Design of Concrete Structures-ll Sem VIII

General Course Information						
Course Code: PEC-CVE456-T	Course Assessment Methods (Internal: 30; External: 70) Two minor					
Course Credits: 3	test each of 20marks, class performance measured through percentage of					
Mode: Lecture (L)	lecture attended (4 marks), assignments and quiz etc. (6 marks) and end					
Type: PE-IV	semester examination of 70 marks.					
Contact Hours: 3 hours (L)	For the end semester examination, nine questions are to be set by the					
Examination Duration: 03 hours.	examiner. Question number one will be compulsory and based on the					
	entire syllabus. It will contain seven short answer type questions. Rest of					
	the eight questions is to be given by setting two questions from each of					
	the four units of the syllabus. A candidate is required to attempt any					
	other four questions selecting one from					
	each of the four units. All questions carry equal marks.					

S. No.	Course outcomes	RBT* Level		
	At the end of the course students will be able to:			
CO1	Explain design of special concrete structures like continuous/ curved beams,	L2(Understanding)		
	stair-cases, water tanks, domes, retaining walls and bridges.			
CO2	Employ the concepts of structural engineering for the construction of special	L3(Applying)		
	structures.			
CO3	Examine the structural aspects of special structures.	L4 (Analyzing)		
CO4	Evaluate the structural condition of special structures	L5 (Evaluating)		
CO5	Design special concrete structures like continuous/ curved beams, stair-cases,	L6 (Creating)		
	water tanks, domes, retaining walls and bridges.			

*Revised Blooms Taxonomy

UNIT I

Continuous Beams: Basic assumptions, Moment of inertia, settlements, Modification of moments, maximum moments and shear, redistribution of moments for single and multi-span beams, design examples.

Stair- Cases: Type of stair-cases, Effective span of stairs, Distribution of loads on different types of stair cases, Design examples.

UNIT II

Water Tanks: Estimation of Wind and earthquake forces, design requirements, rectangular and cylindrical underground, Intze tanks, design considerations, design examples.

UNIT III

Design of curved beams in plan: Analysis and Design of curved beams fixed at both ends, ring beams

Design of Domes: Meridional and hoop stress in spherical and conical domes.

UNIT IV

Retaining walls: Design of cantilever and counter fort type retaining walls.

Introduction to Bridge Engineering: Definition, components of a bridge, classifications, importance of bridges. Need for investigations, selection of bridge site, I.R.C. loadings.

Text Books

- 1. Reinforced Concrete Structures, P. C. Varghese, Tata McGraw Hill
- 2. Advanced Reinforced Concrete Structures, P. C. Varghese, Tata McGraw Hill
- 3. Reinforced Concrete Design, M.L. Gambhir, Macmillan India Ltd., New Delhi
- 4. Limit State Design of Reinforced Concrete, A.K. Jain, Nern Chand and Bros., Roorkee
- 5. Behaviour, Analysis and Design of R.C.C. Structural Elements, LC. Syal and Ummat, A.H. Wheelers. New Delhi
- 6. Elements of Bridge Engineering, D. Johnson Victor, Oxford and IBH Publishers, New Delhi.
- 7. Plain and Reinforced concrete, Vol. 2, 0 P Jain and J. Krishna, Nern Chand and Bros., Roorkee
- 8. Reinforced Concrete Design, SU Pillai and D Menon, Tata McGraw Hill

	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	1	-	-	-	-	-	1	1	1	2	2
CO2	2	2	2	2	Ι	-	-	-	-	-	Ι	Ι	1	2	2
CO3	2	2	2	2	1	-	-	-	-	-	1	1	Ι	2	2
CO4	2	2.	3	3	1	-	-	-	-	-	1	Ι	2	3	3
CO5	2	2	3	3	1	-	-	-	-	-	1	1	2	3	3

Course Articulation Matrix: