 3
	Theory:
	Assignment: 4
	Theory: (1)
	Exercise:
	What is an Array?
	Access the Elements of an Array
	The Length of an Array
	Looping Array Elements
	Adding Array Elements
	Removing Array Elements
	Array Methods
	Python List:
	Accessing Values in Lists
	Delete List Elements
	Basic List Operations
	Indexing, Slicing, and Matrixes
	Built-in List Functions & Methods
	Python includes following list methods
	Accessing Values in Tuples
	Delete Tuple Elements
	Basic Tuples Operations
	Indexing, Slicing, and Matrixes (1)
	No Enclosing Delimiters
	Built-in Tuple Functions
	Python Sets:
	Access Items
	Change Items
	Add Items
	Get the Length of a Set
	Remove Item
	Dictionary
	Accessing Items
	Exercise: (1)
	Assignment:6
	Theory: (2)
	Creating a Function
	Calling a Function
	Parameters
	Value
	Passing a List as a Parameter
	Return Values
	return 5 * x
	Exercise: (2)
	Assignment: 7
	a. Data definition language:
	b. Data manipulation language:
	Exercise: (3)
	Assignment: 8
	Theory: (3)
	Database Connection
	Creating Database Table
	INSERT Operation
	Exercise: (4)
	2. Create python application which will display all names and ages from mysql table
	Assignment: 9
	Theory: (4)
	Example
	Exercise: (5)
	Theory: (5)
	Create a Class
	Create Object
	The init () Function
	Exercise: (6)

